National Library of Energy BETA

Sample records for fueling station project

  1. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  2. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  3. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    19,710 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours...

  4. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  5. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  6. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  7. Alternative Fueling Station Locator

    Broader source: Energy.gov [DOE]

    Find alternative fueling stations near an address or ZIP code or along a route in the United States. Enter a state to see a station count.

  8. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

  9. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and ...

  10. Hydrogen vehicle fueling station

    SciTech Connect (OSTI)

    Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.

    1995-09-01

    Hydrogen fueling stations are an essential element in the practical application of hydrogen as a vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology which is the link between the local storage facility and the vehicle. Because most merchant hydrogen delivered in the US today (and in the near future) is in liquid form due to the overall economics of production and delivery, we believe a practical refueling station should be designed to receive liquid. Systems studies confirm this assumption for stations fueling up to about 300 vehicles. Our fueling station, aimed at refueling fleet vehicles, will receive hydrogen as a liquid and dispense it as either liquid, high pressure gas, or low pressure gas. Thus, it can refuel any of the three types of tanks proposed for hydrogen-powered vehicles -- liquid, gaseous, or hydride. The paper discusses the fueling station design. Results of a numerical model of liquid hydrogen vehicle tank filling, with emphasis on no vent filling, are presented to illustrate the usefulness of the model as a design tool. Results of our vehicle performance model illustrate our thesis that it is too early to judge what the preferred method of on-board vehicle fuel storage will be in practice -- thus our decision to accommodate all three methods.

  11. Mobile Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Energy - Energy Efficiency & Renewable Energy Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available

  12. Webinar October 13: Reference Designs for Hydrogen Fueling Stations...

    Broader source: Energy.gov (indexed) [DOE]

    These reference designs will help reduce the cost and ... Project A fuel cell electric vehicle (FCEV) at a fueling station in California. H2USA Accomplishments Push Hydrogen ...

  13. Alternative Fuels Data Center: Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data

  14. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in ...

  15. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to

  16. Alternative Fuels Data Center: Ethanol Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative

  17. Alternative Fuels Data Center: Natural Gas Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to

  18. Alternative Fuels Data Center: Propane Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative

  19. Shippingport Station Decommissioning Project

    SciTech Connect (OSTI)

    McKernan, M.L.

    1989-12-22

    The Shippingport Atomic Power Station was located on the Ohio River in Shippingport Borough (Beaver County), Pennsylvania, USA. The US Atomic Energy Commission (AEC) constructed the plant in the mid-1950s on a seven and half acre parcel of land leased from Duquesne Light Company (DLC). The purposes were to demonstrate and to develop Pressurized Water Recovery technology and to generate electricity. DLC operated the Shippingport plant under supervision of (the successor to AEC) the Department of Energy (DOE)-Naval Reactors (NR) until operations were terminated on October 1, 1982. NR concluded end-of-life testing and defueling in 1984 and transferred the Station's responsibility to DOE Richland Operations Office (RL), Surplus Facility Management Program Office (SFMPO5) on September 5, 1984. SFMPO subsequently established the Shippingport Station Decommissioning Project and selected General Electric (GE) as the Decommissioning Operations Contractor. This report is intended to provide an overview of the Shippingport Station Decommissioning Project.

  20. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  1. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project launched by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy. The project leverages capabilities at the national laboratories to address the technology

  2. Alternative Fuels Data Center: Alternative Fueling Station Counts by State

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Counts by State to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Google Bookmark Alternative Fuels Data Center:

  3. Alternative Fuels Data Center: About the Alternative Fueling Station Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fueling Station Data to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fueling Station Data on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fueling Station Data on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Google Bookmark Alternative Fuels Data Center: About the

  4. Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Upstate New York Green Fueling Station Powers Fleets in Upstate New York to someone by E-mail Share Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Facebook Tweet about Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Twitter Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Google Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

  5. Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling

  6. Mobile Alternative Fueling Station Locator

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

  7. WVU Hydrogen Fuel Dispensing Station

    SciTech Connect (OSTI)

    Davis, William

    2015-09-01

    The scope of this project was changed during the course of the project. Phase I of the project was to construct a site similar to the site at Central West Virginia Regional Airport in Charleston, WV to show that duplication of the site was a feasible method of conducting hydrogen stations. Phase II of the project was necessitated due to a lack of funding that was planned for the development of the station in Morgantown. The US Department of Energy determined that the station in Charleston would be dismantled and moved to Morgantown and reassembled at the Morgantown site. This necessitated storage of the components of the station for almost a year at the NAFTC Headquarters which caused a number of issues with the equipment that will be discussed in later portions of this report. This report will consist of PHASE I and PHASE II with discussions on each of the tasks scheduled for each phase of the project.

  8. Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  9. Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Fleets, Turns into Profit Center Indianapolis CNG Fueling Station Attracts Local Fleets, Turns into Profit Center to someone by E-mail Share Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts Local Fleets, Turns into Profit Center on Facebook Tweet about Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts Local Fleets, Turns into Profit Center on Twitter Bookmark Alternative Fuels Data Center: Indianapolis CNG Fueling Station Attracts Local

  10. NREL Dedicates Advanced Hydrogen Fueling Station | Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy...

  11. Reference Designs for Hydrogen Fueling Stations Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Reference Designs for Hydrogen Fueling Stations" held on October 13, 2015.

  12. Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Example Layout (Text Version) Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center:

  13. Check Out the New Alternative Fuel Station Locator

    Broader source: Energy.gov [DOE]

    With more than 10,000 publicly accessible alternative fueling stations, the new Alternative Fuel Station Locator map makes fueling your alternative fuel vehicle easier than ever.

  14. Annual Merit Review: Hydrogen Fueling Station Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6/20/2016 Annual Merit Review: Hydrogen Fueling Station Activities Dr. Sunita Satyapal Director, Fuel Cell Technologies Office 2016 Annual Merit Review and Peer Evaluation Meeting June 6 - 10, 2016 Fuel Cell Technologies Office | 2 Objectives and Key Outcome Overall Objective * To review FCTO's priorities related to hydrogen station infrastructure Outcome * Feedback to inform FCTO strategies on RD&D needs for hydrogen station infrastructure * RFI on station infrastructure topics for future

  15. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    21,782 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours of operation, and access. About the data

  16. Shippingport Station Decommissioning Project. Final project report

    SciTech Connect (OSTI)

    McKernan, M.L.

    1989-12-22

    The Shippingport Atomic Power Station was located on the Ohio River in Shippingport Borough (Beaver County), Pennsylvania, USA. The US Atomic Energy Commission (AEC) constructed the plant in the mid-1950s on a seven and half acre parcel of land leased from Duquesne Light Company (DLC). The purposes were to demonstrate and to develop Pressurized Water Recovery technology and to generate electricity. DLC operated the Shippingport plant under supervision of (the successor to AEC) the Department of Energy (DOE)-Naval Reactors (NR) until operations were terminated on October 1, 1982. NR concluded end-of-life testing and defueling in 1984 and transferred the Station`s responsibility to DOE Richland Operations Office (RL), Surplus Facility Management Program Office (SFMPO5) on September 5, 1984. SFMPO subsequently established the Shippingport Station Decommissioning Project and selected General Electric (GE) as the Decommissioning Operations Contractor. This report is intended to provide an overview of the Shippingport Station Decommissioning Project.

  17. Webinar: Reference Designs for Hydrogen Fueling Stations

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT).

  18. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  19. Pala Fire Station Solar Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pala Fire Station Solar Project Pala Band of Mission Indians Pala Environmental Department Pala Fire Departme nt The Pala Reservation  Located in San Diego County, California  Approximately 13,000 acres  Over 1,000 tribal members  Home to approximately 1,350 people The Pala Reservation  Over 800 houses and buildings  New houses all have PV solar  Main energy users:  Pala Casino Resort & Spa  Pala Fire Station  Pala Administration complex Long-term goal:

  20. Alternative Fueling Station Locator App Provides Info at Your Fingertips |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural

  1. Alternative Fuels Data Center: Electric Vehicle Charging Stations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data ...

  2. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alliance INLEXT-14-31624 Revision 0 Hydrogen Fueling Station in Honolulu, Hawaii ... INLEXT-14-31624 Revision 0 Hydrogen Fueling Station in Honolulu, Hawaii Feasibility ...

  3. Experiences from Ethanol Buses and Fuel Station Report - La Spezia...

    Open Energy Info (EERE)

    Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report...

  4. Alternative Fuels Data Center: EV Charging Stations Spread Through Philly

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations

  5. Hydrogen Fueling Station Working Group

    Broader source: Energy.gov (indexed) [DOE]

    Presented by Tom Joseph at the National Hydrogen Assocation Conference and Hydrogen Expo joseph_infrastructure_for_emerging_markets.pdf (1.17 MB) More Documents & Publications Early-Stage Market Change and Effects of the Recovery Act Fuel Cell Program An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment Early Markets: Fuel Cells for Material Handling Equipment Slides | Department of Energy

    An Overview of the Hydrogen Fueling Infrastructure

  6. Hydrogen Fueling - Coming Soon to a Station Near You

    SciTech Connect (OSTI)

    Not Available

    2007-12-01

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  7. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  8. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  9. NREL: Technology Deployment - Mobile App Puts Alternative Fueling Station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations in the Palm of Your Hand Mobile App Puts Alternative Fueling Station Locations in the Palm of Your Hand News NREL Developed Mobile App for Alternative Fueling Station Locations Released Energy Department Launches Alternative Fueling Station Locator App Using the Enhanced Alternative Fueling Station Locator Alternative Fueling Stations Database Sponsors U.S. Department of Energy Related Stories Remote Shading Tool Has Potential to Reduce Solar Soft Costs by 17 Cents/Watt Contact

  10. Alternative Fuels Data Center: Electric Vehicle Charging Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle

  11. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data

  12. Performance Status of Hydrogen Stations and Fuel Cell Vehicles

    SciTech Connect (OSTI)

    Sprik, Sam; Kurtz, Jennifer; Ainscough, Chris; Peters, Michael; Jeffers, Matt; Saur, Genevieve

    2015-11-18

    NREL presented evaluation results on the performance status of hydrogen stations and fuel cell vehicles at the 2015 Fuel Cell Seminar in Long Beach, California.

  13. Alternative Fueling Station Locator - Mobile | Open Energy Information

    Open Energy Info (EERE)

    version of the Alternative Fueling Station Locator, part of the Department of Energy's Alternative Fuels and Advanced Vehicles Datacenter, allows users to search for alternative...

  14. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Design the Hydrogen Fueling Station of Tomorrow Help Design the Hydrogen Fueling Station of Tomorrow January 10, 2014 - 12:00am Addthis The Energy Department posted a blog...

  15. Tampa Electric Company Polk Power Station IGCC Project -- Project status

    SciTech Connect (OSTI)

    Berry, T.E.

    1998-12-31

    The Tampa Electric Company Polk Power Station is a nominal 25 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located southeast of Tampa in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station uses oxygen-blown, entrained-flow coal gasification technology licensed from Texaco Development Corporation in conjunction with a General Electric combined cycle with an advanced combustion turbine. This IGCC configuration demonstrates significant reductions of SO{sub 2} and NOx emissions when compared to existing and future conventional coal-fired power plants. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. It was placed into commercial operation on September 30, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. The presentation features an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Tests of four alternate feedstocks were conducted, and the resulting performance is compared to that achieved on their base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility throughout 1997. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  16. Tampa Electric Company, Polk Power Station IGCC Project: Project Status

    SciTech Connect (OSTI)

    Berry, T.E.; Shelnut, C.A.; McDaniel, J.E.

    1999-07-01

    Over the last ten years, Tampa Electric Company (TEC) has taken the Polk Power Station from a concept to a reality. The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy Clean Coal Technology Program pursuant to a Round III award. The Polk Power Station achieved first fire of the gasification system on schedule in mid-July, 1996. It was placed in commercial operation on September 30, 1996. Since start-up in July, 1996, significant advances have occurred in the design and operation of the entire IGCC train. This presentation will feature an up-to-the-minute update of actual performance parameters achieved by the Polk Power Station. These parameters include overall capacity, heat rate, and availability. Several different coal feedstocks have been tested and the resulting performance will be compared to that achieved on the base coal. This paper also provides an update of the general operating experiences and shutdown causes of the gasification facility. Finally, the future plans for improving the reliability and efficiency of the Unit will be addressed, as well as plans for future additional alternate fuel test burns.

  17. Energy Department Launches Alternative Fueling Station Locator App

    Broader source: Energy.gov [DOE]

    The Energy Department launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles.

  18. Maritime Hydrogen Fuel Cell project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... SunShot Grand Challenge: Regional Test Centers Maritime Hydrogen Fuel Cell project HomeTag:Maritime Hydrogen Fuel Cell project - Pete Devlin, of the Department of Energy's Fuel ...

  19. NREL Dedicates Advanced Hydrogen Fueling Station - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Dedicates Advanced Hydrogen Fueling Station Ceremony Coincides With National Hydrogen and Fuel Cell Day October 8, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) today dedicated its 700 bar hydrogen fueling station, the first of its kind in Colorado and in the national lab system, as part of a celebration of National Hydrogen and Fuel Cell Day. The fueling station is part of NREL's new Hydrogen Infrastructure Testing and Research Facility (HITRF), where scientists

  20. Where the Rubber Meets the Road-- the Alternative Fuel Station Locator

    Broader source: Energy.gov [DOE]

    To use the Alternative Fuel Station Locator, travelers with alternative fuel vehicles just enter their address alternative fuel station locator mobile and pick their fuel.

  1. Tampa Electric Company Polk Power Station IGCC project: Project status

    SciTech Connect (OSTI)

    McDaniel, J.E.; Carlson, M.R.; Hurd, R.; Pless, D.E.; Grant, M.D.

    1997-12-31

    The Tampa Electric Company Polk Power Station is a nominal 250 MW (net) Integrated Gasification Combined Cycle (IGCC) power plant located to the southeast of Tampa, Florida in Polk County, Florida. This project is being partially funded under the Department of Energy`s Clean Coal Technology Program pursuant to a Round II award. The Polk Power Station uses oxygen-blown, entrained-flow IGCC technology licensed from Texaco Development Corporation to demonstrate significant reductions of SO{sub 2} and NO{sub x} emissions when compared to existing and future conventional coal-fired power plants. In addition, this project demonstrates the technical feasibility of commercial scale IGCC and Hot Gas Clean Up (HGCU) technology. The Polk Power Station achieved ``first fire`` of the gasification system on schedule in mid-July, 1996. Since that time, significant advances have occurred in the operation of the entire IGCC train. This paper addresses the operating experiences which occurred in the start-up and shakedown phase of the plant. Also, with the plant being declared in commercial operation as of September 30, 1996, the paper discusses the challenges encountered in the early phases of commercial operation. Finally, the future plans for improving the reliability and efficiency of the Unit in the first quarter of 1997 and beyond, as well as plans for future alternate fuel test burns, are detailed. The presentation features an up-to-the-minute update on actual performance parameters achieved by the Polk Power Station. These parameters include overall Unit capacity, heat rate, and availability. In addition, the current status of the start-up activities for the HGCU portion of the plant is discussed.

  2. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Fuel Cell Manhattan Project Presented by the Benchmarking and Best Practices ... in providing valued information on affordable and implementable fuel cell technology. ...

  3. Vehicle Technologies Office Merit Review 2015: Alternative Fuel Station

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Locator | Department of Energy Fuel Station Locator Vehicle Technologies Office Merit Review 2015: Alternative Fuel Station Locator Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative fuel station locator. ti058_hudgins_2015_o.pdf (2.47 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty

  4. NREL Developed Mobile App for Alternative Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Released - News Releases | NREL NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable

  5. Fact #920: April 11, 2016 Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station

  6. Concentrating Solar Power Projects - Solana Generating Station |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power | NREL Solana Generating Station Abengoa Solar has built a 280-megawatt parabolic trough solar plant about 70 miles southwest of Phoenix, Arizona. The plant generates enough power to supply 70,000 homes under a 30-year power supply contract with Arizona Public Service (APS). The thermal energy storage system provides up to 6 hours of generating capacity after sunset. Status Date: August 19, 2015 Project Overview Project Name: Solana Generating Station (Solana)

  7. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California Fuel Cell Partnership's current consensus vision of next steps for vehicles and hydrogen stations in California. 200707_complete_vision_deployment.pdf (239.09 KB) More Documents & Publications Moving toward a commercial market for hydrogen fuel cell vehicles FCEVs and Hydrogen in California

  8. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    This feasibility report assesses the technical and economic feasibility of deploying a hydrogen fueling station at the Fort Armstrong site in Honolulu.

  9. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including chemistry, industrial design, engineering, business, environmental science, and policy, to plan and design a drop-in fueling station (about the size of a freight ...

  10. Experiences from Ethanol Buses and Fuel Station Report - Nanyang...

    Open Energy Info (EERE)

    Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang AgencyCompany Organization: BioEthanol for...

  11. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    an income-producing site equipped with a hydrogen fueling station and a covered 175-stall ... the covered parking spaces, and selling hydrogen-at competitive prices-to fuel FCEVs. ...

  12. Fuel Station of the Future- Innovative Approach to Fuel Cell Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unveiled in California | Department of Energy Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California September 15, 2011 - 5:51pm Addthis A customer fills up at a new Energy Department supported fuel cell hydrogen energy station in Fountain Valley, California. | Photo courtesy of Air Products and Chemicals. A customer fills up at a new Energy Department

  13. Upcoming H2USA Workshop: Hydrogen Fueling Station Component Listings

    Broader source: Energy.gov [DOE]

    H2USA will host an online workshop about hydrogen fueling station component listings on April 22 from 2 to 3:30 p.m. Eastern Daylight Time. This workshop will focus on the need for components for hydrogen fueling stations to be listed by Nationally Recognized Testing Laboratories (NRTLs).

  14. Webinar October 13: Reference Designs for Hydrogen Fueling Stations

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Reference Designs for Hydrogen Fueling Stations" on Tuesday, October 13, from 12 to 1 p.m. Eastern Daylight Time (EDT). This presentation will discuss the process and findings of the work, recommended future research and development topics, and outline planned next steps for the H2FIRST Reference Station Design Task.

  15. Radkowsky Thorium Fuel Project

    SciTech Connect (OSTI)

    Todosow, Michael

    2006-12-31

    In the early/mid 1990’s Prof. Alvin Radkowsky, former chief scientist of the U.S. Naval Reactors program, proposed an alternate fuel concept employing thorium-based fuel for use in existing/next generation pressurized water reactors (PWRs). The concept was based on the use of a 'seed-blanket-unit' (SBU) that was a one-for-one replacement for a standard PWR assembly with a uranium-based central 'driver' zone, surrounded by a 'blanket' zone containing uranium and thorium. Therefore, the SBU could be retrofit without significant modifications into existing/next generation PWRs. The objective was to improve the proliferation and waste characteristics of the current once-through fuel cycle. The objective of a series of projects funded by the Initiatives for Proliferation Prevention program of the U.S. Department of Energy (DOE-IPP) - BNL-T2-0074,a,b-RU 'Radkowsky Thorium Fuel (RTF) Concept' - was to explore the characteristics and potential of this concept. The work was performed under several BNL CRADAs (BNL-C-96-02 and BNL-C-98-15) with the Radkowsky Thorium Power Corp./Thorium Power Inc. and utilized the technical and experimental capabilities in the Former Soviet Union (FSU) to explore the potential of this concept for implementation in Russian pressurized water reactors (VVERs), and where possible, also generate data that could be used for design and licensing of the concept for Western PWRs. The Project in Russia was managed by the Russian Research Center-'Kurchatov Institute'(RRC-KI), and included several institutes (e.g., PJSC 'Electrostal', NPO 'LUCH' (Podolsk), RIINM (Bochvar Institute), GAN RF (Gosatomnadzor), Kalininskaja NPP (VVER-1000)), and consisted of the following phases: Phase-1 ($550K/$275K to Russia): The objective was to perform an initial review of all aspects of the concept (design, performance, safety, implementation issues, cost, etc.) to confirm feasibility/viability and identify any “show-stoppers”; Phase-2 ($600K/$300K to Russia

  16. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry

  17. H2FIRST Reference Station Design Task: Project Deliverable 2...

    Energy Savers [EERE]

    Reference Station Design Task: Project Deliverable 2-2 H2FIRST Reference Station Design Task: Project Deliverable 2-2 This H2FIRST project report, published in April 2015, presents ...

  18. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies

    Broader source: Energy.gov [DOE]

    As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy to advance U.S. leadership in hydrogen and fuel cell technological innovation and help the industry bring these technologies into the marketplace at lower cost.

  19. Energy Department Launches Alternative Fueling Station Locator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85),...

  20. Reference Designs for Hydrogen Fueling Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... or greenfield Gaseous 100 2 1 13.28 954,799 25 STATION DESIGNS 26 Produced Piping and ... stations. 27 ...physical layouts considering NFPA-2 setback distance requirements... ...

  1. Alternative Fueling Station Locator | Open Energy Information

    Open Energy Info (EERE)

    Laboratory Advanced Vehicles and Fuels Research: Data and Resources1 Related Tools Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources...

  2. Alternative Fueling Station Locator | Department of Energy

    Energy Savers [EERE]

    End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more...

  3. DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect (OSTI)

    K. Payette; D. Tillman

    2003-07-01

    During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

  4. Alternative Fuels Data Center: Project Assistance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Project Assistance to someone by E-mail Share Alternative Fuels Data Center: Project Assistance on Facebook Tweet about Alternative Fuels Data Center: Project Assistance on Twitter Bookmark Alternative Fuels Data Center: Project Assistance on Google Bookmark Alternative Fuels Data Center: Project Assistance on Delicious Rank Alternative Fuels Data Center: Project Assistance on Digg Find More places to share Alternative Fuels Data Center: Project Assistance on AddThis.com... More in this

  5. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Broader source: Energy.gov (indexed) [DOE]

    establishes the California Fuel Cell Partnership's current consensus vision of next steps for vehicles and hydrogen stations in California. 200707completevisiondeployment....

  6. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations July 2008 California Fuel Cell Partnership 3300 Industrial Blvd, Suite 1000 West Sacramento, CA 95691 916-371-2870 www.cafcp.org This document establishes CaFCP's current consensus vision of next steps for vehicles and hydrogen stations in California. This consensus vision does not necessarily represent the organizational views or individual commitments of CaFCP members. CaFCP Vision Document Overview Fuel cell vehicles and

  7. NREL: Technology Deployment - NREL's Federal Fueling Station...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (DOE) Federal Energy Management Program (FEMP) hoping to locate additional fuel provisions from private and federal facilities. FEMP then tapped NREL to provide data on the ...

  8. Clean Cities Launches iPhone App for Alternative Fueling Station Locations

    Broader source: Energy.gov [DOE]

    The new app helps users find stations offering electricity, natural gas, propane, and other alternative fuels.

  9. LADWP FUEL CELL DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Thai Ta

    2003-09-12

    Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

  10. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied ... Embed Submit New Station Legend Biodiesel CNG Electric Ethanol Hydrogen LNG Propane Close ...

  11. Sustainable Hydrogen Fueling Station, California State University, Los Angeles

    SciTech Connect (OSTI)

    Blekhman, David

    2013-01-25

    The College of Engineering, Computer Science, & Technology at California State University, Los Angeles as part of its alternative and renewable energy leadership efforts has built a sustainable hydrogen station to teach and demonstrate the production and application of hydrogen as the next generation of fully renewable fuel for transportation. The requested funding was applied toward the acquisition of the core hydrogen station equipment: electrolyzer, compressors and hydrogen storage.

  12. Fuel Cell Projects Kickoff Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Nancy Garland Acting Fuel Cells Team Leader DOE Hydrogen Program nancy.garland@ee.doe.gov February 13-14, 2007 Washington, DC Overview 9 Key Personnel 9 Fuel Cell Program 9 Key Targets 9 Barriers 9 Tasks 9 Milestones 9 Partners 9 Budget 9 Agenda Managers, Project Officers, and Advisors DOE HQ Nancy Garland, Acting Team Leader Kathi Epping John Garbak Amy Manheim Jason Marcinkoski DOE GO Jill Gruber Dave Peterson Reg Tyler Lea Yancey ANL Tom Benjamin John Kopasz Walt Podolski DOE Fuel

  13. Spent Nuclear Fuel Project Safety Management Plan

    SciTech Connect (OSTI)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities.

  14. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  15. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  16. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  17. Project X Energy Station Workshop Report. Report by the Organizers and Co-Conveners of the Project X Energy Station Workshop

    SciTech Connect (OSTI)

    Asner, David M.; Hurh, Patrick; Brady Raap, Michaele C.; Gohar, Yoursy; Peterson, Mary E.; Pithcer, Eric; Riemer, Bernie; Senor, David J.; Wootan, David W.

    2013-06-14

    Project X Energy Station Workshop Report Report by the Organizers and Co-Conveners of the Project X Energy Station Workshop

  18. Clean Cities Launches iPhone App for Alternative Fueling Station...

    Broader source: Energy.gov (indexed) [DOE]

    The app draws information from Clean Cities' Alternative Fuels Data Center (AFDC), which houses the most comprehensive, up-to-date database of alternative fueling stations in the ...

  19. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Data & Tools Widgets Data Downloads APIs About Project Assistance News & Features Spanish Resources Contacts The AFDC is a resource of the U.S. Department of Energy's Clean...

  20. Help Design the Hydrogen Fueling Station of Tomorrow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Design the Hydrogen Fueling Station of Tomorrow Help Design the Hydrogen Fueling Station of Tomorrow January 9, 2014 - 2:20pm Addthis University students can join the EnergyDepartment-supported Hydrogen Education Foundation's Hydrogen Student Design Contest to plan and design a drop-in fueling station. University students can join the EnergyDepartment-supported Hydrogen Education Foundation's Hydrogen Student Design Contest to plan and design a drop-in fueling station. Greg Kleen Education

  1. Maritime Hydrogen Fuel Cell Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  2. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Project Assistance News & Features Spanish Resources Contacts The AFDC is a resource of the U.S. Department of Energy's Clean Cities program. Contacts | Web Site Policies | U.S. ...

  3. Help Design the Hydrogen Fueling Station of Tomorrow | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Help Design the Hydrogen Fueling Station of Tomorrow Help Design the Hydrogen Fueling Station of Tomorrow January 10, 2014 - 4:26pm Addthis test test Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Hydrogen is increasingly becoming a fuel for clean, reliable power and is helping reduce the nation's overall carbon footprint. In fact, U.S. shipments of fuel cells (electrochemical devices that use hydrogen and other fuels to produce electricity for fuel cell electric

  4. Recovery Act Projects Funded for Fuel Cell Market Transformation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material...

  5. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program New Fuel Cell Projects Kickoff Meeting DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting Presentation by DOE's Patrick Davis at a meeting on new fuel cell ...

  6. No loss fueling station for liquid natural gas vehicles

    SciTech Connect (OSTI)

    Cieslukowski, R.E.

    1992-06-16

    This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

  7. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance INL/EXT-14-31624 Revision 0 Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis Porter Hill - INL Michael Penev - NREL August 2014 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability

  8. NREL: Hydrogen and Fuel Cells Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Photo of person at work in laboratory setting. NREL scientist tests a photoelectrochemical water-splitting system used for renewable hydrogen production. Photo by Dennis Schroeder, NREL NREL hydrogen and fuel cell research projects support the development and adoption of cost-effective, high-performance fuel cell systems and sustainable hydrogen technologies for transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery

  9. Spent Nuclear Fuel Project Technical Databook

    SciTech Connect (OSTI)

    Reilly, M.A.

    1998-10-23

    The Spent Nuclear Fuel (SNF) Project Technical Databook is developed for use as a common authoritative source of fuel behavior and material parameters in support of the Hanford SNF Project. The Technical Databook will be revised as necessary to add parameters as their Databook submittals become available.

  10. Bush Hydrogen Vision "Fueled" By California Station Opening | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hydrogen Vision "Fueled" By California Station Opening Bush Hydrogen Vision "Fueled" By California Station Opening February 18, 2005 - 10:26am Addthis CHINO, CALIF. - In a major step toward achieving President George W. Bush's vision for a hydrogen economy, Assistant Secretary of Energy David Garman today joined representatives of ChevronTexaco, Hyundai-Kia and UTC Fuel Cells at the opening of a hydrogen fueling station in Chino, CA. The station is a major part of

  11. Station Footprint: Separation Distances, Storage Options, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol H2FIRST Reference Station Design Task: Project Deliverable 2-2 On-Board Storage ...

  12. Fuel Cell Projects Kickoff Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Break Transport 4:10 Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks James Cross, Nuvera 4:30 Fuel Cell Fundamentals at Low and Subzero ...

  13. Midwest Region Alternative Fuels Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  14. Midwest Region Alternative Fuels Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. EIS-0415: Deer Creek Station Energy Facility Project, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes WAPA's decision to approve the interconnection request made by Basin Electric Power Cooperative (Basin Electric) with the USDA Rural Utilities Service (RUS) proposing to provide financial assistance, for the Deer Creek Station Project, a proposed 300-megawatt (MW) natural gas-fired generation facility.

  16. CLIMATE CHANGE FUEL CELL PROGRAM UNITED STATES COAST GUARD AIR STATION CAPE COD BOURNE, MASSACHUSETTS

    SciTech Connect (OSTI)

    John K. Steckel Jr

    2004-06-30

    This report covers the first year of operation of a fuel cell power plant, installed by PPL Spectrum, Inc. (PPL) under contract with the United States Coast Guard (USCG), Research and Development Center (RDC). The fuel cell was installed at Air Station Cape Cod in Bourne, MA. The project had the support of the Massachusetts Technology Collaborative (MTC), the Department of Energy (DOE), and Keyspan Energy. PPL selected FuelCell Energy, Inc. (FCE) and its fuel cell model DFC{reg_sign}300 for the contract. Grant contributions were finalized and a contract between PPL and the USCG for the manufacture, installation, and first year's maintenance of the fuel cell was executed on September 24, 2001. As the prime contractor, PPL was responsible for all facets of the project. All the work was completed by PPL through various subcontracts, including the primary subcontract with FCE for the manufacture, delivery, and installation of the fuel cell. The manufacturing and design phases proceeded in a relatively timely manner for the first half of the project. However, during latter stages of manufacture and fuel cell testing, a variety of issues were encountered that ultimately resulted in several delivery delays, and a number of contract modifications. Final installation and field testing was completed in April and May 2003. Final acceptance of the fuel cell was completed on May 16, 2003. The fuel cell has operated successfully for more than one year. The unit achieved an availability rate of 96%, which exceeded expectations. The capacity factor was limited because the unit was set at 155 kW (versus a nameplate of 250 kW) due to the interconnection with the electric utility. There were 18 shutdowns during the first year and most were brief. The ability of this plant to operate in the island mode improved availability by 3 to 4%. Events that would normally be shutdowns were simply island mode events. The mean time between failure was calculated at 239 hours, or slightly less

  17. Safety Planning Guidance for Hydrogen and Fuel Cell Projects...

    Energy Savers [EERE]

    Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects Hydrogen and fuel cell project safety by U.S. Department ...

  18. Safety Planning Guidance for Hydrogen and Fuel Cell Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Planning Guidance for Hydrogen and Fuel Cell Projects Safety Planning Guidance for Hydrogen and Fuel Cell Projects Hydrogen and fuel cell project safety by U.S. Department...

  19. Alternative Fuels Data Center: Kern County Schools Expands CNG Station for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Bus Fleet and Public Use Kern County Schools Expands CNG Station for Bus Fleet and Public Use to someone by E-mail Share Alternative Fuels Data Center: Kern County Schools Expands CNG Station for Bus Fleet and Public Use on Facebook Tweet about Alternative Fuels Data Center: Kern County Schools Expands CNG Station for Bus Fleet and Public Use on Twitter Bookmark Alternative Fuels Data Center: Kern County Schools Expands CNG Station for Bus Fleet and Public Use on Google Bookmark Alternative

  20. Bronx Zoo Fuel Cell Project

    SciTech Connect (OSTI)

    Hoang Pham

    2007-09-30

    A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

  1. Nuclear Fuels Storage and Transportation Planning Project (NFST...

    Office of Environmental Management (EM)

    Fuels Storage and Transportation Planning Project (NFST) Program Status Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Presentation made by Jeff ...

  2. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  3. Demonstration Project for Fuel Cell Bus Commercialisation in...

    Open Energy Info (EERE)

    Project for Fuel Cell Bus Commercialisation in China Jump to: navigation, search Name: Demonstration Project for Fuel Cell Bus Commercialisation in China Place: Beijing and...

  4. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  5. Financing Alternatives for Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with Project Company. The JPA would still function in the lease-lease-back of fuel cell property in order to ... 79.5 million Pollution Control Revenue Refunding Public ...

  6. Spent Nuclear Fuel (SNF) Project Execution Plan

    SciTech Connect (OSTI)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  7. Webinar: Overview of the Hydrogen Fueling Infrastructure Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology ...

  8. Kickoff Meeting for New Fuel Cell Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kickoff Meeting for New Fuel Cell Projects Kickoff Meeting for New Fuel Cell Projects This presentation by Reg Tyler of the DOE Golden Field Office was given at a meeting on new fuel cell projects in February 2007. new_fc_tyler_golden_field_office.pdf (294 KB) More Documents & Publications Kick-Off Meeting for New Fuel Cell Projects Fuel Cell R&D Pre-Solicitiation Workshop Fuel Cell Projects Kickoff Meeting

  9. Installation of 200 kW UTC PC-25 Natural Gas Fuel Cell At City of Anaheim Police Station

    SciTech Connect (OSTI)

    Dina Predisik

    2006-09-15

    The City of Anaheim Public Utilities Department (Anaheim) has been providing electric service to Anaheim residents and businesses for over a century. As a city in a high-growth region, identifying sources of reliable energy to meet demand is a constant requirement. Additionally, as more power generation is needed, locating generating stations locally is a difficult proposition and must consider environmental and community impacts. Anaheim believes benefits can be achieved by implementing new distributed generation technologies to supplement central plants, helping keep pace with growing demand for power. If the power is clean, then it can be delivered with minimal environmental impact. Anaheim started investigating fuel cell technology in 2000 and decided a field demonstration of a fuel cell power plant would help determine how the technology can best serve Anaheim. As a result, Anaheim completed the project under this grant as a way to gain installation and operating experience about fuel cells and fuel cell capabilities. Anaheim also hopes to help others learn more about fuel cells by providing information about this project to the public. Currently, Anaheim has hosted a number of requested tours at the project site, and information about the project can be found on Anaheim Public Utilities RD&D Project website. The Anaheim project was completed in four phases including: research and investigation, purchase, design, and construction. The initial investigative phase started in 2000 and the construction of the project was completed in February 2005. Since acceptance and startup of the fuel cell, the system has operated continuously at an availability of 98.4%. The unit provides an average of about 4,725 kilowatthours a day to the Utilities' generation resources. Anaheim is tracking the operation of the fuel cell system over the five-year life expectancy of the fuel stack and will use the information to determine how fuel cells can serve Anaheim as power generators.

  10. 20,000 and Counting: Alternative Fueling and Charging Stations...

    Broader source: Energy.gov (indexed) [DOE]

    In addition, Clean Cities partners with a number of charging networks, including Blink and ChargePoint, to have their stations provide a daily feed to the Station Locator. This ...

  11. D.C. Showcases Cutting-Edge Hydrogen Fueling Station Demo | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy D.C. Showcases Cutting-Edge Hydrogen Fueling Station Demo D.C. Showcases Cutting-Edge Hydrogen Fueling Station Demo July 11, 2016 - 2:30pm Addthis Acting Assistant Secretary for Energy Efficiency and Renewable Energy David Friedman speaks at the opening of a hydrogen fueling technology demonstration station in Washington, D.C. | Photos by Mike Mueller/The Hannon Group Acting Assistant Secretary for Energy Efficiency and Renewable Energy David Friedman speaks at the opening of a

  12. D.C. Hydrogen Fuel Station Demonstration Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. Hydrogen Fuel Station Demonstration Facility D.C. Hydrogen Fuel Station Demonstration Facility Addthis Description Below is the text version for the "D.C. Hydrogen Fuel Station Demonstration Facility" video. Text Version The video opens with six men at a ribbon-cutting ceremony. The crowd counts down 3-2-1. The men cut the ribbons, and everyone cheers. Text appears: Energy.gov presents In Partnership with the National Park Service, The Office of Energy Efficiency and Renewable

  13. Financial Incentives for Hydrogen and Fuel Cell Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Market Transformation » Financial Incentives for Hydrogen and Fuel Cell Projects Financial Incentives for Hydrogen and Fuel Cell Projects Find information about federal and state financial incentives for hydrogen fuel cell projects. Federal Incentives The Emergency Economic Stabilization Act of 2008 includes tax incentives to help minimize the cost of hydrogen and fuel cell projects. It offers an investment tax credit of 30% for qualified fuel cell property or $3,000/kW of the fuel

  14. EIS-0215: Pinon Pine Power Project, Tracy Station, NV

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this statement to assess the environmental and human health issues associated with the Pinon Pine Power Project, a proposed demonstration project that would be cost-shared by DOE and the Sierra Pacific Power Company (SPPCo.) under DOE's Clean Coal Technology Program. The proposed Federal action is for DOE to provide cost-shared funding support for the construction and operation of the Pinon Pine Power Project, a coal-fired power generating facility, which would be a nominal, 800-ton-per-day (104 megawatt (MW) gross generation) air-blown, Integrated Gasification Combined-Cycle plant proposed by SPPCo. at its Tracy Power Station near Reno, Nevada.

  15. Fuel Cell Demonstration at the U.S. Coast Guard Air Station Cape Cod

    SciTech Connect (OSTI)

    Halverson, Mark A.; Chvala, William D.; Herrera, Shawn

    2005-07-30

    Journal article reporting on the 250-kW fuel cell combined heat and power plant located at the U.S. Coast Guard Air Station Cape Code in Bourne, Massachusetts.

  16. Fuel Cell Projects Kickoff Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects Kickoff Meeting Fuel Cell Projects Kickoff Meeting Agenda for the Fuel Cell Projects Kickoff Meeting on September 30 - October 1, 2009 fcagenda10-09.pdf (80.96 KB) More ...

  17. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Manufacturing Fuel Cell Manhattan Project (689.65 KB) More Documents & Publications Manufacturing Fuel Cell Manhattan Project 2011 NREL/DOE Hydrogen and Fuel Cell Manufacturing R&D Workshop Report Low Temperature PEM Fuel Cell Manufacturing Needs

  18. Webinar May 12: Overview of Station Analysis Tools Developed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects, Renewable Natural Gas for Vehicles, and More A fuel cell electric vehicle (FCEV) at a fueling station in California. H2USA Accomplishments Push Hydrogen Infrastructure ...

  19. Diesel fueled ship propulsion fuel cell demonstration project

    SciTech Connect (OSTI)

    Kumm, W.H.

    1996-12-31

    The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

  20. Nuclear Fuels Storage & Transportation Planning Project Documents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents October 1, 2014 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among

  1. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    SciTech Connect (OSTI)

    none,

    2010-04-01

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  2. The Fuel Cell Mobile Light Project - A DOE Market Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications DOEBoeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Fuel Cell Product CertificationListing Lessons Learned Market Transformation ...

  3. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  4. Tampa Electric Company`s Polk Power Station IGCC project

    SciTech Connect (OSTI)

    Jenkins, S.D.

    1995-12-31

    Tampa Electric Company (TEC) is in the construction phase of its new Polk Power Station Unit No. 1. This unique project incorporates the use of Integrated Gasification Combined Cycle (IGCC) technology for electric power production. The project is being partially funded by the US Department of Energy (DOE), as part of the Clean Coal Technology Program. This will help to demonstrate this state-of-the-art technology, providing utilities with the ability to use a wide range of coals in an efficient, environmentally superior manner. During the summer of 1994, TEC began site development at the new Polk Power Station. Since that time, most of the Site work has been completed, and erection and installation of the power plant equipment is well underway. This is the first time that IGCC technology will be installed at a new unit at a greenfield site. This is a major endeavor for TEC in that Polk Unit No. 1 is a major addition to the existing generating capacity and it involves the demonstration of technology new to utility power generation. As a part of the Cooperative Agreement with the DOE, TEC will also be demonstrating the use of a new Hot Gas Clean-Up System which has a potential for greater IGCC efficiency.

  5. Alternative Fueling Station Locator App Provides Info at Your...

    Office of Environmental Management (EM)

    For example, a driver with an all-electric vehicle on a road trip can choose to only view charging stations with fast charging capability. For data geeks, the app's About section ...

  6. Fuel Cell Forklift Project Final Report

    SciTech Connect (OSTI)

    Cummings, Clifton C

    2013-10-23

    This project addresses the DOE’s priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freight’s Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freight’s previous field trial experience with a handful of Plug Power’s GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

  7. H2FIRST Reference Station Design Task: Project Deliverable 2-2

    SciTech Connect (OSTI)

    Pratt, Joseph; Terlip, Danny; Ainscough, Chris; Kurtz, Jennifer; Elgowainy, Amgad

    2015-04-20

    This report presents near-term station cost results and discusses cost trends of different station types. It compares various vehicle rollout scenarios and projects realistic near-term station utilization values using the station infrastructure rollout in California as an example. It describes near-term market demands and matches those to cost-effective station concepts. Finally, the report contains detailed designs for five selected stations, which include piping and instrumentation diagrams, bills of materials, and several site-specific layout studies that incorporate the setbacks required by NFPA 2, the National Fire Protection Association Hydrogen Technologies Code. This work identified those setbacks as a significant factor affecting the ability to site a hydrogen station, particularly liquid stations at existing gasoline stations. For all station types, utilization has a large influence on the financial viability of the station.

  8. Spent nuclear fuel project technical databook

    SciTech Connect (OSTI)

    Reilly, M.A.

    1998-07-22

    The Spent Nuclear Fuel (SNF) project technical databook provides project-approved summary tables of selected parameters and derived physical quantities, with nominal design and safety basis values. It contains the parameters necessary for a complete documentation basis of the SNF Project technical and safety baseline. The databook is presented in two volumes. Volume 1 presents K Basins SNF related information. Volume 2 (not yet available) will present selected sludge and water information, as it relates to the sludge and water removal projects. The values, within this databook, shall be used as the foundation for analyses, modeling, assumptions, or other input to SNF project safety analyses or design. All analysis and modeling using a parameter available in this databook are required to use and cite the appropriate associated value, and document any changes to those values (i.e., analysis assumptions, equipment conditions, etc). Characterization and analysis efforts are ongoing to validate, or update these values.

  9. Southern Nevada Alternative Fuels Demonstration Project

    SciTech Connect (OSTI)

    Hyde, Dan; Fast, Matthew

    2009-12-31

    The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this

  10. Spent nuclear fuel project path forward preliminary safety evaluation

    SciTech Connect (OSTI)

    Brehm, J.R.; Crowe, R.D.; Siemer, J.M.; Wojdac, L.F.; Hosler, A.G.

    1995-03-01

    This preliminary safety evaluation (PSE) provides validation of the initial project design criteria for the Spent Nuclear Fuel Project (SNFP) Path Forward for removal of fuel from K Basins.

  11. Farm alcohol fuel project. Final report

    SciTech Connect (OSTI)

    Demmel, D.

    1981-11-15

    The Small Energy Project is a research and demonstration effort designed to assist small farmers in the utilization of energy conservation techniques on their farms. The Farm Alcohol Project was designed to demonstrate the production of alcohol fuels on small farms in order to reduce purchased liquid fuel requirements. The Project considered the use of on-farm raw materials for process heat and the production of fuel grade, low prood ethanol in volumes up to 10,000 gallons per year. The fuel would be used entirely on the farm. The approach considered low-cost systems the farmer could build himself from local resources. Various crops were considered for ethanol production. The interest in farm alcohol production reached a peak in 1980 and then decreased substantially as farmers learned that the process of alcohol production on the farm was much more complicated than earlier anticipated. Details of Alcohol Project experiences in ethanol production, primarily from corn, are included in this report. A one-bushel distillation plant was constructed as a learning tool to demonstrate the production of ethanol. The report discusses the various options in starch conversion, fermentation and distillation that can be utilized. The advantages and disavantages of atmospheric and the more complicated process of vacuum distillation are evaluated. Larger farm plants are considered in the report, although no experience in operating such plants was gained through the Project. Various precautions and other considerations are included for farm plant designs. A larger community portable distillery is also evaluated. Such a plant was considered for servicing farms with limited plant equipment. The farms serviced would perform only fermentation tasks, with the portable device performing distillation and starch conversion.

  12. Summary of monitoring station component evaluation project 2009-2011.

    SciTech Connect (OSTI)

    Hart, Darren M.

    2012-02-01

    Sandia National Laboratories (SNL) is regarded as a center for unbiased expertise in testing and evaluation of geophysical sensors and instrumentation for ground-based nuclear explosion monitoring (GNEM) systems. This project will sustain and enhance our component evaluation capabilities. In addition, new sensor technologies that could greatly improve national monitoring system performance will be sought and characterized. This work directly impacts the Ground-based Nuclear Explosion Monitoring mission by verifying that the performance of monitoring station sensors and instrumentation is characterized and suitable to the mission. It enables the operational monitoring agency to deploy instruments of known capability and to have confidence in operational success. This effort will ensure that our evaluation capabilities are maintained for future use.

  13. 2010 New Fuel Cell Projects Meeting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 New Fuel Cell Projects Meeting 2010 New Fuel Cell Projects Meeting On September 28, 2010, the U.S. Department of Energy (DOE) held a kick-off meeting for new projects awarded under a fuel cell solicitation. Principal investigators presented project overviews, which are provided below. Topics include: Catalysts Transport Durability Innovative Concepts Portable Power. Meeting Agenda and Overview Meeting Agenda Opening Remarks, Dimitrios Papageorgopoulos, DOE Fuel Cell Technologies Office

  14. Nuclear Fuel Storage and Transportation Planning Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project Overview (956.77 KB) More Documents & Publications Section 180(c) Ad Hoc Working Group DOE Office of Nuclear Energy Transportation Plan Ad Hoc Working Group

  15. NREL Transportation Project to Reduce Fuel Usage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Project to Reduce Fuel Usage For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Barba Golden, Colo., Mar. 23, 2001 - The Jefferson County Seniors Resource Center (SRC) Paratransit Service has become an important part of Eulalia Gaillard's life since her stroke in 1996. She calls on SRC to drive her to cardiologist, neurologist and chiropractor appointments each week. "It's wonderful," Gaillard says. "I'd give this program 150 plus in regards

  16. SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT

    SciTech Connect (OSTI)

    Motyka, T

    2008-11-11

    A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

  17. Electrolysis at Forecourt Stations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLEAN FUEL ITM Electrolysis at Forecourt Stations NREL Workshop Feb 27 & 28, 2014 Contents: * Introduction ITM Power Inc. * Target Costs * Challenges and Technology Developments - Continuous Improvements * Renewable Energy - Power pricing is the Key * HFuel PEM Electrolysis Module Spec * 100 % Renewable Hydrogen Refuelling Project ITM POWER INC. CLEAN FUEL ITM Electrolysis at Forecourt Stations INTRODUCTION - ITM POWER INC. ITM POWER INC. ENERGY STORAGE | CLEAN FUEL Established to enter the

  18. H2FIRST Reference Station Design Task: Project Deliverable 2-2

    Office of Energy Efficiency and Renewable Energy (EERE)

    This H2FIRST project report, published in April 2015, presents near-term station cost results and discusses cost trends of different station types. It also contains detailed designs for five selected stations, which include piping and instrumentation diagrams, bills of materials, and several site-specific layouts.

  19. Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report

    SciTech Connect (OSTI)

    1995-04-28

    An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

  20. Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2010-10-01

    The National Fuel Cell Electric Vehicle Learning Demonstration is a U.S. Department of Energy (DOE) project that started in 2004. The purpose of this project is to conduct an integrated field validation that simultaneously examines the performance of fuel cell vehicles and the supporting hydrogen infrastructure. The DOE's National Renewable Energy Laboratory (NREL) has now analyzed data from over five years of the seven-year project. During this time, over 144 fuel cell electric vehicles have been deployed, and 23 project refueling stations were placed in use.

  1. Mobile Alternative Fueling Station Locator Now Available - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moab UMTRA Project/LM Technical Exchange Moab UMTRA Project/LM Technical Exchange July 18, 2016 - 12:20pm Addthis What does this project do? Goal 2. Preserve, protect, and share records and information 01. EM-LM Tech Exchange.png Technical exchange meeting attendees (from left) Don Metzler, EM; Ken Karp, LM contractor; Mark Kautsky, LM; and Scott Den Baars, LM contractor; mingle with past and present co-workers during the meet and greet. The first U.S. Department of Energy (DOE) Office of

  2. Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Surpasses 1 Million Gallons Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Google Bookmark Alternative

  3. Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations

    SciTech Connect (OSTI)

    Johnson, C.; Hettinger, D.; Mosey, G.

    2011-05-01

    Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

  4. World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station

    Broader source: Energy.gov [DOE]

    EERE supported the development of the world's first tri-generation station combined heat and power system that produces hydrogen in addition to heat and electricity.

  5. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Planning Guidance for Hydrogen and Fuel Cell Projects April 2010 U.S. Department of Energy Fuel Cell Technologies Program Table of Contents A. Introduction.................................................................................................................... 1 B. Requirements and Procedures....................................................................2 C. The Safety Plan

  6. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    SciTech Connect (OSTI)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

    2014-03-01

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

  7. USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel

  8. Nuclear Fuels Storage & Transportation Planning Project | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut

  9. SLIGHTLY IRRADIATED FUEL (SIF) INTERIM DISPOSITION PROJECT

    SciTech Connect (OSTI)

    NORTON SH

    2010-02-23

    CH2M HILL Plateau Remediation Company (CH2M HILL PRC) is proud to submit the Slightly Irradiated Fuel (SIF) Interim Disposition Project for consideration by the Project Management Institute as Project of the Year for 2010. The SIF Project was a set of six interrelated sub-projects that delivered unique stand-alone outcomes, which, when integrated, provided a comprehensive and compliant system for storing high risk special nuclear materials. The scope of the six sub-projects included the design, construction, testing, and turnover of the facilities and equipment, which would provide safe, secure, and compliant Special Nuclear Material (SNM) storage capabilities for the SIF material. The project encompassed a broad range of activities, including the following: Five buildings/structures removed, relocated, or built; Two buildings renovated; Structural barriers, fencing, and heavy gates installed; New roadways and parking lots built; Multiple detection and assessment systems installed; New and expanded communication systems developed; Multimedia recording devices added; and A new control room to monitor all materials and systems built. Project challenges were numerous and included the following: An aggressive 17-month schedule to support the high-profile Plutonium Finishing Plant (PFP) decommissioning; Company/contractor changeovers that affected each and every project team member; Project requirements that continually evolved during design and construction due to the performance- and outcome-based nature ofthe security objectives; and Restrictions imposed on all communications due to the sensitive nature of the projects In spite of the significant challenges, the project was delivered on schedule and $2 million under budget, which became a special source of pride that bonded the team. For years, the SIF had been stored at the central Hanford PFP. Because of the weapons-grade piutonium produced and stored there, the PFP had some of the tightest security on the Hanford

  10. Seven Projects That Will Advance Solid Oxide Fuel Cell Research...

    Broader source: Energy.gov (indexed) [DOE]

    D.C. - Seven projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for environmentally responsible central power generation from the Nation's abundant ...

  11. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  12. H2FIRST Reference Station Design Task: Project Deliverable 2...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Partnership DOE U.S. Department of Energy FCEV fuel cell electric vehicle FMECA failure ... ("New HRSAM"). .. 6 Figure 3. Network FCEV scenarios for California. ...

  13. DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION

    SciTech Connect (OSTI)

    K. Payette; D. Tillman

    2004-06-01

    During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

  14. Steam Pressure-Reducing Station Safety and Energy Efficiency Improvement Project

    SciTech Connect (OSTI)

    Lower, Mark D; Christopher, Timothy W; Oland, C Barry

    2011-06-01

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPI program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL

  15. Blender Pump Fuel Survey: CRC Project E-95-2

    SciTech Connect (OSTI)

    Williams, A.; Alleman, T. L.

    2014-05-01

    With the increasing fuel diversity in the marketplace, the Coordinating Research Council and the U.S. Department of Energy's National Renewable Energy Laboratory conducted a survey of mid-level ethanol blends (MLEBs) in the market. A total of 73 fuel samples were collected from 20 retail stations. To target Class 4 volatility, the fuel samples were collected primarily in the midwestern United States in the month of February. Samples included the gasoline (E0), Flex Fuel, and every MLEB that was offered from each of the 20 stations. Photographs of each station were taken at the time of sample collection, detailing the pump labeling and configuration. The style and labeling of the pump, hose, and dispenser nozzle are all important features to prevent misfueling events. The physical location of the MLEB product relative to the gasoline product can also be important to prevent misfueling. In general, there were many differences in the style and labeling of the blender pumps surveyed in this study. All samples were analyzed for volatility and ethanol content. For the MLEB samples collected, the fuels tended to be lower in ethanol content than their indicated amount; however, the samples were all within 10 vol% of their indicated blend level. One of the 20 Flex Fuel samples was outside of the allowable limits for ethanol content. Four of the 20 Flex Fuel samples had volatility below the minimum requirement for Class 4.

  16. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  17. Fuel Cell Technology Status Analysis Project: Partnership Opportunities

    SciTech Connect (OSTI)

    2015-09-01

    Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  18. Blender Pump Fuel Survey: CRC Project E-95

    SciTech Connect (OSTI)

    Alleman, T. L.

    2011-07-01

    To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

  19. Spent nuclear fuel project quality assurance program plan

    SciTech Connect (OSTI)

    Lacey, R.E.

    1997-05-09

    This main body of this document describes how the requirements of 10 CFR 830.120 are met by the Spent Nuclear Fuel Project through implementation of WHC-SP-1131. Appendix A describes how the requirements of DOE/RW-0333P are met by the Spent Nuclear Fuel Project through implementation of specific policies, manuals, and procedures.

  20. Chicago Area Alternative Fuels Deployment Project (CAAFDP)

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Connecticut Clean Cities Future Fuels Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Connecticut Clean Cities Future Fuels Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  3. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect (OSTI)

    PICKETT, W.W.

    2000-09-22

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. Because this sub-project is still in the construction/start-up phase, all verification activities have not yet been performed (e.g., canister cover cap and welding fixture system verification, MCO Internal Gas Sampling equipment verification, and As-built verification.). The verification activities identified in this report that still are to be performed will be added to the start-up punchlist and tracked to closure.

  4. Financing Alternatives for Fuel Cell Projects

    Broader source: Energy.gov [DOE]

    Presentation prepared by Lee White of George K. Baum and Co. for the State and Regional Hydrogen and Fuel Cell Conference Call

  5. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  6. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program New Fuel Cell Projects Kickoff Meeting Patrick Davis Acting Program Manager February 13, 2007 Washington, DC Mission The Program's over arching goal is to reduce or eliminate dependence on foreign oil. Mission: To research, develop, and validate fuel cell and hydrogen production, delivery, and storage technologies. Hydrogen from diverse domestic resources will then be used vehicles and stationary power applications. in a clean, safe, reliable, and affordable manner in fuel cell DOE

  7. FY 2014 Solid Oxide Fuel Cell Project Selections

    Broader source: Energy.gov [DOE]

    In FY 2014, nine research projects focused on advancing the reliability, robustness, and endurance of solid oxide fuel cells (SOFC) have been selected for funding by Office of Fossil Energy’s...

  8. DOE Announces $14 Million Industry Partnership Projects to Increase Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy 4 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership

  9. Kick-Off Meeting for New Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Fuel Cell Projects David Peterson U.S. Department of Energy Golden Field Office Golden, CO September 30, 2009 Role of the Golden Field Office * EERE's Project Management Center (PMC) * GO is the "Project" office while HQ is the "Program" office * GO Makes and Administers Financial Assistance awards for EERE Programs including all FCT awards * Provides technical field project management in support of EERE HQ Programs * Responsible for managing cost/schedule/technical

  10. Spent nuclear fuel project integrated schedule plan

    SciTech Connect (OSTI)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  11. Kick Off Meeting for New Fuel Cell Projects - Golden Field Office |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Kick Off Meeting for New Fuel Cell Projects - Golden Field Office Kick Off Meeting for New Fuel Cell Projects - Golden Field Office These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. 2_reporting_kleen.pdf (684.75 KB) More Documents & Publications Kick-Off Meeting for New Fuel Cell Projects Kickoff Meeting for New Fuel Cell Projects DOE Fuel Cell Subprogram (Presentation)

  12. Kick-Off Meeting for New Fuel Cell Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kick-Off Meeting for New Fuel Cell Projects Kick-Off Meeting for New Fuel Cell Projects Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 peterson_doe-golden_kickoff.pdf (250.61 KB) More Documents & Publications Kickoff Meeting for New Fuel Cell Projects Kick Off Meeting for New Fuel Cell Projects - Golden Field Office DOE Fuel Cell Pre-Solicitiation Workshop Participants List

  13. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured

  14. Direction on characterization of fuel debris for defueling process in Fukushima Daiichi Nuclear Power Station

    SciTech Connect (OSTI)

    Yano, Kimihiko; Kitagaki, Toru; Ikeuchi, Hirotomo; Wakui, Ryohei; Higuchi, Hidetoshi; Kaji, Naoya; Koizumi, Kenji; Washiya, Tadahiro

    2013-07-01

    For the decommissioning of Fukushima Daiichi Nuclear Power Station (1F), defueling of the fuel debris in the reactor core of Units 1-3 is planned to start within 10 years. Preferential items in the characterization of the fuel debris were identified for this work, in which the procedure and handling tools were assumed on the basis of information on 1F and experience after the Three Mile Island Unit 2 (TMI-2) accident. The candidates for defueling tools for 1F were selected from among the TMI- 2 defueling tools. It was found that they could be categorized into six groups according to their operating principles. The important properties of the fuel debris for defueling were selected considering the effect of the target materials on the tool performance. The selected properties are shape, size, density, thermal conductivity, heat capacity, melting point, hardness, elastic modulus, and fracture toughness. Of these properties, the mechanical properties (hardness, elastic modulus, fracture toughness) were identified as preferential items, because too few data on these characteristics of fuel debris are available in past severe accident studies. (authors)

  15. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect (OSTI)

    Gladstein, Neandross and Associates

    2005-09-01

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  16. Hydrogen Fuel Cell Demonstration Project at Port of Honolulu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Demonstration Project at Port of Honolulu Sandia National Laboratories | Secure & Sustainable Energy Future E x c e p t i o n a l s e r v i c e i n t h e n a t i o n a l i n t e r e s t Hydrogen fuel cells have a long track record of supplying efficient, emissions-free power for a wide range of applications, including mobile lighting systems, forklifts, emergency backup systems, and vehicles. The Maritime Fuel Cell Project seeks to add another application to that portfolio,

  17. Identifying fly ash at a distance from fossil fuel power stations

    SciTech Connect (OSTI)

    Flanders, P.J.

    1999-02-15

    A method has been developed to identify fly ash originating at fossil fuel power stations, even at a distance where the ash level is lower by a factor of 1000 from that close to a source. Until now such detection has been difficult and uncertain. The technique combines collection of particles, measurement of magnetization and coercive field, and microscopy. The analysis depends on the fact that ash from iron sulfide in fossil fuels is in the form of spherical magnetite. These particles have a relatively high coercive field H{sub c}, near 135 Oe, compared with airborne particulates from soil erosion which have an H{sub c} of {approximately}35 Oe. The coercive field of any sample therefore gives an indication for the percentage of fly ash relative to the total amount of magnetic material that is airborne. The concentration of ash from a large, isolated coal burning power station is found to fall off with the distance from the source, approximately as D{sup {minus}1}. As D increases there is a drop in H{sub c}, associated with the reduced amount of fly ash relative to the airborne particulates from soil erosion.

  18. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  19. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

    Broader source: Energy.gov [DOE]

    A 2014 survey of over 110,000 refueling stations in the U.S. and Canada shows that over half of all refueling stations sell diesel fuel. The survey results are shown for five different regions of...

  20. FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2003-04-23

    This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy

  1. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water

  2. U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-10-21

    This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

  3. 2010 Fuel Cell Project Kick-off Welcome | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Project Kick-off Welcome 2010 Fuel Cell Project Kick-off Welcome These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. 1_welcome_papageorgopoulos.pdf (1.76 MB) More Documents & Publications U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum DOE Hydrogen and Fuel Cell Overview: 2010 State and Regional Initiatives Informational Call and Meeting Series Relaunch DOE Hydrogen and Fuel Cell

  4. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #832: Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

  5. Spent Nuclear Fuel Project Configuration Management Plan

    SciTech Connect (OSTI)

    Reilly, M.A.

    1995-06-09

    This document is a rewrite of the draft ``C`` that was agreed to ``in principle`` by SNF Project level 2 managers on EDT 609835, dated March 1995 (not released). The implementation process philosphy was changed in keeping with the ongoing reengineering of the WHC Controlled Manuals to achieve configuration management within the SNF Project.

  6. ITC Role in U.S. Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITC Case Study 1 ITC Role in US Fuel Cell Projects Case Study With a DOD Facility Samuel Logan February 19, 2009 MCB Camp Pendleton, CA ITC Case Study 2 Key Project Objectives * Turn-key fixed price contract * Furnish, install & integrate 750kW CHP MCFC system with customer facilities * Provide base load power and heat with environmental & energy security benefits * Demonstrate reliability & interoperability with built environment ITC Case Study 3 Project Background * Initial

  7. Boraflex panel degradation in spent-fuel storage racks at the South Texas Project

    SciTech Connect (OSTI)

    Hoppes, D.F.

    1996-12-31

    Blackness (neutron absorption) testing was conducted in August 1994 on selected South Texas Project (STP) electric generating station spent-fuel pool (SFP) storage racks as required by the surveillance monitoring program. The tests were performed to determine if gaps had developed in the Boraflex neutron poison material and to determine size and location of any gaps identified. The testing was performed by HOLTEC International using a specially designed logging tool containing a {sup 252}Cf neutron source and four boron trifluoride (BF{sub 3}) thermal neutron detectors.

  8. American Fuel Cell Bus Project Evaluation. Second Report

    SciTech Connect (OSTI)

    Eudy, Leslie; Post, Matthew

    2015-09-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.

  9. SNF fuel retrieval sub project safety analysis document

    SciTech Connect (OSTI)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  10. Manufacturing Fuel Cell Manhattan Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Office of Naval Research recently sponsored and completed the Manufacturing Fuel Cell Manhattan Project (MFCMP). Utilizing experts from industry, government, and academia, the Navy Manufacturing Technology Program's Benchmarking Best Practices Center of Excellence, in conjunction with Montana Tech, determined the major fuel cell manufacturing cost drivers, gaps, and best practices. This document, which was produced by the collective efforts of the subject matter experts, will communicate

  11. Reactor-specific spent fuel discharge projections, 1984 to 2020

    SciTech Connect (OSTI)

    Heeb, C.M.; Libby, R.A.; Holter, G.M.

    1985-04-01

    The original spent fuel utility data base (SFDB) has been adjusted to produce agreement with the EIA nuclear energy generation forecast. The procedure developed allows the detail of the utility data base to remain intact, while the overall nuclear generation is changed to match any uniform nuclear generation forecast. This procedure adjusts the weight of the reactor discharges as reported on the SFDB and makes a minimal (less than 10%) change in the original discharge exposures in order to preserve discharges of an integral number of fuel assemblies. The procedure used in developing the reactor-specific spent fuel discharge projections, as well as the resulting data bases themselves, are described in detail in this report. Discussions of the procedure cover the following topics: a description of the data base; data base adjustment procedures; addition of generic power reactors; and accuracy of the data base adjustments. Reactor-specific discharge and storage requirements are presented. Annual and cumulative discharge projections are provided. Annual and cumulative requirements for additional storage are shown for the maximum at-reactor (AR) storage assumption, and for the maximum AR with transshipment assumption. These compare directly to the storage requirements from the utility-supplied data, as reported in the Spent Fuel Storage Requirements Report. The results presented in this report include: the disaggregated spent fuel discharge projections; and disaggregated projections of requirements for additional spent fuel storage capacity prior to 1998. Descriptions of the methodology and the results are included in this report. Details supporting the discussions in the main body of the report, including descriptions of the capacity and fuel discharge projections, are included. 3 refs., 6 figs., 12 tabs.

  12. 2010 Fuel Cell Project Kick-off Welcome

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Fuel Cell Project Kick-off Dr. Dimitrios Papageorgopoulos Fuel Cells Team Leader U.S. Department of Energy gy Fuel Cell Technologies Program September 28, 2010 September 28, 2010 Administration's Clean Energy Goals Double Renewable Energy Capacity by 2012 9 Invest $150 billion over 9 Invest $150 billion over 9 Double Renewable ten years in energy R&D to transition to a clean energy economy 9 Reduce GHG emissions 9 Reduce GHG emissions 83% by 2050 2 U.S. Energy Consumption U.S. Primary

  13. Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project

    SciTech Connect (OSTI)

    Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

    2009-11-14

    The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

  14. Spent Nuclear Fuel Project Document Management Plan

    SciTech Connect (OSTI)

    Connor, M.D.; Harizison, G.L.; Rice, W.C.

    1995-12-01

    The SNF Project Document Management Plan identifies and describes the currently available systems and processes for implementing and maintaining an effective document control and records management program. This program governs the methods by which documents are generated, released, distributed, maintained current, retired, and ultimately disposed.

  15. Design Verification Report Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB)

    SciTech Connect (OSTI)

    BAZINET, G.D.

    2000-11-03

    The Sub-project W379, ''Spent Nuclear Fuel Canister Storage Building (CSB),'' was established as part of the Spent Nuclear Fuel (SNF) Project. The primary mission of the CSB is to safely store spent nuclear fuel removed from the K Basins in dry storage until such time that it can be transferred to the national geological repository at Yucca Mountain Nevada. This sub-project was initiated in late 1994 by a series of studies and conceptual designs. These studies determined that the partially constructed storage building, originally built as part of the Hanford Waste Vitrification Plant (HWVP) Project, could be redesigned to safely store the spent nuclear fuel. The scope of the CSB facility initially included a receiving station, a hot conditioning system, a storage vault, and a Multi-Canister Overpack (MCO) Handling Machine (MHM). Because of evolution of the project technical strategy, the hot conditioning system was deleted from the scope and MCO welding and sampling stations were added in its place. This report outlines the methods, procedures, and outputs developed by Project W379 to verify that the provided Structures, Systems, and Components (SSCs): satisfy the design requirements and acceptance criteria; perform their intended function; ensure that failure modes and hazards have been addressed in the design; and ensure that the SSCs as installed will not adversely impact other SSCs. The original version of this document was prepared by Vista Engineering for the SNF Project. The purpose of this revision is to document completion of verification actions that were pending at the time the initial report was prepared. Verification activities for the installed and operational SSCs have been completed. Verification of future additions to the CSB related to the canister cover cap and welding fixture system and MCO Internal Gas Sampling equipment will be completed as appropriate for those components. The open items related to verification of those requirements are noted

  16. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  17. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Bremson, J.; Solo, K.

    2013-01-01

    The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

  18. H2FIRST Reference Station Design Task: Project Deliverable 2-2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reference Station Design Task Project Deliverable 2-2 Joseph Pratt Sandia National Laboratories Danny Terlip, Chris Ainscough, Jennifer Kurtz National Renewable Energy Laboratory Amgad Elgowainy Argonne National Laboratory NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC, under contract DE-AC36-08GO28308. Sandia National Laboratories is a multi-program laboratory managed and

  19. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet describes National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth. Participating fuel cell developers share price information about their fuel cell products and/or raw fuel cell test data related to operations, maintenance, and safety with NREL via the Hydrogen Secure Data Center (HSDC). The limited-access, off-network HSDC houses the data and analysis tools to protect proprietary information. NREL shares individualized data analysis results as detailed data products (DDPs) with the partners who supplied the data. Aggregated results are published as composite data products (CDPs), which show the technology status without identifying individual companies. The CDPs are a primary benchmarking tool for the U.S. Department of Energy and other stakeholders interested in tracking the status of fuel cell technologies. They highlight durability advancements, identify areas for continued development, and help set realistic price expectations at small-volume production.

  20. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethylether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operation in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work

  1. DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy New Fuel Cell Projects Kickoff Meeting DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting Presentation by DOE's Patrick Davis at a meeting on new fuel cell projects on March 13, 2007. new_fc_davis_doe.pdf (1.21 MB) More Documents & Publications Federal Support for Hydrogen and Fuel Cell Technologies Overview of the DOE Hydrogen Program (Presentation) FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program

  2. Building biomass into the utility fuel mix at NYSEG: System conversion and testing results for Greenidge Station

    SciTech Connect (OSTI)

    Benjamin, W.

    1996-12-31

    NYSEG is in the second phase of developing resources and systems for cofiring biomass with coal. In the first phase, stoker boilers were fired with biomass (typically wood waste products). Encouraged by positive results at the older stokers, NYSEG decided to develop the process for its pulverized coal boilers beginning with Greenidge Station, a 108-MW pulverized coal (PC) unit with a General Electric turbine generator and a 665,000-lb Combustion Engineering, tangentially fired boiler. Greenidge Station is in the center of New York, surrounded by farms, forests, vineyards, and orchards. The test bums at Greenidge Station demonstrated that a parallel fuel feed system can effectively provide wood products to a PC unit. Emission results were promising but inconclusive. Additional testing, for longer durations, at varied loads and with different woods needs to be conducted to clarify and establish relationships between the percent wood fired at varying moisture contents. Loads need to be varied to develop continuous emission monitor emission data that can be compared to coal-only data. Economic analysis indicates that it will be beneficial to further refine the equipment and systems. Refinements may include chipping and drying equipment, plus installation of fuel storage and feed systems with permanent boiler penetration. NYSEG will attempt to identify the problems associated with cofiring by direct injection, compared to cofiring a biomass/coal mixture through the existing fuel handling system. Specifically, an examination will be made of fuel size criteria and the system modifications necessary for minimal impacts on coal-fired operation.

  3. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility ...

  4. Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements

    SciTech Connect (OSTI)

    KLEM, M.J.

    2000-10-18

    In 1998, a major change in the technical strategy for managing Multi Canister Overpacks (MCO) while stored within the Canister Storage Building (CSB) occurred. The technical strategy is documented in Baseline Change Request (BCR) No. SNF-98-006, Simplified SNF Project Baseline (MCO Sealing) (FDH 1998). This BCR deleted the hot conditioning process initially adopted for the Spent Nuclear Fuel Project (SNF Project) as documented in WHC-SD-SNF-SP-005, Integrated Process Strategy for K Basins Spent Nuclear Fuel (WHC 199.5). In summary, MCOs containing Spent Nuclear Fuel (SNF) from K Basins would be placed in interim storage following processing through the Cold Vacuum Drying (CVD) facility. With this change, the needs for the Hot Conditioning System (HCS) and inerting/pressure retaining capabilities of the CSB storage tubes and the MCO Handling Machine (MHM) were eliminated. Mechanical seals will be used on the MCOs prior to transport to the CSB. Covers will be welded on the MCOs for the final seal at the CSB. Approval of BCR No. SNF-98-006, imposed the need to review and update the CSB functions and requirements baseline documented herein including changing the document title to ''Spent Nuclear Fuel Project Canister Storage Building Functions and Requirements.'' This revision aligns the functions and requirements baseline with the CSB Simplified SNF Project Baseline (MCO Sealing). This document represents the Canister Storage Building (CSB) Subproject technical baseline. It establishes the functions and requirements baseline for the implementation of the CSB Subproject. The document is organized in eight sections. Sections 1.0 Introduction and 2.0 Overview provide brief introductions to the document and the CSB Subproject. Sections 3.0 Functions, 4.0 Requirements, 5.0 Architecture, and 6.0 Interfaces provide the data described by their titles. Section 7.0 Glossary lists the acronyms and defines the terms used in this document. Section 8.0 References lists the

  5. Environmental Assessment for the Warren Station externally fired combined cycle demonstration project

    SciTech Connect (OSTI)

    1995-04-01

    The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

  6. Hydrogen Fuel Cell Project Seeks to Reduce Port Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Project Seeks to Reduce Port Emissions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  7. State Level Incentives for Biogas-Fuel Cell Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LEVEL INCENTIVES FOR BIOGAS-FUEL CELL PROJECTS Norma McDonald Vice Chair, American Biogas Council North American Sales Manager, Organic Waste Systems, Inc. www.americanbiogascouncil.org FIGURES * FOUNDED IN 1988 * SALES: $25-35 MILLION * 75 EMPLOYEES ACTIVITIES * BIOGAS CONSULTANCY & SUPPORT * BIODEGRADATION TESTING AND WASTE MANAGEMENT CONSULTANCY * DESIGN & CONSTRUCTION OF ANAEROBIC DIGESTION PLANTS FOR ORGANIC WASTE AND RESIDUALS * NO FORMAL STATE CHAPTERS - YET * MEMBER DRIVEN

  8. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles Preprint M. Melaina National Renewable Energy Laboratory J. Bremson University of California Davis K. Solo Lexidyne, LLC Presented at the 31st USAEE/IAEE North American Conference Austin, Texas November 4-7, 2012 Conference Paper NREL/CP-5600-56898 January 2013 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a

  9. Comparison of AB2588 multipathway risk factors for California fossil-fuel power stations

    SciTech Connect (OSTI)

    Gratt, L.B.; Levin, L.

    1997-12-31

    Substances released from power plants may travel through various exposure pathways resulting in human health and environmental risks. The stack air emission`s primary pathway is inhalation from the ambient air. Multipathway factors (adjustment factors to the inhalation risk) are used to evaluate the importance of non-inhalation pathways (such as ingestion and dermal contact). The multipathway factor for a specific substance is the health risk by all pathways divided by the inhalation health risk for that substance. These factors are compared for fossil fuel power stations that submitted regulatory risk assessments in compliance with California Toxic Hot Spots Act (AB2588). Substances representing the largest contributions to the cancer risk are of primary concern: arsenic, beryllium, cadmium, chromium (+6), formaldehyde, nickel, lead, selenium, and PAHs. Comparisons of the chemical-specific multipathway factors show the impacts of regulatory policy decisions on the estimated health risk for trace substances. As an example, point estimates of the soil mixing depth, varying from 1 cm to 15 cm, relate to the relative importance of the pathway. For the deeper mixing depths, the root-zone uptake by homegrown tomato plants (for assumed consumption rate of 15% for San Diego) may result in high multipathway factors for several trace metals. For shallower mixing depths, soil ingestion may become the dominant non-inhalation pathway. These differences may lead to significantly different risk estimates for similar facilities located at different California locations such as to be under local regulatory authorities. The overall multipathway factor for the total cancer risk is about 2, much smaller than some of the chemical-specific factors. Science-based multipathway analysis should reduce much of the concern that may be due to policy-based decisions on pathway selection and high-value point-estimates of the parameters.

  10. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    SciTech Connect (OSTI)

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  11. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect (OSTI)

    Butcher, T.A.; Pierce, B.L.

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  12. City of Tulare Renewable Biogas Fuel Cell Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    City of Tulare Renewable Biogas Fuel Cell Project City of Tulare Renewable Biogas Fuel Cell Project Presented at the Technology Transition Corporation and U.S. Department of Energy Fuel Cell Technologies Program Webinar: Go Local: Maximizing Your Local Renewable Resources With Fuel Cells, August 16, 2011. webinaraug16_nelson.pdf (3.26 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Co-Optimization of Fuels and Engines (Co-Optima) Overview Synergy between

  13. DOE Selects Research Projects to Advance Solid Oxide Fuel Cell Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Research Projects to Advance Solid Oxide Fuel Cell Technology DOE Selects Research Projects to Advance Solid Oxide Fuel Cell Technology July 13, 2015 - 10:00am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected for funding 16 solid oxide fuel cell (SOFC) technology research projects. Fuel cells are a modular, efficient, and virtually pollution-free power generation technology. In Fiscal Year (FY) 2015, NETL issued two

  14. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the

  15. Spent nuclear fuels project characterization data quality objectives strategy

    SciTech Connect (OSTI)

    Lawrence, L.A.; Thornton, T.A.; Redus, K.S.

    1994-12-01

    A strategy is presented for implementation of the Data Quality Objectives (DQO) process to the Spent Nuclear Fuels Project (SNFP) characterization activities. Westinghouse Hanford Company (WHC) and the Pacific Northwest Laboratory (PNL) are teaming in the characterization of the SNF on the Hanford Site and are committed to the DQO process outlined in this strategy. The SNFP characterization activities will collect and evaluate the required data to support project initiatives and decisions related to interim safe storage and the path forward for disposal. The DQO process is the basis for the activity specific SNF characterization requirements, termed the SNF Characterization DQO for that specific activity, which will be issued by the WHC or PNL organization responsible for the specific activity. The Characterization Plan prepared by PNL defines safety, remediation, and disposal issues. The ongoing Defense Nuclear Facility Safety Board (DNFSB) requirement and plans and the fuel storage and disposition options studies provide the need and direction for the activity specific DQO process. The hierarchy of characterization and DQO related documentation requirements is presented in this strategy. The management of the DQO process and the means of documenting the DQO process are described as well as the tailoring of the DQO process to the specific need of the SNFP characterization activities. This strategy will assure stakeholder and project management that the proper data was collected and evaluated to support programmatic decisions.

  16. Hydrogen Filling Station

    SciTech Connect (OSTI)

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen

  17. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects This fact sheets highlights fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). A total of $41.6 million in Recovery Act funding supported the deployment of over 1,000 fuel cell systems. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects (1.2 MB) More

  18. American Fuel Cell Bus Project Evaluation: Second Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    American Fuel Cell Bus Project Evaluation: Second Report Leslie Eudy and Matthew Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-64344 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  19. BC Transit Fuel Cell Bus Project Evaluation Results: Second Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    BC Transit Fuel Cell Bus Project Evaluation Results: Second Report L. Eudy and M. Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-62317 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  20. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  1. GULF OF MEXICO SEAFLOOR STABILITY AND GAS HYDRATE MONITORING STATION PROJECT

    SciTech Connect (OSTI)

    J. Robert Woolsey; Thomas M. McGee; Robin C. Buchannon

    2004-11-01

    The gas hydrates research Consortium (HRC), established and administered at the University if Mississippi's Center for Marine Research and Environmental Technology (CMRET) has been active on many fronts in FY 03. Extension of the original contract through March 2004, has allowed completion of many projects that were incomplete at the end of the original project period due, primarily, to severe weather and difficulties in rescheduling test cruises. The primary objective of the Consortium, to design and emplace a remote sea floor station for the monitoring of gas hydrates in the Gulf of Mexico by the year 2005 remains intact. However, the possibility of levering HRC research off of the Joint Industries Program (JIP) became a possibility that has demanded reevaluation of some of the fundamental assumptions of the station format. These provisions are discussed in Appendix A. Landmark achievements of FY03 include: (1) Continuation of Consortium development with new researchers and additional areas of research contribution being incorporated into the project. During this period, NOAA's National Undersea Research Program's (NURP) National Institute for Undersea Science and Technology (NIUST) became a Consortium funding partner, joining DOE and Minerals Management Service (MMS); (2) Very successful annual and semiannual meetings in Oxford Mississippi in February and September, 2003; (3) Collection of piston cores from MC798 in support of the effort to evaluate the site for possible monitoring station installation; (4) Completion of the site evaluation effort including reports of all localities in the northern Gulf of Mexico where hydrates have been documented or are strongly suspected to exist on the sea floor or in the shallow subsurface; (5) Collection and preliminary evaluation of vent gases and core samples of hydrate from sites in Green Canyon and Mississippi Canyon, northern Gulf of Mexico; (6) Monitoring of gas activity on the sea floor, acoustically and thermally

  2. Meet the Maximally Exposed Member of the Public: The Service Station Attendant for Spent Nuclear Fuel Going to Yucca Mountain

    SciTech Connect (OSTI)

    Collins, H. E.; Gathers, R.; Halstead, R. J.

    2002-02-28

    According to the 1999 Draft Environmental Impact Statement (DEIS) for the proposed Yucca Mountain repository site, members of the public along transportation routes by which spent nuclear fuel (SNF) and high-level radioactive waste (HLW) is shipped will receive annual radiation doses less than 100 mrem/yr, the international (ICRP) and national (Department of Energy, Nuclear Regulatory Commission) radiation limit for members of the public. For the ''Mostly Truck'' national transportation scenario, the DEIS specifically concludes that the maximally exposed member of the public, a service station attendant along the primary shipping route will receive no more than 100 mrem/yr, or 2.4 rem over 24 years. Based on the assumptions in the DEIS scenarios, however, it is highly likely that service station attendants along shipping routes will be called upon to fuel and service the rigs carrying SNF and HLW to Yucca Mountain. After reevaluating the DEIS, and making realistic alternative assumptions where necessary, the authors conclude that these attendants are likely to receive substantially more than 100 mrem/yr external dose, and perhaps several times that dose (up to 500 mrem/yr), unless mitigating measures are adopted. This is particularly true in Western states where refueling opportunities are limited, and the distances between fuel sources in rural areas may be up to 100 miles.

  3. Lessons learned in digital upgrade projects digital control system implementation at US nuclear power stations

    SciTech Connect (OSTI)

    Kelley, S.; Bolian, T. W.

    2006-07-01

    AREVA NP has gained significant experience during the past five years in digital upgrades at operating nuclear power stations in the US. Plants are seeking modernization with digital technology to address obsolescence, spare parts availability, vendor support, increasing age-related failures and diminished reliability. New systems offer improved reliability and functionality, and decreased maintenance requirements. Significant lessons learned have been identified relating to the areas of licensing, equipment qualification, software quality assurance and other topics specific to digital controls. Digital control systems have been installed in non safety-related control applications at many utilities within the last 15 years. There have also been a few replacements of small safety-related systems with digital technology. Digital control systems are proving to be reliable, accurate, and easy to maintain. Digital technology is gaining acceptance and momentum with both utilities and regulatory agencies based upon the successes of these installations. Also, new plants are being designed with integrated digital control systems. To support plant life extension and address obsolescence of critical components, utilities are beginning to install digital technology for primary safety-system replacement. AREVA NP analyzed operating experience and lessons learned from its own digital upgrade projects as well as industry-wide experience to identify key issues that should be considered when implementing digital controls in nuclear power stations.

  4. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheets highlights U.S. Department of Energy fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). More than 1,000 fuel cell systems have been deploy

  5. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects

    SciTech Connect (OSTI)

    Fuel Cell Technologies Office

    2012-05-01

    This fact sheets highlights U.S. Department of Energy fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). More than 1,000 fuel cell systems have been deployed through Recovery Act funding.

  6. RADIOLOGICAL SURVEY STATION DEVELOPMENT FOR THE PIT DISASSEMBLY AND CONVERSION PROJECT

    SciTech Connect (OSTI)

    Dalmaso, M.; Gibbs, K.; Gregory, D.

    2011-05-22

    The Savannah River National Laboratory (SRNL) has developed prototype equipment to demonstrate remote surveying of Inner and Outer DOE Standard 3013 containers for fixed and transferable contamination in accordance with DOE Standard 3013 and 10 CFR 835 Appendix B. When fully developed the equipment will be part of a larger suite of equipment used to package material in accordance with DOE Standard 3013 at the Pit Disassembly and Conversion Project slated for installation at the Savannah River Site. The prototype system consists of a small six-axis industrial robot with an end effector consisting of a force sensor, vacuum gripper and a three fingered pneumatic gripper. The work cell also contains two alpha survey instruments, swipes, swipe dispenser, and other ancillary equipment. An external controller interfaces with the robot controller, survey instruments and other ancillary equipment to control the overall process. SRNL is developing automated equipment for the Pit Disassembly and Conversion (PDC) Project that is slated for the Savannah River Site (SRS). The equipment being developed is automated packaging equipment for packaging plutonium bearing materials in accordance with DOE-STD-3013-2004. The subject of this paper is the development of a prototype Radiological Survey Station (RSS). Other automated equipment being developed for the PDC includes the Bagless transfer System, Outer Can Welder, Gantry Robot System (GRS) and Leak Test Station. The purpose of the RSS is to perform a frisk and swipe of the DOE Standard 3013 Container (either inner can or outer can) to check for fixed and transferable contamination. This is required to verify that the contamination levels are within the limits specified in DOE-STD-3013-2004 and 10 CFR 835, Appendix D. The surface contamination limit for the 3013 Outer Can (OC) is 500 dpm/100 cm2 (total) and 20 dpm/100 cm2 (transferable). This paper will concentrate on the RSS developments for the 3013 OC but the system for the

  7. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles Preprint M. Melaina National Renewable Energy Laboratory J. Bremson University of California Davis K. Solo Lexidyne, LLC Presented at the 31st USAEE/IAEE North American Conference Austin, Texas November 4-7, 2012 Conference Paper NREL/CP-5600-56898

  8. The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification

    SciTech Connect (OSTI)

    Svendsen, R.L.

    1996-12-31

    Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

  9. Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC)

    SciTech Connect (OSTI)

    Not Available

    2003-03-01

    Annual progress report of the Advanced Petroleum-based fuels-Diesel Emissions Control Project. Contains information on 5 test projects to determine the best combinations of low-sulfur diesel fuels, lubricants, diesel engines, and emission control systems to meet projected emissions standards.

  10. A Hybrid Catalytic Route to Fuels from Biomass Syngas Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LanzaTech. All rights reserved. 1 A Hybrid Catalytic Route to Fuels from Biomass Syngas BETO's Project Peer Review, March 2015 Alexandria, VA Alice Havill Senior Process Engineer Project Principle Investigator Hybrid Catalytic Route to Fuels from Biomass Syngas Project Objective: develop a hybrid conversion technology for catalytic upgrading of biomass- derived syngas to jet fuel and chemicals while ensure the cost, quality and environmental requirements of the aviation industry are met System