Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Station Air Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fueling Station Air Quality Permit Exemption

2

Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fueling Natural Gas Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section...

3

Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fueling Natural Gas Fueling Station Air Quality Permit Exemption to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Air Quality Permit Exemption on AddThis.com... More in this section...

4

Fuel Cell Demonstration at the U.S. Coast Guard Air Station Cape Cod  

Science Conference Proceedings (OSTI)

Journal article reporting on the 250-kW fuel cell combined heat and power plant located at the U.S. Coast Guard Air Station Cape Code in Bourne, Massachusetts.

Halverson, Mark A.; Chvala, William D.; Herrera, Shawn

2005-07-30T23:59:59.000Z

5

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

6

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

7

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

8

CLIMATE CHANGE FUEL CELL PROGRAM UNITED STATES COAST GUARD AIR STATION CAPE COD BOURNE, MASSACHUSETTS  

DOE Green Energy (OSTI)

This report covers the first year of operation of a fuel cell power plant, installed by PPL Spectrum, Inc. (PPL) under contract with the United States Coast Guard (USCG), Research and Development Center (RDC). The fuel cell was installed at Air Station Cape Cod in Bourne, MA. The project had the support of the Massachusetts Technology Collaborative (MTC), the Department of Energy (DOE), and Keyspan Energy. PPL selected FuelCell Energy, Inc. (FCE) and its fuel cell model DFC{reg_sign}300 for the contract. Grant contributions were finalized and a contract between PPL and the USCG for the manufacture, installation, and first year's maintenance of the fuel cell was executed on September 24, 2001. As the prime contractor, PPL was responsible for all facets of the project. All the work was completed by PPL through various subcontracts, including the primary subcontract with FCE for the manufacture, delivery, and installation of the fuel cell. The manufacturing and design phases proceeded in a relatively timely manner for the first half of the project. However, during latter stages of manufacture and fuel cell testing, a variety of issues were encountered that ultimately resulted in several delivery delays, and a number of contract modifications. Final installation and field testing was completed in April and May 2003. Final acceptance of the fuel cell was completed on May 16, 2003. The fuel cell has operated successfully for more than one year. The unit achieved an availability rate of 96%, which exceeded expectations. The capacity factor was limited because the unit was set at 155 kW (versus a nameplate of 250 kW) due to the interconnection with the electric utility. There were 18 shutdowns during the first year and most were brief. The ability of this plant to operate in the island mode improved availability by 3 to 4%. Events that would normally be shutdowns were simply island mode events. The mean time between failure was calculated at 239 hours, or slightly less than 10 days. The fuel cell did run continuously for more than one month on three occasions during the first year. Overall efficiency, including the thermal recovery, was found to be over 60%. Operation for the fuel cell during the first year produced net savings for the Coast Guard of over $18,000.

John K. Steckel Jr

2004-06-30T23:59:59.000Z

9

Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fueling Hydrogen Fueling Station Evaluation to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Station Evaluation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fueling Station Evaluation The California Air Resources Board (ARB) may not enforce any element of

10

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

11

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

12

Hydrogen vehicle fueling station  

DOE Green Energy (OSTI)

The authors describe a hydrogen vehicle fueling station that receives and stores hydrogen in liquid form and dispenses it either as a liquid or compressed gas. The economics that accrue from the favorable weight and volume advantages of liquid hydrogen support this concept both now and probably for some time to come. The model for liquid transfer to a 120-liter vehicle tank shows that transfer times under five minutes are feasible with pump-assisted transfer, or for pressure transfer with subcooling greater than 1 K. The model for compressed gas transfer shows that underfilling of nearly 30% can occur during rapid filling. Cooling the fill gas to 214 K completely eliminates underfilling.

Daney, D.E.; Edeskuty, F.J.; Daugherty, M.A.; Prenger, F.C.; Hill, D.D.

1995-09-01T23:59:59.000Z

13

Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Compressed Natural Gas Stations

14

Alternative Fuels Data Center: Hydrogen Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations

15

Alternative Fuels Data Center: Propane Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Station Locations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development

16

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

17

Alternative Fuels Data Center: Natural Gas Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Stations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Natural Gas Fueling Stations Photo of a compressed natural gas fueling station. Hundreds of compressed natural gas (CNG) fueling stations are available in

18

Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search...

19

Alternative Fuels Data Center: Ethanol Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Station Locations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Station Locations Find ethanol (E85) fueling stations near an address or ZIP code or along a

20

Alternative Fuels Data Center: Biodiesel Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Station Locations to someone by E-mail Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Station Locations Find biodiesel (B20 and above) fueling stations near an address or ZIP code

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Mobile Alternative Fueling Station Locator  

Science Conference Proceedings (OSTI)

The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

Not Available

2009-04-01T23:59:59.000Z

22

Alternative Fuels Data Center: About the Alternative Fueling Station Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Locate Stations Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fueling Station Data to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fueling Station Data on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fueling Station Data on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Google Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Delicious Rank Alternative Fuels Data Center: About the Alternative Fueling Station Data on Digg Find More places to share Alternative Fuels Data Center: About the Alternative Fueling Station Data on AddThis.com... About the Alternative Fueling Station Data

23

Alternative Fuels Data Center: Alternative Fueling Station Counts by State  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Locate Stations Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Counts by State to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on AddThis.com... Alternative Fueling Station Counts by State

24

Alternative Fuels Data Center: Alternative Fueling Station Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Station Grant Program to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Station Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Station Grant Program The Alternative Fueling Station Grant Program provides grants of up to

25

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

26

Fuel Station of the Future- Innovative Approach to Fuel Cell Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Station of the Future- Innovative Approach to Fuel Cell Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California September 15, 2011 - 5:51pm Addthis A customer fills up at a new Energy Department supported fuel cell hydrogen energy station in Fountain Valley, California. | Photo courtesy of Air Products and Chemicals. A customer fills up at a new Energy Department supported fuel cell hydrogen energy station in Fountain Valley, California. | Photo courtesy of Air Products and Chemicals. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program Imagine pulling-up to a fuel station that supplies your car with clean, renewable fuel. Now imagine that, while you're filling up, this same

27

Hydrogen at the Fueling Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen) Service Stations 101 Hydrogen) Service Stations 101 Steven M. Schlasner September 22, 2004 2 DISCLAIMER Opinions expressed within are strictly those of the presenter and do not necessarily represent ConocoPhillips Company. 3 Presentation Outline * Introduction to ConocoPhillips * Introduction to Service Stations * Comparison of Conventional with Hydrogen Fueling Stations * Hydrogen Fueling Life Cycle * Practical Design Example * Concluding Observations 4 ConocoPhillips * 7 th on Fortune's list of largest companies (2003 revenues) * 3 rd largest integrated petroleum company in U.S. * 1 st (largest) petroleum refiner in U.S. * 14,000 retail outlets (350 company-owned) in 44 states * Brands: Conoco, Phillips 66, 76 * 32,800 miles pipeline, owned or interest in * 64 terminals: crude, LPG, refined products

28

alternative fuels stations | OpenEI  

Open Energy Info (EERE)

fuels stations fuels stations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

29

Alternative Fuels Data Center: Access to State Alternative Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Access to State Access to State Alternative Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Google Bookmark Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Delicious Rank Alternative Fuels Data Center: Access to State Alternative Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Access to State Alternative Fueling Stations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Access to State Alternative Fueling Stations

30

Alternative Fuels Data Center: Natural Gas Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations

31

Alternative Fuels Data Center: Propane Self-Service Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Self-Service Propane Self-Service Fueling Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Google Bookmark Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Delicious Rank Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Propane Self-Service Fueling Station Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

32

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

33

Alternative Fueling Station Locations | OpenEI  

Open Energy Info (EERE)

Alternative Fueling Station Locations Alternative Fueling Station Locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, view U.S. maps, and more. Access up-to-date fuel station data here: http://www.afdc.energy.gov/afdc/data_download The dataset available for download here provides a "snapshot" of the alternative fueling station information for: compressed natural gas (CNG), E85 (85% ethanol, 15% gasoline), propane/liquefied petroleum gas (LPG), biodiesel, electricity, hydrogen, and liquefied natural gas

34

Alternative Fueling Station Locator | Open Energy Information  

Open Energy Info (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Evaluate Options, Prepare a Plan Topics: Datasets Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/afdc/locator/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/stations/ Cost: Free OpenEI Keyword(s): Featured References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator The alternative fuel station locator uses an address based search to find

35

Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) to someone by E-mail Share Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Facebook Tweet about Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Twitter Bookmark Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Google Bookmark Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Delicious Rank Alternative Fuels Data Center: Animation of a Hydrogen Fueling Station Example Layout (Text Version) on Digg

36

Fuel Station of the Future- Innovative Approach to Fuel Cell...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Fuel Cell Technology Program Imagine pulling-up to a fuel station that supplies your car with clean, renewable fuel. Now imagine that, while you're filling up, this same...

37

Development of a Turnkey Hydrogen Fueling Station Final Report  

Science Conference Proceedings (OSTI)

The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operators garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The stations efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce onsite hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

2010-07-29T23:59:59.000Z

38

Alternative Fuels Data Center: Electric Vehicle Charging Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Stations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Electric Vehicle Charging Stations

39

Hydrogen fueling station development and demonstration  

DOE Green Energy (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

1996-09-01T23:59:59.000Z

40

Hydrogen fuel dispensing station for transportation vehicles  

DOE Green Energy (OSTI)

A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on a hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.

Singh, S.P.N.; Richmond, A.A. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)  

DOE Green Energy (OSTI)

Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

Not Available

2009-04-01T23:59:59.000Z

42

Hydrogen Fueling - Coming Soon to a Station Near You  

SciTech Connect

Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

2007-12-01T23:59:59.000Z

43

From Hydrogen Fuel Stations to Bean Counters, NIST Weights ...  

Science Conference Proceedings (OSTI)

From Hydrogen Fuel Stations to Bean Counters, NIST Weights and Measures Works to Meet Market Needs. ...

2010-08-23T23:59:59.000Z

44

Alternative Fuels Data Center: Electric Vehicle Charging Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development

45

Alternative Fueling Station Locator - Mobile | Open Energy Information  

Open Energy Info (EERE)

Fueling Station Locator - Mobile Fueling Station Locator - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator - Mobile Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: www.afdc.energy.gov/afdc/locator/m/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/m/stations/ Cost: Free References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator - Mobile Find fueling stations for your alternative fuel vehicle on-the-go with the

46

Access to alternative transportation fuel stations varies across ...  

U.S. Energy Information Administration (EIA)

LNG is typically only used in heavy-duty vehicles. Compared to the number of existing LNG fuel stations, there is a large network of stations planned along ...

47

Alternative Fueling Station Locator App Provides Info at Your...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find...

48

Check Out the New Alternative Fuel Station Locator | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

alternative fuel vehicle is now easier than ever. This number includes 4,600 electric vehicle charging stations installed by ChargePoint, Ecotality and other charging station...

49

Solar Powered Radioactive Air Monitoring Stations  

SciTech Connect

Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

Barnett, J. M.; Bisping, Lynn E.; Gervais, Todd L.

2013-10-30T23:59:59.000Z

50

Alternative Fuels Data Center: EV Charging Stations Spread Through Philly  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EV Charging Stations EV Charging Stations Spread Through Philly to someone by E-mail Share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Facebook Tweet about Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Twitter Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Google Bookmark Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Delicious Rank Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on Digg Find More places to share Alternative Fuels Data Center: EV Charging Stations Spread Through Philly on AddThis.com... March 3, 2012 EV Charging Stations Spread Through Philly W atch how Philadelphia fuels electric vehicles with a growing network of

51

Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Station Natural Gas Station Property Tax Reduction to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Google Bookmark Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Delicious Rank Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Station Property Tax Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas Station Property Tax Reduction

52

Alternative Fueling Station Locator App Provides Info at Your Fingertips |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator App Provides Info at Your Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department Shannon Brescher Shea Communications Manager, Clean Cities Program Smartphone users are familiar with the prompt, "Would you like this site to use your current location?" If you're looking for somewhere to fuel your

53

Alternative Fueling Station Locator App Provides Info at Your Fingertips |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator App Provides Info at Your Alternative Fueling Station Locator App Provides Info at Your Fingertips Alternative Fueling Station Locator App Provides Info at Your Fingertips November 15, 2013 - 10:12am Addthis The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department The Alternative Fueling Station Locator iPhone app helps you find fueling stations that offer electricity, natural gas, biodiesel, E85, propane, or hydrogen. | Energy Department Shannon Brescher Shea Communications Manager, Clean Cities Program Smartphone users are familiar with the prompt, "Would you like this site to use your current location?" If you're looking for somewhere to fuel your

54

DOE Hydrogen Analysis Repository: Hydrogen Fueling Station Economics Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Fueling Station Economics Model Fueling Station Economics Model Project Summary Full Title: Hydrogen Fueling Station Economics Model Project ID: 193 Principal Investigator: Bill Liss Brief Description: The Gas Technology Institute developed a hydrogen fueling station economics model as part of their project to develop a natural gas to hydrogen fuel station. Keywords: Compressed gas; vehicle; refueling station; cost; natural gas Purpose Calculate hydrogen fueling station costs, including capital, operating, and maintenance costs. Performer Principal Investigator: Bill Liss Organization: Gas Technology Institute Address: 1700 South Mount Prospect Road Des Plains, IL 60018-1804 Telephone: 847-768-0530 Email: william.liss@gastechnology.org Project Description Type of Project: Model Category: Hydrogen Fuel Pathways

55

Reference: Quad Cities Nuclear Power Station- Preconditioning of Emergency Diesel Generator Air Start Systems, Fuel Systems, and other Engine and Electrical  

E-Print Network (OSTI)

The purpose of this letter is twofold. First, to inform the NRC that Quad Cities Nuclear Power Station will not dispute the Non-Cited Violation (50-254/01-05-04; 50-265/01-05-04) of 10 CFR 50 Appendix B, Criterion XI, "Test Control, " described in the referenced NRC report. The station similarly concurs that the risk significance was very low (Green). Senior station management and station personnel understand the importance of scheduling and performing Technical Specifications required surveillances such that unacceptable preconditioning does not occur. The instances identified in the referenced NRC report have been entered into the station's corrective action program and corrective actions have been implemented or are scheduled for implementation. Second, given the importance of this subject and based upon our review of the NRC integrated inspection report, the station is providing an update on several of the issues discussed in section three, "Units 1 and 2 Emergency Diesel Generator Timed Test Preconditioning Concerns. " This is intended to update the NRC and supplement our shared understanding of the issues. The following specific points are provided: August 8, 2001 U.S. Nuclear Regulatory Commission

unknown authors

2001-01-01T23:59:59.000Z

56

MHK Technologies/Ocean Powered Compressed Air Stations | Open Energy  

Open Energy Info (EERE)

Powered Compressed Air Stations Powered Compressed Air Stations < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Ocean Powered Compressed Air Stations.png Technology Profile Primary Organization Wave Power Plant Inc Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 4 Proof of Concept Technology Description The Ocean Powered Compressed Air Station is a point absorber that uses an air pump to force air to a landbased generator The device only needs 4m water depth and electricity production fluctations through storing energy at a constant air pressure Technology Dimensions Device Testing Date Submitted 13:16.5 << Return to the MHK database homepage Retrieved from

57

Energy Department Launches Alternative Fueling Station Locator App |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Alternative Fueling Station Locator App Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles. Developed by the National Renewable Energy Laboratory with support from the Energy Department, the Alternative Fueling Station Locator app provides information on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane. After the

58

Energy Department Launches Alternative Fueling Station Locator App |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App Energy Department Launches Alternative Fueling Station Locator App November 7, 2013 - 11:16am Addthis As part of the Obama Administration's commitment to expand access to data and give consumers more transportation options that save money at the pump, the Energy Department today launched a new mobile app to help drivers find stations that provide alternative fuel for vehicles. Developed by the National Renewable Energy Laboratory with support from the Energy Department, the Alternative Fueling Station Locator app provides information on more than 15,000 stations across the country. Users can search for stations that offer electricity, biodiesel (B20), natural gas (compressed and liquefied), ethanol (E85), hydrogen, and propane. After the

59

Department of Energy Helping Americans Find Alternative Fuel Stations |  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Helping Americans Find Alternative Fuel Department of Energy Helping Americans Find Alternative Fuel Stations Department of Energy Helping Americans Find Alternative Fuel Stations May 29, 2013 - 2:14pm Addthis Helping Americans explore and adopt alternative energy sources beyond oil and gasoline has become easier. The Department of Energy's (DOE) National Renewable Energy Laboratory and DOE Clean Cities have made it a snap to find the location of alternative fuel stations across the United States by making that information available online in a variety of formats, including web applications, mobile applications, widgets, APIs, and raw data files on the Alternative Fuels Data Center (AFDC) site. These tools enable users to leverage the data to find fuel stations, post custom fueling location maps on their own websites, or access data for web

60

Air Breathing Direct Methanol Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Air Breathing Direct Methanol Fuel Cell Air Breathing Direct Methanol Fuel Cell Air Breathing Direct Methanol Fuel Cell An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Available for thumbnail of Feynman Center (505) 665-9090 Email Air Breathing Direct Methanol Fuel Cell An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NREL: News - NREL Developed Mobile App for Alternative Fueling Station  

NLE Websites -- All DOE Office Websites (Extended Search)

713 713 NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) developed the new mobile application for DOE's Clean Cities program. Clean Cities supports local stakeholders across the country in an effort to cut petroleum use in transportation. The Alternative Fueling Station Locator App, now available through Apple's App Store, allows iPhone users to select an alternative fuel and

62

Alternative Fueled Vehicle Charging Station Credit (Connecticut...  

Open Energy Info (EERE)

or improvements to existing stations which allow that station to provide CNG, LNG, or LPG (propane); 2) equipment used to convert vehicles to run exclusively on one of these...

63

NREL: Technology Deployment - NREL's Federal Fueling Station Data Supports  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery January 22, 2013 In the aftermath of Superstorm Sandy, millions of Americans remained without electricity as emergency responders, security officials, and regular citizens all experienced a lack of access to vehicle fuels. As fuel shortages spread and lines grew at the few fueling stations that had electricity, officials from General Services Administration (GSA) Fleet and the U.S. Department of Homeland Security's (DHS) National Protection and Programs Directorate contacted the U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) hoping to locate additional fuel provisions from private and federal facilities. FEMP then tapped NREL to provide data on the locations of federally owned fueling infrastructure in

64

Find Alternative Fueling Stations and Learn Something, Too | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Find Alternative Fueling Stations and Learn Something, Too Find Alternative Fueling Stations and Learn Something, Too Find Alternative Fueling Stations and Learn Something, Too July 20, 2009 - 7:00pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory A couple of weeks ago it was hybrid electric vehicle week and, always one to be fashionably late, I thought I'd jump in and talk about some of our fun vehicle-related tools. It's probably pretty obvious from the sorts of posts I've done in the past, but I love interactive tools and applications on the Web. EERE has a number of interesting applications and gadgets, and today I thought I'd talk about a few hiding in the Alternative Fuels and Advanced Vehicles Data Center (hereafter referred to as the AFDC.) First off: the Alternative Fueling Station Locator (also available for

65

Experiences from Ethanol Buses and Fuel Station Report - Nanyang | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - Nanyang Experiences from Ethanol Buses and Fuel Station Report - Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report addresses the experience of introducing ethanol buses and fuel stations in Nanyang (China). Though the demonstration met initial obstacles, significant data and information was collected. The responses from drivers and passengers show that the ethanol buses were well accepted, and the function and performance of the ethanol buses was satisfactory. How to Use This Tool

66

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close More Search Options Include private stations Include...

67

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Station...  

NLE Websites -- All DOE Office Websites (Extended Search)

Limited Access Yes Yes Addition to Existing Station With Gasoline Yes With Compressed Natural Gas New Construction Standalone Yes Yes With Gasoline With Compressed Natural Gas...

68

Installation Restoration Program. Site inspection report. Volume 3. 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island. Final report  

Science Conference Proceedings (OSTI)

Site Inspection Report, 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island, Volume III of III. This is the third volume of a three volume site inspection report. Three areas of concern (AOCs) were investigated under the Installation Restoration Program. A passive soil gas survey was conducted of the entire station. Soil and groundwater samples were collected and analyzed. Low level contamination of fuel-related compounds were detected below state action levels. No further action was recommended.

NONE

1995-09-01T23:59:59.000Z

69

Installation Restoration Program. Site inspection report. Volume 2. 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island. Final report  

SciTech Connect

Site Inspection Report, 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island, Volume II of III. This is the second volume of a three volume site inspection report. Three areas of concern (AOCs) were investigated under the Installation Restoration Program. A passive soil gas survey was conducted of the entire station. Soil and groundwater samples were collected and analyzed. Low level contamination of fuel-related compounds were detected below state action levels. No further action was recommended.

NONE

1995-09-01T23:59:59.000Z

70

Installation Restoration Program. Site inspection report. Volume 1. 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island. Final report  

Science Conference Proceedings (OSTI)

Site Inspection Report, 102nd Air Control Squadron, North Smithfield Air National Guard Station, Slatersville, Rhode Island, Volume I of III. This is the first volume of a three volume site inspection report. Three areas of concern (AOCs) were investigated under the Installation Restoration Program. A passive soil gas survey was conducted of the entire station. Soil and groundwater samples were collected and analyzed. Low level contamination of fuel-related compounds were detected below state action levels. No further action was recommended.

NONE

1995-09-01T23:59:59.000Z

71

AltAir Fuels | Open Energy Information  

Open Energy Info (EERE)

Sector Renewable Energy Product Seattle-based developer of projects for the production of jet fuel from renewable and sustainable oils. References AltAir Fuels1 LinkedIn...

72

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station |  

Open Energy Info (EERE)

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report Ethanol buses were demonstrated within BioEthanol for Sustainable Transport (BEST). This report describes the problems at the sites and how they were solved. The aim of the report is to guide other local transport authorities on how to deal with the questions raised when a bus demonstration begins. How to Use This Tool This tool is most helpful when using these strategies:

73

Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Connecticut Company to Advance Hydrogen Infrastructure and Fueling Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies July 18, 2012 - 3:36pm Addthis As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy

74

Air blast type coal slurry fuel injector  

SciTech Connect

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, Ramkrishna G. (San Antonio, TX)

1986-01-01T23:59:59.000Z

75

Air blast type coal slurry fuel injector  

DOE Patents (OSTI)

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, R.G.

1984-08-31T23:59:59.000Z

76

Air Liquide - Biogas & Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquide - Biogas & Fuel Cells Liquide - Biogas & Fuel Cells ■ Hydrogen Energy ■ Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry, health and the environment Renewable H 2 to Fuel Cell, Integrated Concept Purified Biogas 3 Air Liquide, world leader in gases for industry, health and the environment Renewable H 2 to Fuel Cell, Non-Integrated Concept Landfill WWTP digester Biogas membrane Pipeline quality methane CH4 Pipeline Hydrogen Production To Fuel Cell Vehicles Stationary Fuel Cells With H2 purification Stationary Fuel Cells Direct Conversion Directed Biomethane 4 Air Liquide, world leader in gases for industry, health and the environment Biogas Sources in the US ■ Landfill gas dominates (~4,000 Nm3/h typical)

77

Air breathing direct methanol fuel cell  

DOE Patents (OSTI)

An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

Ren, Xiaoming (Los Alamos, NM)

2002-01-01T23:59:59.000Z

78

Linear air-fuel sensor development  

DOE Green Energy (OSTI)

The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

Garzon, F. [Los Alamos National Lab., NM (United States); Miller, C. [General Motors, Flint, MI (United States). GM/Delphi E. Division

1996-12-14T23:59:59.000Z

79

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts  

Science Conference Proceedings (OSTI)

Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

2012-01-01T23:59:59.000Z

80

Alternative Fuels Data Center: Air Quality Improvement Program Funding -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality Air Quality Improvement Program Funding - Ventura County to someone by E-mail Share Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on Facebook Tweet about Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on Twitter Bookmark Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on Google Bookmark Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on Delicious Rank Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on Digg Find More places to share Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on AddThis.com... More in this section...

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel-air munition and device  

DOE Patents (OSTI)

An aerially delivered fuel-air munition consisting of an impermeable tank filled with a pressurized liquid fuel and joined at its two opposite ends with a nose section and a tail assembly respectively to complete an aerodynamic shape. On impact the tank is explosively ruptured to permit dispersal of the fuel in the form of a fuel-air cloud which is detonated after a preselected time delay by means of high explosive initiators ejected from the tail assembly. The primary component in the fuel is methylacetylene, propadiene, or mixtures thereof to which is added a small mole fraction of a relatively high vapor pressure liquid diluent or a dissolved gas diluent having a low solubility in the primary component.

Carlson, Gary A. (Albuquerque, NM)

1976-01-01T23:59:59.000Z

82

Fallon Naval Air Station Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fallon Naval Air Station Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fallon Naval Air Station Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.38,"lon":-118.65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Air Force Achieves Fuel Efficiency through Industry Best Practices...  

NLE Websites -- All DOE Office Websites (Extended Search)

ideas and implement initiatives with the Air Force Achieves Fuel Efficiency through Industry Best Practices The Air Force Energy Plan is built upon three pillars: reduce...

84

No loss fueling station for liquid natural gas vehicles  

SciTech Connect

This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

Cieslukowski, R.E.

1992-06-16T23:59:59.000Z

85

Coaxial fuel and air premixer for a gas turbine combustor  

SciTech Connect

An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

York, William D; Ziminsky, Willy S; Lacy, Benjamin P

2013-05-21T23:59:59.000Z

86

Impacts of alternative fuels on air quality  

DOE Green Energy (OSTI)

The objective of this project was to determine the impact of alternative fuels on air quality, particularly ozone formation. The alternative fuels of interest are methanol, ethanol, liquefied petroleum gas, and natural gas. During the first year of study, researchers obtained qualitative data on the thermal degradation products from the fuel-lean (oxidative), stoichiometric, and fuel-rich (pyrolytic) decomposition of methanol and ethanol. The thermal degradation of ethanol produced a substantially larger number of intermediate organic by-products than the similar thermal degradation of methanol, and the organic intermediate by-products lacked stability. Also, a qualitative comparison of the UDRI flow reactor data with previous engine test showed that, for methanol, formaldehyde and acetone were the organic by-products observed in both types of tests; for ethanol, only very limited data were located.

Taylor, P.H.; Dellinger, B. [Dayton Univ., OH (United States). Research Inst.

1994-06-01T23:59:59.000Z

87

Alternative Fuels Data Center: Air Pollution Control Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Pollution Control Air Pollution Control Program to someone by E-mail Share Alternative Fuels Data Center: Air Pollution Control Program on Facebook Tweet about Alternative Fuels Data Center: Air Pollution Control Program on Twitter Bookmark Alternative Fuels Data Center: Air Pollution Control Program on Google Bookmark Alternative Fuels Data Center: Air Pollution Control Program on Delicious Rank Alternative Fuels Data Center: Air Pollution Control Program on Digg Find More places to share Alternative Fuels Data Center: Air Pollution Control Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Air Pollution Control Program The Air Pollution Control Program assists state, local, and tribal agencies in planning, developing, establishing, improving, and maintaining adequate

88

Bush Hydrogen Vision "Fueled" By California Station Opening | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bush Hydrogen Vision "Fueled" By California Station Opening Bush Hydrogen Vision "Fueled" By California Station Opening Bush Hydrogen Vision "Fueled" By California Station Opening February 18, 2005 - 10:26am Addthis CHINO, CALIF. - In a major step toward achieving President George W. Bush's vision for a hydrogen economy, Assistant Secretary of Energy David Garman today joined representatives of ChevronTexaco, Hyundai-Kia and UTC Fuel Cells at the opening of a hydrogen fueling station in Chino, CA. The station is a major part of the Department of Energy's Hydrogen "Learning Demonstration," which brings together automobile makers and energy companies to test fuel cell vehicles and hydrogen fueling systems in real-world conditions. "Hydrogen fuel cells represent one of the most encouraging, innovative

89

Bush Hydrogen Vision "Fueled" By California Station Opening | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Vision "Fueled" By California Station Opening Hydrogen Vision "Fueled" By California Station Opening Bush Hydrogen Vision "Fueled" By California Station Opening February 18, 2005 - 10:26am Addthis CHINO, CALIF. - In a major step toward achieving President George W. Bush's vision for a hydrogen economy, Assistant Secretary of Energy David Garman today joined representatives of ChevronTexaco, Hyundai-Kia and UTC Fuel Cells at the opening of a hydrogen fueling station in Chino, CA. The station is a major part of the Department of Energy's Hydrogen "Learning Demonstration," which brings together automobile makers and energy companies to test fuel cell vehicles and hydrogen fueling systems in real-world conditions. "Hydrogen fuel cells represent one of the most encouraging, innovative

90

Check Out the New Alternative Fuel Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Check Out the New Alternative Fuel Station Locator Check Out the New Alternative Fuel Station Locator Check Out the New Alternative Fuel Station Locator November 19, 2012 - 2:29pm Addthis Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles

91

Alternative Fuels Data Center: California Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search

92

Alternative Fuels Data Center: Connecticut Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State

93

Alternative Fuels Data Center: Massachusetts Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Massachusetts Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Massachusetts Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Massachusetts Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Massachusetts Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Massachusetts Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section...

94

Alternative Fuels Data Center: Washington Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search

95

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal

96

Fuel Examination and Crud Analysis from Columbia Generating Station EOC20  

Science Conference Proceedings (OSTI)

At the Columbia Generating Station end of cycle-20 (EOC-20) refueling outage, 2- and 3-cycle ATRIUM-10 fuel assemblies were examined to assess the impact of reduced Cycle 20 feedwater iron (Fe) and zinc (Zn) transport on crud loadings of fuel and fuel performance in general.BackgroundCrud spallation was observed on 2- and 3-cycle fuel at Columbia Generating Station (CGS) during EOC19. This observation was linked to moderate feedwater (FW) zinc (Zn) and iron ...

2013-09-05T23:59:59.000Z

97

Effects of Fuel and Air Impurities on PEM Fuel Cell Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach * Fabricate and operate fuel cells under controlled impurity gases - Multi-gas mixing manifolds and FC test stations - Pre-blend impurity gases - Measure performance...

98

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

based on industry experiences with natural gas stations.Few natural gas stations have yet to achieve a 47% capacitynts 0 .2 % of to tal gas stations. Achieving low co st hydr

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

99

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

based on industry experiences with natural gas stations.Few natural gas stations have yet to achieve a 47% capacitynts 0 .2 % of to tal gas stations. Achieving low co st hydr

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

100

The Fuel-Travel-Back Approach to Hydrogen Station Siting  

E-Print Network (OSTI)

only 18% of existing gas station number is needed to achievean intersection like 4-corner gas stations in real life, butis only 708 or 18% of gas stations in the study region. This

Lin, Zhenhong; Ogden, Joan; Fan, Yueyue; Chen, Chien-Wei

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Ice Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Delicious Rank Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Digg Find More places to share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on AddThis.com... Sept. 14, 2013

102

Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Street Natural Gas Street Sweepers Improve Air Quality in New York to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Google Bookmark Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Delicious Rank Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Street Sweepers Improve Air Quality in New York on AddThis.com...

103

Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Congestion Mitigation Congestion Mitigation and Air Quality (CMAQ) Improvement Program to someone by E-mail Share Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on Facebook Tweet about Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on Twitter Bookmark Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on Google Bookmark Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on Delicious Rank Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on Digg Find More places to share Alternative Fuels Data Center: Congestion Mitigation and Air Quality (CMAQ) Improvement Program on AddThis.com...

104

Air Breathing Direct Methanol Fuel Cell  

DOE Patents (OSTI)

A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

Ren; Xiaoming (Los Alamos, NM)

2003-07-22T23:59:59.000Z

105

New Developments in High Velocity Air-fuel Spraying  

Science Conference Proceedings (OSTI)

This is possible because of the low temperature of air-fuel combustion. The heating of the spray ... Conditioning of Composite Lubricant Powder for Cold Spray.

106

Development Wells At Fallon Naval Air Station Area (Sabin, Et Al., 2010) |  

Open Energy Info (EERE)

Naval Air Station Area (Sabin, Et Al., 2010) Naval Air Station Area (Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Fallon Naval Air Station Area (Sabin, Et Al., 2010) Exploration Activity Details Location Fallon Naval Air Station Area Exploration Technique Development Wells Activity Date Usefulness not indicated DOE-funding Unknown Notes As was mentioned previously, the Navy signed a development contract with Ormat in 2005 to produce power from a potential resource on the SE corner of the main side portion of NAS Fallon. Additionally the GPO began additional exploration activities on the Bombing Range 16 in collaboration with the Great Basin Center for Geothermal Energy. The introduction of $9.1M of Recovery Act funds in early 2009 led to a broadening as well as an

107

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

DOE Green Energy (OSTI)

During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.

K. Payette; D. Tillman

2001-10-01T23:59:59.000Z

108

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

DOE Green Energy (OSTI)

During the period January 1, 2003--March 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with improvements to both the Willow Island and Albright Generating Station cofiring systems. These improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

K. Payette; D. Tillman

2003-04-30T23:59:59.000Z

109

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Fuel Cells for Generation and Cogeneration Center for Energy and Environmental Studies Princeton University Princeton, NJ

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

110

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Fuel Cells for Generation and Cogeneration Center for Energy and Environmental Studies Princeton University Princeton, NJ

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

111

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

DOE Green Energy (OSTI)

During the period October 1, 2003-December 31, 2003, Allegheny Energy Supply Co., LLC (Allegheny) continued with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

K. Payette; D. Tillman

2004-01-01T23:59:59.000Z

112

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

DOE Green Energy (OSTI)

During the period April 1, 2003--June 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of biomass cofiring into commercial operations. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

K. Payette; D. Tillman

2003-07-01T23:59:59.000Z

113

NREL: Department of Defense Energy Programs - U.S. Marine Corps Air Station  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Marine Corps Air Station Miramar U.S. Marine Corps Air Station Miramar NREL performed an assessment at the U.S. Marine Corps Air Station Miramar in California, which established baseline energy use and identified the lowest-cost combination of renewable energy options to meet energy reduction goals. As a result, Miramar is on track to achieve a 43% reduction in building source energy use by 2012 and has been designated the first green Marine Corps base. New projects will enable the base to reduce building source energy use 90% by 2017. Based on the Miramar project, NREL created a standardized assessment and planning process template for other military installations. Widespread replication of this process is planned, with assessments under way at several DOD installations, including: the U.S. Air Force Academy in

114

Energy Department Applauds Worlds First Fuel Cell and Hydrogen Energy Station in Orange County  

Energy.gov (U.S. Department of Energy (DOE))

Washington, D.C. The U.S. Department of Energy today issued the following statement in support of the commissioning of the worlds first tri-generation fuel cell and hydrogen energy station to...

115

Neural network control of air-to-fuel ratio in a bi-fuel engine  

Science Conference Proceedings (OSTI)

In this paper, a neural network-based control system is proposed for fine control of the intake air/fuel ratio in a bi-fuel engine. This control system is an add-on module for an existing vehicle manufacturer's electronic control units (ECUs). Typically ... Keywords: Artificial neural networks, bi-fuel engines, compressed natural gas (CNG), fuel injection control

G. Gnanam; S. R. Habibi; R. T. Burton; M. T. Sulatisky

2006-09-01T23:59:59.000Z

116

A Remote-Sensing Method of Selecting Reference Stations for Evaluating Urbanization Effect on Surface Air Temperature Trends  

Science Conference Proceedings (OSTI)

In the global lands, the bias of urbanization effects still exits in the surface air temperature series of many city weather stations to a certain extent. Reliable reference climate stations need to be selected for the detection and correction of ...

Yuyu Ren; Guoyu Ren

2011-07-01T23:59:59.000Z

117

Validation of an Integrated Hydrogen Energy Station - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Edward C. Heydorn Air Products and Chemicals, Inc. 7201 Hamilton Blvd Allentown, PA 18195 Phone: (610) 481-7099 Email: heydorec@airproducts.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Jim Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: DE-FC36-01GO11087 Subcontractor: FuelCell Energy, Danbury, CT Project Start Date: September 30, 2001 Project End Date: December 31, 2011 Fiscal Year (FY) 2012 Objectives Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. Complete a technical assessment and economic analysis *

118

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Range (kg/day) 1. Steam methane reformer 2. Electrolyzer,Methane Reformer, 100 2. Steam Methane Reformer, 1000 3.100 # of stations 1. Steam Methane Reformer 2. Steam Methane

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

119

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Range (kg/day) 1. Steam methane reformer 2. Electrolyzer,Methane Reformer, 100 2. Steam Methane Reformer, 1000 3.100 # of stations 1. Steam Methane Reformer 2. Steam Methane

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

120

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Alaska, with lower natural gas prices, on-peak electricitythe following reasons: Natural gas prices are based off 1998of the station Assumed natural gas price used by the author/

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

Alaska, with lower natural gas prices, on-peak electricitythe following reasons: Natural gas prices are based off 1998of the station Assumed natural gas price used by the author/

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

122

Noise impact evaluation of a power generating station and a refuse?derived fuel facility  

Science Conference Proceedings (OSTI)

Community noiseimpact assessment of a planned addition of refuse?derived fuel (RDF) facility adjacent to a fossil?fueled power plant was conducted using a computerized atmospheric sound propagation model. Close?in measurements of power plant operation and coal handling system were used for station input

V. M. Lee; W. L. Knoll

1979-01-01T23:59:59.000Z

123

Annular feed air breathing fuel cell stack  

DOE Patents (OSTI)

A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

Wilson, Mahlon S. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

124

Cape Canaveral Air Force Station integrated resource assessment. Volume 3, Resource assessment  

Science Conference Proceedings (OSTI)

The U.S. Air Force (USAF) has tasked the Pacific Northwest Laboratory (PNL) in support of the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Cape Canaveral Air Force Station (AFS). Projects considered can be either in the form of energy management or energy conservation. The overall efforts of this task are based on a model program PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at Cape Canaveral AFS, which is located approximately 10 miles north of Cocoa Beach, Florida. It is a companion report to Volume 1: Executive Summary and Volume 2: Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings, impacts on operations and maintenance (O&M), and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. Descriptions of the evaluation methodologies and technical and cost assumptions are also provided for each ERO. Summary tables present the cost- effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis, indicating the net present value (NPV) and savings-to-investment ratio (SIR) of each ERO.

Sandusky, W.F.; Eichman, C.J.; King, D.A.; McMordie, K.L.; Parker, S.A.; Shankle, S.A.; Wahlstrom, R.R.

1994-03-01T23:59:59.000Z

125

Help Design the Hydrogen Fueling Station of Tomorrow | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Make Your Mark in the 2011 Hydrogen Student Design Contest A hydrogen-powered Toyota Prius pulls up to Humboldt State University's student designed hydrogen fueling...

126

Where the Rubber Meets the Road -- the Alternative Fuel Station Locator |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Where the Rubber Meets the Road -- the Alternative Fuel Station Where the Rubber Meets the Road -- the Alternative Fuel Station Locator Where the Rubber Meets the Road -- the Alternative Fuel Station Locator August 10, 2010 - 2:32pm Addthis Dennis A. Smith Director, National Clean Cities Last week, this blog highlighted the highly efficient vehicles competing for the Automotive X Prize. The innovative designs on display in that competition may very well reflect the future of the auto industry, but there are many alternative vehicles already on the road, actively doing their part to cut emissions and improve efficiency. By decreasing the amount of petroleum we use for transportation and running our vehicles on alternative fuels, we can improve our country's social, economic, and environmental sustainability. However, those of us that drive

127

Experiences from Ethanol Buses and Fuel Station Report - La Spezia | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - La Spezia Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary Name: Experiences from Ethanol Buses and Fuel Station Report - La Spezia Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report summarizes the introduction and utilization of E95 buses and E95 pumps in the region of La Spezia (Italy) within the framework of the BioEthanol for Sustainable Transport (BEST) project. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

128

Nuclear tanker producing liquid fuels from air and water  

E-Print Network (OSTI)

Emerging technologies in CO? air capture, high temperature electrolysis, microchannel catalytic conversion, and Generation IV reactor plant systems have the potential to create a shipboard liquid fuel production system ...

Galle-Bishop, John Michael

2011-01-01T23:59:59.000Z

129

Synthetic fuel concept to steal CO2 from air  

NLE Websites -- All DOE Office Websites (Extended Search)

concept, called Green Freedom(tm), for large-scale production of carbon-neutral, sulfur-free fuels and organic chemicals from air and water. February 12, 2008 Los Alamos National...

130

Effect of Intake Air Filter Condition on Vehicle Fuel Economy  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2009-02-01T23:59:59.000Z

131

Assessing Air Pollution Control Options at the Hudson Station of Public Service Electric and Gas  

Science Conference Proceedings (OSTI)

This report presents the results of a pilot-scale assessment of air pollutant emission control options at the Hudson Generating Station of Public Service Electric and Gas (PSE&G). Tests over a period of a year and a half evaluated the capabilities of a high air-to-cloth ratio pulse jet baghouse (COHPAC) in controlling particulates, acid gases, and mercury and a tubular electrostatic precipitator (ESP) in controlling mercury emissions.

1998-10-30T23:59:59.000Z

132

Annular feed air breathing fuel cell stack  

DOE Patents (OSTI)

A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

Wilson, Mahlon S. (Los Alamos, NM); Neutzler, Jay K. (Peoria, AZ)

1997-01-01T23:59:59.000Z

133

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION  

DOE Green Energy (OSTI)

During the period January 1, 2001-March 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) finalized the engineering of the Willow Island cofiring project, completed the fuel characterizations for both the Willow Island and Albright Generating Station projects, and initiated construction of both projects. Allegheny and its contractor, Foster Wheeler, selected appropriate fuel blends and issued purchase orders for all processing and mechanical equipment to be installed at both sites. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The third quarter of the project involved completing the detailed designs for the Willow Island Designer Fuel project. It also included complete characterization of the coal and biomass fuels being burned, focusing upon the following characteristics: proximate and ultimate analysis; higher heating value; carbon 13 nuclear magnetic resonance testing for aromaticity, number of aromatic carbons per cluster, and the structural characteristics of oxygen in the fuel; drop tube reactor testing for high temperature devolatilization kinetics and generation of fuel chars; thermogravimetric analyses (TGA) for char oxidation kinetics; and related testing. The construction at both sites commenced during this quarter, and was largely completed at the Albright Generating Station site.

K. Payette; D. Tillman

2001-04-01T23:59:59.000Z

134

A Field Study on Residential Air Conditioning Peak Loads During Summer in College Station, Texas  

E-Print Network (OSTI)

Severe capacity problems are experienced by electric utilities during hot summer afternoons. Several studies have found that, in large part, electric peak loads can be attributed to residential airconditioning use. This air-conditioning peak depends primarily on two factors: (i) the manner in which the homeowner operates his air-conditioner during the hot summer afternoons, and (ii) the amount by which the air-conditioner has been over-designed. Whole-house and air-conditioner electricity use data at 15 minute time intervals have been gathered and analyzed for 8 residences during the summer of 1991, six of which had passed the College Station Good Cents tests. Indoor air temperatures were measured by a mechanical chart recorder, while a weather station located on the main campus of Texas A&M university provided the necessary climatic data, especially ambient temperature, relative humidity and solar radiation. The data were analysed to determine the extent to which air-conditioning over-sizing and homeowner intervention contributes to peak electricity use for newer houses in College Station, Texas.

Reddy, T. A.; Vaidya, S.; Griffith, L.; Bhattacharyya, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

135

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

DOE Green Energy (OSTI)

During the period July 1, 2003-September 30, 2003, Allegheny Energy Supply Co., LLC (Allegheny) proceeded with demonstration operations at the Willow Island Generating Station and improvements to the Albright Generating Station cofiring systems. The demonstration operations at Willow Island were designed to document integration of bio mass cofiring into commercial operations, including evaluating new sources of biomass supply. The Albright improvements were designed to increase the resource base for the projects, and to address issues that came up during the first year of operations. During this period, a major presentation summarizing the program was presented at the Pittsburgh Coal Conference. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations.

K. Payette; D. Tillman

2003-10-01T23:59:59.000Z

136

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

DOE Green Energy (OSTI)

During the period October 1, 2002--December 31, 2002, Allegheny Energy Supply Co., LLC (Allegheny) completed the first year of testing at the Willow Island cofiring project. This included data acquisition and analysis associated with certain operating parameters and environmental results. Over 2000 hours of cofiring operation were logged at Willow Island, and about 4,000 tons of sawdust were burned along with slightly more tire-derived fuel (TDF). The results were generally favorable. During this period, also, a new grinder was ordered for the Albright Generating Station to handle oversized material rejected by the disc screen. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the test results at Willow Island and summarizes the grinder program at Albright.

K. Payette; D. Tillman

2003-01-01T23:59:59.000Z

137

Influencing Factors on Energy Consumption of Air Conditioning System in Railway Passenger Station Based on Orthogonal Experiment  

Science Conference Proceedings (OSTI)

Orthogonal experiment was used to analyze the energy consumption of air conditioning system, which belongs to four typical passenger stations in four regions, including severe cold region, cold region, hot summer and cold winter region, hot summer and ... Keywords: Railway Passenger Station, Orthogonal Experiment, Air Conditioning Energy Consumption, Energy Conservation

Weiwu Ma; Liqing Li; Suoying He; Jia Cheng; Guijie Huang; Chenn Q. Zhou

2012-01-01T23:59:59.000Z

138

New DOE program to advance fuel cell central power stations  

SciTech Connect

Recent advances in technology have precipitated movement of fuel cells into the central power area in support of FutureGen (coal-based power plants with near-zero emissions). The idea is being implemented under the Fuel Cell Coal-Based Systems (FCCBS) programs. The Solid State Energy Conversion Alliance (SECA) programme has identified solid oxide fuel cell designs with the most promise for scale-up to central power applications. These could be aggregated into modules, and serve as building blocks for greater than 100 MW FutureGen-type plants. The FCCBS objective is to have a SECA SOFC-based power island that costs $400 kW and can enable 50% efficiency and 90% CO{sub 2} capture in a FutureGen plant by 2015. The project teams have been selected and the three phases of the FCCBS project identified. 3 figs.

NONE

2005-09-30T23:59:59.000Z

139

Fuel Cell Systems Sensors Air Management Benchmarking Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems F u e l P r o c e s s o r Sensors Air Management Benchmarking Modeling Patrick Davis Patrick Davis Targets and Status 50 kWe (net) Integrated Fuel Cell Power System 5000 2000 1000 Hours Durability 45 125 275 $/kW Cost (including H2 storage) 650 500 400 W/L Power density (w/o H2 stor) Operating on direct hydrogen 5000 2000 1000 Hours Durability 45 125 325 $/kW Cost 325 250 140 W/L Power density Operating on Tier 2 gasoline containing 30 ppm sulfur, average 2010 2005 2003 status Units Characteristics Projects Fuel Cell Power Systems Analysis ANL NREL TIAX Directed Technologies, Inc. TIAX TIAX * Fuel Cell Systems Analysis * Fuel Cell Vehicle Systems Analysis * Cost Analyses of Fuel Cell Stacks/ Systems * DFMA Cost Estimates of Fuel Cell/ Reformer Systems at Low, Medium, & High Production Rates * Assessment of Fuel Cell Auxiliary

140

Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report  

Science Conference Proceedings (OSTI)

An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

NONE

1995-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Guide for Identifying and Converting High-Potential Petroleum Brownfield Sites to Alternative Fuel Stations  

DOE Green Energy (OSTI)

Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.

Johnson, C.; Hettinger, D.; Mosey, G.

2011-05-01T23:59:59.000Z

142

Direct methanol/air fuel cells: Systems considerations  

DOE Green Energy (OSTI)

Successful operation of a direct methanol/air fuel cell system depends upon appropriate integration of the fuel cell components and accommodation of the need for heat and mass transfer within the system. The features of the system that must be considered separately and in an interactive fashion are: (1) the physical state of the fuel feed stream, (2) electrode characteristics, (3) characteristics of the electrolyte, (4) product water removal, (5) heat transfer into our out of the stack, and (6) methanol loss modes. The operating temperature and pressure will be determined, to a large extent, by these features. An understanding of the component features and their interactions is necessary for initial system considerations for direct methanol/air fuel cells.

Huff, J.R.

1990-01-01T23:59:59.000Z

143

On the Scheduling of Systems of UAVs and Fuel Service Stations for Long-Term Mission Fulfillment  

Science Conference Proceedings (OSTI)

The duration of missions that can be accomplished by a system of unmanned aerial vehicles (UAVs) is limited by the battery or fuel capacity of its constituent UAVs. However, a system of UAVs that is supported by automated refueling stations may support ... Keywords: Autonomous operation, Fuel service stations, Persistence, Unmanned aerial vehicle (UAV)

Jonghoe Kim; Byung Duk Song; James R. Morrison

2013-04-01T23:59:59.000Z

144

Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations  

NLE Websites -- All DOE Office Websites (Extended Search)

Targeting Net Zero Energy at Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations Samuel Booth, John Barnett, Kari Burman, Joshua Hambrick, Mike Helwig, and Robert Westby Technical Report NREL/TP-7A40-47991 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations Samuel Booth, John Barnett, Kari Burman, Joshua Hambrick, Mike Helwig, and

145

Air quality effects of alternative fuels. Final report  

DOE Green Energy (OSTI)

To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

1997-11-01T23:59:59.000Z

146

Air Shipment of Spent Nuclear Fuel from Romania to Russia  

SciTech Connect

Romania successfully completed the worlds first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

2010-10-01T23:59:59.000Z

147

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

DOE Green Energy (OSTI)

During the period October 1, 2001--December 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) completed construction of the Willow Island cofiring project. This included completion of the explosion proof electrical wiring, the control system, and the control software. Procedures for system checkout, shakedown, and initial operation were initiated during this period. During this time period the 100-hour test of the Albright Generating Station cofiring facility was completed. The testing demonstrated that cofiring at the Albright Generating Station could reliably contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions over a significant load range. During this period of time Allegheny Energy conducted facility tours of both Albright and Willow Island for the Biomass Interest Group of the Electric Power Research Institute. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the completion of construction activities at the Willow Island site along with the 100-hr test at the Albright site.

K. Payette; D. Tillman

2002-01-01T23:59:59.000Z

148

DESIGNING AND OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

DOE Green Energy (OSTI)

During the period July 1, 2000-March 31, 2004, Allegheny Energy Supply Co., LLC (Allegheny) conducted an extensive demonstration of woody biomass cofiring at its Willow Island and Albright Generating Stations. This demonstration, cofunded by USDOE and Allegheny, and supported by the Biomass Interest Group (BIG) of EPRI, evaluated the impacts of sawdust cofiring in both cyclone boilers and tangentially-fired pulverized coal boilers. The cofiring in the cyclone boiler--Willow Island Generating Station Unit No.2--evaluated the impacts of sawdust alone, and sawdust blended with tire-derived fuel. The biomass was blended with the coal on its way to the combustion system. The cofiring in the pulverized coal boiler--Albright Generating Station--evaluated the impact of cofiring on emissions of oxides of nitrogen (NO{sub x}) when the sawdust was injected separately into the furnace. The demonstration of woody biomass cofiring involved design, construction, and testing at each site. The results addressed impacts associated with operational issues--capacity, efficiency, and operability--as well as formation and control of airborne emissions such as NO{sub x}, sulfur dioxide (SO{sub 2}2), opacity, and mercury. The results of this extensive program are detailed in this report.

K. Payette; D. Tillman

2004-06-01T23:59:59.000Z

149

Aerodynamic effects on fuel spray characteristics: Air-assist atomizer  

SciTech Connect

Results are presented on the internal structure of a kerosene fuel spray, generated with an air-assist type nozzle. Effects of atomization air flow rate and combustion air swirl on droplet transport processes have been investigated. Spatially-resolved measurements have been obtained on mean droplet size, number density and velocity, at different combustion air swirl and atomization air flow rates. An ensemble light scattering technique, based on measurement of the polarization ratio, and laser velocimetry have been used for these measurements. The results indicate that as atomization air flow rate increases, the spray becomes confined to a narrower spray angle; in addition, mean droplet size decreases and number density increases significantly along the spray centerline. Larger droplets are found generally on the spray boundary, and smaller ones near the spray centerline. In all cases, there is a gradual increase in mean droplet size along the spray centerline with axial distance. Under burning conditions the flame plume becomes short and intense, with fewer droplets penetrating through the flame envelope. Combustion air swirl and atomization air have a significant effect on the transport of droplets and on combustion characteristics of spray flames. 20 refs., 9 figs.

Presser, C.; Semerjian, H.G.; Gupta, A.K.

1988-01-01T23:59:59.000Z

150

Dual-fueled taxis will ease air pollution problem in Tehran  

SciTech Connect

According to emissions tests of standard and converted taxis, CO, hydrocarbon NO/sub x/, and SO/sub 2/ air pollution in Tehran could be reduced by converting the 15,000 taxis in that city to dual-fuel systems which would permit the taxis to use gasoline or LPG. Complete conversion to LPG is impractical because of the lack of service stations dispersing it. Tehran, with a limited mass transit system, has a relatively high percentage of taxis among all gasoline-powered cars, and these taxis are responsible for about 25% of the vehicular air pollution, a figure which could be reduced to an estimated 7% by the conversion. The conversion to LPG would also be economical, since the price of gasoline has increased by 20% in Iran in the past two years and will probably continue to increase, but the price of LPG has remained almost constant.

Ebtekar, T.

1979-07-01T23:59:59.000Z

151

High performance metal/air fuel cells. Part 1. General review. [Li, Al, Ca, Cd, Mg  

SciTech Connect

Metal/air fuel cells are reviewed in terms of their potential application in electric vehicles. Attention is focused on those metals (light alkali and alkaline earth metals, and aluminum) which, in combination with oxygen, have theoretical energy densities (2--13 kWh/kg-metal) exceeding that of gasoline (utilized in automobiles at 2--3 kWh/kg). Lithium and aluminum have yielded 8- and 4 kWh/kg, respectively, in laboratory experimental cells. The slurry Zn/air system achieves 0.85 kWh/kg-Zn in prototype vehicle cells and is reviewed for comparison. Calcium can probably yield 1.8 kWh/kg-Ca, but its potential as a fuel has not yet been fully explored. The remaining metals appear to be unsuitable for use in aqueous electrolyte fuel cells. The discharge characteristics of lithium, aluminum, and (possibly) calcium/air cells indicate the potential for electric vehicles of the highway performance and minimum range (300 miles) of subcompact automobiles, rapid refueling for unlimited range extension, and the storage in the fuel cell of sufficient metal for ranges in excess of 1000 miles. Barriers to the concept are the economic necessity of recycling cell reaction products (except in the case of calcium), the expansion or creation of vast metal production industries, and the change-over of existing service station infrastructures to allow electric vehicle servicing. The energy efficiency of a transportation system using aluminum was estimated using data on the current aluminum production industry. The total estimated cost of ownership and operation of an aluminum/air cell was 3.0--3.6 cents/km. The relative rarity of lithium would complicate its use. 6 tables.

Cooper, J. F.

1977-08-15T23:59:59.000Z

152

Air-breathing fuel cell stacks for portable power applications  

DOE Green Energy (OSTI)

Increasing attention is being directed towards polymer electrolyte fuel cells as battery replacements because of their potentially superior energy densities and the possibility of `mechanical` refueling. On the low end of the power requirement scale (ca. 10 W), fuel cells can compete with primary and secondary batteries only if the fuel cell systems are simple, inexpensive, and reliable. Considerations of cost and simplicity (and minimal parasitic power) discourage the use of conventional performance enhancing subsystems (e.g., humidification, cooling, or forced-reactant flow). We are developing a stack design that is inherently self-regulating to allow effective operation without the benefit of such auxiliary components. The air cathode does not use forced flow to replenish the depleted oxygen. Instead, the oxygen in the air must diffuse into the stack from the periphery of the unit cells. For this reason the stack is described as `air-breathing.` This configuration limits the ability of water to escape which prevents the polymer electrolyte membranes from drying out, even at relatively high continuous operation temperatures (+60 degrees C). This results in stacks with reliable and stable performance. This air-breathing configuration assumes a unique stack geometry that utilizes circular flow-field plates with an annular hydrogen feed manifold and the single tie-bolt extending up through the central axis of the stack. With this geometry, the hydrogen supply to the unit cells is radially outward, and the air supply is from the periphery inward. This configuration has several advantages. The entire periphery is free to air access and allows greater heat conduction to enhance cooling. Furthermore, all of the components in the stack (e.g., the flow-fields, seals and membrane/electrode assemblies), are radially symmetrical, so part fabrication is simple and the entire system is potentially low-cost. Lastly, this configuration is compact and lightweight.

Wilson, M.S.; DeCaro, D.; Neutzler, J.K.; Zawodzinski, C.; Gottesfeld, S.

1996-10-01T23:59:59.000Z

153

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION  

DOE Green Energy (OSTI)

During the period October 1, 2000 - December 31, 2000, Allegheny Energy Supply Co., LLC (Allegheny) executed a Cooperative Agreement with the National Energy Technology Laboratory to implement a major cofiring demonstration at the Willow Island Generating Station Boiler No.2. Willow Island Boiler No.2 is a cyclone boiler. Allegheny also will demonstrate separate injection cofiring at the Albright Generating Station Boiler No.3, a tangentially fired boiler. The Allegheny team includes Foster Wheeler as its primary subcontractor. Additional subcontractors are Cofiring Alternatives and N.S. Harding and Associates. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. The second quarter of the project involved completing the designs for each location. Further, geotechnical investigations proceeded at each site. Preparations were made to perform demolition on two small buildings at the Willow Island site. Fuels strategies were initiated for each site. Test planning commenced for each site. A groundbreaking ceremony was held at the Willow Island site on October 18, with Governor C. Underwood being the featured speaker.

K. Payette; D. Tillman

2001-01-01T23:59:59.000Z

154

Experimental Study of Air-Fuel Ratio Control Strategy for a Hydrogen Internal Combustion Engine  

Science Conference Proceedings (OSTI)

One of the most attractive combustive features for hydrogen fuel is its wide range of flammability. The wide flammability limits allow hydrogen engine to be operated at extremely lean airfuel ratios compared to conventional fuels. Concepts for ... Keywords: Hydrogen internal combustion engine, Air/Fuel ratio, Control strategy

Zhong-yu Zhao; Fu-shui Liu

2010-11-01T23:59:59.000Z

155

Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air  

SciTech Connect

The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

Cunningham, M.E.; Thomas, L.E.

1995-06-01T23:59:59.000Z

156

Cost of Adding E85 Fuel Capability to Existing Gasoline Stations: NREL Survey and Literature Search (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: NREL Survey and Literature Search The cost of purchasing and installing E85 fueling equip- ment varies widely, yet station owners need to have an idea of what to expect when budgeting or reviewing bids for this upgrade. The purpose of this document is to provide a framework for station owners to assess what a reason- able cost would be. This framework was developed by the National Renewable Energy Laboratory (NREL) by surveying actual costs for stations, conducting a literature search, not- ing the major cost-affecting variables, addressing anomalies in the survey, and projecting changes in future costs. The findings of NREL's survey and literature search are shown in the table below. This table divides the study's

157

Low-friction coatings for air bearings in fuel cell air compressors  

DOE Green Energy (OSTI)

In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the US Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. The authors present here an evaluation of the Argonne coating for air compressor thrust bearings. With two parallel 440C stainless steel discs in unidirectional sliding contact, the NFC reduced the frictional force four times and the wear rate by more than two orders of magnitude. Wear mechanism on the uncoated surface involved oxidation and production of iron oxide debris. Wear occurred on the coated surfaces primarily by a polishing mechanism.

Ajayi, O. O.; Fenske, G. R.; Erdemir, A.; Woodford, J.; Sitts, J.; Elshot, K.; Griffey, K.

2000-01-06T23:59:59.000Z

158

Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission  

DOE Patents (OSTI)

An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

Kostiuk, Larry W. (Edmonton, CA); Cheng, Robert K. (Kensington, CA)

1996-01-01T23:59:59.000Z

159

Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

160

Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

162

Alternative Fuels Data Center: Oregon Laws and Incentives for Air Quality /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

163

Alternative Fuels Data Center: Arizona Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

164

Alternative Fuels Data Center: Federal Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

165

Alternative Fuels Data Center: Maryland Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

166

Alternative Fuels Data Center: Utah Laws and Incentives for Air Quality /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

167

Alternative Fuels Data Center: New Hampshire Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: New Hampshire Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section...

168

Alternative Fuels Data Center: New Mexico Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search

169

Alternative Fuels Data Center: New Jersey Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search

170

Alternative Fuels Data Center: New York Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

171

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal

172

Alternative Fuels Data Center: Ohio Laws and Incentives for Air Quality /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

173

Alternative Fuels Data Center: Illinois Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

174

Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts (Revised), Energy Analysis, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Navajo Generating Station Navajo Generating Station Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts David J. Hurlbut, Scott Haase, Gregory Brinkman, Kip Funk, Rachel Gelman, Eric Lantz, Christina Larney, David Peterson, Christopher Worley National Renewable Energy Laboratory Ed Liebsch HDR Engineering, Inc. Prepared under Task No. WFJ5.1000 Technical Report NREL/TP-6A20-53024 * Revised March 2012 Contract No. DE-AC36-08G028308 Produced under direction of the U.S. Department of the Interior by the National Renewable Energy Laboratory (NREL) under Interagency Agreement R11PG30024 and Task No. WFJ5.1000. ERRATA SHEET NREL REPORT/PROJECT NUMBER: NREL/TP-6A20-53024 DOE NUMBER: N/A TITLE: Navajo Generating Station and Air Visibility Regulations: Alternatives and

175

No loss single line fueling station for liquid natural gas vehicles  

Science Conference Proceedings (OSTI)

A no loss fueling station is described for delivery of liquid natural gas (LNG) to a fuel tank of a use device such as a motor vehicle, comprising: (a) a pressure building tank holding a quantity of LNG and a natural gas head; (b) first means for selectively building the pressure and temperature in the pressure building tank; (c) second means for selectively reducing the pressure and temperature in the pressure building tank; (d) means for controlling the first and second means to maintain a desired pressure and temperature in the pressure building tank without venting natural gas to the atmosphere; and (e) means for delivering LNG from the pressure building tank to the use device.

Cieslukowski, R.E.

1993-08-03T23:59:59.000Z

176

The real air quality benefits of gaseous-fueled vehicles.  

SciTech Connect

This paper provides a justification for prominent inclusion of currently available gaseous-fueled vehicles (i.e., vehicles powered by propane, sometimes called liquefied petroleum gas [LPG], or natural gas--chiefly, methane--stored onboard the vehicle in gaseous or liquid state but combusted as a gas) in the mix of strategies to (a) reduce public exposure to toxic and fine particulate emissions in the urbanized areas of the developing world and (b) achieve local and regional improvements in ozone air quality. It also presents estimates of associated emission reduction credits into the future. Important considerations discussed are the location of fine particle and toxic emissions in congested urban areas, and the location and timing of ozone precursor emissions, with emphasis on how gaseous-fueled vehicles' role in the relationship among and magnitude of these variables differs from that of their conventionally-fueled counterparts. Efforts to enhance the measurement and quantification of gaseous-fuel benefits are also described.

Saricks, C. L.

2002-03-28T23:59:59.000Z

177

Apparatus for controlling the air-fuel ratio in an internal combustion engine  

Science Conference Proceedings (OSTI)

Apparatus for controlling the air-fuel ratio in an internal combustion engine to substantially maintain the ratio at a predetermined value while the engine is operating under various load conditions. The engine has a carburetor with an air passageway through which air is drawn into the engine. Fuel is supplied to the carburetor through a fuel system and mixed with air passing through the carburetor. The presence of oxygen in the combustion products, which is a function of the air-fuel ratio of the mixture, is sensed and a first electrical signal representative of the oxygen content is supplied. The first electrical signal is compared with a predetermined reference level which is a function of the predetermined value to produce a second electrical signal having first and second signal elements, a first signal element being produced when the air-fuel ratio of the mixture is greater than the predetermined level and a second signal element being produced when the ratio is less than the level. A control responsive to the second electrical signal supplies to an air metering unit a control signal by which the quantity of air introduced into the fuel system is controlled. A change in the control signal is produced whenever the second electrical signal has a transition from one signal element to the other thereby for the air metering unit to change the quantity of air introduced into the fuel system conduit by an amount necessary to substantially maintain the air-fuel ratio at the predetermined value.

Gantzert, T.R.; Hicks, D.L.; Lindberg, A.W.

1981-07-21T23:59:59.000Z

178

Application of neural network for air-fuel ratio identification in spark ignition engine  

Science Conference Proceedings (OSTI)

In the present work, Recurrent Neural Network (RNN) is used for Air-Fuel Ratio (AFR) identification in Spark Ignition (SI) engine. AFR identification is difficult due to nonlinear and dynamic behaviour of SI engines. Delays present in the engine ... Keywords: AFR sensors, RNNs, air-fuel ratio control, air-fuel ratio sensors, engine modelling, recurrent neural networks, simulation, spark ignition engines, virtual sensors

Samir Saraswati; Satish Chand

2008-10-01T23:59:59.000Z

179

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

DOE Green Energy (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

180

Flame holding tolerant fuel and air premixer for a gas turbine combustor  

Science Conference Proceedings (OSTI)

A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

2012-11-20T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Targeting Net Zero Energy at Marine Corps Air Station Miramar: Assessment and Recommendations  

Science Conference Proceedings (OSTI)

The U.S. Department of Defense (DoD) is the largest energy consumer in the U.S. government. Present energy use impacts DoD global operations by constraining freedom of action and self-sufficiency, demanding enormous economic resources, and putting many lives at risk in logistics support for deployed environments. There are many opportunities for DoD to more effectively meet energy requirements through a combination of human actions, energy efficiency technologies, and renewable energy resources. In 2008, a joint initiative was formed between DoD and the U.S. Department of Energy (DOE) to address military energy use. This initiative created a task force comprised of representatives from each branch of the military, the Office of the Secretary of Defense (OSD), the Federal Energy Management Program (FEMP), and the National Renewable Energy Laboratory (NREL) to examine the potential for ultra high efficiency military installations. This report presents an assessment of Marine Corps Air Station (MCAS) Miramar, selected by the task force as the initial prototype installation based on its strong history of energy advocacy and extensive track record of successful energy projects.

Booth, S.; Barnett, J.; Burman, K.; Hambrick, J.; Helwig, M.; Westby, R.

2010-12-01T23:59:59.000Z

182

California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing and Station Car Strategies  

E-Print Network (OSTI)

of first-generation electric cars. Although shared use isfor instance in the electric station car programs of thewas a series of electric station car programs launched in

Shaheen, Susan; Sperling, Dan; Wright, John

2004-01-01T23:59:59.000Z

183

California's Zero Emission Vehicle Mandate - Linking Clean Fuel Cars, Carsharing, and Station Car Strategies  

E-Print Network (OSTI)

of first- generation electric cars. While shared use is thefor instance in the electric station car programs of thewas a series of electric station car programs launched in

Shaheen, Susan; Wright, John; Sperling, Daniel

2001-01-01T23:59:59.000Z

184

Enhanced model and fuzzy strategy of air to fuel ratio control for spark ignition engines  

Science Conference Proceedings (OSTI)

Various mathematical models for the air to fuel ratio and control for spark ignition (SI) engines have been proposed to satisfy technical specifications. This paper reveals an improvement of the mean value model (MVEM) and a simple yet effective nonlinear ... Keywords: Air-fuel ratio, FOPDDT, Fuzzy control, Internal combustion, Nonlinear control

Anurak Jansri; Pitikhate Sooraksa

2012-09-01T23:59:59.000Z

185

Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint  

Science Conference Proceedings (OSTI)

The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

Melaina, M.; Bremson, J.; Solo, K.

2013-01-01T23:59:59.000Z

186

DOE Hydrogen and Fuel Cells Program Record 8013: Air Quality...  

NLE Websites -- All DOE Office Websites (Extended Search)

18, 2008 Title: Air Quality and Population Update to: Record 5017 Originator: Tien Nguyen Approved by: Sunita Satyapal Date: November 19, 2008 Item: "Air quality is a major...

187

AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA  

SciTech Connect

In June 2009 Romania successfully completed the worlds first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

2010-07-01T23:59:59.000Z

188

California's Zero Emission Vehicle Mandate - Linking Clean Fuel Cars, Carsharing, and Station Car Strategies  

E-Print Network (OSTI)

of the San Francisco Bay Area Station-Car Demonstration. InCarsharing, Station Cars, and Combined Approaches. Inpp. 84-94. Muheim, P. and Partner. Car Sharing Studies: An

Shaheen, Susan; Wright, John; Sperling, Daniel

2001-01-01T23:59:59.000Z

189

California's Zero-Emission Vehicle Mandate: Linking Clean-Fuel Cars, Carsharing and Station Car Strategies  

E-Print Network (OSTI)

the Saint-Quentin Station Car Experiment. In TransportationFrancisco Bay Area Station-Car Demonstration. In Transporta-Untersuchung der Eignung von Car-Sharing im Hinblick auf die

Shaheen, Susan; Sperling, Dan; Wright, John

2004-01-01T23:59:59.000Z

190

Analysis of operating alternatives for the Naval Computer and Telecommunications Station Cogeneration Facility at Naval Air Station North Island, San Diego, California  

SciTech Connect

The Naval Facilities Engineering Command Southwestern Division commissioned Pacific Northwest Laboratory (PNL), in support of the US Department of Energy (DOE) Federal Energy Management Program (FEMP), to determine the most cost-effective approach to the operation of the cogeneration facility in the Naval Computer and Telecommunications Station (NCTS) at the Naval Air Station North Island (NASNI). Nineteen alternative scenarios were analyzed by PNL on a life-cycle cost basis to determine whether to continue operating the cogeneration facility or convert the plant to emergency-generator status. This report provides the results of the analysis performed by PNL for the 19 alternative scenarios. A narrative description of each scenario is provided, including information on the prime mover, electrical generating efficiency, thermal recovery efficiency, operational labor, and backup energy strategy. Descriptions of the energy and energy cost analysis, operations and maintenance (O&M) costs, emissions and related costs, and implementation costs are also provided for each alternative. A summary table presents the operational cost of each scenario and presents the result of the life-cycle cost analysis.

Parker, S.A.; Carroll, D.M.; McMordie, K.L.; Brown, D.R.; Daellenbach, K.K.; Shankle, S.A.; Stucky, D.J.

1993-12-01T23:59:59.000Z

191

Implementation plan for operating alternatives for the Naval Computer and Telecommunications Station cogeneration facility at Naval Air Station North Island, San Diego, California  

SciTech Connect

The goal of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to facilitate energy efficiency improvements at federal facilities. This is accomplished by a balanced program of technology development, facility assessment, and use of cost-sharing procurement mechanisms. Technology development focuses upon the tools, software, and procedures used to identify and evaluate energy efficiency technologies and improvements. For facility assessment, FEMP provides metering equipment and trained analysts to federal agencies exhibiting a commitment to improve energy use efficiency. To assist in procurement of energy efficiency measures, FEMP helps federal agencies devise and implement performance contracting and utility demand-side management strategies. Pacific Northwest Laboratory (PNL) supports the FEMP mission of energy systems modernization. Under this charter, the Laboratory and its contractors work with federal facility energy managers to assess and implement energy efficiency improvements at federal facilities nationwide. The SouthWestern Division of the Naval Facilities Engineering Command, in cooperation with FEMP, has tasked PNL with developing a plan for implementing recommended modifications to the Naval Computer and Telecommunications Station (NCTS) cogeneration plant at the Naval Air Station North Island (NASNI) in San Diego. That plan is detailed in this report.

Carroll, D.M.; Parker, S.A.; Stucky, D.J.

1994-04-01T23:59:59.000Z

192

Air feed tube support system for a solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

Doshi, Vinod B. (Monroeville, PA); Ruka, Roswell J. (Pittsburgh, PA); Hager, Charles A. (Zelienople, PA)

2002-01-01T23:59:59.000Z

193

Controlled air injection for a fuel cell system  

DOE Patents (OSTI)

A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

Fronk, Matthew H. (Honeove Falls, NY)

2002-01-01T23:59:59.000Z

194

COMBINED FUEL AND AIR STAGED POWER GENERATION SYSTEM - Energy ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic;

195

Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

highest potential to save aviation fuel. highest potential to save aviation fuel. All MAF personnel are encouraged to propose fuel savings ideas. These ideas are then processed as initiatives, assigned a primary point of contact, and routed through an analysis process to prepare the initiative for presenta- tion to the Air Force's corporate structure. The corporate structure then evaluates and determines the initiatives with the highest potential fuel savings. Fuel-saving efforts focus on six major areas: policy, planning, execution, maintenance, science and technology, and fuel-efficient aircraft systems. The MAF also established a predetermined set of fuel-savings metrics and required reporting. In fiscal year 2011, implemented fuel initiatives saved the MAF more than 42 million gallons of aviation fuel in both

196

Air System Management for Fuel Cell Vehicle Applications  

E-Print Network (OSTI)

Fuel Cells II, Edited by S. Gottesfeld et al. , Electrochemical Society, Pennington, NJ,Fuel Cells II, Edited by S. Gottesfeld et al. , Electrochemical Society, Pennington, NJ,Fuel Cells II, Edited by S. Gottesfeld et al. , Electrochemical Society, Pennington, NJ,

Cunningham, Joshua M

2001-01-01T23:59:59.000Z

197

The design of a microfabricated air electrode for liquid electrolyte fuel cells  

E-Print Network (OSTI)

In this dissertation, the microfabricated electrode (MFE) concept was applied to the design of an air electrode for liquid electrolyte fuel cells. The catalyst layer of the electrode is envisioned to be fabricated by using ...

Pierre, Fritz, 1977-

2007-01-01T23:59:59.000Z

198

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint  

DOE Green Energy (OSTI)

A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

Rugh, J.

2010-02-01T23:59:59.000Z

199

Guidelines for Fuel Gas Line Cleaning Using Compressed Air or Nitrogen  

Science Conference Proceedings (OSTI)

This document lays a foundation for helping the industry to better understand common practices, design basis, and issues to consider for performing fuel gas line cleaning using compressed air or nitrogen pneumatic blow processes.

2011-12-14T23:59:59.000Z

200

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design Handbook for Fossil-Fueled Electric Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fifth EPRI ergonomics handbook; it provides a framework and specific guidelines for decisionmaking that will apply ergonomic principles to the design of electric generating stations. Fossil-fueled power plant operation and maintenance is physically strenuous, and it may contribute to development of musculoskeletal disorders (MSDs) such as carp...

2008-03-11T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage  

E-Print Network (OSTI)

the importance of fuel availability to choice of alternativeof adequate refueling availability for AFVs. Referenceslocate/enpol Refueling availability for alternative fuel

Melaina, Marc W; Bremson, Joel

2008-01-01T23:59:59.000Z

202

Potential impacts on air quality of the use of ethanol as an alternative fuel. Final report  

DOE Green Energy (OSTI)

The use of ethanol/gasoline mixtures in motor vehicles has been proposed as an alternative fuel strategy that might improve air quality while minimizing US dependence on foreign oil. New enzymatic production methodologies are being explored to develop ethanol as a viable, economic fuel. In an attempt to reduce urban carbon monoxide (CO) and ozone levels, a number of cities are currently mandating the use of ethanol/gasoline blends. However, it is not at all clear that these blended fuels will help to abate urban pollution. In fact, the use of these fuels may lead to increased levels of other air pollutants, specifically aldehydes and peroxyacyl nitrates. Although these pollutants are not currently regulated, their potential health and environmental impacts must be considered when assessing the impacts of alternative fuels on air quality. Indeed, formaldehyde has been identified as an important air pollutant that is currently being considered for control strategies by the State of California. This report focuses on measurements taken in Albuquerque, New Mexico during the summer of 1993 and the winter of 1994 as an initial attempt to evaluate the air quality effects of ethanol/gasoline mixtures. The results of this study have direct implications for the use of such fuel mixtures as a means to reduce CO emissions and ozone in a number of major cities and to bring these urban centers into compliance with the Clean Air Act.

Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

203

Method and apparatus for controlling fuel/air mixture in a lean burn engine  

DOE Patents (OSTI)

The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

Kubesh, John Thomas (San Antonio, TX); Dodge, Lee Gene (San Antonio, TX); Podnar, Daniel James (San Antonio, TX)

1998-04-07T23:59:59.000Z

204

Technical and economic feasibility analysis of the no-fuel compressed air energy storage concept  

DOE Green Energy (OSTI)

The principal goal of this study was to evaluate the technical and economic feasibility of no-fuel compressed air energy storage (CAES) concepts for utility peaking applications. The analysis uncovered no insurmountable problems to preclude the technical feasibility of the no-fuel CAES concept. The results of the economic analysis are sufficiently unfavorable to conclude that no-fuel CAES technology could not compete with conventional CAES or standard gas turbine peaking facilities for conditions foreseeable at this time.

Kreid, D.K.

1976-05-01T23:59:59.000Z

205

Interim results from UO/sub 2/ fuel oxidation tests in air  

Science Conference Proceedings (OSTI)

An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO/sub 2/, fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO/sub 2/ pellets in the temperature range of 135 to 250/sup 0/C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10/sup 5/ R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10/sup 5/ R/h gamma field. 33 refs., 51 figs., 6 tabs.

Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j

1987-08-01T23:59:59.000Z

206

Air-Breathing Fuel Cell Stack - Energy Innovation Portal  

LANL has developed a fuel cell for portable power applications in laptop computers, toys, and other appliances with low-power demand.

207

Air breathing direct methanol fuel cell - Energy Innovation Portal  

Solar Photovoltaic; Solar Thermal; Startup America; Vehicles and Fuels; ... The Regents of the University of California (Los Alamos, NM) Application Number: 09/ 713,149:

208

Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers  

DOE Patents (OSTI)

A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

Tuttle, Kenneth L. (Federal Way, WA)

1980-01-01T23:59:59.000Z

209

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Plant Operators and Mechanics in Fossil-Fueled Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Committee Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the sixth EPRI ergonomics handbook; it specifically focuses on tasks performed by plant operators and mechanics working in fossil-fueled generating stations and also addresses some tasks performed by steam services technicians. Fossil-fueled generating station operational and mechanical work is physically strenuous and can expose workers...

2008-12-15T23:59:59.000Z

210

Installation of 200 kW UTC PC-25 Natural Gas Fuel Cell At City of Anaheim Police Station  

DOE Green Energy (OSTI)

The City of Anaheim Public Utilities Department (Anaheim) has been providing electric service to Anaheim residents and businesses for over a century. As a city in a high-growth region, identifying sources of reliable energy to meet demand is a constant requirement. Additionally, as more power generation is needed, locating generating stations locally is a difficult proposition and must consider environmental and community impacts. Anaheim believes benefits can be achieved by implementing new distributed generation technologies to supplement central plants, helping keep pace with growing demand for power. If the power is clean, then it can be delivered with minimal environmental impact. Anaheim started investigating fuel cell technology in 2000 and decided a field demonstration of a fuel cell power plant would help determine how the technology can best serve Anaheim. As a result, Anaheim completed the project under this grant as a way to gain installation and operating experience about fuel cells and fuel cell capabilities. Anaheim also hopes to help others learn more about fuel cells by providing information about this project to the public. Currently, Anaheim has hosted a number of requested tours at the project site, and information about the project can be found on Anaheim Public Utilities RD&D Project website. The Anaheim project was completed in four phases including: research and investigation, purchase, design, and construction. The initial investigative phase started in 2000 and the construction of the project was completed in February 2005. Since acceptance and startup of the fuel cell, the system has operated continuously at an availability of 98.4%. The unit provides an average of about 4,725 kilowatthours a day to the Utilities' generation resources. Anaheim is tracking the operation of the fuel cell system over the five-year life expectancy of the fuel stack and will use the information to determine how fuel cells can serve Anaheim as power generators.

Dina Predisik

2006-09-15T23:59:59.000Z

211

The Navy seeks to identify responsible sources and obtain information in regard to purchasing renewable power for Naval Air Station (NAS) Fallon, located in Fallon, NV  

NLE Websites -- All DOE Office Websites (Extended Search)

REQUEST FOR INFORMATION (RFI) for Renewable Generation REQUEST FOR INFORMATION (RFI) for Renewable Generation Opportunities at NAWS China Lake, NAS Fallon, MCAGCC 29 Palms, and MCAS Yuma The Department of Navy (DoN) intends to issue a Request for Proposal (RFP) in early 2009 for renewable energy generation opportunities at Naval Air Weapons Station (NAWS) China Lake, California; Naval Air Station (NAS) Fallon, Nevada; Marine Corps Air Ground Combat Center (MCAGCC) Twentynine Palms, California, and Marine Corps Air Station (MCAS) Yuma, Arizona. The DoN will consider opportunities for the purchase of renewable power, developer wholesale generation, distributed generation, and the combination of those opportunities. Specifically, the Navy will provide Government land on these installations for large

212

Sensor and Electronic Biases/Errors in Air Temperature Measurements in Common Weather Station Networks  

Science Conference Proceedings (OSTI)

The biases of four commonly used air temperature sensors are examined and detailed. Each temperature transducer consists of three components: temperature sensing elements, signal conditioning circuitry, and corresponding analog-to-digital ...

X. Lin; K. G. Hubbard

2004-07-01T23:59:59.000Z

213

Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning  

SciTech Connect

GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

None

2010-09-13T23:59:59.000Z

214

Estimation of Fuel Savings by Recuperation of Furnace Exhausts to Preheat Combustion Air  

E-Print Network (OSTI)

The recovery of waste energy in furnace exhaust gases is gaining in importance as fuel costs continue to escalate. Installation of a recuperator in the furnace exhaust stream to preheat the combustion air can result in considerable savings in fuel usage. These savings are primarily the result of the sensible heat increase of the combustion air and, to some extent, improved combustion efficiency. The amount of fuel saved will depend on the exhaust gas temperature, amount of excess air used, the type of burner and the furnace control system. These fuel savings may be accurately measured by metering the energy consumption per unit of production before and after installation of the recuperator. In the design of a waste heat recuperation system, it is necessary to be able to estimate the fuel saved by use of such a system. Standard industrial practice refers to the method described in the North American Combustion Handbook with its curves and tables that directly predict the percentage fuel savings. This paper analyzes the standard estimation technique and suggests a more realistic approach to calculation of percent fuel savings. Mass and enthalpy balances are provided for both methods and a typical furnace recuperation example is detailed to illustrate the differences in the two methods of calculating the percent energy saved.

Rebello, W. J.; Kohnken, K. H.; Phipps, H. R., Jr.

1980-01-01T23:59:59.000Z

215

AIR POLLUTION CONTROL TECHNOLOGY DEVELOPMENT WASTE-AS-FUEL PROCESSES  

E-Print Network (OSTI)

stream char acterization for co-firing RDF and coal as perti nent to the progress of the study to date TECHNOLOGIES There are three primary thermal waste-as-fuel technologies described below: (1) co-firing of an RDF suit able for co-firing. In most instances there is little or no preprocessing associated

Columbia University

216

Next Generation H2 Station Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Sam Sprik (Primary Contact), Keith Wipke, Todd Ramsden, Chris Ainscough, Jen Kurtz National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4431 Email: sam.sprik@nrel.gov DOE Manager HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Collect data from state-of-the-art hydrogen (H2) fueling * facilities, such as those funded by the California Air Resources Board (CARB), to enrich the analyses and composite data products (CDPs) on H2 fueling originally established by the Learning Demonstration project.

217

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location at NAS Oceana. Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, office buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) efficiency, efficient lighting retrofits, and other water conservation measures. These other water conservation measures include over 5,000 water efficient domestic fixtures, includ- ing faucets, showerheads, and toilets

218

Boiler Upgrades and Decentralizing Steam Systems Save Water and Energy at Naval Air Station Oceana  

NLE Websites -- All DOE Office Websites (Extended Search)

Location at NAS Oceana. Location at NAS Oceana. by these changes, including bachelor housing, hangers, the galley, office buildings, the chapel, and maintenance facilities. This ESPC also included installing ground source heat pumps in three buildings, adding digital control systems to increase heating, ventilation and air conditioning (HVAC) efficiency, efficient lighting retrofits, and other water conservation measures. These other water conservation measures include over 5,000 water efficient domestic fixtures, includ- ing faucets, showerheads, and toilets

219

Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle  

DOE Green Energy (OSTI)

At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

220

NREL Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy (Fact Sheet)  

DOE Green Energy (OSTI)

A 2008 report from the Defense Science Board concluded that critical missions at military bases are facing unacceptable risks from extended power losses. A first step in addressing this concern is to establish military bases that can produce as much energy as they use over the course of a year, a concept known as a "net zero energy installation" (NZEI). The National Renewable Energy Laboratory (NREL) has helped the U.S. Marine Corps Air Station (MCAS) Miramar, located north of San Diego, California, as it strives to achieve its NZE goal. In conjunction with the U.S. Department of Energy's Federal Energy Management Program (FEMP), NREL partnered with MCAS Miramar to standardize processes and create an NZEI template for widespread replication across the military.

Not Available

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Superfund record of decision (EPA Region 9): Yuma Marine Corps Air Station, Operable Unit 2, Yuma, AZ, December 2, 1997  

SciTech Connect

This Record of Decision (ROD) for Operable Unit (OU2) documents the remedial action plan for OU2 at Marine Corps Air Station (MCAS), Yuma, Arizona. On the basis of the data collected at the OU2 sites, no further action is necessary for 12 of the 18 CAOCs included in OU2, because these sites do not pose a threat to human health or the environment. However, remedial action is required to protect human health and comply with regulatory requirements at three of the CAOCs in OU2 because of the presence of ACM. Under this alternative, ACM fragment visible on soil surfaces would be collected manually. Collection would include removing approximately the upper inch of soil beneath the ACM to reduce the potential for asbestos fibers remaining behind in the soil. The ACM and soils would be stockpiled, manifested, loaded, transported, and disposed of at a permitted facility.

NONE

1998-10-01T23:59:59.000Z

222

NREL Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy (Fact Sheet)  

SciTech Connect

A 2008 report from the Defense Science Board concluded that critical missions at military bases are facing unacceptable risks from extended power losses. A first step in addressing this concern is to establish military bases that can produce as much energy as they use over the course of a year, a concept known as a "net zero energy installation" (NZEI). The National Renewable Energy Laboratory (NREL) has helped the U.S. Marine Corps Air Station (MCAS) Miramar, located north of San Diego, California, as it strives to achieve its NZE goal. In conjunction with the U.S. Department of Energy's Federal Energy Management Program (FEMP), NREL partnered with MCAS Miramar to standardize processes and create an NZEI template for widespread replication across the military.

2011-02-01T23:59:59.000Z

223

Low-Fuel Compressed Air Energy Storage System Development and Preliminary Evaluation  

Science Conference Proceedings (OSTI)

Compressed air energy storage (CAES) is a valuable solution for mitigating the current challenges of renewable power variability, facilitating future higher renewable penetration levels, enhancing grid reliability and improving the utilization of transmission and existing generation assets. Fuel-based CAES systems are subject to future natural gas price volatility and potential carbon dioxide (CO2) emission charges. Low-Fuel CAES (LFCAES) is a potential near-term technology that captures and stores heat ...

2010-12-17T23:59:59.000Z

224

Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a).

DOE /NV

1999-01-28T23:59:59.000Z

225

Downhole steam generator using low pressure fuel and air supply  

DOE Patents (OSTI)

An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

Fox, Ronald L. (Albuquerque, NM)

1983-01-01T23:59:59.000Z

226

CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT  

E-Print Network (OSTI)

Not Pass 2 Universal Waste Systems, Inc. CNG Refueling Station for Refuse trucks with Public Access $200 Infrastructure Project $470,600 $470,600 89.7% Awardee 19 SCAQMD Ontario 76 CNG Infrastructure Installation $300 Alternative Fuel CNG Station $195,600 $195,600 81.9% Awardee 18 South Coast Air Quality Management District

227

CNG transit fueling station handbook. Final report, October 1993-June 1997  

Science Conference Proceedings (OSTI)

This manual has been complied for use by a Transit Authority Engineer or an Engineering Company who is involved in the design of Compressed Natural Gas (CNG) fueling facilities. It is intended to provide a convenient and comprehensive reference document, to supplement but not replace codes and other reference documents. It is also intended to be used as a basis for the design of a broad range of CNG fueling facilities. The scope is limited to straight CNG and hence Liquefied Natural Gas (LNG) or LNG vaporization to CNG has not been addressed. Similarly, this document does not deal with the facility modifications which may be required to park, service, or fuel CNG buses indoors. Additional information on actual gas fueling is available from the Gas Research Institute.

Adams, R.R.; Pennington, M.D.

1997-02-01T23:59:59.000Z

228

Development of a Liquid to Compressed Natural Gas (LCNG) Fueling Station. Final Report  

DOE Green Energy (OSTI)

The program objective was the development of equipment and processes to produce compressed natural gas (CNG) from liquified natural gas (LNG) for heavy duty vehicular applications. The interest for this technology is a result of the increased use of alternative fuels for the reduction of emissions and dependency of foreign energy. Technology of the type developed under this program is critical for establishing natural gas as an economical alternative fuel.

Moore, J. A.

1999-06-30T23:59:59.000Z

229

DENSIFIED REFUSE DERIVED FUEL CO-FIRING EXPERIENCE IN U.S. AIR FORCE SPREADER STOKER BOILERS  

E-Print Network (OSTI)

DENSIFIED REFUSE DERIVED FUEL CO-FIRING EXPERIENCE IN U.S. AIR FORCE SPREADER STOKER BOILERS ALFRED and Services Center Tyndall AFB, Florida ABSTRACT The thermal and environmental performance of co firing 1982, the U.S. Air Force co-fired densified refuse-derived-fuel (dRDF) with coal in two types

Columbia University

230

Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania  

SciTech Connect

Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the worlds first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

2010-07-01T23:59:59.000Z

231

Assessment of methanol electro-oxidation for direct methanol-air fuel cells  

DOE Green Energy (OSTI)

The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

Fritts, S.D.; Sen, R.K.

1988-07-01T23:59:59.000Z

232

Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems  

DOE Green Energy (OSTI)

PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to improve system efficiency and reduce packaging size.

Mark K. Gee

2008-10-01T23:59:59.000Z

233

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use  

SciTech Connect

The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

Rugh, J. P.

2010-04-01T23:59:59.000Z

234

Storage of LWR (light-water-reactor) spent fuel in air  

Science Conference Proceedings (OSTI)

An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to determine the oxidation response of light-water-reactor (LWR) spent fuels under conditions appropriate to fuel storage in air. The program is designed to investigate several independent variables that might affect the oxidation behavior of spent fuel. Included are temperature (135 to 230{degree}C), fuel burnup (to about 34 MWd/kgM), reactor type (pressurized and boiling water reactors), moisture level in the air, and the presence of a high gamma field. In continuing tests with declad spent fuel and nonirradiated UO{sub 2} specimens, oxidation rates were monitored by weight-gain measurements and the microstructures of subsamples taken during the weighing intervals were characterized by several analytical methods. The oxidation behavior indicated by weight gain and time to form powder will be reported in Volume III of this series. The characterization results obtained from x-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and Auger electron spectrometry of oxidized fuel samples are presented in this report. 28 refs., 21 figs., 3 tabs.

Thomas, L.E.; Charlot, L.A.; Coleman, J.E. (Pacific Northwest Lab., Richland, WA (USA)); Knoll, R.W. (Johnson Controls, Inc., Madison, WI (USA))

1989-12-01T23:59:59.000Z

235

Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?  

E-Print Network (OSTI)

Cell Pump Storage Larger Reformer Natural Gas Compressor FCVPure H 2 Storage Reformer Compressor FCV Natural Gas Lipman,Storage Small Reformer Service Station Compressor Natural Gas

Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

2002-01-01T23:59:59.000Z

236

Sustainable Hydrogen Fueling Station, California State University, Los Angeles - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report David Blekhman California State University Los Angeles Los Angeles, CA 90032 Phone: (323) 343-4569 Email: blekhman@calstatela.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0000443 Subcontractors: * General Physics Corporation, Elkridge, MD * Weaver Construction, Anaheim, CA Project Start Date: January, 2009 Project End Date: December, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Procure core equipment for the California State *

237

Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India  

Science Conference Proceedings (OSTI)

Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

2007-01-01T23:59:59.000Z

238

DEVELOPMENT OF A NATURAL GAS TO HYDROGEN FUEL STATION William E. Liss  

E-Print Network (OSTI)

. GTI has been developing high-efficiency steam methane reformers and fuel processing technology looks to introduce innovative, compact natural gas steam reforming system and appliance quality hydrogen system integration for efficient operation of the unit. High- Efficiency Natural Gas Steam Reformer

239

Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Consumer Convenience and the Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles Preprint M. Melaina National Renewable Energy Laboratory J. Bremson University of California Davis K. Solo Lexidyne, LLC Presented at the 31st USAEE/IAEE North American Conference Austin, Texas November 4-7, 2012 Conference Paper NREL/CP-5600-56898 January 2013 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

240

Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?  

E-Print Network (OSTI)

incentives for Avoided electricity costs due to self- fuel cell installation/operation or generation hydrogen dispensing Avoided natural gas

Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Assessment of Non-Fuel, Advanced Compressed Air Energy Storage Systems to Support High Wind Penetration  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the RD&D work at EPRI on adiabatic no-fuel Compressed Air Energy Storage (CAES) for wind integration. Bulk energy storage (BES) has latent value in the electric grid, enhances grid reliability, and is well suited to address wind integration related challenges. Without storage, extensive ramping and spinning reserve backup of thermal generators is required, at associated high costs, poor thermal performance, poor down ramp capability and high emissions. Fu...

2009-11-16T23:59:59.000Z

242

Effects of Air Conditioner Use on Real-World Fuel Economy  

Science Conference Proceedings (OSTI)

Vehicle data were acquired on-road and on a chassis dynamometer to assess fuel consumption under several steady cruise conditions and at idle. Data were gathered for various air conditioner (A/C) settings and with the A/C off and the windows open. Two vehicles were used in the comparisonstudy: a 2009 Ford Explorer and a 2009 Toyota Corolla. At steady speeds between 64.4 and 112.7 kph (40 and 70 mph), both vehicles consumed more fuel with the A/C on at maximum cooling load (compressor at 100% duty cycle) than when driving with the windows down. The Explorer maintained this trend beyond 112.7 kph (70 mph), while the Corolla fuel consumption with the windows down matched that of running the A/C at 120.7 kph (75 mph), and exceeded it at 128.7 kph (80 mph). The largest incremental fuel consumption rate penalty due to air conditioner use occurred was nearly constant with a weakslight trend of increasing consumption with increasing compressor (and vehicle) speed. Lower consumption is seenobserved at idle for both vehicles, likely due to the low compressor speed at this operating point

Huff, Shean P [ORNL; West, Brian H [ORNL; Thomas, John F [ORNL

2013-01-01T23:59:59.000Z

243

Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?  

E-Print Network (OSTI)

Electricity costs, shown in Table 5 as $0.12 per kWh, alsoPer Day Fraction of Reformer Cost for FCV Fuel Production Additional Electricity for H2 Compression (kWh/Per Day Fraction of Reformer Cost for FCV Fuel Production Additional Electricity for H2 Compression (kWh/

Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

2002-01-01T23:59:59.000Z

244

Corrective Action Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 22 Weather Station Fuel Storage. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during February 1999. Soil samples were collected using a direct-push method. Soil samples were collected at 0.6-m (2-ft) intervals from the surface to 1.8 m (6 ft) below ground surface. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE, 1999b). Soil sample results indicated that two locations in the bermed area contain total petroleum hydrocarbons (TPH) as diesel at concentrations of 124 milligrams per kilogram (mg/kg) and 377 mg/kg. This exceeds the Nevada Division of Environmental Protection (NDEP) regulatory action level for TPH of 100 mg/kg (Nevada Administrative Code, 1996). The TPH-impacted soil will be removed and disposed as part of the corrective action.

D. S. Tobiason

2000-06-01T23:59:59.000Z

245

A Second Examination of Fragments of Unirradiated and Irradiated CANDU Fuel, and Irradiated LWR Fuel, Oxidized in Air at 130 Degrees Centigrade and 170 Degrees Centigrade for Approximately One Thousand Days  

Science Conference Proceedings (OSTI)

Thisreport documents the examination of unclad fragments of unirradiated CANDU fuel, and irradiated LWR fuel, after approximately 2.8 years of oxidation in air at 130 degrees Centigrade and 170 degrees Centigrade. During oxidation, the various fuel specimens were isolated in separate vials, which were designed to permit free access of air, while preventing cross-contamination. Two specimens of each fuel type were recovered for examination from each experiment. The irradiated fuel specimens were weighed a...

1999-10-01T23:59:59.000Z

246

Development of a Renewable Hydrogen Energy Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Renewable Development of a Renewable Hydrogen Energy Station Edward C. Heydorn - Air Products and Chemicals, Inc. Pinakin Patel - FuelCell Energy, Inc. Fred Jahnke - FuelCell Energy, Inc. "Delivering Renewable Hydrogen - A Focus on Near-Term Applications" Palm Springs, CA 16 November 2009 Presentation Outline * Hydrogen Energy Station Technology Overview * Process Description * Performance and Economic Parameters * Proposed Demonstration on Renewable Feedstock * Status of Shop Validation Test * Conclusion 2 Objectives * Determine the economic and technical viability of a hydrogen energy station designed to co-produce power and hydrogen Utilize technology development roadmap to provide deliverables and go/no-go decision

247

Co-combustion of refuse derived fuel and coal in a cyclone furnace at the Baltimore Gas and Electric Company, C. P. Crane Station  

DOE Green Energy (OSTI)

A co-combustion demonstration burn of coal and fluff refuse-derived fuel (RDF) was conducted by Teledyne National and Baltimore Gas and Electric Company. This utility has two B and W cyclone furnaces capable of generating 400 MW. The facility is under a prohibition order to convert from No. 6 oil to coal; as a result, it was desirable to demonstrate that RDF, which has a low sulfur content, can be burned in combination with coals containing up to 2% sulfur, thus reducing overall sulfur emissions without deleterious effects. Each furnace consists of four cyclones capable of generating 1,360,000 pounds per hour steam. The tertiary air inlet of one of the cyclones was modified with an adapter to permit fluff RDF to be pneumatically blown into the cyclone. At the same time, coal was fed into the cyclone furnace through the normal coal feeding duct, where it entered the burning chamber tangentially and mixed with the RDF during the burning process. Secondary shredded fluff RDF was prepared by the Baltimore County Resource Recovery Facility. The RDF was discharged into a receiving station consisting of a belt conveyor discharging into a lump breaker, which in turn, fed the RDF into a pneumatic line through an air-lock feeder. A total of 2316 tons were burned at an average rate of 5.6 tons per hour. The average heat replacement by RDF for the cyclone was 25%, based on Btu input for a period of forty days. The range of RDF burned was from 3 to 10 tons per hour, or 7 to 63% heat replacement. The average analysis of the RDF (39 samples) for moisture, ash, heat (HHV) and sulfur content were 18.9%, 13.4%, 6296 Btu/lb and 0.26% respectively. RDF used in the test was secondary shredded through 1-1/2 inch grates producing the particle size distribution of from 2 inches to .187 inches. Findings to date after inspection of the boiler and superheater indicate satisfactory results with no deleterious effects from the RDF.

Not Available

1982-03-01T23:59:59.000Z

248

Urban airshed modeling of air quality impacts of alternative transportation fuel use in Los Angeles and Atlanta  

DOE Green Energy (OSTI)

The main objective of NREL in supporting this study is to determine the relative air quality impact of the use of compressed natural gas (CNG) as an alternative transportation fuel when compared to low Reid vapor pressure (RVP) gasoline and reformulated gasoline (RFG). A table lists the criteria, air toxic, and greenhouse gas pollutants for which emissions were estimated for the alternative fuel scenarios. Air quality impacts were then estimated by performing photochemical modeling of the alternative fuel scenarios using the Urban Airshed Model Version 6.21 and the Carbon Bond Mechanism Version IV (CBM-IV) (Geary et al., 1988) Using this model, the authors examined the formation and transport of ozone under alternative fuel strategies for motor vehicle transportation sources for the year 2007. Photochemical modeling was performed for modeling domains in Los Angeles, California, and Atlanta, Georgia.

NONE

1997-12-01T23:59:59.000Z

249

Zinc air refuelable battery: alternative zinc fuel morphologies and cell behavior  

DOE Green Energy (OSTI)

Multicell zinc/air batteries have been tested previously in the laboratory and as part of the propulsion system of an electric bus; cut zinc wire was used as the anode material. This battery is refueled by a hydraulic transport of 0.5-1 mm zinc particles into hoppers above each cell. We report an investigation concerning alternative zinc fuel morphologies, and energy losses associated with refueling and with overnight or prolonged standby. Three types of fuel pellets were fabricated, tested and compared with results for cut wire: spheres produced in a fluidized bed electrolysis cell; elongated particles produced by gas-atomization; and pellets produced by chopping 1 mm porous plates made of compacted zinc fines. Relative sizes of the particles and cell gap dimensions are critical. All three types transported within the cell 1553 and showed acceptable discharge characteristics, but a fluidized bed approach appears especially attractive for owner/user recovery operations.

Cooper, J.F.; Krueger, R.

1997-01-01T23:59:59.000Z

250

Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler  

Science Conference Proceedings (OSTI)

Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

Changfu You; Xuchang Xu [Tsinghua University, Beijing (China). Key Laboratory for Thermal Science and Power Engineering of Ministry of Education

2008-04-01T23:59:59.000Z

251

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Air- Vehicle Air- Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range Preprint September 2000 * NREL/CP-540-28960 R. Farrington and J. Rugh To Be Presented at the Earth Technologies Forum Washington, D.C. October 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

252

Alternative materials for solid oxide fuel cells: Factors affecting air-sintering of chromite interconnections  

DOE Green Energy (OSTI)

The purpose of this research is to develop alternative materials for solid oxide fuel cell (SOFC) interconnections and electrodes with improved electrical, thermal and electrochemical properties. Another objective is to develop synthesis and fabrication processes for these materials whereby they can be consolidated in air into SOFCs. The approach is to (1) develop modifications of the current, state-of-the-art materials used in SOFCs, (2) minimize the number of cations used in the SOFC materials to reduce potential deleterious interactions, (3) improve thermal, electrical, and electrochemical properties, (4) develop methods to synthesize both state-of-the-art and alternative materials for the simultaneous fabrication and consolidation in air of the interconnections and electrodes with the solid electrolyte, and (5) understand electrochemical reactions at materials interfaces and the effects of component compositions and processing on those reactions.

Chick, L.A.; Bates, J.L.

1992-07-01T23:59:59.000Z

253

Conceptual design for a receiving station for the nondestructive assay of PuO/sub 2/ at the fuels and materials examination facility  

Science Conference Proceedings (OSTI)

We propose a conceptual design for a receiving station for input accountability measurements on PuO/sub 2/ received at the Fuels and Materials Examination Facility at the Hanford Engineering Development Laboratory. Nondestructive assay techniques are proposed, including neutron coincidence counting, calorimetry, and isotopic determination by gamma-ray spectroscopy, in a versatile data acquisition system to perform input accountability measurements with precisions better than 1% at throughputs of up to 2 M.T./yr of PuO/sub 2/.

Sampson, T.E.; Speir, L.G.; Ensslin, N.; Hsue, S.T.; Johnson, S.S.; Bourret, S.; Parker, J.L.

1981-11-01T23:59:59.000Z

254

Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells  

DOE Green Energy (OSTI)

Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Four regimes of water distribution and transport are classified by defining three threshold current densities and a maximum current density. They correspond to first appearance of liquid water at the membrane/cathode interface, extension of the gas-liquid two-phase zone to the cathode/channel interface, saturated moist air exiting the gas channel, and complete consumption of oxygen by the electrochemical reaction. When the cell operates above the first threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multi-component mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A/cm{sup 2}.

WANG,Z.H.; WANG,C.Y.; CHEN,KEN S.

2000-03-20T23:59:59.000Z

255

Lanthanum manganite-based air electrode for solid oxide fuel cells  

DOE Patents (OSTI)

An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La.sub.w Ca.sub.x Ln.sub.y Ce.sub.z MnO.sub.3, wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics.

Ruka, Roswell J. (Pittsburgh, PA); Kuo, Lewis (Monroeville, PA); Li, Baozhen (Essex Junction, VT)

1999-01-01T23:59:59.000Z

256

Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: NREL Survey and Literature Search (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet provides framework for gas station owners to access what a reasonable cost would be to install E85 infrastructure.

Not Available

2008-03-01T23:59:59.000Z

257

station locations | OpenEI  

Open Energy Info (EERE)

00 00 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288500 Varnish cache server station locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

258

Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air  

SciTech Connect

A numerical analysis is presented to describe the liftoff and blowoff of a diffusion flame in the mixing layer between two parallel streams of fuel (mainly methane diluted with nitrogen) and air emerging from porous walls. The analysis, which takes into account the effects of thermal expansion, assumes a one-step overall Arrhenius reaction, where the activation energy E is allowed to vary to reproduce the variations of the planar flame propagation velocity with the equivalence ratio. First, we describe the steady flame-front structure when stabilized close to the porous wall (attached flame regime). Then, we analyze the case where the flame front is located far away from the porous wall, at a distance x{sub f}' such that, upstream of the flame front, the mixing layer has a self-similar structure (lifted flame regime). For steady lifted flames, the results, given here in the case when the fuel and air streams are injected with the same velocity, relate U{sub f}'/S{sub L}, the front velocity (relative to the upstream flow) measured with the planar stoichiometric flame velocity, with the Damkohler number D{sub m}=({delta}{sub m}/{delta}{sub L}){sup 2}, based on the thickness, {delta}{sub m}, of the nonreacting mixing layer at the flame-front position and the laminar flame thickness, {delta}{sub L}. For large values of D{sub m}, the results, presented here for a wide range of dilutions of the fuel stream, provide values of the front propagation velocity that are in good agreement with previous experimental results, yielding well-defined conditions for blowoff. The calculated flame-front velocity can also be used to describe the transient flame-front dynamics after ignition by an external energy source.

Fernandez-Tarrazo, Eduardo [I.N.T.A. Area de Propulsion-Edificio R02, Ctra. Ajalvir, km 4, 28850 Torrejon de Ardoz, Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain)

2006-01-01T23:59:59.000Z

259

A New Compact Cryogenic Air Sampler and Its Application in Stratospheric Greenhouse Gas Observation at Syowa Station, Antarctica  

Science Conference Proceedings (OSTI)

To collect stratospheric air samples for greenhouse gas measurements, a compact cryogenic air sampler has been developed using a cooling device called the JouleThomson (JT) minicooler. The JT minicooler can produce liquefied neon within 5 s ...

Shinji Morimoto; Takashi Yamanouchi; Hideyuki Honda; Issei Iijima; Tetsuya Yoshida; Shuji Aoki; Takakiyo Nakazawa; Shigeyuki Ishidoya; Satoshi Sugawara

2009-10-01T23:59:59.000Z

260

Combustion Optimization at Allegheny Energy's Armstrong Power Station  

Science Conference Proceedings (OSTI)

Individual air and coal flow measurement instruments have been installed on Allegheny Energy's Armstrong Station with a goal to balance the individual burner air to fuel ratios to minimize NOx, reduce the LOI level in the ash and improve heat rate. These signals are also being incorporated into the NOx optimization package, ULTRAMAX (R). Armstrong Station is a 180 MW front wall boiler burning a low sulfur eastern bituminous coal. Twelve Foster Wheeler IFS low NOx burners are fed by two ball mills, three ...

2000-06-21T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment  

SciTech Connect

The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

Sayer, J.H.

1995-06-01T23:59:59.000Z

262

Design Considerations for a PEM Fuel Cell Powered Truck APU  

E-Print Network (OSTI)

and standardized. Hydrogen fuel filling stations generallyat local hydrogen fill stations it was decided that filling

Grupp, David J; Forrest, Matthew E.; Mader, Pippin G.; Brodrick, Christie-Joy; Miller, Marshall; Dwyer, Harry A.

2004-01-01T23:59:59.000Z

263

DOE Hydrogen Analysis Repository: Hydrogen Energy Station Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Energy Station Validation Hydrogen Energy Station Validation Project Summary Full Title: Validation of an Integrated Hydrogen Energy Station Previous Title(s): Validation of an Integrated System for a Hydrogen-Fueled Power Park Project ID: 128 Principal Investigator: Dan Tyndall Keywords: Power parks; co-production; hydrogen; electricity; digester gas Purpose Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell (HTFC) designed to produce power and hydrogen from digester gas. Performer Principal Investigator: Dan Tyndall Organization: Air Products and Chemicals, Inc. Address: 7201 Hamilton Blvd. Allentown, PA 18195 Telephone: 610-481-6055 Email: tyndaldw@airproducts.com Period of Performance Start: September 2001 End: March 2009

264

Alternative Fuels and Vehicles Offer Solutions to Imported Oil, Air Pollution, Climate Change  

DOE Green Energy (OSTI)

A fact sheet describing available alternative fuels vehicles and the fuels themselves, written primarily for individual motorists.

Not Available

2002-04-01T23:59:59.000Z

265

THE HGCR-1, A DESIGN STUDY OF A NUCLEAR POWER STATION EMPLOYING A HIGH- TEMPERATURE GAS-COOLED REACTOR WITH GRAPHITE-UO$sub 2$ FUEL ELEMENTS  

SciTech Connect

The preliminary design of a 3095-Mw(thermal), helium-cooled, graphite- moderated reactor employing sign conditions, 1500 deg F reactor outlet gas would be circulated to eight steam generators to produce 1050 deg F, 1450-psi steam which would be converted to electrical power in eight 157-Mw(electrical) turbine- generators. The over-all efficiency of this nuclear power station is 36.5%. The significant activities released from the unclad graphite-UO/sub 2/ fuel appear to be less than 0.2% of those produced and would be equivalent to 0.002 curie/ cm/ sup 3/ in the primary helium circuit. The maintenance problems associated with this contamination level are discussed. A cost analysis indicates that the capital cost of this nuclear station per electrical kilowatt would be around 0, and that the production cost of electrical power would be 7.8 mills/kwhr. (auth)

Cottrell, W.B.; Copenhaver, C.M.; Culver, H.N.; Fontana, M.H.; Kelleghan, V.J.; Samuels, G.

1959-07-28T23:59:59.000Z

266

Effect of Intake Air Filter Condition on Vehicle Fuel Economy--ORNL/TM-2009/021  

NLE Websites -- All DOE Office Websites (Extended Search)

021 021 Effect of Intake Air Filter Condition on Vehicle Fuel Economy February 2009 Prepared by Kevin Norman Shean Huff Brian West DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.gov Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

267

Primary zone air proportioner  

SciTech Connect

An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

Cleary, Edward N. G. (San Diego, CA)

1982-10-12T23:59:59.000Z

268

Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle  

E-Print Network (OSTI)

Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle engine vehicles (1). Hybrid systems of many kinds, combining a primary energy source having a high energy://www.ecsdl.org/terms_use.jsp #12;article, a model of a hybrid vehicle, including a HTPEM with lead acid batteries, is de- veloped

Nielsen, Mads Pagh

269

STATEMENT OF CONSIDERATIONS REQUEST FOR ADVANCE WAIVER OF PATENT RIGHTS BY AIR  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AIR AIR PRODUCTS & CHEMICALS, UNDER DOE COOPERATIVE AGREEMENT NO. DE-FG36-05GO85026; W(A)-06-005, CH-1361 The Petitioner, Air Products and Chemicals Inc. (Air) has requested a waiver of: (a) domestic and foreign patent rights for all subject inventions conceived solely by Air and (b) Air's undivided interest, based on its employees contributions, to joint domestic and foreign patent rights for all subject inventions conceived, arising under the above referenced cooperative agreement. The objective of Air's cooperative agreement is to deploy hydrogen fuel stations and H 2 -ICE vehicles at multiple locations in California. These fueling statiorwill supply hydrogen from a variety of production sources including one station supplied via a hydrogen pipeline in a highly visible area of urban Los Angeles. Existing stations will be

270

An aerial radiological survey of the Kennedy Space Center and Cape Canaveral Air Force Station and surrounding area, Titusville, Florida: Date of survey: October 1985  

Science Conference Proceedings (OSTI)

An aerial radiological survey of the entire Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) was performed during the period 9 through 23 October 1985. This survey was conducted in three parts. First, a low resolution, low sensitivity background survey was performed that encompassed the entire KSC and CCAFS area. Next, two smaller, high resolution, high sensitivity surveys were conducted: the first focused on Launch Complexes 39A and 39B, and the second on the Shuttle Landing Facility. The areas encompassed by the surveys were 200, 5.5, and 8.5 square miles (500, 14, and 22 sq km), respectively. The purpose of these surveys was to provide information useful for an emergency response to a radiological accident. Results of the background survey are presented as isoradiation contour maps of both total exposure rate and man-made gross count superimposed on a mosaic of recent aerial photographs. Results of the two small, detailed surveys are also presented as an isoradiation contour map of exposure rate on the aerial photograph base. These data were evaluated to establish sensitivity limits for mapping the presence of plutonium-238. Natural background exposure rates at the Kennedy Space Center and Cape Canaveral Air Force Station are very low, generally ranging from 4 to 6.5 microroentgens per hour (..mu..R/h) and less than 4 ..mu..R/h in wet areas. However, exposure rates in developed areas were observed to be higher due to the importation of construction materials not characteristic of the area. 8 refs., 3 figs., 4 tabs.

Not Available

1988-01-01T23:59:59.000Z

271

Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel  

SciTech Connect

Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

Bose, Ranendra K. (14346 Jacob La., Centreville, VA 20120-3305)

2002-06-04T23:59:59.000Z

272

Effect of directed port air flow on liquid fuel transport in a port fuel injected spark ignition engine  

E-Print Network (OSTI)

With highly efficient modem catalysts, startup HC emissions have become a significant portion of the trip total. Liquid fuel is a major source of HC emissions during the cold start and fast idle period. Thus the control ...

Scaringe, Robert J. (Robert Joseph)

2007-01-01T23:59:59.000Z

273

Gas composition issues and implications for natural gas vehicles and fueling stations. Topical report, October 1993-June 1996  

SciTech Connect

This report provides a general overview of gas composition issues related to compressed natural gas for vehicles, recent research, and practical experience gained in the field. Its purpose is to summarize and communicate information and, where possible, to help fuel providers, original equipment manufacturers, and other members of the industry to formulate appropriate responses to emerging challenges and issues. Three critical topics are covered: compressor oil carryover, moisture content, and elevated levels of higher hydrocarbons. Where appropriate, economic analyses and general guidelines are provided to indicate alternative approaches to fuel issues and relative costs.

Schaedel, S.; Czachorski, M.; Rowley, P.; Richards, M.; Shikari, Y.

1996-07-01T23:59:59.000Z

274

Regulatory fire test requirements for plutonium air transport packages : JP-4 or JP-5 vs. JP-8 aviation fuel.  

Science Conference Proceedings (OSTI)

For certification, packages used for the transportation of plutonium by air must survive the hypothetical thermal environment specified in 10CFR71.74(a)(5). This regulation specifies that 'the package must be exposed to luminous flames from a pool fire of JP-4 or JP-5 aviation fuel for a period of at least 60 minutes.' This regulation was developed when jet propellant (JP) 4 and 5 were the standard jet fuels. However, JP-4 and JP-5 currently are of limited availability in the United States of America. JP-4 is very hard to obtain as it is not used much anymore. JP-5 may be easier to get than JP-4, but only through a military supplier. The purpose of this paper is to illustrate that readily-available JP-8 fuel is a possible substitute for the aforementioned certification test. Comparisons between the properties of the three fuels are given. Results from computer simulations that compared large JP-4 to JP-8 pool fires using Sandia's VULCAN fire model are shown and discussed. Additionally, the Container Analysis Fire (CAFE) code was used to compare the thermal response of a large calorimeter exposed to engulfing fires fueled by these three jet propellants. The paper then recommends JP-8 as an alternate fuel that complies with the thermal environment implied in 10CFR71.74.

Figueroa, Victor G.; Lopez, Carlos; Nicolette, Vernon F.

2010-10-01T23:59:59.000Z

275

A cost-effective and fuel-conserving nonelectric air conditioner that combines engine-driven compression and absorption cycles  

SciTech Connect

A natural-gas-fueled electricity-producing condensing furnace with the potential of being mass produced at a cost of less than $1000 and providing a cost-effective and highly fuel-conserving alternative to virtually every residential gas furnace in the world has been developed. While this is a new system, it completely consists of existing mass-produced components including single-cylinder air-cooled engines, induction motors/generators, and control devices. Thus, timely commercialization can be expected and an important new energy technology and industry can result. However, all the benefits of this electricity-producing furnace occur during the winter. This has stimulated the search for a new system that can provide comparable benefits in terms of fuel conservation, the environment, and electric utility peak reduction during the summer, along with the prospects of a new and efficient new use for the natural gas surpluses that occur during the summer. The resulting system, which can use existing component equipment, is a commercial-size nonelectric air conditioner that consists of an automobile-type engine converted to natural gas, or possibly a diesel or combustion turbine, driving a Freon compression cycle, with virtually all of the engine reject heat from the exhaust and from the engine cooling system driving a conventional absorption air conditioning cycle.

Wicks, F.

1988-01-01T23:59:59.000Z

276

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Incentives and Laws Rhode Island Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuel Vehicle (AFV) Loans Expired: 04/10/2009 The Rhode Island Office of Energy Resources offers loans for up to five years, with low administrative fees, to state agencies and municipal governments to cover the incremental cost of purchasing original equipment manufactured AFVs. Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit Expired: 01/01/2008 The Alternative Fueled Vehicle and Filling Station Tax Credit entitles taxpayers to a tax credit equal to 50% of the capital, labor, and equipment

277

Free air breathing planar PEM fuel cell design for portable electronics  

E-Print Network (OSTI)

PEM fuel cell technology is an energy source that can provide several times more energy per unit volume then current lithium ion batteries. However, PEM fuel cells remain to be optimized in volume and mass to create a ...

Crumlin, Ethan J

2005-01-01T23:59:59.000Z

278

Air-Cooled Stack Freeze Tolerance - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Dave Hancock Plug Power Inc. 968 Albany Shaker Rd Latham, NY 12110 Phone: (518) 782-7700 Email: david_hancock@plugpower.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Walt Podolski Phone: (630) 252-7558 Email: podolski@anl.gov Contract Number: DE-EE0000473 Subcontractor: Ballard Power Systems, Burnaby, British Columbia, Canada Project Start Date: June 1, 2009 Project End Date: November 15, 2011 Fiscal Year (FY) 2012 Objectives Advance the state of the art in technology for air-cooled * proton exchange membrane (PEM) fuel cell stacks and related GenDrive(tm) material handling application fuel

279

Apparatus and method for burning a lean, premixed fuel/air ...  

Electricity Transmission; Energy Analysis; Energy Storage; Geothermal; Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; ...

280

Experimental evaluation of oxygen-enriched air and emulsified fuels in a single-cylinder diesel engine  

DOE Green Energy (OSTI)

The performance of a single-cylinder, direct-injection diesel engine was measured with intake oxygen levels of up to 35% and fuel water contents of up to 20%. Because a previous study indicated that the use of a less-expensive fuel would be more economical, two series of tests with No. 4 diesel fuel and No. 2 diesel fuel were conducted. To control the emissions of nitrogen oxides (NO{sub x}), water was introduced into the combustion process in the form of water-emulsified fuel, or the fuel injection timing was retarded. In the first series of tests, compressed oxygen was used; in the second series of tests, a hollow-tube membrane was used. Steady-state engine performance and emissions data were obtained. Test results indicated a large increase in engine power density, a slight improvement in thermal efficiency, and significant reductions in smoke and particulate-matter emissions. Although NO{sub x} emissions increased, they could be controlled by introducing water and retarding the injection timing. The results further indicated that thermal efficiency is slightly increased when moderately water-emulsified fuels are used, because a greater portion of the fuel energy is released earlier in the combustion process. Oxygen-enriched air reduced the ignition delay and caused the heat-release rate and cumulative heat-release rates to change measurably. Even at higher oxygen levels, NO{sub x} emissions decreased rapidly when the timing was retarded, and the amount of smoke and the level of particulate-matter emissions did not significantly increase. The single-cylinder engine tests confirmed the results of an earlier technical assessment and further indicated a need for a low-pressure-drop membrane specifically designed for oxygen enrichment. Extension data set indexed separately. 14 refs.

Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J.

1991-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL Furthers U.S. Marine Corps Air Station Miramars Move Toward Net Zero Energy (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Furthers U.S. Marine Corps Air Furthers U.S. Marine Corps Air Station Miramar's Move Toward Net Zero Energy The U.S. Marine Corps Air Station (MCAS) Miramar is striving toward its goal of becoming a "net zero energy installation" (NZEI), which entails producing as much energy as it uses over the course of a year. In conjunction with the U.S. Department of Energy's Federal Energy Management Program, the National Renewable Energy Laboratory (NREL) has partnered with MCAS Miramar to develop a plan for meeting this goal and to create an NZEI template for widespread replication across the military. A 2008 report from the Defense Science Board concluded that critical missions at military bases are facing unacceptable risks from extended power losses. To address this concern, the

282

Validation of an Integrated Hydrogen Energy Station  

SciTech Connect

This report presents the results of a 10-year project conducted by Air Products and Chemicals, Inc. (Air Products) to determine the feasibility of coproducing hydrogen with electricity. The primary objective was to demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. This four-phase project had intermediate go/no-go decisions and the following specific goals: ?¢???¢ Complete a technical assessment and economic analysis of the use of high-temperature fuel cells, including solid oxide and molten carbonate, for the co-production of power and hydrogen (energy park concept). ?¢???¢ Build on the experience gained at the Las Vegas H2 Energy Station and compare/contrast the two approaches for co-production. ?¢???¢ Determine the applicability of co-production from a high-temperature fuel cell for the existing merchant hydrogen market and for the emerging hydrogen economy. ?¢???¢ Demonstrate the concept on natural gas for six months at a suitable site with demand for both hydrogen and electricity. ?¢???¢ Maintain safety as the top priority in the system design and operation. ?¢???¢ Obtain adequate operational data to provide the basis for future commercial activities, including hydrogen fueling stations. Work began with the execution of the cooperative agreement with DOE on 30 September 2001. During Phase 1, Air Products identified high-temperature fuel cells as having the potential to meet the coproduction targets, and the molten carbonate fuel cell system from FuelCell Energy, Inc. (FuelCell Energy) was selected by Air Products and DOE following the feasibility assessment performed during Phase 2. Detailed design, construction and shop validation testing of a system to produce 250 kW of electricity and 100 kilograms per day of hydrogen, along with site selection to include a renewable feedstock for the fuel cell, were completed in Phase 3. The system also completed six months of demonstration operation at the wastewater treatment facility operated by Orange County Sanitation District (OCSD, Fountain Valley, CA). As part of achieving the objective of operating on a renewable feedstock, Air Products secured additional funding via an award from the California Air Resources Board. The South Coast Air Quality Management District also provided cost share which supported the objectives of this project. System operation at OCSD confirmed the results from shop validation testing performed during Phase 3. Hydrogen was produced at rates and purity that met the targets from the system design basis, and coproduction efficiency exceeded the 50% target set in conjunction with input from the DOE. Hydrogen production economics, updated from the Phase 2 analysis, showed pricing of $5 to $6 per kilogram of hydrogen using current gas purification systems. Hydrogen costs under $3 per kilogram are achievable if next-generation electrochemical separation technologies become available.

Edward C. Heydorn

2012-10-26T23:59:59.000Z

283

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network (OSTI)

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application, the coolant is pumped to a heat recovery system. A water-to-air heat exchange system or water-to-water heat

Victoria, University of

284

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

285

List of Refueling Stations Incentives | Open Energy Information  

Open Energy Info (EERE)

Refueling Stations Incentives Refueling Stations Incentives Jump to: navigation, search The following contains the list of 6 Refueling Stations Incentives. CSV (rows 1 - 6) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle and Refueling - Corporate Tax Credit (Colorado) Corporate Tax Credit Colorado Commercial Renewable Fuel Vehicles Refueling Stations No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels

286

Delta Air Lines plans to increase jet fuel yield at Trainer ...  

U.S. Energy Information Administration (EIA)

Last year a few refineries had jet fuel yields in the range that Delta has planned for Trainer, but only for a few months of the year.

287

Alternative-fuels technology: Natural gas vehicles as a way to curb urban air pollution  

DOE Green Energy (OSTI)

This report describes the use of natural gas as an alternative fuel in various vehicles. Safety and emissions resulting from combustion are briefly discussed.

NONE

1995-02-01T23:59:59.000Z

288

Modeling Air-Pollution Damages from Fossil Fuel Use in Urban...  

NLE Websites -- All DOE Office Websites (Extended Search)

important indoor pollution sources. We have taken one such model, prepared by the World Bank, and modified it to incorporate damages estimates from human exposure to air...

289

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network (OSTI)

currently existing natural gas- fired power plants in southnatural gas-based distributed generation of electricity in California, which resulted in more air pollution than central power plants (

Wang, Guihua

2008-01-01T23:59:59.000Z

290

Environmental implications of alternative-fueled automobiles: Air quality and greenhouse gas tradeoffs  

Science Conference Proceedings (OSTI)

The authors analyze alternative fuel-powerstrain options for internal combustion engine automobiles. Fuel/engine efficiency, energy use, pollutant discharges, and greenhouse gas emissions are estimated for spark and compression ignited, direct injected (DI), and indirect injected (II) engines fueled by conventional and reformulated gasoline, reformulated diesel, compressed natural gas (CNG), and alcohols. Since comparisons of fuels and technologies in dissimilar vehicles are misleading, the authors hold emissions level, range, vehicle size class, and style constant. At present, CNG vehicles have the best exhaust emissions performance while DI diesels have the worst. Compared to a conventional gasoline fueled II automobile, greenhouse gases could be reduced by 40% by a DI CNG automobile and by 25% by a DI diesel. Gasoline- and diesel-fueled automobiles are able to attain long ranges with little weight or fuel economy penalty. CNG vehicles have the highest penalty for increasing range, due to their heavy fuel storage systems, but are the most attractive for a 160-km range. DI engines, particularly diesels, may not be able to meet strict emissions standards, at least not without lowering efficiency.

MaClean, H.L.; Lave, L.B.

2000-01-15T23:59:59.000Z

291

Successful Demolition of Historic Cape Canaveral Air Force Station Launch Facilities: Managing the Process to Maximize Recycle Value to Fund Demolition  

SciTech Connect

This paper will present the history of the Atlas 36 and Titan 40 Space Launch Complexes (SLC), the facility assessment process, demolition planning, recycle methodology, and actual facility demolition that resulted in a 40% reduction in baseline cost. These two SLC launched hundreds of payloads into space from Cape Canaveral Air Force Station (AFS), Florida. The Atlas-Centaur family of rockets could lift small- to medium-size satellites designed for communications, weather, or military use, placing them with near pinpoint accuracy into their intended orbits. The larger Titan family was relied upon for heavier lifting needs, including launching military satellites as well as interplanetary probes. But despite their efficiency and cost-effectiveness, the Titan rockets, as well as earlier generation Atlas models, were retired in 2005. Concerns about potential environmental health hazards from PCBs and lead-based paint chipping off the facilities also contributed to the Air Force's decision in 2005 to dismantle and demolish the Atlas and Titan missile-launching systems. Lockheed Martin secured the complex following the final launch, removed equipment and turned over the site to the Air Force for decommissioning and demolition (D and D). AMEC was retained by the Air Force to perform demolition planning and facility D and D in 2004. AMEC began with a review of historical information, interviews with past operations personnel, and 100% facility assessment of over 100 structures. There where numerous support buildings that due to their age contained asbestos containing material (ACM), PCB-impacted material, and universal material that had to be identified and removed prior to demolition. Environmental testing had revealed that the 36B mobile support tower (MST) exceeded the TSCA standard for polychlorinated biphenyls (PCB) paint (<50 ppm), as did the high bay sections of the Titan Vertical Integration Building (VIB). Thus, while most of the steel structures could be completely recycled, about one-third of 36B MST and the affected areas of the VIB were to be consigned to an on-site regulated waste landfill. In all, it is estimated that approximately 10,000,000 kg (11,000 tons) of PCB-coated steel will be land-filled and 23,000,000 kg (25,000 tons) will be recycled. The recycling of the steel and other materials made it possible to do additional demolition by using these funds. Therefore, finding ways to maximize the recycle value of materials became a key factor in the pre-demolition characterization and implementation strategy. This paper will present the following: - Critical elements in demolition planning working at an active launch facility; - Characterization and strategy to maximize steel recycle; - Waste disposition strategy to maximize recycle/reuse and minimize disposal; - Recycle options available at DOD installations that allow for addition funds for demolition; - Innovation in demolition methodologies for large structures - explosive demolition and large-scale dismantlement; - H and S aspects of explosive demolition and large scale dismantlement. In conclusion: The Cape Canaveral AFS Demolition Program has been a great success due to the integration of multiple operations and contractors working together to determine the most cost-effective demolition methods. It is estimated that by extensive pre-planning and working with CCAFS representatives, as well as maximizing the recycle credits of various material, primarily steel, that the government will be able to complete what was base-lined to be a $30 M demolition program for < $20 M. Other factors included a competitive subcontractor environment where they were encouraged with incentives to maximize recycle/reuse of material and creative demolition solutions. Also, by overlapping multiple demolition tasks at multiple facilities allowed for a reduction in field oversight. (authors)

Jones, A.; Hambro, L. [AMEC Earth and Environmental, Inc., Cocoa, FL (United States); Hooper, K. [U.S. Air Force 45th Space Wing, Patrick AFB, Florida (United States)

2008-07-01T23:59:59.000Z

292

Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors  

DOE Patents (OSTI)

The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

Riecke, George T. (Ballston Spa, NY); Stotts, Robert E. (Newark, NY)

1992-01-01T23:59:59.000Z

293

Downhole steam generator using low-pressure fuel and air supply  

DOE Patents (OSTI)

For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

Fox, R.L.

1981-01-07T23:59:59.000Z

294

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,Year 2006 UCDITSRR0604 Hydrogen Refueling Station Costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

295

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office  

E-Print Network (OSTI)

to demonstrate: World's first tri-generation station World's first fuel cell forklifts World's first fuel cell

296

Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range  

DOE Green Energy (OSTI)

The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

2013-04-01T23:59:59.000Z

297

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report IV.E Air Management Subsystems  

E-Print Network (OSTI)

and 2 consists of a compressor impeller, an expander/turbine wheel, and a motor magnet rotor and by improving upon previous project results. · Reduce turbocompressor/motor controller costs while increasing design flexibility. · Develop and integrate the turbocompressor/motor controller into a fuel cell system

298

Radioactive air emissions notice of construction fuel removal for 105-KW Basin  

Science Conference Proceedings (OSTI)

This document serves as a Notice of Construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.96, for the modifications, installation of new equipment, and fuel removal and sludge relocation activities at 105-KW Basin. The purpose of the activities described in this NOC is to enable the eventual retrieval and transport of the fuel for processing. The fuel retrieval and transport will require an integrated water treatment system for which performance specifications have been developed. These specifications are currently in the procurement process. Following procurement (and before installation of this system and the handling of fuel) design details will be provided to Washington State Department of Health (WDOH). The 105-K West Reactor (105-KW) and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. Although the 105-KW Basin has not been known to leak, the discharge chute and associated construction joint have been isolated from the rest of the basin by metal isolation barriers. This was a precautionary measure, to mitigate the consequences of a seismic event. The proposed modifications described are scheduled to begin in calendar year 1997.

Hays, C.B.

1997-05-29T23:59:59.000Z

299

Radioactive air emissions notice of construction fuel removal for 105-KE basin  

SciTech Connect

This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct pursuant to 40 Code of Federal Regulations (CFR) 61.96 for the modifications, installation of new equipment, and fuel removal and sludge relocation activities at 105-KE Basin. The 105-K east reactor and its associated spent nuclear fuel (SNF) storage basin (105-KE Basin) were constructed in the early 1950s and are located in the 100-K Area about 1,400 feet from the Columbia River. The 105-KE Basin contains 1,152 metric tons of SNF stored underwater in 3,673 open canisters. This SNF has been stored for varying periods of time ranging from 8 to 24 years. The 105-KE Basin is constructed of unlined concrete and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The fuel is corroding and an estimated 1,700 cubic feet of sludge, containing radionuclides and miscellaneous materials, have accumulated in the basin. The 105-KE Basin has leaked radiologically contaminated water to the soil beneath the basin in the past most likely at the construction joint between the foundation of the basin and the foundation of the reactor. The purpose of the activities described in this Notice of Construction (NOC) is to enable the retrieval and transport of the fuel to the Cold Vacuum Drying Facility (CVDF). This NOC describes modifications, the installation of new equipment, and fuel removal and sludge relocation activities expected to be routine in the future. Debris removal activities described in this NOC will supersede the previously approved NOC (DOE/RL-95-65). The proposed modifications described are scheduled to begin in calendar year 1997.

Kamberg, L.D., Fluor Daniel Hanford

1997-02-11T23:59:59.000Z

300

Reducing Greenhouse Emissions and Fuel Consumption  

E-Print Network (OSTI)

the Emissions and Fuel Consumption Impacts of IntelligentTravel Time, Fuel Consumption and Weigh Station Efficiency.EMISSIONS AND FUEL CONSUMPTION - Sustainable Approaches for

Shaheen, Susan; Lipman, Timothy

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

State of Washington Department of Health radioactive air emission notice of construction phase 1 for spent nuclear fuel project - hot conditioning system annex, project W-484  

Science Conference Proceedings (OSTI)

This notice of construction (NOC) provides information regarding the source and the estimated annual possession quantity resulting from the operation of the Hot Conditioning System Annex (HCSA). This information will be discussed again in the Phase II NOC, providing additional details on emissions generated by the operation of the HCSA. This Phase I NOC is defined as construct in the substructure, including but limited to, pouring the concrete for the floor; construction of the process pits and exterior walls; making necessary interface connections to the Canister Storage Building (CSB) ventilation and utility systems for personnel comfort; and extending the multi-canister over-pack (MCO) handling machine rails into the HCSA. A Phase II NOC will be submitted for approval prior to installation and is defined as the completion of the HCSA, which will consist of installation of Hot Conditioning System Equipment (HCSA), air emissions control equipment, and emission monitoring equipment. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allow free release of corrosion products to the K East Basin water. Storage in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2,300 MT (2,530 tons) of N Reactor SNF in the K Basins with no means for near-term removal and processing. The HCSA will be constructed as an addition to the CSB and will contain the HCSA. The hot conditioning system (HCS) will remove chemically-bound water and will passivate the exposed uranium surfaces associated,with the SNF. The HCSA will house seven hot conditioning process stations, six operational and one auxiliary pit, which could be used as a welding area for final sealing of the vessel containing the SNF, or for neutron interrogation of the vessel containing the SNF to determine residual water content. Figures 1 and 2 contain map locations of the Hanford Site and the HCSA. `Response to Requirement` subtitle under each of the following sections identifies the corresponding Appendix A NOC application requirement listed under WAC 246-247-1 10.

Turnbaugh, J.E.

1996-08-15T23:59:59.000Z

302

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

303

Clean air program: Design guidelines for bus transit systems using hydrogen as an alternative fuel. Final report, September 1997--May 1998  

SciTech Connect

Alternative fuels such as Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquified Petroleum Gas (LPG), and alcohol fuels (methanol and ethanol) are already being used in commercial vehicles and transit buses in revenue service. Hydrogen, which has better air quality characteristics as a vehicle fuel, is being used in research demonstration projects in fuel cell powered buses, as well as in internal combustion engines in automobiles and small trucks. At present, there are no facility guidelines to assist transit agencies (and others) contemplating the use of hydrogen as an alternative fuel. This document addresses the various issues involved. Hydrogen fuel properties, potential hazards, fuel requirements for specified levels of bus service, applicable codes and standards, ventilation, and electrical classification are indicated in this document. These guidelines also present various facility and bus design issues that need to be considered by a transit agency to ensure safe operations when using hydrogen as an alternative fuel. Fueling facility, garaging facility, maintenance facility requirements and safety practices are discussed. Critical fuel-related safety issues in the design of the related system on the bus are also identified. A system safety assessment and hazard resolution process is also presented. This approach may be used to select design strategies which are economical, yet ensure a specified level of safety.

Raj, P.K.; Hathaway, W.T.; Kangas, R.A.

1998-10-01T23:59:59.000Z

304

Hydrogen Filling Station  

Science Conference Proceedings (OSTI)

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

305

Hydrogen Filling Station  

SciTech Connect

Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. The Freedom CAR and Freedom FUEL initiatives emphasize the importance of hydrogen as a future transportation fuel. Presently, Las Vegas has one hydrogen fueling station powered by natural gas. However, the use of traditional sources of energy to produce hydrogen does not maximize the benefit. The hydrogen fueling station developed under this grant used electrolysis units and solar energy to produce hydrogen fuel. Water and electricity are furnished to the unit and the output is hydrogen and oxygen. Three vehicles were converted to utilize the hydrogen produced at the station. The vehicles were all equipped with different types of technologies. The vehicles were used in the day-to-day operation of the Las Vegas Valley Water District and monitoring was performed on efficiency, reliability and maintenance requirements. The research and demonstration utilized for the reconfiguration of these vehicles could lead to new technologies in vehicle development that could make hydrogen-fueled vehicles more cost effective, economical, efficient and more widely used. In order to advance the development of a hydrogen future in Southern Nevada, project partners recognized a need to bring various entities involved in hydrogen development and deployment together as a means of sharing knowledge and eliminating duplication of efforts. A road-mapping session was held in Las Vegas in June 2006. The Nevada State Energy Office, representatives from DOE, DOE contractors and LANL, NETL, NREL were present. Leadership from the National hydrogen Association Board of Directors also attended. As a result of this session, a roadmap for hydrogen development was created. This roadmap has the ability to become a tool for use by other road-mapping efforts in the hydrogen community. It could also become a standard template for other states or even countries to approach planning for a hydrogen future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water Districts land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for hydrogen development; accelerate the development of photovoltaic components Project Objective 4:

Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

2010-02-24T23:59:59.000Z

306

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Incentives and Laws Wisconsin Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Regional Biofuels Promotion Plan Archived: 01/01/2012 Wisconsin joined Indiana, Iowa, Kansas, Michigan, Minnesota, Ohio, and South Dakota in adopting the Energy Security and Climate Stewardship Platform Plan (Platform), which establishes shared goals for the Midwest region, including increased biofuels production and use. Download Adobe Reader. Specifically, the Platform sets the following goals: Produce commercially available cellulosic ethanol and other low carbon fuels in the region by 2012; Increase E85 availability at retail fueling stations in the region

307

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Incentives and Laws Delaware Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Compressed Natural Gas (CNG) Fuel Rate Reduction Archived: 01/01/2009 Chesapeake Utilities has one publicly accessible quick-fill CNG fueling station in Dover. CNG is offered at a 20% discount as compared to the American Automobile Association (AAA) list price. Biodiesel Production Facility Grants Expired: 09/01/2007 The State Energy Office will administer moneys in the Green Energy Fund through a program of environmental incentive grants and loans for the development, promotion and support of energy efficiency programs and

308

Map Data: Alternative Fuel Stations  

Energy.gov (U.S. Department of Energy (DOE))

The geospatial vector data has been compressed into one file. You will need to uncompress it before using a geographic information systems (GIS) program to view the data.

309

alternative fuels | OpenEI  

Open Energy Info (EERE)

fuels fuels Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Data text/csv icon alt_fuel_stations_apr_4_2012.csv (csv, 2.3 MiB) Quality Metrics Level of Review Peer Reviewed

310

Coal dust exposure among power station workers during normal operations at Hatfield's Ferry Power Station.  

E-Print Network (OSTI)

??Changes in coal composition could produce higher levels of coal dust exposure thanthose found in the past at Hatfield's Ferry Power Station. Air sampling was (more)

Lewis, Christian S.

2008-01-01T23:59:59.000Z

311

Alternative Fuels Data Center: E15  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

E15 to someone by E15 to someone by E-mail Share Alternative Fuels Data Center: E15 on Facebook Tweet about Alternative Fuels Data Center: E15 on Twitter Bookmark Alternative Fuels Data Center: E15 on Google Bookmark Alternative Fuels Data Center: E15 on Delicious Rank Alternative Fuels Data Center: E15 on Digg Find More places to share Alternative Fuels Data Center: E15 on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives E15 The U.S. Environmental Protection Agency (EPA) defines E15 as gasoline blended with 10.5% to 15% ethanol. In 2011, EPA approved E15 for use in conventional vehicles of model year 2001 and newer, through a Clean Air Act

312

U.S. Shared-Use Vehicle Survey Findings on Carsharing and Station Car Growth  

E-Print Network (OSTI)

3. Shaheen, S. A . Pooled Cars. Access Magazine. UniversityCarsharing, Station Cars, and Combined Approaches. InMandate: Linking Clean-Fuel Cars, Carsharing, and Station

Shaheen, Susan

2004-01-01T23:59:59.000Z

313

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Data Included in the Alternative Fuel Stations Download The following data fields are provided in the downloadable files for alternative fuel stations. Field Value Description fuel_type_code Type: string The type of alternative fuel the station provides. Fuel types are given as code values as described below: Value Description BD Biodiesel (B20 and above)

314

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

315

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in target channels and discharged a few times more frequently than the natural-uranium driver fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

316

SENSOR FOR INDIVIDUAL BURNER CONTROL OF FIRING RATE, FUEL-AIR RATIO, AND COAL FINENESS CORRELATION  

SciTech Connect

Instrumentation difficulties encountered in the previous reporting period were addressed early in this reporting period, resulting in a new instrumentation configuration that appears to be free of the noise issues found previously. This permitted the collection of flow calibration data to begin. The first issues in question are the effects of the type and location of the transducer mount. Data were collected for 15 different transducer positions (upstream and downstream of an elbow in the pipe), with both a stud mount and a magnetic transducer mount, for each of seven combinations of air and coal flow. Analysis of these data shows that the effects of the transducer mount type and location on the resulting dynamics are complicated, and not easily captured in a single analysis. To maximize the practical value of the calibration data, further detailed calibration data will be collected with both the magnetic and stud mounts, but at a single mounting location just downstream of a pipe elbow. This testing will be performed in the Coal Flow Test Facility in the next reporting period. The program progress in this reporting period was sufficient to put us essentially back on schedule.

Wayne Hill; Roger Demler; Robert G. Mudry

2004-10-01T23:59:59.000Z

317

Life Cycle Management Plans for Hope Creek and Salem: Feedwater Heater and Moisture Separator Controls, Circuit Breakers, and Station Air System  

Science Conference Proceedings (OSTI)

As the electric power industry becomes more competitive, life cycle management (LCM) of systems, structures, and components (SSCs) becomes more important to keep nuclear power plants economically viable throughout their remaining licensed operating terms, whether 40 or 60 years. This report provides utilities with optimized LCM plans for three SSC types at PSEG's Salem and Hope Creek generating stations for use as a resource for LCM planning for these SSC types at other plants.

2003-09-30T23:59:59.000Z

318

Alternative Fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

gas is a fossil fuel that generates less air pollutants and greenhouse gases. CNG Logo Propane, also called liquefied petroleum gas (LPG), is a domestically abundant fossil fuel...

319

Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Colorado Airport Colorado Airport Relies on Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on AddThis.com... July 1, 2010 Colorado Airport Relies on Natural Gas Fueling Stations

320

Clean air program: Design guidelines for bus transit systems using alcohol fuel (methanol and ethanol) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

This report provides design guidelines for the safe use of alcohol fuel (Methanol or Ethanol). It is part of a series of individual monographs being published by the FTA providing guidelines for the safe use of Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes, for the subject fuel, the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; DeMarco, V.R.; Hathaway, W.T.; Kangas, R.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries  

DOE Green Energy (OSTI)

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

2011-12-31T23:59:59.000Z

322

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

323

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

324

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

325

Bridging the Gap Between Transportation and Stationary Power: Hydrogen Energy Stations and their Implications for the Transportation Sector  

E-Print Network (OSTI)

at work or "corner" gas-stations, stations near freewaysvisiting a well-populated gas station. On the other hand, anHydrogen PEMFC E-Station Natural gas Air High-pressure

Weinert, Jonathan X.; Lipman, Timothy; Unnasch, Stephen

2005-01-01T23:59:59.000Z

326

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport March 25, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) today announced plans to construct and operate a hydrogen fuel production plant and vehicle fueling station at the Yeager Airport in Charleston, W.Va. The facility will use grid electricity to split water to produce pure hydrogen fuel. The fuel will be used by the airport's operations and the 130th Air Wing of the West Virginia Air National Guard. NETL will begin operations at the Yeager Airport facility in August 2009 and plans to conduct two years of testing and evaluation. The facility will be designed using "open architecture," allowing the capability to add

327

Review of air quality modeling techniques. Volume 8. [Assessment of environmental effects of nuclear, geothermal, and fossil-fuel power plants  

DOE Green Energy (OSTI)

Air transport and diffusion models which are applicable to the assessment of the environmental effects of nuclear, geothermal, and fossil-fuel electric generation are reviewed. The general classification of models and model inputs are discussed. A detailed examination of the statistical, Gaussian plume, Gaussian puff, one-box and species-conservation-of-mass models is given. Representative models are discussed with attention given to the assumptions, input data requirement, advantages, disadvantages and applicability of each.

Rosen, L.C.

1977-01-01T23:59:59.000Z

328

Integrated Analysis of Fuel, Technology and Emission Allowance Markets: Electric Utility Responses to the Clean Air Act Amendments o f 1990  

Science Conference Proceedings (OSTI)

This report provides a detailed analysis of the strategic responses of the electric utility industry to the Clean Air Act Amendments of 1990. The study analyzes the competitive interactions between fuel switching, scrubbing, and emission trading options and provides information on future regional coal demands and prices, the adoption of SO2 control technologies, compliance costs, and the character of SO2 emission allowance markets.

1993-08-30T23:59:59.000Z

329

Comparison of Control System Performance for Fossil-Fuel Fired Power Plants Using Emission Measurement Data from the Utility Industr y Information Collection Request for Hazardous Air Pollutants  

Science Conference Proceedings (OSTI)

On On May 3, 2011, the U.S. Environmental Protection Agency (EPA) published a notice of proposed rulemaking (40 Code of Federal Regulations Parts 60 and 63: National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-FuelFired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam-Generating Units). The intent of this rulemaking is to set Maximum Achiev...

2011-12-23T23:59:59.000Z

330

Alternative Fuels Data Center: Natural Gas Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development

331

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options

332

Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

333

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

334

A review of the technical issues of air ingression during severe reactor accidents  

Science Conference Proceedings (OSTI)

Severe reactor accident scenarios involving air ingression into the reactor coolant system are described. Evidence from modem reactor accident analyses and from the accident at Three Mile Island show residual fuel will be present in the core region when air ingression is possible. This residual fuel can interact with the air. Exploratory calculations with the MELCOR code of station blackout accidents during shutdown conditions and during operations are used to examine clad oxidation by air and ruthenium release from fuel in air. Extensive ruthenium release is predicted when air ingression rates exceed about 10 moles/s. Past studies of air interactions with irradiated reactor fuel are reviewed. Effects air ingression may have on fission product release, transport, deposition and revaporization are discussed. Perhaps the most important effects of air ingression are expected to be enhanced release of ruthenium from the fuel and the formation of copious amounts of aerosol from uranium oxide vapors. Revaporization of iodine and tellurium retained in the reactor coolant system might be expected.

Powers, D.A.; Kmetyk, L.N.; Schmidt, R.C.

1994-09-01T23:59:59.000Z

335

Robotic dissolution station  

DOE Patents (OSTI)

This invention is comprised of a robotic station for dissolving active metals in acid in an automated fashion. A vessel with cap, containing the active metal is placed onto a shuttle which retracts to a point at which it is directly beneath a cap removing and retaining mechanism. After the cap is removed, a tube carrying an appropriate acid is inserted into the vessel, and the acid is introduced. The structure of the station forms an open hood which is swept of gases generated by the dissolution and the air removed to a remote location for scrubbing. After the reaction is complete, the shuttle extends and the vessel may be removed by a robot arm.

Beugelsdijk, T.J.; Hollen, R.M.; Temer, D.J.; Haggart, R.J.; Erkkila, T.H.

1991-12-31T23:59:59.000Z

336

Corrective action decision document, Second Gas Station, Tonopah test range, Nevada (Corrective Action Unit No. 403)  

SciTech Connect

This Corrective Action Decision Document (CADD) for Second Gas Station (Corrective Action Unit [CAU] No. 403) has been developed for the U.S. Department of Energy`s (DOE) Nevada Environmental Restoration Project to meet the requirements of the Federal Facility Agreement and Consent Order (FFACO) of 1996 as stated in Appendix VI, {open_quotes}Corrective Action Strategy{close_quotes} (FFACO, 1996). The Second Gas Station Corrective Action Site (CAS) No. 03-02-004-0360 is the only CAS in CAU No. 403. The Second Gas Station CAS is located within Area 3 of the Tonopah Test Range (TTR), west of the Main Road at the location of former Underground Storage Tanks (USTs) and their associated fuel dispensary stations. The TTR is approximately 225 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada, by air and approximately 56 km (35 mi) southeast of Tonopah, Nevada, by road. The TTR is bordered on the south, east, and west by the Nellis Air Force Range and on the north by sparsely populated public land administered by the Bureau of Land Management and the U.S. Forest Service. The Second Gas Station CAS was formerly known as the Underground Diesel Tank Site, Sandia Environmental Restoration Site Number 118. The gas station was in use from approximately 1965 to 1980. The USTs were originally thought to be located 11 meters (m) (36 feet [ft]) east of the Old Light Duty Shop, Building 0360, and consisted of one gasoline UST (southern tank) and one diesel UST (northern tank) (DOE/NV, 1996a). The two associated fuel dispensary stations were located northeast (diesel) and southeast (gasoline) of Building 0360 (CAU 423). Presently the site is used as a parking lot, Building 0360 is used for mechanical repairs of vehicles.

NONE

1997-11-01T23:59:59.000Z

337

Experimental evaluation of oxygen-enriched air and emulsified fuels in a single-cylinder diesel engine. Volume 1, Concept evaluation  

DOE Green Energy (OSTI)

The performance of a single-cylinder, direct-injection diesel engine was measured with intake oxygen levels of up to 35% and fuel water contents of up to 20%. Because a previous study indicated that the use of a less-expensive fuel would be more economical, two series of tests with No. 4 diesel fuel and No. 2 diesel fuel were conducted. To control the emissions of nitrogen oxides (NO{sub x}), water was introduced into the combustion process in the form of water-emulsified fuel, or the fuel injection timing was retarded. In the first series of tests, compressed oxygen was used; in the second series of tests, a hollow-tube membrane was used. Steady-state engine performance and emissions data were obtained. Test results indicated a large increase in engine power density, a slight improvement in thermal efficiency, and significant reductions in smoke and particulate-matter emissions. Although NO{sub x} emissions increased, they could be controlled by introducing water and retarding the injection timing. The results further indicated that thermal efficiency is slightly increased when moderately water-emulsified fuels are used, because a greater portion of the fuel energy is released earlier in the combustion process. Oxygen-enriched air reduced the ignition delay and caused the heat-release rate and cumulative heat-release rates to change measurably. Even at higher oxygen levels, NO{sub x} emissions decreased rapidly when the timing was retarded, and the amount of smoke and the level of particulate-matter emissions did not significantly increase. The single-cylinder engine tests confirmed the results of an earlier technical assessment and further indicated a need for a low-pressure-drop membrane specifically designed for oxygen enrichment. Extension data set indexed separately. 14 refs.

Sekar, R.R.; Marr, W.W.; Cole, R.L.; Marciniak, T.J.

1991-11-01T23:59:59.000Z

338

Fuel Cell Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Vehicles Fuel Cell Vehicles August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel...

339

Question of the Week: Do You Use Alternative Fuels? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Alternative Fueling Station Locator to find fueling stations in your area. Do you use alternative fuels? E-mail your responses to the Energy Saver team at consumer.webmaster@nr...

340

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Operation of a Solid Polymer Fuel Cell: A Parametric Model,"1991). G. Bronoel, "Hydrogen-Air Fuel Cells Without PreciousG. Abens, "Development of a Fuel Cell Power Source for Bus,"

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas stationif that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

342

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas stationif that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

343

Barrow Meteoroloigcal Station (BMET) Handbook  

SciTech Connect

The Barrow meteorology station (BMET) uses mainly conventional in situ sensors mounted at four different heights on a 40 m tower to obtain profiles of wind speed, wind direction, air temperature, and humidity. It also obtains barometric pressure, visibility, and precipitation data.

Ritsche, MT

2004-11-01T23:59:59.000Z

344

Air Resources: Prevention and Control of Air Contamination and Air  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Resources: Prevention and Control of Air Contamination and Air Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) Air Resources: Prevention and Control of Air Contamination and Air Pollution, Air Quality Classifications and Standards, and Air Quality Area Classifications (New York) < Back Eligibility Agricultural Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Transportation Tribal Government Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations establish emissions limits and permitting and operational

345

U.S. Shared-use Vehicle Survey Findings: Opportunities and Obstacles for Carsharing and Station Car Growth  

E-Print Network (OSTI)

3) Shaheen, S.A. Pooled Cars. Access Magazine. University ofCarsharing, Station Cars, and Combined Approaches.MandateLinking Clean Fuel Cars, Carsharing, and Station Car

Shaheen, Susan A.; Meyn, Mollyanne; Wipyewski, Kamill

2003-01-01T23:59:59.000Z

346

Use of LIF image acquisition and analysis in developing a calibrated technique for in-cylinder investigation of the spatial distribution of air-to-fuel mixing in direct injection gasoline engines  

Science Conference Proceedings (OSTI)

This paper presents the role of image acquisition and analysis in the development of a new strategy for the calibration of measurements of fuel distribution in gasoline direct injection engines. Images are acquired from a motored experimental engine ... Keywords: LIF, air-to-fuel mixing, gasoline direct injection engine, image analysis, intensified image acquisition, laser-induced fluorescence

Guillaume de Sercey; Graeme Awcock; Morgan Heikal

2005-12-01T23:59:59.000Z

347

Use of LIF image acquisition and analysis in developing a calibrated technique for in-cylinder investigation of the spatial distribution of air-to-fuel mixing in direct injection gasoline engines  

Science Conference Proceedings (OSTI)

This paper presents the role of image acquisition and analysis in the development of a new strategy for the calibration of measurements of fuel distribution in gasoline direct injection engines. Images are acquired from a motored experimental engine ... Keywords: Air-to-fuel mixing, Gasoline direct injection engine, Image analysis, Intensified image acquisition, LIF, Laser-induced fluorescence

Guillaume de Sercey; Graeme Awcock; Morgan Heikal

2005-12-01T23:59:59.000Z

348

Alternative Fuels Data Center: Public Access to State Compressed Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Access to State Public Access to State Compressed Natural Gas (CNG) Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Google Bookmark Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Delicious Rank Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Public Access to State Compressed Natural Gas (CNG) Fueling Stations on

349

Clean Cities ozone air quality attainment and maintenance strategies that employ alternative fuel vehicles, with special emphasis on natural gas and propane  

DOE Green Energy (OSTI)

Air quality administrators across the nation are coming under greater pressure to find new strategies for further reducing automotive generated non-methane hydrocarbon (NMHC) and nitrogen oxide (NOx) emissions. The US Environmental Protection Agency (EPA) has established stringent emission reduction requirements for ozone non-attainment areas that have driven the vehicle industry to engineer vehicles meeting dramatically tightened standards. This paper describes an interim method for including alternative-fueled vehicles (AFVs) in the mix of strategies to achieve local and regional improvements in ozone air quality. This method could be used until EPA can develop the Mobile series of emissions estimation models to include AFVs and until such time that detailed work on AFV emissions totals by air quality planners and emissions inventory builders is warranted. The paper first describes the challenges confronting almost every effort to include AFVs in targeted emissions reduction programs, but points out that within these challenges resides an opportunity. Next, it discusses some basic relationships in the formation of ambient ozone from precursor emissions. It then describes several of the salient provisions of EPA`s new voluntary emissions initiative, which is called the Voluntary Mobile Source Emissions Reduction Program (VMEP). Recent emissions test data comparing gaseous-fuel light-duty AFVs with their gasoline-fueled counterparts is examined to estimate percent emissions reductions achievable with CNG and LPG vehicles. Examples of calculated MOBILE5b emission rates that would be used for summer ozone season planning purposes by an individual Air Quality Control Region (AQCR) are provided. A method is suggested for employing these data to compute appropriate voluntary emission reduction credits where such (lighter) AFVs would be acquired. It also points out, but does not quantify, the substantial reduction credits potentially achievable by substituting gaseous-fueled for gasoline-fueled heavy-duty vehicles. Finally, it raises and expands on the relevance of AFVs and their deployment to some other provisions embedded in EPA`s current guidance for implementing 1-hour NAAQS--standards which currently remain in effect--as tools to provide immediate reductions in ozone, without waiting for promised future clean technologies.

Santini, D.J.; Saricks, C.L.

1998-08-04T23:59:59.000Z

350

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

351

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

Quick, Advances in Biomass Fuel Preparation, Combustion andgas, or biomass, and used in internal- combustion-enginecombustion. We assume that these factors apply to biomass

Delucchi, Mark

1996-01-01T23:59:59.000Z

352

Power MEMS 2005, Nov. 28-30, 2005, Tokyo, Japan We have developed a large-entrainment-ratio micro ejector to supply fuel-air mixture for a catalytic combustor. As the key  

E-Print Network (OSTI)

ejector has achieved a maximum air-to-butane volume flow rate ratio of 43 when the back pressure employs butane as the fuel because it has both high energy density (13300 Wh/kg) and favorable storage. The requirement of designing an ejector for a butane combustor is to achieve an air-to-butane volume flow rate

Kasagi, Nobuhide

353

Assessing the sustainability of transportation fuels : the air quality impacts of petroleum, bio and electrically powered vehicles.  

E-Print Network (OSTI)

??Transportation fleet emissions have a dominant role in air quality because of their significant contribution to ozone precursor and greenhouse gas emissions. Regulatory policies have (more)

Alhajeri, Nawaf Salem

2010-01-01T23:59:59.000Z

354

Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels  

E-Print Network (OSTI)

Trade, Miscellaneous Subjects, 1991). Nevertheless, we use electricity andelectricity and fuel-use part of the survey (Bureau of the Census1987 Census of Wholesale Trade,electricity and fuel-use expenditure data are from the same survey (Bureau of the Census, The 1987 Census of Retail Trade,

Delucchi, Mark

1996-01-01T23:59:59.000Z

355

Alternative Fuels Data Center: Propane Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure Development to someone by E-mail Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

356

Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure Development to someone by E-mail Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives

357

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

DOE Green Energy (OSTI)

Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

Gladstein, Neandross and Associates

2005-09-01T23:59:59.000Z

358

Microfabricated fuel heating value monitoring device  

DOE Patents (OSTI)

A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

2010-05-04T23:59:59.000Z

359

A 700 year sediment record of black carbon and polycyclic aromatic hydrocarbons near the EMEP air monitoring station in Aspvreten, Sweden  

Science Conference Proceedings (OSTI)

In view of poor constraints on historical combustion emissions, past environmental loadings of black carbon (BC) and polycyclic aromatic hydrocarbon (PAH) were reconstructed from dated lake sediment cores collected 70 km south of Stockholm, Sweden. Compared to several dramatic variations over the recent 150 years, the preindustrial loadings were steady within {+-}50% through the entire medieval with BC fluxes of 0.071 g m{sup -2} yr{sup -1} and PAH fluxes of 6 g m{sup -2} yr{sup -1}. In the wood-burning dominated century leading up to the industrial revolution around 1850, increasing BC fluxes were leading PAH fluxes. BC fluxes reached their millennial-scale maximum around 1920, whereas PAH fluxes increased exponentially to its record maximum around 1960, 50-fold above preindustrial values. For 1920-1950, BC fluxes consistently decreased as PAH fluxes kept increasing. Coal and coke represented >50% of the Swedish energy market in the 1930s. Combined with sharply decreasing (1,7-)/(1,7{+-}2,6-dimethylphenanthrene), indicative of diminishing wood combustion, and decreasing methylphenanthrenes/phenanthrene, indicative of higher-temperature combustion (coal instead of wood), the sediment archive suggests that the relative BC/PAH emission factors thus are lower for coal than for wood combustion. For the first time, both BC and PAH fluxes decreased after 1960. This trend break is a testament to the positive effects of decreasing reliance on petroleum fuels and a number of legislative actions aimed at curbing emissions and by 1990, the loading of BC was back at preindustrial levels, whereas that of PAH were the lowest since the 1910s. However, for the most recent period (1990-2004) the BC and PAH fluxes are no longer decreasing. 55 refs., 3 figs.

Marie Elmquist; Zdenek Zencak; Oerjan Gustafsson [Stockholm University, Stockholm (Sweden). Department of Applied Environmental Science

2007-10-15T23:59:59.000Z

360

Alternative Fuels Data Center: Filling CNG Fuel Tanks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Filling CNG Fuel Tanks Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Filling CNG Fuel Tanks Unlike liquid fuel, which consistently holds about the same volume of fuel

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

alt fuel | OpenEI  

Open Energy Info (EERE)

9 9 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288369 Varnish cache server alt fuel Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG

362

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Electric

363

Hydrogen & Fuel Cells - Fuel Cell - Solid Oxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Research and Development Solid Oxide Fuel Cells Solid oxide diagram In an SOFC, oxygen from air is reduced to ions at the cathode, which diffuse through the...

364

Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report  

DOE Green Energy (OSTI)

This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

NONE

1996-01-01T23:59:59.000Z

365

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Go Go Generated_thumb20130810-31804-12g76v6 Incentive and Law Additions by Targeted Agent Generated_thumb20130810-31804-12g76v6 Trend of state incentive and law enactments listed by the targeted agent from 2002-2010 Last update March 2013 View Graph Graph Download Data Natural-gas-stations Natural Gas Fueling Stations by State Natural-gas-stations View Map Graph Map_thumbnail Workplace Charging Challenge Partner Stations Map_thumbnail View Graph Graph Lng-stations Liquefied Natural Gas Fueling Stations by State Lng-stations View Map Graph L_i-electric Electric Vehicle Incentives and Laws, by State L_i-electric View Map Graph Propane_li_by_state Propane Incentives and Laws, by State Propane_li_by_state View Map Graph Generated_thumb20130810-31804-1f4rg7 On-Road AFVs Made Available by Year

366

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Oregon Incentives and Laws Oregon Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Electric Vehicle Supply Equipment (EVSE) Incentive - ECOtality Expired: 03/11/2013 Through the EV Project, ECOtality offers EVSE at no cost to individuals in the Portland, Eugene, Salem, and Corvallis metropolitan areas. To be eligible for free home charging stations, individuals living within the specified areas must purchase a qualified plug-in electric vehicle (PEV). Individuals purchasing an eligible PEV should apply at the dealership at the time of vehicle purchase. The EV Project incentive program will also cover most, if not all, of the costs of EVSE installation. All participants

367

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Texas Incentives and Laws Texas Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Electric Vehicle Supply Equipment (EVSE) Incentive - ECOtality Expired: 03/11/2013 Through the EV Project, ECOtality offers EVSE at no cost to individuals in the Dallas, Fort Worth, and Houston metropolitan areas. To be eligible for free home charging stations, individuals living within the specified areas must purchase a qualified plug-in electric vehicle (PEV). Individuals purchasing an eligible PEV should apply at the dealership at the time of vehicle purchase. The EV Project incentive program will also cover most, if

368

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dist. of Columbia Incentives and Laws Dist. of Columbia Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Electric Vehicle Supply Equipment (EVSE) Incentive - ECOtality Expired: 03/11/2013 Through the EV Project, ECOtality offers EVSE at no cost to individuals in the District of Columbia metropolitan area. To be eligible for free home charging stations, individuals living within the specified areas must purchase a qualified plug-in electric vehicle (PEV). Individuals purchasing an eligible PEV should apply at the dealership at the time of vehicle purchase. The EV Project incentive program will also cover most, if not

369

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Illinois Incentives and Laws Illinois Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Electric Vehicle Supply Equipment (EVSE) Incentive - ECOtality Expired: 03/11/2013 Through the EV Project, ECOtality offers EVSE at no cost to individuals in the Chicago metropolitan area. To be eligible for free home charging stations, individuals living within the specified area must purchase a qualified plug-in electric vehicle (PEV). Individuals purchasing an eligible PEV should apply at the dealership at the time of vehicle purchase. The EV Project incentive program will also cover most, if not all, of the costs of EVSE installation. All participants in the EV Project

370

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jersey Incentives and Laws Jersey Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Electric Vehicle Supply Equipment (EVSE) Incentive - ECOtality Expired: 03/11/2013 Through the EV Project, ECOtality offers EVSE at no cost to individuals in the Philadelphia metropolitan area. To be eligible for free home charging stations, individuals living within the specified area must purchase a qualified plug-in electric vehicle (PEV). Individuals purchasing an eligible PEV should apply at the dealership at the time of vehicle purchase. The EV Project incentive program will also cover most, if not all, of the costs of EVSE installation. All participants in the EV Project

371

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Georgia Incentives and Laws Georgia Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Electric Vehicle Supply Equipment (EVSE) Incentive - ECOtality Expired: 03/11/2013 Through the EV Project, ECOtality offers EVSE at no cost to individuals in the Atlanta metropolitan area. To be eligible for free home charging stations, individuals living within the specified area must purchase a qualified plug-in electric vehicle (PEV). Individuals purchasing an eligible PEV should apply at the dealership at the time of vehicle purchase. The EV Project incentive program will also cover most, if not all, of the costs of EVSE installation. All participants in the EV Project

372

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Washington Incentives and Laws Washington Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Electric Vehicle Supply Equipment (EVSE) Incentive - ECOtality Expired: 03/11/2013 Through the EV Project, ECOtality offers EVSE at no cost to individuals in the Seattle metropolitan area. To be eligible for free home charging stations, individuals living within the specified areas must purchase a qualified plug-in electric vehicle (PEV). Individuals purchasing an eligible PEV should apply at the dealership at the time of vehicle purchase. The EV Project incentive program will also cover most, if not all, of the costs of EVSE installation. All participants in the EV Project

373

Rethink DC Metro Stations.  

E-Print Network (OSTI)

??This thesis intends to rethink the role of Metro stations in the Washington Metropolitan Area. It considers Metro stations as more than infrastructure, but with (more)

Leung, Yathim

2009-01-01T23:59:59.000Z

374

Alternative Fuels Data Center: Natural Gas Fuel Safety  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fuel Natural Gas Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Natural Gas Fuel Safety

375

Alternative Fuels Data Center: Flexible Fuel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Flexible Fuel Vehicle Flexible Fuel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicle Availability Flexible fuel vehicles (FFVs)-which can run on E85 (a gasoline-ethanol

376

Alternative Fuels Data Center: Natural Gas Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on AddThis.com... More in this section... Natural Gas Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Fuel Basics Photo of a natural gas fuel pump. Natural gas is an odorless, nontoxic, gaseous mixture of hydrocarbons-predominantly methane (CH4). It accounts for about a quarter

377

Renewable & Alternative Fuels - Analysis & Projections - U.S ...  

U.S. Energy Information Administration (EIA)

... (formerly shown in Table 5) was obtained from the Alternative Fuels Data Center (http://www.eere.energy.gov/afdc/fuels/stations_counts.html). ...

378

Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector  

SciTech Connect

Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high per-vehicle fuel use, central fueling and sensitivity to fuel costs, fleets will continue to be the primary target for NGV deployment and station development efforts. The transit sector is projected to continue to account for the greatest vehicular natural gas use and for new volume growth. New tax incentives and improved life-cycle economics also create opportunities to deploy additional vehicles and install related vehicular natural gas fueling infrastructure in the refuse, airport and short-haul sectors. Focusing on fleets generates the highest vehicular natural gas throughout but it doesn't necessarily facilitate public fueling infrastructure because, generally, fleet operators prefer not to allow public access due to liability concerns and revenue and tax administrative burdens. While there are ways to overcome this reluctance, including ''outside the fence'' retail dispensers and/or co-location of public and ''anchor'' fleet dispensing capability at a mutually convenient existing or new retail location, each has challenges that complicate an already complex business transaction. Partnering with independent retail fuel station companies, especially operators of large ''truck stops'' on the major interstates, to include natural gas at their facilities may build public fueling infrastructure and demand enough to entice the major oil companies to once again engage. Garnering national mass media coverage of success in California and Utah where vehicular natural gas fueling infrastructure is more established will help pave the way for similar consumer market growth and inclusion of public accessibility at stations in other regions. There isn't one ''right'' business model for growing the nation's NGV inventory and fueling infrastructure. Different types of station development and ownership-operation strategies will continue to be warranted for different customers in different markets. Factors affecting NGV deployment and station development include: regional air quality compliance status and the state and/or local political climate regarding mandates and/or in

Stephen C. Yborra

2007-04-30T23:59:59.000Z

379

State of Washington Department of Health Radioactive air emissions notice of construction phase 1 for spent nuclear fuel project - cold vacuum drying facility, project W-441  

SciTech Connect

This notice of construction (NOC) provides information regarding the source and the estimated annual possession quantity resulting from operation of the Cold Vacuum Drying Facility (CVDF). Additional details on emissions generated by the operation of the CVDF will be discussed again in the Phase 11 NOC. This document serves as a NOC pursuant to the requirements of WAC 246-247-060 for the completion of Phase I NOC, defined as the pouring of concrete for the foundation flooring, construction of external walls, and construction of the building excluding the installation of CVDF process equipment. A Phase 11 NOC will be submitted for approval prior to installing and is defined as the completion of the CVDF, which consisted installation of process equipment, air emissions control, and emission monitoring equipment. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters while the SNF in the K East Basin is in open canisters, which allow free release of corrosion products to the K East Basin water.

Turnbaugh, J.E.

1996-08-15T23:59:59.000Z

380

Management impact assessment of refuse-derived fuel implementation at Wright-Patterson Air Force Base. Final report 30 Sep 80-11 Mar 81  

Science Conference Proceedings (OSTI)

This study has shown that the impact of specifying, procuring, using, and monitoring refuse-derived fuel (RDF) on the organizational structure and the operations and management activities of Wright-Patterson Air Force Base has been generally minimal and essentially absorbed into the various ongoing functional activities. However, the project manager devoted over 75 percent of his time to the program since it started and additional housecleaning personnel were assigned to the operating staff to remove the dust and debris resulting from the RDF. The research and development nature of this particular activity contributes to the necessity of having a project manager with time to keep the program on track and interested persons informed as to its progress. Weather this impact would be reflected in follow-on implementation programs is problematic and dependent upon how the program is viewed locally, the need for further RandD, and the visibility required or desired. The level of effort dedicated to this project was 5.6 man-years the first year and is expected to be 4.0 man-years the second year. The associated salary costs are $130,500 and $86,500, respectively. An assessment of the applicability of CITA to the operation of the RDF facility at WPAFB indicates that this and other Air Force central heating plants will be reviewed for possible contract operation in FY 1984.

Huff, W.J.; McIntosh, R.K.

1982-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen » Laws & Incentives Hydrogen » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Hydrogen Fuel Cells The list below contains summaries of all Federal laws and incentives related to Hydrogen Fuel Cells. Incentives Alternative Fuel Tax Exemption Alternative fuels used in a manner that the Internal Revenue Service (IRS)

382

Alternative Fuels Data Center: Fuel Cell Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Fuel Cell Electric Vehicles

383

Overview of DOE Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution: Fuel cells can be powered by...

384

www.mdpi.com/journal/ijms A Single-Chamber Microbial Fuel Cell without an Air Cathode  

E-Print Network (OSTI)

treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (Rext) of 1 K? without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm 2 was achieved at an Rext of 220 ?. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE)

Vanita Roshan Nimje; Chien-cheng Chen; Hau-ren Chen; Chien-yen Chen; Min-jen Tseng; Kai-chien Cheng; Ruey-chyuan Shih; Young-fo Chang

2012-01-01T23:59:59.000Z

385

NAS Miramar Molten Carbonate Fuel Cell demonstration status  

DOE Green Energy (OSTI)

Part of M-C Power`s Technology Development Program, this MCFC power plant is designed to supply 250 kW of electricity to Naval Air Station (NAS) Miramar. It also cogenerates steam for the district heating system. The power plant is a fully integrated unit incorporating an advanced design fuel cell based on years of laboratory tests and a prior field test. This demonstration incorporates many innovative features, one of which is the plate type reformer which processes the natural gas fuel for use in the fuel cell. M-C Power Corp. has completed the design, fabrication, and conditioning of a 250-cell fuel cell stack, which was shipped to the site where it will be installed, tested, and evaluated as a 250 kW Proof-of-Concept MCFC Power Plant. (Originally going to Kaiser Permanente`s Sand Diego Medical Center, it was relocated to Miramar.)

Scroppo, J.A.

1996-12-31T23:59:59.000Z

386

CAISO Station Displays  

Science Conference Proceedings (OSTI)

The objective of this report is to describe the results of a project to build Station One-Line Diagram displays for the California Independent System Operator (CAISO) system. The development and maintenance of the Station One-line displays for energy management system applications has historically been a very time consuming, tedious and error prone task. Several man-years of effort may be required to build the station displays for a large interconnected power system. Once these stations displays have bee...

2003-05-07T23:59:59.000Z

387

WWVB Station Library  

Science Conference Proceedings (OSTI)

... NIST time and frequency broadcast stations. ... International Conference, Washington, DC, August 2001. WWVB Improvements: New Power from an ...

2010-10-05T23:59:59.000Z

388

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations

389

Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Fuel System and CNG Fuel System and Cylinder Maintenance to someone by E-mail Share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Facebook Tweet about Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Twitter Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Google Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Delicious Rank Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Digg Find More places to share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety

390

MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT  

DOE Green Energy (OSTI)

The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

H.C. Maru; M. Farooque

2004-08-01T23:59:59.000Z

391

U.S. Environmental Protection Agency Clean Air Act notice of construction for spent nuclear fuel project - hot conditioning system annex, project W-484  

SciTech Connect

This notice of construction (NOC) provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Hot Conditioning System (HCS) Annex. The construction of the HCS Annex is scheduled to conunence on or about December 1996, and will be completed when the process equipment begins operations. This document serves as a NOC pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the HCS Annex. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is contained in open canisters, which allows release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PUREX Plant left approximately 2, 1 00 MT (2,300 tons) of uranium, as part of 1133 N Reactor SNF in the K Basins with no means for near-term removal and processing. The HCS Annex will be constructed as an annex to the Canister Storage Building (CSB) and will contain the hot conditioning equipment. The hot conditioning system (HCS) will release chemically-bound water and will condition (process of using a controlled amount of oxygen to destroy uranium hydride) the exposed uranium surfaces associated with the SNF through oxidation. The HCS Annex will house seven hot conditioning process stations, six operational and one auxiliary, which could be used as a welding area for final closure of the vessel containing the SNF. The auxiliary pit is being evaluated at this time for its usefulness to support other operations that may be needed to ensure proper conditioning of the SNF and proper storage of the vessel containing the SNF. Figures I and 2 contain map locations of the Hanford Site and the HCS Annex.

Baker, S.K., Westinghouse Hanford

1996-12-10T23:59:59.000Z

392

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act Field Projects DOE Recovery Act Field Projects DOE National Laboratories DOE National Laboratories eGallon eGallon...

393

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Technologies Awardees Advanced Vehicle Technologies Awardees Department of Energy Facilities Department of Energy Facilities Recovery Act Smart Grid Projects Recovery...

394

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rooftop Solar Challenge NEUP Award Recipients NEUP Award Recipients 2011 Grants for Offshore Wind Power 2011 Grants for Offshore Wind Power 2011 Grants for Advanced...

395

Access to alternative transportation fuel stations varies ...  

U.S. Energy Information Administration (EIA)

Search EIA.gov. A-Z Index; A-Z Index A B C D E F G H I J K L M N O P Q R S T U V W XYZ. Today in Energy. Glossary ...

396

Air Temperature Model Evaluation in the North Mediterranean Belt Area  

Science Conference Proceedings (OSTI)

A comparative assessment of air temperature models, using hourly and daily air temperature measurements in 34 different stations in the north Mediterranean belt, is presented. Four air temperature models were used to estimate hourly and daily ...

Julia Bilbao; Argimiro H. de Miguel; Harry D. Kambezidis

2002-08-01T23:59:59.000Z

397

List of Other Alternative Fuel Vehicles Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Vehicles Incentives Fuel Vehicles Incentives Jump to: navigation, search The following contains the list of 8 Other Alternative Fuel Vehicles Incentives. CSV (rows 1 - 8) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana) Corporate Tax Credit Louisiana Commercial Renewable Fuel Vehicles

398

BWR Fuel Deposit Sample Evaluation  

Science Conference Proceedings (OSTI)

River Bend Nuclear Power Station, a boiling water reactor (BWR) plant, experienced fuel defects during Cycle 11. The failed fuel pins were identified during the subsequent refueling outage. To assist analysis of the fuel failure root cause, crud flake deposit samples were collected for analyses. Results on the morphology and distribution of chemical elements in four tenacious crud flakes that are associated with the fuel failures are reported in EPRI report 1009733, BWR Fuel Deposit Sample EvaluationRiv...

2005-11-29T23:59:59.000Z

399

BIOMASS COGASIFICATION AT POLK POWER STATION  

SciTech Connect

Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

John McDaniel

2002-05-01T23:59:59.000Z

400

BIOMASS COGASIFICATION AT POLK POWER STATION  

DOE Green Energy (OSTI)

Part of a closed loop biomass crop was recently harvested to produce electricity in Tampa Electric's Polk Power Station Unit No.1. No technical impediments to incorporating a small percentage of biomass into Polk Power Station's fuel mix were identified. Appropriate dedicated storage and handling equipment would be required for routine biomass use. Polk Unit No.1 is an integrated gasification combined cycle (IGCC) power plant. IGCC is a new approach to generating electricity cleanly from solid fuels such as coal, petroleum coke, The purpose of this experiment was to demonstrate the Polk Unit No.1 could process biomass as a fraction of its fuel without an adverse impact on availability and plant performance. The biomass chosen for the test was part of a crop of closed loop Eucalyptus trees.

John McDaniel

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: E85: An Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

E85: An Alternative E85: An Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: E85: An Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: E85: An Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Google Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Delicious Rank Alternative Fuels Data Center: E85: An Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: E85: An Alternative Fuel on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives E85 Photo of an E85 pump. E85 is a high-level gasoline-ethanol blend containing 51% to 83% ethanol,

402

Stations in Special Wind Regions  

Science Conference Proceedings (OSTI)

Stations in Special Wind Regions. ... station_matrix_912850.xlsx (Excel file). [ SED Home | Extreme Winds Home | Previous | Next ] ...

2013-03-11T23:59:59.000Z

403

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity » Laws & Incentives Electricity » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for EVs The list below contains summaries of all Federal laws and incentives related to EVs. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

404

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane » Laws & Incentives Propane » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Propane (LPG) The list below contains summaries of all Federal laws and incentives related to Propane (LPG). Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

405

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel » Laws & Incentives Biodiesel » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Biodiesel The list below contains summaries of all Federal laws and incentives related to Biodiesel. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

406

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol » Laws & Incentives Ethanol » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Ethanol The list below contains summaries of all Federal laws and incentives related to Ethanol. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

407

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas » Laws & Incentives Natural Gas » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Natural Gas The list below contains summaries of all Federal laws and incentives related to Natural Gas. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

408

Optimization of compression and storage requirements at hydrogen refueling stations.  

SciTech Connect

The transition to hydrogen-powered vehicles requires detailed technical and economic analyses of all aspects of hydrogen infrastructure, including refueling stations. The cost of such stations is a major contributor to the delivered cost of hydrogen. Hydrogen refueling stations require not only dispensers to transfer fuel onto a vehicle, but also an array of such ancillary equipment as a cascade charging system, storage vessels, compressors and/or pumps/evaporators. This paper provides detailed information on design requirements for gaseous and liquid hydrogen refueling stations and their associated capital and operating costs, which in turn impact hydrogen selling price at various levels of hydrogen demand. It summarizes an engineering economics approach which captures the effect of variations in station size, seasonal, daily and hourly demand, and alternative dispensing rates and pressures on station cost. Tradeoffs in the capacity of refueling station compressors, storage vessels, and the cascade charging system result in many possible configurations for the station. Total costs can be minimized by optimizing that configuration. Using a methodology to iterate among the costs of compression, storage and cascade charging, it was found that the optimum hourly capacity of the compressor is approximately twice the station's average hourly demand, and the optimum capacity of the cascade charging system is approximately 15% of the station's average daily demand. Further, for an hourly demand profile typical of today's gasoline stations, onsite hydrogen storage equivalent to at least 1/3 of the station's average daily demand is needed to accommodate peak demand.

Elgowainy, A.; Mintz, M.; Kelly, B.; Hooks, M.; Paster, M. (Energy Systems); (Nexant, Inc.); (TIAX LLC)

2008-01-01T23:59:59.000Z

409

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

propane Go propane Go Propane_li_by_state Propane Incentives and Laws, by State Propane_li_by_state View Map Graph Propane-stations Propane Fueling Station Locations by State Propane-stations View Map Graph 10561_expenditures_by_sector_20130906 Per Capita Energy Expenditures by Sector 10561_expenditures_by_sector_20130906 Trend of transportation and residential energy expenditures from 1970-2010 Last update September 2013 View Graph Graph Download Data Generated_thumb20130810-31804-yezn9l Alternative Fuel Vehicles in Use Generated_thumb20130810-31804-yezn9l Trend of the number of AFVs in use by fuel type from 1992-2010 Last update May 2012 View Graph Graph Download Data Generated_thumb20130810-31804-1gs1r9t Estimated Consumption of Alternative Fuels by AFVs Generated_thumb20130810-31804-1gs1r9t

410

Energy Department Applauds World's First Fuel Cell and Hydrogen...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Fountain Valley tri-generation fuel cell and hydrogen energy station uses biogas from the municipal wastewater treatment plant as the fuel for a fuel cell. The system...

411

Urbanization Effects on Observed Surface Air Temperature Trends in North China  

Science Conference Proceedings (OSTI)

A dataset of 282 meteorological stations including all of the ordinary and national basic/reference surface stations of north China is used to analyze the urbanization effect on surface air temperature trends. These stations are classified into ...

Guoyu Ren; Yaqing Zhou; Ziying Chu; Jiangxing Zhou; Aiying Zhang; Jun Guo; Xuefeng Liu

2008-03-01T23:59:59.000Z

412

Alternative Fuel News, Vol. 7, No. 1  

DOE Green Energy (OSTI)

Quarterly magazine with articles on alternative fueling station best practices, alt fuel shool buses, AFVs at L.L. Bean, Clean Cites and the Hydrogen Future, by DOE Assistant Secretary David Garman.

Not Available

2003-05-01T23:59:59.000Z

413

Fuel Cell Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by hydrogen, have the potential to...

414

Early Station Costs Questionnaire  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Station Costs Questionnaire Early Station Costs Questionnaire Marc Melaina Hydrogen Technologies and Systems Center Market Readiness Workshop February 16-17th, 2011 Washington, DC Questionnaire Goals * The Early Station Costs questionnaire provides an anonymous mechanism for organizations with direct experience with hydrogen station costs to provide feedback on current costs, near-term costs, economies of scale, and R&D priorities. * This feedback serves the hydrogen community and government agencies by increasing awareness of the status of refueling infrastructure costs National Renewable Energy Laboratory Innovation for Our Energy Future Questions for Market Readiness Workshop Attendees * Are these questions the right ones to be asking?

415

FREE AIR PRESSURE MEASUREMENTS  

SciTech Connect

Indenter gages, Wiancko gages, and interferometer gages were used to measure air overpressure vs time at essentially ground level stations for both the surface (S) and undprground (U) atomic explosions. For the S Burst several instruments were placed on a line extending from an overpressure region of 13 psi to a region of less than one psi. The air measurements for the U Burst ranged from 32 to 2 psi. (D. L.G.)

Howard, W.J.; Jones, R.D.

1952-02-19T23:59:59.000Z

416

Tiger Teams Technical Assistance: Reliable, Universal Open Architecture for Card Access to Dispense Alternative Fuels  

DOE Green Energy (OSTI)

Report discusses the dilemma of incorporating consistent, convenient, universal card access (or ''pay-at-the-pump'') systems into alternative fueling stations across the country. The state of California continues to be in the forefront of implementing alternative fuels for transportation applications. Aggressive efforts to deploy alternative fuel vehicles (AFVs) in California have highlighted the need to provide adequate fueling stations and develop appropriate, user-friendly means to purchase fuel at the pump. Since these fuels are not typically provided by petroleum companies at conventional fueling stations, and acceptance of cash is often not an option, a payment method must be developed that is consistent with the way individual AFV operators are accustomed to purchasing automotive fuels--with a credit card. At the same time, large fleets like the California Department of General Services must be able to use a single fuel card that offers comprehensive fleet management services. The Gas Technology Institute's Infrastructure Working Group (IWG) and its stakeholders have identified the lack of a common card reader system as a hurdle to wider deployment of AFVs in California and the United States. In conjunction with the U.S. Department of Energy's (DOE) National Clean Cities Program, the IWG has outlined a multi-phased strategy to systematically address the barriers to develop a more ''open'' architecture that's similar to the way gasoline and diesel are currently dispensed. Under the auspices of the IWG, survey results were gathered (circa 1999) from certain fuel providers, as a means to more carefully study card reader issues and their potential solutions. Pilot programs featuring card reader systems capable of accepting wider payment options have been attempted in several regions of the United States with mixed success. In early 2001, DOE joined the National Renewable Energy Laboratory (NREL), the California Energy Commission (CEC) and the South Coast Air Quality Management District (SCAQMD) in a renewed effort to further develop a universal card reader access program. The immediate focus is on natural gas fueling stations--primarily compressed natural gas (CNG) in California. However, the ultimate intention is to apply the resulting advancements in open architecture card reader systems in stations dispensing other types of alternative transportation fuels across the United States.

Not Available

2002-03-01T23:59:59.000Z

417

Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF  

SciTech Connect

A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for different fuel injection strategies. Finally, mixture distributions for late injection obtained using quantitative PLIF are compared to predictions of computational fluid dynamics calculations. (author)

Williams, Ben; Ewart, Paul [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Wang, Xiaowei; Stone, Richard [Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ (United Kingdom); Ma, Hongrui; Walmsley, Harold; Cracknell, Roger [Shell Global Solutions (UK), Shell Research Centre Thornton, P. O. Box 1, Chester, CH1 3SH (United Kingdom); Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan [Jaguar Cars, Engineering Centre, Abbey Road, Whitley, Coventry, CV3 4LF (United Kingdom)

2010-10-15T23:59:59.000Z

418

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Printable Version 2005 Annual Progress Report IV. Production This section of the 2005 Progress Report for the DOE Hydrogen Program focuses on production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Overview, Peter Devlin, Department of Energy (PDF 158 KB) A. Distributed Reforming Autothermal Cyclic Reforming Based Hydrogen Generating and Dispensing System, Ravi Kumar, GE Global Research (PDF 215 KB) Development of a Turnkey Hydrogen Fueling Station, David E. Guro, Air Products and Chemicals, Inc. (PDF 209 KB) A Reversible Planar Solid Oxide Fuel-fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biogas, Greg Tao, Materials and Systems Research Inc. (PDF 336

419

Compressed air energy storage system  

DOE Patents (OSTI)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

420

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

Note: This page contains sample records for the topic "fueling station air" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL: Learning - Alternative Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Alternative Fuels Photo of a man standing next to a large heavy-duty truck cab while the truck is being filled with biodiesel at a refueling station. As part of its work for the Clean Cities program, NREL helps people find and use alternative fuels such as biodiesel. Credit: L.L. Bean To reduce our growing dependence on imported oil, our nation's researchers are working with industry to develop several different kinds of alternative fuels. Some of these fuels can either be blended with petroleum while some are alternatives to petroleum. Using alternative fuels can also help to curb exhaust emissions and contribute to a healthier environment. Most of today's conventional cars, vans, trucks, or buses can already run on some alternative fuels, such as blends of gasoline or diesel fuel that

422

Technical Analysis: Integrating a Hydrogen Energy Station into a Federal Building  

E-Print Network (OSTI)

be achievable, and as typical load profiles for the fueling station and for the buildings are often partiallyTechnical Analysis: Integrating a Hydrogen Energy Station into a Federal Building Stefan Unnasch NREL/CP-610-32405 #12;electric power demand from the fuel cell and vehicle hydrogen demand result

423

Alternative Fueling Station Locations

Alternative fueling...  

Open Energy Info (EERE)

propaneliquefied petroleum gas (LPG), biodiesel, electricity, hydrogen, and liquefied natural gas (LNG), as of April 4, 2012.

2010-12-14T00:04:52Z 2012-04-04T21:12:52Z To...

424

Alternative Fuels Data Center: Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close More Search Options...

425

Miniature ceramic fuel cell  

DOE Patents (OSTI)

A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

1997-06-24T23:59:59.000Z

426

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fueling station HFSS High-flux solar simulator HFV Hydrogen-fueled vehicle HGEF Hawaii Gateway Energy Center XIV. Acronyms, Abbreviations and Definitions XIV-10 DOE...

427

Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; Hathaway, W.T.; Kangas, R.

1996-09-01T23:59:59.000Z

428

Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report  

DOE Green Energy (OSTI)

The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives wer

Hitchcock, David

2012-06-29T23:59:59.000Z

429

Optimal control of a bleed air temperature regulation system.  

E-Print Network (OSTI)

??This thesis investigates temperature control of an aircraft engine bleed air system, aiming at reducing ram air usage to reduce fuel consumption while maintaining fast (more)

Shang, Lan

2007-01-01T23:59:59.000Z

430

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)  

Science Conference Proceedings (OSTI)

Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

Not Available

2010-03-01T23:59:59.000Z

431

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Incentives and Laws Virginia Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuel Public-Private Partnerships (PPPs) Expired: 01/31/2014 Archived: 03/01/2013 The Virginia Offices of the Secretary of Administration and the Secretary of Natural Resources released a PPP solicitation outlining their interest in forming partnerships with and among alternative fuel providers, infrastructure developers, vehicle manufacturers, and other alternative fuel industry stakeholders to expand fueling infrastructure and to support alternative fuel use in the commonwealth fleet. By May 2012, the Virginia

432

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

433

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Stations Alternative Fueling Stations All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Arra-thumb ARRA Electrification Projects Arra-thumb Last update November 2012 View Map Graph Biofuelsatlas BioFuels Atlas Biofuelsatlas BioFuels Atlas is an interactive map for comparing biomass feedstocks and biofuels by location. This tool helps users select from and apply biomass data layers to a map, as well as query and download biofuels and feedstock

434