Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluation of reformed methanol as an automotive engine fuel  

E-Print Network [OSTI]

EVALUATION OF REFORMED METHANOL AS AN AUTOMOTIVE ENGINE FUEL A Thesis by DAVID MICHAEL MCCALL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December... 1903 Major Subject: Mechanical Engineering EVALUATION OF REFORMED METHANOL AS AN AUTOMOTIVE ENGINE FUEL A Thesis by DAVID MICHAEL MCCALL Approved as to style and content by: Dr. T. R. Lalk (Chairman o f Committee ) Dr. R. R. Davison (Member...

McCall, David M

1983-01-01T23:59:59.000Z

2

Review of alternate automotive engine fuel economy. Final report January-October 78  

SciTech Connect (OSTI)

This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

1980-11-01T23:59:59.000Z

3

Engineering-economic analyses of automotive fuel economy potential in the United States  

SciTech Connect (OSTI)

Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

Greene, D.L.; DeCicco, J.

2000-02-01T23:59:59.000Z

4

Automotive Fuel Cell Corporation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis, 2014AutomatedAutomotive Fuel Cell

5

Engineering and Materials for Automotive Thermoelectric Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Materials for Automotive Thermoelectric Applications Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator,...

6

Experimental hydrogen-fueled automotive engine design data-base project. Volume 2. Main technical report  

SciTech Connect (OSTI)

Operational performance and emissions characteristics of hydrogen-fueled engines are reviewed. The project activities are reviewed including descriptions of the test engine and its components, the test apparatus, experimental techniques, experiments performed and the results obtained. Analyses of other hydrogen engine project data are also presented and compared with the results of the present effort.

Swain, M.R.; Adt, R.R. Jr.; Pappas, J.M.

1983-05-01T23:59:59.000Z

7

Automotive and fuel technologies: current and future options  

SciTech Connect (OSTI)

The purpose of this work is to assess the likely commercial timeframe of a broad range of automotive and fuel technologies. The report assesses the status of existing and alternative engine technologies, associated fuels, and problems which may retard their introduction and use. It estimates, where possible, the earliest time of general commercial use for each developing automotive technology and fuel.

Price, R.; Stamets, L.

1984-03-01T23:59:59.000Z

8

Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors  

DOE Patents [OSTI]

The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

Riecke, George T. (Ballston Spa, NY); Stotts, Robert E. (Newark, NY)

1992-01-01T23:59:59.000Z

9

Directions in automotive engine research and development  

SciTech Connect (OSTI)

The advent of high fuel costs and automotive fuel economy and emission regulations has cast doubt on the economic superiority and even the technical feasibility of conventional spark ignition and diesel engines, and has opened the field to other concepts. The emission regulations and their effect on the design and efficiency of conventional engines are reviewed, the research and development effort to improve the performance of conventional engines and to develop advanced engines is discussed, and the current status of these engines is presented.

Samuels, G.

1980-01-01T23:59:59.000Z

10

Sandia National Laboratories: ECIS-Automotive Fuel Cell Corporation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECAbout ECFacilitiesCRFECIS-Automotive Fuel Cell Corporation: Hydrocarbon Membrane Fuels the Success of Future Generation Vehicles ECIS-Automotive Fuel Cell Corporation:...

11

Fuels, Engines & Emissions | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other automotive components, basic chemistry, materials, and fuels. Fuel properties, engine performance, and emissions are studied with fuels from conventional and unconventional...

12

Automotive HCCI Engine Research  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

13

Membrane Performance and Durability Overview for Automotive Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Membrane Performance and Durability Overview for Automotive Fuel Cell Applications Presented by...

14

Development of a test facility for the experimental evaluation of liquid and gaseous automotive engine fuels  

E-Print Network [OSTI]

of Reference [15] ---------------- 55 LIST OF TABLES IN APPENDICES PAGE Table Al: Engine Specificat1ons Table A2: Eng1ne Break-in Schedule 69 74 Table A3: Wear Metals in Engine Oil- 77 Table Cl: Values Used for Variables in Emiss1ons Calculations... important. In selecting instrumentation for the system, accuracy, speed, and versatility were considered. The cost of each piece of equipment was weighed against its accuracy, its ability to save time collecting data, and its capability for adapting...

McCanlies, John Michael

2012-06-07T23:59:59.000Z

15

Society of Automotive Engineers honors Storey, Wagner, Sluder...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Communications 865.574.4399 Society of Automotive Engineers honors Storey, Wagner, Sluder The Society of Automotive Engineers has honored ORNL researches (from left) Robert Wagner,...

16

automotive engineering: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to design Subramanian, Venkat 5 Faculty of Engineering Mechanical, Automotive and Physics Websites Summary: Faculty of Engineering Mechanical, Automotive and Materials...

17

Michigan: Universities Train Next Generation of Automotive Engineers...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Michigan: Universities Train Next Generation of Automotive Engineers Michigan: Universities Train Next Generation of Automotive Engineers November 6, 2013 - 12:00am Addthis...

18

Engaging the Next Generation of Automotive Engineers through...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle...

19

Chemical Kinetic Modeling of Combustion of Automotive Fuels  

SciTech Connect (OSTI)

The objectives of this report are to: (1) Develop detailed chemical kinetic reaction models for components of fuels, including olefins and cycloalkanes used in diesel, spark-ignition and HCCI engines; (2) Develop surrogate mixtures of hydrocarbon components to represent real fuels and lead to efficient reduced combustion models; and (3) Characterize the role of fuel composition on production of emissions from practical automotive engines.

Pitz, W J; Westbrook, C K; Silke, E J

2006-11-10T23:59:59.000Z

20

GATE Center for Automotive Fuel Cell Systems at Virginia Tech  

SciTech Connect (OSTI)

The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: â?˘ Expanded and updated fuel cell and vehicle technologies education programs; â?˘ Conducted industry directed research in three thrust areas â?? development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; â?˘ Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; â?˘ Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Techâ??s comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

Douglas Nelson

2011-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electrocatalysts for Automotive Fuel Cells: Status and Challenges  

Broader source: Energy.gov [DOE]

Presentation by Nilesh Dale for the 2013 DOE Catalyst Working Group Meeting on electrocatalysts for automotive fuel cells.

22

Development of Sensors for Automotive PEM-based Fuel Cells  

E-Print Network [OSTI]

organization #12;4 Sensors for Automotive PEM Fuel Cells - Motivation Sensor Performance and Cost ImprovementsDevelopment of Sensors for Automotive PEM-based Fuel Cells DOE Agreement DE-FC04-02AL67616 Brian FC Series 200 - 50 kW PEM #12;2 Development of Sensors for Automotive PEM-based Fuel Cells ­ Program

23

Automotive Fuels ? The Challenge for Sustainable Mobility  

Broader source: Energy.gov (indexed) [DOE]

GTL Fuel launched in: Austria, Germany, Greece, Italy, Netherlands, Switzerland and Thailand Premium Fuels V-Power fuels: Best performance in Latest engine technology * In 60...

24

Sandia National Laboratories: Automotive Fuel Cell Cooperation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced Nuclear EnergyCouncilSandia'sCenterAutomotive

25

Status and Prospects of the Global Automotive Fuel Cell Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ORNLTM-2013222 Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Revised July...

26

Status and Prospects of the Global Automotive Fuel Cell Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Status and Prospects of the...

27

NONLINEAR MAGNETIC LEVITATION OF AUTOMOTIVE ENGINE VALVES  

E-Print Network [OSTI]

NONLINEAR MAGNETIC LEVITATION OF AUTOMOTIVE ENGINE VALVES K. Peterson, J.W. Grizzle, and A.G. Stefanopoulou Ł ˝ Ł University of Michigan, Ann Arbor Abstract: Position regulation of a magnetic levitation the region of attraction. The effects of magnetic saturation are included in the model, and accounted

Grizzle, Jessy W.

28

Computer Graphic Tools for Automotive Paint Engineering Gary W. Meyer  

E-Print Network [OSTI]

Computer Graphic Tools for Automotive Paint Engineering Gary W. Meyer University of Minnesota graphics programs that can be used to solve automotive paint engineering problems. New surface reflection models have been created for simulating the appearance of automotive paint, and the hardware available

Minnesota, University of

29

Automatic Parallelization of Hand Written Automotive Engine Control  

E-Print Network [OSTI]

Automatic Parallelization of Hand Written Automotive Engine Control Codes Using OSCAR Compiler Dan approach to realize the next- generation automobiles integrated control system. However, automotive-core processors for a long time. This paper proposes to parallelize an automotive engine crankshaft control

Kasahara, Hironori

30

Webinar: Automotive and MHE Fuel Cell System Cost Analysis  

Broader source: Energy.gov [DOE]

Video recording and text version of the webinar titled, Automotive and MHE Fuel Cell System Cost Analysis, originally presented on April 16, 2013.

31

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network [OSTI]

Costs of Automotive PEM Fuel Cell Systems - Using BoundedCosts of Automotive PEM Fuel Cell Systems - Using BoundedCosts of Automotive PEM Fuel Cell Systems Forecasting the

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

32

Oxidation of automotive primary reference fuels at elevated pressures  

SciTech Connect (OSTI)

Automotive engine knock limits the maximum operating compression ratio and ultimate thermodynamic efficiency of spark-ignition (SI) engines. In compression-ignition (CI) or diesel cycle engines, the premixed burn phase, which occurs shortly after injection, determines the time it takes for autoignition to occur. In order to improve engine efficiency and to recommend more efficient, cleaner-burning alternative fuels, they must understand the chemical kinetic processes that lead to autoignition in both SI and CI engines. These engines burn large molecular-weight blended fuels, a class to which the primary reference fuels (PRF) n-heptane and iso-octane belong. In this study, experiments were performed under engine like conditions in a high-pressure flow reactor using both the pure PRF fuels and their mixtures in the temperature range 550-880 K and 12.5 atm pressure. These experiments not only provide information on the reactivity of each fuel but also identify the major intermediate products formed during the oxidation process. A detailed chemical kinetic mechanism is used to simulate these experiments, and comparisons of experimentally measured and model predicted profiles for O{sub 2}, CO, CO{sub 2}, H{sub 2}O and temperature rise are presented. Intermediates identified in the flow reactor are compared with those present in the computations, and the kinetic pathways leading to their formation are discussed. In addition, autoignition delay times measured in a shock tube over the temperature range 690-1220 K and at 40 atm pressure were simulated. Good agreement between experiment and simulation was obtained for both the pure fuels and their mixtures. Finally, quantitative values of major intermediates measured in the exhaust gas of a cooperative fuels research engine operating under motored engine conditions are presented together with those predicted by the detailed model.

Callahan, C V; Curran, H J; Dryer, F L; Pitz, W J; Westbrook, C K

1999-03-01T23:59:59.000Z

33

Nonlinear Control for Magnetic Levitation of Automotive Engine Valves  

E-Print Network [OSTI]

1 Nonlinear Control for Magnetic Levitation of Automotive Engine Valves Katherine Peterson, Member of a magnetic levitation device is achieved through a control Lyapunov function (CLF) feedback design for and implemented on an electromagnetic valve actuator for use in automotive engines, the control methodology

Grizzle, Jessy W.

34

Next Generation Bipolar Plates for Automotive PEM Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Bipolar Plates for Automotive PEM Fuel Cells (Topic 4) GrafTech International, Ltd. * Funding DOE Cost Share Recipient Cost Share TOTAL 2,325,943 581,486 2,907,429 80% 20% 100%...

35

E-Print Network 3.0 - automotive engineers preprint Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Transport Academy Summary: 12;12;AA AUTOMOTIVE ENGINEERING ELECTRIC POWER ENGINEERING INDUSTRIAL ECOLOGY... APPLIED MECHANICS SOUND AND VIBRATION ...

36

Fumigation of alcohol in a light duty automotive diesel engine  

SciTech Connect (OSTI)

A light-duty automotive diesel engine was fumigated with methanol and ethanol in amounts up to 35% and 50% of the total fuel energy respectively. The main purpose of this study was to determine the effect of alcohol (methanol and ethanol) fumigation on engine performance at various operating conditions. Engine fuel efficiency, emissions, smoke, and the occurrence of severe knock were the parameters used to evaluate performance. Raw exhaust particulate and its soluble organic extract were screened for biological activity using the Ames Salmonella typhimurium assay. Results are given for a test matrix made up of twelve steady-state operating conditions. For all conditions except the 1/4 rack (light load) condition, modest thermal efficiency gains were noted upon ethanol fumigation. Methanol showed the same increase at 3/4 and full rack (high load) conditions. However, engine roughness or the occurrence of severe knock limited the maximum amount of alcohol that could be fumigated. Brake specific NO/sub x/ concentrations were found to decrease for all ethanol conditions tested. Oxides of nitrogen emissions, on a volume basis, decreased for all alcohol conditions tested. Based on the limited particulate data analyzed, it appears as though ethanol fumigation, like methanol fumigation, while lowering the mass of particulate emitted, does enhance the biological activity of that particulate.

Broukhiyan, E.M.H.; Lestz, S.S.

1981-08-01T23:59:59.000Z

37

E-Print Network 3.0 - automotive-propulsion fuel cells Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

automotive-propulsion fuel cells Search Powered by Explorit Topic List Advanced Search Sample search results for: automotive-propulsion fuel cells Page: << < 1 2 3 4 5 > >> 1 ORNL...

38

Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems  

SciTech Connect (OSTI)

The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

Nuvera Fuel Cells

2005-04-15T23:59:59.000Z

39

Development of Educational System for Automotive Engineering based on Augmented Reality  

E-Print Network [OSTI]

Development of Educational System for Automotive Engineering based on Augmented Reality Ildar for automotive engineering education is introduced. Main objective of the system is teaching disassemble/assemble procedure of automatic transmission of a vehicle to students, who study automotive engineering. System

Ryu, Jee-Hwan

40

Progress Report for Advanced Automotive Fuels  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4RoguebuttonsEnergy Office of Advanced

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Model-based Control of Automotive Engines and After-treatment Devices  

E-Print Network [OSTI]

Model-based Control of Automotive Engines and After-treatment Devices N. Petit MINES Paris on automotive vehicle emissions have steadily increased over the last decades, embedded control technology relating to the field of automotive engines. It exposes several milestones that have been identified

42

Thermodynamic aspects of reformulation of automotive fuels  

SciTech Connect (OSTI)

A study of procedures for measuring and predicting the RVP and the initial vapor emissions of reformulated gasoline blends which contain one or more oxygenated compounds, viz., Ethanol, MTBE, ETBE, and TAME is discussed. Two computer simulation methods were programmed and tested. In one method, Method A, the D-86 distillation data on the blend are used for predicting the blend`s RVP from a simulation of the Mini RVPE (RVP Equivalent) experiment. The other method, Method B, relies on analytical information (PIANO analyzes) on the nature of the base gasoline and utilizes classical thermodynamics for simulating the same RVPE, Mini experiment. Method B, also, predicts the composition and other properties of the initial vapor emission from the fuel. The results indicate that predictions made with both methods agree very well with experimental values. The predictions with Method B illustrate that the admixture of an oxygenate to a gasoline blend changes the volatility of the blend and, also, the composition of the vapor emission. From the example simulations, a blend with 10 vol % ethanol increases the RVP by about 0.8 psi. The accompanying vapor emission will contain about 15% ethanol. Similarly, the vapor emission of a fuel blend with 11 vol % MTBE was calculated to contain about 11 vol % MTBE. Predictions of the behavior of blends with ETBE and ETBE+Ethanol are also presented and discussed. Recognizing that quite some efforts have been invested in developing empirical correlations for predicting RVP, the writers consider the purpose of this paper to be pointing out that the methods of classical thermodynamics are adequate and that there is a need for additional work in developing certain fundamental data that are still lacking.

Zudkevitch, D. [Columbia Univ., New York, NY (United States); Murthy, A.K.S. [BOC Gases, Murray Hill, NJ (United States); Gmehling, J. [Univ. Oldenburg (Germany)

1995-09-01T23:59:59.000Z

43

Automotive HCCI Engine Research | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical5/08 Attendance List1-02Evaluation Report(AO)Automatic

44

Engineering and Materials for Automotive Thermoelectric Applications |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste HeatStructures |Don

45

Automotive HCCI Engine Research | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,Re evised JuneConversion2 DOE

46

Automotive HCCI Engine Research | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,Re evised JuneConversion2

47

Automotive HCCI Engine Research | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,Re evised JuneConversion20

48

Automotive HCCI Engine Research | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,Re evised2009 DOE Hydrogen

49

Faculty of Engineering Mechanical, Automotive and  

E-Print Network [OSTI]

Engineering includes two broad areas of study. The first involves heat and power, and is referred, environmental assessment, and recycling and materials recovery. 4) Materials Option - evaluate the structure and graphical communications · Chemical and material interactions · Technical communications · Professional

50

Faculty of Engineering Mechanical, Automotive and  

E-Print Network [OSTI]

Engineering includes two broad areas of study. The first involves heat and power, and is referred assessment, and recycling and materials recovery. 4) Materials Option - evaluate the structure and properties communications · Chemical and material interactions · Technical communications · Professional issues

51

Vehicle Technologies Office Merit Review 2014: Automotive Low Temperature Gasoline Combustion Engine Research  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about automotive low...

52

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy. lagrandeur.pdf More Documents & Publications Automotive...

53

Cardiogram: Visual Analytics for Automotive Engineers Michael Sedlmair1, Petra Isenberg2, Dominikus Baur3, Michael Mauerer3,  

E-Print Network [OSTI]

Cardiogram: Visual Analytics for Automotive Engineers Michael Sedlmair1, Petra Isenberg2, Dominikus that sup- ports automotive engineers in debugging masses of traces each consisting of millions of recorded-critical networks to be error-free has become a major task and challenge for automotive engi- neers. To overcome

Paris-Sud XI, Université de

54

Society of Automotive Engineers (SAE) Technical Paper 2006-01-1041 Paper presented at SAE 2006 World Congress & Exposition, April 5, 2006, Detroit, MI  

E-Print Network [OSTI]

and Fundamental Advances in Thermal Fluid Sciences 2006. Vol. SP-2015. (Society of Automotive Engineers, Troy, MI by Multi-Orifice Direct Injection Using Ultrafast X-Tomography Technique Xin Liu, Kyoung-Su Im, Yujie Wang-pressure direct injection fuel system for spark ignition direct injection engines has been developed, in which

Gruner, Sol M.

55

CONTROL-ORIENTED MODELING AND ANALYSIS FOR AUTOMOTIVE FUEL CELL SYSTEMS  

E-Print Network [OSTI]

for the success of fuel cell vehicles. Efficient fuel cell system power production depends on proper airCONTROL-ORIENTED MODELING AND ANALYSIS FOR AUTOMOTIVE FUEL CELL SYSTEMS Jay T. Pukrushpan Huei Peng of Michigan Ann Arbor, Michigan 48109-2125 Email: pukrushp@umich.edu Abstract Fuel Cells are electrochemical

Peng, Huei

56

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network [OSTI]

fuel cell stacks (Savote (1998)) Estimating manufactunng costfuel cell stacks, $20/kWfor fuel processors, and $20/kWfor "balance of plant" auxlhary components These costCosts of Automotive PEM Fuel Cell Systems (PEM)fuel cell stack

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

57

Comparison of steady-state and transient CVS cycle emissions of an automotive Stirling engine  

SciTech Connect (OSTI)

One of the goals of the Automotive Stirling Engine Development Program, sponsored by the Department of Energy and managed by NASA/Lewis Research Center, is to develop a rationale for predicting transient CVS cycle emissions from steady-state engine data. A technique is developed that integrates engine emissions as a function of fuel flow over a modelled CVS cycle to predict vehicle urban cycle results. Steady-state emissions data from three Mod I engines* burning unleaded gasoline are used to predict vehicle NO /SUB x/, CO, and HC emissions. A total of 155 data points representing variations in engine power, excess air (lambda), and the exhaust gas recirculation (EGR) schedule are utilized. Predictions are then compared to the results of nine urban CVS cycle tests of the Mod I/Lerma vehicle, and a conclusion is reached that very accurate predictions of vehicle NO /SUB x/ emissions are possible. CO and HC emissions are considerably higher than predicted due to extreme sensitivity of CO emissions to Lambda, the effect of heater head temperature, and failure of the engine to accurately reflect emissions during start-up.

Farrell, R.A.; Bolton, R.J.

1983-10-01T23:59:59.000Z

58

Technology development goals for automotive fuel cell power systems. Final report  

SciTech Connect (OSTI)

This report determines cost and performance requirements for Proton Exchange Membrane (PEM) fuel cell vehicles carrying pure H{sub 2} fuel, to achieve parity with internal combustion engine (ICE) vehicles. A conceptual design of a near term FCEV (fuel cell electric vehicle) is presented. Complete power system weight and cost breakdowns are presented for baseline design. Near term FCEV power system weight is 6% higher than ICE system, mid-term FCEV projected weights are 29% lower than ICE`s. There are no inherently high-cost components in FCE, and at automotive production volumes, near term FCEV cost viability is closer at hand than at first thought. PEM current vs voltage performance is presented for leading PEM manufacturers and researchers. 5 current and proposed onboard hydrogen storage techniques are critically compared: pressurized gas, cryogenic liquid, combined pressurized/cryogenic, rechargeable hydride, adsorption. Battery, capacitor, and motor/controller performance is summarized. Fuel cell power system component weight and cost densities (threshold and goal) are tabulated.

James, B.D.; Baum, G.N.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1994-08-01T23:59:59.000Z

59

References and Notes 1. W. J. Bartz, Ed., Engines and Automotive Lubrication  

E-Print Network [OSTI]

References and Notes 1. W. J. Bartz, Ed., Engines and Automotive Lubrication (Marcel Dekker, New formulations. 13. The replacement of steel by aluminum is motivated by efforts to reduce vehicle weight to adequately protect aluminum surfaces, automobile manufacturers have had to resort to engines com- posed

Shapiro, Nikolai

60

Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)  

SciTech Connect (OSTI)

Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These enzymes are generally not available commercially, however, and those that are can be quite expensive. Accordingly, the genes responsible for enzyme synthesis were inserted into other microorganisms in order to accelerate enzyme production. This was demonstrated for two of the required enzymes in the overall series. In the MOF project, a number of new MOF compounds were synthesized and characterized, as well as some common MOFs well-known for their adsorption properties. Selectivity for specific gases such as CO{sub 2} and H{sub 2} was demonstrated, although it was seen that water vapor would frequently act as an interferent. This work underscored the need to test MOF compounds under real world conditions, i.e., room temperature and above instead of liquid N{sub 2} temperature, and testing adsorption using blends of gases instead of pure components. In the solar membrane project, thin films of CdTe and WO{sub 3} were applied to steel substrates and used as p-type and n-type semiconductors, respectively, in the production of H{sub 2} and O{sub 2}. Testing with {sup 2}H and {sup 18}O isotopically labeled water enabled substantiation of net water-splitting.

Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

2013-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

62

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

63

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Broader source: Energy.gov [DOE]

Report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

64

Methanol fumigation of a light duty automotive diesel engine  

SciTech Connect (OSTI)

An Oldsmobile 5.7 l V-8 diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of this study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluable organic extract was also made using both the Ames Salmonella typhimurium test and the Bacillus subtilis Comptest. Results are presented for a test matrix consisting of twelve steady state operating conditions chosen to reflect over-the-road operation of a diesel engine powered automobile. Generally methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads the methanol was found to induce what was defined as knock limited operation. While the biological activity of the raw particulate was generally found to be lower than that of the soluble organic fraction, the fumigation of methanol appears to enhance this activity in both cases.

Houser, K.R.; Lestz, S.S.; Dukovich, M.; Yasbin, R.E.

1980-01-01T23:59:59.000Z

65

Automotive Component Product Development Enhancement  

E-Print Network [OSTI]

Automotive Component Product Development Enhancement Through Multi-Attribute System Design Engineering Systems Division #12;Automotive Component Product Development Enhancement Through Multi of Science in Engineering and Management February 2005 ABSTRACT Automotive industry is facing a tough period

66

Membrane Performance and Durability Overview for Automotive Fuel Cell  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |

67

Hydrogen Operated Internal Combustion Engines – A New Generation Fuel  

E-Print Network [OSTI]

Abstract- The present scenario of the automotive and agricultural sectors is fairly scared with the depletion of fossil fuel. The researchers are working towards to find out the best replacement for the fossil fuel; if not at least to offset the total fuel demand. In regards to emission, the fuel in the form of gaseous state is much than liquid fuel. By considering the various aspects of fuel, hydrogen is expected as a best option when consider as a gaseous state fuel. It is identified as a best alternate fuel for internal combustion engines as well as power generation application, which can be produced easily by means of various processes. The hydrogen in the form of gas can be used in the both spark ignition and compression ignition engines for propelling the vehicles. The selected fuel is much cleaner and fuel efficient than conventional fuel. The present study focusing the various aspects and usage of hydrogen fuel in S.I engine and C.I engine. Keywords- Hydrogen, Spark ignition engine, compression ignition engine, performance, Emission I.

B. Rajendra Prasath; E. Leelakrishnan; N. Lokesh; H. Suriyan; E. Guru Prakash; K. Omur; Mustaq Ahmed

68

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

69

10 Questions for an Automotive Engineer: Thomas Wallner | Department...  

Broader source: Energy.gov (indexed) [DOE]

Argonne mechanical engineer Thomas Wallner adjusts Argonne's "omnivorous engine," an automobile engine that Wallner and his colleagues have tailored to efficiently run on blends of...

70

Fiber optic sensing technology for measuring in-cylinder pressure in automotive engines  

E-Print Network [OSTI]

A new fiber optic sensing technology for measuring in-cylinder pressure in automotive engines was investigated. The optic sensing element consists of two mirrors in an in-line single mode fiber that are separated by some distance. To withstand...

Bae, Taehan

2006-10-30T23:59:59.000Z

71

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network [OSTI]

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

72

Sandia National Laboratories: ECIS-Automotive Fuel Cell Corporation:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRFProvide

73

Automotive Fuel Cell Research and Development Needs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,Re evised June

74

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,Re evised JuneConversion to

75

Automotive Fuels - The Challenge for Sustainable Mobility | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,Re evised JuneConversion

76

Automotive and MHE Fuel Cell System Cost Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,ReDevelopments |1 DOE0

77

Next Generation Bipolar Plates for Automotive PEM Fuel Cells | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |MillionNext Generation Attics and Roofof

78

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

79

Comparison of steady-state and transient CVS cycle emissions of an automotive Stirling engine  

SciTech Connect (OSTI)

The Automotive Stirling Engine Development Program has stringent emission goals for a Stirling-powered vehicle. The present investigation is concerned with the initial development of a procedure for predicting transient CVS urban cycle gaseous emissions from steady-state engine data. Steady-state data from three Mod I automotive Stirling engines are used to predict urban CVS cycle emissions for a Mod I Lerma vehicle. Predicted data with respect to NOx emissions were found to correspond closely to measured values, while there were differences for the CO and HC data. Reasons for these differences are briefly discussed. Attention is given to the test procedure and the measurements, the engine test results, vehicle emissions predictions, and a comparison of vehicle results and steady-state predictions. 11 references.

Farrell, R.A.; Bolton, R.J.

1983-01-01T23:59:59.000Z

80

Status and Prospects of the Global Automotive Fuel Cell Industry...  

Broader source: Energy.gov (indexed) [DOE]

leading the development of mass-market fuel cell vehicles in Japan, Korea, Germany, and the United States with data from the open literature and public meetings to...

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Utiization of alternate fuels in diesel engines  

SciTech Connect (OSTI)

Accomplishments during three years entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. Experiments were designed and test equipment set-up for the purpose of evaluating the use of methanol as a fumigant for light-duty Diesel engine service. The major experimental results were obtained from a multicylinder automotive Diesel engine. However, fundamental studies employing a GC/micro-reactor and a constant volume combustion bomb were also started. The purpose of this work was to measure some of the chemical and physical properties of methanol and methanol-air mixtures. The laminar flame velocity for various mixtures has been measured in the combustion bomb and thermal degradation studies have begun in the GC/micro-reactor. An Oldsmobile 5.7 liter V/8 Diesel engine was fumigated with methanol in amounts up to 40% of the fuel energy. The primary objectives of the study were to determine the effect of methanol fumigation on fuel efficiency, smoke, nitric oxide emission, and the occurrence of severe knock. An assessment of the biological activity for samples of the raw exhaust particulate and its soluble organic extract was also made using boh the Ames Salmonella typhimurium test and the B. subtilis Comptest. Generally, methanol fumigation was found to decrease NO emission for all conditions, to have a slight effect on smoke opacity, and to have a beneficial effect on fuel efficiency at higher loads. Also at higher loads, the methanol was found to induce what was defined as knock limited operation. The biological activity of the raw particulate matter was fond to be less than that of its soluble organic extract. However, for both the fumigation of methanol did enhance the biological activity.

Lestz, S.S.

1980-09-01T23:59:59.000Z

82

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

83

Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct?hydrogen proton ex

84

ME 374D Automotive Engineering laboratory ABET EC2000 syllabus  

E-Print Network [OSTI]

and admission to an appropriate major sequence in engineering. Textbook(s): Internal Combustion Engines and emissions. Students use commercial engine-modeling software to explore effects of valve timing and intake tuning and conduct experiments with vehicle emissions, ignition timing, engine mechanisms, engine

Ben-Yakar, Adela

85

High Efficiency Full Expansion (FEx) Engine for Automotive Application...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Frontier in Engine Efficiency Two-Stroke Uniflow Turbo-Compound IC Engine The Opposed-Piston Two-Stroke Engine Alternative: Performance and Emissions Results in a Medium-Duty...

86

E-Print Network 3.0 - alternative automotive fuel Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Engineering Technical Elective Introduction to Fuel Cell Systems Summary: in alternative energy sources. Fuel Cell Basic Design COURSE TOPICS INCLUDE The prevalent...

87

Automotive and MHE Fuel Cell System Cost Analysis (Text Version...  

Broader source: Energy.gov (indexed) [DOE]

on previous fuel cell cost analysis studies that we've done for the Department of Energy, beginning with a market analysis, and then completing a system design. The system...

88

A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells  

SciTech Connect (OSTI)

Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

Brown, L.F.

1996-03-01T23:59:59.000Z

89

Partial oxidation fuel reforming for automotive power systems.  

SciTech Connect (OSTI)

For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

1999-09-07T23:59:59.000Z

90

Effect of automotive electrical system changes on fuel consumption using incremental efficiency methodology  

E-Print Network [OSTI]

There has been a continuous increase in automotive electric power usage. Future projections show no sign of it decreasing. Therefore, the automotive industry has a need to either improve the current 12 Volt automotive ...

Hardin, Christopher William

2004-01-01T23:59:59.000Z

91

Application of a tunable-diode-laser absorption diagnostic for CO measurements in an automotive HCCI engine.  

SciTech Connect (OSTI)

An infrared laser absorption technique has been developed to measure in-cylinder concentrations of CO in an optical, automotive HCCI engine. The diagnostic employs a distributed-feedback, tunable diode laser selected to emit light at the R15 line of the first overtone of CO near 2.3 {micro}m. The collimated laser beam makes multiple passes through the cylinder to increase its path length and its sampling volume. High-frequency modulation of the laser output (wavelength modulation spectroscopy) further enhances the signal-to-noise ratio and detection limits of CO. The diagnostic has been tested in the motored and fired engine, exhibiting better than 200-ppm sensitivity for 50-cycle ensemble-average values of CO concentration with 1-ms time resolution. Fired results demonstrate the ability of the diagnostic to quantify CO production during negative valve overlap (NVO) for a range of fueling conditions.

Steeper, Richard R.; Fitzgerald, Russell Paul

2010-08-01T23:59:59.000Z

92

Automotive teamwork to develop an advanced automotive gas-turbine engine  

SciTech Connect (OSTI)

A $56.6 million cost-sharing contract has been signed by the U.S. Department of Energy and an industrial group headed by AiResearch Manufacturing Co. and including Ford Motor Co., AiResearch Casting Co., and Carborundum Co. A second contractual arrangement for an advanced turbine engine is being negotiated with an industry team headed by General Motors Corp.

Not Available

1980-04-01T23:59:59.000Z

93

Allgemeine Testverfahren Verfahren im Automotive  

E-Print Network [OSTI]

Allgemeine Testverfahren Verfahren im Automotive Hauptseminar Automotive Software Engineering Verfahren im Automotive ¨Uberblick 1 Allgemeine Testverfahren Statischer Test Dynamischer Test 2 Verfahren im Automotive X­in­the­loop Rapid Prototyping #12;Allgemeine Testverfahren Verfahren im Automotive

Cengarle, MarĂ­a Victoria

94

High Efficiency Full Expansion (FEx) Engine for Automotive Applications |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| Department

95

Next Generation Bipolar Plates for Automotive PEM Fuel Cells  

SciTech Connect (OSTI)

The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL? resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the DoE on metal plates. The final result of DTI’s analysis for the high volume manufacturing scenario ($6.85 /kW) came in slightly above the DoE target of $3 to $5/kW. This estimate was derived using a “Best Case Scenario” for many of the production process steps and raw material costs with projections to high volumes. Some of the process improvements assumed in this “Best Case Scenario” including high speed high impact forming and solvent-less resins, have not yet been implemented, but have a high probability of potential success.

Orest Adrianowycz; Julian Norley; David J. Stuart; David Flaherty; Ryan Wayne; Warren Williams; Roger Tietze; Yen-Loan H. Nguyen; Tom Zawodzinski; Patrick Pietrasz

2010-04-15T23:59:59.000Z

96

JOM November 2006, Volume 58, Issue 11, pp 71-76 71 Applications of Fly Ash in Synthesizing Low Cost Metal Matrix Composites for Automotive and other Engineering  

E-Print Network [OSTI]

Cost Metal Matrix Composites for Automotive and other Engineering Applications P. K. Rohatgi Materials and adequate properties for several automotive applications [1, 2]. Fly ash particles can be either solid will have to be remelted. Additions of fly ash can make automotive castings lighter, leading to further

Gupta, Nikhil

97

E-Print Network 3.0 - automotive medicine Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

support research directed... Professional Programs Automotive Engineering Design Science Energy Systems Engineering Financial Engineering... Global Automotive and Manufacturing...

98

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-2015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

99

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-1015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

100

Suggested Courses for ME Students Interested in Automotive Engineering  

E-Print Network [OSTI]

and design of gasoline and diesel engines. Fundamental processes and their application in current technology, chemical kinetics, flame propagation, knock, pollutant formation and control. Flow processes: volumetric

Virginia Tech

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review  

Broader source: Energy.gov [DOE]

This presentation reports on direct hydrogen PEMFC manufacturing cost estimation for automotive applications.

102

Engaging the Next Generation of Automotive Engineers through Advanced  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004Department ofEnforcingVehicle Technology

103

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

104

Future Directions in Engines and Fuels  

Broader source: Energy.gov (indexed) [DOE]

in Engines and Fuels Department of Energy DEER Conference Presented by Stuart Johnson, Engineering and Environmental Office September 28, 2010 Future Direction in Engines...

105

Society of Automotive Engineers World Congress | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |RegulationRenewable Energy (EERE)SmartRemarks Prepared for Energy Secretary

106

Michigan: Universities Train Next Generation of Automotive Engineers |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps More Documents &Small2011FY 2011 MethaneMichigan Industry is

107

automotive diesel engines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

used to test the procedure Paris-Sud XI, Universit de 25 EFFECT OF INJECTING HYDROGEN PEROXIDE INTO DIESEL ENGINE CiteSeer Summary: An experiment was conducted with four...

108

automotive diesel engine: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

used to test the procedure Paris-Sud XI, Universit de 25 EFFECT OF INJECTING HYDROGEN PEROXIDE INTO DIESEL ENGINE CiteSeer Summary: An experiment was conducted with four...

109

Automotive Stirling-Engine Development Program. Semiannual technical progress report, July 1-December 31, 1981  

SciTech Connect (OSTI)

This is the first semiannual technical progress report prepared under the automotive Stirling Engine Development Program; it covers the fourteenth and fifteenth quarters of activity after award of the contract. Quarterly technical progress reports reported program activities from the first quarter through the thirteenth quarter; thereafter, reporting was changed to a semiannual format. This report summarizes activities performed on Mod I engine testing and test results, progress in manufacturing, assembling and testing of a Mod I engine in the United States, P-40 Stirling engine dynamometer and multifuels testing, analog/digital controls system testing, Stirling reference engine manufacturing and reduced size studies, components and subsystems, computer code development activities. The overall program philosophy is outlined, and data and results are presented.

Ernst, W.; Piller, S.; Richey, A.; Simetkosky, M.

1982-09-01T23:59:59.000Z

110

Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine  

SciTech Connect (OSTI)

The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials will be presented.

Stephens, J.R.

1986-01-01T23:59:59.000Z

111

E-Print Network 3.0 - automotive fuel economy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

proposed hydrogen tax credit supports the market introduction of hydrogen for use... in fuel cells and internal combustion engines in nearer-term applications, including forklifts,...

112

PROGRAMME SPECIFICATION POSTGRADUATE PROGRAMMES Programme name Automotive Engineering  

E-Print Network [OSTI]

techniques and knowledge. Such skills and knowledge can then be applied in industry and research environments computer methods, e.g. CFD and CAD, using different software techniques. #12;2 - Appreciate impending developments in these areas e.g. advance vehicle technologies and IC engines. Skills: - Have had practical

Weyde, Tillman

113

Society of Automotive Engineers World Congress and Exposition, Detroit, MI, April, 2006 (draft) 1 MEASURING INDUSTRIAL ENERGY SAVINGS  

E-Print Network [OSTI]

Society of Automotive Engineers World Congress and Exposition, Detroit, MI, April, 2006 (draft) 1 MEASURING INDUSTRIAL ENERGY SAVINGS Kelly Kissock and Carl Eger Department of Mechanical and Aerospace Engineering University of Dayton 300 College Park Dayton, Ohio 45469-0238 Abstract This paper presents

Kissock, Kelly

114

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M.EngineReport on

115

Hypersonic scramjet engine fuel injector  

SciTech Connect (OSTI)

This patent describes a hypersonic scramjet engine fuel injector. It comprises: a housing having a generally horizontal top wall, an inclined bottom wall, and a generally vertical end wall attached together to define in cross-section a generally right triangle, the housing also having two generally vertical side walls having a the-generally-right-triangle shape. The side walls attached to the top, bottom, and end walls to define a fuel-tight, generally right-triangular wedge. The top wall having a fuel inlet orifice. The end wall having at least one convergent-divergent fuel outlet nozzle, and at least one wall of the bottom and side walls having a plurality of spaced-apart fuel-exit holes.

Lee, C.P.; Venkataramani, K.S.; Lahti, D.J.; Lee, V.H.

1990-02-27T23:59:59.000Z

116

Reformulated diesel fuel  

DOE Patents [OSTI]

Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-03-28T23:59:59.000Z

117

Innovative Drivetrains in Electric Automotive Technology Education...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Drivetrains in Electric Automotive Technology Education (IDEATE) Innovative Drivetrains in Electric Automotive Technology Education (IDEATE) 2012 DOE Hydrogen and Fuel Cells...

118

Performance and cost of automotive fuel cell systems with ultra-low platinum loadings.  

SciTech Connect (OSTI)

An automotive polymer-electrolyte fuel cell (PEFC) system with ultra-low platinum loading (0.15 mg-Pt cm{sup -2}) has been analyzed to determine the relationship between its design-point efficiency and the system efficiency at part loads, efficiency over drive cycles, stack and system costs, and heat rejection. The membrane electrode assemblies in the reference PEFC stack use nanostructured, thin-film ternary catalysts supported on organic whiskers and a modified perfluorosulfonic acid membrane. The analyses show that the stack Pt content can be reduced by 50% and the projected high-volume manufacturing cost by >45% for the stack and by 25% for the system, if the design-point system efficiency is lowered from 50% to 40%. The resulting penalties in performance are a <1% reduction in the system peak efficiency; a 2-4% decrease in the system efficiency on the urban, highway, and LA92 drive cycles; and a 6.3% decrease in the fuel economy of the modeled hybrid fuel-cell vehicle on the combined cycle used by EPA for emission and fuel economy certification. The stack heat load, however, increases by 50% at full power (80 kW{sub e}) but by only 23% at the continuous power (61.5 kW{sub e}) needed to propel the vehicle on a 6.5% grade at 55 mph. The reduced platinum and system cost advantages of further lowering the design-point efficiency from 40% to 35% are marginal. The analyses indicate that thermal management in the lower efficiency systems is very challenging and that the radiator becomes bulky if the stack temperature cannot be allowed to increase to 90-95 C under driving conditions where heat rejection is difficult.

Ahluwalia, R.; Wang, X.; Kwon, K.; Rousseau, A.; Kalinoski, J.; James, B.; Marcinkoski, J. (Energy Systems); ( NE); (Directed Technologies Inc.); (ED)

2011-05-15T23:59:59.000Z

119

Stirling engine sensitivity to fuel characteristics  

SciTech Connect (OSTI)

A Stirling engine was tested to determine the influence of fuel properties on various aspects of engine performance. In order to evaluate the sensitivity of the various operating parameters to the influence of fuel, three different distillation ranges of fuel were selected. Generally, the results indicated that the Stirling engine efficiency was not sensitive to the type of fuel. The emissions, though low, were influenced by the fuel type. The carbon monoxide emissions were lowest for gasoline. Gasoline also produced the lowest hydrocarbon emissions, while diesel fuel produced the greatest.

Evers, L.W.; Fleming, R.D.

1984-08-01T23:59:59.000Z

120

Solid fuel applications to transportation engines  

SciTech Connect (OSTI)

The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

Not Available

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Future Directions in Engines and Fuels  

Broader source: Energy.gov (indexed) [DOE]

Future Directions in Engines and Fuels 7 Specification HECS I (current) 1.6l 4-Cyl. Diesel Engine 60 kWl spec. Power (limited PFP) Euro 6 wo DeNOx (<1700 kg) ...

122

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov (indexed) [DOE]

mode engine for a blend of gasoline and E85 for the best fuel economy - Development of a cost effective and reliable dual combustion mode engine - Development of a model-based SI...

123

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress...  

Broader source: Energy.gov (indexed) [DOE]

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report DOE's Office of...

124

Complete Fuel Combustion for Diesel Engines Resulting in Greatly...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency Complete Fuel Combustion for Diesel Engines Resulting in Greatly...

125

Fuel Additive Strategies for Enhancing the Performance of Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additive Strategies for Enhancing the Performance of Engines and Engine Oils Fuel Additive Strategies for Enhancing the Performance of Engines and Engine Oils 2003 DEER Conference...

126

Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers  

SciTech Connect (OSTI)

Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: • 2016 CAFÉ standards. • Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. • Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. • U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: • Functionality of new lightweighting materials to meet present safety requirements. • Manufacturability using new lightweighting materials. • Cost reduction for the development and use of new lightweighting materials. The automotive industry’s future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: • Establish design criteria methodology to identify the best materials for lightweighting. • Employ state-of-the-art design tools for optimum material development for their specific applications. • Match new manufacturing technology to production volume. • Address new process variability with new production-ready processes.

Hale, Steve

2013-09-11T23:59:59.000Z

127

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

128

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

129

Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments  

SciTech Connect (OSTI)

The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

Not Available

1982-02-01T23:59:59.000Z

130

Potential Benefits of Utilizing Fuel Cell Auxiliary Power Units in Lieu of Heavy-Duty Truck Engine Idling  

E-Print Network [OSTI]

Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cellsmanufacturing costs of automotive PEM fuel cell systems incosts of different sizes of direct-hydrogen PEM fuel cell

2001-01-01T23:59:59.000Z

131

Conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications. Final Report  

SciTech Connect (OSTI)

The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developed engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

Vatsky, A.; Chen, H.S.; Dineen, J.

1982-05-01T23:59:59.000Z

132

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov (indexed) [DOE]

of a cost effective and reliable dual combustion mode engine (multi-cylinder and flex fuel) using cost effective actuating system (two-step valves and electrical cam phasing...

133

E-Print Network 3.0 - automotive fuels distribution Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

>> 1 Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen Summary: Distributed Energy Fuel Cells DOE HydrogenDOE Hydrogen andand Fuel CellsFuel Cells Coordination... ;Objectives...

134

Bachelor of Science Engineering Technology Hydrogen and Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education Program Concentration Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education...

135

Effects of Biomass Fuels on Engine & System Out Emissions for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Results of an...

136

Emission Performance of Modern Diesel Engines Fueled with Biodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Emission Performance of Modern Diesel Engines Fueled with Biodiesel This study presents full quantification of...

137

Achieving and Demonstrating FreedomCAR Engine Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Achieving and Demonstrating FreedomCAR Engine Fuel Efficiency Goals (Agreement 13704) Achieving and Demonstrating FreedomCAR Engine Fuel Efficiency Goals (Agreement 13704)...

138

New Feedstocks and Replacement Fuel Diesel Engine Challenges...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Diesel Engine Challenges New Feedstocks and Replacement Fuel Diesel Engine Challenges Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the...

139

Utilization of alternative fuels in diesel engines  

SciTech Connect (OSTI)

The important findings for a 41-month research grant entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. The procedure followed was to collect performance and emission data for various candidate alternate fuels and compare these data to that for a certified petroleum-based number two Diesel fuel oil. The method of test-fuel introduction was either via fumigation or to use the engine stock injection system. Results for methanol, ethanol, four vegetable oils, two shale-derived oils, and two coal-derived oils are reported. Based upon this study, alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. The reasons being, the need for a complex fuel management system and a narrow operating range bounded by wet misfire on the low load end and by severe knock at medium to high loads. Also, it was misfire on the low load end and by severe knock at medium to high loads. Also, it was found that alcohol fumigation enhances the bioactivity of the emitted exhaust particles. Finally, this study showed that while it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum-based Diesel oil.

Lestz, S.S.

1984-05-01T23:59:59.000Z

140

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive Applications: Fuel Cell Tech Team Review Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fuel-cell engine stream conditioning system  

DOE Patents [OSTI]

A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2002-01-01T23:59:59.000Z

142

Internalization of robust engineering methods in automotive product development : a study of corporate quality change in a large, mature automotive company  

E-Print Network [OSTI]

It is broadly recognized in the automotive industry, as well as many others, that those organizations that can deliver timely new products or existing product upgrades at desired cost and quality targets will produce higher ...

Fallu, John W. (John William), 1966-

2004-01-01T23:59:59.000Z

143

Metal/ceria water-gas shift catalysts for automotive polymer electrolyte fuel cell system.  

SciTech Connect (OSTI)

Polymer electrolyte fuel cell (PEFC) systems are a leading candidate for replacing the internal combustion engine in light duty vehicles. One method of generating the hydrogen necessary for the PEFC is reforming a liquid fuel, such as methanol or gasoline, via partial oxidation, steam reforming, or autothermal reforming (a combination of partial oxidation and steam reforming). The H{sub 2}-rich reformate can contain as much as 10% carbon monoxide. Carbon monoxide has been shown to poison the platinum-based anode catalyst at concentrations as low as 10 ppm,1 necessitating removal of CO to this level before passing the reformate to the fuel cell stack. The water-gas shift (WGS) reaction, CO + H{sub 2}O {rightleftharpoons} CO{sub 2} + H{sub 2}, is used to convert the bulk of the reformate CO to CO{sub 2}. Industrially, the WGS reaction is conducted over two catalysts, which operate in different temperature regimes. One catalyst is a FeCr mixed oxide, which operates at 350-450 C and is termed the high-temperature shift (HTS) catalyst. The second catalyst is a CuZn mixed oxide, which operates at 200-250 C and is termed the low-temperature shift (LTS) catalyst. Although these two catalysts are used industrially in the production of H{sub 2} for ammonia synthesis, they have major drawbacks that make them unsuitable for transportation applications. Both the LTS and the HTS catalysts must first be ''activated'' before being used. For example, the copper in the copper oxide/zinc oxide LTS catalyst must first be reduced to elemental copper in situ before it becomes active for the WGS reaction. This reduction reaction is exothermic and must be carried out under well- controlled conditions using a dilute hydrogen stream (1 vol% H{sub 2}) to prevent high catalyst temperatures, which can result in sintering (agglomeration) of the copper particles and loss of active surface area for the WGS reaction. Also, once the catalyst has been activated by reduction, it must be protected from exposure to ambient air to prevent re-oxidation of the copper. The activated catalyst must also be protected from the condensation of liquids, for example, during start-up or transient operation. For these reasons, a more thermally rugged catalyst is needed which has sufficient activity to operate at the low temperatures that are thermodynamically necessary to achieve low CO concentrations.

Myers, D. J.; Krebs, J. F.; Carter, J. D.; Kumar, R.; Krumpelt, M.

2002-01-11T23:59:59.000Z

144

Working towards a future on alternative fuels : the role of the automotive industry  

E-Print Network [OSTI]

Complementarity of vehicles and fuels has posed significant barrier for increasing the use of alternative fuels in place of traditional ones. An initial positive number of either alternative fuel vehicle (AFV) users or ...

Chen, Cuicui

2012-01-01T23:59:59.000Z

145

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network [OSTI]

s pilot-scale PEM fuel cell manufactunng cost, and theproductaon, PEM fuel cell systems could cost $35 - 90/kW,is how PEM fuel cell system manufactunng costs might evolve

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

146

Forecasting the Costs of Automotive PEM Fuel Cell Systems: Using Bounded Manufacturing Progress Functions  

E-Print Network [OSTI]

the manufactunng costs of fuel cells systems from presentlevel and manufactunng cost of PEM fuel cell systems, for amthe present cost cf PEM fuel cell systems by consldenng a

Lipman, Timonthy E.; Sperling, Daniel

2001-01-01T23:59:59.000Z

147

E-Print Network 3.0 - automotive fuel consumption Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

148

GATE Center for Automotive Fuel Cell Systems at Virginia Tech | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for Fast-Track CooperativeGAOaREALDOE

149

Engine control techniques to account for fuel effects  

DOE Patents [OSTI]

A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

2014-08-26T23:59:59.000Z

150

Development and Demonstration of a Fuel-Efficient HD Engine ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Discusses engine efficiency contributions of enhanced fuel injection rematched to new piston geometry, improved charge air system, revised base engine components reduce friction...

151

Effect of GTL Diesel Fuels on Emissions and Engine Performance  

Broader source: Energy.gov (indexed) [DOE]

R. Maly Research and Technology, Stuttgart Effect of GTL Diesel Fuels on Emissions and Engine Performance 10th Diesel Engine Emissions Reduction Conference August 29 - September 2,...

152

GATE Center for Automotive Fuel Cell Systems at Virginia Tech | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for Fast-Track CooperativeGAOaREALDOE REALof

153

GATE Center for Automotive Fuel Cell Systems at Virginia Tech | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for Fast-Track CooperativeGAOaREALDOE REALofof

154

Automotive and MHE Fuel Cell System Cost Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE BlogAttachmentFlash2011-21 AuditInsulated Claddingofof

155

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the AmericasDOE-STD-3020-2005CodeErnestMacondo(September 2014) |of

156

Engine combustion control via fuel reactivity stratification  

DOE Patents [OSTI]

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2013-12-31T23:59:59.000Z

157

Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines  

SciTech Connect (OSTI)

Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

Johnson, R.N.; Hayden, H.L.

1994-01-01T23:59:59.000Z

158

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Before Senate Committee...

159

E-Print Network 3.0 - automotive fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-3, 2003 ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

160

E-Print Network 3.0 - automotive fuel ratings Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(H2S, SO2, ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

E-Print Network 3.0 - automotive fuel cell Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Meeting ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

162

E-Print Network 3.0 - automotive fuels Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-3, 2003 ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

163

Fuel effects in homogeneous charge compression ignition (HCCI) engines  

E-Print Network [OSTI]

Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

Angelos, John P. (John Phillip)

2009-01-01T23:59:59.000Z

164

Advanced fuel chemistry for advanced engines.  

SciTech Connect (OSTI)

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

165

Fuel-flexible partial oxidation reforming of hydrocarbons for automotive applications.  

SciTech Connect (OSTI)

Micro-reactor tests indicate that our partial oxidation catalyst is fuel-flexible and can reform conventional (gasoline and diesel) and alternative (ethanol, methanol, natural gas) fuels to hydrogen rich product gases with high hydrogen selectivity. Alcohols are reformed at lower temperatures (< 600 C) while alkanes and unsaturated hydrocarbons require slightly higher temperatures. Cyclic hydrocarbons and aromatics have also been reformed at relatively low temperatures, however, a different mechanism appears to be responsible for their reforming. Complex fuels like gasoline and diesel, which are mixtures of a broad range of hydrocarbons, require temperatures of > 700 C for maximum hydrogen production.

Ahmed, S.; Carter, J. D.; Kopasz, J. P.; Krumpelt, M.; Wilkenhoener, R.

1999-06-07T23:59:59.000Z

166

Overview of Fuels, Engines, and Emissions Research at ORNL  

E-Print Network [OSTI]

Overview of Fuels, Engines, and Emissions Research at ORNL Johney Green, Jr., Ph.D. Fuels, Engines NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Globalization · Increasingly, the engineering environment · Engineering tasks easily "off-shored" - Routine, easily documented activities - Far removed from customer

167

Tools and Techniques for Ensuring Automotive EMC Performance and Reliability  

E-Print Network [OSTI]

of the future ... 10 #12;Automotive EMC Today #12;Automotive EMC Standards Organizations 12 International Electrotechnical Commission (IEC) International Organization for Standards (IOS) Society of Automotive Engineers (SAE) CISPR, TC77 TC22, SC3, WG3 Surface Vehicle EMC Standards Committee #12;Automotive EMC

Stuart, Steven J.

168

Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications  

SciTech Connect (OSTI)

Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90[degree] shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45[degree] angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

McMurtry, C.H.; Ten Eyck, M.O.

1992-10-01T23:59:59.000Z

169

Evaluation of Sialon internal combustion engine components and fabrication of several ceramic components for automotive applications  

SciTech Connect (OSTI)

Fabrication development work was carried out on a push-rod tip having a stepped OD design and a 90{degree} shoulder in the transition area. Spray-dried Sialon premix was used in dry press tooling, and components were densified to about 98% of theoretical density using pressureless sintering conditions. Upon evaluation of the sintered components, it was found that afl components showed defects in the transition area. Modifications of the pressing parameters, incorporation of a 45{degree} angle in the shoulder area, and the use of tailored premix did not lead to the fabrication of defect-free parts. From these observations, it was concluded that the original part design could not easily be adapted to high-volume ceramic manufacturing methods. Subsequently, a modification to the desip was implemented. An SiC material with improved toughness (Hexoloy SX) was used for fabricating several test components with a closely machined, straight OD design. Pressureless-sintered and post-hot isostatically pressed (HIPed) Hexoloy SX components were supplied to The American Ceramic Engine Company (ACE) for assembly and testing. Fuel pump push-rod assemblies with Hemoloy SX tips were prepared by ACE, but no testing has been carried out to date.

McMurtry, C.H.; Ten Eyck, M.O.

1992-10-01T23:59:59.000Z

170

Engine coolant compatibility with the nonmetals found in automotive cooling systems  

SciTech Connect (OSTI)

High temperature, short term immersion testing was used to determine the impact of propylene and ethylene glycol base coolants on the physical properties of a variety of elastomeric and thermoplastic materials found in automotive cooling systems. The materials tested are typically used in cooling system hoses, radiator end tanks, and water pump seals. Traditional phosphate or borate-buffered silicated coolants as well as extended-life organic acid formulations were included. A modified ASTM protocol was used to carry out the testing both in the laboratory and at an independent testing facility. Post-test fluid chemistry including an analysis of any solids which may have formed is also reported. Coolant impact on elastomer integrity as well as elastomer-induced changes in fluid chemistry were found to be independent of the coolant`s glycol base.

Greaney, J.P.; Smith, R.A. [ARCO Chemical Co., Newtown Square, PA (United States)

1999-08-01T23:59:59.000Z

171

Demonstration of Energy Efficient Steam Reforming in Microchannels for Automotive Fuel Processing  

SciTech Connect (OSTI)

A compact, energy efficient microchannel steam reforming system has been demonstrated. The unit generates sufficient reformate to provide H2 to a 10 kWe PEM fuel cell (when coupled with a water-gas shift and CO cleanup reactors). The overall volume of the reactor is 4.9 liters while that of the supporting network of heat exchangers is 1.7 liters . Use of a microchannel configuration in the steam reforming reactor produces rapid heat and mass transport which enables fast kinetics for the highly endothermic reaction. Heat is provided to the reactor by a combustion gas flowing in interleaved microchannels in cross flow with the reaction channels. A network of microchannel heat exchangers allows recovery of heat in the reformate product and combustion exhaust streams for use in vaporizing water and fuel, preheating reactants to reactor temperature and preheating combustion air. The microchannel architecture enables very compact and highly effective heat exchangers to be constructed. As a result of the heat exchange network, the system exhaust temperatures are typically ~50?C for the combustion gas and ~130?C for the reformate product while the reactor is operated at 750?C. While reforming isooctane at a rate sufficient to supply a 13.7 kWe fuel cell the system achieved 98.6% conversion with an estimated overall system efficiency after integration with WGS and PEM fuel cell of 44% (electrical output / LHV fuel). The efficiency estimate assumes integration with a WGS reactor (90% conversion CO to CO2 with 100% selectivity) and a PEM fuel cell (64% power conversion effectiveness with 85% H2 utilization for an overall 54% efficiency) and does not include parasitic losses for compression of combustion air. Acknowledgement The work described here was funded by the U.S. Department of Energy, Office of Transportation Technology as part of the OTT Fuel Cells Program.

Whyatt, Greg A.; TeGrotenhuis, Ward E.; Geeting, John GH; Davis, James M.; Wegeng, Robert S.; Pederson, Larry R.

2002-01-01T23:59:59.000Z

172

School of Engineering and Mathematical Sciences  

E-Print Network [OSTI]

Engineering -- MSc Telecommunications and Networks 38 Energy and the Environment -- MSc Energy and Management 52 Mechanical and Automotive Engineering -- MSc Automotive Engineering -- MSc Mechanical are; structural engineering, mechanical and automotive engineering, telecommunications and networks

Weyde, Tillman

173

E-Print Network 3.0 - advanced automotive technologies Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced automotive technologies Page: << < 1 2 3 4 5 > >> 1 Automotive Engineering...

174

DOE Provides $4.7 Million to Support Excellence in Automotive...  

Office of Environmental Management (EM)

Automotive Technology Education (GATE) Centers of Excellence. The goal of GATE is to train a future workforce of automotive engineering professionals to overcome technology...

175

A combustion model for IC engine combustion simulations with multi-component fuels  

SciTech Connect (OSTI)

Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

Ra, Youngchul; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison (United States)

2011-01-15T23:59:59.000Z

176

Cold start fuel management of port-fuel-injected internal combustion engines  

E-Print Network [OSTI]

The purpose of this study is to investigate how changes in fueling strategy in the second cycle of engine operation influence the delivered charge fuel mass and engine out hydrocarbon (EOHC) emissions in that and subsequent ...

Cuseo, James M. (James Michael)

2005-01-01T23:59:59.000Z

177

E-Print Network 3.0 - automotive industry current Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development Scheme, The UK... 12;12;AA AUTOMOTIVE ENGINEERING ELECTRIC POWER ENGINEERING INDUSTRIAL ECOLOGY... APPLIED MECHANICS SOUND AND VIBRATION ...

178

E-Print Network 3.0 - automotive engine oils Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Computer Technologies and Information Sciences 14 Prevention of Air Pollution from Ships: Diesel Engine Particulate Emission Reduction via Lube-Oil-Consumption...

179

E-Print Network 3.0 - automotive engine seat Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

We... design, engineer and provide the best in technology, systems and services for automobile makers in every Source: Breu, Ruth - Institut fr Informatik, Universitt...

180

E-Print Network 3.0 - automotive stirling engine Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& CCHP Applications 1,400,000 0 600,000 Did... ,433 Awardee 4 Makel Engineering Inc. Biogas Fuelled HCCI Generation for Combined ... Source: California Energy Commission...

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Department of Mechanical Engineering RESEARCH PROJECT  

E-Print Network [OSTI]

#12;Department of Mechanical Engineering OVERVIEW · Combustion of alternative biofuels for automotive · Combustion properties of biofuels, including biodiesel and biojet fuels · Shock tube ignition experiments for a New Generation of Aircrafts · Jets Manipulation and

Barthelat, Francois

182

Development of a Hybrid Compressor/Expander Module for Automotive Fuel Cell Applications  

SciTech Connect (OSTI)

In this program TIAX LLC conducted the development of an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The overall objective of this program was to develop a hybrid compressor/expander module, based on both scroll and high-speed turbomachinery technologies, which will combine the strengths of each technology to create a concept with superior performance at minimal size and cost. The resulting system was expected to have efficiency and pressure delivery capability comparable to that of a scroll-only machine, at significantly reduced system size and weight when compared to scroll-only designs. Based on the results of detailed designs and analyses of the critical system elements, the Hybrid Compressor/Expander Module concept was projected to deliver significant improvements in weight, volume and manufacturing cost relative to previous generation systems.

McTaggart, Paul

2004-12-31T23:59:59.000Z

183

Fuel burner and combustor assembly for a gas turbine engine  

DOE Patents [OSTI]

A fuel burner and combustor assembly for a gas turbine engine has a housing within the casing of the gas turbine engine which housing defines a combustion chamber and at least one fuel burner secured to one end of the housing and extending into the combustion chamber. The other end of the fuel burner is arranged to slidably engage a fuel inlet connector extending radially inwardly from the engine casing so that fuel is supplied, from a source thereof, to the fuel burner. The fuel inlet connector and fuel burner coact to anchor the housing against axial movement relative to the engine casing while allowing relative radial movement between the engine casing and the fuel burner and, at the same time, providing fuel flow to the fuel burner. For dual fuel capability, a fuel injector is provided in said fuel burner with a flexible fuel supply pipe so that the fuel injector and fuel burner form a unitary structure which moves with the fuel burner.

Leto, Anthony (Franklin Lakes, NJ)

1983-01-01T23:59:59.000Z

184

E-Print Network 3.0 - automotive life cycle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STATIONARY AND AUTOMOTIVE PARTICIPANTS Summary: , life cycle efficiency Standards for air path, electric path and fuel path Corporate goals... AND AUTOMOTIVE PARTICIPANTS...

185

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

SciTech Connect (OSTI)

Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

Greene, David L [ORNL; Duleep, K. G. [ICF International; Upreti, Girish [ORNL

2011-06-01T23:59:59.000Z

186

Society of Automotive Engineers honors Storey, Wagner, Sluder | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSite CulturalDepartment ofat Home | DepartmentThomas

187

Engineering Why engineering at Sussex?  

E-Print Network [OSTI]

(Hons) in Automotive Engineering (with an industrial placement year) BEng (Hons) in Automotive Engineering BEng (Hons) in Automotive Engineering (with an industrial placement year) MEng (Hons) in Computer Engineering MEng (Hons) in Computer Engineering (with an industrial placement year) BEng (Hons) in Computer

Sussex, University of

188

Diesol: an alternative fuel for compression ignition engines  

SciTech Connect (OSTI)

Physical properties including specific gravity, kinematic viscosity, heat of combustion, flash point, cetane number and distillation curves are presented for several blends of No. 2 diesel fuel and soybean oil. The mixture is referred to as Diesol. The soybean oil received a minimal amount of refining by water-washing to remove most of the lecithin type gums. The Diesol fuels were tested in a Cooperative Fuel Research single cylinder diesel test engine to determine the short time engine performance using soybean oil as a diesel fuel extender. Brake specific fuel consumption, volumetric fuel consumption, exhaust smoke opacity and power were determined. Various blends of Diesol were also tested in a multicylinder diesel commercial power system. Results are presented to show the comparison between Diesol blends and diesel fuel. The fuel properties and engine performance test results indicate that soybean oil would be a viable extender of diesel fuel for compression-ignition engines.

Cochran, B.J.; Baldwin, J.D.C.; Daniel, L.R. Jr.

1981-01-01T23:59:59.000Z

189

Solid fuel combustion system for gas turbine engine  

DOE Patents [OSTI]

A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN)

1993-01-01T23:59:59.000Z

190

Dual fuel engine control systems for transportation applications  

SciTech Connect (OSTI)

Microprocessor control systems have been developed for dual fuel diesel engines intended for transportation applications. Control system requirements for transportation engines are more demanding than for stationary engines, as the system must be able to cope with variable speed and load. Detailed fuel maps were determined for both normally aspirated and turbocharged diesel engines based on the criterion that the engine did not operate in the regimes where knock or incomplete combustion occurred. The control system was developed so that the engine would follow the detailed fuel map. The input variables to the control system are engine speed and load. Based on this, the system then controls the amount of natural gas and diesel fuel supplied to the engine. The performance of the system is briefly summarized.

Gettel, L.E.; Perry, G.C.; Boisvert, J.; O'Sullivan, P.J.

1987-10-01T23:59:59.000Z

191

Effects of Biomass Fuels on Engine & System Out Emissions for...  

Broader source: Energy.gov (indexed) [DOE]

& Aftertreatment Systems -- DEER Conference 1 6 October 2011 Kevin Barnum Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance DEER 2011 Conference...

192

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

193

High Fuel Economy Heavy-Duty Truck Engine  

Broader source: Energy.gov (indexed) [DOE]

contain any proprietary, confidential, or otherwise restricted information ACE060 High Fuel Economy Heavy Duty Truck Engine Overview Timeline October 2007 - October 2011 Barriers...

194

Low-Emission Engine and Fuel Technology for Motorcycle.  

E-Print Network [OSTI]

??The purpose of this research is to apply an adaptive fuel injection control algorithm on a motorcycle engine and evaluate its performance. A highly nonlinear… (more)

Chen, Chung-ying

2013-01-01T23:59:59.000Z

195

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

1.7-L engine with modified operation. * Development of 2 nd Law thermodynamics for engine simulation software. 2006 * 1999 MB 1.7-L engine with upgraded hardware VGT. * 2005 GM...

196

Automotive component product development enhancement through multi-attribute system design optimization in an integrated concurrent engineering framework  

E-Print Network [OSTI]

Automotive industry is facing a tough period. Production overcapacity and high fixed costs constrain companies' profits and challenge the very same existence of some corporations. Strangulated by the reduced cash availability ...

Usan, Massimo, 1967-

2005-01-01T23:59:59.000Z

197

automotive technician training: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 292 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

198

automotive shredder residue: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 240 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

199

automotive shredded residues: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 246 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

200

automotive shredder residues: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 240 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

automotive sensor manufacturing: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 427 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

202

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction...

203

Systems Engineering and Innovation in Control--anSystems Engineering and Innovation in Control an Industry Perspective and an Application to Automotive  

E-Print Network [OSTI]

in the industrial context · Trends in automotive powertrain control · Advanced control for powertrains calibration time B ildi C t l HVAC d ti t l 7 33% t iBuilding Control HVAC adaptive control · 7-33% energyOutline · Honeywell and controls · Advanced control applications in the industrial context · Trends in automotive

Shapiro, Benjamin

204

Fuels for Advanced Combustion Engines (FACE) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling U.S.Engines|Engines

205

Mechanical Engineering Manufacturing Solid Oxide Fuel Cells for Improved Electro-  

E-Print Network [OSTI]

and storage and green manufacturing. Professor of Mechanical Engineering and Material Science BostonUday Pal Mechanical Engineering Manufacturing Solid Oxide Fuel Cells for Improved Electro- chemical for the commercialization of solid oxide fuel cells (SOFCs) are its high manufacturing and material costs expressed in terms

Lin, Xi

206

Fundamental Models for Fuel Cell Engineering Chao-Yang Wang*  

E-Print Network [OSTI]

and Materials Science and Engineering, Electrochemical Engine Center (ECEC), The Pennsylvania State University. References 4763 1. Introduction Owing to their high energy efficiency, low pollution, and low noise, fuel transport and electrochemical processes that occur on disparate length scales in fuel cells. The purpose

207

Coal-fueled high-speed diesel engine development  

SciTech Connect (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Kakwani, R. M.; Winsor, R. E.; Ryan, III, T. W.; Schwalb, J. A.; Wahiduzzaman, S.; Wilson, Jr., R. P.

1991-11-01T23:59:59.000Z

208

Engine control system having fuel-based adjustment  

DOE Patents [OSTI]

A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

Willi, Martin L. (Dunlap, IL); Fiveland, Scott B. (Metamora, IL); Montgomery, David T. (Edelstein, IL); Gong, Weidong (Dunlap, IL)

2011-03-15T23:59:59.000Z

209

Automotive Powertrain Control: A Survey Jeffrey A. Cook, Jing Sun  

E-Print Network [OSTI]

recent and historical publications on automotive powertrain control. Control- oriented models of gasoline, hybrid electric powertrains and automotive fuel cells. In each case, fundamental models are discussed developments spurred major efforts by automotive manufacturers to reduce fuel consumption and vehicle emissions

Grizzle, Jessy W.

210

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress...  

Broader source: Energy.gov (indexed) [DOE]

EMISSIONS . . . . . . . . . . . . . . . . . .11 A. Phase II Testing of Advanced Petroleum-Based Fuels in a State-of-the Art CIDI Engine . . . . . . . . . . . . . . . . . 11...

211

Proceedings of FuelCell2008 Sixth International Fuel Cell Science, Engineering and Technology Conference  

E-Print Network [OSTI]

optimization study. For a new technology, such as fuel cells, it is also important to include uncertaintiesProceedings of FuelCell2008 Sixth International Fuel Cell Science, Engineering and Technology Conference June 16-18, 2008, Denver, Colorado, USA FUELCELL2008-65111 OPTIMAL DESIGN OF HYBRID ELECTRIC FUEL

Papalambros, Panos

212

Microbial fuel cells: novel microbial physiologies and engineering approaches  

E-Print Network [OSTI]

Microbial fuel cells: novel microbial physiologies and engineering approaches Derek R Lovley The possibility of generating electricity with microbial fuel cells has been recognized for some time, but practical applications have been slow to develop. The recent development of a microbial fuel cell that can

Lovley, Derek

213

Effect of engine operating parameters and fuel characteristics on diesel engine emissions  

E-Print Network [OSTI]

To examine the effects of using synthetic Fischer-Tropsch (FT) diesel fuel in a modern compression ignition engine, experiments were conducted on a MY 2002 Cummins 5.9 L diesel engine outfitted with high pressure, common ...

Acar, Joseph, 1977-

2005-01-01T23:59:59.000Z

214

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

215

Sandia National Laboratories: fuel-efficient engine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluating

216

Measurement of Dynamic Parameters of Automotive Exhaust Mohan D. Rao  

E-Print Network [OSTI]

1 01NVC-121 Measurement of Dynamic Parameters of Automotive Exhaust Hangers Mohan D. Rao ME Copyright © 2001 Society of Automotive Engineers, Inc. ABSTRACT Different methodologies to test and analyze the dynamic stiffness (K) and damping (C) properties of several silicone and EPDM rubber automotive exhaust

Rao, Mohan

217

Engine Control J.A. Cook, J.W. Grizzley  

E-Print Network [OSTI]

, spark ignition, internal combustion gasoline engine. Mechanically, this powerplant has remained a ect emissions, performance and fuel economy in the spark ignition engine: Air-fuel ratio controlEngine Control J.A. Cook, J.W. Grizzley , and J. Sun January 18, 1995 1 Introduction Automotive

Grizzle, Jessy W.

218

Fuels, Engines & Emissions | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3,: JetF7:F9:Fuels

219

Chinese Journal of Chemical Engineering, 16(3) 416 423 (2008) Multiscale Characterization of Automotive Surface Coating  

E-Print Network [OSTI]

behaviors of the material, process, and product in a wide spectrum of length and time. Case studies during manufac- turing. This has forced the current quality control practice to rely only on post-process of Automotive Surface Coating Formation for Sustainable Manufacturing* Jie XIAO, Jia LI, Cristina Piluso

Huang, Yinlun

220

Dual fuel development for an LNG marine engine  

SciTech Connect (OSTI)

A dual-fuel conversion for the 3406-B Caterpillar marine diesel engine has been developed. The purpose of this conversion is to use lower priced natural gas as a fuel, thus providing substantial cost savings for large fuel consumers. Details of the conversion system are given. Data is presented showing fuel consumption, conditions leading to engine knock, conditions promoting methane flame propagation, and air-fuel ratios required for efficient combustion. The system resulting from this study will use Liquefied Natural Gas (LNG) to power a dual-fuel conversion of a shrimp boat's main engine and generator set. The cold temperatures of the LNG will also be used as a heat sink to refrigerate the fish-hold area of the boat.

Acker, G.H.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Use of an Engine Cycle Simulation to Study a Biodiesel Fueled Engine  

E-Print Network [OSTI]

for flow in intake/exhaust system, fuel injection, fuel vaporization and combustion, cylinder heat transfer, and energy transfer in a turbocharging system were combined with a thermodynamic analysis of the engine to yield instantaneous in-cylinder...

Zheng, Junnian

2010-01-14T23:59:59.000Z

222

Sandia National Laboratories: Engineering Alternative Fuel with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandiaConsortiumActMicrogridCyanobacteria

223

Flex Fuel Optimized SI and HCCI Engine  

SciTech Connect (OSTI)

The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combust

Zhu, Guoming; Schock, Harold; Yang, Xiaojian; Huisjen, Andrew; Stuecken, Tom; Moran, Kevin; Zhen, Ron; Zhang, Shupeng

2013-09-30T23:59:59.000Z

224

ORNL Fuels, Engines, and Emissions Research Center (FEERC)  

SciTech Connect (OSTI)

This video highlights the Vehicle Research Laboratory's capabilities at the Fuels, Engines, and Emissions Research Center (FEERC). FEERC is a Department of Energy user facility located at the Oak Ridge National Laboratory.

None

2013-04-12T23:59:59.000Z

225

ORNL Fuels, Engines, and Emissions Research Center (FEERC)  

ScienceCinema (OSTI)

This video highlights the Vehicle Research Laboratory's capabilities at the Fuels, Engines, and Emissions Research Center (FEERC). FEERC is a Department of Energy user facility located at the Oak Ridge National Laboratory.

None

2014-06-26T23:59:59.000Z

226

Fuel Effects on Advanced Combustion Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10,Combustion Engines Fuel

227

Fuels and Lubricants to Support Advanced Diesel Engine Technology |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling U.S.Engines

228

Hydrogen Fuel Cell Engines and Related Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen Fuel Cell Engines

229

Combustion engine with fuel injection system, and a spray valve for such an engine  

SciTech Connect (OSTI)

This paper describes a fuel system for a combustion engine have a cylinder with an air inlet passage. It comprises: a fuel spray valve having a fuel injection nozzle for spraying fuel into the cylinder air inlet passage and having a fuel spray valve passage leading to the nozzle, means for mounting the fuel spray valve to position the nozzle to open into the cylinder air inlet passage adjacent the cylinder, a fuel pump for providing fuel under pressure to the fuel spray valve passage to be sprayed from the fuel spray valve nozzle, and a fuel heating device connectable to an electrical power supply and disposed adjacent to the valve to be energized for heating the fuel to enhance finer spraying thereof by the fuel spray valve nozzle, the fuel heating device comprising means defining a spiral fuel flow path of selected length connected to and coaxial with the fuel spray valve passage to dispose the selected length of fuel flow path closely adjacent to the fuel spray valve passage, and a fuel heating element comprising a thermistor of a ceramic material of positive temperature coefficient of resistivity arranged to heat the selected length of the spiral fuel flow path to transfer heat to the fuel flowing in the spiral fuel flow path throughout the selected length of the spiral fuel flow path to substantially heat the fuel at a location closely adjacent to the fuel spray valve passage to enhance vaporizing of fuel being sprayed from the valve nozzle.

Wechem, G.V.; Beunk, G.; Van Den Elst, F.; Gerson, P.M.

1991-10-08T23:59:59.000Z

230

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*  

E-Print Network [OSTI]

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up to 85% ethanol for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

Stefanopoulou, Anna

231

Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security Overview Tanzanians living near the Udzungwa Mountains National Park have 100,000 villagers without an available fuel source. One possible solution to alleviate this crisis

Demirel, Melik C.

232

Development of an engine fuel and spark controller  

E-Print Network [OSTI]

The objective of this research was to develop an engine control unit (ECU) for a four cylinder engine to be used in a Formula SAE racers. The ECU must provide effective fuel injection and spark ignition control and provide for easy adjustment...

Suter, William Gregory

1999-01-01T23:59:59.000Z

233

An automotive engine model for air-fuel ratio control using cylinder pressure information  

E-Print Network [OSTI]

and proven to have enough information for a feedback controller to be designed to close the loop so that the response of the system meets the specified objectives. A proposed control scheme based on the in-cylinder pressure information is presented. Analysis...

Nana, Emmanuel Tomdio

2012-06-07T23:59:59.000Z

234

A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

to Enhancing Engine System Efficiency A MultiAir MultiFuel Approach to Enhancing Engine System Efficiency 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

235

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...  

Broader source: Energy.gov (indexed) [DOE]

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain...

236

Bachelor of Science-Engineering Technology Program and Fuel Cell Education Program Concentration  

SciTech Connect (OSTI)

The Hydrogen and Fuel Cell Technology education project has addressed DOE goals by supplying readily available, objective, technical, and accurate information that is available to students, industry and the public. In addition, the program has supplied educated trainers and training opportunities for the next generation workforce needed for research, development, and demonstration activities in government, industry, and academia. The project has successfully developed courses and associated laboratories, taught the new courses and labs and integrated the HFCT option into the accredited engineering technology and mechanical engineering programs at the University of North Carolina at Charlotte (UNCC). The project has also established ongoing collaborations with the UNCC energy related centers of the Energy Production & Infrastructure Center (EPIC), the NC Motorsports and Automotive Research Center (NCMARC) and the Infrastructure, Design, Environment and Sustainability Center (IDEAS). The results of the project activities are presented as two major areas – (1) course and laboratory development, offerings and delivery, and (2) program recruitment, promotions and collaborations. Over the project period, the primary activity has been the development and offering of 11 HFCT courses and accompanying laboratories. This process has taken three years with the courses first being developed and then offered each year over the timeframe.

Block, David L.; Sleiti, Ahmad

2011-09-19T23:59:59.000Z

237

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical...

238

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites...

239

Fuel Requirements for HCCI Engine Operation  

Broader source: Energy.gov (indexed) [DOE]

(CAD) Intake Manifold Temp. (C) Diesel, 14 CR 20%, 14 CR 40%, 14 CR 60%, 14 CR 80%, 14 CR Gasoline, 16 CR Naphtha, 14 CR Naphtha, 16 CR l All Fuels Advanced SOR Compared to Diesel...

240

Automotive Research Center A U.S. Army RDECOM Center of Excellence for Modeling and Simulation of Ground  

E-Print Network [OSTI]

Automotive Research Center A U.S. Army RDECOM Center of Excellence for Modeling and Simulation by the Automotive Research Center Sponsored by U.S. Army Research, Development and Engineering Command (RDECOM) U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) National Automotive Center

Papalambros, Panos

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell  

SciTech Connect (OSTI)

Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuel—making them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once they’re pumped out of the tank.

None

2010-07-01T23:59:59.000Z

242

Fuel Additive Strategies for Enhancing the Performance of Engines and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen Telescope Looks to Ends ofEngine Oils

243

Bachelor of Science Engineering Technology Hydrogen and Fuel Cell Education  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- EngineB2 March 5,

244

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi- cal Engineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science, Digital

Stuart, Steven J.

245

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bio- engineering, Biosystems Engineering, Chemical En- gineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science, Digital

Stuart, Steven J.

246

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

58 College of Engineering and Science 58 COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi- cal Engineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science

Stuart, Steven J.

247

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

35 College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemi- cal Engineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science, Digital

Stuart, Steven J.

248

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bioengineering, Biosystems Engineering, Chemical Engineering, Chemistry, Civil Engineering, Com- puter Engineering, Computer Science, Digital Pro

Bolding, M. Chad

249

College of Engineering and Science ENGINEERING  

E-Print Network [OSTI]

35 College of Engineering and Science COLLEGE OF ENGINEERING AND SCIENCE The College of Engineering and Science offers advanced degrees in Automotive Engineering, Bio- engineering, Biosystems Engineering, Chemical En- gineering, Chemistry, Civil Engineering, Computer Engineering, Computer Science, Digital

Stuart, Steven J.

250

Strategic frameworks in automotive systems architecting  

E-Print Network [OSTI]

More often than not, large-scale engineering concepts such as those used by creative automotive manufacturing companies require the incorporation of significant capital outlays and resources for the purposes of implementation ...

Tampi, Mahesh

2012-01-01T23:59:59.000Z

251

Coal-fueled diesel engines for locomotive applications  

SciTech Connect (OSTI)

GE Transportation Systems (GE/TS) completed a two and one half year study into the economic viability of a coal fueled locomotive. The coal fueled diesel engine was deemed to be one of the most attractive options. Building on the BN-NS study, a proposal was submitted to DOE to continue researching economic and technical feasibility of a coal fueled diesel engine for locomotives. The contract DE-AC21-85MC22181 was awarded to GE Corporate Research and Development (GE/CRD) for a three year program that began in March 1985. This program included an economic assessment and a technical feasibility study. The economic assessment study examined seven areas and their economic impact on the use of coal fueled diesels. These areas included impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The results of the study indicated the merits for development of a coal-water slurry (CWS) fueled diesel engine. The technical feasibility study examined the combustion of CWS through lab and bench scale experiments. The major accomplishments from this study have been the development of CWS injection hardware, the successful testing of CWS fuel in a full size, single cylinder, medium speed diesel engine, evaluation of full scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions.

Hsu, B.D.; Najewicz, D.J.; Cook, C.S.

1993-11-01T23:59:59.000Z

252

Monitoring system assists in dual-fuel engine knock prevention  

SciTech Connect (OSTI)

ABB Industrietechnik AG recently has introduced an augmented version of its Cyldeyt cylinder pressure monitoring system aimed at spark-ignited and diesel/gas, dual-fuel engines. In addition to recording and evaluating cylinder pressure as a means of assessing engine condition, the new Cyldet version now evaluates the cylinder pressure signals to provide protection against pre-ignition related damage. When pre-ignition reaches critical levels, the Cyldet computer relays alarm signals in two stages to the overriding engine control system of the power plant. On receiving the first-stage alarm signal, the engine control system is programmed to adjust one or more engine settings to eliminate preignition - a typical adjustment is to lower charge-air temperature, for example. If such measures fail to eliminate pre-ignition, in the case of a dual-fuel engine, a second alarm signal triggers a reduction in engine load or, as last resort, changeover of the engine to 100% diesel fuel charge. This paper outlines the advantages and applications of the system. 1 fig., 1 tab.

Not Available

1995-03-01T23:59:59.000Z

253

Engine Materials Compatability with Alternative Fuels  

SciTech Connect (OSTI)

The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (< 50 ppm water) ethanol. Corrosion rates of all the aluminum materials examined were accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

Pawel, Steve [Oak Ridge National Laboratory; Moore, D. [USCAR

2013-04-05T23:59:59.000Z

254

Engine control system having fuel-based timing  

DOE Patents [OSTI]

A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

Willi, Martin L. (Dunlap, IL); Fiveland, Scott B. (Metamora, IL); Montgomery, David T. (Edelstein, IL); Gong, Weidong (Dunlap, IL)

2012-04-03T23:59:59.000Z

255

Innovative coal-fueled diesel engine injector  

SciTech Connect (OSTI)

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

256

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling U.S.Engines|

257

Effect of fuel properties on the first cycle fuel delivery in a Port Fuel Injected Spark Ignition Engine  

E-Print Network [OSTI]

Achieving robust combustion while also yielding low hydrocarbon (HC) emissions is difficult for the first cycle of cranking during the cold start of a Port Fuel Injected (PFI) Spark Ignition (SI) engine. Cold intake port ...

Lang, Kevin R., 1980-

2004-01-01T23:59:59.000Z

258

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M.EngineReport on Pathsand101

259

FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES  

SciTech Connect (OSTI)

In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

Don Ferguson; Geo. A. Richard; Doug Straub

2008-06-13T23:59:59.000Z

260

Smart Mobility Dutch Automotive  

E-Print Network [OSTI]

Smart Mobility #12;Dutch Automotive Industry 300 companies 45k employees 17B revenue #12;Dutch Automotive Industry Focus area's: · Vehicle efficiency · Cooperative Mobility #12;Freedom, prosperity, fun;Automotive Technology Car as sustainable zero emission vehicles #12;Automotive Technology Electromagnetic car

Franssen, Michael

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Dual fueling of a Caterpillar 3406 diesel engine  

SciTech Connect (OSTI)

A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E. [Univ. of Alabama, Tuscaloosa, AL (United States)

1996-05-01T23:59:59.000Z

262

Optical-Engine and Surrogate-Fuels Research for an Improved Understand...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for an Improved Understanding of Fuel Effects on Advanced-Combustion Strategies Optical-Engine and Surrogate-Fuels Research for an Improved Understanding of Fuel Effects on...

263

Engineered Biosynthesis of Alternative Biodiesel Fuel - Energy Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer Honored byPortal

264

IMPACT OF OXYGENATED FUEL ON DIESEL ENGINE PERFORMANCE AND EMISSIONS  

SciTech Connect (OSTI)

As evidenced by recent lawsuits brought against operators of large diesel truck fleets [1] and by the Consent Decree brought against the heavy-duty diesel manufacturers [2], the environmental and health effects of diesel engine emissions continue to be a significant concern. Reduction of diesel engine emissions has traditionally been achieved through a combination of fuel system, combustion chamber, and engine control modifications [3]. Catalytic aftertreatment has become common on modern diesel vehicles, with the predominant device being the diesel oxidation catalytic converter [3]. To enable advanced after-treatment devices and to directly reduce emissions, significant recent interest has focused on reformulation of diesel fuel, particularly the reduction of sulfur content. The EPA has man-dated that diesel fuel will have only 15 ppm sulfur content by 2007, with current diesel specifications requiring around 300 ppm [4]. Reduction of sulfur will permit sulfur-sensitive aftertreatment devices, continuously regenerating particulate traps, NOx control catalysts, and plasma assisted catalysts to be implemented on diesel vehicles [4]. Another method of reformulating diesel fuel to reduce emissions is to incorporate oxygen in the fuel, as was done in the reformulation of gasoline. The use of methyl tertiary butyl ether (MTBE) in reformulated gasoline has resulted in contamination of water resources across the country [5]. Nonetheless, by relying on the lessons learned from MTBE, oxygenation of diesel fuel may be accomplished without compromising water quality. Oxygenation of diesel fuel offers the possibility of reducing particulate matter emissions significantly, even for the current fleet of diesel vehicles. The mechanism by which oxygen content leads to particulate matter reductions is still under debate, but recent evidence shows clearly that ''smokeless'' engine operation is possible when the oxygen content of diesel fuel reaches roughly 38% by weight [6]. The potential improvements in energy efficiency within the transportation section, particularly in sport utility vehicles and light-duty trucks, that can be provided by deployment of diesel engines in passenger cars and trucks is a strong incentive to develop cleaner burning diesel engines and cleaner burning fuels for diesel engines. Thus, serious consideration of oxygenated diesel fuels is of significant practical interest and value to society. In the present work, a diesel fuel reformulating agent, CETANERTM, has been examined in a popular light-medium duty turbodiesel engine over a range of blending ratios. This additive is a mixture of glycol ethers and can be produced from dimethyl ether, which itself can be manufactured from synthesis gas using Air Products' Liquid Phase Dimethyl Ether (LPDME TM) technology. CETANERTM is a liquid, has an oxygen content of 36 wt.%, has a cetane number over 100 and is highly miscible in diesel fuel. This combination of physical and chemical properties makes CETANERTM an attractive agent for oxygenating diesel fuel. The present study considered CETANERTM ratios from 0 to 40 wt.% in a California Air Resources Board (CARB) specification diesel fuel. Particulate matter emissions, gaseous emissions and in-cylinder pressure traces were monitored over the AVL 8-Mode engine test protocol [7]. This paper presents the results from these measurements and discusses the implications of using high cetane number oxygenates in diesel fuel reformulation.

Boehman, Andre L.

2000-08-20T23:59:59.000Z

265

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect (OSTI)

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

266

Reformulated diesel fuel and method  

DOE Patents [OSTI]

A method for mathematically identifying at least one diesel fuel suitable for combustion in an automotive diesel engine with significantly reduced emissions and producible from known petroleum blendstocks using known refining processes, including the use of cetane additives (ignition improvers) and oxygenated compounds.

McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

2006-08-22T23:59:59.000Z

267

Natural gas fueling of a Catepillar 3406 diesel engine  

SciTech Connect (OSTI)

This paper reports on a Caterpillar 3406 turbocharged diesel engine which was converted to operate in a natural gas with diesel pilot ignition mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full-load power was achieved with natural gas fueling without knock. Similar fuel efficiencies were obtained with natural gas fueling at high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50 percent with natural gas fueling for all cases investigated. NO[sub x] emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for natural gas fueling while CO[sub 2] concentrations in the exhaust were reduced for natural gas fueling.

Doughty, G.E.; Bell, S.R.; Midkiff, K.C. (Dept. of Mechanical Engineering, Univ. of Alabama, Tuscaloosa, AL (United States))

1992-07-01T23:59:59.000Z

268

E-Print Network 3.0 - automotive technology excellence Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BIBLIOGRAPHY ON INTERNAL COMBUSTION ENGINES 1. F. Obert, Internal Combustion Engines and Air Pollution, Intext Educational Publishers, 1973 Summary: , Society of Automotive...

269

Automotive fuels. January 1984-February 1992 (Citations from the NTIS Data Base). Rept. for Jan 84-Feb 92  

SciTech Connect (OSTI)

The bibliography contains citations concerning various fuels for the operation of automobiles. Fuels include alcohol, diesel, gasoline, hydrogen, natural gas, methanol, and methane. Topics include exhaust emissions and gases, economy, consumption, antiknock additives, and volatility. (Contains 153 citations with title list and subject index.)

Not Available

1992-01-01T23:59:59.000Z

270

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties  

SciTech Connect (OSTI)

The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

Gallant, Tom [Pacific Northwest National Laboratory (PNNL); Franz, Jim [Pacific Northwest National Laboratory (PNNL); Alnajjar, Mikhail [Pacific Northwest National Laboratory (PNNL); Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL; Sluder, Scott [ORNL; Cannella, William C [Chevron, USA; Fairbridge, Craig [National Centre for Upgrading Technology, Canada; Hager, Darcy [National Centre for Upgrading Technology, Canada; Dettman, Heather [CANMET Energy; Luecke, Jon [National Renewable Energy Laboratory (NREL); Ratcliff, Matthew A. [National Renewable Energy Laboratory (NREL); Zigler, Brad [National Renewable Energy Laboratory (NREL)

2009-01-01T23:59:59.000Z

271

Final report: U.S. competitive position in automotive technologies  

SciTech Connect (OSTI)

Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

2002-09-30T23:59:59.000Z

272

automotive tailor-welded blank: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with Ttic5ms, Tcycle40ms. lic scheduling on automotive Navet, Nicolas 285 2001-01-0308 FMEA-based Design for Remanufacture using Automotive- Engineering Websites Summary: . The...

273

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

274

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric...

275

United States Automotive Materials Partnership LLC (USAMP)  

SciTech Connect (OSTI)

The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly developed materials and technologies, and have resulted in significant technical successes to date, as discussed in the individual project summary final reports. Over 70 materials-focused projects have been established by USAMP, in collaboration with participating suppliers, academic/non-profit organizations and national laboratories, and executed through its original three divisions: the Automotive Composites Consortium (ACC), the Automotive Metals Division (AMD), and Auto/Steel Partnership (A/SP). Two new divisions were formed by USAMP in 2006 to drive research emphasis on integration of structures incorporating dissimilar lightweighting materials, and on enabling technology for nondestructive evaluation of structures and joints. These new USAMP divisions are: Multi-Material Vehicle Research and Development Initiative (MMV), and the Non-Destructive Evaluation Steering Committee (NDE). In cooperation with USAMP and the FreedomCAR Materials Technical Team, a consensus process has been established to facilitate the development of projects to help move leveraged research to targeted development projects that eventually migrate to the original equipment manufacturers (OEMs) as application engineering projects. Research projects are assigned to one of three phases: concept feasibility, technical feasibility, and demonstration feasibility. Projects are guided through ongoing monitoring and USAMP offsite reviews, so as to meet the requirements of each phase before they are allowed to move on to the next phase. As progress is made on these projects, the benefits of lightweight construction and enabling technologies will be transferred to the supply base and implemented in production vehicles. The single greatest barrier to automotive use of lightweight materials is their high cost; therefore, priority is given to activities aimed at reducing costs through development of new materials, forming technologies, and manufacturing processes. The emphasis of the research projects reported in this document was largely on applied research and evaluation of mass savings opportunities thro

United States Automotive Materials Partnership

2011-01-31T23:59:59.000Z

276

[Fuel substitution of vehicles by natural gas: Summaries of four final technical reports  

SciTech Connect (OSTI)

This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

NONE

1996-05-01T23:59:59.000Z

277

Automotive electronics business  

E-Print Network [OSTI]

In the automotive industry, due to the trend to introduce active safety systems, concerns about protecting the environment, and advances in information technology, key automotive manufacturers are eager to acquire new ...

Hase, Yoshiko, M.B.A. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

278

Study of fueling requirements for the Engineering Test Reactor  

SciTech Connect (OSTI)

An assessment of the fueling requirement for the TIBER Engineering Test Reactor is studied. The neutral shielding pellet ablation model with the inclusion of the effects of the alpha particles is used for our study. The high electron temperature in a reactor-grade plasma makes pellet penetration very difficult. The launch length has to be very large (several tens of meters) in order to avoid pellet breakage due to the low inertial strength of DT ''ice.'' The minimum repetition rate corresponding to the largest allowable pellet, is found to be about 1 Hz. A brief survey is done on the various operational and conceptual pellet injection schemes for plasma fueling. The underlying conclusion is that an alternative fueling scheme of coaxial compact-toroid plasma gun is very likely needed for effective central fueling of reactor-grade plasmas. 16 refs.

Ho, S.K.; Perkins, L.J.

1987-10-16T23:59:59.000Z

279

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

280

Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells  

SciTech Connect (OSTI)

The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

Zhu, Yimin

2009-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Feedback air-fuel control system for Stirling engines  

SciTech Connect (OSTI)

This patent describes improvement in combination with a Stirling engine having an air-fuel ratio control and an exhaust gas emission outlet. The improvement comprises an oxygen sensor in communication with the exhaust gas emission outlet for generating an output signal representative of the oxygen content in the outlet; a sensor signal conditioning unit for adapting the output signal to a conditioned input signal for a microprocessor; and a microprocessor controlled pilot for adjusting the air-fuel control in response to the control input signal.

Monahan, R.

1991-11-19T23:59:59.000Z

282

Effects of bio-diesel fuel blends on the performance and emissions of diesel engine.  

E-Print Network [OSTI]

??This study presents an experimental investigation into the effects of running biodiesel fuel blends on conventional diesel engines. Bio fuels provide a way to produce… (more)

Bastiani, Sergio.

2008-01-01T23:59:59.000Z

283

Vaporizer design criteria for ethanol fueled internal combustion engines  

E-Print Network [OSTI]

. Stout (Member) L r x ge Edwa d A. Hiler (Head of Department) May 1985 ABSTRACT Vaporizer Design Criteria For Ethanol Fueled Internal Combustion Engines. (May 1985) Arachchi Rallage Ariyaratne, B. S. , University of Sri Lanka Chairman... VAPORIZATION LENGTH WITH UNIFORM HEAT FLUX 8 POLYNOMIAL FUNCTIONS FOR EVALUATING PARAMETERS C VARIATION OF HEAT FLUX AND AVERAGE SURFACE TEMPARATURE D PROGRAM FOR PREDICTING VAPORIZATION LENGTH 73 75 78 80 VITA 87 LIST OF TABLES TABLE Page 1...

Ariyaratne, Arachchi Rallage

2012-06-07T23:59:59.000Z

284

Diesel fuel component contributions to engine emissions and performance: Clean fuel study  

SciTech Connect (OSTI)

The emissions characteristics of diesel engines are dominated by current engine design parameters as long as the fuels conform to the current industry-accepted specifications. The current and future emissions standard, are low enough that the fuel properties and compositions are starting to play a more significant role in meeting the emerging standards. The potential role of the fuel composition has been recognized by state and federal government agencies, and for the first time, fuel specifications have become part of the emissions control legislation. In this work, five different fuel feed and blend stocks were hydrotreated to two levels of sulfur and aromatic content. These materials were then each distilled to seven or eight fractions of congruent boiling points. After this, the raw materials and all of the fractions were characterized by a complement of tests from American Society for Testing and Materials and by hydrocarbon-type analyses. The sample matrix was subjected to a series of combustion bomb and engine tests to determine the ignition, combustion, and emissions characteristics of each of the 80 test materials.

Erwin, J.; Ryan, T.W. III; Moulten, D.S. [Southwest Research Inst., San Antonio, TX (United States)

1994-08-01T23:59:59.000Z

285

Investigation of Bio-Diesel Fueled Engines under Low-Temperature...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies ftp01lee.pdf More...

286

Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies  

SciTech Connect (OSTI)

Beginning the fall semester of 1999, The University of Maryland, Departments of Mechanical and Electrical Engineering and the Institute for Systems Research served as a U.S. Department of Energy (USDOE) Graduate Automotive Technology Education (GATE) Center for Hybrid Electric Drivetrains and Control Strategies. A key goal was to produce a graduate level education program that educated and prepared students to address the technical challenges of designing and developing hybrid electric vehicles, as they progressed into the workforce. A second goal was to produce research that fostered the advancement of hybrid electric vehicles, their controls, and other related automotive technologies. Participation ended at the University of Maryland after the 2004 fall semester. Four graduate courses were developed and taught during the course of this time, two of which evolved into annually-taught undergraduate courses, namely Vehicle Dynamics and Control Systems Laboratory. Five faculty members from Mechanical Engineering, Electrical Engineering, and the Institute for Systems Research participated. Four Ph.D. degrees (two directly supported and two indirectly supported) and seven Master's degrees in Mechanical Engineering resulted from the research conducted. Research topics included thermoelectric waste heat recovery, fuel cell modeling, pre- and post-transmission hybrid powertrain control and integration, hybrid transmission design, H{sub 2}-doped combustion, and vehicle dynamics. Many of the participating students accepted positions in the automotive industry or government laboratories involved in automotive technology work after graduation. This report discusses the participating faculty, the courses developed and taught, research conducted, the students directly and indirectly supported, and the publication list. Based on this collection of information, the University of Maryland firmly believes that the key goal of the program was met and that the majority of the participating students are now contributing to the advancement of automotive technology in this country.

David Holloway

2005-09-30T23:59:59.000Z

287

Engine combustion control at low loads via fuel reactivity stratification  

DOE Patents [OSTI]

A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2014-10-07T23:59:59.000Z

288

"Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends"  

E-Print Network [OSTI]

Xibin Wang "Performance, Emission and Particle distribution of Diesel Engines Fueled with Diesel-Dimethoxymethane (DMM) Blends" Abstract : Combustion, performance and emission were studied for DI diesel engine fuelled with DMM/diesel fuel blends for DMM content from 0 to 50%. Results showed that, for diesel engine with fuel

289

Renewable and alteRnative eneRgy Fact Sheet Using Biodiesel Fuel in Your Engine  

E-Print Network [OSTI]

Renewable and alteRnative eneRgy Fact Sheet Using Biodiesel Fuel in Your Engine introduction Biodiesel is an engine fuel that is created by chemically reacting fatty acids and alcohol. Practically sodium hydroxide). Biodiesel is much more suitable for use as an engine fuel than straight vegetable oil

Boyer, Elizabeth W.

290

High order moment method for polydisperse evaporating sprays with mesh movement: application to internal combustion engines  

E-Print Network [OSTI]

to internal combustion engines D. Kaha,3 , O. Emreb,c,d,2 , Q. H. Trand , S. de Chaisemartind, , S. Jayd , F meshes. Extending the approach to internal combustion engine and fuel injection requires solving two simulations with spray in internal combustion engines have become a critical target in the automotive industry

Paris-Sud XI, Université de

291

Complying with Law for RE in the Automotive Domain Birgit Penzenstadler  

E-Print Network [OSTI]

Complying with Law for RE in the Automotive Domain Birgit Penzenstadler penzenst, Germany Abstract The automotive industry is concerned with develop- ing large and complex embedded systems the automotive industry performs require- ments engineering in order to comply with government laws

292

Pricing Innovation: State of the Art and Automotive Applications Professor Jean-Jacques CHANARON*  

E-Print Network [OSTI]

Pricing Innovation: State of the Art and Automotive Applications Professor Jean-Jacques CHANARON as Tongji University in Shanghai, China. He is a well-recognized expert in the automotive industry. He manufacturers. He is a member of the French Society of Automotive Engineers (SIA) and the GERPISA International

Paris-Sud XI, Université de

293

Robotics and Computer Integrated Manufacturing 19 (2003) 7987 Vision-guided fixtureless assembly of automotive components  

E-Print Network [OSTI]

of automotive components Gary M. Bonea, *, David Capsonb a Department of Mechanical Engineering, Mc with sensor-guided robots. In this paper, the development of a vision-guided RFA workcell for automotive automotive body components. r 2003 Elsevier Science Ltd. All rights reserved. Keywords: Automated assembly

Bone, Gary

294

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber  

E-Print Network [OSTI]

of an Automotive Shock Absorber Darin Kowalski, Mohan D. Rao Michigan Technological University, Houghton MI 49931 49931 Dave Griffiths Ford Motor Company, Dearborn MI 48121 Copyright © 2001 Society of Automotive Engineers, Inc. ABSTRACT This paper deals with the dynamic characterization of an automotive shock absorber

Rao, Mohan

295

Towards Verified Automotive Software J. Botaschanjan, L. Kof, C. Kuhnel, M. Spichkova  

E-Print Network [OSTI]

Towards Verified Automotive Software J. Botaschanjan, L. Kof, C. K¨uhnel, M. Spichkova Institut f Automotive software is one of the most challenging fields of software engineering: it must meet real time of automotive software, as for example in the case of drive-by-wire, automated driving and driver assitents

296

TABLE I. AUTOMOTIVE TEMPERATURE RANGES [1] In-transmission 150-200C  

E-Print Network [OSTI]

electronics modules in HEVs. I. INTRODUCTION Previously reported high-temperature automotive electronic-voltage integrated gate driver circuit for automotive applications. In all power electronic circuits, a gate driverTABLE I. AUTOMOTIVE TEMPERATURE RANGES [1] In-transmission 150-200°C On-engine 150-200°C On Wheel

Tolbert, Leon M.

297

Exhaust Gas Sensor Based On Tin Dioxide For Automotive Application  

E-Print Network [OSTI]

Exhaust Gas Sensor Based On Tin Dioxide For Automotive Application Arthur VALLERON a,b , Christophe, Engineering Materials Department The aim of this paper is to investigate the potentialities of gas sensor based on semi-conductor for exhaust gas automotive application. The sensing element is a tin dioxide

Paris-Sud XI, Université de

298

Vehicle Technologies Office Merit Review 2014: ICME Guided Development of Advanced Cast Aluminum Alloys For Automotive Engine Applications  

Broader source: Energy.gov [DOE]

Presentation given by Ford at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of advanced cast...

299

Automotive Research Center A U.S. Army RDECOM Center of Excellence for Modeling and Simulation of Ground  

E-Print Network [OSTI]

Automotive Research Center A U.S. Army RDECOM Center of Excellence for Modeling and Simulation Janet Lyons Organized by the Automotive Research Center Sponsored by U.S. Army Research, Development and Engineering Command (RDECOM) U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC

Papalambros, Panos

300

Fuel injector nozzle for an internal combustion engine  

DOE Patents [OSTI]

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2007-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fuel Injector Nozzle For An Internal Combustion Engine  

DOE Patents [OSTI]

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr.; Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2006-04-25T23:59:59.000Z

302

Characteristics of isopentanol as a fuel for HCCI engines.  

SciTech Connect (OSTI)

Long chain alcohols possess major advantages over the currently used ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. The rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols cost effectively. These higher alcohols could significantly expand the biofuel content and potentially substitute ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for HCCI engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. Results are presented in comparison with gasoline or ethanol data previously reported. For a given combustion phasing, isopentanol requires lower intake temperatures than gasoline or ethanol at all tested speeds, indicating a higher HCCI reactivity. Similar to ethanol but unlike gasoline, isopentanol does not show two-stage ignition even at very low engine speed (350 rpm) or with considerable intake pressure boost (200 kPa abs.). However, isopentanol does show considerable intermediate temperature heat release (ITHR) that is comparable to gasoline. Our previous work has found that ITHR is critical for maintaining combustion stability at the retarded combustion phasings required to achieve high loads without knock. The stronger ITHR causes the combustion phasing of isopentanol to be less sensitive to intake temperature variations than ethanol. With the capability to retard combustion phasing, a maximum IMEP{sub g} of 5.4 and 11.6 bar was achieved with isopentanol at 100 and 200 kPa intake pressure, respectively. These loads are even slightly higher than those achieved with gasoline. The ITHR of isopentanol depends on operating conditions and is enhanced by simultaneously increasing pressures and reducing temperatures. However, increasing the temperature seems to have little effect on ITHR at atmospheric pressure, but it does promote hot ignition. Finally, the dependence of ignition timing on equivalence ratio, here called {phi}-sensitivity, is measured at atmospheric intake pressure, showing that the ignition of isopentanol is nearly insensitive to equivalence ratio when thermal effects are removed. This suggests that partial fuel stratification, which has been found effective to control the HRR with two-stage ignition fuels, may not work well with isopentanol at these conditions. Overall, these results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

Simmons, Blake Alexander; Dec, John E.; Yang, Yi; Dronniou, Nicolas

2010-05-01T23:59:59.000Z

303

Fuel injector nozzle for an internal combustion engine  

DOE Patents [OSTI]

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2008-11-04T23:59:59.000Z

304

Fuel injector nozzle for an internal combustion engine  

DOE Patents [OSTI]

A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

Cavanagh, Mark S. (Bloomington, IL); Urven, Jr., Roger L. (Colona, IL); Lawrence, Keith E. (Peoria, IL)

2011-03-22T23:59:59.000Z

305

Fuel injector for use in a gas turbine engine  

DOE Patents [OSTI]

A fuel injector in a combustor apparatus of a gas turbine engine. An outer wall of the injector defines an interior volume in which an intermediate wall is disposed. A first gap is formed between the outer wall and the intermediate wall. The intermediate wall defines an internal volume in which an inner wall is disposed. A second gap is formed between the intermediate wall and the inner wall. The second gap receives cooling fluid that cools the injector. The cooling fluid provides convective cooling to the intermediate wall as it flows within the second gap. The cooling fluid also flows through apertures in the intermediate wall into the first gap where it provides impingement cooling to the outer wall and provides convective cooling to the outer wall. The inner wall defines a passageway that delivers fuel into a liner downstream from a main combustion zone.

Wiebe, David J.

2012-10-09T23:59:59.000Z

306

The Use of Re-Refined Oil in Vehicle Fleets Copyright 1996 Society of Automotive Engineers, Inc.  

E-Print Network [OSTI]

A literature search to identify deleterious effects of using re-refined oil did not disclose any validated occurrences. Significant engine testing using re-refined lubricating oil is reported and no cases were discovered in which engine operation was affected negatively by the use of re-refined oil. The American Petroleum Institute (AFT) allows the use of re-refined base stock oils in the blending of end use lubricants. Based on oil sample testing performed in this research as well as other authoritative sources, it was determined that no significant chemical or physical differences exist between rerefined and virgin oils. Differences noted in this research were related to higher levels of polynuclear aromatics (PNA’s) in the re-refined oil. PNA’s

Timothy T. Maxwell; Glen Hagler; Jesse C. Jones; Raghu Narayan; Atila Ertas

307

E-Print Network 3.0 - automotive air-conditioning system Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EGTE456 Fundamentals of Heating, Ventilation and Air Conditioning ELEG420 Solar Electric Systems... CIEG351 Transportation Engineering MEEG425 Automotive Powertrain...

308

E-Print Network 3.0 - automotive vehicles uso Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering 2 watcar.uwaterloo.ca 519-888-4555I drivinginnovation Summary: Co-op Work Terms Student Team Partnerships WATERLOO CENTRE FOR AUTOMOTIVE RESEARCH 12;The...

309

E-Print Network 3.0 - aluminum automotive components Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department, University of New Hampshire Collection: Engineering 24 1 Introduction 1.1 Aluminum alloys Summary: 1 1 Introduction 1.1 Aluminum alloys Automotive industry demands...

310

A screening model to explore planning decisions in automotive manufacturing systems under demand uncertainty  

E-Print Network [OSTI]

Large-scale, complex engineering systems, as for automotive manufacturing, often require significant capital investment and resources for systems configuration. Furthermore, these systems operate in environments that are ...

Yang, Yingxia

2009-01-01T23:59:59.000Z

311

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

SciTech Connect (OSTI)

Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

Greene, David L [ORNL; Duleep, Gopal [HD Systems

2013-06-01T23:59:59.000Z

312

Direct fired reciprocating engine and bottoming high temperature fuel cell hybrid  

DOE Patents [OSTI]

A system of a fuel cell bottoming an internal combustion engine. The engine exhaust gas may be combined in varying degrees with air and fed as input to a fuel cell. Reformer and oxidizers may be combined with heat exchangers to accommodate rich and lean burn conditions in the engine in peaking and base load conditions without producing high concentrations of harmful emissions.

Geisbrecht, Rodney A. (New Alexandria, PA); Holcombe, Norman T. (McMurray, PA)

2006-02-07T23:59:59.000Z

313

Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network  

E-Print Network [OSTI]

DS-06-1351 Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network Tomás dynamics of gasoline engines during transient operation. With a collection of input-output data measured;Modeling of Air-Fuel Ratio Dynamics of Gasoline Combustion Engine with ARX Network I. INTRODUCTION

Johansen, Tor Arne

314

Fuels, Engines, and Emissions Research Center 2 Managed by UT-Battelle  

E-Print Network [OSTI]

Fuels, Engines, and Emissions Research Center #12;2 Managed by UT-Battelle for the U.S. Department of Energy Fuels, Engines, and Emissions Research .... a comprehensive laboratory for advanced transportation in transportation efficiency and emissions. Engine Cells Chassis Dyno Lab Models and Controls Analytical Labs

315

Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report  

SciTech Connect (OSTI)

This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

Kakwani, R.M.; Kamo, R.

1989-01-01T23:59:59.000Z

316

Analysis of Automotive Turbocharger Nonlinear Response Including Bifurcations  

E-Print Network [OSTI]

Automotive turbochargers (TCs) increase internal combustion engine power and efficiency in passenger and commercial vehicles. TC rotors are usually supported on floating ring bearings (FRBs) or semi-floating ring bearings (SFRBs), both of which...

Vistamehr, Arian

2010-10-12T23:59:59.000Z

317

LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System  

SciTech Connect (OSTI)

The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

Dr. John Garnier; Dr. Kevin McHugh

2012-09-01T23:59:59.000Z

318

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells  

E-Print Network [OSTI]

ENCH 473 Electrochemical Energy Engineering ENCH 648K Advanced Batteries and Fuel Cells Spring 2014 Syllabus Course: ENCH 473 Electrochemical Energy Engineering ENCH: 648K Advanced Batteries and Fuel Cells, with emphasis on the principle and performance of batteries, supercapacitors and fuel cells. The objective

Rubloff, Gary W.

319

Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine  

SciTech Connect (OSTI)

The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

Bunting, Bruce G [ORNL] [ORNL; Eaton, Scott J [ORNL] [ORNL; Crawford, Robert W [Rincon Ranch Consulting] [Rincon Ranch Consulting

2009-01-01T23:59:59.000Z

320

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper number1009). for an automotive PEM fuel cell system with imbedded

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs  

Broader source: Energy.gov [DOE]

Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs

322

Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation  

DOE Patents [OSTI]

A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

Dec, John E. (Livermore, CA); Sjoberg, Carl-Magnus G. (Livermore, CA)

2006-10-31T23:59:59.000Z

323

The role of fuel in determining the high load limit of controlled auto-ignition engines  

E-Print Network [OSTI]

Controlled Auto-Ignition (CAI) engines have the potential to increase fuel economy while lowering nitrogen oxide and soot emissions. One hurdle that is currently being faced is the engine's inability to operate at high ...

Maria, Amir Gamal

2009-01-01T23:59:59.000Z

324

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect (OSTI)

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

325

Evaluation of alternate-fuels performance in an external combustion system. Final report  

SciTech Connect (OSTI)

As the economic attractiveness of many alternate fuels increases relative to gasoline, the viability of any future automotive power plant may soon depend on the ease with which these alternate fuels can be utilized. It is generally assumed that external-combustion engines are more tolerant of alternate fuels than internal-combustion engines. This study attempted to verify that assumption. The purpose of the Alternate-Fuels Performance Evaluation Program was to evaluate and compare the impact of burning six different liquids fuels in an external-combustion system. Testing was conducted in the automotive Stirling engine (ASE) combustion performance rig, which duplicates the external heat system (EHS) of a Stirling engine. The program expanded the range of fuels evaluated over previous studies conducted at Mechanical Technology Incorporated (MTI). The specific objective was to determine the optimal combustion stoichiometry considering the performance parameters of combustion efficiency, temperature profile, exhaust emissions, and burner wall temperature. 14 refs., 34 figs., 6 tabs.

Battista, R.A.; Connelly, M.

1985-12-01T23:59:59.000Z

326

TRISO-Fuel Element Performance Modeling for the Hybrid LIFE Engine with Pu Fuel Blanket  

SciTech Connect (OSTI)

A TRISO-coated fuel thermo-mechanical performance study is performed for the hybrid LIFE engine to test the viability of TRISO particles to achieve ultra-high burnup of a weapons-grade Pu blanket. Our methodology includes full elastic anisotropy, time and temperature varying material properties for all TRISO layers, and a procedure to remap the elastic solutions in order to achieve fast fluences up to 30 x 10{sup 25} n {center_dot} m{sup -2} (E > 0.18 MeV). In order to model fast fluences in the range of {approx} 7 {approx} 30 x 10{sup 25} n {center_dot} m{sup -2}, for which no data exist, careful scalings and extrapolations of the known TRISO material properties are carried out under a number of potential scenarios. A number of findings can be extracted from our study. First, failure of the internal pyrolytic carbon (PyC) layer occurs within the first two months of operation. Then, the particles behave as BISO-coated particles, with the internal pressure being withstood directly by the SiC layer. Later, after 1.6 years, the remaining PyC crumbles due to void swelling and the fuel particle becomes a single-SiC-layer particle. Unrestrained by the PyC layers, and at the temperatures and fluences in the LIFE engine, the SiC layer maintains reasonably-low tensile stresses until the end-of-life. Second, the PyC creep constant, K, has a striking influence on the fuel performance of TRISO-coated particles, whose stresses scale almost inversely proportional to K. Obtaining more reliable measurements, especially at higher fluences, is an imperative for the fidelity of our models. Finally, varying the geometry of the TRISO-coated fuel particles results in little differences in the scope of fuel performance. The mechanical integrity of 2-cm graphite pebbles that act as fuel matrix has also been studied and it is concluded that they can reliable serve the entire LIFE burnup cycle without failure.

DeMange, P; Marian, J; Caro, M; Caro, A

2010-02-18T23:59:59.000Z

327

IGNITION TRANSIENT IN AN ETHYLENE FUELED SCRAMJET ENGINE WITH AIR THROTTLING.  

E-Print Network [OSTI]

??This research focuses on the modeling and simulation of ignition transient and subsequent combustion dynamics in an ethylene fueled supersonic combustion ramjet (scramjet) engine. The… (more)

Li, Jian

2009-01-01T23:59:59.000Z

328

Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...  

Broader source: Energy.gov (indexed) [DOE]

SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Wayne Moore, Matt Foster, Kevin Hoyer, Keith Confer Delphi Advanced Powertrain DEER Conference September 29, 2010...

329

Internal combustion engines for alcohol motor fuels: a compilation of background technical information  

SciTech Connect (OSTI)

This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcohol fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)

None

1980-11-01T23:59:59.000Z

330

Effects of different fuels on a turbocharged, direct injection, spark ignition engine  

E-Print Network [OSTI]

The following pages describe the experimentation and analysis of two different fuels in GM's high compression ratio, turbocharged direct injection (TDI) engine. The focus is on a burn rate analysis for the fuels - gasoline ...

Negrete, Justin E

2010-01-01T23:59:59.000Z

331

E-Print Network 3.0 - automotive technologies annual Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and technology, fuels... and logistics Better Place, Fiskar Automotive, Mission Motors, Tesla Motors WATER Filtration, purification... STORAGE Grid-scale storage, batteries,...

332

E-Print Network 3.0 - afv automotive technician Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New automotive technologies could also be a source of additional... . 12;Alternative Fuel Vehicles (AFV) are vehicles that use the non-petroleum based ... Source: North...

333

Fuel injection system and method of operating the same for an engine  

DOE Patents [OSTI]

A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

Topinka, Jennifer Ann (Niskayuna, NY); DeLancey, James Peter (Corinth, NY); Primus, Roy James (Niskayuna, NY); Pintgen, Florian Peter (Niskayuna, NY)

2011-02-15T23:59:59.000Z

334

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Automotive Applications Jayanti Sinha Stephen Lasher Yong Yang Peter Kopf Fuel Cell Tech Team Review September 24, 2008 TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390...

335

Interim Update: Global Automotive Power Electronics R&D Relevant...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Automotive Power Electronics R&D Relevant To DOE 2015 and 2020 Cost Targets 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

336

Proceedings of FUELCELL2006 Fourth International Conference on Fuel Cell Science, Engineering and Technology  

E-Print Network [OSTI]

of water within the fuel cell stack is crit- ical for optimal stack performance. A balance must be struckProceedings of FUELCELL2006 Fourth International Conference on Fuel Cell Science, Engineering-ORIENTED MODEL OF THE WATER DYNAMICS IN FUEL CELLS B. A. McCain Fuel Cell Control Laboratory Department

Stefanopoulou, Anna

337

Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels  

DOE Patents [OSTI]

An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

Heffel, James W. (Lake Matthews, CA); Scott, Paul B. (Northridge, CA); Park, Chan Seung (Yorba Linda, CA)

2011-11-01T23:59:59.000Z

338

Apparatus and method for operating internal combustion engines from variable mixtures of gaseous fuels  

DOE Patents [OSTI]

An apparatus and method for utilizing any arbitrary mixture ratio of multiple fuel gases having differing combustion characteristics, such as natural gas and hydrogen gas, within an internal combustion engine. The gaseous fuel composition ratio is first sensed, such as by thermal conductivity, infrared signature, sound propagation speed, or equivalent mixture differentiation mechanisms and combinations thereof which are utilized as input(s) to a "multiple map" engine control module which modulates selected operating parameters of the engine, such as fuel injection and ignition timing, in response to the proportions of fuel gases available so that the engine operates correctly and at high efficiency irrespective of the gas mixture ratio being utilized. As a result, an engine configured according to the teachings of the present invention may be fueled from at least two different fuel sources without admixing constraints.

Heffel, James W.; Scott, Paul B.

2003-09-02T23:59:59.000Z

339

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect (OSTI)

This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

E.T. (Skip) Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

2002-12-31T23:59:59.000Z

340

Engineered nano-scale ceramic supports for PEM fuel cells  

SciTech Connect (OSTI)

Catalyst support durability is currently a technical barrier for commercialization of polymer electrolyte membrane (PEM) fuel cells, especially for transportation applications. Degradation and corrosion of the conventional carbon supports leads to losses in active catalyst surface area and, consequently, reduced performance. As a result, the major aim of this work is to develop support materials that interact strongly with Pt, yet sustain bulk-like catalytic activities with very highly dispersed particles. This latter aspect is key to attaining the 2015 DOE technical targets for platinum group metal (PGM) loadings (0.20 mg/cm{sup 2}). The benefits of the use of carbon-supported catalysts to drastically reduce Pt loadings from the early, conventional Pt-black technology are well known. The supported platinum catalyzed membrane approach widely used today for fabrication of membrane electrode assemblies (MEAs) was developed shortly thereafter these early reports. Of direct relevance to this present work, are the investigations into Pt particle growth in PEM fuel cells, and subsequent follow-on work showing evidence of Pt particles suspended free of the support within the catalyst layer. Further, durability work has demonstrated the detrimental effects of potential cycling on carbon corrosion and the link between electrochemical surface area and particle growth. To avoid the issues with carbon degradation altogether, it has been proposed by numerous fuel cell research groups to replace carbon supports with conductive materials that are ceramic in nature. Intrinsically, these many conductive oxides, carbides, and nitrides possess the prerequisite electronic conductivity required, and offer corrosion resistance in PEMFC environments; however, most reports indicate that obtaining sufficient surface area remains a significant barrier to obtaining desirable fuel ceU performance. Ceramic materials that exhibit high electrical conductivity and necessary stability under fuel cell conditions must also exhibit high surface area as a necessary adjunct to obtaining high Pt dispersions and Pt utilization targets. Our goal in this work is to identify new synthesis approaches together with materials that will lead to ceramic supports with high surface areas and high Pt dispersions. Several strong candidates for use as PEMFC catalyst supports include: transition metal nitrides and substoichiometric titanium oxides, which hither to now have been prepared by other researcher groups with relatively low surface areas (ca. 1-50 m{sup 2}/g typical). To achieve our goals of engineering high surface area, conductive ceramic support for utilization in PEMFCs, a multi-institutional and multi-disciplinary team with experience synthesizing and investigating these materials has been assembled. This team is headed by Los Alamos National Laboratory and includes Oak Ridge National Laboratory and the University of New Mexico. This report describes our fiscal year 2010 technical progress related to applying advanced synthetiC methods towards the development of new ceramic supports for Pt catalysts for PEM fuel cells.

Brosha, Eric L [Los Alamos National Laboratory; Blackmore, Karen J [Los Alamos National Laboratory; Burrell, Anthony K [Los Alamos National Laboratory; Henson, Neil J [Los Alamos National Laboratory; Phillips, Jonathan [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing  

E-Print Network [OSTI]

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

342

Effect of in-cylinder liquid fuel films on engine-out unburned hydrocarbon emissions for SI engines  

E-Print Network [OSTI]

Nearly all of the hydrocarbon emissions from a modern gasoline-fueled vehicle occur when the engine is first started. One important contributing factor to this is the fact that, during this time, temperatures throughout ...

Costanzo, Vincent S. (Vincent Stanley), 1979-

2011-01-01T23:59:59.000Z

343

Dynamic characteristics of a commercial Proton Exchange Membrane (PEM) fuel cell.  

E-Print Network [OSTI]

??Fast growing application of Proton Exchange Membrane (PEM) Fuel Cell in automotive industries, has brought the necessity of conducting research on automotive aspects of the… (more)

Toutounchian, Hamid

2008-01-01T23:59:59.000Z

344

Engineering metabolic systems for production of advanced fuels  

E-Print Network [OSTI]

keto acid pathways for bio- fuel production. The productionmaking bio- gasoline, bio-jet fuel, and biodiesel, as welldevelopment of bio-ethanol as an alternative fuel have led

Yan, Yajun; Liao, James C.

2009-01-01T23:59:59.000Z

345

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect (OSTI)

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

346

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network [OSTI]

Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

Esquivel, Jason

2010-01-16T23:59:59.000Z

347

Fuels for Advanced Combustion Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling

348

Series 50 propane-fueled Nova bus: Engine development, installation, and field trials  

SciTech Connect (OSTI)

The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

Smith, B.

1999-01-01T23:59:59.000Z

349

Development of microprocessor control for a V-6 engine fueled by prevaporized methanol  

E-Print Network [OSTI]

DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 19SS Major Subject: Chemical Engineering DEVELOPMENT OF MICROPROCESSOR CONTROL FOR A V 6 ENGINE FUELED BY PREVAPORIZED METHANOL A Thesis by DONALD F. SCHNEIDER Approved as to style and content by: JP& r~ R. R. Davison...

Schneider, Donald F.

1985-01-01T23:59:59.000Z

350

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network [OSTI]

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

1984-01-01T23:59:59.000Z

351

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

352

Novel Nanostructured Interface Solution for Automotive Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric Modules with...

353

Fisker Automotive Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs Actual DataNext 25 Years |Fisker Automotive

354

Fuel Effects on Advanced Combustion: Heavy-Duty Optical-Engine Research |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10,Combustion Engines

355

Statistical Overview of 5 Years of HCCI Fuel and Engine Data from ORNL |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M.Engine DynamometerDepartment

356

Fuel Requirements for HCCI Engine Operation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality Challenges An OEMLife Requirements

357

Future Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3

358

Future Engine Fluids Technologies: Durable, Fuel-Efficient, and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3EfficientDynamics

359

Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat TwoDepartment14, 2008

360

Achieving and Demonstrating FreedomCAR Engine Fuel Efficiency Goals  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated6-05.pdfATTENDEEES:Supplythe Waste IsolationAchieving

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Correlation of Diesel Engine Performance with Measured NIR Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-Cylinder Laser Diagnostics

362

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect (OSTI)

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

363

Proceedings of the ASME Fuel Cell Division 2000: The 2000 ASME International Mechanical Engineering Congress & Exposition  

E-Print Network [OSTI]

The PEM fuel cell engine promises for future application in environmentally responsible vehicles, becauseProceedings of the ASME Fuel Cell Division ­ 2000: The 2000 ASME International Mechanical ANALYSIS OF TRANSPORT AND REACTION IN PROTON EXCHANGE MEMBRANE FUEL CELLS Sukkee Um and C.Y. Wang

Wang, Chao-Yang

364

Energy Conservation Potential in Natural Gas Fueled Reciprocating Engines - A Preliminary Market Evaluation  

E-Print Network [OSTI]

A study was undertaken of the usage rates of both fuel and lubricants in reciprocating engines fueled with natural gas. The study was conducted to determine the potential for energy conservation, if use is made of more fuel efficient natural gas...

Johnson, D. M.

1979-01-01T23:59:59.000Z

365

Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine  

E-Print Network [OSTI]

Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine fuel cells are usually described as devices able to convert chemical energy into electrical energy. Conventional solid oxide fuel cells are separated into two compartments containing each electrode split

Boyer, Edmond

366

Air/fuel supply system for use in a gas turbine engine  

SciTech Connect (OSTI)

A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

2014-06-17T23:59:59.000Z

367

Fuels For Advanced Combustion Engines (FACE) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling U.S. LightFor

368

Fuels for Advanced Combustion Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling1 DOE Hydrogen and

369

Fuels for Advanced Combustion Engines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling1 DOE Hydrogen and0

370

Module 6: Fuel Cell Engine Safety | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutes fromBased|SEI5: Fuel Cell Systems6:

371

Method and apparatus for controlling fuel/air mixture in a lean burn engine  

DOE Patents [OSTI]

The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

1998-04-07T23:59:59.000Z

372

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

373

Alternative fuel capabilities of the Mod II Stirling vehicle  

SciTech Connect (OSTI)

The Stirling engine's characteristics make it a prime candidate for both multifuel and alternative fuel uses. In this paper, the relevant engine characteristics of the Mod II Stirling engine are examined, including the external heat system and basic operation. Adaptation of the Stirling to multifuel operation is addressed, and its experience with alternative fuels in automotive applications is summarized. The results of the U.S. Air Force review of the Stirling's multifuel capability are described, and the Stirling's advantages with liquid, gaseous, and solid fuels are discussed.

Grandin, A.W.; Ernst, W.D.

1988-01-01T23:59:59.000Z

374

Second International Conference on Fuel Cell Science, Engineering and Technology  

E-Print Network [OSTI]

@rit.edu ABSTRACT The global development of fuel cell based propulsion has emphasized larger vehicles, with most is dominated by smaller two and three wheeled vehicles. A fuel cell motorcycle could replace two stroke, or be adapted to work in other small vehicles. The proton exchange membrane fuel cell system utilizes an ambient

Kandlikar, Satish

375

The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel  

SciTech Connect (OSTI)

This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers’ expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers’ expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

Wu, Ko-Jen

2011-12-31T23:59:59.000Z

376

Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells  

SciTech Connect (OSTI)

This final report summarizes work accomplished in the Program from January 1, 2001 through December 31, 2004. Most of the key technical objectives for this program were achieved. A breakthrough material system has lead to the development of an OTM (oxygen transport membrane) compact planar reactor design capable of producing either syngas or hydrogen. The planar reactor shows significant advantages in thermal efficiency and a step change reduction in costs compared to either autothermal reforming or steam methane reforming with CO{sub 2} recovery. Syngas derived ultra-clean transportation fuels were tested in the Nuvera fuel cell modular pressurized reactor and in International Truck and Engine single cylinder test engines. The studies compared emission and engine performance of conventional base fuels to various formulations of ultra-clean gasoline or diesel fuels. A proprietary BP oxygenate showed significant advantage in both applications for reducing emissions with minimal impact on performance. In addition, a study to evaluate new fuel formulations for an HCCI engine was completed.

E.T. Robinson; John Sirman; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Dan Corgard; John Hemmings

2005-05-01T23:59:59.000Z

377

Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)  

SciTech Connect (OSTI)

The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

Taylor, J.; Li, H.; Neill, S.

2006-08-01T23:59:59.000Z

378

Flex Fuel Optimized SI and HCCI Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdf Flash_2010_-24.pdf Flash_2010_-24.pdf2

379

Flex Fuel Optimized SI and HCCI Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdf Flash_2010_-24.pdf Flash_2010_-24.pdf21

380

Flex Fuel Optimized SI and HCCI Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdf Flash_2010_-24.pdf Flash_2010_-24.pdf210

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovemberDepartmentEnergyEmissions

382

Future Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3 of3.2.103ofTechnology

383

Future Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3 of3.2.103ofTechnologyThe

384

Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2 DOE11.4 Planning

385

2008 DOE Annual Merit Review Advanced Combustion Engines and Fuels  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule 4 module51:11| DepartmentR&D/Technology

386

Hydrogen Fuel Cell Engines and Related Technologies Course Manual |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy Embrittlement Fundamentals, Modeling,Department

387

Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract andthe LosUsingMilestones |

388

Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract andthe LosUsingMilestones

389

Engine Materials Compatibility with Alternate Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004Department ofEnforcingVehicleof2 DOE

390

Engine Materials Compatibility with Alternate Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004Department ofEnforcingVehicleof2 DOE1 DOE

391

Emission Performance of Modern Diesel Engines Fueled with Biodiesel |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstructionApplications | Department ofDepartment of

392

HD Truck and Engine Fuel Efficiency Opportunities and Challenges Post  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED Hot TestingEPA2010 | Department of

393

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground HawaiiWasteDepartmentHoney,in theEnergy How

394

NREL: Transportation Research - Fuel Combustion and Engine Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of medium-duty truckFuel

395

Sandia Optical Hydrogen-fueled Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram 2013:Safety2Paul Hommertand Inspections10

396

Sandia Optical Hydrogen-fueled Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram 2013:Safety2Paul Hommertand Inspections1009

397

New Directions in Engines and Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergy Emissions Control-- The

398

New Feedstocks and Replacement Fuel Diesel Engine Challenges | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutiveRateEnergyDepartment ofof Energy

399

Hydrocarbon-fueled internal combustion engines: "the worst form of vehicle propulsion... except for all the other forms"  

E-Print Network [OSTI]

: diesel; thermal efficiency 52%. #12;2 charge reciprocating piston engines; diesel-fueled nonpremixed). Also, electric motors are not heat engines and thus not internal combustion engines. Turboshaft All

400

Fuel efficient power trains and vehicles  

SciTech Connect (OSTI)

The pressure on the automotive industry to improve fuel economy has already resulted in major developments in power train technology, as well as highlighting the need to treat the vehicle as a total system. In addition emissions legislation has resulted in further integration of the total vehicle engineering requirement. This volume discusses subject of fuel efficiency in the context of vehicle performance. The contents include: energy and the vehicle; the interaction of fuel economy and emission control in Europe-a literature study; comparison of a turbocharger to a supercharger on a spark ignited engine; knock protection - future fuel and engines; the unomatic transmission; passenger car diesel engines charged by different systems for improved fuel economy.

Not Available

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Automotive Energy Storage Systems 2015 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015ServicesEfficiency | Department93AugustAutomotive

402

KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES  

E-Print Network [OSTI]

KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES R OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES INTRODUCTION Engines running on HCCI-like efficiencies and extremely low emissions. HCCI engines rely on a lean combustion process (in excess of air

Paris-Sud XI, Université de

403

UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence  

SciTech Connect (OSTI)

This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davisâ??s existing GATE centers have become the campusâ??s research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

Erickson, Paul

2012-05-31T23:59:59.000Z

404

Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies  

SciTech Connect (OSTI)

In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

Chia-fon F. Lee; Alan C. Hansen

2010-09-30T23:59:59.000Z

405

Future Engine Fluids Technologies: Durable, Fuel-Efficient, and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Market Introducution in Europe Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel...

406

Sandia National Laboratories: internal combustion engine fuel efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing therenewables Sandia,internal combustion

407

Sandia National Laboratories: Optimizing Engines for Alternative Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt StorageNoLong Range RadarFacilityOptics Lab

408

Alternative Fuels Data Center: College Students Engineer Efficient Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in Its Fleet BluePetroleum Use

409

Knock mitigation on boosted Controlled Auto-Ignition engines with fuel stratification and Exhaust Gas Recycling  

E-Print Network [OSTI]

This research is carried out to understand the mechanism of using fuel stratification and Exhaust Gas Recycling (EGR) for knock mitigation on boosted Controlled Auto-Ignition (CAl) engines. Experiments were first conducted ...

Sang, Wen, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

410

Effect of market fuel variation and cetane improvers on CAI combustion in a GDI engine  

E-Print Network [OSTI]

There is continued interest in improving the fuel conversion efficiency of internal combustion engines and simultaneously reducing their emissions. One promising technology is that of Controlled Auto Ignition (CAI) combustion. ...

Cedrone, Kevin David

2010-01-01T23:59:59.000Z

411

Optical-Engine and Surrogate-Fuels Research for an Improved Understand...  

Broader source: Energy.gov (indexed) [DOE]

tools for understanding fuel-property effects on - Combustion - Engine efficiency optimization - Emissions Partners * Project lead: Sandia - C.J. Mueller (PI); B.T. Fisher, C.J....

412

Analysis of Smoke of Diesel Engine by Using Biodiesel as Fuel  

E-Print Network [OSTI]

Abstract- This study represents the analysis of smoke of biodiesel by using smoke tester. In this article biodiesel is taken as a fuel instead of diesel and quantity of emitted pollutants HC and CO is evaluated by taking different quantity of biodiesel at different load. This work shows how use of biodiesel will affect the emission of pollutants. Diesel Engine is compression ignition engine and use diesel as fuel, in this engine alternative fuel can be used. One alternate fuel is biodiesel. Biodiesel can be used in pure form or may be blended with petroleum diesel at any concentration in most injection pump diesel engines and also can be used in Vehicle, Railway, and Aircraft as heating oil.

Gayatri Kushwah; Methanol

413

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

SciTech Connect (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

414

A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Overview 2 Budget * Total: 29,992,676 - Partner Cost Share: 15,534,104 - DOE Cost Share: 14,458,572 Barriers * Downsized engines offer higher fuel economy, but the...

415

Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergy Victor

416

Friction of Materials for Automotive Applications  

SciTech Connect (OSTI)

This brief overview of friction-related issues in materials for automobiles is invited for a special issue on automotive materials in the ASM journal AM&P. It describes a range of areas in a ground vehicle in which friction must be controlled or minimized. Applications range from piston rings to tires, and from brakes to fuel injector components. A perspective on new materials and lubricants, and the need for validation testing is presented.

Blau, Peter Julian [ORNL

2013-01-01T23:59:59.000Z

417

Automotive Energy Supply Corporation AESC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo Feng Bio Jump to: navigation, searchEnergyAutomotive

418

Engine with hydraulic fuel injection and ABS circuit using a single high pressure pump  

DOE Patents [OSTI]

An engine system comprises a hydraulically actuated fuel injection system and an ABS circuit connected via a fluid flow passage that provides hydraulic fluid to both the fuel injection system and to the ABS circuit. The hydraulically actuated system includes a high pressure pump. The fluid control passage is in fluid communication with an outlet from the high pressure pump.

Bartley, Bradley E. (Manito, IL); Blass, James R. (Bloomington, IL); Gibson, Dennis H. (Chillicothe, IL)

2001-01-01T23:59:59.000Z

419

Performance and Emission Characteristics of an Aircraft Turbo Diesel Engine using JET-A Fuel  

E-Print Network [OSTI]

Protection Agency (EPA)............................................................ 10 1.4.3 Emission Technology .................................................................................................... 11 1.4.3.1 Catalytic Converter... Actual e Exit f Fuel inf Free Stream o Point Pr Prop T Thrust x Compound Family viii Abbreviations Definition AFR Air Fuel Ratio BHP Brake Horsepower CED Compact Engine Display CFR Code of Federal Regulations CReSIS Center for Remote...

Underwood, Sean Christopher

2008-05-05T23:59:59.000Z

420

Department of Chemical and Biochemical Engineering Institute for Chemicals and Fuels from Alternative Resources  

E-Print Network [OSTI]

. The successful candidate will be an important member of the Institute for Chemicals and Fuels from AlternativeDepartment of Chemical and Biochemical Engineering Institute for Chemicals and Fuels from Alternative Resources The University of Western Ontario Applications are invited for a junior faculty position

Sinnamon, Gordon J.

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Emissions and fuel economy of a prechamber diesel engine with natural gas dual fuelling  

SciTech Connect (OSTI)

A four-cylinder turbocharged prechamber diesel engine (Caterpillar 3304) was operated with natural gas and pilot diesel fuel ignition over a wide range of load and speed. Measurements were made of fuel consumption and the emissions of unburned hydrocarbons, carbon monoxide, and the oxides of nitrogen. Improvements in fuel economy and emissions were found to be affected by the diesel fuel-gas fraction, and by air restriction and fuel injection timing. Boundaries of unstable, inefficient and knocking operation were defined and the importance of gas-air equivalance ratio was demonstrated in its effect on economy, emissions and stability of operation.

Ding, X.; Hill, P.G.

1986-01-01T23:59:59.000Z

422

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect (OSTI)

Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

Schwalb, J.A.; Ryan, T.W.

1991-10-01T23:59:59.000Z

423

Wear mechanism and wear prevention in coal-fueled diesel engines. Final report  

SciTech Connect (OSTI)

Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

Schwalb, J.A.; Ryan, T.W.

1991-10-01T23:59:59.000Z

424

Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine  

SciTech Connect (OSTI)

A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

2001-03-15T23:59:59.000Z

425

Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels  

SciTech Connect (OSTI)

The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

2009-12-02T23:59:59.000Z

426

Knock limitations of methane-air mixtures in a turbocharged dual-fuel engine  

SciTech Connect (OSTI)

Knock limitations are investigated using natural gas, with diesel pilot ignition, as a fuel for the 3406 DI-TA Caterpillar diesel engine. Thermodynamic properties at TDC are generated by computer and compared with experimental results. Exhaust emissions are analyzed. A comparison is made of dual-fuel operation relative to diesel. Observations are made to determine the onset of knock. The onset of knock is characterized as a function of engine speed, load, inlet manifold temperature, and air-fuel ratio (A/F). The conditions at the inset of knock are determined using cylinder pressure data. The most efficient operating range is determined with knock avoidance as a prime parameter.

Song, Y.K.; Acker, G.H.; Schaetzle, W.J.; Brett, C.E.

1987-01-01T23:59:59.000Z

427

Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels  

SciTech Connect (OSTI)

The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

Pratapas, John; Zelepouga, Serguei; Gnatenko, Vitaliy; Saveliev, Alexei; Jangale, Vilas; Li, Hailin; Getz, Timothy; Mather, Daniel

2013-08-31T23:59:59.000Z

428

Galib, “Biodiesel from jatropha oil as an alternative fuel for diesel engine  

E-Print Network [OSTI]

Abstract — The world is getting modernized and industrialized day by day. As a result vehicles and engines are increasing. But energy sources used in these engines are limited and decreasing gradually. This situation leads to seek an alternative fuel for diesel engine. Biodiesel is an alternative fuel for diesel engine. The esters of vegetables oil animal fats are known as Biodiesel. This paper investigates the prospect of making of biodiesel from jatropha oil. Jatropha curcas is a renewable non-edible plant. Jatropha is a wildly growing hardy plant in arid and semi-arid regions of the country on degraded soils having low fertility and moisture. The seeds of Jatropha contain 50-60 % oil. In this study the oil has been converted to biodiesel by the well-known transesterification process and used it to diesel engine for performance evaluation.

Kazi Mostafijur Rahman; Mohammad Mashud; Md. Roknuzzaman; Asadullah Al Galib

429

Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing  

SciTech Connect (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

430

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect (OSTI)

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

431

Innovative coal-fueled diesel engine injector. Final report  

SciTech Connect (OSTI)

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

432

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem  

E-Print Network [OSTI]

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem@mail.doshisha.ac.jp Abstract- Recently, the technology that can control NOx and Soot values of diesel engines by changing between fuel economy and NOx values. Therefore, the diesel engines that can change their characteristics

Coello, Carlos A. Coello

433

Flash report: Automotive batteries  

SciTech Connect (OSTI)

Battery inventories soared early in the years after sales plunged 15% due to the mild winter. But in the last 90 days, admist a hot summer, industry leader Exide announced a 5% price hike to assess the current market, OTR interviewed 14 professionals from the battery industry - Contacts include four battery manufacturers, one industry specialists, seven retail chains plus two wholesalers. The nine sales groups supply about 10,000 stores an automotive shops nationwide.

Gates, J.H.

1995-12-01T23:59:59.000Z

434

PRODUCTION, STORAGE AND PROPERTIES OF HYDROGEN AS INTERNAL COMBUSTION ENGINE FUEL: A CRITICAL REVIEW  

E-Print Network [OSTI]

In the age of ever increasing energy demand, hydrogen may play a major role as fuel. Hydrogen can be used as a transportation fuel, whereas neither nuclear nor solar energy can be used directly. The blends of hydrogen and ethanol have been used as alternative renewable fuels in a carbureted spark ignition engine. Hydrogen has very special properties as a transportation fuel, including a rapid burning speed, a high effective octane number, and no toxicity or ozone-forming potential. A stoichiometric hydrogen–air mixture has very low minimum ignition energy of 0.02 MJ. Combustion product of hydrogen is clean, which consists of water and a little amount of nitrogen oxides (NOx). The main drawbacks of using hydrogen as a transportation fuel are huge on-board storage tanks. Hydrogen stores approximately 2.6 times more energy per unit mass than gasoline. The disadvantage is that it needs an estimated 4 times more volume than gasoline to store that energy. The production and the storage of hydrogen fuel are not yet fully standardized. The paper reviews the different production techniques as well as storage systems of hydrogen to be used as IC engine fuel. The desirable and undesirable properties of hydrogen as IC engine fuels have also been discussed.

435

Fabrication of small-orifice fuel injectors for diesel engines.  

SciTech Connect (OSTI)

Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

Woodford, J. B.; Fenske, G. R.

2005-04-08T23:59:59.000Z

436

Lightweight Steel Solutions for Automotive Industry  

SciTech Connect (OSTI)

Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho [Technical Research Laboratories, POSCO, 699, Gumho-dong, Gwangyang-si, Jeonnam, 545-090 (Korea, Republic of)

2010-06-15T23:59:59.000Z

437

Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine  

SciTech Connect (OSTI)

Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1214 species and 5401 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation. Experimental data are available for both how the combustion phasing changes with fueling at a constant intake temperature, and also how the intake temperature has to be changed with pressure in order to maintain combustion phasing for a fixed equivalence ratio. Three different surrogate fuel mixtures are used for the modeling. Predictions are in reasonably good agreement with the engine data. In addition, the heat release rate is calculated and compared to the data from experiments. The model predicts less low-temperature heat release than that measured. It is found that the low temperature heat-release rate depends strongly on engine speed, reactions of RO{sub 2}+HO{sub 2}, fuel composition, and pressure boost.

Naik, C V; Pitz, W J; Sj?berg, M; Dec, J E; Orme, J; Curran, H J; Simmie, J M; Westbrook, C K

2005-01-07T23:59:59.000Z

438

Center for Lightweighting Automotive Materials and Processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ti010mallick2011o.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing Center for Lightweighting Automotive Materials and...

439

Center for Lightweighting Automotive Materials and Processing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. ti06mallick.pdf More Documents & Publications Center for Lightweighting Automotive Materials and Processing Center for Lightweighting Automotive Materials and...

440

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S. DOE Office of...

442

Magnesium Research in the Automotive Lightweighting Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Automotive Lightweighting Materials Program Magnesium Research in the Automotive Lightweighting Materials Program Presentation from the U.S. DOE Office of Vehicle...

443

Recent Accomplishments in the Irradiation Testing of Engineering-Scale Monolithic Fuel Specimens  

SciTech Connect (OSTI)

The US fuel development team is focused on qualification and demonstration of the uranium-molybdenum monolithic fuel including irradiation testing of engineering-scale specimens. The team has recently accomplished the successful irradiation of the first monolithic multi-plate fuel element assembly within the AFIP-7 campaign. The AFIP-6 MKII campaign, while somewhat truncated by hardware challenges, exhibited successful irradiation of a large-scale monolithic specimen under extreme irradiation conditions. The channel gap and ultrasonic data are presented for AFIP-7 and AFIP-6 MKII, respectively. Finally, design concepts are summarized for future irradiations such as the base fuel demonstration and design demonstration experiment campaigns.

N.E. Woolstenhulme; D.M. Wachs; M.K. Meyer; H.W. Glunz; R.B. Nielson

2012-10-01T23:59:59.000Z

444

Comparative studies of methane and propane as fuels for spark ignition and compression ignition engines  

SciTech Connect (OSTI)

The paper reviews the combustion characteristics of the two fuels and sets out to consider their respective performance in both spark ignition and compression ignition engines. Results of comparative tests involving spark ignition engines over a wide range of operating conditions are presented and discussed. Some of the performance characteristics considered are those relating to power output, efficiency, tendency to knock, cyclic variations, optimum spark requirements and exhaust emissions. Similarly, some of the performance characteristics in compression ignition engines considered include power output, efficiency, tendency towards knock and autoignition, exhaust emissions and low operational temperature problems. Finally, the relative operational safety aspects of the two fuels are evaluated. It is then suggested that in this regard, methane has some excellent physical, chemical and combustion characteristics that makes it a particularly safe fuel.

Karim, G.A.; Wierzba, I.

1983-08-01T23:59:59.000Z

445

Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen  

SciTech Connect (OSTI)

Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

None

2010-07-15T23:59:59.000Z

446

Diesel fuel component contribution to engine emissions and performance. Final report  

SciTech Connect (OSTI)

Contemporary diesel fuel is a blend of several refinery streams chosen to meet specifications. The need to increase yield of transportation fuel from crude oil has resulted in converting increased proportions of residual oil to lighter products. This conversion is accomplished by thermal, catalytic, and hydrocracking of high molecular weight materials rich in aromatic compounds. The current efforts to reformulate California diesel fuel for reduced emissions from existing engines is an example of another driving force affecting refining practice: regulations designed to reduce exhaust emissions. Although derived from petroleum crude oil, reformulated diesel fuel is an alternative to current specification-grade diesel fuel, and this alternative presents opportunities and questions to be resolved by fuel and engine research. Various concerned parties have argued that regulations for fuel reformulation have not been based on an adequate data base. Despite numerous studies, much ambiguity remains about the relationship of exhaust parameters to fuel composition, particularly for diesel fuel. In an effort to gather pertinent data, the automobile industry and the oil refiners have joined forces in the Air Quality Improvement Research Program (AUTO/OIL) to address this question for gasoline. The objective of that work is to define the relationship between gasoline composition and the magnitude and composition of the exhaust emissions. The results of the AUTO/OEL program will also be used, along with other data bases, to define the EPA {open_quotes}complex model{close_quotes} for reformulated gasolines. Valuable insights have been gained for compression ignition engines in the Coordinating Research Council`s VE-1 program, but no program similar to AUTO/OIL has been started for diesel fuel reformulation. A more detailed understanding of the fuel/performance relationship is a readily apparent need.

Erwin, J.; Ryan, T.W. III; Moulton, D.S. [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

1994-11-01T23:59:59.000Z

447

Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing  

SciTech Connect (OSTI)

Widespread implementation of homogeneous charge compression ignition (HCCI) engines is presently hindered by stability, control, and load range issues. Although the operable HCCI speed/load range is expanding, it is likely that the initial HCCI engines will rely on conventional combustion for part of the operating cycle. In the present study, we have investigated the role of fuel properties and chemistry on the operation of a spark-assisted gasoline HCCI engine. The engine employed is a single cylinder, 500 cc, port fuel injected research engine, operating near lambda = 1.0 and equipped with hydraulic variable valve actuation. HCCI is initiated by early exhaust valve closing to retain exhaust in the cylinder, thereby increasing the cylinder gas temperature. This is also referred to as a 'negative overlap' strategy. A total of 10 custom blended gasolines and three different batches of indolene from two suppliers were run at 5 speed-load combinations and performance was characterized by timing sweeps. Within the quality of the data set, we can say the all fuels provided equivalent combustion and performance characteristics when compared at the same combustion phasing. The fuels did, however, require different degrees of retained exhaust as measured by exhaust valve closing angle to achieve the same combustion phasing. Fuels with higher octane sensitivity were found to ignite more easily or more quickly and to burn more quickly than fuels with lower octane sensitivity. This is an expected result since the engine is naturally aspirated and operates with high compression temperatures due to the high retained exhaust fraction and recompression.

Bunting, Bruce G [ORNL

2006-01-01T23:59:59.000Z

448

Comparative analysis of automotive powertrain choices for the near to mid-term future  

E-Print Network [OSTI]

This thesis attempts a technological assessment of automotive powertrain technologies for the near to mid term future. The powertrain types to be assessed include naturally aspirated gasoline engines, turbocharged gasoline ...

Kasseris, Emmanuel P

2006-01-01T23:59:59.000Z

449

A survey of front end modularity as an automotive architecture and its ability to deliver value  

E-Print Network [OSTI]

The partitioning of a system can and will dictate the creative space for a designer or engineer. This thesis will analyze how using a new automotive architecture known as a Front End Module (FEM) can affect a limited ...

Mahé, Vincent R. (Vincent Robert)

2008-01-01T23:59:59.000Z

450

Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve  

DOE Patents [OSTI]

An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

2007-01-30T23:59:59.000Z

451

Hybrid combustion-premixed gasoline homogeneous charge ignited by injected diesel fuel-4-stroke cycle engines  

SciTech Connect (OSTI)

This paper describes the formation and testing of two hybrid combustion engines, wherein a premixed gasoline homogeneous charge was ignited by a small amount of injected diesel fuel under high compression ratio, by modifying open chamber and prechamber 4-stroke cycle diesel engines. It was found that the premixed gasoline was effective not only for decreasing the fuel consumption but also for reducing the smoke density both in the heavy and over-load regions. The effect of introducing a small amount N/sub 2/ gas for suppressing the diesel knock in the heavy load region also was examined.

Yonetani, H.; Okanishi, N.; Fukutani, I.; Watanabe, E.

1989-01-01T23:59:59.000Z

452

Compression ignition engine having fuel system for non-sooting combustion and method  

DOE Patents [OSTI]

A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

Bazyn, Timothy; Gehrke, Christopher

2014-10-28T23:59:59.000Z

453

Intermediate Alcohol-Gasoline Blends, Fuels for Enabling Increased Engine Efficiency and Powertrain Possibilities  

SciTech Connect (OSTI)

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in mid-level alcohol-gasoline blends with 24% vol./vol. iso-butanol-gasoline (IB24) and 30% vol./vol. ethanol-gasoline (E30). A single-cylinder research engine is used with a low and high compression ratio of 9.2:1 and 11.85:1 respectively. The engine is equipped with hydraulically actuated valves, laboratory intake air, and is capable of external exhaust gas recirculation (EGR). All fuels are operated to full-load conditions with =1, using both 0% and 15% external cooled EGR. The results demonstrate that higher octane number bio-fuels better utilize higher compression ratios with high stoichiometric torque capability. Specifically, the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with the 11.85:1 compression ratio using E30 as compared to 87 AKI, up to 20 bar IMEPg at =1 (with 15% EGR, 18.5 bar with 0% EGR). EGR was shown to provide thermodynamic advantages with all fuels. The results demonstrate that E30 may further the downsizing and downspeeding of engines by achieving increased low speed torque, even with high compression ratios. The results suggest that at mid-level alcohol-gasoline blends, engine and vehicle optimization can offset the reduced fuel energy content of alcohol-gasoline blends, and likely reduce vehicle fuel consumption and tailpipe CO2 emissions.

Splitter, Derek A [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

454

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

455

Embedded Automotive System Development Process  

E-Print Network [OSTI]

Model based design enables the automatic generation of final-build software from models for high-volume automotive embedded systems. This paper presents a framework of processes, methods and tools for the design of automotive embedded systems. A steer-by-wire system serves as an example.

Langenwalter, Joachim

2011-01-01T23:59:59.000Z

456

Development of the Cooper-Bessemer CleanBurn gas-diesel (dual-fuel) engine  

SciTech Connect (OSTI)

NO[sub x] emission legislation requirements for large-bore internal combustion engines have required engine manufacturers to continue to develop and improve techniques for exhaust emission reduction. This paper describes the development of the Cooper-Bessemer Clean Burn gas-diesel (dual-fuel) engine that results in NO[sub x] reductions of up to 92 percent as compared with an uncontrolled gas-diesel engine. Historically, the gas-diesel and diesel engine combustion systems have not responded to similar techniques of NO[sub x] reduction that have been successful on straight spark-ignited natural gas burning engines. NO[sub x] levels of a nominal 1.0 g/BHP-h, equal to the spark-ignited natural gas fueled engine, have been achieved for the gas-diesel and are described. In addition, the higher opacity exhaust plume characteristic of gas-diesel combustion is significantly reduced or eliminated. This achievement is considered to be a major breakthrough, and the concept can be applied to both new and retrofit applications.

Blizzard, D.T. (Cooper-Bessemer Reciprocating Products Div., Cooper Industries, Grove City, PA (United States)); Schaub, F.S.; Smith, J.G. (Cooper-Bessemer Reciprocating Products Div., Cooper Industries, Mount Vernon, OH (United States))

1992-07-01T23:59:59.000Z

457

Role of Friction in Materials Selection for Automotive Applications  

SciTech Connect (OSTI)

This is an invited article for a special issue of the ASM International monthly magazine that concerns "Automotive Materials and Applications." The article itself overviews frictional considerations in material selection for automobiles. It discusses implications for energy efficiency (engine friction) and safety (brakes) among other topics.

Blau, Peter Julian [ORNL

2013-01-01T23:59:59.000Z

458

The Relationships of Diesel Fuel Properties, Chemistry, and HCCI Engine Performance as Determined by Principal Component Analysis  

SciTech Connect (OSTI)

In order to meet common fuel specifications such as cetane number and volatility, a refinery must blend a number of refinery stocks derived from various process units in the refinery. Fuel chemistry can be significantly altered in meeting fuel specifications. Additionally, fuel specifications are seldom changed in isolation, and the drive to meet one specification may significantly alter other specifications or fuel chemistry. Homogeneous charge compression ignition (HCCI) engines depend on the kinetic behavior of a fuel to achieve reliable ignition and are expected to be more dependent on fuel specifications and chemistry than today's conventional engines. Regression analysis can help in determining the underlying relationships between fuel specifications, chemistry, and engine performance. Principal component analysis (PCA) was used in this work, because of its ability to deal with co-linear variables and to uncover 'hidden' relationships in the data. In this paper, a set of 11 diesel fuels with widely varying properties were run in a simple HCCI engine. Fuel properties and engine performance are examined to identify underlying fuel relationships and to determine the interplay between engine behavior and fuels. Results indicate that fuel efficiency is mainly controlled by a collection of specifications related to density and energy content and ignition characteristics are controlled mainly by cetane number.

Bunting, Bruce G [ORNL; Crawford, Robert W [Rincon Ranch Consulting

2007-01-01T23:59:59.000Z

459

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer HonoredEngineering

460

Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends  

SciTech Connect (OSTI)

Experimental tests were conducted on a Cummins 85.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for the higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NO{sub x}, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMs). These measurements revealed that carbon from the biodiesel portion of the blended fuel was marginally less likely to contribute to PM, compared to the carbon from the diesel portion of the fuel. The results are different than those obtained in previous tests with the oxygenate ethanol, which was observed to be far less likely contribute to PM than the diesel component of the blended fuel. The data suggests that chemical structure of the oxygen- carbon bonds in an oxygenate affects the PM formation process.

Buchholz, B A; Cheng, A S; Dibble, R W

2003-03-03T23:59:59.000Z

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

462

Advanced turbine design for coal-fueled engines  

SciTech Connect (OSTI)

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

463

A Fuel-Cell Vehicle Test Station.  

E-Print Network [OSTI]

??Due to concerns about energy security, rising oil prices, and adverse effects of internal combustion engine vehicles on the environment, the automotive industry is quickly… (more)

Thorne, Michelle I

2008-01-01T23:59:59.000Z

464

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

E-Print Network [OSTI]

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications number of vehicles it represents, DOE has established detailed cost targets for automotive fuel cell and track the cost of automotive fuel cell systems as progress is made in fuel cell technology. The purpose

465

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for  

E-Print Network [OSTI]

Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update it represents, the DOE has established detailed cost targets for automotive fuel cell systems and components of automotive fuel cell systems as progress is made in fuel cell technology. The purpose of these cost analyses

466

Chemical Engineering Journal 93 (2003) 6980 Production of COx-free hydrogen for fuel cells via step-wise hydrocarbon  

E-Print Network [OSTI]

Chemical Engineering Journal 93 (2003) 69­80 Production of COx-free hydrogen for fuel cells via Abstract The stringent COx-free hydrogen requirement for the current low temperature fuel cells has Hydrogen is the most promising fuel for the low temper- ature fuel cells, however, chemical processes

Goodman, Wayne

467

Monovalve with integrated fuel injector and port control valve, and engine using same  

DOE Patents [OSTI]

Each cylinder of an internal combustion engine includes a combined gas exchange valve and fuel injector with a port control valve. The port control valve operates to open either an intake passage or an exhaust passage. The operation of the combined device is controlled by a pair of electrical actuators. The device is hydraulically actuated.

Milam, David M. (Metamora, IL)

2002-01-01T23:59:59.000Z

468

Department of Biological Engineering Fall 2012 Solar Innovations Inc. Biodiesel Fleet Fuel  

E-Print Network [OSTI]

PENNSTATE Department of Biological Engineering Fall 2012 Solar Innovations Inc. Biodiesel Fleet work. The goal was to research and implement biodiesel into their fleet by finding the best biodiesel for the implementation of biodiesel into their fleet. This will include: · Prospective suppliers of biodiesel fuel

Demirel, Melik C.

469

Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels  

SciTech Connect (OSTI)

This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (���© pilot �¢���¼ 0.2-0.6 and ���© overall �¢���¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant ���© pilot (> 0.5), increasing ���© overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing ���© overall (at constant ���© pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-10-05T23:59:59.000Z

470

A design strategy applied to sulfur resistant lean NOxĚł automotive catalysts  

E-Print Network [OSTI]

Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

Tang, Hairong

2005-01-01T23:59:59.000Z

471

Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991  

SciTech Connect (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

472

LCV-Gas utilization in CHP plants with dual-fuel engines  

SciTech Connect (OSTI)

The utilization of LCV-gases has been increased during the last years, especially in decentralized CHP plants from local power and heat distributors or industry works. Compared with the standard natural gas delivered by the main grid LCV gases are cheaper, wherefore it is possible to decrease energy costs. LCV gases are coming from local natural gas fields or a wide range of technical origins (e. g. steel production, gasification processes, biological processes). Therefore the composition of LCV gases could differ. The basis of this gases are normally methane or combinations of hydrogen and carbon monoxide together with quite large quantities of inert gases. The utilization of LCV gases in internal combustion engines requires high demands on the engine technique and the engine control system. A lot of items must to be considered when designing engines for every special purpose, especially in comparison to utilization of standard natural gas. The combustion system of dual-fuel engines as developed by B+V Industrietechnik GmbH (formerly Blohm + Voss Industrie GmbH) offers a lot of advantages for the utilization of LCV gases. There are two basic possibilities to supply the gases to the engine, one on low pressure level and the other one on high pressure level. The energy content of the pilot fuel injection is much higher than the corresponding value of a spark ignition system. Thus, gases with very low lower heating values and high contents of inert gases can be inflamed stable without problems. This engine type allows a LCV gas utilization with high electrical and thermal efficiencies. As an example for the utilization of a LCV gas the CHP engine plant for Hoogovens Ijmuiden in Holland, one of the largest European steel production companies, is presented.

Mohr, H.

1998-07-01T23:59:59.000Z

473

GCTool: Design, Analyze and Compare Fuel Cell Systems and Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GCTool: Design, Analyze and Compare Fuel Cell Systems and Power Plants GCTool allows you to design, analyze, and compare different fuel cell configurations, including automotive,...

474

Improving Fuel Economy via Management of Auxiliary Loads in Fuel-Cell Electric Vehicles.  

E-Print Network [OSTI]

??The automotive industry is in a state of flux at the moment. Traditional combustion engine technologies are becoming challenged by newer, more efficient and environmentally… (more)

Lawrence, Christopher Paul

2007-01-01T23:59:59.000Z

475

Quantum Fuel with Multilevel Atomic Coherence for Ultrahigh Specific Work in a Photonic Carnot Engine  

E-Print Network [OSTI]

We investigate scaling of work output and efficiency of a photonic Carnot engine with the number of quantum coherent resources. Specifically, we consider a generalization of the "phaseonium fuel" for the photonic Carnot engine, which was first introduced as a three-level atom with two lower states in a quantum coherent superposition by [M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science {\\bf 299}, 862 (2003)], to the case of $N+1$ level atoms with $N$ coherent lower levels. Deriving a multilevel mesoscopic master equation for the system, we evaluate the harvested work by the engine, and its efficiency. We find that efficiency and extracted work scale quadratically with the number of quantum coherent levels. Quantum coherence boost to the specific energy (work output per unit mass of the resource) is a profound fundamental difference of quantum fuel from classical resources. Besides, we examine the dependence of cavity loss on the number of atomic levels and find that multilevel phaseonium fuel can be utilized to beat the decoherence due to cavity loss. Our results bring the photonic Carnot engines much closer to the capabilities of current resonator technologies.

Deniz Türkpençe; Özgür E. Müstecapl?o?lu

2015-03-05T23:59:59.000Z

476

Assessment of a multi-stage underwater vehicle concept using a fossil-fuel Stirling engine  

SciTech Connect (OSTI)

The Stirling Engine because of its inherent closed-cycle operation can be readily modified to work in an airless environment even if the primary source of energy is a fossil fuel. Thus, Stirling engines are well suited for use in the underwater environment and have been operated successfully in manned military submarines since the early 1980s. In recent years fossil fueled Stirling systems have been also proposed for use in small unmanned underwater vehicles (UUVs). However, in this case the need to carry an onboard oxygen supply in a very confined space has presented a number of design difficulties. These are identified in the paper. However, if the oxidant supply to the engine is provided by the membrane extraction of dissolved oxygen from seawater and/or disposable fuel/oxidant pods are used then the UUV Stirling system becomes more attractive. If this latter concept is extended to include multi-stage vehicles then it can be shown that fossil fueled Stirlings could also be put to effective use in long range-long endurance underwater vehicular operations.

Reader, G.T.; Potter, I.J. [Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering

1995-12-31T23:59:59.000Z

477

Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn  

SciTech Connect (OSTI)

The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more accessible to outside users (5) provide support to graduate students for conducting research on lightweight automotive materials and structures (6) provide industry/university interaction through a graduate certificate program on automotive materials and technology idea exchange through focused seminars and symposia on automotive materials.

Mallick, P. K.

2012-08-30T23:59:59.000Z

478

DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 4: Low...  

Broader source: Energy.gov (indexed) [DOE]

- Breakout Group 4: Low Temperature Fuel Cell System BOP & FUEL Processors For Stationary and Automotive DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 4: Low Temperature...

479

A predictive model for the combustion process in dual fuel engines  

SciTech Connect (OSTI)

A multi-zone model has been developed for the prediction of the combustion processes in dual fuel engines and some of their performance features. The consequences of the interaction between the gaseous and the diesel fuels and the resulting modification to the combustion processes are considered. A reacting zone has been incorporated in the model to describe the partial oxidation of the gaseous fuel-air mixture while detailed kinetic schemes are employed to describe the oxidation of the gaseous fuel, right from the start of compression to the end of the expansion process. The associated formation and concentrations of exhaust emissions are correspondingly established. The model can predict the onset of knock as well as the operating features and emissions for the more demanding case of light load performance. Predicted values for methane operation show good agreement with corresponding experimental values.

Liu, Z.; Karim, G.A. [Univ. of Calgary, Alberta (Canada)

1995-12-31T23:59:59.000Z

480

Automotive Power Generation and Control  

E-Print Network [OSTI]

This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

Caliskan, Vahe

Note: This page contains sample records for the topic "fuels automotive engineering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

In-cylinder pressure characteristics of a CI engine using blends of diesel fuel and methyl esters of beef tallow  

SciTech Connect (OSTI)

A Cummins N14-410 diesel engine was operated on 12 fuels produced by blending methyl tallowate, methyl soyate, and ethanol with no. 2 diesel fuel. Engine in-cylinder pressure data were used to evaluate engine performance. Peak cylinder pressures for each fuel blend at all engine speeds were lower than peak pressure for diesel fuel with the exception of the 80% diesel, 13% methyl tallowate, and 7% ethanol; and the 80% diesel, 6.5% methyl tallowate, 6.5% methyl soyate and 7% ethanol blends. The indicated mean effective pressure (IMEP) values for all fuel blends were less than for diesel fuel. The differences in IMEP values correlated with differences in power output of the engine. Similarly, maximum rates of pressure rise for most fuel blends were less than for diesel fuel. It was concluded that the fuel blends used in this study would have no detrimental long-term effects on engine performance, wear, and knock. 6 refs., 4 figs., 7 tabs.

Ali, Y.; Hanna, M.A.; Borg, J.E. [Univ. of Nebraska, Lincoln, NE (United States)

1996-05-01T23:59:59.000Z

482

Fuel Composition Effects at Constant RON and MON in an HCCI Engine Operated with Negative Valve Overlap  

SciTech Connect (OSTI)

The effects of fuel properties on gasoline HCCI operation have been investigated in a single cylinder, 500 cc, 11.3 CR port fuel injected research engine, operated at lambda=1 and equipped with hydraulic valve actuation. HCCI is promoted by early exhaust valve closing to retain hot exhaust in the cylinder, thereby increasing the cylinder gas temperature. Test fuels were formulated with pure components to have the same RON, MON, and octane sensitivity as an indolene reference fuel, but with a wide range of fuel composition differences. Experiments have been carried out to determine if fuel composition plays a role in HCCI combustion properties, independent of octane numbers. Fuel economy, emissions, and combustion parameters have been measured at several fixed speed/load conditions over a range of exhaust valve closing angles. When the data are compared at constant combustion phasing, fuel effects on emissions and other combustion properties are small. However, when compared at constant exhaust valve closing angle, fuel composition effects are more pronounced, specifically regarding ignition. Operability range differences are also related to fuel composition. An all-paraffinic (normal, iso, and cycloparaffins) fuel exhibited distinctly earlier combustion phasing, increased rate of cylinder pressure rise, and increased rate of maximum heat release compared to the indolene reference fuel. Conversely, olefin-containing fuels exhibited retarded combustion phasing. The fuels with the most advanced ignition showed a wider operating range in terms of engine speed and load, irrespective of exhaust closing angle. These ignition differences reflect contributions from both fuel and EGR kinetics, the effects of which are discussed. The fuel composition variables are somewhat inter-correlated, which makes the experimental separation their effects imprecise with this small set of fuels, though clear trends are evident. The overall effects of fuel composition on engine performance and emissions are small. However, the results suggest that the effects on combustion phasing and engine operability range may need to be considered in the practical implementation of HCCI for fuels with large compositional variations.

Bunting, Bruce G [ORNL; Farrell, John T [Exxon Mobil Research and Engineering

2006-01-01T23:59:59.000Z

483

Abrasive wear by coal-fueled diesel engine and related particles  

SciTech Connect (OSTI)

The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1992-09-01T23:59:59.000Z

484

GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications  

SciTech Connect (OSTI)

This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

None

2011-07-31T23:59:59.000Z

485

Proceedings of ASME 2011 5th International Conference on Energy Sustainability & 9th Fuel Cell Science, Engineering and Technology Conference  

E-Print Network [OSTI]

Proceedings of ASME 2011 5th International Conference on Energy Sustainability & 9th Fuel Cell electrolyte fuel cell (PEFC) is a promising power source for portable or mobile applications, although. The chemical degra- 1 Copyright © 2011 by ASME Proceedings of the ASME 2011 9th Fuel Cell Science, Engineering

Stefanopoulou, Anna

486

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

487

NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

488

NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of...

489

A cycle simulation of coal particle fueled reciprocating internal-combustion engines  

E-Print Network [OSTI]

with calculations made by Rich and Walker [12]. Much additional work exists in the literature re- garding more general aspects of coal particle combustion [23-37]. Although these works are not specifically con- cerned with the question of particle combustion...A CYCLE SIMULATION OF COAL PARTICLE FUELED RECIPROCATING INTERNAL-COMBUSTION ENGINES A Thesis by KENNETH HAROLD ROSEGAY Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree...

Rosegay, Kenneth Harold

1982-01-01T23:59:59.000Z

490

Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios  

DOE Patents [OSTI]

A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

2006-01-03T23:59:59.000Z

491

Microsoft Word - AZ Automotive_Presentation to ATVMLP.doc  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EMAZ AUTOMOTIVE Submitted by: Jim Gehrke Date: October

492

Thermoelectric Materials for Automotive Applications | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartment offor Automotive

493

Direct Hydrogen PEMFC Manufacturing Cost Estimation for Automotive  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW Automotive) |and DPFDirectApplications:

494

W.E.T. Automotive Systems | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,Division of OilGuyane Jump to:Vu1HotAutomotive

495

Reduction of Nitrogen Oxide Emissions for lean Burn Engine Technology  

SciTech Connect (OSTI)

Lean-burn engines offer the potential for significant fuel economy improvements in cars and trucks, perhaps the next great breakthrough in automotive technology that will enable greater savings in imported petroleum. The development of lean-burn engines, however, has been an elusive goal among automakers because of the emissions challenges associated with lead-burn engine technology. Presently, cars operate with sophisticated emissions control systems that require the engine's air-fuel ratio to be carefully controlled around the stoichiometric point (chemically correct mixture). Catalysts in these systems are called "three-way" catalysts because they can reduce hydrocarbon, carbon monoxide, and nitrogen oxide emissions simultaneously, but only because of the tight control of the air-fuel ratio. The purpose of this cooperative effort is to develop advanced catalyst systems, materials, and necessary engine control algorithms for reducing NOX emissions in oxygen-rich automotive exhaust (as with lean-burn engine technology) to meet current and near-future mandated Clean Air Act standards. These developments will represent a breakthrough in both emission control technology and automobile efficiency. The total project is a joint effort among five national laboratories, together with US CAR. The role of Lockheed-Martin Energy Systems in the total project is two fold: characterization of catalyst performance through laboratory evaluations from bench-scale flow reactor tests to engine laboratory tests of full-scale prototype catalysts, and microstructural characterization of catalyst material before and after test stand and/or engine testing.

McGill, R.N.

1998-08-04T23:59:59.000Z

496

The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency in an HCCI Engine  

SciTech Connect (OSTI)

The effects of variable compression ratio (CR) and fuel composition on thermal efficiency were investigated in a homogeneous charge compression ignition (HCCI) engine using blends of n-heptane and toluene with research octane numbers (RON) of 0 to 88. Experiments were conducted by performing CR sweeps at multiple intake temperatures using both unthrottled operation, and constant equivalence ratio conditions by throttling to compensate for varying air density. It was found that CR is effective at changing and controlling HCCI combustion phasing midpoint, denoted here as CA 50. Thermal efficiency was a strong function of CA 50, with overly advanced CA 50 leading to efficiency decreases. Increases in CR at a constant CA 50 for a given fuel composition did, in most cases, increase efficiency, but the relationship was weaker than the dependence of efficiency on CA 50. The increase in efficiency with higher CR was fuel-dependent, so that the fuels requiring a higher CR to achieve ignition did not gain a proportionate efficiency increase. For example, n-heptane achieved an indicated thermal efficiency (ITE) of 38% at a CR of 9:1, whereas a 50 wt% blend of toluene with n-heptane required a CR of 12:1 to achieve the same ITE. A simple heat balance around the engine showed that higher toluene content fuels had higher cooling losses. The high toluene fuels exhibited higher rates of maximum pressure rise than the lower octane fuels. The increased cooling losses can be attributed to the higher pressure rise rates, which are a driving force for heat transfer.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2007-01-01T23:59:59.000Z

497

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment ofEngineer Honored

498

Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is Partnershipsn eEngineering

499

Vehicle Technologies Office: 2014 Advanced Combustion Engine...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive...

500

Permeability and wet-out characterization of SRIM automotive bumper beams  

E-Print Network [OSTI]

PERMEABILITY AND WET-OUT CHARACTERIZATION OF SRIM AUTOMOTIVE BUMPER BEAMS A Thesis CHRISTOPHER TODD MORSE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1992 Major Subject: Mechanical Engineering PERMEABILITY AND WET-OUT CHARACTERIZATION OF SRIM AUTOMOTIVE BUMPER BEAMS A Thesis by CHRISTOPHER TODD MORSE Submitted to the Office of Graduate Studies of Texas A&M University...

Morse, Christopher Todd

1992-01-01T23:59:59.000Z