Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

USCG Energy Program Resource Management, Fuel Logistics, and Facility Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Program Energy Program Resource Management, Fuel Logistics, and Facility Energy Presented by Daniel Gore USCG Energy Program Manager Office of Resource Management 1 1 2 Presentation Contents * Overview CG Energy Program * Highlights * Interesting Projects for Utilities * Alternatively Financed Projects Discussion 2 3 Overview 3 USCG Energy Program Growth * CG represents 80% of DHS energy consumption * Obligations up 210% from FY 2000 * Energy = 25% of O&M budget 4 4 Energy Program Dynamics Increasing Expenditures Increasing Politics & Mandates Increasing Scrutiny & Reporting Procurement & Credit Card Transformations Accounting System Improvements Organizational Strategic Transformations 5 5 What is CG Energy Management? * Policies impacting $306M annual obligations

2

DOE Hydrogen and Fuel Cells Program: Permitting Hydrogen Facilities Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy The objective of this U.S. Department of Energy Hydrogen Permitting Web site is to help local permitting officials deal with proposed hydrogen fueling stations, fuel cell installations for telecommunications backup power, and other hydrogen projects. Resources for local permitting officials who are looking to address project proposals include current citations for hydrogen fueling stations and a listing of setback requirements on the Alternative Fuels & Advanced Vehicle Data Center Web site. In addition, this overview of telecommunications fuel cell use and an animation that demonstrates telecommunications site layout using hydrogen fuel cells for backup power should provide helpful

3

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network (OSTI)

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

4

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

5

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

1995-06-30T23:59:59.000Z

6

Fuzzy linear programming based optimal fuel scheduling incorporating blending/transloading facilities  

Science Conference Proceedings (OSTI)

In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.

Djukanovic, M.; Babic, B.; Milosevic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [EPRI, Palo Alto, CA (United States). Power System Control; Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

1996-05-01T23:59:59.000Z

7

Research Facilities and Programs  

Science Conference Proceedings (OSTI)

WEB RESOURCES: Magnesium Research Facilities and Programs ... to universities, corporations, and other facilities involved in magnesium research, 0, 1025...

8

Facility Representative Program: Facility Representative Program Sponsors  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

9

Hawaii Fuel Cell Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Test Facility presented to DOE Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop Renaissance Hollywood Hotel by Rick Rocheleau...

10

Alternative Fuels Data Center: Biofuels Production Facility Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Facility Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Facility Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Facility Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Facility Grants on Google Bookmark Alternative Fuels Data Center: Biofuels Production Facility Grants on Delicious Rank Alternative Fuels Data Center: Biofuels Production Facility Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Facility Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Facility Grants The Renewable Fuels Development Program provides grants for the

11

Facility Representative Program: Program Mission Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

General Program Information Program Mission Statement Program Directives and Guidance Facility Representative of the Year Award Program Facility Representative of the Year Award FR...

12

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK APRIL 2006 CEC-300 Director Heather Raitt Technical Director Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy Director Efficiency, Renewables, and Demand Analysis Division #12;These

13

Integrated Facilities Disposition Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

14

NEW RENEWABLE FACILITIES PROGRAM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ` NEW RENEWABLE FACILITIES PROGRAM GUIDEBOOK March 2007 CEC-300 Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE CALIFORNIA ENERGY COMMISSION Jeffrey D. Byron B.B. Executive Director Heather Raitt Technical Director RENEWABLE ENERGY OFFICE Mark

15

Alternative Fuel Production Facility Incentives (Kentucky) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fuel Production Facility Incentives (Kentucky) Alternative Fuel Production Facility Incentives (Kentucky) Alternative Fuel Production Facility Incentives (Kentucky) < Back Eligibility Commercial Developer Utility Program Info State Kentucky Program Type Corporate Tax Incentive The Kentucky Economic Development and Finance Authority (KEDFA) provides tax incentives to construct, retrofit, or upgrade an alternative fuel production or gasification facility that uses coal or biomass as a feedstock. Beginning Aug. 1, 2010, tax incentives are also available for energy-efficient alternative fuel production facilities and up to five alternative fuel production facilities that use natural gas or natural gas liquids as a feedstock. Energy-efficient alternative fuels are defined as homogeneous fuels that are produced from processes designed to densify

16

Facility Representative Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

17

Alternative Fuels Data Center: Renewable Fuel Production Facility Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Production Facility Tax Credit

18

Facility Representative Program: 2000 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

19

Facility Representative Program: 2001 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

20

Facility Representative Program: 2010 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Facility Representative Program: 2003 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

22

State Facilities Energy Conservation Program (Oklahoma) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Facilities Energy Conservation Program (Oklahoma) State Facilities Energy Conservation Program (Oklahoma) Eligibility Schools State Government Savings For Other Program...

23

Alternative Fuel Production Facility Incentives (Kentucky) |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or biomass as a feedstock. Beginning Aug. 1, 2010, tax incentives are also available for energy-efficient alternative fuel production facilities and up to five alternative fuel...

24

Fuel conditioning facility material accountancy  

SciTech Connect

The operation of the Fuel conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. It differs significantly, therefore, from traditional PUREX process facilities in both processing technology and safeguards implications. For example, the fissile material is processed in FCF only in batches and is transferred within the facility only as solid, well-characterized items; there are no liquid steams containing fissile material within the facility, nor entering or leaving the facility. The analysis of a single batch lends itself also to an analytical relationship between the safeguards criteria, such as alarm limit, detection probability, and maximum significant amount of fissile material, and the accounting system`s performance, as it is reflected in the variance associated with the estimate of the inventory difference. This relation, together with the sensitivity of the inventory difference to the uncertainties in the measurements, allows a thorough evaluation of the power of the accounting system. The system for the accountancy of the fissile material in the FCF has two main components: a system to gather and store information during the operation of the facility, and a system to interpret this information with regard to meeting safeguards criteria. These are described and the precision of the inventory closure over one batch evaluated.

Yacout, A.M.; Bucher, R.G.; Orechwa, Y.

1995-08-01T23:59:59.000Z

25

Facility Representative Program: Program Directives and Guidance  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative of the Year Award FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) Program Directives and Guidance FR Program Standard, DOE STD 1063-2011,...

26

Alternative Fuels Data Center: Biofuel Loan Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Loan Program Biofuel Loan Program to someone by E-mail Share Alternative Fuels Data Center: Biofuel Loan Program on Facebook Tweet about Alternative Fuels Data Center: Biofuel Loan Program on Twitter Bookmark Alternative Fuels Data Center: Biofuel Loan Program on Google Bookmark Alternative Fuels Data Center: Biofuel Loan Program on Delicious Rank Alternative Fuels Data Center: Biofuel Loan Program on Digg Find More places to share Alternative Fuels Data Center: Biofuel Loan Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Loan Program The Biofuels Partnership in Assisting Community Expansion (PACE) Loan Program provides an interest buy down of up to 5% below the note rate to biodiesel, ethanol, or green diesel production facilities; livestock

27

Facility Representative Program: 2007 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

28

Facility Representative Program: 2004 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASA’S Columbia Accident Investigation Board Report

29

Facility Representative Program: Program Performance Indicators  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Performance Indicators DOE Corporate Reporting Data (ORPS, CAIRS, Others) Facility Representative Performance Indicator Guidance -- Appendix A in DOE-STD-1063-2011,...

30

Alternative Fuel Transportation Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

federal federal register Monday May 17, 1999 Part II Department of Energy Office of Energy Efficiency and Renewable Energy 10 CFR Part 490 Alternative Fuel Transportation Program; P-series Fuels; Final Rule 26822 Federal Register / Vol. 64, No. 94 / Monday, May 17, 1999 / Rules and Regulations DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy 10 CFR Part 490 [Docket No. EE-RM-98-PURE] RIN 1904-AA99 Alternative Fuel Transportation Program; P-Series Fuels AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy (DOE). ACTION: Notice of final rulemaking. SUMMARY: In response to a petition filed by Pure Energy Corporation, DOE is amending the rules for the statutory program that requires certain alternative fuel providers and State government

31

LOFT facility and test program  

SciTech Connect

The Loss-of-Fluid Test (LOFT) test facility, program objectives, and the experiments planned are described. The LOFT facility is related to the smaller Semiscale facility and the larger commercial pressurized water reactors. The fact that LOFT is a computer model assessment tool rather than a demonstration test is emphasized. Various types of reactor safety experiments planned through 1983 are presented.

McPherson, G.D.

1979-11-01T23:59:59.000Z

32

Facility Representative Program: 2006 Facility Representative Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

33

Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models  

SciTech Connect

A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed. (DLC)

Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

1979-09-01T23:59:59.000Z

34

Final safety analysis report for the irradiated fuels storage facility  

SciTech Connect

A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1$sup 1$/$sub 2$ cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100$sup 0$F is reached. (LK)

Bingham, G.E.; Evans, T.K.

1976-01-01T23:59:59.000Z

35

Establishing nuclear facility drill programs  

SciTech Connect

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

36

Residential Fuel Cell Performance Test Facility  

Science Conference Proceedings (OSTI)

... Currently, the test facility is setup to deliver natural gas as the fuel, but ... A turbine and magnetic flow meter measure the flow of water for the domestic ...

2011-11-15T23:59:59.000Z

37

Hot Fuel Examination Facility's neutron radiography reactor  

SciTech Connect

Argonne National Laboratory-West is located near Idaho Falls, Idaho, and is operated by the University of Chicago for the United States Department of Energy in support of the Liquid Metal Fast Breeder Reactor Program, LMFBR. The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination techniques utilized at HFEF is neutron radiography, which is provided by the NRAD reactor facility (a TRIGA type reactor) below the HFEF hot cell.

Pruett, D.P.; Richards, W.J.; Heidel, C.C.

1983-01-01T23:59:59.000Z

38

Financing Strategies for Nuclear Fuel Cycle Facility  

SciTech Connect

To help meet our nations energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

David Shropshire; Sharon Chandler

2005-12-01T23:59:59.000Z

39

Safety analysis of IFR fuel processing in the Argonne National Laboratory Fuel Cycle Facility  

SciTech Connect

The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory (ANL) includes on-site processing and recycling of discharged core and blanket fuel materials. The process is being demonstrated in the Fuel Cycle Facility (FCF) at ANL`s Idaho site. This paper describes the safety analyses that were performed in support of the FCF program; the resulting safety analysis report was the vehicle used to secure authorization to operate the facility and carry out the program, which is now under way. This work also provided some insights into safety-related issues of a commercial IFR fuel processing facility. These are also discussed.

Charak, I; Pedersen, D.R. [Argonne National Lab., IL (United States); Forrester, R.J.; Phipps, R.D. [Argonne National Lab., Idaho Falls, ID (United States)

1993-09-01T23:59:59.000Z

40

Fuel Cell Demonstration Program  

DOE Green Energy (OSTI)

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Federal Energy Management Program: Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Facilities to someone by E-mail Share Federal Energy Management Program: Industrial Facilities on Facebook Tweet about Federal Energy Management Program: Industrial...

42

Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume III. Resources and fuel cycle facilities  

SciTech Connect

Volume III explores resources and fuel cycle facilities. Chapters are devoted to: estimates of US uranium resources and supply; comparison of US uranium demands with US production capability forecasts; estimates of foreign uranium resources and supply; comparison of foreign uranium demands with foreign production capability forecasts; and world supply and demand for other resources and fuel cycle services. An appendix gives uranium, fissile material, and separative work requirements for selected reactors and fuel cycles.

1979-12-01T23:59:59.000Z

43

ICPP Special Fuels Canning and Characterization Facility  

SciTech Connect

This report examines the functional mission of a Special Fuels Canning and Characterization Facility (SFCCF) for the Idaho Chemical Processing Plant (ICPP) and presents justification for its implementation as part of Westinghouse Idaho Nuclear Co., Inc. (WINCO) long-range plans. The SFCCF would be built as the first phase of an overall facility for dispositioning special fuels. Issues related to feasibility, cost, and preconceptual design criteria are also discussed in this report. A preconceptual facility layout based on existing information was developed to enhance the preconceptual design criteria and support a rough order-of-magnitude cost estimate for the construction of the SFCCF. The US Department of Energy (DOE) is the landlord of a large quantity of spent nuclear fuel and related materials. A significant quantity of this inventory, approximately 730,000 kg total fuel mass, is labeled as ``special fuel`` because no specific processing technique and/or facility to disposition this material is available in the NMP complex. The dispositioning of this fuel is especially complex because of the variety of fuel types. Of these special fuels, approximately 90 %wt are stored at the INEL. Timely dispositioning of the fuels would avoid expenditures of funds for a second generation of storage facilities at the INEL and other DOE facilities and would demonstrate to the public that solutions to nuclear fuel dispositioning exist and that a plan is being executed. The SFCCF is required to characterize, verify the storage can contents, and, if necessary, recan the special fuels to help assure safe, interim storage (i.e. fission product containment and criticality control) until the special fuels processing facility is operating.

Sire, D.L.; Bendixsen, C.L.; Armstrong, E.F.; Henry, R.N.; Frandsen, G.B.

1992-04-01T23:59:59.000Z

44

NREL: Hydrogen and Fuel Cells Research - Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities Scientists, engineers, and analysts develop hydrogen and fuel cell technologies at NREL's extensive research facilities in Golden, Colorado. Fuel Cell...

45

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

46

Alternative Fuels Data Center: Biofuels Production Facility Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Facility Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Facility Grants on Facebook Tweet about Alternative Fuels Data Center:...

47

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

48

The OSU Hydro-Mechanical Fuel Test Facility: Standard Fuel Element Testing  

Science Conference Proceedings (OSTI)

Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or standard fuel element (SFE), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates due to hydraulic forces. This test program supports ongoing work conducted for/by the fuel development program and will take place at OSU in the Hydro-Mechanical Fuel Test Facility (HMFTF). Discussion of a preliminary test matrix, SFE design, measurement and instrumentation techniques, and facility description are detailed in this paper.

Wade R. Marcum; Brian G. Woods; Ann Marie Phillips; Richard G. Ambrosek; James D. Wiest; Daniel M. Wachs

2001-10-01T23:59:59.000Z

49

Federal Energy Management Program: Facility Energy Checklist  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Energy Facility Energy Checklist to someone by E-mail Share Federal Energy Management Program: Facility Energy Checklist on Facebook Tweet about Federal Energy Management Program: Facility Energy Checklist on Twitter Bookmark Federal Energy Management Program: Facility Energy Checklist on Google Bookmark Federal Energy Management Program: Facility Energy Checklist on Delicious Rank Federal Energy Management Program: Facility Energy Checklist on Digg Find More places to share Federal Energy Management Program: Facility Energy Checklist on AddThis.com... Project Assistance Training Outreach Awards for Saving Energy Energy Action Month FAQs Facility Checklist Home Energy Checklist Office Checklist Energy Coordinators Commit to Efficiency Facility Energy Checklist This checklist outlines actions that conserve energy within facilities.

50

HTGR fuels reprocessing facilities. Environmental statement  

SciTech Connect

The environmental effects of the construction and operation of the HTGR Fuels Reprocessing Facilities at the NRTS, Idaho are examined. The descriptions include: the environment in the area including the history, geology, geography, hydrology, ecology, and land and water use; the facility and its effluents; impacts from construction and operation of the facility; alternatives to the proposed action; irreversible and irretrievable commitments of resources; and the benefits-cost analysis of the proposed plant operation. (LCL)

1974-01-01T23:59:59.000Z

51

Hydrogen, Fuel Cells, & Infrastructure - Program Areas - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell Welcome> Program Areas> Program Areas Hydrogen, Fuel Cells & Infrastructure Production & Delivery | Storage | Fuel Cell R&D | Systems Integration & Analysis | Safety...

52

Nuclear fuel cycle facility accident analysis handbook  

Science Conference Proceedings (OSTI)

The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

NONE

1998-03-01T23:59:59.000Z

53

Facility Representative Program: 2008 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sherman Chao, LSO Conduct of Operations Improvements at K Basins Dennis Humphreys, RL Molten Salt Reactor Experiment (MSRE) facility lessons learned Charlie Wright, ORO...

54

Facility Representative Program: 2005 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharing of Good Practices and Lessons Learned (4) Inadvertent Startup of Electric Centrifuge at the Weapon Evaluation Test Lab Joyce Arviso-Benally, SSO Facility Rep...

55

Facility Representative Program: 2012 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

18, 2012 Las Vegas, NV Agenda | Presentations | SSO Annual Award | Pictures | Summary Report 2011 Facility Representative of the Year Award 2011 WINNER: Congratulations to Bradley...

56

Alternative Fuels Data Center: Alternative Fueling Station Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Station Grant Program to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Station Grant Program on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Station Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Station Grant Program The Alternative Fueling Station Grant Program provides grants of up to

57

Alcohol Transportation Fuels Demonstration Program  

DOE Green Energy (OSTI)

Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii's Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

Kinoshita, C.M. (ed.)

1990-01-01T23:59:59.000Z

58

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

IEA HIA Hydrogen Safety Stakeholder IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/2/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar, which has ~540 patents. [1] http://cepgi.typepad.com/files/cepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung,

59

Office of Nuclear Facility Safety Programs: Nuclear Facility Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety (HS-30) Safety (HS-30) Office of Nuclear Safety Home » Directives » Nuclear and Facility Safety Policy Rules » Nuclear Safety Workshops Technical Standards Program » Search » Approved Standards » Recently Approved » RevCom for TSP » Monthly Status Reports » Archive » Feedback DOE Nuclear Safety Research & Development Program Office of Nuclear Safety Basis & Facility Design (HS-31) Office of Nuclear Safety Basis & Facility Design - About Us » Nuclear Policy Technical Positions/Interpretations » Risk Assessment Working Group » Criticality Safety » DOE O 420.1C Facility Safety » Beyond Design Basis Events Office of Nuclear Facility Safety Programs (HS-32) Office of Nuclear Facility Safety Programs - About Us » Facility Representative Program

60

Office of Nuclear Facility Safety Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Programs establishes requirements related to safety management programs that are essential to the safety of DOE nuclear facilities. In addition, establishes requirements...

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities  

Science Conference Proceedings (OSTI)

The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

Lee, S.Y.

1999-01-13T23:59:59.000Z

62

President Reagan Calls for a National Spent Fuel Storage Facility |  

National Nuclear Security Administration (NNSA)

Reagan Calls for a National Spent Fuel Storage Facility | Reagan Calls for a National Spent Fuel Storage Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Reagan Calls for a National Spent ... President Reagan Calls for a National Spent Fuel Storage Facility October 08, 1981

63

Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard (RFS) Program to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard (RFS) Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard (RFS) Program The national RFS Program was developed to increase the volume of renewable

64

Facility Representative Program: 2000 Facility Representative...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Break 10:00 a.m. - Making Your Observations CountLeading Indicators - Mike Weis, Rocky Flats Field Office 10:45 a.m. - Facility Representative PanelQuestions and Answers (Ben...

65

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer Acting Acting Program Program Manager Manager Acting Acting Program Program Manager Manager 2010 Annual Merit Review and Peer Evaluation Meeting 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010) (7 June 2010) The Administration's Clean Energy Goals 9 9 Double Renewable Double Renewable Energy Capacity by 2012 9 Invest $150 billion over ten years i in energy R&D to transition to a clean energy economy clean energy economy 9 Reduce GHG emissions 83% by 2050 2 t t Æ Æ F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges Increasing Energy Increasing Energy Ef ficiency and Resource Diversity Efficiency and Resource Diversity Æ Æ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

66

Alternative Fuels Data Center: Ethanol Production Facility Environmental  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Environmental Assessment Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on AddThis.com...

67

Alternative Fuels Data Center: Fuel-Efficient Tire Program Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel-Efficient Tire Fuel-Efficient Tire Program Development to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient Tire Program Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel-Efficient Tire Program Development The California Energy Commission (CEC) must adopt and implement a

68

Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

National Fuel Cell Bus National Fuel Cell Bus Program (NFCBP) to someone by E-mail Share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Facebook Tweet about Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Twitter Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Google Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Delicious Rank Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Digg Find More places to share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type National Fuel Cell Bus Program (NFCBP) The goal of the NFCBP is to facilitate the development of commercially

69

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Grant Program to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Grant Program on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Grant Program on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Grant Program on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Grant Program on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Grant Program on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Grant Program

70

Headquarters Facilities Work Planning and Control Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Headquarters Facilities Work Planning and Control Program Headquarters Facilities Work Planning and Control Program Headquarters Facilities Work Planning and Control Program...

71

Facility Representative Program: DOE Facility Representatives  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP PADU PORTS ANL WVDP MOAB SFO LFO LAFO NFO SRFO RL PNSO ORP ID NPO-PX FSO NBL NPO-Y12 ORO OSO SPRU BHSO PSO SR SR NA26 DOE Facility Site Map Please help keep this...

72

Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Volume Rebate Biofuel Volume Rebate Program - Propel Fuels to someone by E-mail Share Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on Facebook Tweet about Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on Twitter Bookmark Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on Google Bookmark Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on Delicious Rank Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on Digg Find More places to share Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Volume Rebate Program - Propel Fuels

73

Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Volume Rebate Biofuel Volume Rebate Program - Propel Fuels to someone by E-mail Share Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on Facebook Tweet about Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on Twitter Bookmark Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on Google Bookmark Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on Delicious Rank Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on Digg Find More places to share Alternative Fuels Data Center: Biofuel Volume Rebate Program - Propel Fuels on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Volume Rebate Program - Propel Fuels

74

Hot Fuel Examination Facility/South  

SciTech Connect

This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

Not Available

1990-05-01T23:59:59.000Z

75

Fuel Conditioning Facility Electrorefiner Process Model  

SciTech Connect

The Fuel Conditioning Facility at the Idaho National Laboratory processes spent nuclear fuel from the Experimental Breeder Reactor II using electro-metallurgical treatment. To process fuel without waiting for periodic sample analyses to assess process conditions, an electrorefiner process model predicts the composition of the electrorefiner inventory and effluent streams. For the chemical equilibrium portion of the model, the two common methods for solving chemical equilibrium problems, stoichiometric and non stoichiometric, were investigated. In conclusion, the stoichiometric method produced equilibrium compositions close to the measured results whereas the non stoichiometric method did not.

DeeEarl Vaden

2005-10-01T23:59:59.000Z

76

Spent fuel handling and packaging program. Management summary report  

SciTech Connect

Objective is to design, develop, and demonstrate a spent fuel package for geologic storage and disposal; to design, license, and construct the facilities to produce this package; and to develop and demonstrate technology for the dry, passive surface storage of spent fuel. Progress is reported on engineering and system studies, technical R and D studies, demonstrations, project support studies, spent fuel facility project, and program management.

1978-09-01T23:59:59.000Z

77

President Reagan Calls for a National Spent Fuel Storage Facility...  

National Nuclear Security Administration (NNSA)

for a National Spent Fuel Storage Facility The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of...

78

Fuel Cell Technologies Office: Program Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Presentations Program Presentations to someone by E-mail Share Fuel Cell Technologies Office: Program Presentations on Facebook Tweet about Fuel Cell Technologies Office: Program Presentations on Twitter Bookmark Fuel Cell Technologies Office: Program Presentations on Google Bookmark Fuel Cell Technologies Office: Program Presentations on Delicious Rank Fuel Cell Technologies Office: Program Presentations on Digg Find More places to share Fuel Cell Technologies Office: Program Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

79

Atmospheric Radiation Measurement Program Climate Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1-December 31, 2010 DISCLAIMER This report was prepared as an account of...

80

Atmospheric Radiation Measurement Program Climate Research Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1-June 30, 2011 DISCLAIMER This report was prepared as an account of work...

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Incentives for the Department's Facility Representative Program,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Incentives for the Department's Facility Representative Program, Incentives for the Department's Facility Representative Program, 12/17/1998 Incentives for the Department's Facility Representative Program, 12/17/1998 The Department's Revised Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 93-3 has once again underscored the Department's commitment to maintaining the technical capability necessary to safely manage and operate our defense nuclear facilities. Attracting and retaining highly qualified employees and placing them in our critical technical positions is vital to fi.dfilling this commitment. You have identified 95'% of your Facility Representative positions as critical technical positions. The Office of Field Management has noted a 12'?40annual attrition rate of Facility Representatives from the Facility

82

Concept for a small, colocated fuel cycle facility for oxide breeder fuels  

SciTech Connect

As part of a United States Department of Energy (USDOE) program to examine innovative liquid-metal reactor (LMR) system designs over the past three years, the Oak Ridge National Laboratory (ORNL) and the Westinghouse Hanford Company (WHC) collaborated on studies of mixed oxide fuel cycle options. A principal effort was an advanced concept for a small integrated fuel cycle colocated with a 1300-MW(e) reactor station. The study provided a scoping design and a basis on which to proceed with implementation of such a facility if future plans so dictate. The facility integrated reprocessing, waste management, and refabrication functions in a single facility of nominal 35-t/year capacity utilizing the latest technology developed in fabrication programs at WHC and in reprocessing at ORNL. The concept was based on many years of work at both sites and extensive design studies of prior years.

Burch, W.D.; Stradley, J.G.; Lerch, R.E.

1987-01-01T23:59:59.000Z

83

Alternative Fuels Data Center: Biofuel Production Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Production Biofuel Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Production Facility Tax Credit Companies that invest in the development of a biofuel production facility

84

Alternative Fuels Data Center: Biofuels Production Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Facility Tax Credit A taxpayer that constructs and places into service a commercial facility

85

Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production Facility Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Production Facility Tax Exemption Any newly constructed or expanded biomass-to-energy facility is exempt from

86

Alternative Fuels Data Center: Biofuel Production Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Production Biofuel Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Production Facility Tax Credit A taxpayer who processes biodiesel, ethanol, or gasoline blends consisting

87

Alternative Fuels Data Center: Ethanol Production Facility Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Fee to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Fee on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Fee on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Fee on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Facility Fee The cost to submit an air quality permit application for an ethanol production plant is $1,000. An annual renewal fee is also required for the

88

Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Production Facility Tax Credit Businesses and individuals are eligible for a tax credit of up to 15% of

89

Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blending Biodiesel Blending Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Facility Tax Credit A tax credit is available for up to 30% of the cost of purchasing or

90

Alcohol fuels program technical review  

DOE Green Energy (OSTI)

The last issue of the Alcohol Fuels Process R/D Newsletter contained a work breakdown structure (WBS) of the SERI Alcohol Fuels Program that stressed the subcontracted portion of the program and discussed the SERI biotechnology in-house program. This issue shows the WBS for the in-house programs and contains highlights for the remaining in-house tasks, that is, methanol production research, alcohol utilization research, and membrane research. The methanol production research activity consists of two elements: development of a pressurized oxygen gasifier and synthesis of catalytic materials to more efficiently convert synthesis gas to methanol and higher alcohols. A report is included (Finegold et al. 1981) that details the experimental apparatus and recent results obtained from the gasifier. The catalysis research is principally directed toward producing novel organometallic compounds for use as a homogeneous catalyst. The utilization research is directed toward the development of novel engine systems that use pure alcohol for fuel. Reforming methanol and ethanol catalytically to produce H/sub 2/ and CO gas for use as a fuel offers performance and efficiency advantages over burning alcohol directly as fuel in an engine. An application of this approach is also detailed at the end of this section. Another area of utilization is the use of fuel cells in transportation. In-house researchers investigating alternate electrolyte systems are exploring the direct and indirect use of alcohols in fuel cells. A workshop is being organized to explore potential applications of fuel cells in the transportation sector. The membrane research group is equipping to evaluate alcohol/water separation membranes and is also establishing cost estimation and energy utilization figures for use in alcohol plant design.

Not Available

91

Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

Paul Belard

2006-09-21T23:59:59.000Z

92

Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Hydrogen Ethanol and Hydrogen Production Facility Permits to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Google Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Delicious Rank Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

93

Alternative Fuels Data Center: Ethanol Production Facility Property Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Property Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

94

DOE Hydrogen and Fuel Cells Program: Fueling the Next Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

California, is currently posted on the Energy Department's blog. The facility uses biogas from the Orange County Sanitation District's wastewater treatment plant and a fuel...

95

Facility Representative Program: Qualification Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Qualification Standards General Technical Base Qualification Standard, Qualification Card & Reference Guide -- GTB Qualification Standard (DOE-STD-1146-2007), December 2007 [PDF] -- GTB Qualification Card, December 2007 [DOC] -- GTB "Gap" Qualification Card, December 2007 [DOC] -- GTB Qualification Standard Reference Guide, May 2008 [PDF] Facility Representative Qualification Standard, Qualification Card & Reference Guide

96

DOE Hydrogen and Fuel Cells Program: Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards May 21, 2013 The U.S. Department of Energy's (DOE's) Hydrogen and Fuel Cells Program presented its annual awards...

97

Existing Facilities Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Facilities Program Existing Facilities Program Existing Facilities Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Installer/Contractor Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Construction Commercial Weatherization Manufacturing Heat Pumps Commercial Lighting Lighting Maximum Rebate Pre-Qualified Measures (General): $30,000 (electric and gas) Electric Efficiency and Energy Storage: 50% of cost or $2 million Natural Gas Efficiency: 50% of cost or $200,000 Demand Response: 75% of cost or $2 million (limit also applies to combined performance based efficiency and demand response measures) Industrial Process Efficiency: 50% of cost or $5 million

98

FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

C.E. Sanders

2005-06-30T23:59:59.000Z

99

Facility Representative Program: Facility Representative of the Year  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Facility Representative Office of Nuclear Safety Home Facility Representative Home Annual Facility Rep Workshop › 2012 › 2011 › 2010 › 2009 › 2008 › 2007 › 2006 › 2005 › 2004 › 2003 › 2002 › 2001 › 2000 DOE Safety Links › ORPS Info › Operating Experience › DOE Lessons Learned › Accident Investigation Assessment Tools › FR CRADs › Surveillance Guides › Manager's Guide for Safety and Health Subject Matter Links General Program Information › Program Mission Statement › Program Directives and Guidance › FR of the Year Award Program › FR of the Year Award › FR Program Assessment Guide (Appendix B, DOE STD 1063-2011) FR Quarterly Performance Indicators Training & Qualification Information › Qualification Standards › Energy Online Courses

100

Facility Representative Program Outstanding at ID  

NLE Websites -- All DOE Office Websites (Extended Search)

protects not only the workers, but the public and the environment as well. Specifically, DOE orders say: "The purpose of the DOE Facility Representative Program is to ensure that...

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alcohol Fuels Program. Final technical report  

DOE Green Energy (OSTI)

The activities and accomplishments of the alcohol fuels program are reviewed briefly. Educational and promotional activities are described. (MHR)

Weiss, G.M.

1982-01-01T23:59:59.000Z

102

FUEL PROGRAMMING FOR SODIUM GRAPHITE REACTORS  

SciTech Connect

The effect of fuel programming, i.e., the scheme used for changing fuel in a core, on the reactivity and specific power of a sodium graphite reactor is discussed Fuel programs considered Include replacing fuel a core-load at a time or a radial zone at a time, replacing fuel to manutain the same average exposure of fuel elements throughout the core, and replacing and transferring fuel elements to maintain more highly exposed fuel in the center or at the periphery of the core. Flux and criticality calculations show the degree of power flattening and the concurrent decrease in effective multiplication which results from maintaining more exposed fuel toward the core center. Corverse effects are shown for the case of maintaining more exposed fuel near the core periphery. The excess reactivity which must be controlled in the various programs is considered. Illustrative schedules for implementing each of these programs in an SGR are presented. (auth)

Connolly, T.J.

1959-10-15T23:59:59.000Z

103

Facility Representative Program: Surveillance Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Tools Assessment Tools CRADs Manager's Guide for Safety and Health Walkthroughs Surveillance Guides CMS 3.1 Configuration Management Implementation CMS 3.2 Change Control CMS 3.3 Verification of System Configuration and Operations CMS 3.4 Temporary Changes CPS 8.1 Hoisting and Rigging CPS 8.2 Trenching and Excavation EMS 21.1 Emergency Preparedness ENS 7.1 Definition of Design Requirements ERS 14.1 Satellite Accumulation Ares (RCRA Compliance) ERS 14.2 Emmissions Monitoring ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1 Life Safety FPS 12.2 Fire Protection and Prevention MAS 10.1 Maintenance Activities MAS 10.2 Control of Measuring and Test Equipment MAS 10.3 Seasonal Preparation MSS 1.1 Corrective Action/Issue Management NSS 18.1 Criticality Safety

104

3Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2011 (PDF), Facility Representative Program Performance 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period July through September 2011. Data for these indicators were gathered by Field Elements per Department of Energy's (DOE) Technical Standard (STD) 1063-2011, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for July - September 2011 More Documents & Publications 3Q CY2010 (PDF), Facility Representative Program Performance Indicators

105

1Q CY2012 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2012 (PDF), Facility Representative Program Performance 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January through March 2012. Data for these indicators were gathered by Field elements per Department of Energy (DOE) Technical Standarf 1063-2011, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for January-March 2012 More Documents & Publications 1Q CY2011 (PDF), Facility Representative Program Performance Indicators

106

Alternative Fuels Data Center: Biofuel Quality Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Quality Biofuel Quality Program to someone by E-mail Share Alternative Fuels Data Center: Biofuel Quality Program on Facebook Tweet about Alternative Fuels Data Center: Biofuel Quality Program on Twitter Bookmark Alternative Fuels Data Center: Biofuel Quality Program on Google Bookmark Alternative Fuels Data Center: Biofuel Quality Program on Delicious Rank Alternative Fuels Data Center: Biofuel Quality Program on Digg Find More places to share Alternative Fuels Data Center: Biofuel Quality Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Quality Program The Washington State Department of Agriculture (WSDA) Biofuels Quality Program tests and assesses biofuel quality and quantity to resolve any

107

Alternative Fuels Data Center: Energy Feedstock Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Feedstock Energy Feedstock Program to someone by E-mail Share Alternative Fuels Data Center: Energy Feedstock Program on Facebook Tweet about Alternative Fuels Data Center: Energy Feedstock Program on Twitter Bookmark Alternative Fuels Data Center: Energy Feedstock Program on Google Bookmark Alternative Fuels Data Center: Energy Feedstock Program on Delicious Rank Alternative Fuels Data Center: Energy Feedstock Program on Digg Find More places to share Alternative Fuels Data Center: Energy Feedstock Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Energy Feedstock Program The Hawaii Department of Agriculture established the Energy Feedstock Program to promote and support the production of energy feedstock

108

Federal Energy Management Program: Federal Facility Annual Energy Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Facility Federal Facility Annual Energy Reports and Performance to someone by E-mail Share Federal Energy Management Program: Federal Facility Annual Energy Reports and Performance on Facebook Tweet about Federal Energy Management Program: Federal Facility Annual Energy Reports and Performance on Twitter Bookmark Federal Energy Management Program: Federal Facility Annual Energy Reports and Performance on Google Bookmark Federal Energy Management Program: Federal Facility Annual Energy Reports and Performance on Delicious Rank Federal Energy Management Program: Federal Facility Annual Energy Reports and Performance on Digg Find More places to share Federal Energy Management Program: Federal Facility Annual Energy Reports and Performance on AddThis.com... Requirements by Subject

109

Fuel Reliability Program: BWR Fuel Crud Modeling  

Science Conference Proceedings (OSTI)

Deposition of BWR reactor system corrosion products (crud) on operating fuel rods has resulted in performance limiting conditions in a limited number of cases. The operational impact can include unplanned, or increased frequency of fuel inspections, fuel failure and associated radiological consequences, operational restrictions including core power derate and/or forced shutdowns to remove failed fuel, premature discharge of individual bundles or entire reloads, and undesirable core design restrictions. T...

2010-12-23T23:59:59.000Z

110

Alternative Fuels Data Center: Voluntary Biofuels Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Voluntary Biofuels Voluntary Biofuels Program to someone by E-mail Share Alternative Fuels Data Center: Voluntary Biofuels Program on Facebook Tweet about Alternative Fuels Data Center: Voluntary Biofuels Program on Twitter Bookmark Alternative Fuels Data Center: Voluntary Biofuels Program on Google Bookmark Alternative Fuels Data Center: Voluntary Biofuels Program on Delicious Rank Alternative Fuels Data Center: Voluntary Biofuels Program on Digg Find More places to share Alternative Fuels Data Center: Voluntary Biofuels Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Voluntary Biofuels Program In place of the formal Biodiesel Blend Mandate, the Massachusetts Department of Energy Resources (DOER) will launch a voluntary biofuels

111

NREL: Hydrogen and Fuel Cells Research - Other Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Research Facilities Other Research Facilities In addition to the laboratories dedicated to hydrogen and fuel cell research, other facilities at NREL provide space for scientists developing hydrogen and fuel cell technologies along with other renewable energy technologies. Distributed Energy Resources Test Facility NREL's Distributed Energy Resources (DER) Test Facility is a working laboratory to test and improve interconnections among renewable energy generation technologies, energy storage systems, and electrical conversion equipment. Research being conducted includes improving the system efficiency of hydrogen production by electrolysis using wind or other renewable energy. This research highlights a promising option for encouraging higher penetrations of renewable energy generation as well as

112

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

failure modes. (4) DOE targets are for real-world applications; refer to Hydrogen, Fuel Cells, & Infrastructure Technologies Program Plan. 3 On Road Durability Through the...

113

Protection Programming Defensive Planning for Fixed Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NOT MEASUREMENT NOT MEASUREMENT SENSITIVE DOE STD-1207-2012 December 2012 DOE STANDARD Protection Program Defensive Planning For Fixed Facilities U.S. Department of Energy AREA SANS Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE STD-1207-2012 This Page Intentionally Left Blank ii DOE STD-1207-2012 TABLE OF CONTENTS FOREWORD..................................................................................................................................v PROTECTION PROGRAM DEFENSIVE PLANNING ..........................................................1 1. SCOPE............................................................................................................................ 1 2. PURPOSE. ..................................................................................................................... 1

114

Fuel cycle and waste management demonstration in the IFR Program  

Science Conference Proceedings (OSTI)

Argonne's National Laboratory's Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach.

Lineberry, M.J.; Phipps, R.D.; Benedict, R.W. (Argonne National Lab., Idaho Falls, ID (United States)); Laidler, J.J.; Battles, J.E.; Miller, W.E. (Argonne National Lab., IL (United States))

1992-01-01T23:59:59.000Z

115

Fuel cycle and waste management demonstration in the IFR Program  

SciTech Connect

Argonne`s National Laboratory`s Integral Fast Reactor (IFR) is the main element in the US advanced reactor development program. A unique fuel cycle and waste process technology is being developed for the IFR. Demonstration of this technology at engineering scale will begin within the next year at the EBR-II test facility complex in Idaho. This paper describes the facility being readied for this demonstration, the process to be employed, the equipment being built, and the waste management approach.

Lineberry, M.J.; Phipps, R.D.; Benedict, R.W. [Argonne National Lab., Idaho Falls, ID (United States); Laidler, J.J.; Battles, J.E.; Miller, W.E. [Argonne National Lab., IL (United States)

1992-09-01T23:59:59.000Z

116

Hallam fuel decladding. Program summary report  

Science Conference Proceedings (OSTI)

This report summarizes the program of decladding the 150 Hallam fuel assemblies, removal of the sodium, and the packaging and shipment of the recovered fuel to Savannah River for eventual reprocessing.

Dennison, W.F.

1980-04-01T23:59:59.000Z

117

Financing Strategies For A Nuclear Fuel Cycle Facility  

SciTech Connect

To help meet the nations energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for the government case. The uncertainty in operations, leading to lower than optimal processing rates (or annual plant throughput), is the most detrimental issue to achieving low unit costs. Conversely, lowering debt interest rates and the required return on investments can reduce costs for private industry.

David Shropshire; Sharon Chandler

2006-07-01T23:59:59.000Z

118

Overview of Idaho National Laboratory's Hot Fuels Examination Facility  

SciTech Connect

The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

2007-09-01T23:59:59.000Z

119

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network (OSTI)

- tions, distributed power generation, and cogeneration (in which excess heat released during electricity the imported petroleum we currently use in our cars and trucks. Why Fuel Cells? Fuel cells directly convert the chemical energy in hydrogen to electricity, with pure water and potentially useful heat as the only

120

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14  

Science Conference Proceedings (OSTI)

The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

Schneider, K.J.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alcohol Transportation Fuels Demonstration Program. Phase 1  

DOE Green Energy (OSTI)

Hawaii has abundant natural energy resources, especially biomass, that could be used to produce alternative fuels for ground transportation and electricity. This report summarizes activities performed during 1988 to June 1991 in the first phase of the Alcohol Transportation Fuels Demonstration Program. The Alcohol Transportation Fuels Demonstration Program was funded initially by the Energy Division of the State of Hawaii`s Department of Business, Economic Development and Tourism, and then by the US Department of Energy. This program was intended to support the transition to an altemative transportation fuel, methanol, by demonstrating the use of methanol fuel and methanol-fueled vehicles, and solving the problems associated with that fuel. Specific objectives include surveying renewable energy resources and ground transportation in Hawaii; installing a model methanol fueling station; demonstrating a methanol-fueled fleet of (spark-ignition engine) vehicles; evaluating modification strategies for methanol-fueled diesel engines and fuel additives; and investigating the transition to methanol fueling. All major objectives of Phase I were met (survey of local renewable resources and ground transportation, installation of methanol refueling station, fleet demonstration, diesel engine modification and additive evaluation, and dissemination of information on alternative fueling), and some specific problems (e.g., relating to methanol fuel contamination during handling and refueling) were identified and solved. Several key issues emerging from Phase I (e.g., methanol corrosion, flame luminosity, and methanol-transition technoeconomics) were recommended as topics for follow-on research in subsequent phases of this program.

Kinoshita, C.M. [ed.

1990-12-31T23:59:59.000Z

122

3Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2003 (PDF), Facility Representative Program Performance 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from July to September 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. 3Q CY2003, Facility Representative Program Performance Indicators More Documents & Publications 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators

123

Pyroprocessing of Fast Flux Test Facility Nuclear Fuel  

SciTech Connect

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

2013-10-01T23:59:59.000Z

124

Federal Energy Management Program: Facility Energy Decision System...  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Energy Decision System Software to someone by E-mail Share Federal Energy Management Program: Facility Energy Decision System Software on Facebook Tweet about Federal...

125

Fuel Cell Technologies Office: Program Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

within the EERE Fuel Cell Technologies Office and the DOE offices of Nuclear Energy, Fossil Energy, and Science. It describes the Program's activities, the specific obstacles...

126

Category:Alternative Fuels Incentive Programs | Open Energy Informatio...  

Open Energy Info (EERE)

Incentive Programs Jump to: navigation, search This category uses the form Alternative Fuels Incentive Program. Download all Alternative Fuels Incentive Programs CSV (rows 1 - 4)...

127

Hanford Site existing irradiated fuel storage facilities description  

SciTech Connect

This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

Willis, W.L.

1995-01-11T23:59:59.000Z

128

Regulatory cross-cutting topics for fuel cycle facilities.  

Science Conference Proceedings (OSTI)

This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research&Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas:Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities)Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed:Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

2013-10-01T23:59:59.000Z

129

2Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2006 (PDF), Facility Representative Program Performance 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. 2Q CY2006, Facility Representative Program Performance Indicators More Documents & Publications 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2004 (PDF), Facility Representative Program Performance Indicators

130

Petroleum fuel facilities. design manual 22. Final design criteria  

SciTech Connect

Design criteria are presented for use by qualified engineers in designing liquid fueling and dispensing facilities. Included are basic requirements for the design of piping systems, pumps, heaters, and controls; the design of receiving, dispensing, and storage facilities; ballast treatment and sludge removal; corrosion and fire protection; and environmental requirements.

1982-08-01T23:59:59.000Z

131

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network (OSTI)

.eere.energy.gov/informationcenter hydrogen and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially

132

Hydrogen and Fuel Cells Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Program Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated Program Plan 2011 Hydrogen and Fuel Cells Key Goals 2 from renewables or low carbon resources Source: U.S. DOE, May 2011 Fuel Cell Market Overview 0 25 50 75 100 2008 2009 2010 USA Japan South Korea Germany Other (MW) Megawatts Shipped, Key Countries: 2008-2010 Fuel cell market continues to grow

133

Fuel consolidation demonstration program: Final Report  

Science Conference Proceedings (OSTI)

EPRI, Northeast Utilities, Baltimore Gas and Electric, the US Department of Energy and Combustion Engineering are engaged in a program to develop a system for consolidating spent fuel and a method of storing the consolidated fuel in the spent fuel storage pool which is licensable by the US Nuclear Regulatory Commission. Fuel consolidation offers a means of substantially increasing the capacity of spent fuel storage pools. This is a final report of the Fuel Consolidation Demonstration Program. It provides a review of the overall program, a summary of the results obtained, the lessons learned, and an assessment of the present status of the consolidation system developed in the program. 7 refs., 15 figs., 5 tabs.

Not Available

1990-06-01T23:59:59.000Z

134

DOE-owned spent nuclear fuel program plan  

SciTech Connect

The Department of Energy (DOE) has produced spent nuclear fuel (SNF) for many years as part of its various missions and programs. The historical process for managing this SNF was to reprocess it whereby valuable material such as uranium or plutonium was chemically separated from the wastes. These fuels were not intended for long-term storage. As the need for uranium and plutonium decreased, it became necessary to store the SNF for extended lengths of time. This necessity resulted from a 1992 DOE decision to discontinue reprocessing SNF to recover strategic materials (although limited processing of SNF to meet repository acceptance criteria remains under consideration, no plutonium or uranium extraction for other uses is planned). Both the facilities used for storage, and the fuel itself, began experiencing aging from this extended storage. New efforts are now necessary to assure suitable fuel and facility management until long-term decisions for spent fuel disposition are made and implemented. The Program Plan consists of 14 sections as follows: Sections 2--6 describe objectives, management, the work plan, the work breakdown structure, and the responsibility assignment matrix. Sections 7--9 describe the program summary schedules, site logic diagram, SNF Program resource and support requirements. Sections 10--14 present various supplemental management requirements and quality assurance guidelines.

1995-11-01T23:59:59.000Z

135

Lead Fuel Assembly Programs Analysis: Utility Perspectives  

Science Conference Proceedings (OSTI)

Licensees, in association with nuclear fuel vendors, conduct lead fuel assembly (LFA) programs to test new design features prior to batch implementation. A limited number of LFAs are irradiated to obtain data and to confirm successful operation in the host reactor environment. The new LFA design features range from minor changes of dimensions and/or materials to an entirely new design from an alternate fuel vendor. LFA program elements can consist of design activities, methods development, analysis, ...

2013-10-17T23:59:59.000Z

136

Reducing Proliferation Rick Through Multinational Fuel Cycle Facilities  

SciTech Connect

With the prospect of rapid expansion of the nuclear energy industry and the ongoing concern over weapons proliferation, there is a growing need for a viable alternative to traditional nation-based fuel production facilities. While some in the international community remain apprehensive, the advantages of multinational fuel cycle facilities are becoming increasingly apparent, with states on both sides of the supply chain able to garner the security and financial benefits of such facilities. Proliferation risk is minimized by eliminating the need of states to establish indigenous fuel production capabilities and the concept's structure provides an additional internationally monitored barrier against the misuse or diversion of nuclear materials. This article gives a brief description of the arguments for and against the implementation of a complete multinational fuel cycle.

Amanda Rynes

2010-11-01T23:59:59.000Z

137

2Q CY2008 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2008 (PDF), Facility Representative Program Performance 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 87% Fully Qualifed ( last quarter was 85%) 86% Staffing Level ( last quarter was 88%)

138

3Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2006 (PDF), Facility Representative Program Performance 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarters data concluded: 76% fully qualified 41% staffing level

139

2Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2007 (PDF), Facility Representative Program Performance 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by field elements quarterly per DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to impove the FR Program. A summary of this quarter's data concluded: 74% Fully Qualified 94% Staffing Level ( last quarter was

140

4Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2006 (PDF), Facility Representative Program Performance 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarters data concluded: 72% Fully Qualified ( last Quarter was

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

2Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2003 (PDF), Facility Representative Program Performance 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from April to June 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. A total of 13 Facility Representatives transferred to other positions during the quarter. Five of these accepted Facility Representative positions at other sites. Of the 8 that left the Program. 1 recieved a promotion and 7 accepted lateral positions. All of

142

Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities  

Science Conference Proceedings (OSTI)

This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as MOX. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these minor actinides can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

2007-12-15T23:59:59.000Z

143

[Gas cooled fuel cell systems technology development program  

DOE Green Energy (OSTI)

Objective is the development of a gas-cooled phosphoric acid fuel cell for electric utility power plant application. Primary objectives are to: demonstrate performance endurance in 10-cell stacks at 70 psia, 190 C, and 267 mA/cm[sup 2]; improve cell degradation rate to less than 8 mV/1000 hours; develop cost effective criteria, processes, and design configurations for stack components; design multiple stack unit and a single 100 kW fuel cell stack; design a 375 kW fuel cell module and demonstrate average cell beginning-of-use performance; manufacture four 375-kW fuel cell modules and establish characteristics of 1.5 MW pilot power plant. The work is broken into program management, systems engineering, fuel cell development and test, facilities development.

Not Available

1988-03-01T23:59:59.000Z

144

West Valley facility spent fuel handling, storage, and shipping experience  

Science Conference Proceedings (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

145

Fuel Cell Technologies Program Overview  

E-Print Network (OSTI)

Cell TypesFuel Cell Types Note: ITSOFC is intermediate temperature SOFC and TSOFC is tubular SOFC #12

146

Fuel Cycle Research and Development Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Program Presentation to Office of Environmental Management Tank Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission Changes from the Former Advanced Fuel Cycle Initiative The Science-Based Approach Key Collaborators Budget History Program Elements Summary July 29, 2009 Fuel Cycle Research and Development DM 195665 3 Fuel Cycle R&D Mission The mission of Fuel Cycle Research and Development is to develop options to current fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while reducing proliferation risks by conducting

147

1Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2010 (PDF), Facility Representative Program Performance 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March2010. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below." 1Q CY2010, Facility Representative Program Performance Indicators More Documents & Publications 1Q CY2011 (PDF), Facility Representative Program Performance Indicators

148

3Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2010 (PDF), Facility Representative Program Performance 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period of July through September 2010. Data for these indicators are gathered by Field elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representative and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Facility Representative Program Performance Indicators for July - September 2010 More Documents & Publications 3Q CY2011 (PDF), Facility Representative Program Performance Indicators

149

3Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2007 (PDF), Facility Representative Program Performance 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2007. Data for these indicators are gathered by Field elements quarterly per Department of Energy (DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR program. A summary of this quarter 's data concluded: 3Q CY2007, Facility Representative Program Performance Indicators More Documents & Publications 2Q CY2009 (PDF), Facility Representative Program Performance Indicators

150

Development of a Safeguards Approach for a Small Graphite Moderated Reactor and Associated Fuel Cycle Facilities  

E-Print Network (OSTI)

Small graphite-moderated and gas-cooled reactors have been around since the beginning of the atomic age. Though their existence in the past has been associated with nuclear weapons programs, they are capable of being used in civilian power programs. The simpler design constraints associated with this type of reactor would make them ideal for developing nations to bolster their electricity generation and help promote a greater standard of living in those nations. However, the same benefits that make this type of reactor desirable also make it suspicious to the international community as a possible means to shorten that state?s nuclear latency. If a safeguards approach could be developed for a fuel cycle featuring one of these reactors, it would ease the tension surrounding their existence and possibly lead to an increased latency through engineered barriers. The development of this safeguards approach follows a six step procedure. First, the fuel cycle was analyzed for the types of facilities found in it and how nuclear material flows between facilities. The goals of the safeguards system were established next, using the normal IAEA standards for the non-detection and false alarm probabilities. The 5 MWe Reactor was modeled for both plutonium production and maximum power capacity. Each facility was analyzed for material throughput and the processes that occur in each facility were researched. Through those processes, diversion pathways were developed to test the proposed safeguards system. Finally, each facility was divided into material balance areas and a traditional nuclear material accountancy system was set up to meet the established safeguards goals for the facility. The DPRK weapons program is a great example of the type of fuel cycle that is the problem. The three major facilities in the fuel cycle, the Fuel Fabrication Facility, the 5 MWe Reactor, and the Radiochemical Laboratory, can achieve the two goals of safeguards using traditional methods. Each facility can be adequately safeguarded using methods and practices that are relatively inexpensive and can obtain material balance periods close to the timeliness limits set forth by the IAEA. The Fuel Fabrication Facility can be safeguarded at both its current needed capacity and its full design capacity using inexpensive measurements. The material balance period needed for both capacities are reasonable. For the 5 MWe reactor, plutonium production is simulated to be 6.7 kg per year and is on the high side of estimates. The Radiochemical Laboratory can also be safeguarded at its current capacity. In fact, the timeliness goal for the facility dictates what the material balance period must be for the chosen set of detectors which make it very reasonable.

Rauch, Eric B.

2009-05-01T23:59:59.000Z

151

4Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2003 (PDF), Facility Representative Program Performance 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from October to December 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. As of December 31,2003, 93% of all Facility Representatives were fully qualified, exceeding the DOE goal of 80%. Currently, 23 of 27 sites meet the goal of 80%. Currently, 23 of 27 sites meet the goal for Facility Representative

152

Onsite fuel cell program-- a status report  

SciTech Connect

The Onsite Fuel Cell Program is designed to produce data for the pioneering of fuel cell use. A fuel cell is an electrochemical device designed to transform the chemical energy of a hydrorich fuel, such as natural gas, into electricity. Under an Energy Service concept, onsite delivery and sale to consumers is promoted. Field test efforts are surveyed--a commercial laundry in Portland, Oregon, for example. Participating utilities in 40 kW cell field tests are mapped out. A project which will define a fuel cell power plant to meet cost requirements is underway.

Flore, V.B.; Cuttica, J.J.

1983-06-01T23:59:59.000Z

153

Status of the US Fuel Cell Program  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is sponsoring major programs to develop high efficiency fuel cell technologies to produce electric power from natural gas and other hydrogen sources. Fuel cell systems offer attractive potential for future electric power generation and are expected to have worldwide markets. They offer ultra-high energy conversion efficiency and extremely low environmental emissions. As modular units for distributed power generation, fuel cells are expected to be particularly beneficial where their by-product, heat, can be effectively used in cogeneration applications. Advanced fuel cell power systems fueled with natural gas are expected to be commercially available after the turn of the century.

Williams, M.C.

1996-04-01T23:59:59.000Z

154

Office of Fossil Energy Fuel Cell Program 2012 Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

O ce of Fossil Energy Fuel Cell Program Portfolio 2012 Solid State Energy Conversion Alliance Office of Fossil Energy Fuel Cell Program 2012 Portfolio October 2012 DOE...

155

Fuel Cell Technologies Program Record 12012: Fuel Cell Bus Targets  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Program Record Fuel Cell Technologies Program Record Record #: 12012 Date: March 2, 2012 Title: Fuel Cell Bus Targets Originator: Jacob Spendelow and Dimitrios Papageorgopoulos Approved by: Sunita Satyapal * Date: September 12, 2012 Item: Performance, cost, and durability targets for fuel cell transit buses are presented in Table 1. These market-driven targets represent technical requirements needed to compete with alternative technologies. They do not represent expectations for the status of the technology in future years. Table 1. Performance, cost, and durability targets for fuel cell transit buses. Units 2012 Status 2016 Target Ultimate Target Bus Lifetime years/miles 5/100,000 1 12/500,000 12/500,000 Power Plant Lifetime 2,3 hours 12,000 18,000 25,000

156

1Q CY2000 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2000 (PDF), Facility Representative Program Performance 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report "The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data." 1Q CY2000, Facility Representative Program Performance Indicators

157

4Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 (PDF), Facility Representative Program Performance 2 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (Pis) Quarterly Report Covering the Period from October to December 2002. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. The format of the report is changed from past reports. Information will now be provided according to the major offices having field or site office Facility Representative programs: National Nuclear Security Administration (NNSSA), the Office of

158

4Q CY2001 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2001 (PDF), Facility Representative Program Performance 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2001 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from October to December 2001. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data 4Q CY2001, Facility Representative Program Performance Indicators More Documents & Publications

159

Fuel Reliability Program: Global Nuclear Fuel Priority 1 Fuel Inspections Results Assessment Report  

Science Conference Proceedings (OSTI)

In an effort to meet the recommendations of the Electric Power Research Institute (EPRI) report 1015032, Fuel Reliability Guidelines: Fuel Surveillance and Inspection, Global Nuclear Fuel (GNF) worked with the Fuel Reliability Program (FRP) and utilities to assign an inspection prioritization ranking to the GNF-fueled U.S. BWR fleet and conducted and completed a series of fuel inspections from 2007 to 2009 at the highest priority plants. Summary presentations of the inspection results were presented at E...

2011-05-12T23:59:59.000Z

160

Criticality safety training at the Hot Fuel Examination Facility  

SciTech Connect

HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program. (DLC)

Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CLIMATE CHANGE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

This report discusses the first year of operation of a fuel cell power plant located at the Sheraton Edison Hotel, Edison, New Jersey. PPL EnergyPlus, LLC installed the plant under a contract with the Starwood Hotels & Resorts Worldwide, Inc. A DFC{reg_sign}300 fuel cell, manufactured by FuelCell Energy, Inc. of Danbury, CT was selected for the project. The fuel cell successfully operated from June 2003 to May 2004. This report discusses the performance of the plant during this period.

Steven A. Gabrielle

2004-12-03T23:59:59.000Z

162

EERE Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Results will be documented in a report by Pacific Northwest National Lab: "Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and...

163

Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility  

Science Conference Proceedings (OSTI)

This report provides the initial first look of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

Washington Division of URS

2008-07-01T23:59:59.000Z

164

Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

A 200 kW, natural gas fired fuel cell was installed at the Richard Stockton College of New Jersey. The purpose of this project was to demonstrate the financial and operational suitability of retrofit fuel cell technology at a medium sized college. Target audience was design professionals and the wider community, with emphasis on use in higher education. ''Waste'' heat from the fuel cell was utilized to supplement boiler operations and provide domestic hot water. Instrumentation was installed in order to measure the effectiveness of heat utilization. It was determined that 26% of the available heat was captured during the first year of operation. The economics of the fuel cell is highly dependent on the prices of electricity and natural gas. Considering only fuel consumed and energy produced (adjusted for boiler efficiency), the fuel cell saved $54,000 in its first year of operation. However, taking into account the price of maintenance and the cost of financing over the short five-year life span, the fuel cell operated at a loss, despite generous subsidies. As an educational tool and market stimulus, the fuel cell attracted considerable attention, both from design professionals and the general public.

Alice M. Gitchell

2006-09-15T23:59:59.000Z

165

Hydrogen, Fuel Cells and Infrastructure Technologies Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Christy Cooper Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells, and Infrastructure Technologies Program FORS 5G-064 (202) 586-1885 christy.cooper@ee.doe.gov Education...

166

4Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 (PDF), Facility Representative Program Performance 4 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from October to December 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of December 31, 2004, 86% of all FRs were fully qualified,down from 89% the previous quarter, and exceeding the DOE goal of 80%. Several sites added new FRs or switched FRs from their exisiting facilities to new facilities, reducing the overall qualification rate.

167

1Q CY2003 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2003 (PDF), Facility Representative Program Performance 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2003 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative Program Performance Indicators (PIs) Quarterly Report Covering the Period from January to March 2003. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the facility Representative Program. The percentage of Facility Representatives who are fully qualified reached 91% across DOE. In EM the percenage of 97%, in Sc the percentage is 95% and in NNSA the percentage is 78%. The DOE goal is 75%. Staffing levels for the three organizations continue to be below

168

2Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2002 (PDF), Facility Representative Program Performance 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from April to June 2002. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063-2000, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data. Overall, the percentage of fully qualified Facility Representatives increased to 80% last quarter, from 78% the previous quarter , and

169

3Q CY2002 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2002 (PDF), Facility Representative Program Performance 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from July to September 2002. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standards , DOE-STD-1063-2000, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definition of the PIs from the Standard are also attached for your use in evaluating the data. The percentage of fully qualified Facility Representatives in the DOE complex

170

National Laser User Facilities Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

User Facilities Program | National Nuclear Security User Facilities Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Laser User Facilities Program Home > National Laser User Facilities Program National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester

171

2Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2005 (PDF), Facility Representative Program Performance 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. As of June 30,2005, 97% of all FRs were fully qualified, down from 88% the previous quarter, but exceeding the DOE goal of 80%. Eighteen of 27 reporting sites meet the goal of FR qualifications. 2Q CY2005, Facility Representative Program Performance Indicators

172

National Laser User Facilities Program | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser User Facilities Program | National Nuclear Security Laser User Facilities Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Laser User Facilities Program Home > National Laser User Facilities Program National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester

173

1Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2011 (PDF), Facility Representative Program Performance 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the Period January through March 2011. Data for these indicators were gathered by Field Elements per Department of Energy's (DOE) Technical Standard (STD) 1063-2011, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. This report reflects changes in DOE STD 1063-2011 that deleted one indicator and changed the way two others are calculated. The changes are discussed below. Facility Representative Program Performance Indicators for January - March

174

EWEB - New Facilities Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - New Facilities Energy Efficiency Rebate Program EWEB - New Facilities Energy Efficiency Rebate Program EWEB - New Facilities Energy Efficiency Rebate Program < Back Eligibility Commercial Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Western Premium Economizer: $500 Program Info State Oregon Program Type Utility Rebate Program Utility Rebate Program Rebate Amount AC (gas heating): $15 - $30 per ton Heat Pumps: $40 - $80 per ton Western Premium Economizer: $125 per ton Programmable Thermostat: $25 - $50, depending on HVAC type Occupancy Sensors/Controls: $30 - $65 High Performance T8: $1 - $8

175

EWEB - Existing Facilities Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EWEB - Existing Facilities Energy Efficiency Rebate Program EWEB - Existing Facilities Energy Efficiency Rebate Program EWEB - Existing Facilities Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Heat Pumps Heating Commercial Lighting Lighting Manufacturing Home Weatherization Windows, Doors, & Skylights Maximum Rebate See Program Catalog Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Lighting: Varies Widely Office Equipment: Varies Widely Air Conditioner (Non-Electric): $60 - $115/ton Air-Source Heat Pump: $60 - $220/ton Ductless Heat Pump: $100 - $220/ton Small Business Ductless Heat Pump: $750 - $1,000 Western Premium Economizer: $125/ton Programmable Thermostat: $25 - $100

176

CLIMATE CHANGE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

Mike Walneuski

2004-09-16T23:59:59.000Z

177

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

cepgi.typepad.comfilescepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents...

178

Low-Enrichment Fuel Development Program  

SciTech Connect

The national program of the Department of Energy at Argonne National Laboratory for the development of highly loaded uranium fuels, which provide the means for enrichment reduction, has been briefly described. The objectives of > 60 wt % uranium in plate-type fuels and greater than or equal to 45 wt % uranium in U--ZrH/sub x/ rod-type fuels are expected to be met. The most promising fuels will be further evaluated in full-size element irradiations and whole-core demonstrations on the route toward commercialization.

Stahl, D.

1978-01-01T23:59:59.000Z

179

Headquarters Security Operations Facility Clearance and Approval Program  

Energy.gov (U.S. Department of Energy (DOE))

The Headquarters Facility Clearance and Approval Program (FCAP) is established by DOE Order to administratively determine that a facility is or is not eligible to access, receive, produce, use, and...

180

Hazardous Waste Facility Siting Program (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Siting Program (Maryland) Facility Siting Program (Maryland) Hazardous Waste Facility Siting Program (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level nuclear waste facilities. This legislation describes the factors considered by the Board in making siting decisions. The Board is authorized to enact rules and regulations pertaining to the siting of hazardous and low-level nuclear

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1981-01-01T23:59:59.000Z

182

Facility Representative Program: Facility Representative of the Year  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative of the Year Award Facility Representative of the Year Award Annual Facility Representative Workshop Facility Representative of the Year Award Process Facility Representative of the Year Award 2012 WINNER: John C. Barnes, Savannah River Operations Office Letter from DNFSB Chairman Peter S. Winokur, Ph.D 2012 Nominees: Peter W. Kelley, Brookhaven Site Office James E. Garza, Idaho Operations Office (EM) William R. Watson, Idaho Operations Office (NE) Darlene S. Rodriguez, Los Alamos Field Office Robert R. Robb, Livermore Field Office Kenneth W. Wethington, Grand Junction Project Office's Moab site Thomas P. Denny, Nevada Field Office Michael J. Childers, NNSA Production Office Pantex Site Catherine T. Schidel, NNSA Production Office Y12 Site Chelsea D. Hubbard, Oak Ridge Operations Office (EM)

183

2Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Q CY2010 (PDF), Facility Representative Program Performance Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report This memorandum summarizes the highlight of, and announces the availablity on-line of, the Facility Representative (FR) Program Performance Indicators are gathered by Field elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. This memorandum also announces that Mr. James Heffner has turned over FR Program Manager duties to Mr. Earl Huges. Mr. Heffner is assuming expanded team leader duties over several additional programs within the

184

Regulatory cross-cutting topics for fuel cycle facilities.  

SciTech Connect

This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research&Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas:Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities)Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed:Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

2013-10-01T23:59:59.000Z

185

DOE Hydrogen and Fuel Cells Program Plan (September 2011)  

Fuel Cell Technologies Publication and Product Library (EERE)

The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities

186

ALCC Program | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Getting Started How to Get an Allocation New User Guide Intrepid to Mira: Key Changes INCITE Program ALCC Program Director's Discretionary Program ALCC Program ASCR Leadership...

187

3Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2005 (PDF), Facility Representative Program Performance 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of September 30,2005, 84% of all FRs were fully qualified , down from 87% the previous quarter, but exceeding the DOE goal of 80%. Several sites shifted fully-qualifed FRs to new facilities, thus requiring new qualifications. Although the overall percentage of fully qualified FRS

188

4Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2005 (PDF), Facility Representative Program Performance 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of December 31, 2005 78% of all FRs were fully qualified , down from the 84% the previous quarter, and below the DOE goal of 80%. Site offices hired 11 new FRs in the quarter and several sites moved FRs to new facilities, thus requiring new qualifications.

189

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Printable Version 2012 Annual Progress Report V. Fuel Cells This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on fuel...

190

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

191

Technology Transfer Program - DOE Designated Facilities  

Spallation Neutron Source; Leadership Computing Facility * Pacific Northwest National Laboratory. Environmental Molecular Sciences Laboratory (EMSL)

192

NIPSCO - Existing Facility Retrofit Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NIPSCO - Existing Facility Retrofit Rebate Program NIPSCO - Existing Facility Retrofit Rebate Program NIPSCO - Existing Facility Retrofit Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Contact NIPSCO $500,000 per project per year $1,000,000 per applicant per year Program Info Expiration Date 12/31/2013 State Indiana Program Type Utility Rebate Program Rebate Amount Other Projects: $0.09/kWh in electricity reductions Energize Indiana Rebates: Varies widely Provider

193

Facility Representative Program: Basic Courses For Facility Representative  

NLE Websites -- All DOE Office Websites (Extended Search)

Training & Qualification Information Training & Qualification Information Qualification Standards DOE Order Self-Study Modules DOE Fundamentals Handbooks Nuclear Safety Basis Self-Study Guide Energy Online Courses Available Link to National Training Center Basic Courses for Facility Representative Qualification Recommended Courses to Expand Facility Representative's Knowledge Base Basic Courses For Facility Rep Qualification (These courses may be beneficial during the initial qualification of Facility Representatives.) Course Title FR FAQS CN Point of Contact Comments Applied Engineering Fundamentals 13 days * See below Mike Schoener 803-641-8166 E-mail Course description at http://ntc.doe.gov course catalog Asbestos Awareness 2 hours 2.1 Federal employees register through the CHRIS system For course details see

194

The Nuclear Fuel Industry Research Program Overview  

Science Conference Proceedings (OSTI)

This overview introduces the Nuclear Fuel Industry (NFIR) program to member utilities while also serving as a research status update for program participants. It includes detailed descriptions of various projects, relating both the technical backgrounds and the overall scope of work. NFIR program activities are geared toward providing long-term benefits to utilities and vendors by ensuring the safe and reliable use of core materials and components. Specific information can be obtained from published tech...

1994-08-23T23:59:59.000Z

195

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

196

INCITE Program | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Checks & 5 Tips for INCITE Mira Computational Readiness Assessment ALCC Program Director's Discretionary Program INCITE Program Innovative and Novel Computational Impact on...

197

1Q CY2005 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2005 (PDF), Facility Representative Program Performance 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2005. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives. and reported to Headquarters program offices for evaluation and feedback in order to improve the FR Program. As of March 31st, 2005, 88% of all FRs were fully qualified, up from 86% the previous quarter, and exceeding the DOE goal of 80%. Several of the new FRs hired recently completed qualifications. Eighteen of 27 reporting sites meet the goal of FR qualifications

198

2Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2004 (PDF), Facility Representative Program Performance 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from April to June 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of June 30, 2004, 89% of all FRs were fully qualified , exceeding the DOE goal of 80%, but down slightly from the previous quarter. Twenty of 28 reporting sites meet the goal for FR qualifications. Overall FR staffing is at 85% of the levels needed per the staffing

199

3Q CY2004 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q CY2004 (PDF), Facility Representative Program Performance 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q CY2004 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report Covering the Period from July to September 2004. Data for these indicators are gathered by Field elements Quarterly per DOE-STD-1063-2000, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback in order to improve the FR program. As of September 30, 2004, 89% of all FRs were fully qualified, the same as last quarter, and exceeding the DOE goal of 80%. Twenty of 28 reporting sites meet the goal for FR qualifications. Overall FR stadding is at 85% of the levels needed per the staffing analysis methodology in

200

2Q CY2009 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2009 (PDF), Facility Representative Program Performance 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2009. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 77% Fully Qualified (last quarter was 78%) 90% Staffing Level ( last Quarter was 90%); 45% Time Spent in the Field (DOE goal is>40%); and 73% Time Spent in Oversight Activites (DOE Goal is > 65%)"

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

4Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2011 (PDF), Facility Representative Program Performance 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011 , Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data: * DOE was staffed at 179 FR Full Time Equivalents (FTE), which is 92 percent of the full staffing level (DOE goal is 100 percent). Four FRs left due to transfer,

202

4Q CY2007 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2007 (PDF), Facility Representative Program Performance 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2007 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 83% Fully Qualified (last Quarter was 82%) 85% Staffing Level (last Quarter was 93%) 45% Time Spent in the Field (DOE goal is >40%) 73% Time Spent in Oversight Activities (DOE Goal is> 65%)"

203

1Q CY2000, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May May 9,2000 MEMORANDUM FOR DISTRIBUTION FROM: .yc,..,%$'! L.W.T oseph Arango, Facl ity Representative Program Manager (S-3.1) SUBJECT: Facility Representative Program Performance Indicators Quarterly Report The Facility Representative Program Performance Indicators (PIs) Quarterly Report is attached, covering the period from January 2000 to March 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, DOE-STD-1 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data. You will note that the indicators show the attrition of five Facility Representatives from the program during this reporting period. Of those five, two were promoted

204

1Q CY2006 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 (PDF), Facility Representative Program Performance 6 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2006 (PDF), Facility Representative Program Performance Indicators Quarterly Report Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2006. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2000, Facility Representatives and reported to Headquarters program offices for evaluation and feedback to improve the FR program. As of March 31,2006 81% of all FRs were fully qualified,up from 78% the previous quarter, and just above the DOE goal of 80%. To assist site offices in continuing to meet the qualification goal, there will be two focused training sessions for FR candidates in the coming months. These

205

2Q CY2011 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2011 (PDF), Facility Representative Program Performance 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2011 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered by Field Elements per Department of Energy (DOE) Technical Standard (STD) 1063-20 1 1, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report: FR Staffing/Qualification/Oversight data DOE was staffed at 180 FR Full Time Equivalents (FTEs), which is 9 1 percent of the full staffing level (DOE goal is 100 percent).

206

1Q CY2009 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1Q CY2009 (PDF), Facility Representative Program Performance 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report 1Q CY2009 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from January to March 2009. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 78% Fully Qualified ( last Quarter was 76%) 90% Staffing Level ( last Quarter was 89%) 47% Time Spent in the Field (DOE goal is>40%) 74% Time Spent in Oversight Activites (DOE Goal is>65%)"

207

2Q CY2012 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Q CY2012 (PDF), Facility Representative Program Performance 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report 2Q CY2012 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April through June 2012. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data * DOE was staffed at 176 FR Full Time Equivalents (FTE), which is 95 percent of the full staffing level (DOE goal is 100 percent). This staff reflects a

208

4Q CY2010 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2010 (PDF), Facility Representative Program Performance 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2010 (PDF), Facility Representative Program Performance Indicators Quarterly Report "This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these indicators were gathered by Field Elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below: FR Staffing/Qualification/Oversight Data * DOE was staffed at 184 FR Full Time Equivalents (FTEs) which is 92

209

4Q CY2008 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4Q CY2008 (PDF), Facility Representative Program Performance 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 4Q CY2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 76% Fully Qualified ( last Quarter was 80%) 89% Staffing Level (last Quarter was 89%) 44% Time Spent in the Field ( Department of Energy)(DOE) goal is > 40%) 73% Time Spent in Oversight Activites (DOE Goal is> 65%)"

210

Hydrogen & Fuel Cells - Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- Program Overview - - Program Overview - Sunita Satyapal Program Manager 2012 Annual Merit Review and Peer Evaluation Meeting May 14, 2012 Petroleum 37% Natural Gas 25% Coal 21% Nuclear Energy 9% Renewable Energy 8% Transportation Residential & Commercial Industrial Electric Power 2 U.S. Energy Consumption Total U.S. Energy = 98 Quadrillion Btu/yr Source: Energy Information Administration, Annual Energy Review 2010, Table 1.3 U.S. Primary Energy Consumption by Source and Sector Residential 16% Commercial 13% Industrial 22% Transportation 20% Electric Power 29% Share of Energy Consumed by Major Sectors of the Economy, 2010 Fuel Cells can apply to diverse sectors 3 Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean

211

Feasibility study: fuel cell cogeneration in a water pollution control facility. Final report  

DOE Green Energy (OSTI)

A conceptual design study was conducted to investigate the technical and economic feasibility of a cogeneration fuel cell power plant operating in a large water pollution control facility. In this particular application, the fuel cell power plant would use methane-rich digester gas from the water pollution control facility as a fuel feedstock to provide electrical and thermal energy. Several design configurations were evaluated. These configurations were comprised of combinations of options for locating the fuel cell power plant at the site, electrically connecting it with the water pollution control facility, using the rejected power plant heat, supplying fuel to the power plant, and for ownership and operation. A configuration was selected which met institutional/regulatory constraints and provided a net cost savings to the industry and the electric utility. The displacement of oil and coal resulting from the Bergen County Utilities Authority application was determined. A demonstration program based on the selected configuration was prepared to describe the scope of work, organization, schedules, and costs from preliminary design through actual tests and operation. The potential market for nationwide application of the concept was projected, along with the equivalent oil displacement resulting from estimated commercial application.

Not Available

1980-02-01T23:59:59.000Z

212

IN-PILE GAS-COOLED FUEL ELEMENT TEST FACILITY  

SciTech Connect

Paper presented at American Nuclear Society Meeting, June I8-21, 1962, Boston, Mass. Design and operating problems of unclad and ceramic gas-cooled reactor fuels in high temperature circulating gas systems will be studied using a test facility now nearing completion at the Oak Ridge Research Reactor. A shielded air-tight cell houses a closed circuit gas system equipped for dealing with fission products circulating in the gas. Experiments can be conducted on fuel element performance and stability, fission product deposition, gas clean up, activity levels, component and system performance and shielding, and decontamination and maintenance of system hardware. (auth)

Zasler, J.; Huntley, W.R.; Gnadt, P.A.; Kress, T.S.

1962-07-10T23:59:59.000Z

213

Alternative Fuels Data Center: Air Quality Improvement Program Funding -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality Air Quality Improvement Program Funding - Ventura County to someone by E-mail Share Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on Facebook Tweet about Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on Twitter Bookmark Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on Google Bookmark Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on Delicious Rank Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on Digg Find More places to share Alternative Fuels Data Center: Air Quality Improvement Program Funding - Ventura County on AddThis.com... More in this section...

214

School Facility Program - Modernization Grants | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facility Program - Modernization Grants Facility Program - Modernization Grants School Facility Program - Modernization Grants < Back Eligibility Schools Program Info State California Program Type State Grant Program Rebate Amount Varies Note: California voters approved [Note: California voters approved Ballot Proposition 39 in November 2012. The new law closes a tax loophole, which is expected to provide $1 billion in additional revenue every year. According to the law, half of the new funding collected in the first five years must be used for renewable energy and energy efficiency projects at schools and public facilities, workforce development, and providing assitance to local governments in establishing and implementing PACE programs. It is unclear at this time how the new funding will be allocated,

215

National Laser Users' Facility Grant Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Users' Facility Grant Program | National Nuclear Security Users' Facility Grant Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NLUF National Laser Users' Facility Grant Program Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > National Laser Users' Facility Grant Program

216

Facility Representative Program ID Selects FR of the Year  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Representative Program ID Selects Facility Representative Program ID Selects FR of the Year John Martin DOE-ID Facility Representative John Martin DOE-ID Facility Representative of the Year. John Martin was selected as DOE-ID's Facility Representative of the Year and the office's nominee for the 2007 DOE Facility Representative of the Year Award. John was selected from an exceptional field of candidates to represent DOE-ID at the Facility Representative Annual Workshop in Las Vegas this May. Each year the Department of Energy recognizes the Facility Representative whose achievements during the calendar year are most exemplary. A panel of senior personnel representing the Office of Health, Safety and Security (HSS) National Nuclear Security Administration (NNSA), Environmental Management (EM), Science (SC), Nuclear Energy (NE) and at least five

217

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reinvestment Act (ARRA) This section of the 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on the fuel cell technologies America Recovery and Reinvestment...

218

New Mexico Hydrogen Fuels Challenge Program Description The New...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico Hydrogen Fuels Challenge Program Description The New Mexico Hydrogen Fuels Challenge is an event that provides a hands-on opportunity for middle school students (grades...

219

4Q CY2000, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Department of Energy Washington, DC 20585 February 26,2001 MEMORANDUM FOR DISTRIBUTION FROM: seph Arango, Facility Representative Program Manager (S-3.1) SUBJECT: Facility Representative Program Performance Indicators Quarterly Report The Facility Representative Program Performance Indicators Quarterly Report is attached, covering the period from October to December 2000. Data for these indicators are gathered by the Field elements quarterly per the Facility Representatives Standard, 063, and reported to Headquarters Program Offices for evaluation and feedback in order to improve the Facility Representative Program. The definitions of the PIs from the Standard are also attached for your use in evaluating the data. I intend to continue to provide this summary information to you quarterly. These provide

220

Fuels for Schools Program Uses Leftover Wood to Warm Buildings | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels for Schools Program Uses Leftover Wood to Warm Buildings Fuels for Schools Program Uses Leftover Wood to Warm Buildings Fuels for Schools Program Uses Leftover Wood to Warm Buildings May 10, 2010 - 1:11pm Addthis Darby Schools received a woodchip heating system in 2003. Rick Scheele, facilities manager for the Darby schools, shows off the wood firebox | Photo Courtesy USFS Fuels for Schools, Dave Atkins Darby Schools received a woodchip heating system in 2003. Rick Scheele, facilities manager for the Darby schools, shows off the wood firebox | Photo Courtesy USFS Fuels for Schools, Dave Atkins Stephen Graff Former Writer & editor for Energy Empowers, EERE In parts of this country, wood seems like the outsider in the biomass family. New ethanol plants that grind down millions of bushels of corn in the Midwest and breakthroughs in algae along the coasts always garner the

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Facility Representative Program Performance Indicators for October - December 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FOR DISTRIBUTION FOR DISTRIBUTION FROM: ANDREW C. LAWRENCE DIRECTOR OFFICE OF NUCLEAR SAFETY, QUALITY ASSURANCE AND ENVIRONMENT OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October-December (Fourth Quarter Calendar Year 2010) This memorandum summarizes the highlights of the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period October through December 2010. Data for these indicators were gathered by Field Elements quarterly per Department of Energy (DOE) Standard (STD)-1063-2006, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report are presented below:

222

Fuel Cell Technologies Program: Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Hydrogen is an energy carrier, not an energy source-hydrogen stores and delivers energy in a usable form, but it must be produced from hydrogen containing compounds. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as coal (preferentially with carbon sequestration), natural gas, and biomass or using nuclear energy and renewable energy sources, such as wind, solar, geothermal, and hydroelectric power to split water. This great potential for diversity of supply is an important reason why hydrogen is such a promising energy carrier. Hydrogen can be produced at large central plants, semi-centrally, or in small distributed units located at or very near the point of use, such as at refueling stations or stationary power

223

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

224

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

225

Resource Conservation and Recovery Act (RCRA). Facility Investigation Program Plan  

Science Conference Proceedings (OSTI)

This Resource Conservation and Recovery Act (RCRA) Facility Investigation Program Plan has been developed to provide a framework for the completion of RCRA Facility Investigations (RFI) at identified units on the Savannah Rive Site (SRS) facility. As such, the RFI Program Plan provides: technical guidance for all work to be performed, managerial control, a practical, scientific approach. The purpose of this Overview is to demonstrate how the basic RFI Program Plan elements (technical, management, and approach) are interwoven to provide a practical and workable plan. The goal of the RFI Program Plan is to provide a systematic, uniform approach for performance and reporting. In addition, the RFI Program Plan has been developed to be specific to the SRS facility and to adhere to the Environmental Protection Agency (EPA) RFI guidance received as part of the SRS. The US EPA publication ``Characterization of Hazardous Waste Sites`` has been liberally adapted for use in this RFI Program Plan.

Not Available

1989-06-30T23:59:59.000Z

226

Early Science Program | Argonne Leadership Computing Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Science Program The goals of the Early Science Program (ESP) were to prepare key applications for the architecture and scale of Mira, and to solidify libraries and...

227

June 21, 1999 Memo, Facility Representative Program Status  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June June 21, 1999 MEMORANDUM FOR: Assistant Secretary for Defense Programs Assistant Secretary for Environmental Management Director, Office of Science Director, Office of Nuclear Energy, Science and Technology FROM: John Wilcynski, Director, Office of Field Integration SUBJECT: FACILITY REPRESENTATIVE PROGRAM STATUS Since September, 1993, the Office of Field Management has served as the Department's corporate advocate for the Facility Representative Program. The Facility Representative (FR) is a critical technical position serving as line management's "eyes and ears" for operational safety in our contractor-operated facilities. I recognize the importance of the FR Program, and commit the Office of Field Integration (FI) to its continued crosscutting support. The FI staff continues to work with your staff members and with the Defense Nuclear Facilities

228

Fuel Flexible Turbine System (FFTS) Program  

SciTech Connect

In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was tested in a C65 engine operating on 100% hydrogen and with the redesigned combustion liner - Combustion Liner Design A - installed. The results were promising for the FFTS program as the system was able to burn 100% hydrogen fuel without flashback while maintaining good combustion performance. While initial results have been demonstrated the feasibility of this program, further research is needed to determine whether these results will be repeated with FFTS-4 injectors installed in all injector ports and over a wide range of operating conditions and fuel variations.

None

2012-12-31T23:59:59.000Z

229

1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program  

E-Print Network (OSTI)

practices resulting in lifecycle saving of over 52 trillion Btus. Increased funding for technical assistance S, P&D Brookhaven S, FC Idaho National Lab P&D #12;54 | Fuel Cell Technologies Program Source: US

230

EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleets: Frequently Asked Questions (Brochure)  

SciTech Connect

This brochure provides answers to frequently asked questions about the EPAct Alternative Fuel Transportation Program's State and Alternative Fuel Provider Fleets.

2010-03-01T23:59:59.000Z

231

Facility Representative Program Assessment Criteria, Review, and Approach Document (CRAD)  

NLE Websites -- All DOE Office Websites (Extended Search)

STD-1063-2011 STD-1063-2011 Appendix B B-1 FACILITY REPRESENTATIVE PROGRAM ASSESSMENT GUIDE The DOE has implemented its FR Program, and is looking to continuously improve the program's effectiveness DOE-wide. An effective FR Program has many elements, as described in this Standard. These elements are intended to yield a program that provides DOE facilities with well-trained FRs who spend appropriate amounts of time in their facilities and can work effectively with their contractor management counterparts. The program, to be effective, needs the functional support of management. To maintain the continued support of DOE management, the FR program needs to demonstrate its continued performance and effectiveness, which is to be assessed periodically using

232

Westinghouse BWR Fuel Performance Program--Phase 2  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) Fuel Reliability Program (FRP) joined the Westinghouse Electric Sweden AB (WES) Fuel Performance Program Phase 2 to investigate the performance of ultra-high-burnup fuel to assess the potential for extending Westinghouse fuel burnups in the BWR fleet. Fuel rods irradiated in the Kernkraftwerk Leibstadt (KKL) reactor in Switzerland for up to nine annual cycles were examined in the spent fuel pool as well as in two hot cells (Paul Scherer Institute in Switzerl...

2009-10-02T23:59:59.000Z

233

HTGR Spent Fuel Treatment Program. HTGR Spent Fuel Treatment Development Program Plan  

SciTech Connect

The spent fuel treatment (SFT) program plan addresses spent fuel volume reduction, packaging, storage, transportation, fuel recovery, and disposal to meet the needs of the HTGR Lead Plant and follow-on plants. In the near term, fuel refabrication will be addressed by following developments in fresh fuel fabrication and will be developed in the long term as decisions on the alternatives dictate. The formulation of this revised program plan considered the implications of the Nuclear Waste Policy Act of 1982 (NWPA) which, for the first time, established a definitive national policy for management and disposal of nuclear wastes. Although the primary intent of the program is to address technical issues, the divergence between commercial and government interests, which arises as a result of certain provisions of the NWPA, must be addressed in the economic assessment of technically feasible alternative paths in the management of spent HTGR fuel and waste. This new SFT program plan also incorporates a significant cooperative research and development program between the United States and the Federal Republic of Germany. The major objective of this international program is to reduce costs by avoiding duplicate efforts.

1984-12-01T23:59:59.000Z

234

Fuel Reliability Program: Proposed RIA Acceptance Criteria  

Science Conference Proceedings (OSTI)

The NRC is in the process of finalizing the interim RIA failure criteria published in NUREG-0800, Standard Review Plan, Section 4.2, Fuel System Design, Revision 3. A technical evaluation of the RIA issue has been conducted under the auspices of the EPRI Fuel Reliability Program with the objective of proposing a final version of the interim RIA failure criteria for PCMI processes. The approach used in the technical evaluation combined experimental data from a variety of sources, including integral RIA-si...

2010-12-23T23:59:59.000Z

235

NP-MHTGR Fuel Development Program Results  

Science Conference Proceedings (OSTI)

In August 1988, the Secretary of Energy announced a strategy to acquire New Production Reactor capacity for producing tritium. The strategy involved construction of a New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) where the Idaho National Engineering and Environmental Laboratory (INEEL) was selected as the Management and Operations contractor for the project. Immediately after the announcement in August 1988, tritium target particle development began with the INEEL selected as the lead laboratory. Fuel particle development was initially not considered to be on a critical path for the project, therefore, the fuel development program was to run concurrently with the design effort of the NP-MHTGR.

Maki, John Thomas; Petti, David Andrew; Hobbins, Richard Redfield; McCardell, Richard K.; Shaber, Eric Lee; Southworth, Finis Hio

2002-10-01T23:59:59.000Z

236

Assessment of a hot hydrogen nuclear propulsion fuel test facility  

DOE Green Energy (OSTI)

Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

1991-01-01T23:59:59.000Z

237

FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION  

SciTech Connect

The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

B. SZALEWSKI

2005-03-22T23:59:59.000Z

238

Alternative Fuel and Advanced Technology Vehicles Pilot Program...  

Open Energy Info (EERE)

Pilot Program Emissions Benefit Tool Jump to: navigation, search Tool Summary Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

239

Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers  

NLE Websites -- All DOE Office Websites (Extended Search)

Procuring Fuel Cells for Stationary Power: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers OCTOBER 2011 Fuel Cell Technologies Program Oak Ridge National Laboratory 2 October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

240

NIPSCO - New Facility Efficiency Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Facility Efficiency Rebate Program New Facility Efficiency Rebate Program NIPSCO - New Facility Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 100% of incremental measure cost 50% of total project cost $10,000 per project per year $20,000 per applicant per year Program Info Start Date 05/01/2012 Expiration Date 12/31/2013 State Indiana Program Type Utility Rebate Program Rebate Amount $0.45/kWh in electricity reductions Provider Northern Indiana Public Service Corporation Northern Indiana Public Service Corporation (NIPSCO) offers incentives to

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

DOE Hydrogen and Fuel Cells Program: Background  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Goals Mission and Goals Organization Chart and Contacts Background U.S. DRIVE Partnership Budget Timeline Program Activities Advisory Panels External Coordination U.S. Department of Energy Search help Home > About > Background Printable Version Background In the early 1970s, concern over our growing dependence on imported petroleum, coupled with concerns about our deteriorating air quality due to emissions from combustion of fossil fuels, spurred the Federal government to act. The timeline below provides policy and programmatic highlights for federally supported hydrogen and fuel cell R&D over the last three decades. Federal Support for Hydrogen and Fuel Cell R&D Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader.

242

DOE Hydrogen and Fuel Cells Program: Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

First Responder Training First Responder Training Bibliographic Database Newsletter Codes and Standards Education Basic Research Systems Analysis Systems Integration U.S. Department of Energy Search help Home > Safety Printable Version Safety Safe practices in the production, storage, distribution, and use of hydrogen are an integral part of future plans. Like most fuels, hydrogen can be handled and used safely with appropriate sensing, handling, and engineering measures. The aim of this program activity is to verify the physical and chemical properties of hydrogen, outline the factors that must be considered to minimize the safety hazards related to the use of hydrogen as a fuel, and provide a comprehensive database on hydrogen and hydrogen safety. Photo of hydrogen fueling pump in Las Vegas, Nevada

243

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport March 25, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) today announced plans to construct and operate a hydrogen fuel production plant and vehicle fueling station at the Yeager Airport in Charleston, W.Va. The facility will use grid electricity to split water to produce pure hydrogen fuel. The fuel will be used by the airport's operations and the 130th Air Wing of the West Virginia Air National Guard. NETL will begin operations at the Yeager Airport facility in August 2009 and plans to conduct two years of testing and evaluation. The facility will be designed using "open architecture," allowing the capability to add

244

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Jeffrey Bryant

2008-08-30T23:59:59.000Z

245

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

Science Conference Proceedings (OSTI)

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, Radioactive Waste Management Manual. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, Jeffrey Whealdon; Nenni, Joseph A; Timothy S. Yoder

2003-05-01T23:59:59.000Z

246

Federal Energy Management Program: Facility Energy Checklist  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Energy Checklist Facility Energy Checklist This checklist outlines actions that conserve energy within facilities. For Your Buildings Lower thermostat settings. Match HVAC schedules to occupancy schedules. Lower setback temperatures. Optimize morning warmup and night setback controls. Reduce/eliminate major sources of infiltration. Install a desiccant dehumidification system. Minimize use of outside air for process ventilation. Educate employees on building systems and energy efficiency measures. Check/adjust combustion efficiency of gas-fired equipment. Minimize the use of gas-fired refrigeration equipment. Check for ways to control solar gain to reduce the cooling load on buildings, including cool roofs or solar shading on windows PDF Install revolving doors. Install energy-efficient lighting and occupancy sensors.

247

4Q CY2007, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2008 6, 2008 MEMORANDUM FROM: DEPARTMENTAL REPRESENTATNE TO THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October - December (4th Quarter CY2007) Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October to December 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 83% Fully Qualified (last Quarter was 82%) 85% Staffing Level (last Quarter was 93%) 45% Time Spent in the Field (DOE goal is >40%)

248

2Q CY2007, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0,2007 0,2007 M E M 0 R A N D ; p s ' X Z FROM: M RK B. WHI DEPARTMENTAL REPRESENTATIVE TO THE DEFENSE NUCLEAR FACILITIES SAFETY BOARD OFFICE OF HEALTH, SAFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, April - June (2nd Quarter CY2007) Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from April to June 2007. Data for these indicators are gathered by Field elements quarterly per DOE-STD-1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 74% Fully Qualified (last Quarter was 72%) 94% Staffing Level (last Quarter was 9 1 %)

249

Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance Advanced Gas Reactor Fuel Program's TRISO Particle Fuel Sets A New World Record For Irradiation Performance November 16, 2009 - 1:12pm Addthis As part of the Office of Nuclear Energy's Next Generation Nuclear Plant (NGNP) Program, the Advanced Gas Reactor (AGR) Fuel Development Program has achieved a new international record for irradiation testing of next-generation particle fuel for use in high temperature gas reactors (HTGRs). The AGR Fuel Development Program was initiated by the Department of Energy in 2002 to develop the advanced fabrication and characterization technologies, and provide irradiation and safety performance data required to license TRISO particle fuel for the NGNP and future HTGRs. The AGR

250

Fuel cell systems program plan, Fiscal year 1994  

DOE Green Energy (OSTI)

Goal of the fuel cell program is to increase energy efficiency and economic effectiveness through development and commercialization of fuel cell systems which operate on fossil fuels in multiple end use sectors. DOE is participating with the private sector in sponsoring development of molten carbonate fuel cells and solid oxide fuel cells for application in the utility, commercial, and industrial sectors. Commercialization of phosphoric acid fuel cells is well underway. Besides the introduction, this document is divided into: goal/objectives, program strategy, technology description, technical status, program description/implementation, coordinated fuel cell activities, and international activities.

Not Available

1994-07-01T23:59:59.000Z

251

Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Facebook Tweet about Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Twitter Bookmark Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Google Bookmark Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Delicious Rank Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on Digg Find More places to share Fuel Cell Technologies Office: 2002 Hydrogen Program Review Meeting on AddThis.com... Publications Program Publications Technical Publications Educational Publications

252

DOE Hydrogen and Fuel Cells Program: About the Hydrogen and Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

External Coordination U.S. Department of Energy Search help Home > About the Hydrogen and Fuel Cells Program Printable Version About the Hydrogen and Fuel Cells Program The U.S....

253

DOE Hydrogen and Fuel Cells Program: DOE Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Releases 2012 Annual Progress Report Jan 18, 2013 The U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program reports on activities and...

254

Oncor Electric Delivery - Government and Education Facilities Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oncor Electric Delivery - Government and Education Facilities Oncor Electric Delivery - Government and Education Facilities Program Oncor Electric Delivery - Government and Education Facilities Program < Back Eligibility Institutional Local Government Schools Tribal Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Design & Remodeling Windows, Doors, & Skylights Program Info State Texas Program Type Utility Rebate Program Rebate Amount Chillers (Metro): $225.72/kW plus $0.07/kWh Chillers (Non-Metro): $219.82/kW plus $0.08/kWh DX HVAC (Metro): $191.15/kW plus $0.06/kWh DX HVAC (Non-Metro): $219.82/kW plus $0.07/kWh Geothermal (Metro): $251.45/kW plus $0.08/kWh

255

Cryogenic thermonuclear fuel implosions on the National Ignition Facility  

Science Conference Proceedings (OSTI)

The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 {mu}m diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 {+-} 3) {mu}m, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 {+-} 0.09) g cm{sup -2} result in fuel densities approaching 600 g cm{sup -3}. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 {+-} 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 10{sup 15} that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7.5{+-}0.1) Multiplication-Sign 10{sup 14} which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 {+-} 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The stagnation pressure is above 100 Gbars resulting in high Lawson-type confinement parameters of P{tau} Asymptotically-Equal-To 10 atm s. Comparisons with radiation-hydrodynamic simulations indicate that the pressure is within a factor of three required for reaching ignition and high yield. This will be the focus of future higher-velocity implosions that will employ additional optimizations of hohlraum, capsule and laser pulse shape conditions.

Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.; Alger, E. T.; Berger, R. L.; Bernstein, L. A.; Bleuel, D. L.; Bradley, D. K.; Burkhart, S. C.; Burr, R.; Caggiano, J. A.; Castro, C.; Choate, C.; Clark, D. S.; Celliers, P.; Cerjan, C. J.; Collins, G. W.; Dewald, E. L.; DiNicola, P.; DiNicola, J. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-05-15T23:59:59.000Z

256

Alternative Fuels Data Center: Pollution Prevention Grants Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pollution Prevention Pollution Prevention Grants Program to someone by E-mail Share Alternative Fuels Data Center: Pollution Prevention Grants Program on Facebook Tweet about Alternative Fuels Data Center: Pollution Prevention Grants Program on Twitter Bookmark Alternative Fuels Data Center: Pollution Prevention Grants Program on Google Bookmark Alternative Fuels Data Center: Pollution Prevention Grants Program on Delicious Rank Alternative Fuels Data Center: Pollution Prevention Grants Program on Digg Find More places to share Alternative Fuels Data Center: Pollution Prevention Grants Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pollution Prevention Grants Program The Pollution Prevention (P2) Grants Program supports state and tribal

257

Alternative Fuels Data Center: Biofuels Program Impact Studies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Program Biofuels Program Impact Studies to someone by E-mail Share Alternative Fuels Data Center: Biofuels Program Impact Studies on Facebook Tweet about Alternative Fuels Data Center: Biofuels Program Impact Studies on Twitter Bookmark Alternative Fuels Data Center: Biofuels Program Impact Studies on Google Bookmark Alternative Fuels Data Center: Biofuels Program Impact Studies on Delicious Rank Alternative Fuels Data Center: Biofuels Program Impact Studies on Digg Find More places to share Alternative Fuels Data Center: Biofuels Program Impact Studies on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Program Impact Studies The Oregon Department of Energy (ODOE) must conduct periodic impact studies

258

Alternative Fuels Data Center: Green Jobs Training Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Green Jobs Training Green Jobs Training Program to someone by E-mail Share Alternative Fuels Data Center: Green Jobs Training Program on Facebook Tweet about Alternative Fuels Data Center: Green Jobs Training Program on Twitter Bookmark Alternative Fuels Data Center: Green Jobs Training Program on Google Bookmark Alternative Fuels Data Center: Green Jobs Training Program on Delicious Rank Alternative Fuels Data Center: Green Jobs Training Program on Digg Find More places to share Alternative Fuels Data Center: Green Jobs Training Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Green Jobs Training Program Under the Green Jobs Act, the New Mexico Higher Education Department must develop a state research program in partnership with the Workforce

259

Alternative Fuels Data Center: Creation of Green Career Grants Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Creation of Green Creation of Green Career Grants Program to someone by E-mail Share Alternative Fuels Data Center: Creation of Green Career Grants Program on Facebook Tweet about Alternative Fuels Data Center: Creation of Green Career Grants Program on Twitter Bookmark Alternative Fuels Data Center: Creation of Green Career Grants Program on Google Bookmark Alternative Fuels Data Center: Creation of Green Career Grants Program on Delicious Rank Alternative Fuels Data Center: Creation of Green Career Grants Program on Digg Find More places to share Alternative Fuels Data Center: Creation of Green Career Grants Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Creation of Green Career Grants Program The Illinois State Board of Education must establish a grant program to

260

Alternative Fuels Data Center: School Bus Retrofit Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retrofit Retrofit Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Retrofit Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Retrofit Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Retrofit Program on Google Bookmark Alternative Fuels Data Center: School Bus Retrofit Program on Delicious Rank Alternative Fuels Data Center: School Bus Retrofit Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Retrofit Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Retrofit Program The goals of the Connecticut Clean School Bus Program are to: 1) establish grants for municipalities and local and regional school boards to reimburse

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: State Energy Program (SEP) Funding  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Energy Program State Energy Program (SEP) Funding to someone by E-mail Share Alternative Fuels Data Center: State Energy Program (SEP) Funding on Facebook Tweet about Alternative Fuels Data Center: State Energy Program (SEP) Funding on Twitter Bookmark Alternative Fuels Data Center: State Energy Program (SEP) Funding on Google Bookmark Alternative Fuels Data Center: State Energy Program (SEP) Funding on Delicious Rank Alternative Fuels Data Center: State Energy Program (SEP) Funding on Digg Find More places to share Alternative Fuels Data Center: State Energy Program (SEP) Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Energy Program (SEP) Funding SEP provides grants to states to assist in designing, developing, and

262

Alternative Fuels Data Center: Air Pollution Control Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Pollution Control Air Pollution Control Program to someone by E-mail Share Alternative Fuels Data Center: Air Pollution Control Program on Facebook Tweet about Alternative Fuels Data Center: Air Pollution Control Program on Twitter Bookmark Alternative Fuels Data Center: Air Pollution Control Program on Google Bookmark Alternative Fuels Data Center: Air Pollution Control Program on Delicious Rank Alternative Fuels Data Center: Air Pollution Control Program on Digg Find More places to share Alternative Fuels Data Center: Air Pollution Control Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Air Pollution Control Program The Air Pollution Control Program assists state, local, and tribal agencies in planning, developing, establishing, improving, and maintaining adequate

263

Alternative Fuels Data Center: School Bus Pilot Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Pilot School Bus Pilot Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Pilot Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Pilot Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Pilot Program on Google Bookmark Alternative Fuels Data Center: School Bus Pilot Program on Delicious Rank Alternative Fuels Data Center: School Bus Pilot Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Pilot Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Pilot Program The Vermont Department of Motor Vehicles will approve up to three participants for a pilot program to operate Type II school buses that are

264

NETL: News Release - NETL Opens Fuel Cell/Turbine Hybrid Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

May 20, 2004 May 20, 2004 NETL Opens Fuel Cell/Turbine Hybrid Research Facility MORGANTOWN, WV - The Hybrid Performance Facility - called the Hyper facility - is now fully operational at the Department of Energy's National Energy Technology Laboratory (NETL). This one-of-a-kind facility, developed by NETL's Office of Science and Technology, will be used to develop control strategies for the reliable operation of fuel cell/turbine hybrids. - NETL's Fuel Cell/Turbine Hybrid Facility - The Hyper facility allows assessment of dynamic control and performance issues in fuel cell/turbine hybrid systems. Combined systems of turbines and fuel cells are expected to meet power efficiency targets that will help eliminate, at competitive costs, environmental concerns associated with the use of fossil fuels for

265

Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII  

Science Conference Proceedings (OSTI)

Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

Not Available

1980-01-01T23:59:59.000Z

266

Alternative Fuels Data Center: Idle Reduction Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Grant Idle Reduction Grant Program to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Grant Program on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Grant Program on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Grant Program on Google Bookmark Alternative Fuels Data Center: Idle Reduction Grant Program on Delicious Rank Alternative Fuels Data Center: Idle Reduction Grant Program on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Grant Program The Wisconsin Department of Administration provides idle reduction grants to eligible common, contract, and private motor carriers headquartered in

267

Alternative Fuels Data Center: Idle Reduction Technology Loan Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction Idle Reduction Technology Loan Program to someone by E-mail Share Alternative Fuels Data Center: Idle Reduction Technology Loan Program on Facebook Tweet about Alternative Fuels Data Center: Idle Reduction Technology Loan Program on Twitter Bookmark Alternative Fuels Data Center: Idle Reduction Technology Loan Program on Google Bookmark Alternative Fuels Data Center: Idle Reduction Technology Loan Program on Delicious Rank Alternative Fuels Data Center: Idle Reduction Technology Loan Program on Digg Find More places to share Alternative Fuels Data Center: Idle Reduction Technology Loan Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idle Reduction Technology Loan Program The Minnesota Pollution Control Agency's Small Business Environmental

268

Alternative Fuels Data Center: Propane Education and Research Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Education and Propane Education and Research Program to someone by E-mail Share Alternative Fuels Data Center: Propane Education and Research Program on Facebook Tweet about Alternative Fuels Data Center: Propane Education and Research Program on Twitter Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Google Bookmark Alternative Fuels Data Center: Propane Education and Research Program on Delicious Rank Alternative Fuels Data Center: Propane Education and Research Program on Digg Find More places to share Alternative Fuels Data Center: Propane Education and Research Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Education and Research Program The State Liquefied Compressed Gas Board (Board), operated through the

269

Alternative Fuels Data Center: School Bus Retrofit Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Retrofit School Bus Retrofit Grant Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Retrofit Grant Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Retrofit Grant Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Retrofit Grant Program on Google Bookmark Alternative Fuels Data Center: School Bus Retrofit Grant Program on Delicious Rank Alternative Fuels Data Center: School Bus Retrofit Grant Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Retrofit Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Retrofit Grant Program The Ohio Environmental Protection Agency (EPA) administers the Clean Diesel

270

Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Idle School Bus Idle Reduction Pilot Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Idle Reduction Pilot Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Idle Reduction Pilot Program As part of the Children's Environmental Health Project, the Arizona

271

Facility Representative Program Performance Indicators for April - June 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 , 2011 MEMORANDUM FOR DISTRIBUTION FROM: JAMES B. O'BRIEN SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, April - June 20 1 I This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period April through June 20 1 1. Data for these indicators were gathered by Field Elements per Department of Energy (DOE) Technical Standard (STD) 1063-20 1 1, Facility Representatives, and reported to Headquarters Program Offices for evaluation and feedback to improve the FR Program. Highlights from this report: FR Staffin~/Qualification/Oversi~ht Data DOE was staffed at 180 FR Full Time Equivalents (FTEs), which is 9 1 percent of the full staffing level (DOE goal is 100 percent).

272

Criteria for Evaluation of Nuclear Facility Training Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

STD-1070-94 STD-1070-94 Reaffirmed June 2013 DOE STANDARD CRITERIA FOR EVALUATION OF NUCLEAR FACILITY TRAINING PROGRAMS (Formerly Titled: Guidelines for Evaluation of Nuclear Facility Training Programs) U.S. Department of Energy FSC Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS DOE HDBK-1070-94 Errata June 2013 Table of Changes Page/Section Change Cover Criteria for Evaluation of Nuclear Facility Training Programs Page ii This document is available on the Department of Energy Technical Standards Program Web page at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ Page iii Table of Contents Page iv This DOE Technical Standard is invoked as a requirement by DOE Order 426.2, Personnel Selection, Training, Qualifications and

273

Facility Representative Program Performance Indicators for October-December 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 2012 MEMORANDUM FOR DISTRIBUTION FROM: JAMES B. O'BRIEN DIRECTOR ~ OFFICE OF :-IDC~AR AFETY OFFICE OF HEAL 'l;H, AFETY AND SECURITY SUBJECT: Facility Representative Program Performance Indicators Quarterly Report, October- December 20 ll This memorandum summarizes the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from October through December 2011. Data for these indicators were gathered by field elements per Department of Energy (DOE) Technical Standard 1063-2011 , Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. Highlights from this report include: FR Staffing/Qualification/Oversight Data * DOE was staffed at 179 FR Full Time Equivalents (FTE), which is 92 percent of the full

274

Risk management program for the 283-W water treatment facility  

Science Conference Proceedings (OSTI)

This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document.

GREEN, W.E.

1999-05-11T23:59:59.000Z

275

Facility Representative Program: Subject Matter Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Subject Matter Links Subject Matter Links Nuclear Office of Nuclear Safety and Environment Nuclear Regulatory Commission American Nuclear Society (ANS) Nuclear Energy Institute International Atomic Energy Agency (IAEA) Electrical OSHA Electrical Safety Information Underwriters Laboratories National Electrical Manufacturers Association Institute of Electrical and Electronic Engineers (IEEE) IPC - Association Connecting Electronics Industries OSHA Laser Hazards Chemical DOE Chemical Safety Program DOE Chronic Beryllium Disease Prevention Program EPA Chemical Information Material Safety Data Sheets Search NIOSH Guide to Chemical Hazards American Petroleum Institute Alternative Fluorocarbons Environmental Acceptability Study American Institute of Chemical Engineers Chemical Reactivity Worksheet

276

Fourth annual report to Congress, Federal Alternative Motor Fuels Programs  

DOE Green Energy (OSTI)

This annual report to Congress presents the current status of the alternative fuel vehicle programs being conducted across the country in accordance with the Alternative Motor Fuels Act of 1988. These programs, which represent the most comprehensive data collection effort ever undertaken on alternative fuels, are beginning their fifth year. This report summarizes tests and results from the fourth year.

NONE

1995-07-01T23:59:59.000Z

277

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and fuel cells offer great  

E-Print Network (OSTI)

and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary fuel cell technol vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated in addition to hydrogen fuel for local demonstration fuel cell vehicles. As advanced vehicles begin to enter

278

The Fuel Processing Research Facility - A Platform for the Conduct of Synthesis Gas Technology R&D  

DOE Green Energy (OSTI)

Vision 21 is the U. S. Department of Energy's initiative to deploy high efficiency, ultraclean co-production coal conversion power plants in the twenty-first century. These plants will consist of power and co-production modules, which are integrated to meet specific power and chemical markets. A variety of fuel gas processing technology issues involving gas separations, cleanup, gas-to-liquid fuels production and chemical synthesis, to mention a few, will be addressed by the program. The overall goal is to effectively eliminate, at competitive costs, environmental concerns associated with the use of fossil fuels for producing electricity and transportation fuels. The Fuel Processing Research Facility (FPRF) was developed as a fuel-flexible platform to address many of these technology needs. The facility utilizes a simplified syngas generator that is capable of producing 2,000 standard cubic feet per hour of 900 degree Celsius and 30 atmosphere synthesis gas that can be tailored to the gas composition of interest. It was built on a ''mid-scale'' level in an attempt to successfully branch the traditionally difficult scale-up from laboratory to pilot scale. When completed, the facility will provide a multi-faceted R&D area for the testing of fuel cells, gas separation technologies, and other gas processing unit operations.

Monahan, Michael J.; Berry, David A.; Gardner, Todd H.; Lyons, K. David

2001-11-06T23:59:59.000Z

279

DoD Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

This report discusses the first year of operation of a fuel cell power plant located at the Ocean County College, Toms River, New Jersey. PPL EnergyPlus, LLC installed the plant under a contract with Ocean County College. A DFC{reg_sign}300 fuel cell, manufactured by Fuel Cell Energy, Inc. of Danbury, CT was selected for the project. The fuel cell successfully operated from January 1, 2004 to December 31, 2004. This report discusses the performance of the plant during this period. Ocean County College's decision to contract for use of a fuel cell at the college reflects the institution's commitment to managing energy costs, exercising environmental leadership, and leveraging innovative technologies to accomplish its energy and environmental goals. Ocean County College's director of facilities was interested in finding new energy cost reduction opportunities that could build on the institution's growing reputation for commitment to energy efficiency and environmental quality while exploring new technologies. This combination of goals positioned Ocean County College to value the prospect of installing a fuel cell as a demonstration project that could deliver on its commitment. PPL EnergyPlus, LLC developed the project and Millennium Builders, a PPL company, was chosen as the general contractor for the project. PPL and Ocean County College worked very closely with Jersey Central Power and Light (JCP&L) and New Jersey Natural Gas (NJNG) Company to assure integration of the fuel cell with the local utilities. The 250 kW molten carbonate fuel cell (MCFC) and its balance of plant is contained in an all-weather container located just outside the college's Instructional Building on a cement pad in a fenced-in 30 x 50 foot area in close proximity to the college's boiler and electrical rooms. Cables and piping bring power and hot water from the fuel cell into these interior control areas. The unit's electrical output is fed onto the college's main circuit while the hot water flows from the fuel cell to the college through a closed loop equipped with internal heat exchangers mounted on a custom skid in the boiler room. Fresh make-up water for the fuel cell's reverse osmosis equipment is piped separately from the boiler room out to the fuel cell. The fuel cell operates in parallel with the local electric utility's distribution system that serves the general area. The interconnection design relies on the grid protection components that come as standard equipment in the FCE unit design. Ultimately, the only substantive approval for the installation was for the parallel interconnection with the grid, provided by Jersey Central Power & Light. The utility had a well-defined set of interconnection requirements and procedures for units under 5 MW, and the approval process went smoothly and caused little delays. The primary liaison with PPL and the college was the utility's account representative. PPL and the college report that JCP&L was quite supportive of the project. The 60 percent reimbursement of installed costs was made through the New Jersey Clean Energy Fund, which is in turn funded through utility contributions. The Department of Energy provided an additional $250,000 grant under the Department of Defense fuel cell buy down program. PPL started testing the fuel cell on October 31, 2003. Final acceptance of the fuel cell was completed on December 21, 2003. Following several months of start-up activities, a high availability factor and few operating difficulties have marked operations during the first year.

Ken Olsen

2006-09-15T23:59:59.000Z

280

Tubular solid oxide fuel cell development program  

DOE Green Energy (OSTI)

This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

Ray, E.R.; Cracraft, C.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Information Handling Plan For The Mixed Oxide Fuel Fabrication Facility  

E-Print Network (OSTI)

responses to the NRC's Request for Additional Information (RAI), and a revision to the Classified Matter Protection Plan (CMPP) for the Mixed Oxide Fuel Fabrication Facility (MFFF). Enclosure (1) provides the detailed responses to the Reference (A) RAIs, and indicates corresponding changes to the CMPP. Enclosure (2) provides a List of Effective Pages for the revised CMPP. Enclosure (3) is the revised CMPP itself; it is a page revision with respect to the previous revision of Reference (C). Enclosure (4) lists substantive changes in addition to those resulting from the RAIs. Changes resulting from the RAI responses, as well as other changes, are denoted by vertical lines in the right margin and revised pages have a current revision date. The enclosures herein concern protection of classified matter in accordance with 10 CFR 2.390(d), and should be withheld from public disclosure.

Shaw Areva; Mox Services

2008-01-01T23:59:59.000Z

282

Biomass Fuel Cell Systems - DOE Hydrogen and Fuel Cells Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilize ceramic microchannel reactor technology for * reforming of natural gas and biogas fuels for subsequent electrochemical oxidation within a solid-oxide fuel cell (SOFC)....

283

DOE Hydrogen and Fuel Cells Program: Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

America's dependence on imported oil and reduce the environmental impacts of fossil fuel combustion. Beginning in fiscal year 2004, the Hydrogen Fuel Initiative (HFI) increased...

284

NREL Fuel Cell and Hydrogen Technologies Program Overview (Presentation)  

DOE Green Energy (OSTI)

The presentation, 'NREL Fuel Cell and Hydrogen Technologies Program Overview,' was presented at the Fuel Cell and Hydrogen Energy Expo and Policy Forum, April 24, 2013, Washington, D.C.

Gearhart, C.

2013-05-01T23:59:59.000Z

285

Structural Integrity Program for INTEC Calcined Solids Storage Facilities  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, 'Radioactive Waste Management Manual'. Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Jeffrey Bryant

2008-08-30T23:59:59.000Z

286

Facility Representative Program: Criteria Review and Approach Document  

NLE Websites -- All DOE Office Websites (Extended Search)

Assessment Tools Assessment Tools Surveillance Guides Manager's Guide for Safety and Health Walkthroughs Criteria Review and Approach Document This page provides Criteria Review and Approach Documents (CRADS) to assist Facility Representatives. Please submit your CRADS for posting by sending them to the HQ FR Program Manager. Please include the subject, date, and a contact person. Communications NASA Benchmarks Communications Assessment Plan Configuration Management Configuration Management Assessment Plan Confined Space Confined Spaces Assessment Plan Conduct of Operations Conduct of Operations Assessment Plan Electrical Assessment Electrical Safety Assessment Plan Facility Procedures Verification and Validation of Facility Procedures Assessment Plan Hoisting and Rigging

287

Liquefied Gaseous Fuels Spill Test Facility: Overview of STF capabilities  

SciTech Connect

The Liquefied Gaseous Fuels Spill Test Facility (STF) constructed at the Department of Energy`s Nevada Test Site is a basic research tool for studying the dynamics of accidental releases of various hazardous liquids. This Facility is designed to (1) discharge, at a controlled rate, a measured volume of hazardous test liquid on a prepared surface of a dry lake bed (Frenchman Lake); (2) monitor and record process operating data, close-in and downwind meteorological data, and downwind gaseous concentration levels; and (3) provide a means to control and monitor these functions from a remote location. The STF will accommodate large and small-scale testing of hazardous test fluid release rates up to 28,000 gallons per minute. Spill volumes up to 52,800 gallons are achievable. Generic categories of fluids that can be tested are cryogenics, isothermals, aerosol-forming materials, and chemically reactive. The phenomena that can be studied include source definition, dispersion, and pool fire/vapor burning. Other capabilities available at the STF include large-scale wind tunnel testing, a small test cell for exposing personnel protective clothing, and an area for developing mitigation techniques.

Gray, H.E.

1993-09-01T23:59:59.000Z

288

Hanford Site waste tank farm facilities design reconstitution program plan  

SciTech Connect

Throughout the commercial nuclear industry the lack of design reconstitution programs prior to the mid 1980`s has resulted in inadequate documentation to support operating facilities configuration changes or safety evaluations. As a result, many utilities have completed or have ongoing design reconstitution programs and have discovered that without sufficient pre-planning their program can be potentially very expensive and may result in end-products inconsistent with the facility needs or expectations. A design reconstitution program plan is developed here for the Hanford waste tank farms facility as a consequence of the DOE Standard on operational configuration management. This design reconstitution plan provides for the recovery or regeneration of design requirements and basis, the compilation of Design Information Summaries, and a methodology to disposition items open for regeneration that were discovered during the development of Design Information Summaries. Implementation of this plan will culminate in an end-product of about 30 Design Information Summary documents. These documents will be developed to identify tank farms facility design requirements and design bases and thereby capture the technical baselines of the facility. This plan identifies the methodology necessary to systematically recover documents that are sources of design input information, and to evaluate and disposition open items or regeneration items discovered during the development of the Design Information Summaries or during the verification and validation processes. These development activities will be governed and implemented by three procedures and a guide that are to be developed as an outgrowth of this plan.

Vollert, F.R.

1994-09-06T23:59:59.000Z

289

Power Burst Facility (PBF) severe fuel damage test 1-4 test results report  

DOE Green Energy (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1-4 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1-4 was the fourth and final test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel and control rod behavior, aerosol and hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (36,000 MWd/MtU) pressurized water-reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 silver-indium-cadmium control rods, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1.3-h transient at a coolant pressure of 6.95 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy and control rod absorber alloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 2100-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of on-line instrumentation, analysis of fission product and aerosol data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 40 refs., 160 figs., 31 tabs.

Petti, D.A.; Martinson, Z.R.; Hobbins, R.R.; Allison, C.M.; Carlson, E.R.; Hagrman, D.L.; Cheng, T.C.; Hartwell, J.K.; Vinjamuri, K.; Seifken, L.J.

1989-04-01T23:59:59.000Z

290

PBF (Power Burst Facility) severe fuel damage test 1--3 test results report  

Science Conference Proceedings (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1--3 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1--3 was the third test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel rod behavior, hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (38,000 MWd/tU) pressurized water reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 empty zircaloy guide tubes, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1-h transient at a nominal coolant pressure of 6.85 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 1340-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of online instrumentation, analysis of fission product data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 34 refs., 241 figs., 51 tabs.

Martinson, Z.R.; Gasparini, M.; Hobbins, R.R.; Petti, D.A.; Allison, C.M.; Hohorst, J.K.; Hagrman, D.L.; Vinjamuri, K. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-10-01T23:59:59.000Z

291

National Fuel - Large Non-Residential Conservation Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Fuel - Large Non-Residential Conservation Program National Fuel - Large Non-Residential Conservation Program National Fuel - Large Non-Residential Conservation Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Manufacturing Appliances & Electronics Water Heating Maximum Rebate Commercial Custom Rebates: $200,000 Industrial Custom Rebates: $5,000,000 Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Rebates: $15/Mcf x the gas savings or 50% of the total project cost Unit Heater: $1000 Hot Air Furnace: $500 Low Intensity Infrared Heating: $500 Programmable Thermostat: $25

292

Licensed fuel facility status report: Inventory difference data, January 1986-June 1986  

SciTech Connect

NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

1987-02-01T23:59:59.000Z

293

Licensed fuel facility status report: Inventory difference data, July 1986-December 1986  

SciTech Connect

NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

1987-08-01T23:59:59.000Z

294

Independent Oversight Review of the Idaho National Laboratory Fuel Conditioning Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT OVERSIGHT INDEPENDENT OVERSIGHT REVIEW OF THE IDAHO NATIONAL LABORATORY FUEL CONDITIONING FACILITY SAFETY BASIS April 2010 U.S. Department of Energy Office of Health, Safety and Security Office of Independent Oversight i INDEPENDENT OVERSIGHT REVIEW OF THE IDAHO NATIONAL LABORATORY FUEL CONDITIONING FACILITY SAFETY BASIS Table of Contents Acronyms ............................................................................................................................ ii Executive Summary ........................................................................................................... iii 1.0 Introduction ..................................................................................................................1

295

Distributed Energy Resources at Federal Facilities. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet  

DOE Green Energy (OSTI)

This two-page overview describes how the use of distributed energy resources at Federal facilities is being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

Pitchford, P.

2001-07-16T23:59:59.000Z

296

Fuel Cell Technologies Program Multi-Year Research, Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Preface Multi-Year Research, Development, and Demonstration Plan Page i Preface The Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan (MYRD&D...

297

DOE Hydrogen and Fuel Cells Program: Advisory Panels  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Background Budget Timeline Program Activities Advisory Panels Hydrogen and Fuel Cell Technical Advisory Committee National Research Council External Coordination U.S....

298

2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program  

Fuel Cell Technologies Publication and Product Library (EERE)

The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

299

National Rural Electric Cooperative Association: Residential Fuel Cell Demonstration Program  

DOE Green Energy (OSTI)

Summarizes the National Rural Electric Cooperative Association's work, under contract to DOE's Distribution and Interconnection R&D, to create a residential fuel cell demonstration program.

Not Available

2003-10-01T23:59:59.000Z

300

DOE Hydrogen and Fuel Cells Program: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

and Fuel Cells Program and the offices of Energy Efficiency and Renewable Energy (EERE), Fossil Energy, Nuclear Energy, and Science. The 2012 Annual Progress Report was published...

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Annual Progress Report XI. Systems Analysis This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on systems analysis. Systems...

302

Office of Used Nuclear Fuel Disposition International Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1000 Independence Avenue, S.W. Washington, D.C. 20585 UFD INTERNATIONAL PROGRAM STRATEGIC PLAN Foreword Message from the Deputy Assistant Secretary for Fuel Cycle...

303

Alternative Fuels Data Center: Idle Reduction Programs at Tennessee...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Facilitator After the East Tennessee Clean Fuels Coalition (ETCF) launched its Idle-Free Tennessee program at four elementary schools in the 2010-2011 school year, the...

304

Hawaii alternative fuels utilization program. Phase 3, final report  

DOE Green Energy (OSTI)

The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.

Kinoshita, C.M.; Staackmann, M.

1996-08-01T23:59:59.000Z

305

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Concept Project, Raymond Hobbs, Arizona Public Service (PDF 281 KB) NextEnergy Center Microgrid and Hydrogen Fueling Facility, Dave McLean, NextEnergy Center (PDF 113 KB) Back to...

306

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems, Richard Rocheleau, University of Hawaii (PDF 785 KB) NextEnergy Center Microgrid and Hydrogen Fueling Facility, David McLean, NextEnergy Center (PDF 452 KB) Back to...

307

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Executive Summary This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities 1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and demonstrate safety in an effective and efficient manner.

308

Technology development program for Idaho Chemical Processing Plant spent fuel and waste management  

SciTech Connect

Acidic high-level radioactive waste (HLW) resulting from fuel reprocessing at the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy (DOE) has been solidified to a calcine since 1963 and stored in stainless steel bins enclosed by concrete vaults. Several different types of unprocessed irradiated DOE-owned fuels are also in storage at the ICPP. In April, 1992, DOE announced that spent fuel would no longer be reprocessed to recover enriched uranium and called for a shutdown of the reprocessing facilities at the ICPP. A new Spent Fuel and HLW Technology Development program was subsequently initiated to develop technologies for immobilizing ICPP spent fuels and HLW for disposal, in accordance with the Nuclear Waste Policy Act. The Program elements include Systems Analysis, Graphite Fuel Disposal, Other Spent Fuel Disposal, Sodium-Bearing Liquid Waste Processing, Calcine Immobilization, and Metal Recycle/Waste Minimization. This paper presents an overview of the ICPP radioactive wastes and current spent fuels, and describes the Spent Fuel and HLW Technology program in more detail.

Ermold, L.F.; Knecht, D.A.; Hogg, G.W.; Olson, A.L.

1993-08-01T23:59:59.000Z

309

THE PLUTONIUM AEROSOL MONITORING PROGRAM AT ANL-IDAHO FACILITIES  

SciTech Connect

The physical and radiation characteristics of plutonium aerosols are reviewed briefly. A number of detecting and sampling devices and techniques are discussed for application to plutonium aerosols under conditions of reactor operations. The monitoring program and the Pu-fueled reactors at ANL-Idaho are described. (D.L.C.)

Stoddart, P.G.

1963-07-01T23:59:59.000Z

310

Federal Energy Management Program: Federal Facility Annual Energy Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Energy Reports and Performance Annual Energy Reports and Performance Published Annual Reports Visit the FEMP Library to search for read FEMP Annual Reports to Congress on Federal Government Energy Management. For more information, contact Chris Tremper. The Federal Energy Management Program (FEMP) offers information and data sets illustrating Federal agencies' annual progress in meeting facility energy goals. Additional detail about each agency's performance can be found in their Strategic Sustainability Performance Plans on the Performance.Gov website. Federal Facility Efficiency Investment and Progress toward Sustainability Goals: Get an overview of Federal progress made in facility energy management and sustainability based on preliminary fiscal year (FY) 2012 reported findings. (For facility-level data reported under Section 432 of EISA, see EISA CTS Reports and Data.)

311

Fuel Cell Technologies Office: Program Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations The Fuel Cell Technologies Office staff members give presentations about fuel cells and hydrogen at a variety of conferences. Some of their presentations are below....

312

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network (OSTI)

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

313

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

DOE Green Energy (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

314

DOE Hydrogen and Fuel Cells Program: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office FY2014 Budget Request Briefing on April 12 Apr 9, 2013 The Fuel Cell Technologies Office will hold a budget briefing for stakeholders on Friday, April...

315

Hydrogen Storage Sub-Program Overview - DOE Hydrogen and Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Hydrogen Storage sub-program supports research and development (R&D) of materials and...

316

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 systems per household Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $400/system Provider York Electric Cooperative, Inc York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and industrial locations. The incentive is for the property owner only, meaning that renters/tenants are not

317

Alcohol Fuels Program technical review, Spring 1984  

DOE Green Energy (OSTI)

The alcohol fuels program consists of in-house and subcontracted research for the conversion of lignocellulosic biomass into fuel alcohols via thermoconversion and bioconversion technologies. In the thermoconversion area, the SERI gasifier has been operated on a one-ton per day scale and produces a clean, medium-Btu gas that can be used to manufacture methanol with a relatively small gas-water shift reaction requirement. Recent research has produced catalysts that make methanol and a mixture of higher alcohols from the biomass-derived synthetic gas. Three hydrolysis processes have emerged as candidates for more focused research. They are: a high-temperature, dilute-acid, plug-flow approach based on the Dartmouth reactor; steam explosion pretreatment followed by hydrolysis using the RUT-C30 fungal organism; and direct microbial conversion of the cellulose to ethanol using bacteria in a single or mixed culture. Modeling studies, including parametric and sensitivity analyses, have recently been completed. The results of these studies will lead to a better definition of the present state-of-the-art for these processes and provide a framework for establishing the research and process engineering issues that still need resolution. In addition to these modeling studies, economic feasibility studies are being carried out by commercial engineering firms. Their results will supplement and add commercial validity to the program results. The feasibility contractors will provide input at two levels: Technical and economic assessment of the current state-of-the-art in alcohol production from lignocellulosic biomass via thermoconversion to produce methanol and higher alcohol mixtures and bioconversion to produce ethanol; and identification of research areas having the potential to significantly reduce the cost of production of alcohols.

Not Available

1984-10-01T23:59:59.000Z

318

EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)  

SciTech Connect

This success story highlights the EPAct Alternative Fuel Transportation Program's series of workshops that bring fleets regulated under the Energy Policy Act of 1992 (EPAct) together with Clean Cities stakeholders and fuel providers to form and strengthen regional partnerships and initiate projects that will deploy more alternative fuel infrastructure.

Not Available

2010-08-01T23:59:59.000Z

319

Description of the programs and facilities of the Physics Division  

SciTech Connect

The major emphasis of our experimental nuclear physics research is in Heavy-Ion Physics, centered at the recently completed ATLAS facility. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. In addition, the Division has strong programs in Medium-Energy Physics and in Weak-Interaction Physics as well as in accelerator development. Our nuclear theory research spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national scale. The Atomic Physics program, the largest of which is accelerator-based, primarily uses ATLAS, a 5-MV Dynamitron accelerator and a highly stable 150-kV accelerator. A synchrotron-based atomic physics program has recently been initiated with current research with the National Synchrotron Light Source in preparation for a program at the Advanced Photon Source, at Argonne. The principal interests of the Atomic Physics program are in the interactions of fast atomic and molecular ions with solids and gases and in the laser spectroscopy of exotic species. The program is currently being expanded to take advantage of the unique research opportunities in synchrotron-based research that will present themselves when the Advanced Photon Source comes on line at Argonne. These topics are discussed briefly in this report.

Not Available

1992-10-01T23:59:59.000Z

320

DOE Hydrogen and Fuel Cells Program: DOE Offices and Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensors ThermalWater Management Fuel-Flexible Fuel Processors Analysis Applications Technology Validation1 Technology Validation- Transportation and Stationary Learning...

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Hydrogen and Fuel Cells Program: Related Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Plans, Roadmaps, and Vision Documents Program Plans, Roadmaps, and Vision Documents Program Records Annual Progress Reports Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities Related Links U.S. Department of Energy Search help Home > Library > Related Links Printable Version Related Links Visit these websites to learn about federal agencies, national laboratories, international agencies, and partnerships that are working to advance hydrogen and fuel cell technologies. Federal Agency Sites DOE Hydrogen and Fuel Cells Program Offices Office of Energy Efficiency and Renewable Energy Office of Fossil Energy Office of Nuclear Energy Office of Science Alternative Fuels Data Center: Fuel Cell Vehicles - The Alternative Fuels Data Center provides information on alternative fuel and vehicle

322

1990 fuel cell seminar: Program and abstracts  

DOE Green Energy (OSTI)

This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

Not Available

1990-12-31T23:59:59.000Z

323

Fuel cell systems program plan, Fiscal year 1993  

DOE Green Energy (OSTI)

DOE Office of Fossil Energy (OoFE) is participating with private sector in developing molten carbon fuel cell (MCFC) and advanced concepts including solid oxide fuel cell for application in utility/commercial/industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by OoFE and is now being commercialized. In 1993 DOD is undertaking use and demonstration of PAFC and other fuel cells. DOE Office of Conservation and Renewable Energy is sponsoring fuel cell development for propulsion. The Conservation program is focused on polymer electrolyte or proton exchange membrane fuel cells, although they also are implementing a demonstration program for PAFC buses. DOE fuel cell research, development and demonstration efforts are also supported by private sector funding. This Plan describes the fuel cell activities of the Office of Fossil Energy.

Not Available

1993-07-01T23:59:59.000Z

324

American Ref-Fuel of SE CT Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

American Ref-Fuel of SE CT Biomass Facility American Ref-Fuel of SE CT Biomass Facility Jump to: navigation, search Name American Ref-Fuel of SE CT Biomass Facility Facility American Ref-Fuel of SE CT Sector Biomass Facility Type Municipal Solid Waste Location New London County, Connecticut Coordinates 41.5185189°, -72.0468164° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5185189,"lon":-72.0468164,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Joint DoD/DOE Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

Congress agreed to provide funding to DOD for a competitive, cost- shared, near-term, Climate Change Fuel Cell program. Objectives are to reduce greenhouse gas emissions through the efficient use of fossil fuels, accelerate fuel cell commercialization for US manufacturers, and satisfy DOD goals for the environment, readiness, and economy, through activities which would stimulate end-user applications. Fuel cell power plants with combined capacity between 100 and 3,000 kW are covered.

Hooie, D.T.; Manilla, R.D.

1996-12-31T23:59:59.000Z

326

Radiological environs study at a fuel fabrication facility. [General Electric Fuel Fabrication Plant at Wilmington, NC  

SciTech Connect

Field studies were conducted to detect environmental contamination from fuel fabrication plant effluents. The plant chosen for study was operated by the General Electric Company, Nuclear Fuel Division, at Wilmington, NC. The facility operates continuously using the ammonium diuranate (ADU) process to convert 2.0 to 2.2% enriched UF/sub 6/ to UO/sub 2/ fuel. Continuous air samplers at five sites measured the concentrations of /sup 234/U and /sup 238/U in air for 36 one-week intervals. River water was sampled at nine locations above and below the plant discharge point during each of three field surveys. The atmospheric concentrations of /sup 234/U and /sup 238/U appeared to vary according to a log-normal distribution. The annual facility release of approximately 2 to 3 mCi uranium to the atmosphere would add from 0.01 to 0.2 fCi/m/sup 3/ uranium in the atmospheric environs. An individual residing continuously at the nearest residence is predicted to receive a 50-year dose commitment of 0.9 mrem to the lung. The approximately 1 Ci/y of uranium liquid effluent released would increase the uranium concentration in Northeast Cape Fear estuary about 3 kilometers downstream by 0.3 pCi/liter. Although this water is not potable and is not used for any potable water supply, ingestion of water containing uranium at this concentration for a year would deliver a 3-mrem dose commitment to the bone.

Lyon, R.J.; Shearin, R.L.; Broadway, J.A.

1978-10-01T23:59:59.000Z

327

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2008 Annual Progress Report V. Fuel Cells This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Sub-Program Overview, Nancy Garland, U.S. Department of Energy (PDF 204 KB) A. Analysis/Characterization Fuel Cell Systems Analysis, Rajesh Ahluwalia, Argonne National Laboratory (PDF 375 KB) Mass Production Cost Estimation for Direct H2 PEM Fuel Cell System for Automotive Applications, Brian James, Directed Technologies, Inc. (PDF 1.0 MB) Cost Analyses of Fuel Cell Stack/Systems, Jayanti Sinha, TIAX LLC (PDF 437 KB) Microstructural Characterization Of PEM Fuel Cell MEAs, Karren More, Oak Ridge National Laboratory (PDF 414 KB)

328

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2009 Annual Progress Report V. Fuel Cells This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Program Element Introduction, Dimitrios Papageorgopoulos, U.S. Department of Energy (PDF 262 KB) A. Analysis/Characterization Fuel Cell Systems Analysis (PDF 560 KB), Rajesh Ahluwalia, Argonne National Laboratory Mass Production Cost Estimation for Direct H2 PEM Fuel Cell System for Automotive Applications (PDF 1.4 MB), Brian James, Directed Technologies, Inc. Cost Analyses of Fuel Cell Stack/Systems (PDF 724 KB), Jayanti Sinha , TIAX LLC Fuel Cell Testing at Argonne National Laboratory (PDF 458 KB), Ira

329

DOE Hydrogen and Fuel Cells Program: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

portable power and auxiliary power applications in a limited fashion where earlier market entry would assist in the development of a fuel cell manufacturing base. This DOE...

330

Fuel Cell Seminar, 1992: Program and abstracts  

DOE Green Energy (OSTI)

This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

Not Available

1992-12-31T23:59:59.000Z

331

THE DESIGN AND CONSTRUCTION OF THE EBR-II INITIAL FUEL LOADING FACILITY  

SciTech Connect

The need for the first core for EBR-11 resulted in the design and construction of the Initial Fuel Loading Facility for this reactor. The plant was built to provide the required initial loading, to train personnel, and to test prototype equipment for the remote reprocessing of fuel materials in the EBR- II Fuel Cycle Facility. The facilities include: remotely manipulated melting, casting, and pin processing equipment, a degreaser, hoods and their atmospheric control system, a gas-purification system, fuelelement-assembly equipment, mold- preparation and balance room, bonding furnaces, a maintenance shop, and a change area. (auth)

Ayer, J.E.; Shuck, A.B.

1961-06-01T23:59:59.000Z

332

Livermore Site Office Facility Representative Program Self-Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARPT-LSO-2011-001 ARPT-LSO-2011-001 Site: Livermore Site Office Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Livermore Site Office Facility Representative Program Self-Assessment Dates of Activity 01/24/2011 - 01/28/2011 Report Preparer Robert Freeman Activity Description/Purpose: This activity report documents the results of the Office of Health, Safety and Security's (HSS) review of and participation in the Livermore Site Office Self-Assessment of the Facility Representative (FR) Program. This self-assessment was led by the U.S. Department of Energy (DOE) Livermore Site Office (LSO) and conducted by LSO staff, HSS staff, National Nuclear Security Administration (NNSA) Office of the Chief of Defense Nuclear Safety (CDNS) staff, a peer from Los Alamos Site

333

Sandia National Laboratories' Readiness in Technical Base and Facilities Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories' Sandia National Laboratories' Readiness in Technical Base and Facilities Program OAS-L-13-13 September 2013 Department of Energy Washington, DC 20585 September 5, 2013 MEMORANDUM FOR THE MANAGER, SANDIA FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Sandia National Laboratories' Readiness in Technical Base and Facilities Program" BACKGROUND The Department of Energy's (Department) Sandia National Laboratories (Sandia) is a Government-owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. One of Sandia's key missions is to ensure the safety, reliability and performance of the Nation's nuclear weapons stockpile. To accomplish

334

Fueling Program Review May 2000 LRB 1 Fueling Technology  

E-Print Network (OSTI)

Fueling? Fusion power is a strong function of density ­ Pf = nDnTWDT Gas puffing has limited ability at high density e ne-1 (Alcator C, DIII, TFTR) Density Limits Exceeded ­ Gas fueled density limits proposed as improvement mechanism. · Similar scaling seen on DIII with multiple centrifuge pellet injection

335

Fuel Cell Technologies Office: Program Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

336

Fuel cell systems program for stationary power, 1996  

SciTech Connect

The mission of the fuel cell systems program of the Department of Energy, Office of Fossil Energy, in partnership with its customers and stakeholders, is to foster the creation of a new domestic fuel cell industry. This industry should be capable of commercialization of new, improved fuel cell power generation systems and thereby provide significant economic and environmental benefits. This program is aligned with the Department of Energy`s core mission (business line) of energy resources. The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. This document describes the fuel cell activities of the DOE Office of Fossil Energy.

1996-07-01T23:59:59.000Z

337

Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.  

DOE Green Energy (OSTI)

Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of construction and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic fish stocks in future artificial propagation programs. The GRESCSSP was implemented in three Grande Ronde River basin tributaries; the Lostine and upper Grande Ronde rivers and Catherine Creek. The GRESCSSP employs two broodstock strategies utilizing captive and conventional brood sources. The captive brood program began in 1995, with the collection of parr from the three tributary areas. The conventional broodstock component of the program began in 1997 with the collection of natural adults returning to these tributary areas. Although LGH was available as the primary production facility for spring chinook programs in the Grande Ronde Basin, there were never any adult or juvenile satellite facilities developed in the tributary areas that were to be supplemented. An essential part of the GRESCSSP was the construction of adult traps and juvenile acclimation facilities in these tributary areas. Weirs were installed in 1997 for the collection of adult broodstock for the conventional component of the program. Juvenile facilities were built in 2000 for acclimation of the smolts produced by the captive and conventional broodstock programs and as release sites within the natural production areas of their natal streams. The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operate both the juvenile acclimation and adult trapping facilities located on Catherine Creek and the upper Grande Ronde River under this project. The Nez Perce Tribe (NPT) operate the facilities on the Lostine River under a sister project. Hatcheries were also built in Oregon, Washington and Idaho under the LSRCP to compensate for losses of summer steelhead due to the construction and operation of the lowest four Snake River dams. Despite these harvest-driven hatchery programs, natural summer steelhead populations continued to decline as evidenced by declining counts at Lower Granite Dam since 1995 (Columbia River Data Access in Real Time, DART) and low steelhead redd counts on index streams in the Grande Ronde Basin. Because of low escapement the Snake River summer steelhead were listed as threat

McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

2004-01-01T23:59:59.000Z

338

Analysis of personnel error occurrence reports across Defense Program facilities  

Science Conference Proceedings (OSTI)

More than 2,000 reports from the Occurrence Reporting and Processing System (ORPS) database were examined in order to identify weaknesses in the implementation of the guidance for the Conduct of Operations (DOE Order 5480.19) at Defense Program (DP) facilities. The analysis revealed recurrent problems involving procedures, training of employees, the occurrence of accidents, planning and scheduling of daily operations, and communications. Changes to DOE 5480.19 and modifications of the Occurrence Reporting and Processing System are recommended to reduce the frequency of these problems. The primary tool used in this analysis was a coding scheme based on the guidelines in 5480.19, which was used to classify the textual content of occurrence reports. The occurrence reports selected for analysis came from across all DP facilities, and listed personnel error as a cause of the event. A number of additional reports, specifically from the Plutonium Processing and Handling Facility (TA55), and the Chemistry and Metallurgy Research Facility (CMR), at Los Alamos National Laboratory, were analyzed separately as a case study. In total, 2070 occurrence reports were examined for this analysis. A number of core issues were consistently found in all analyses conducted, and all subsets of data examined. When individual DP sites were analyzed, including some sites which have since been transferred, only minor variations were found in the importance of these core issues. The same issues also appeared in different time periods, in different types of reports, and at the two Los Alamos facilities selected for the case study.

Stock, D.A.; Shurberg, D.A.; O`Brien, J.N.

1994-05-01T23:59:59.000Z

339

The Department of Energy Hydrogen and Fuel Cells Program Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Program Plan Hydrogen and Fuel Cells Program Plan An Integrated Strategic Plan for the Research, Development, and Demonstration of Hydrogen and Fuel Cell Technologies September 2011 The Department of Energy Hydrogen and Fuel Cells Program Plan Department of Energy Hydrogen and Fuel Cells Program Plan The need for clean, sustainable, and domestically produced energy has never been greater. The call for green jobs and U.S. leadership in clean energy, combined with the need to reduce emissions and our growing dependence on imported oil, have come together to form a powerful imperative-one that demands new technologies and new approaches for the way we produce and use energy. Congress has led the call for the development of clean, domestic sources of energy with the Energy Policy Act of 2005 (EPACT), the

340

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XVI-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Sunita Satyapal, Director DOE Hydrogen and Fuel Cells Program Fuel Cell Technologies Program DOE Office of...

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities  

Science Conference Proceedings (OSTI)

This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

MITCHELL, R.M.

2000-09-28T23:59:59.000Z

342

Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary  

Science Conference Proceedings (OSTI)

The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

Shedrow, C.B.

1999-11-29T23:59:59.000Z

343

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

344

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

345

Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FUEL CELL TECHNOLOGIES PROGRAM FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 mi between fills. This is a challenging goal because hydrogen has physical characteristics that make it difficult to store in large quantities without taking up a significant amount of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required

346

The DOE Advanced Gas Reactor Fuel Development and Qualification Program  

Science Conference Proceedings (OSTI)

The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300C and 900C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

David Petti

2010-09-01T23:59:59.000Z

347

DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting June 16, 2014...

348

Hydrogen, Fuel Cells, and Infrastructure Technologies Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

incentives available - target CFOfacility mgr Educate utilitiesPUC Develop hydrogen and CNG blend-fired generators Co-market and encourage available fuel cell products in...

349

DOE Hydrogen and Fuel Cells Program: Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

and Renewable Energy, Fossil Energy, Nuclear Energy, and Science. Hydrogen and Fuel Cell Budget ( in thousands) Department Office Energy Energy Efficiency and Renewable...

350

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy Lessons Learned Report Feb 2011.pdf More Documents & Publications Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA,...

351

Interim safety basis for fuel supply shutdown facility  

SciTech Connect

This ISB in conjunction with the new TSRs, will provide the required basis for interim operation or restrictions on interim operations and administrative controls for the Facility until a SAR is prepared in accordance with the new requirements. It is concluded that the risk associated with the current operational mode of the Facility, uranium closure, clean up, and transition activities required for permanent closure, are within Risk Acceptance Guidelines. The Facility is classified as a Moderate Hazard Facility because of the potential for an unmitigated fire associated with the uranium storage buildings.

Brehm, J.R.; Deobald, T.L.; Benecke, M.W.; Remaize, J.A.

1995-05-23T23:59:59.000Z

352

DOE Permitting Hydrogen Facilities: Using Fuel Cells for Backup...  

NLE Websites -- All DOE Office Websites (Extended Search)

cells provide highly effective backup to power these facilities in event of electrical grid power outages. The telecommunications industry has expanded rapidly as mobile...

353

Noise impact evaluation of a power generating station and a refuse?derived fuel facility  

Science Conference Proceedings (OSTI)

Community noiseimpact assessment of a planned addition of refuse?derived fuel (RDF) facility adjacent to a fossil?fueled power plant was conducted using a computerized atmospheric sound propagation model. Close?in measurements of power plant operation and coal handling system were used for station input

V. M. Lee; W. L. Knoll

1979-01-01T23:59:59.000Z

354

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2006 Annual Progress Report V. Fuel Cells This section of the 2006 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Sub-Program Overview, Valri Lightner, Fuel Cell Team Lead, DOE Hydrogen Program (PDF 169 KB) A. Membrane Electrode Assemblies (MEAs) Integrated Manufacturing for Advanced Membrane Electrode Assemblies, Emory DeCastro, PEMEAS U.S.A., E-TEK Division (PDF 251 KB) Advanced MEAs for Enhanced Operating Conditions, Mark Debe, 3M (PDF 892 KB) Electrocatalyst Supports and Electrode Structures, Mahlon Wilson, Los Alamos National Laboratory (PDF 1.46 MB) Back to Top B. Membranes and MEAs Poly(p-Phenylene Sulfonic Acid)s with Frozen-in Free Volume for Use

355

Alternative Fuel Vehicle Conversion Rebate Program (Arkansas...  

Open Energy Info (EERE)

Incentive Programs Amount 50% Maximum Incentive 2,000 or 1,000 for ethanol, methane, LPG Program Administrator Arkansas Department of Economic Development Date added to DSIRE...

356

Existing and proposed fuel conversion facilities. Summary. [Colorado, Montana, S. Dakota, N. Dakota, Utah, Wyoming  

SciTech Connect

This report provides a summary of existing and proposed coal conversion facilities in addition to hydroelectric plants on a state-by-state basis for the six states (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) of EPA Region VIII. It identifies the location, facility name, number of units, operating company and other participants, plant capacity, and the fuel type for the various conversion facilities. (GRA)

1976-07-01T23:59:59.000Z

357

HNEI Overview and Fuel Cell Programs  

E-Print Network (OSTI)

. Another opportunity for improvement is the catalyst in the cell, which is usually madefrom3 of oil. A fuel cell is arguably a better option for powering a car because it shares many of the strengths of a battery while addressing its weaknesses. Unlike a battery, the chemical energy of a fuel cell

358

Hydrogen and Fuel Cells Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

0 1 2 3 4 5 6 7 8 9 10 Miles per Diesel Gallon Equivalent ACT Diesel ACT FCB SunLine CNG SunLine FCB CTT Diesel CTT FCB Fuel Cell buses: 42% to 139% better fuel economy than...

359

Data Needs for the Robust Fuel Program  

Science Conference Proceedings (OSTI)

Performance-related data are required to confirm that light water reactor (LWR) fuel has adequate margins at high burnup and to ensure that increases in burnup or fuel duty can be achieved without unacceptable margin loss. This report identifies and prioritizes the needed data.

1999-11-17T23:59:59.000Z

360

U.S. DOE FE Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FE Fuel Cell Program FE Fuel Cell Program DOE Hydrogen and Fuel Cells Coordination Meeting June 2, 2003 Sam Biondo, 35910 FY 2001 Actual FY 2002 Actual FY 2003 Enacted* FY 2004 Budget Description Fossil Energy (FE) Fule Cells Distributed Generation System s Innovative Systems Concepts 3,789 26,484 33,779 23,500 Continue to develop and test six SECA industry team concept designs for prototype low -to-high temperature, $400/kW systems and continue the supporting SECA Core Technology program. Fuel Cell Systems Development 30,172 13,147 9,935 6,000 Conduct re-directed program on advanced systems development and testing. These advanced systems include zero emission and hybrid systems. Also includes various stack designs under SECA and adaptation of SECA for syngas and diesel. Vision 21 Hybrid

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SECA Fuel Processing Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 SECA Fuel Processing National Energy Technology Laboratory Office of Fossil Energy Strategic Center for Natural Gas REFORMING * Focus - Heavy hydrocarbons - Minimal use of water - Simplified system - Reduced cost - Sulfur tolerance with conversion to hydrogen sulfide * Challenges - Carbon deposition - Sulfur poisoning - Thermal gradients - Vaporization * Approaches - Metal oxide catalysts - Nobal metal cPox or ATR - Decorated nickel surface - Complete system interactions Tubular cPox Reformer Strategic Center for Natural Gas NETL Fuel Processing Budget Summary Proj. # PROJECT PERSONNEL KEY TASKS COST EST. 1 Diesel Reforming Kinetic Fundamentals *Shekhawat Gardner Berry 1.) Bring Reforming Lab Online 2.) Conduct Diesel Compound Interaction Study 3.) Level 1

362

Report of the AD HOC Study Group on integrated versus dispersed fuel cycle facilities  

SciTech Connect

To provide isolation of strategic materials and confinement of nuclear wastes, the basic facilities considered in assessing the DFCF and IFCF were mixed plutonium and uranium oxide and HTGR fuel fabrication, fuel reprocessing, high- enrichment isotopic separation and interim waste storage. Reactors, low- enrichment isotopic separation, and low-enrichment uranium facilities were excluded. It is expected that the IFCF would attract uranium fuel fabrication and possibly reactors. An assumption was made for the study that the choice of either IFCF or DFCF would not alter the nuclear power generation pattern postulated to exist up to the year 2000. The advantages of IFCF are seen to outweigh disadvantages. (auth)

Kreiter, M.R.; Platt, A.M.

1975-04-01T23:59:59.000Z

363

Atmospheric Radiation Measurement Program Climate Research Facility Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1-March 31, 2011 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

364

American Ref-Fuel of Hempstead Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

American Ref-Fuel of Hempstead Biomass Facility American Ref-Fuel of Hempstead Biomass Facility Facility American Ref-Fuel of Hempstead Sector Biomass Facility Type Municipal Solid Waste Location Nassau County, New York Coordinates 40.6546145°, -73.5594128° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6546145,"lon":-73.5594128,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility  

SciTech Connect

The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

S. Khericha

2010-12-01T23:59:59.000Z

366

PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY  

SciTech Connect

The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to Data Call for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

S. T. Khericha

2007-04-01T23:59:59.000Z

367

Options for converting excess plutonium to feed for the MOX fuel fabrication facility  

SciTech Connect

The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

368

SECA Core Technology Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

June 3, 2003 June 3, 2003 National Energy Technology Laboratory Office of Fossil Energy SECA Core Technology IAPG, GPPD-DWC 4/30/03 SECA CORE TECHNOLOGY PROGRAM W. Nernst "Electrical Glow-Light" U.S. Patent 623,811 April 25, 1899 C C IAPG, GPPD-DWC 4/30/03 SECA SECA Program Structure Program Management Research Topics Needs Industry Integration Teams Technology Transfer Small Business University National Lab Industry Power Electronics Modeling & Simulation Materials Controls & Diagnostics Fuel Processing Fuel Processing Manufacturing Modeling & Simulation Power Electronics Controls & Diagnostics Manufacturing Materials Core Technology Program Fuel Cell Core Technology Project Management Industry Input IAPG, GPPD-DWC 4/30/03 Core Technology Program Powering All Ships Siemens Westinghouse

369

Fuel Cycle Research and Development Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline...

370

DOE Hydrogen and Fuel Cells Program: News  

NLE Websites -- All DOE Office Websites (Extended Search)

to Advance Hydrogen Delivery Technology Development Nov 15, 2013 SBIRSTTR Phase I Release 2 Technical Topics Announced for FY14-Fuel Cell Topics Included Nov 14, 2013 Upcoming...

371

the Fuels and Power Systems Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

403.9 million to research, develop, and deploy technologies that use the Nation's fossil fuels more cleanly and efficiently. The core research and development (R&D) efforts...

372

(1) Facility Name: (7) (2) Brand of Fuel: (8)  

E-Print Network (OSTI)

Tank Capacity (Gallons) Midgrade Gasoline (89 Octane) Product (13) Annual Sales Volume (Gallons) (14 (Explain): Bio-Diesel (B-20) Compressed Natural Gas (CNG) Commercial Jet Fuel (18) Propane Finished

373

Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)  

DOE Green Energy (OSTI)

Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

Not Available

2009-04-01T23:59:59.000Z

374

Spent nuclear fuel project cold vacuum drying facility operations manual  

SciTech Connect

This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1999-05-12T23:59:59.000Z

375

Fifth annual report to congress. Federal alternative motor fuels programs  

DOE Green Energy (OSTI)

This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

NONE

1996-09-01T23:59:59.000Z

376

2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program  

DOE Green Energy (OSTI)

In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

Not Available

2012-12-01T23:59:59.000Z

377

American Ref-Fuel of Essex Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Essex Biomass Facility Essex Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Essex Biomass Facility Facility American Ref-Fuel of Essex Sector Biomass Facility Type Municipal Solid Waste Location Essex County, New Jersey Coordinates 40.7947466°, -74.2648829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7947466,"lon":-74.2648829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

American Ref-Fuel of Niagara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Niagara Biomass Facility Niagara Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Niagara Biomass Facility Facility American Ref-Fuel of Niagara Sector Biomass Facility Type Municipal Solid Waste Location Niagara County, New York Coordinates 43.3119496°, -78.7476208° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3119496,"lon":-78.7476208,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

American Ref-Fuel of Delaware Valley Biomass Facility | Open Energy  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley Sector Biomass Facility Type Municipal Solid Waste Location Delaware County, Pennsylvania Coordinates 39.907793°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.907793,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2005 Annual Progress Report VII. Fuel Cells This section of the 2005 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Sub-program Overview, Valri Lightner, Department of Energy (PDF 198 KB) A. Membrane Electrode Assemblies (MEA) Integrated Manufacturing for Advanced Membrane Electrode Assemblies, Emory S. De Castro, De Nora N.A., E-TEK Division (PDF 292 KB) Advanced MEAs for Enhanced Operating Conditions, Mark K. Debe, 3M Company (PDF 459 KB) Development of High-temperature Membranes and Improved Cathode Catalysts, Lesia Protsailo, UTC Fuel Cells (PDF 642 KB) Electrocatalyst Supports and Electrode Structures, Eric Brosha, Los

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Department of Energy's Hydrogen and Fuel Cells Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Energy's Hydrogen and Fuel Cells Program OAS-RA-13-31 September 2013 Department of Energy Washington, DC 20585 September 27, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Hydrogen and Fuel Cells Program" INTRODUCTION AND OBJECTIVE The Department of Energy spent approximately $1 billion over the last 5 years on Hydrogen and Fuel Cells Program activities implemented through various projects at Federal laboratories, universities, non-profit institutions, Government agencies and industry participants. The Department also provided an additional $42 million in American Recovery and Reinvestment Act of 2009 funding to accelerate the commercialization and deployment of fuel cells. As of

382

DOE Hydrogen and Fuel Cells Program: External Coordination  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission and Goals Mission and Goals Organization Chart and Contacts Background Budget Timeline Program Activities Advisory Panels External Coordination U.S. Department of Energy Search help Home > About > External Coordination Printable Version External Coordination The DOE Hydrogen and Fuel Cells Program leverages the vast capabilities and experience of its stakeholders through cooperative partnerships. Coordination of these activities will be one of the keys to achieving national hydrogen and fuel cell technology program goals. Federal Agencies/Interagency Task Force A number of federal agencies support hydrogen and fuel cell research, development, demonstration, and deployment activities. There are two interagency bodies that coordinate this work: The Hydrogen and Fuel Cell Interagency Working Group (IWG) is a

383

Program plan for molten carbonate fuel-cell systems development  

DOE Green Energy (OSTI)

The purpose of this document is to describe in both programmatic and technical terms the methodology that the US Department of Energy will use to commercialize a molten carbonate fuel cell power plant. Responsibility for the planning and management of the program resides in the molten carbonate fuel cell program office at the Argonne National Laboratory which reports to the Assistant Director for Fuel Cells in the Division of Fossil Fuel utilization of DOE/FE. The actual development of technology is carried out by selected contractors. The technology development phase of the program will culminate with the construction and operation of two demonstration power plants. The first power plant will be an industrial cogeneration plant which will be completed in 1987. The other power plant will be a baseload electric power plant to be completed in 1989.

Not Available

1978-10-27T23:59:59.000Z

384

Fuel Cycle Technologies Program - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Safety Materials Disposition Decontamination & Decommissioning Nuclear Criticality Safety Nuclear Data Program Nuclear Waste Form Modeling Departments Engineering...

385

Hydrogen, Fuel Cells and Infrastructure Technologies Program, 2002 Annual Progress Report  

DOE Green Energy (OSTI)

The Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies program's 2002 annual progress report.

Not Available

2002-11-01T23:59:59.000Z

386

Fuel Technologies: Goals, Strategies, and Top Accomplishments; Vehicle Technologies Program (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet describes the top accomplishments, goals, and strategies of DOE's Fuel Technologies sub program.

Not Available

2009-04-01T23:59:59.000Z

387

DOE Hydrogen and Fuel Cells Program: News Archives - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 January February March April May June July August September October November December January 10 Questions for a Materials Scientist: Brian Larsen DOE Fuel Cell Bus Analysis Finds Fuel Economy to be up to Two Times Higher than Diesel DOE Hydrogen and Fuel Cells Program Releases 2012 Annual Progress Report Rescheduled for January 17: DOE Webinar on Wind-to-Hydrogen Cost Modeling and Project Findings February Automotive Fuel Cell Cost and Durability Target Request For Information Issued Energy Department Announces New Investment to Advance Cost-Competitive Hydrogen Fuel Fueling the Next Generation of Vehicle Technology Webinar February 22: Hydrogen Refueling Protocols March Energy Department Study Examines Potential to Reduce Transportation Petroleum Use and Carbon Emissions

388

Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C  

Science Conference Proceedings (OSTI)

The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

Gary Mecham; Don Konoyer

2009-11-01T23:59:59.000Z

389

Alcohol fuel production training program. Final report  

Science Conference Proceedings (OSTI)

The purpose of the project was to offer instruction in the small scale production of ethanol, which can be added to gasoline by about 10%. The course was designed to help farmers in particular to make ethanol to extend fuel use. This project has four objectives. They are: (1) design an alcohol fuel production course with appropriate equipment for hands-on training; (2) offer at least three training sessions on alcohol fuel production in Cumberland County each year of the project; (3) work with the Governor's Task Force on Gasohol to disseminate the necessary information on alcohol production to the public; (4) identify, in consultation with the New Jersey Department of Energy and Agriculture, other training sites in the state and offer at least three training sessions outside of Cumberland County during the second year of the project. As of March 31, 1982, Cumberland County College completed all activities and objectives outlined in its Appropriate Technology project ''Alcohol Fuel Production.'' Given the six month extension requested to accommodate farmers in other parts of the state and the growing season, this project was completed within the stated time schedule. Although the response for the course was high in the beginning of 1981, the increased supply of low cost fuels at the end of the year probably accounts for the decline in the public's willingness to take a course of this nature.

Burke, J.

1982-06-30T23:59:59.000Z

390

Summary of Off-Normal Events in US Fuel Cycle Facilities for AFCI Applications  

SciTech Connect

This report is a collection and review of system operation and failure experiences for facilities comprising the fission reactor fuel cycle, with the exception of reactor operations. This report includes mines, mills, conversion plants, enrichment plants, fuel fabrication plants, transportation of fuel materials between these centers, and waste storage facilities. Some of the facilities discussed are no longer operating; others continue to produce fuel for the commercial fission power plant industry. Some of the facilities discussed have been part of the militarys nuclear effort; these are included when the processes used are similar to those used for commercial nuclear power. When reading compilations of incidents and accidents, after repeated entries it is natural to form an opinion that there exists nothing but accidents. For this reason, production or throughput values are described when available. These adverse operating experiences are compiled to support the design and decisions needed for the Advanced Fuel Cycle Initiative (AFCI). The AFCI is to weigh options for a new fission reactor fuel cycle that is efficient, safe, and productive for US energy security.

L. C. Cadwallader; S. J. Piet; S. O. Sheetz; D. H. McGuire; W. B. Boore

2005-09-01T23:59:59.000Z

391

DOE Hydrogen and Fuel Cells Program Record 5036: Fuel Cell Stack Durability  

NLE Websites -- All DOE Office Websites (Extended Search)

6 Date: April 20, 2006 6 Date: April 20, 2006 Title: Fuel Cell Stack Durability Originator: Valri Lightner Approved by: JoAnn Milliken Date: May 22, 2006 Item: Over the past several years, the durability of the fuel cell stack has doubled. Supporting Information: Fuel cell and component developers, supported by the DOE program (through the FreedomCAR and Fuel Partnership, which includes DOE, USCAR, and the five major U.S. energy companies), have developed fuel cell components having improved performance and durability. These improvements have been demonstrated in fuel cell stacks built by industry having double the lifetime - from 1,000 hours to 2,000 hours over the past two years. These results have been independently verified by Ballard, a fuel cell developer/supplier

392

FACILITY REPRESENTATIVE PROGRAM STATUS, 6/21/1999 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACILITY REPRESENTATIVE PROGRAM STATUS, 6/21/1999 FACILITY REPRESENTATIVE PROGRAM STATUS, 6/21/1999 FACILITY REPRESENTATIVE PROGRAM STATUS, 6/21/1999 Since September, 1993, the Office of Field Management has served as the Department's corporate advocate for the Facility Representative Program. The Facility Representative (FR) is a critical technical position serving as line management's "eyes and ears" for operational safety in our contractor-operated facilities. I recognize the importance of the FR Program, and commit the Office of Field Integration (FI) to its continued crosscutting support. The FI staff continues to work with your staff members and with the Defense Nuclear Facilities Safety Board (Board) staff on FR Program issues, including staffing, training and qualification, recruitment, and retention. The Board is clearly interested in the

393

DOE Hydrogen and Fuel Cells Program: Library  

NLE Websites -- All DOE Office Websites (Extended Search)

Roadmaps, and Vision Documents Program Records Annual Progress Reports Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities...

394

NETL: News Release - SECA Fuel Cell Program Selects Two Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2008 9, 2008 SECA Fuel Cell Program Selects Two Projects Low-Cost Fuel Cell Systems to Address Energy Security, Climate and Water Challenges WASHINGTON, DC - The U.S. Department of Energy (DOE) has selected two projects for the Department's Solid State Energy Conversion Alliance (SECA) Program portfolio. The projects, focused on enhancing energy security through zero-emission applications, will be led by UTC Power, a United Technologies Corporation, in partnership with Delphi Corporation, and Rolls-Royce Fuel Cell Systems (U.S.) Inc. The Rolls-Royce project will include work at Ohio's Stark State College Fuel Cell Prototyping Center, which is also supported through a National Science Foundation grant. From an environmental perspective, fuel cells are one of the most attractive technologies for generating electricity. Solid oxide fuel cells operate by separating and transferring oxygen across a solid electrolyte membrane, where it reacts with a fuel - such as synthesis gas derived from coal, biofuels or natural gas - to produce steam and carbon dioxide (CO2). Condensing the steam results in a pure stream of CO2 gas; this can be readily captured for storage or other use in a central location. This feature, coupled with the well-known fact that fuel cell efficiency does not depend on high temperatures, results in near-zero emissions (e.g., NOx < 0.5ppm) at equivalent or reduced cost-of-electricity compared to today's power generation.

395

Foreign Research Reactor Spent Nuclear Fuel Acceptance Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Global Threat Reduction Initiative: Global Threat Reduction Initiative: U.S. Nuclear Remove Program Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance 2007 DOE TEC Meeting Chuck Messick DOE/NNSA/SRS 2 Contents * Program Objective and Policy * Program implementation status * Shipment Information * Operational Logistics * Lessons Learned * Conclusion 3 U.S. Nuclear Remove Program Objective * To play a key role in the Global Threat Reduction Remove Program supporting permanent threat reduction by accepting program eligible material. * Works in conjunction with the Global Threat Reduction Convert Program to accept program eligible material as an incentive to core conversion providing a disposition path for HEU and LEU during the life of the Acceptance Program. 4 Reasons for the Policy

396

Criticality considerations for /sup 233/U fuels in an HTGR fuel refabrication facility  

DOE Green Energy (OSTI)

Eleven /sup 233/U solution critical assemblies spanning an H//sup 233/U ratio range of 40 to 2000 and a bare metal /sup 233/U assembly have been calculated with the ENDF/B-IV and Hansen-Roach cross sections. The results from these calculations are compared with the experimental results and with each other. An increasing disagreement between calculations with ENDF/B and Hansen-Roach data with decreasing H//sup 233/U ratio was observed, indicative of large differences in their intermediate energy cross sections. The Hansen-Roach cross sections appeared to give reasonably good agreement with experiments over the whole range; whereas the ENDF/B calculations yielded high values for k/sub eff/ on assemblies of low moderation. It is concluded that serious problems exist in the ENDF/B-IV representation of the /sup 233/U cross sections in the intermediate energy range and that further evaluation of this nuclide is warranted. In addition, it is recommended that an experimental program be undertaken to obtain /sup 233/U criticality data at low H//sup 233/U ratios for verification of generalized criticality safety guidelines. Part II of this report presents the results of criticality calculations on specific pieces of equipment required for HTGR fuel refabrication. In particular, fuel particle storage hoppers and resin carbonization furnaces are criticality safe up to 22.9 cm (9.0 in.) in diameter providing water or other hydrogenous moderators are excluded. In addition, no criticality problems arise due to accumulation of particles in the off-gas scrubber reservoirs provided reasonable administrative controls are exercised.

McNeany, S. R.; Jenkins, J. D.

1978-01-01T23:59:59.000Z

397

SITE: a methodology for assessment of energy facility siting patterns. Regional studies program  

SciTech Connect

The timely development of the nation's energy production capacity in a manner that minimizes potential adverse local and regional impacts associated with energy facilities requires the use of sophisticated techniques for evaluation of siting alternatives and fuel cycle options. This report is a documentation of the computerized SITE methodology that has been developed for evaluating health, environmental, and socioeconomic impacts related to utilization of alternate sites for energy production within a region of interest. The cost, impact, and attribute vectors, which are generated and displayed on density maps, can be used in a multiparameter overlay process to identify preferable siting areas. The assessment of clustered facilities in energy centers is also possible within the SITE analysis framework. An application of the SITE methodology to Northern Illinois is presented. Also included is a description of the ongoing extension of SITE for the accumulative evaluation of alternative regional energy siting patterns and fuel cycle options. An appendix provides documentation and user information for the SITE computer program. (auth)

Frigerio, N.A.; Habegger, L.J.; King, R.F.; Hoover, L.J.; Clark, N.A.; Cobian, J.M.

1975-08-01T23:59:59.000Z

398

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U.S Department of Energy NREL H 2 /FC Manufacturing R&D Workshop Washington, D.C. August 11-12, 2011 * Goal: Research, develop and demonstrate technologies and processes that reduce the cost of components and systems for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base. * Challenge: Move hydrogen and fuel cells from laboratory-scale production into high-volume, low-cost manufacturing. 2 Goal of Manufacturing sub-program U.S. DOE 8/10/11 3 Budget EMPHASIS  Develop novel, robust, ultrasonic bonding processes for MEAs to reduce MEA-pressing cycle time  Develop real-time, online measurement tools to reduce/eliminate ex situ

399

2Q CY2004, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Attachment Attachment Facility Representative Program Performance Indicators Quarterly Report September 20, 2004 Distribution: Kyle McSlarrow, S-2 Bruce Carnes, S-2 Les Novitsky, S-2 David Garman, S-3 Linton Brooks, NA-1 Tyler Przybylek, NA-1 Everet Beckner, NA-10 James Mangeno, NA-3.6 Glenn Podonsky, SP-1 Mike Kilpatrick, OA-1 Patricia Worthington, OA-40 Paul Golan, EM-1 Inés Triay, EM-3 Patty Bubar, EM-3.2 Raymond Orbach, SC-1 Milt Johnson, SC-3 William Magwood, NE-1 Manager, Ames Site Office Manager, Argonne Site Office Manager, Brookhaven Site Office Manager, Carlsbad Field Office Manager, Fermi Site Office Manager, Idaho Operations Office Manager, Livermore Site Office Manager, Los Alamos Site Office Manager, Nevada Site Office Manager, Oak Ridge Operations Office Manager, Office of River Protection

400

1Q CY2010, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Http: Http: OFFICE OF ENVIRONMENTAL MANAGEMENT (EM) Facility Representative Program Performance Indicators (1QCY2010) Field or Ops Office Staffing Analysis FTEs Actual Staffing % Staffing Attrition % Core Qualified % Fully Qualified % Field Time * % Oversight Time ** CBFO 3 3 3 100 0 100 33 50 78 ID (EM) 13 13 12 92 0 100 100 50 91 OR (EM) 18 17 18 100 0 100 81 45 67 ORP 15 15 14 93 1 93 80 51 81 PPPO 6 6 6 100 0 100 100 43 68 RL 19 19 19 100 0 95 95 43 69 SPRU 1 1 1 100 0 100 0 50 75 SR 32 29 29 91 1 69 69 43 76 WVDP 2 2 2 100 0 50 50 37 60 EM Totals 109 105 104 95 2 89 81 45 75 DOE GOALS - - - 100 - - >80 >40 >65 * Field or Ops Office Key:

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

2Q CY2010, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From May 12-13, 2010, 67 FRs attended the annual FR Workshop in Las Vegas, Nevada, to share best practices and lessons learned from their respective sites. Prior to the FR Workshop, FRs were provided Readiness Review Team Member training from May 10-11, 2010. The training provided an overview and familiarized participants with DOE's Readiness Review Process, as described in DOE Order 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities. Training covered the roles and responsibilities of Readiness Review team members with specific emphasis on Performance Assessment methodologies. The FR Steering Committee holds monthly teleconferences to share information on oversight activities, issues identified, and FR program initiatives and improvements. Descriptions of

402

3Q CY2007, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL MANAGEMENT SITES ENVIRONMENTAL MANAGEMENT SITES Facility Representative Program Performance Indicators (3QCY2007) Field or Ops Office Staffing Analysis FTEs Actual Staffing % Staffing Attrition % Core Qualified % Fully Qualified % Field Time * % Oversight Time ** CBFO 1 2 2 200 0 100 50 66 86 ID (ICP) 13 12 11 85 1 100 100 40 65 OR (EM) 19 17 16 84 0 94 88 47 71 ORP 14 14 14 100 0 100 93 46 74 PPPO 4 4 4 100 0 100 100 42 75 RL 19 19 19 100 0 100 95 73 69 SR 31 31 25 81 2 88 80 40 79 WVDP 2 2 2 100 0 100 100 43 65 EM Totals 103 101 93 90 3 96 89 50 73 DOE GOALS - - - 100 - - >80 >40 >65 * % Field Time is defined as the number of hours spent in the plant/field divided by the number of available work hours in the quarter. The number of

403

4Q CY2008, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Http//www.hss.energy.gov/deprep/facrep/ Http//www.hss.energy.gov/deprep/facrep/ ENVIRONMENTAL MANAGEMENT SITES Facility Representative Program Performance Indicators (4QCY2008) Field or Ops Office Staffing Analysis FTEs Actual Staffing % Staffing Attrition % Core Qualified % Fully Qualified % Field Time * % Oversight Time ** CBFO 1 3 1 100 1 100 100 70 86 ID (EM) 13 12 11 85 0 82 82 43 84 OR (EM) 19 18 18 95 0 72 72 44 66 ORP 15 15 14 93 0 79 64 43 72 PPPO 6 5 5 83 0 80 80 44 70 RL 19 18 18 95 1 84 84 45 70 SPRU 1 1 1 100 0 100 0 30 80 SR 32 24 24 75 2 71 67 45 74 WVDP 2 2 2 100 0 50 50 42 70 EM Totals 108 98 94 87 4 77 72 44 72 DOE GOALS - - - 100 - - >80 >40 >65 * % Field Time is defined as the number of hours spent in the plant/field divided by the number of available work hours in the quarter. The number of available work hours is the actual number of hours a Facility Representative works in a calendar quarter, including overtime hours. It does not include

404

Quality Assurance of ARM Program Climate Research Facility Data  

SciTech Connect

This report documents key aspects of the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) data quality assurance program as it existed in 2008. The performance of ACRF instruments, sites, and data systems is measured in terms of the availability, usability, and accessibility of the data to a user. First, the data must be available to users; that is, the data must be collected by instrument systems, processed, and delivered to a central repository in a timely manner. Second, the data must be usable; that is, the data must be inspected and deemed of sufficient quality for scientific research purposes, and data users must be able to readily tell where there are known problems in the data. Finally, the data must be accessible; that is, data users must be able to easily find, obtain, and work with the data from the central repository. The processes described in this report include instrument deployment and calibration; instrument and facility maintenance; data collection and processing infrastructure; data stream inspection and assessment; the roles of value-added data processing and field campaigns in specifying data quality and haracterizing the basic measurement; data archival, display, and distribution; data stream reprocessing; and engineering and operations management processes and procedures. Future directions in ACRF data quality assurance also are presented.

RA Peppler; KE Kehoe; KL Sonntag; CP Bahrmann; SJ Richardson; SW Christensen; RA McCord; DJ Doty; R Wagener; RC Eagan; JC Lijegren; BW Orr; DL Sisterson; TD Halter; NN Keck; CN Long; MC Macduff; JH Mather; RC Perez; JW Voyles; MD Ivey; ST Moore; DL Nitschke; BD Perkins; DD Turner

2008-03-01T23:59:59.000Z

405

Nerva fuel nondestructive evaluation and characterization equipment and facilities  

Science Conference Proceedings (OSTI)

Nuclear Thermal Propulsion (NTP) is one of the technologies that the Space Exploration Initiative (SEI) has identified as essential for a manned mission to Mars. A base or prior work is available upon which to build in the development of nuclear rockets. From 1955 to 1973, the U.S Atomic Energy Commission (AEC) sponsored development and testing of a nuclear rocket engine under Project Rover. The rocket engine, called the Nuclear Engine for Rocket Vehicle Application (NERVA), used a graphite fuel element incorporating coated particle fuel. Much of the NERVA development and manufacturing work was performed at the Oak Ridge Y[minus]12 Plant. This paper gives a general review of that work in the area of nondestructive evaluation and characterization. Emphasis is placed on two key characteristics: uranium content and distribution and thickness profile of metal carbide coatings deposited in the gas passage holes.

Caputo, A.J. (Martin Marietta Energy Systems, Inc., Oak Ridge, Y-12 Plant Oak Ridge, TN 37831 (United States))

1993-01-20T23:59:59.000Z

406

DOE Hydrogen and Fuel Cells Program: Program Plans, Roadmaps...  

NLE Websites -- All DOE Office Websites (Extended Search)

Roadmaps, and Vision Documents Program Records Annual Progress Reports Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities...

407

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

408

Fuel-Efficient Stove Programs in Humanitarian Settings | Open Energy  

Open Energy Info (EERE)

Fuel-Efficient Stove Programs in Humanitarian Settings Fuel-Efficient Stove Programs in Humanitarian Settings Jump to: navigation, search Tool Summary Name: Fuel-Efficient Stove Programs in Humanitarian Settings Agency/Company /Organization: USAID Sector: Energy Focus Area: Biomass, Energy Efficiency Phase: Evaluate Options, Prepare a Plan, Evaluate Effectiveness and Revise as Needed Resource Type: Guide/manual, Lessons learned/best practices, Presentation, Publications User Interface: Spreadsheet, Website Website: www.energytoolbox.org/cookstoves/ Cost: Free Language: English A step-by-step process of assessment, planning, implementation, and monitoring and evaluation of a Cookstove activity This Toolkit is designed to take you and your organization through a step-by-step process of assessment, planning, implementation, and

409

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions  

Open Energy Info (EERE)

Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Jump to: navigation, search LEDSGP green logo.png FIND MORE DIA TOOLS This tool is part of the Development Impacts Assessment (DIA) Toolkit from the LEDS Global Partnership. Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool Agency/Company /Organization: Argonne National Laboratory Sector: Energy Focus Area: Transportation Phase: Determine Baseline, Evaluate Options Topics: Co-benefits assessment, GHG inventory Resource Type: Online calculator, Software/modeling tools User Interface: Spreadsheet Complexity/Ease of Use: Moderate Website: www.transportation.anl.gov/modeling_simulation/AirCred/index.html

410

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2004 Annual Progress Report IV. Fuel Cells Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Fuel Cells Sub-Program Review, Patrick Davis, DOE (PDF 265 KB) A. MEAs and Catalysts Integrated Manufacturing for Advanced Membrane Electrode Assemblies, Emory DeCastro, De Nora (PDF 486 KB) Development of High-Temperature Membranes and Improved Cathode Catalysts Jeremy Meyers, UTC (PDF 595 KB) Advanced MEAs for Enhanced Operating Conditions, Amenable to High Volume Manufacture, Mark Debe, 3M (PDF 372 KB) Back to Top B. Membranes and MEAs High Temperature Polymer Membranes for Fuel Cells, Tom Zawodzinski, Case West Res. University (PDF 356 KB) Electrodes for Hydrogen-Air PEM Fuel Cells, Francisco Uribe, LANL

411

Feasibility study: fuel cell cogeneration in a water pollution control facility. Final report  

DOE Green Energy (OSTI)

A conceptual design study was conducted to investigate the technical and economic feasibility of a cogeneration fuel cell power plant operating in a large water pollution control facility. The fuel cell power plant would use methane-rich digester gas from the water pollution control facility as a fuel feedstock to provide electrical and thermal energy. Several design configurations were evaluated. These configurations were comprised of combinations of options for locating the fuel cell power plant at the site, electrically connecting it with the water pollution control facility, using the rejected power plant heat, supplying fuel to the power plant, and for ownership and operation. A configuration was selected which met institutional/regulatory constraints and provided a net cost savings to the industry and the electric utility. This volume of the report contains the appendices: (A) abbreviations and definitions, glossary; (B) 4.5 MWe utility demonstrator power plant study information; (C) rejected heat utilization; (D) availability; (E) conceptual design specifications; (F) details of the economic analysis; (G) detailed description of the selected configuration; and (H) fuel cell power plant penetration analysis. (WHK)

Not Available

1980-02-01T23:59:59.000Z

412

MPA-11 Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Cleanroom Facility is available for use by LANL researchers MPA-11 Facilities Fuel cell testing, acoustics laboratories, and a wide spectrum of characterization equipment are essential to the research conducted in our group. Fuel Cell Testing. ........Acoustics. ........Characterization . ........ Many other multi-disciplinary staff and experimental/computational capabilities throughout Los Alamos National Laboratory are available to support our research. Access to enabling capabilities for the Fuel Cell Program is facilitated by the Laboratory's Institute for Hydrogen and Fuel Cell Research. Fuel Cell Testing Experimental equipment that is essential to our fuel cell efforts is housed in 24 laboratories at the Los Alamos National Laboratory. A partial list of

413

Fuel Cell Demonstration Program - Central and Remote Sites 2003  

SciTech Connect

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies, the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 25 Lorax 4.5 units operated under this Award from April 2003 to December 2004. In parallel with the operation of the Farm, LIPA recruited government, commercial, and residential customers to demonstrate fuel cells as on-site distributed generation. The deployment of the 20 Lorax 4.5 units for the Remote Sites phase of the project began in October 2004. To date, 10 fuel cells have completed their demonstrations while 10 fuel cells are currently being monitored at various customer sites throughout Long Island. As of June 30, 2006 the 45 fuel cells operating under this Award produced a total of 1,585,093 kWh. As fuel cell technology became more mature, performance improvements included increases in system efficiency and availability. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

414

Program Area of Interest: Fuel Transformer Solid Oxide Fuel Cell  

DOE Green Energy (OSTI)

The following report documents the technical approach and conclusions made by Acumentrics Corporation during latest budget period toward the development of a low cost 10kW tubular SOFC power system. The present program, guided under direction from the National Energy Technology Laboratory of the US DOE, is a nine-year cost shared Cooperative Agreement totaling close to $74M funded both by the US DOE as well as Acumentrics Corporation and its partners. The latest budget period ran from July of 2005 through December 2005. Work focused on cell technology enhancements as well as BOP and power electronics improvements and overall system design. Significant progress was made in increasing cell power enhancements as well as decreasing material cost in a drive to meet the SECA cost targets. The following report documents these accomplishments in detail as well as the layout plans for further progress in next budget period.

Norman Bessette; Douglas S. Schmidt; Jolyon Rawson; Rhys Foster; Anthony Litka

2006-02-01T23:59:59.000Z

415

Alternatives for the disposition of fuel stored in the PUREX facility  

SciTech Connect

This document provides an evaluation of five alternatives for the disposition of 3.4 metric tons of irradiated fuel from PUREX to support facility turnover following deactivation. The alternatives for disposition of the fuel include transfer to the K Basins, transfer to T Plant, passivation and dry vault storage, and dissolution and underground tank storage. The five alternatives were compared and it was determined that the fuel should be transferred from PUREX to the K Basins where it would be placed into pool storage.

Enghusen, M.B.; Gore, D.B.

1995-01-01T23:59:59.000Z

416

MELCOR simulation of the PBF (Power Burst Facility) severe fuel damage test 1-1  

DOE Green Energy (OSTI)

This paper describes a MELCOR version 1.7.1 simulation of the Power Burst Facility (PBF) Severe Fuel Damage (SFD) 1-1 test. The input data for the simulation was obtained from the SFD 1-1 Test Results Report and from SCDAP input. Results are presented for the transient two-phase interface level in the core, fuel and clad temperatures at various elevations in the fuel bundle, clad oxidation, hydrogen generation, fission product release, and heat transfer to the surrounding structures. Comparisons are made with experimental data and predictions from STCP and the NRC's mechanistic code SCDAP (version 18). 6 refs., 12 figs.

Madni, I.K.

1989-01-01T23:59:59.000Z

417

Decarbonized Fuel Production Facility, A Technical Strategy for  

E-Print Network (OSTI)

The U.S. electricity market is undergoing a transformation driven by changes such as deregulation of power generation, more stringent environmental regulations, climate change concerns, and other market forces. With these changes come new players such as merchant power plants. The industry is also counting on new gas-fired generation to meet demand. Environmental initiatives concerning PM 2.5, air toxics, mercury control, and CO2 reduction could adversely impact the economic viability of coal. The future use of coal to produce electricity is uncertain and possibly in peril unless we recognize that in the coming decades, the traditional means of how energy (both electricity and fuel) is generated, transported, and utilized will likely be very different from what it is today. In this paper, we describe a technical strategy for the coal industry that can help assure coals competitiveness during the next century as electricity markets evolve and are reshaped by these changes. Recently, the U.S. Department of Energy unveiled a new concept, Vision 21 a futuristic way of combining high-efficiency power technologies with advanced coal processing technologies and environmental controls to create a near-zero discharge, multi-product energy complex. This paper presents a Page 1conceptualization of a Vision 21 plant that focuses on production of hydrogen from coal. It will show how the concept can help assure that coal can remain competitive with natural gas as a fuel for baseload electricity generation for existing and new power plants. It can also provide a feedstock for chemical and liquid fuels production, even if emissions of carbon dioxide must be controlled. This paper presents hydrogen delivery scenarios for the power sector that provide the basis for the projected economic and technical performance objectives.

Joseph S. Badin; Michael R. Delallo; Michael G. Klett; Michael D. Rutkowski; Jerome R. Temchin

1998-01-01T23:59:59.000Z

418

Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility  

Science Conference Proceedings (OSTI)

A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational time savings, and significantly improved ALARA exposure.

Dippre, M. A.

2003-02-25T23:59:59.000Z

419

1Q CY2002 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Energy.gov (U.S. Department of Energy (DOE))

The Facility Representive Program Performance Indicators (PIs) Quarterly Report is attached covering the period from January to March 2002. Data for these indicators are gathered by the Field...

420

4Q CY2000 (PDF), Facility Representative Program Performance Indicators Quarterly Report  

Energy.gov (U.S. Department of Energy (DOE))

"The Facility Representative Program Performance Indicators Quarterly Report is attached, covering the period from October to December 2000. Data for these indicators are gathered by the Field...

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Early Market TRL/MRL Analysis - DOE Hydrogen and Fuel Cells Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

2011a. The Department of Energy Hydrogen and Fuel Cells Program Plan - An Integrated Strategic Plan for the Research, Development and Demonstration of Hydrogen and Fuel Cell...

422

Fuel Reliability Program: Post-Irradiation Examination of an AREVA Atrium 10B Corner Fuel Rod from Forsmark 3  

Science Conference Proceedings (OSTI)

The Fuel Reliability Program (FRP) is co-sponsoring numerous research projects on current generation fuel for boiling water reactors (BWRs) to determine the margins for a number of fuel performance, reliability, and regulatory issues.In this particular study, Vattenfall Nuclear Fuel (VNF) initiated a post-irradiation examination project at the Studsvik Nuclear hot cell laboratory on a BWR ATRIUM-10B corner fuel rod in position A1. The fuel rod was manufactured by AREVA and then ...

2013-07-22T23:59:59.000Z

423

Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers  

DOE Green Energy (OSTI)

Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

2011-11-01T23:59:59.000Z

424

PRELIMINARY SAFEGUARDS REPORT BASED ON URANIUM-MOLYBDENUM FUEL FOR THE HALLAM NUCLEAR POWER FACILITY  

SciTech Connect

The Hallam Power Reactor is described relative to site, buildings, reactor and associated heat-transfer system, instrumentation and control, auxiliary systems, and fuel and component handling facilities. The potential hazards of radioactivity and safeguards for confinement are discussed. Radiation levels and accidental effluent release are considered. Transients with and without protective system action are discussed. (B.O.G.)

Gershun, T.L. ed.

1961-10-31T23:59:59.000Z

425

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

426

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing R&D Manufacturing R&D Printable Version 2012 Annual Progress Report VI. Manufacturing R&D This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on manufacturing R&D. Manufacturing R&D Sub-Program Overview, Nancy Garland, U.S. Department of Energy Fuel Cell Membrane Electrode Assembly Manufacturing R&D, Michael Ulsh, National Renewable Energy Laboratory Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning, Colin Busby, W. L. Gore & Associates, Inc. Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture, Dan Walczyk, Rensselaer Polytechnic Institute Non-Contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks, Eric Stanfield,

427

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Education Printable Version 2004 Annual Progress Report VII. Education Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Education Sub-Program Review, Christy Cooper, DOE (PDF 283 KB) Determine Baseline Knowledge of Hydrogen and Fuel Cells, Tykey Truett , ORNL (PDF 262 KB) Fuel Cell Demonstration with On-site Generation of Hydrogen, Tim Turner, NC State University (PDF 212 KB) Washington State Fuel Cell Education and Demonstration Program, Mira Vowles, Central Washington Univ. (PDF 315 KB) Lansing Community College Alternative Energy Initiative, Ruth Borger, Lansing Community College (PDF 214 KB) Shared Technology Transfer Project, John Griffin, Nicholls State University (PDF 228 KB) Montana Hydrogen Futures Project, Paul Williamson, U. of Montana

428

DOE Hydrogen Program Record 10004, Fuel Cell System Cost - 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record Program Record Record #: 10004 Date: September 16, 2010 Title: Fuel Cell System Cost - 2010 Update to: Record 9012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: December 16, 2010 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2010 technology and operating on direct hydrogen is projected to be $51/kW when manufactured at a volume of 500,000 units/year. Rationale: In fiscal year 2010, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2009 cost analyses of 80-kW net direct hydrogen PEM automotive fuel cell systems based on 2010 technology and projected to manufacturing volumes of 500,000 units per year [1,2]. Both cost estimates are based on performance at beginning of life.

429

DOE Hydrogen and Fuel Cells Program Record 5005: Fuel Cell System Cost - 2002 versus 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Date: March 20, 2005 5 Date: March 20, 2005 Title: Fuel Cell System Cost - 2002 vs 2005 Originator: Patrick Davis Approved by: JoAnn Milliken Date: May 22, 2006 Item: "Reduced the high-volume cost of automotive fuel cells from $275/kW (50kW system) in 2002 to $110/kW (80kW system) in 2005." Supporting Information: In 2002, TIAX reported a cost of $324/kW for a 50-kW automotive PEM fuel cell system operating on gasoline reformate, based on their modeling of projected cost for 500,000 units per year. See Eric Carlson et al., "Cost Analyses of Fuel Cell Stack/System." U.S. DOE Hydrogen Program Annual Progress Report. (2002) at http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/33098_sec4-1.pdf. Also see "Cost Modeling of PEM Fuel Cell Systems for Automobiles," Eric Carlson et al., SAE

430

DOE Fuel Cell Technologies Program Record 12020: Fuel Cell System Cost - 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Record Record Record #: 12020 Date: August 21, 2012 Title: Fuel Cell System Cost - 2012 Update to: Record 11012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: September 14, 2012 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2012 technology 1 and operating on direct hydrogen is projected to be $47/kW when manufactured at a volume of 500,000 units/year. Rationale: The DOE Fuel Cell Technologies Program supports analysis projects that perform detailed analysis to estimate cost status of fuel cell systems, updated on an annual basis [1]. In fiscal year 2012, Strategic Analysis, Inc. (SA) updated their 2011 cost analysis of an 80-kW net direct hydrogen PEM automotive fuel cell system, based on 2012 technology and projected to a

431

MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY  

NLE Websites -- All DOE Office Websites (Extended Search)

MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY Donna L. Cragle and Janice P. Watkins, Center for Epidemiologic Research; Kathryn Robertson-DeMers, Bechtel Hanford, Inc. Donna Cragle, Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 Key Words: mortality study, radiation exposure, leukemia, occupational cohort, trend test INTRODUCTION Since 1952 the Savannah River Site (SRS), located in Aiken, South Carolina, has operated as a Department of Energy (DOE) production facility for nuclear fuels and other materials. A previous study 1 through 1980 of 9,860 white males employed at least 90 consecutive days at the SRS between 1952 and 1974 found an increased number of leukemia deaths among

432

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

DOE Green Energy (OSTI)

Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

Edward F. Kiczek

2007-08-31T23:59:59.000Z

433

DOE Hydrogen and Fuel Cells Program: News Archives - 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 January February March April May June July August September October November December January Annual Progress Report Highlights Hydrogen Program Activities DOE Releases a Request for Information: New Centers of Excellence for R&D of Hydrogen-Storage Materials DOE Reports to Congress on Fuel Cell School Buses and Hydrogen Fuel Cell Activities, Progress, and Plans February DOE Announces the 2009 Annual Merit Review and Peer Evaluation Meeting DOE Issues a Request for Information: Hydrogen and Fuel Cell Market Transformation March DOE Offers $2.4 Billion to Support Next-Generation Electric Vehicles DOE Releases a Hydrogen Sensor Funding Opportunity Announcement April DOE Extends Closing Date of Hydrogen Sensor Funding Opportunity Announcement Secretary Chu Announces $41.9 Million to Spur Growth of Fuel Cell Markets

434

Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria  

SciTech Connect

The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

K. J. Allen; T. G. Apostolov; I. S. Dimitrov

2009-03-01T23:59:59.000Z

435

3Q C&2008 (PDF), Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3Q C&2008 (PDF), Facility Representative Program Performance 3Q C&2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report 3Q C&2008 (PDF), Facility Representative Program Performance Indicators Quarterly Report "Attached is the Facility Representative (FR) Program Performance Indicators Quarterly Report covering the period from July to September 2008. Data for these indicators are gathered by Field elements quarterly per DOE-STD- 1063-2006, Facility Representatives, and reported to Headquarters program offices for evaluation and feedback to improve the FR Program. A summary of this quarter's data concluded: 80% Fully Qualified ( last Quarter was 87%) 89% Staffing Level ( last Quarter was 86%) 45% Time Spent in the Field (DOE goal is > 40%) 76% Time Spent in Oversight Activites (DOE Goal is >

436

Atmospheric Radiation Measurement Program facilities newsletter, July 2001.  

Science Conference Proceedings (OSTI)

Global Warming and Methane--Global warming, an increase in Earth's near-surface temperature, is believed to result from the buildup of what scientists refer to as ''greenhouse gases.'' These gases include water vapor, carbon dioxide, methane, nitrous oxide, ozone, perfluorocarbons, hydrofluoro-carbons, and sulfur hexafluoride. Greenhouse gases can absorb outgoing infrared (heat) radiation and re-emit it back to Earth, warming the surface. Thus, these gases act like the glass of a greenhouse enclosure, trapping infrared radiation inside and warming the space. One of the more important greenhouse gases is the naturally occurring hydrocarbon methane. Methane, a primary component of natural gas, is the second most important contributor to the greenhouse effect (after carbon dioxide). Natural sources of methane include wetlands, fossil sources, termites, oceans, fresh-waters, and non-wetland soils. Methane is also produced by human-related (or anthropogenic) activities such as fossil fuel production, coal mining, rice cultivation, biomass burning, water treatment facilities, waste management operations and landfills, and domesticated livestock operations (Figure 1). These anthropogenic activities account for approximately 70% of the methane emissions to the atmosphere. Methane is removed naturally from the atmosphere in three ways. These methods, commonly referred to as sinks, are oxidation by chemical reaction with tropospheric hydroxyl ion, oxidation within the stratosphere, and microbial uptake by soils. In spite of their important role in removing excess methane from the atmosphere, the sinks cannot keep up with global methane production. Methane concentrations in the atmosphere have increased by 145% since 1800. Increases in atmospheric methane roughly parallel world population growth, pointing to anthropogenic sources as the cause (Figure 2). Increases in the methane concentration reduce Earth's natural cooling efficiency by trapping more of the outgoing terrestrial infrared radiation, increasing the near-surface temperature.

Holdridge, D. J.

2001-07-23T23:59:59.000Z

437

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management  

SciTech Connect

Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

Not Available

1994-06-01T23:59:59.000Z

438

National Fuel (Gas) - Small Commercial Conservation Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Small Commercial Conservation Program (Gas) - Small Commercial Conservation Program National Fuel (Gas) - Small Commercial Conservation Program < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Custom Rebates: $25,000 Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Rebates: $15/Mcf x the gas savings Unit Heater: $1000 Hot Air Furnace: $500 Low Intensity Infrared Heating: $500 Programmable Thermostat: $25 Hot Water Boiler: $600-$3500 Steam Boiler: $600-$2000 + $2/kBtuh Tankless Water Heaters: $350 Storage Tank Water Heater: $150 Fryer: $750 Convection Oven: $500 Combination Oven: $750 Broiler: $500 Steamer: $750 Griddle: $500 Provider New York State Energy Research and Development Authority

439

Proof-of-Concept Oil Shale Facility Environmental Analysis Program  

SciTech Connect

The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI`s archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970`s and early 1980`s. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

1990-11-01T23:59:59.000Z

440

National Laser Users' Facility Grant Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test Capabilities and Evaluation > University Partnerships Academic Alliances > National...

Note: This page contains sample records for the topic "fueling facilities program" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

2Q CY2009, Facility Representative Program Performance Indicators  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Http//www.hss.energy.gov/deprep/facrep/ Http//www.hss.energy.gov/deprep/facrep/ OFFICE OF ENVIRONMENTAL MANAGEMENT Facility Representative Program Performance Indicators (2QCY2009) Field or Ops Office * Staffing Analysis FTEs Actual Staffing % Staffing Attrition % Core Qualified % Fully Qualified % Field Time ** % Oversight Time *** CBFO 3 3 2 67 0 50 50 46 76 ID 13 13 11 85 0 100 100 49 90 OR 19 18 17 89 1 71 71 42 57 ORP 15 15 15 100 0 73 73 53 77 PPPO 6 6 6 100 0 67 67 42 70 RL 19 19 19 100 0 84 84 45 69 SR 32 28 28 88 0 64 64 47 73 WVDP 2 2 2 100 0 50 50 37 70 EM Totals 109 104 100 92 1 74 74 46 72 DOE GOALS - - - 100 - - >80 >40 >65 * Field or Ops Office Key CBFO = Carlsbad Field Office; ID = Idaho Operations Office; OR = Oak Ridge Office; ORP = Office of River Protection; PPPO = Portsmouth/Paducah

442

1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program  

E-Print Network (OSTI)

/day of renewable hydrogen could be produced from steam methane reforming · Renewable hydrogen is enough to fuel/day of renewable hydrogen could be produced from steam methane reforming. · Renewable hydrogen is enough to fuel ~8 July 13, 2011 #12;Biogas Resource Example: Methane from Waste Water Treatment Biogas from waste water

443