Sample records for fueled pilot plant

  1. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort (INEEL)

    2005-03-01T23:59:59.000Z

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  2. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    SciTech Connect (OSTI)

    James E. Francfort

    2003-12-01T23:59:59.000Z

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station梩he APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy抯 Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  3. MBM fuel feeding system design and evaluation for FBG pilot plant

    SciTech Connect (OSTI)

    Campbell, William A., E-mail: bill.campbell@usask.ca [Fluidization Laboratory of Saskatchewan (FLASK) (Canada) and Department of Chemical and Biological Engineering, University of Saskatchewan (Canada); Fonstad, Terry [Department of Chemical and Biological Engineering, University of Saskatchewan (Canada); Pugsley, Todd [Suncor Energy Inc., Calgary, Alberta (Canada); Gerspacher, Regan [Fluidization Laboratory of Saskatchewan (FLASK) (Canada); Department of Chemical and Biological Engineering, University of Saskatchewan (Canada)

    2012-06-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer A 1-5 g/s fuel feeding system for pilot scale FBG was designed, built and tested. Black-Right-Pointing-Pointer Multiple conveying stages improve pressure balancing, flow control and stability. Black-Right-Pointing-Pointer Secondary conveyor stage reduced output irregularity from 47% to 15%. Black-Right-Pointing-Pointer Pneumatic air sparging effective in dealing with poor flow ability of MBM powder. Black-Right-Pointing-Pointer Pneumatic injection port plugs with char at gasification temperature of 850 Degree-Sign C. - Abstract: A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designed for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50 mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle reduced the output irregularity further to 13%, with an air supply of 50 slpm as the minimum air supply to drive this injector. After commissioning of this final system to the FBG reactor, the injection nozzle was found to plug with char however, and was subsequently removed from the system. Final operation of the reactor continues satisfactorily with the two screw conveyors operating at matching pressure with the fluidized bed, with the output rate of the system estimated based on system characteristic equations, and confirmed by static weight measurements made before and after testing. The error rate by this method is reported to be approximately 10%, which is slightly better than the estimated error rate of 15% for the conveyor system. The reliability of this measurement prediction method relies upon the relative consistency of the physical properties of MBM with respect to its bulk density and feeding characteristics.

  4. Preliminary pilot plant design for the production of protein base chemicals and fuels

    E-Print Network [OSTI]

    Dharia, Vijay Kalaram

    1975-01-01T23:59:59.000Z

    suitable for inoc- ulating the b1ological processing units, are discussed. Basic processing units required in the pilot plant are specified. Units suggested as capable of meeting these spec1f1cat1ons include a 1000-11ter mixing tank, a 130-liter... inoculation tank and two 800- 11ter fermentation tanks. Centr1fuges are spec1fied as units for preconcentration of biological solid products. Final drying or other final protein recovery units are not specif1ed. It is recom- mended that these choices...

  5. PEATGAS pilot plant operating results

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.

    1982-08-01T23:59:59.000Z

    The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

  6. PEATGAS pilot plant operating results

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.

    1982-01-01T23:59:59.000Z

    The Institute of Gas Technology has been developing the PEATGAS process for the conversion of peat to synthetic fuels. A program has recently been completed for the pilot-plant-scale testing of the process. In this scheme, peat is gasified in a two-stage reactor system, which operates at temperatures up to 1750/sup 0/F and pressures up to 500 psig. The process can be controlled to maximize the production of either substitute natural gas (SNG) or liquid hydrocarbons. The technical feasibility of the process was demonstrated in a series of five gasification tests. Highlights of this operating program are presented in this paper.

  7. Materials performance in coal gasification pilot plants

    SciTech Connect (OSTI)

    Judkins, R.R.; Bradley, R.A.

    1987-10-15T23:59:59.000Z

    This paper presents the results of several materials testing projects which were conducted in operating coal gasification pilot plants in the United States. These projects were designed to test potential materials of construction for commercial plants under actual operating conditions. Pilot plants included in the overall test program included the Hygas, Conoco Coal, Synthane, Bi-Gas, Peatgas (Hygas operating with peat), Battelle, U-Gas, Westinghouse (now KRW), General Electric (Gegas), and Mountain Fuel Resources plants. Test results for a large variety of alloys are discussed and conclusions regarding applicability of these materials in coal gasification environments are presented. 14 refs., 2 tabs.

  8. Intro to NREL's Thermochemical Pilot Plant

    ScienceCinema (OSTI)

    Magrini, Kim

    2014-06-10T23:59:59.000Z

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  9. Intro to NREL's Thermochemical Pilot Plant

    SciTech Connect (OSTI)

    Magrini, Kim

    2013-09-27T23:59:59.000Z

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  10. Independent Oversight Inspection, Waste Isolation Pilot Plant...

    Energy Savers [EERE]

    Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August 2002 Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report - August...

  11. Oversight Reports - Waste Isolation Pilot Plant | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Waste Isolation Pilot Plant - December 2007 Inspection of Emergency Management at the Carlsbad Field Office and Waste Isolation Pilot Plant October 2, 2002 Independent Oversight...

  12. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01T23:59:59.000Z

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  13. Pilot Plant Options for the MFE Roadmap

    E-Print Network [OSTI]

    Pilot Plant Options for the MFE Roadmap Hutch Neilson Princeton Plasma Physics Laboratory International Workshop MFE Roadmapping for the ITER Era Princeton, NJ 10 September 2011 #12;Outline 2 路 Pilot plant 颅 mission, motivation, and description. 路 Role of pilot plants on the Roadmap to Demo. Pilot Plant

  14. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjects

  15. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version

  16. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjects &Town Hall

  17. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjects &Town

  18. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjectsFrequently Asked

  19. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanfordProjectsFrequently

  20. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions to Protect

  1. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions to

  2. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions to30/15 WIPP

  3. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions to30/15

  4. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions to30/15Waste

  5. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply forFollow

  6. The H-Coal pilot plant and the Breckinridge Project

    SciTech Connect (OSTI)

    Wigglesworth, T.H.

    1982-05-01T23:59:59.000Z

    A large coal-liquefaction pilot plant is in operation at Catlettsburg, Kentucky, expanding on the H-Coal technology. The pilot plant operated very successfully during 1981, confirming research yield data on eastern bituminous coal, demonstrating operability of the process, and resulting in a significant accumulation of engineering data. Ashland Synthetic Fuels, Inc., and Bechtel Petroleum, Inc., are developing the Breckinridge Project, a commercial coal-liquefaction plant proposed for Breckinridge County, Kentucky, based on the H-Coal technology.

  7. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Energy Savers [EERE]

    December, 2014 Review of the Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department...

  8. Enforcement Documents - Waste Isolation Pilot Plant | Department...

    Broader source: Energy.gov (indexed) [DOE]

    related to Quality Assurance Deficiencies associated with the Super High-Efficiency Neutron Counter Non-Destructive Assay System Refurbishment at the Waste Isolation Pilot Plant...

  9. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Energy Savers [EERE]

    December 2014 Review of the Waste Isolation Pilot Plant Recovery Plan for Operating Diesel Equipment with Available Underground Airflows. The Office of Nuclear Safety and...

  10. Turbine fuels from tar sands bitumen and heavy oil. Volume 1. Phase 3. Pilot plant testing, final design, and economics. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Carson, T.C.; Magill, L.G.; Swesey, J.R.

    1987-08-01T23:59:59.000Z

    Pilot-plant-scale demonstration of an upgrading/refining scheme to convert bitumen or heavy crude oil into high yields of specification-quality aviation turbine fuel was performed. An atmospheric residue from San Ardo (California) crude was converted under hydrovisbreaking conditions to synthetic crude for further refining. Naphtha cuts from the straight run and synthetic crude were combined, catalytically hydrotreated, then hydrocracked. Products from these operations were combined to produce two prototype specification fuels (JP-4 and JP-8) as well as two heavier, variable-quality fuels. An engineering design (Volume II) was developed for a 50,000 BPSD grass-roots refinery, from the pilot-plant operations. Capital investment and operating costs were estimated, and fuel manufacturing costs projected. Conclusions and recommendations for further work are included.

  11. Waste Isolation Pilot Plant, National Transuranic Program Have...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 December 24,...

  12. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE抯 proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  13. ClearFuels-Rentech Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The ClearFuels-Rentech pilot-scale biorefinery will use Fisher-Tropsch gas-to-liquids technology to create diesel and jet fuel.

  14. A Pilot Plant: The Fastest Path to

    E-Print Network [OSTI]

    Key Science Needs for a Technically Sound MFE Pilot Plant Design Integrated Plasma Material Interface Plant Design? (2) Integrated Plasma-Materials Interface 路 High heat and particle flux and fluence 路 What seconds in 2028. The MFE Program Needs to Move Faster Implications Building a Component Test Facility

  15. DOE/WIPP-12-3487 Waste Isolation Pilot Plant

    E-Print Network [OSTI]

    AND RECOVERY ACT AND SOLID WASTE DISPOSAL ACTDraft DOE/WIPP-12-3487 Waste Isolation Pilot Plant Biennial Environmental Compliance Report United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico

  16. EIS-0026: Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    The Office of Environmental Restoration and Waste Management prepared this EIS for the Waste Isolation Pilot Plant.

  17. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19T23:59:59.000Z

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  18. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  19. High efficiency waste to energy facility -- Pilot plant design

    SciTech Connect (OSTI)

    Orita, Norihiko; Kawahara, Yuuzou; Takahashi, Kazuyoshi; Yamauchi, Toru; Hosoda, Takuo

    1998-07-01T23:59:59.000Z

    Waste To Energy facilities are commonly acceptable to the environment and give benefits in two main areas: one is a hygienic waste disposal and another is waste heat energy recovery to save fossil fuel consumption. Recovered energy is used for electricity supply, and it is required to increase the efficiency of refuse to electric energy conversion, and to spread the plant construction throughout the country of Japan, by the government. The national project started in 1992, and pilot plant design details were established in 1995. The objective of the project is to get 30% of energy conversion efficiency through the measure by raising the steam temperature and pressure to 500 C and 9.8 MPa respectively. The pilot plant is operating under the design conditions, which verify the success of applied technologies. This paper describes key technologies which were used to design the refuse burning boiler, which generates the highest steam temperature and pressure steam.

  20. Waste Isolation Pilot Plant Activites

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhen

  1. WIPP | Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and WindArchives 2003

  2. Waste Isolation Pilot Plant Update

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy

  3. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger...

  4. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  5. Better Plants Water Pilot- Overview

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is expanding the Better Buildings Challenge to help partners demonstrate successful approaches to saving water and decrease their utility bills. The commercial and industrial sectors account for more than 25 percent of the withdrawals from public water supplies and many organizations in these sectors may have savings opportunities of 20 to 40%. The efficient use of water resources results in lower operating costs, a more reliable water supply, and improved water quality. Additionally, because energy is required to transport and treat water, saving water also saves energy. Through this pilot, DOE will work with a small, diverse group of Better Buildings Challenge Partners to expand their resource management strategies to include water in addition to energy, set water savings goals, track progress and showcase solutions.

  6. Magnetic Fusion Pilot Plant Studies

    E-Print Network [OSTI]

    FNSF = Fusion Nuclear Science Facility CTF = Component Test Facility 路 Powerplantlike maintenance. 路 Targeted ultimate capabilities: 颅 Fusion nuclear S&T development, component testing 路 Steady applicable to power plant 路 Demonstrate methods for fast replacement of in-vessel components 颅 Net

  7. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Sands. 1980. Ocean thermal energy conversion (OTEC) pilotCommercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,

  8. Modeling Tomorrow's Biorefinery--the NREL Biochemical Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    Brochure describing the capabilities of NREL's Biochemical Pilot Plant. In this facility, researchers test ideas for creating high-value products from cellulosic biomass.

  9. Independent Oversight Review, Waste Isolation Pilot Plant - November...

    Energy Savers [EERE]

    Safety and Security (HSS), conducted an independent review of the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) preparedness for severe natural phenomena...

  10. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion (OTEC) plants byof the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  11. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants bySands. Ocean thermal energy conversion (OTEC) pilot plantof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

  12. Waste Isolation Pilot Plant, Land Management Plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    To reflect the requirement of section 4 of the Wastes Isolation Pilot Plant Land Withdrawal Act (the Act) (Public Law 102-579), this land management plan has been written for the withdrawal area consistent with the Federal Land Policy and Management Act of 1976. The objective of this document, per the Act, is to describe the plan for the use of the withdrawn land until the end of the decommissioning phase. The plan identifies resource values within the withdrawal area and promotes the concept of multiple-use management. The plan also provides opportunity for participation in the land use planning process by the public and local, State, and Federal agencies. Chapter 1, Introduction, provides the reader with the purpose of this land management plan as well as an overview of the Waste Isolation Pilot Plant. Chapter 2, Affected Environment, is a brief description of the existing resources within the withdrawal area. Chapter 3, Management Objectives and Planned Actions, describes the land management objectives and actions taken to accomplish these objectives.

  13. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    the external fluid mechanics of OTEC plants: report coveringocean thermal energy conversion (OTEC) plants by mid-1980's.1980. A baseline design of a 40-MW OTEC Pilot Johns Hopkins

  14. Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine

    E-Print Network [OSTI]

    Rochelle, Gary T.

    i Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine Topical Report Prepared Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine Ross Edward Dugas, M capture using monoethanolamine (MEA). MEA is an appropriate choice for a baseline study since

  15. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  16. High Temperature Calcination - MACT Upgrade Equipment Pilot Plant Test

    SciTech Connect (OSTI)

    Richard D. Boardman; B. H. O'Brien; N. R. Soelberg; S. O. Bates; R. A. Wood; C. St. Michel

    2004-02-01T23:59:59.000Z

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste are stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Calcination at high-temperature conditions (600 C, with alumina nitrate and calcium nitrate chemical addition to the feed) is one of four options currently being considered by the Department of Energy for treatment of the remaining tank wastes. If calcination is selected for future processing of the sodium-bearing waste, it will be necessary to install new off-gas control equipment in the New Waste Calcining Facility (NWCF) to comply with the Maximum Achievable Control Technology (MACT) standards for hazardous waste combustors and incinerators. This will require, as a minimum, installing a carbon bed to reduce mercury emissions from their current level of up to 7,500 to <45 {micro}g/dscm, and a staged combustor to reduce unburned kerosene fuel in the off-gas discharge to <100 ppm CO and <10 ppm hydrocarbons. The staged combustor will also reduce NOx concentrations of about 35,000 ppm by 90-95%. A pilot-plant calcination test was completed in a newly constructed 15-cm diameter calciner vessel. The pilot-plant facility was equipped with a prototype MACT off-gas control system, including a highly efficient cyclone separator and off-gas quench/venturi scrubber for particulate removal, a staged combustor for unburned hydrocarbon and NOx destruction, and a packed activated carbon bed for mercury removal and residual chloride capture. Pilot-plant testing was performed during a 50-hour system operability test January 14-16, followed by a 100-hour high-temperature calcination pilot-plant calcination run January 19-23. Two flowsheet blends were tested: a 50-hour test with an aluminum-to-alkali metal molar ratio (AAR) of 2.25, and a 50-hour test with an AAR of 1.75. Results of the testing indicate that sodium-bearing waste can be successfully calcined at 600 C with an AAR of 1.75. Unburned hydrocarbons are reduced to less than 10 ppm (7% O2, dry basis), with >90% reduction of NOx emissions. Mercury removal by the carbon bed reached 99.99%, surpassing the control efficiency needed to meet MACT emissions standards. No deleterious impacts on the carbon bed were observed during the tests. The test results imply that upgrading the NWCF calciner with a more efficient cyclone separator and the proposed MACT equipment can process the remaining tanks wastes in 3 years or less, and comply with the MACT standards.

  17. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01T23:59:59.000Z

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  18. Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report- August 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant

  19. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2008-03-12T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  20. Waste Isolation Pilot Plant borehole data

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

  1. Fuel control for gas turbine with continuous pilot flame

    DOE Patents [OSTI]

    Swick, Robert M. (Indianapolis, IN)

    1983-01-01T23:59:59.000Z

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  2. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not have detrimental effects on the environment. This EMP is to be reviewed annually and updated every three years unless otherwise requested by the DOE or contractor.

  3. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits...

    Energy Savers [EERE]

    From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound Science and Energy Museum Programs Cover a Wide Range of Topics From Hydrogen Fuel Cells to...

  4. Process performance of Ahlstrom Pyroflow PCFB pilot plant

    SciTech Connect (OSTI)

    Sellakumar, K.M. [R& D Center, Ahlstrom Pyropower, Inc., San Diego, CA (United States); Isaksson, J.; Tiensuu, J. [Ahlstroem Pyropower, Inc., Karhula (Finland). Hans Ahlstroem Lab.

    1993-05-01T23:59:59.000Z

    Ahlstrom Pyropower has designed and built a 10 MW{sub th} (34 MMBtu) pressurized circulating fluidized bed (PCFB) pilot plant in Karhula, Finland. The unit is now operating. Data from this unit supports the design of a nominal 80 MW, Des Moines Energy Center 1 (DMEC-1) PCFB Repowering Project. The pilot plant PCFB combustor is of square cross-section. It is housed in a 3.6 m (11.8 ft) diameter pressure vessel. A high pressure high temperature gas cleaning unit downstream of the PCFB exhaust is installed in a separate 2.6 m (8.5 ft) diameter pressure vessel. The maximum plant operating pressure is 16 bar (232 psia). The fuel is fed in slurry form; sorbent is also fed along with the fuel. The net heat input per unit cross section of the combustor is the highest of any known combustion mode. The heat release can go up to 40 MW/m{sup 2} (12.6 MMBtu/ft{sup 2} hr). Many types of coals including high sulfur, bituminous Illinois No. 6 coal and Western sub bituminous, low sulfur Powder River Basin coal were tested. Combustion efficiencies in the range of 99.5 to 99.9% have been consistently observed. Emissions of various gases such as NO{sub x} SO{sub 2} and CO at different operating pressures and loads were monitored. The gas emissions have been lower than expected based on atmospheric circulating fluidized bed boiler experience. The sulfur retention is over 95 % with a Ca/S molar ratio of 1 to 2 for high sulfur Illinois No.6 coal. A GAVS molar ratio of 2.5 to 3.5 was observed to retain 95 % of sulfur with low sulfur Powder River Basin coal. All gaseous emissions during testing with Illinois No. 6 coal and Powder River Basin coal are well within the projected limits for the DMEC1 project. Emission data from tests with Illinois No. 6 coal and Powder River Basin coal are presented in the paper.

  5. Process performance of Ahlstrom Pyroflow PCFB pilot plant

    SciTech Connect (OSTI)

    Sellakumar, K.M. (R D Center, Ahlstrom Pyropower, Inc., San Diego, CA (United States)); Isaksson, J.; Tiensuu, J. (Ahlstroem Pyropower, Inc., Karhula (Finland). Hans Ahlstroem Lab.)

    1993-05-01T23:59:59.000Z

    Ahlstrom Pyropower has designed and built a 10 MW[sub th] (34 MMBtu) pressurized circulating fluidized bed (PCFB) pilot plant in Karhula, Finland. The unit is now operating. Data from this unit supports the design of a nominal 80 MW, Des Moines Energy Center 1 (DMEC-1) PCFB Repowering Project. The pilot plant PCFB combustor is of square cross-section. It is housed in a 3.6 m (11.8 ft) diameter pressure vessel. A high pressure high temperature gas cleaning unit downstream of the PCFB exhaust is installed in a separate 2.6 m (8.5 ft) diameter pressure vessel. The maximum plant operating pressure is 16 bar (232 psia). The fuel is fed in slurry form; sorbent is also fed along with the fuel. The net heat input per unit cross section of the combustor is the highest of any known combustion mode. The heat release can go up to 40 MW/m[sup 2] (12.6 MMBtu/ft[sup 2] hr). Many types of coals including high sulfur, bituminous Illinois No. 6 coal and Western sub bituminous, low sulfur Powder River Basin coal were tested. Combustion efficiencies in the range of 99.5 to 99.9% have been consistently observed. Emissions of various gases such as NO[sub x] SO[sub 2] and CO at different operating pressures and loads were monitored. The gas emissions have been lower than expected based on atmospheric circulating fluidized bed boiler experience. The sulfur retention is over 95 % with a Ca/S molar ratio of 1 to 2 for high sulfur Illinois No.6 coal. A GAVS molar ratio of 2.5 to 3.5 was observed to retain 95 % of sulfur with low sulfur Powder River Basin coal. All gaseous emissions during testing with Illinois No. 6 coal and Powder River Basin coal are well within the projected limits for the DMEC1 project. Emission data from tests with Illinois No. 6 coal and Powder River Basin coal are presented in the paper.

  6. Status of the PEATGAS Pilot Plant Development Program

    SciTech Connect (OSTI)

    Biljetina, R.; Punwani, D.V.

    1981-01-01T23:59:59.000Z

    Minnesota peat has been successfully processed in a 2 ton/h, continuous, fully integrated pilot plant since April 1981 at the Institute of Gas Technology (IGT) Energy Development Center in Chicago. The reactor system is based on the PEATGAS process for the production of substitute natural gas (SNG) developed by IGT. Three tests have been conducted in the pilot plant at a 500-psig pressure and gasification temperatures up to 1650/sup 0/F. Peat conversions consistently averaged over 90% at the upper temperature levels. These tests were conducted using a slurry feeding system to inject peat, which contained about 10% moisture, into the gasifier. The facility is currently being modified to accept dry peat feed using a two-stage lockhopper system. When this modification is completed, testing will begin with peat containing 30% to 50% moisture. Results of the successful test series using slurry feed and the progress made on the pilot plant lockhopper modification are summarized.

  7. Conceptual design of a black liquor gasification pilot plant

    SciTech Connect (OSTI)

    Kelleher, E. G.

    1987-08-01T23:59:59.000Z

    In July 1985, Champion International completed a study of kraft black liquor gasification and use of the product gases in a combined cycle cogeneration system based on gas turbines. That study indicated that gasification had high potential as an alternative to recovery boiler technology and offered many advantages. This paper describes the design of the plant, the construction of the pilot plant, and finally presents data from operation of the plant.

  8. Better Plants Supply Chain Pilot Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 DRAFT ADVANCEDOutreach Through

  9. Waste Isolation Pilot Plant: No-migration variance petition. Figures: Volume 8, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    This report is a compilation of engineering drawings concerned with seal arrangement at the Waste Isolation Pilot Plant (WIPP).

  10. Carbon Fiber Pilot Plant and Research Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154:04-21-2014 (866) 448 - DEPOMeetingIndustries byPilot

  11. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect (OSTI)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01T23:59:59.000Z

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  12. VOC Emission Control with the Brayton Cycle Pilot Plant Operations

    E-Print Network [OSTI]

    Enneking, J. C.

    A mobile pilot plant capable of removing VOC emissions from exhaust air streams was cooperatively funded by SCE, EPRI, 3M, and NUCON. Valuable information about the process and the recovery operation has been gained by performing tests at a number...

  13. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    E-Print Network [OSTI]

    Napp, Nils

    of Energy (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees Isolation Plan (Plan) for identified nitrate salt bearing waste disposed in the Waste Isolation Pilot Plant detailed proposal for the expedited closure of underground Hazardous Waste Disposal Unit (HWDU) Panel 6, so

  14. WIPP Status Report Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind

  15. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2008-09-30T23:59:59.000Z

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major achievement by successfully completing 8000 hours of operation at the Billings site. The Alpha sub-MW DF

  16. Production of Biodiesel from Jatropha Oil (Jatropha curcas) in Pilot Plant

    E-Print Network [OSTI]

    Tint Tint Kywe; Mya Mya Oo

    Abstract桰n this research, among the chemical properties, free fatty acid value of jatropha oil was determined to be 22.6%, 5.23% and 8.8 % respectively. Total, free and combined glycerol percent of raw jatropha oil were 8.27 %, 0.58 % and 7.69 % respectively. Yield of biodiesel from jatropha oil at optimal sodium hydroxide catalyst concentration 1%, reaction temperature 65癈, reaction time one hour and molar ratio of methanol to oil 6:1 was 92 % from lab scale. Yield of biodiesel from jatropha oil at optimal potassium hydroxide catalyst concentration 1%, reaction temperature room temperature, reaction time 5 hours and molar ratio of ethanol to oil 8:1 was 90% from the lab scale. Biodiesel was also produced from pilot plant at optimum transesterification process condition as stated above. The yield of biodiesel (methyl ester) and ethyl ester were 92 % and 90% on the basis of refined jatropha oil in the pilot plant scale. The capacity of biodiesel pilot plant is 30 gal / day. The fuel properties of biodiesel, namely cetane index, flash point, pour point, kinematic viscosity, specific gravity, color, copper strip corrosion, acid value, water and sediment and distillation at 90 % recovery, were found to be within the limits of American Society for Testing and Materials (ASTM) specifications for biodiesel and diesel fuel. The fuel consumption of the engine which used biodiesel produced from free fatty acid content 5.23 % in raw jatropha oil is more than the fuel consumption of the engine which used biodiesel produced from free fatty acid content 1 % in refined raw jatropha oil. Keywords梤enewable energy, biodiesel, transesterification, methyl ester, ethyl ester, pilot plant. I.

  17. Waste Isolation Pilot Plant Transportation Security

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatus and

  18. Waste Isolation Pilot Plant | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatus andWaste

  19. Waste Isolation Pilot Plant | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatus

  20. Waste Isolation Pilot Plant Recovery Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30,WP-073.99 4.22PrimaryWaste

  1. Waste Isolation Pilot Plant Recovery Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWasteActivites WasteWaste

  2. Comparison of Options for a Pilot Plant Fusion Nuclear Mission

    SciTech Connect (OSTI)

    Brown, T; Goldston, R J; El-Guebaly, L; Kessel, C; Neilson, G H; Malang, S; Menard, J E; Prager, S; Waganer, L; Titus, P

    2012-08-27T23:59:59.000Z

    A fusion pilot plant study was initiated to clarify the development needs in moving from ITER to a first of a kind fusion power plant, following a path similar to the approach adopted for the commercialization of fission. The pilot plant mission encompassed component test and fusion nuclear science missions plus the requirement to produce net electricity with high availability in a device designed to be prototypical of the commercial device. Three magnetic configuration options were developed around this mission: the advanced tokamak (AT), spherical tokamak (ST) and compact stellarator (CS). With the completion of the study and separate documentation of each design option a question can now be posed; how do the different designs compare with each other as candidates for meeting the pilot plant mission? In a pro/con format this paper will examine the key arguments for and against the AT, ST and CS magnetic configurations. Key topics addressed include: plasma parameters, device configurations, size and weight comparisons, diagnostic issues, maintenance schemes, availability influences and possible test cell arrangement schemes.

  3. Pilot plant used to develop load and pressure controller

    SciTech Connect (OSTI)

    Nagata, Kazue; Yamada, Toshihiro; Hiza, Tomoyuki

    1997-02-01T23:59:59.000Z

    Viewed from the perspective of the power-generation mixture in Japan, nuclear power plants will continue to be operated to meet the base load. Meanwhile, integrated coal gasification combined cycle (IGCC) power plants will be required to serve as thermal power plants to cover the middle load, as is the case with conventional thermal power plants. In terms of operational performance, therefore, IGCC power plants will need to have a capability of following a wide range of load demand at high speed. For this purpose, a load and pressure controller was developed and tested during the operational research on a 200 tons/day entrained flow IGCC pilot plant at the Nakoso Power Station by the Engineering Research Association for IGCC Power Systems (IGC Association). This article reports on the development of the load and pressure controller and the results of the control test carried out to check the load follow capability of the pilot plant, while touching upon the simulation study also being conducted.

  4. Better Plants Supply Chain Pilot - Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergyEnergyBetter Plants Pre-In-PlantTechnical

  5. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- January 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  6. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- March 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  7. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- March 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  8. E-Print Network 3.0 - arsenic pilot plant Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sediments Jason Murnock, Master of Science Candidate, Summary: conflicting. The Erie wastewater treatment plant sludge incinerator flue gas contains arsenic but pilot tests......

  9. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- February 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  10. Review of the Waste Isolation Pilot Plant Work Planning and Control...

    Office of Environmental Management (EM)

    Independent Oversight Review of the Waste Isolation Pilot Plant Work Planning and Control Activities April 2013 Office of Safety and Emergency Management Evaluations Office of...

  11. Waste Isolation Pilot Plant 2001 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, Inc.

    2002-09-20T23:59:59.000Z

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  12. Waste Isolation Pilot Plant 1999 Site Environmental Report

    SciTech Connect (OSTI)

    Roy B. Evans, Ph.D.; Randall C. Morris, Ph.D.; Timothy D. Reynolds, Ph.D.; Ronald W. Warren; Westinghouse Waste Isolation Division

    2000-09-30T23:59:59.000Z

    The U.S. Department of Energy?s (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  13. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31T23:59:59.000Z

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  14. Operating Experience of the 20-MW AFBC Pilot Plant

    E-Print Network [OSTI]

    Stephens, E. A. Jr.

    of recycle ratio. Tests at the Pilot Plant have shown that increasing the recycle ratio above 2.5 to 3.0 will only provide minimal improvement in carbon burnup. Potential improvement in combustion efficiency will come from increasing the size... of the ceramic material. By extending the ceramic beyond the end of the bend will further protect the feed line. Another method tested to prevent feed line erosion was the use of two 45 0 blind laterals. The blind leg of the lateral allows feed material...

  15. Hydrologic studies for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Davies, P.B.

    1994-07-01T23:59:59.000Z

    The objective of this paper is to provide a general overview of hydrologic conditions at the Waste Isolation Pilot Plant (WIPP) by describing several key hydrologic studies that have been carried out as part of the site characterization program over the last 20 years. The paper is composed of three parts: background information about general objectives of the WIPP project; information about the geologic and hydrologic setting of the facility; and information about three aspects of the hydrologic system that are important to understanding the long-term performance of the WIPP facility. For additional detailed information, the reader is referred to the references cited in the text.

  16. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect (OSTI)

    None

    2013-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  17. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services (WRES)

    2004-10-25T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  18. The waste isolation pilot plant regulatory compliance program

    SciTech Connect (OSTI)

    Mewhinney, J.A. [U.S. Dept. of Energy, Carlsbad, NM (United States); Kehrman, R.F. [Westinghouse Electric Corp., Carlsbad, NM (United States)

    1996-06-01T23:59:59.000Z

    The passage of the WIPP Land Withdrawal Act of 1992 (LWA) marked a turning point for the Waste Isolation Pilot Plant (WIPP) program. It established a Congressional mandate to open the WIPP in as short a time as possible, thereby initiating the process of addressing this nation`s transuranic (TRU) waste problem. The DOE responded to the LWA by shifting the priority at the WIPP from scientific investigations to regulatory compliance and the completion of prerequisites for the initiation of operations. Regulatory compliance activities have taken four main focuses: (1) preparing regulatory submittals; (2) aggressive schedules; (3) regulator interface; and (4) public interactions

  19. A Dynamic Waste Isolation Pilot Plant Performance Assessment Tool - 12490

    SciTech Connect (OSTI)

    Scopatz, Anthony M.; March, Jonathan; Weckesser, Warren; Jones, Eric [Enthought Inc, Austin, Texas, 78701 (United States); Lee, Moo; Camphouse, Chris [Sandia National Laboratories, Carlsbad, NM, 88220 (United States)

    2012-07-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Performance Assessment (PA) methodology comprises a toolbox used to demonstrate regulatory compliance of the repository after facility closure. The PA framework rests upon an extensive suite of computational codes. In some cases, significant alteration of code inputs is a tedious and difficult task. Due to the nature of the application for which they are used, PA codes used in support of WIPP regulatory compliance demonstration must satisfy stringent quality assurance requirements. Consequently, many of the coding practices used during original code development are still implemented today. A more efficient workflow configuration has the potential to alleviate difficulties associated with extensive code input modifications. Here, this potential is assessed via an implementation of a more flexible scientific workflow system for a subset of the codes used in WIPP PA. The scientific workflow approach taken here for a dynamic PA system enables users from disparate backgrounds to dramatically shorten the time between hypothesis and analysis by decreasing the amount of a priori knowledge, from a range of disciplines, needed to execute the code. Having smaller iteration times allows for more ideas to be tested and explored, which leads to safer and more optimized systems. Note that these high-level, dynamic tools are intended only for initial scoping studies on the personal computer of a researcher. Full, regulatory compliance calculations may occur only within a qualified computing environment. However, the WIPP PA tools here may guide future research and indicate regions of the analysis space that are worth further study. This next generation of PA software provides the ability to perform scoping investigations of repository performance quickly and easily, and has an accessible and useful interface to a variety of users, such as fuel cycle systems designers, domain experts such as repository modelers, and policy makers. The purview of this project allows for many opportunities for future work. Foremost among these is the desire to implement the full BRAGFLO suite within the workflow. This will entail porting or wrapping Genmesh, Matset, LHS, and ICSet within Python. Moreover, unifying the two GUIs into a single driver application would be a natural next step. Once the BRAGFLO suite is completed, other portions of WIPP PA could be implemented with corresponding and inter-operable work-flows. Likely first candidates for this are those codes that are similarly computationally intensive, such as the one used to generate complementary cumulative distribution functions used to demonstrate regulatory compliance (code CCDFGF). (authors)

  20. On the Piloted Ignition of Solid Fuels in Spacecraft Environments

    E-Print Network [OSTI]

    Fereres-Rapoport, Sonya M.

    2011-01-01T23:59:59.000Z

    Describing the Steady-State Gasification of Bubble-FormingEffects on the Endothermic Gasification and Piloted Ignitionon Nonflaming Transient Gasification of PMMA and PE During

  1. Natural Gas Plant Fuel Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3

  2. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2003-09-17T23:59:59.000Z

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  3. Physical and numerical modeling of the external fluid mechanics of OTEC pilot plants

    E-Print Network [OSTI]

    Singarella, Paul N.

    1982-01-01T23:59:59.000Z

    This study examined the near field external fluid mechanics of symmetrical OTEC pilot plant designs (20-80 MWe) under realistic deep water conditions. The objective was to assess the environmental impact of different plant ...

  4. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2002-09-24T23:59:59.000Z

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  5. Bentonite as a waste isolation pilot plant shaft sealing material

    SciTech Connect (OSTI)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01T23:59:59.000Z

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  6. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The DOE has mandated in DOE Order 5400.1 that its operations will be conducted in an environmentally safe manner. The Waste Isolation Pilot Plant (WIPP) will comply with DOE Order 5400.1 and will conduct its operations in a manner that ensures the safety of the environment and the public. This document outlines how the WIPP will protect and preserve groundwater within and surrounding the WIPP facility. Groundwater protection is just one aspect of the WIPP environmental protection effort. The WIPP groundwater surveillance program is designed to determine statistically if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will be determined and appropriate corrective action initiated.

  7. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  8. The Waste Isolation Pilot Plant: An International Center of Excellence

    SciTech Connect (OSTI)

    Matthews, Mark

    2003-02-25T23:59:59.000Z

    The United States Department of Energy's Carlsbad Field Office (CBFO) is responsible for the successful management of transuranic radioactive waste (TRUW) in the United States. TRUW is a long-lived radioactive waste/material (LLRM). CBFO's responsibilities includes the operation of the Waste Isolation Pilot Plant (WIPP), which is a deep geologic repository for the safe disposal of U.S. defense-related TRUW and is located 42 kilometers (km) east of Carlsbad, New Mexico. WIPP is the only deep-geological disposal site for LLRM that is operating in the world today. CBFO also manages the National Transuranic Waste Program (NTP), which oversees TRU waste management from generation to disposal. As of February 2003, approximately 1500 shipments of waste have been safely transported to the WIPP, which has been operating since March 1999.

  9. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2000-12-01T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  10. The advanced PFB process: Pilot plant results and design studies

    SciTech Connect (OSTI)

    Robertson, A. [Foster Wheeler Development Corp., Livingston, NJ (United States); Domeracki, W. [Westinghouse Power Generation Business Group, Orlando, FL (United States); Horazak, D. [Gilbert/Commonwealth, Green Hills, PA (United States); Newby, R. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States); Rehmat, A. [Institute of Gas Technology, Chicago IL (United States)

    1993-11-01T23:59:59.000Z

    The plant being developed is a hybrid of two technologies; it incorporates the partial gasification of coal in a vessel called the carbonizer and the combustion of the resultant char residue in a circulating pressurized fluidized bed combustor (CPFBC). In this plant, coal is fed to a pressurized carbonizer that produces a low-Btu fuel gas and char. After passing through a cyclone and a ceramic barrier filter to remove gas-entrained particulates, the fuel gas is burned in a topping combustor to produce the energy required to drive a gas turbine. The gas turbine drives a generator and a compressor that feeds air to the carbonizer, a CPFBC, and a fluidized bed heat exchanger (FBHE). The carbonizer char is burned in the CPFBC with high excess air. The vitiated air from the CPFBC supports combustion of the fuel gas in the gas turbine topping combustor. Steam generated in a heat-recovery steam generator (HRSG) downstream of the gas turbine and in the FBHE associated with the CPFBC drives the steam turbine generator that furnishes the balance of electric power delivered by the plant. The low-Btu gas is produced in the carbonizer by pyrolysis/mild devolatilization of coal in a fluidized bed reactor. Because this unit operates at temperatures much lower than gasifiers currently under development, it also produces a char residue. Left untreated, the fuel gas will contain hydrogen sulfide and sulfur-containing tar/light oil vapors; therefore, lime-based sorbents are injected into the carbonizer to catalytically enhance tar cracking and to capture sulfur as calcium sulfide. Sulfur is captured in situ, and the raw fuel gas is fired hot. Thus the expensive, complex, fuel gas heat exchangers and the chemical or sulfur-capturing bed cleanup systems that are part of the coal gasification combined-cycle plants now being developed are eliminated.

  11. Pilot plant for CO2 capture with aqueous piperazine/potassium carbonate , Gary T. Rochelle1

    E-Print Network [OSTI]

    Rochelle, Gary T.

    GHGT-8 1 Pilot plant for CO2 capture with aqueous piperazine/potassium carbonate Eric Chen1 , Gary pilot for CO2 capture was successfully operated using potassium carbonate promoted with piperazine, potassium carbonate, piperazine Introduction Several amine-promoted potassium carbonate solvents have been

  12. Institute for Renewable Energy Ltd Preparation of a pilot biogas CHP plant integrated with

    E-Print Network [OSTI]

    Institute for Renewable Energy Ltd Poland 1 Preparation of a pilot biogas CHP plant integrated on the preparation phase for a pilot investment in Koczala, Northern Poland, relating to an agricultural biogas CHP production and utilisation of agricultural biogas the project focused on BAT obtainable from various European

  13. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first receipt of waste in March 1999 through the end of 2008, 57,873 m3 of TRU waste had been disposed of at the WIPP facility.

  14. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  15. E-Print Network 3.0 - affect pilot plant Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power S... is reported on a study to define a "pilot plant" to demonstrate the production of high grade heat in a fusion... " as commercial prototypes. In many technologies...

  16. A Cold Water Pipe for an OTEC Pilot Plant: Design Considerations

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    A Cold Water Pipe for an OTEC Pilot Plant: Design Considerations Kara Silver Abstract Ocean Thermal Energy Conversion (OTEC) is a baseload renewable technology for tropical countries and islands. In order

  17. Head of EM Visits Waste Isolation Pilot Plant for First Underground...

    Office of Environmental Management (EM)

    Secretary Mark Whitney today visited the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., where he became the first non-WIPP employee to tour the underground facility...

  18. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    1979. Commercial ocean thermal energy conversion (OTEC)of the Fifth Ocean Thermal Energy Conversion Conference,Sands. 1980. Ocean thermal energy conversion (OTEC) pilot

  19. The particulate and vapor phase components of airborne polyaromatic hydrocarbons (PAHs) in coal gasification pilot plants

    E-Print Network [OSTI]

    Brink, Eric Jon

    1980-01-01T23:59:59.000Z

    THE PARTICULATE AND VAPOR PHASE COMPONENTS OF AIRBORNE POLYAROMATIC HYDROCARBONS(PAHs) IN COAL GASIFICATION PILOT PLANTS A Thesis by ERIC JON BRINK Submitted to the Graduate College of Texas A & M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE December 1980 Major Subject: Industrial Hygiene THE PARTICULATE AND VAPOR PHASE COMPONENTS OF AIRBORNE POLYAROMATIC HYDROCARBONS (PAHs) IN COAL GASIFICATION PILOT PLANTS A Thesis by ERIC JON BRINK...

  20. Groundwater monitoring at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01T23:59:59.000Z

    This paper discusses the Groundwater Monitoring Program (GPM) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water quality sampling and water level monitoring. The WIPP Project is a research and develop facility designed to demonstrate the safe disposal of defense-generated waste in a geologic repository. Water quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. The water quality of a well is sampled while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. Stabilization of serial sampling parameters determined if a representative sample is being obtained, Representative samples are sent to contract laboratories and analyzed for general chemistry, major cations and anions, and radionuclides. 13 refs., 4 figs., 1 tab.

  1. Compliance status report for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1994-03-31T23:59:59.000Z

    The US Department of Energy (DOE) is responsible for the disposition of transuranic (TRU) waste generated through national defense-related activities. Approximately 53,700 m{sup 2} of these wastes have been generated and are currently stored at government defense installations across the country. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been sited and constructed to meet the criteria established by the scientific and regulatory community for the safe, long-term disposal of TRU and TRU-mixed wastes. This Compliance Status Report (CSR) provides an assessment of the progress of the WIPP Program toward compliance with long-term disposal regulations, set forth in Title 40 CFR 191 (EPA, 1993a), Subparts B and C, and Title 40 CFR {section}268.6 (EPA, 1993b), in order to focus on-going and future experimental and engineering activities. The CSR attempts to identify issues associated with the performance of the WIPP as a long-term repository and to focus on the resolution of these issues. This report will serve as a tool to focus project resources on the areas necessary to ensure complete, accurate, and timely submittal of the compliance application. This document is not intended to constitute a statement of compliance or a demonstration of compliance.

  2. Regulatory basis for the Waste Isolation Pilot Plant performance assessment

    SciTech Connect (OSTI)

    HOWARD,BRYAN A.; CRAWFORD,M.B.; GALSON,D.A.; MARIETTA,MELVIN G.

    2000-05-22T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA to demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.

  3. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect (OSTI)

    None

    2011-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  4. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2006-10-12T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents compliance with environmental regulations at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste. This BECR covers the reporting period from April 1, 2004, to March 31, 2006. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents United States (U.S.) Department of Energy (DOE) compliance with regulations and permits issued pursuant to the following: (1) Title 40 Code of Federal Regulations (CFR) Part 191, Subpart A, "Environmental Standards for Management and Storage"; (2) Clean Air Act (CAA) (42 United States Code [U.S.C.] 7401, et seq.); (3) Solid Waste Disposal Act (SWDA) (42 U.S.C. Ё6901-6992, et seq.); (4) Safe Drinking Water Act (SDWA) (42 U.S.C. Ё300f, et seq.); (5) Toxic Substances Control Act (TSCA) (15 U.S.C. Ё2601, et seq.); (6) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (42 U.S.C. Ё9601, et seq.); and all other federal and state of New Mexico laws pertaining to public health and safety or the environment.

  5. Waset Isolation Pilot Plant Annual Site Environmental Report for 2006

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2007-09-26T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2006 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data that: (a) Characterize site environmental management performance; (b) Summarize environmental occurrences and responses reported during the calendar year; (c) Confirm compliance with environmental standards and requirements; and (d) Highlight significant facility programs and efforts. The DOE Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) maintain and preserve the environmental resources at the WIPP site. DOE Order 231.1A; DOE Order 450.1, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This report was prepared in accordance with DOE Order 231.1A. This order requires that DOE facilities submit an ASER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) (No. NM4890139088-TSDF [treatment, storage, and disposal facility]) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  6. Key Geomechanics Issues at the Waste Isolation Pilot Plant Geomechanics

    SciTech Connect (OSTI)

    HANSEN,FRANCIS D.

    1999-09-01T23:59:59.000Z

    Mechanical and hydrological properties of rock salt provide excellent bases for geological isolation of hazardous materials. Regulatory compliance determinations for the Waste Isolation Pilot Plant (WIPP) stand as testament to the widely held conclusion that salt provides excellent isolation properties. The WIPP saga began in the 1950s when the U.S. National Academy of Sciences (NAS) recommended a salt vault as a promising solution to the national problem of nuclear waste disposal. For over 20 years, the Scientific basis for the NAS recommendation has been fortified by Sandia National Laboratories through a series of large scale field tests and laboratory investigations of salt properties. These scientific investigations helped develop a comprehensive understanding of salt's 4 reformational behavior over an applicable range of stresses and temperatures. Sophisticated constitutive modeling, validated through underground testing, provides the computational ability to model long-term behavior of repository configurations. In concert with advancement of the mechanical models, fluid flow measurements showed not only that the evaporite lithology was essentially impermeable but that the WIPP setting was hydrologically inactive. Favorable mechanical properties ensure isolation of materials placed in a salt geological setting. Key areas of the geomechanics investigations leading to the certification of WIPP are in situ experiments, laboratory tests, and shaft seal design.

  7. A historical review of Waste Isolation Pilot Plant backfill development

    SciTech Connect (OSTI)

    KRUMHANSL,JAMES L.; MOLECKE,MARTIN A.; PAPENGUTH,HANS W.; BRUSH,LAURENCE H.

    2000-06-05T23:59:59.000Z

    Backfills have been part of Sandia National Laboratories' [Sandia's] Waste Isolation Pilot Plant [WIPP] designs for over twenty years. Historically, backfill research at Sandia has depended heavily on the changing mission of the WIPP facility. Early testing considered heat producing, high level, wastes. Bentonite/sand/salt mixtures were evaluated and studies focused on developing materials that would retard brine ingress, sorb radionuclides, and withstand elevated temperatures. The present-day backfill consists of pure MgO [magnesium oxide] in a pelletized form and is directed at treating the relatively low contamination level, non-heat producing, wastes actually being disposed of in the WIPP. Its introduction was motivated by the need to scavenging CO{sub 2} [carbon dioxide] from decaying organic components in the waste. However, other benefits, such as a substantial desiccating capacity, are also being evaluated. The MgO backfill also fulfills a statutory requirement for assurance measures beyond those needed to demonstrate compliance with the US Environmental Protection Agency [EPA] regulatory release limits. However, even without a backfill, the WIPP repository design still operates within EPA regulatory release limits.

  8. Waste acceptance criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  9. Experimental program plan for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The US Department of Energy has prepared this Experimental Program Plan for the Waste Isolation Pilot Plant (EPP) to provide a summary of the DOE experimental efforts needed for the performance assessment process for the WIPP, and of the linkages of this process to the appropriate regulations. The Plan encompasses a program of analyses of the performance of the planned repository based on scientific studies, including tests with transuranic waste at laboratory sites, directed at evaluating compliance with the principal regulations governing the WIPP. The Plan begins with background information on the WIPP project, the requirements of the LWA (Land Withdrawal Act), and its objective and scope. It then presents an overview of the regulatory requirements and the compliance approach. Next are comprehensive discussions of plans for compliance with disposal regulations, followed by the SWDA (Solid Waste Disposal Act) and descriptions of activity programs designed to provide information needed for determining compliance. Descriptions and justifications of all currently planned studies designed to support regulatory compliance activities are also included.

  10. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    SciTech Connect (OSTI)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01T23:59:59.000Z

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was the subject of the issued Campaign I interim report (Duignan et al., 2004a or Appendix I-1). The streams created in Campaign I were used for Campaign II, and during Campaign II more of the same recycle streams were produced, with the addition of recycle streams created during the pilot-scale ion exchange unit operation (Duignan et al., 2004b or Appendix I-2). Campaign III used the recycles from Campaign II and was the first campaign to use all the recycle streams (Duignan et al., 2004c or Appendix I-3). The operation of each of the subsequent campaigns, i.e., II, III, and IV, while different from Campaign I, are very similar to each other, and can be best understood as the process of operating a series of Pretreatment Unit Operations in a somewhat prototypic manner. That is, while Campaign I studied the operation of a single, albeit important, Pretreatment Unit Operation, i.e., Ultrafiltration, subsequent campaigns were to study the four major unit operations that make-up the RPP-WTP Pretreatment Facility. They are: Waste Feed Evaporation Process (FEP), Ultrafiltration Process (UFP), Cesium Ion Exchange Process (CIX), and the Treated LAW Evaporation Process (TLP). Each of the campaigns operated basically as a separate subtask, but as with Campaign I, the recycle streams produced in one campaign were fed into the subsequent campaign. Therefore, all four campaigns were chemically connected through these recycle streams, which carry over effects of the preceding campaign. The results of Campaign IV operations are the subject of this fourth and final report. Separate reports were issued after each of the previous campaigns, but they were treated as interim because of being limited to the results obtained from a single campaign (or past campaigns) and further limited to only highlights of that single campaign. This final report not only discusses the Campaign IV results but compares those with the previous campaigns. Also included is a more comprehensive discussion of the overall task activities, as well as abridged versions of the full databases of the accumulated

  11. An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992. Revision

    SciTech Connect (OSTI)

    Rechard, R.P.

    1996-06-01T23:59:59.000Z

    This document provides an overview of the processes used to access the performance of the Waste Isolation Pilot Plant (WIPP). The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, HIgh-LEvel and transuranic radioactive Wastes (40 CFR 191).

  12. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Environmental Management (EM)

    Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended...

  13. Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy FocusBenefit Tool | Open Energy

  14. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2 DOE Hydrogen and Office(BETO) IBR

  15. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    SciTech Connect (OSTI)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01T23:59:59.000Z

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ``near-reference`` with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed.

  16. Pilot Application to Nuclear Fuel Cycle Options | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket | DepartmentPhotoelectrochemicalInan<aPilgrimA

  17. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL)

    2002-01-01T23:59:59.000Z

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  18. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-07-01T23:59:59.000Z

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR 264.90 through 264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] 6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  19. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  20. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washinton TRU Solutions LLC

    2002-09-30T23:59:59.000Z

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

  1. Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study

    E-Print Network [OSTI]

    Walter, M.Todd

    Transport of lead and diesel fuel through a peat soil near Juneau, AK: a pilot study Julian Deissa; accepted 6 February 2004 Abstract A set of peat column experiments was used to determine the transport-bearing stream 250 m from the site. Three pairs of peat columns were extracted from the rifle range for analysis

  2. Peat-Gasification Pilot-Plant Program. Final report, April 9, 1980-March 31, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    The objective of this program was twofold: (1) to modify an existing pilot plant and (2) to operate the pilot plant with peat to produce substitute natural gas (SNG). Activities included the design, procurement, and installation of peat drying, grinding, screening, and lockhopper feed systems. Equipment installed for the program complements the existing pilot plant facility. After shakedown of the new feed preparation equipment (drying, screening, and crushing) was successfully completed, the first integrated pilot plant test was conducted in April 1981 to provide solids flow data and operating experience with the new PEATGAS gasifier configuration. Three gasification tests were subsequently conducted using the existing slurry feed system. The lockhopper feed system, capable of providing a continuous, measured flow of 1 to 4 tons of dry feed at pressures up to 500 psig, was then successfully integrated with the gasifier. Two gasification tests were conducted, expanding the data to more economical operating conditions. The operation of the PEATGAS pilot plant has confirmed that peat is an excellent raw material for SNG production. Peat conversions over 90% were consistently achieved at moderate gasification temperatures and at sinter-free conditions. A large data base was established for Minnesota peat at pressure 1.0. The technical feasibility of the PEATGAS process has been successfully demonstrated. However, an economic assessment of the peat gasification process indicates that the cost of the peat feedstock delivered to a plant site has a significant effect on the cost of the product SNG. 28 figures, 36 tables.

  3. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect (OSTI)

    Rucker, D.F.

    2000-08-01T23:59:59.000Z

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease slightly if a more stable wind class is assumed, where very little vertical mixing occurs. It is recommended that previous reports which used fixed values for calculating the air dispersion coefficient be updated to reflect the new meteorological data, such as the WIPP Safety Analysis Report and the WIPP Emergency Preparedness Hazards Assessment. It is also recommended that uncertainty be incorporated into the calculations so that a more meaningful assessment of risk during accidents can be achieved.

  4. Raft River binary-cycle geothermal pilot power plant final report

    SciTech Connect (OSTI)

    Bliem, C.J.; Walrath, L.F.

    1983-04-01T23:59:59.000Z

    The design and performance of a 5-MW(e) binary-cycle pilot power plant that used a moderate-temperature hydrothermal resource, with isobutane as a working fluid, are examined. Operating problems experienced and solutions found are discussed and recommendations are made for improvements to future power plant designs. The plant and individual systems are analyzed for design specification versus actual performance figures.

  5. Waste Isolation Pilot Plant Status and Plans - 2012 - 12049

    SciTech Connect (OSTI)

    Nelson, Roger A.; Ziemianski, Edward J. [U.S. Department of Energy, Carlsbad, NM 88220 (United States)

    2012-07-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP), a deep geologic repository for safe disposal of long-lived transuranic radioactive waste related to the nation's defense, is completing its 12. year of operations. WIPP's mission includes coordination of all Department of Energy (DOE) sites to prepare, package and characterize transuranic (TRU) waste for final shipment and emplacement in WIPP. Five of the 10 disposal panels planned have been filled and sealed from ventilation. Additional small quantity sites have been de-inventoried by consolidating their waste through the certified characterization line at the Idaho National Laboratory (INL). New emplacement methods for RH waste in shielded containers are being considered for disposal by WIPP's regulatory authorities. A new large Type B shipping package, was added to the WIPP transportation fleet, and facility modifications to the WIPP waste unloading and emplacement processes for large containers were completed in 2011. Shipments from the Savannah River site in these new large rectangular packages began in August 2011. Licensing efforts are proceeding for a new criticality control over-pack container that will allow almost twice the fissile content to be shipped than previously. This will reduce the number and cost of shipments of Special Nuclear Material (SNM) declared as waste. Modifications to WIPP regulatory requirements for the disposal footprint and disposal unit closure systems are in progress. These, and other developments, make for exciting times at WIPP. This paper provides an up-to-date look at the many aspects of America's only deep geologic long-lived radioactive waste repository, which is completing its 12. year of operations. A record year of safe and compliant shipments to WIPP tops the list of accomplishments in 2011. Four more small quantity sites were de-inventoried by consolidating their waste through the certified characterization line at INL in 2011. A new Type B shipping package, the TRUPACT-III has been added to the transportation fleet, and large waste boxes are being shipped from SRS without the need for repackaging. New emplacement methods for remote-handled waste in shielded containers are undergoing regulatory review. WIPP plans to license a new criticality control payload container that will allow almost twice the fissile content to be shipped than previously, thereby reducing the number and cost of shipments of SNM declared as waste. Other regulatory modifications planned in 2012 include approval of a design change that would replace the disposal concept for panels 9 and 10 from using the common access drifts (the 'mains') with a new footprint south of panels 4 and 5. DOE also plans to change the panel closure design set forth in its certification by EPA and the HWFP by the NMED. The panel closure design change will be a rule making under EPA's procedures and a class 3 permit modification request under NMED procedures. Plans for achieving 90% of legacy TRU waste retrieval and emplacement in WIPP by 2015 have been developed. Key to the success of this so-called 90/15 plan is adequate funding, both for WIPP operations, as well as for TRU retrieval programs at the generator sites. (authors)

  6. Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels

    E-Print Network [OSTI]

    z ETHANOL z WASTE METHANE z BIOGASz BIOGAS z COAL GAS Diversity of Fuels plus High Efficiency 颅 High

  7. Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy Data Access| Department

  8. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    the external fluid mechanics of OTEC plants: report coveringthermal energy conversion ( OTEC) plants by mid-1980 1 s.distributiion at potential OTEC sites. p. 7D-4/1-4/5. In

  9. DOE Awards Grant to New Mexico Environment Department for Waste Isolation Pilot Plant Oversight, Monitoring

    Broader source: Energy.gov [DOE]

    Carlsbad, NM - The Department of Energy (DOE) today awarded a grant for an estimated $1.6 million to the New Mexico Environment Department (NMED). The five-year grant funds an agreement for NMED to conduct non-regulatory environmental oversight and monitoring to evaluate activities conducted at DOE抯 Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

  10. Chemistry research and development. Progress report, December 1978-May 1979. [Component, pilot plant, instrumentation

    SciTech Connect (OSTI)

    Miner, F. J.

    1980-06-30T23:59:59.000Z

    Progress and activities are reported on component development, pilot plant development, and instrumentation and statistical systems. Specific items studied include processing of pond sludge, transport of radioactive materials and wastes, corrosion, decontamination and cleaning, fluidized-bed incineration, Pu contamination of soils, chemical analysis, radiometric analysis, security. (DLC)

  11. Hydraulic testing of Salado Formation evaporites at the Waste Isolation Pilot Plant site: Second interpretive report

    SciTech Connect (OSTI)

    Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States); Roberts, R.M.; Dale, T.F.; Fort, M.D.; Stensrud, W.A. [INTERA, Inc., Austin, TX (United States)

    1993-12-01T23:59:59.000Z

    Pressure-pulse, constant-pressure flow, and pressure-buildup tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Transmissivities have been interpreted from six sequences of tests conducted on five stratigraphic intervals within 15 m of the WIPP underground excavations.

  12. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  13. Waste Isolation Pilot Plant 2002 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actions

  14. Waste Isolation Pilot Plant Electronic FOIA Request Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions

  15. MHK Projects/BioSTREAM Pilot Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal < MHK

  16. MHK Projects/bioWAVE Pilot Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHKInformationInformation

  17. MHK Technologies/European Pico Pilot Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE <AirWEC <EPAM <Enermar < MHK< MHK

  18. MHK Projects/BioSTREAM Pilot Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 < MHKNULLBioSTREAM

  19. Renewable Acid-hydrolysis Condensation Hydrotreating (REACH) Pilot Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexas |4WebinarAccessOpportunities

  20. Waste Isolation Pilot Plant (WIPP) Recovery | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is onModelingFederal EnergyWaste Heat Waste Heat - - to to -

  1. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants byand M.D. Sands. Ocean thermal energy conversion (OTEC) pilotfield of ocean thermal energy conversion discharges. I~. L.

  2. DRAFT. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion ( OTEC) plants byfield of ocean thermal energy conversion discharges. I~. L.II of the Sixth Ocean Thermal Energy conversion Conference.

  3. ENVIRONMENTAL ASSESSMENT OCEAN THERMAL ENERGY CONVERSION (OTEC) PILOT PLANTS

    E-Print Network [OSTI]

    Sullivan, S.M.

    2014-01-01T23:59:59.000Z

    Commercial ocean thermal energy conversion (OTEC) plants bySands. 1980. Ocean thermal energy conversion (OTEC) pilotof the Ocean Thermal Energy Conversion (OTEC) Biofouling,

  4. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 2, Technical basis

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume, Volume 2, contains the technical basis for the 1992 PA. Specifically, it describes the conceptual basis for consequence modeling and the PA methodology, including the selection of scenarios for analysis, the determination of scenario probabilities, and the estimation of scenario consequences using a Monte Carlo technique and a linked system of computational models. Additional information about the 1992 PA is provided in other volumes. Volume I contains an overview of WIPP PA and results of a preliminary comparison with the long-term requirements of the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses related to the preliminary comparison with 40 CFR 191B. Volume 5 contains uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance. Finally, guidance derived from the entire 1992 PA is presented in Volume 6.

  5. Potential for long-term isolation by the Waste Isolation Pilot Plant disposal system

    SciTech Connect (OSTI)

    Bertram-Howery, S.G. (Sandia National Labs., Albuquerque, NM (USA)); Swift, P.N. (Tech. Reps., Inc., Albuquerque, NM (USA))

    1990-06-01T23:59:59.000Z

    The US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) must comply with EPA regulation 40 CFR Part 191, Subpart B, which sets environmental standards for radioactive waste disposal. The regulation, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (hereafter referred to as the Standard), was vacated in 1987 by a Federal Court of Appeals and is underground revision. By agreement with the Sate of New Mexico, the WIPP project is evaluating compliance with the Standard as promulgated, in 1985 until a new regulation is available. This report summarizes the early-1990 status of Sandia National Laboratories' (SNL) understanding of the Project's ability to achieve compliance. The report reviews the qualitative and quantitative requirements for compliance, and identifies unknowns complicating performance assessment. It discusses in relatively nontechnical terms the approaches to resolving those unknowns, and concludes that SNL has reasonable confidence that compliance is achievable with the Standard as first promulgated. 46 refs., 7 figs.

  6. Basic data report for drillhole WIPP 11 (Waste Isolation Pilot Plant - WIPP)

    SciTech Connect (OSTI)

    Not Available

    1982-02-01T23:59:59.000Z

    Seismic reflection data from petroleum industry sources showed anomalous reflectors in the Castile Formation over a small area about 3 miles north of the center of the Waste Isolation Pilot Plant (WIPP) site. Additional corroborative seismic reflection data were collected as part of WIPP investigations, and WIPP 11 was drilled to investigate the anomaly. WIPP 11 was drilled near the northwest corner of Section 9, T.22.S., R.31E. it penetrated, in descending order, sand dune deposits and the Gatuna Formation (29'), Santa Rosa Sandstone (132'), Dewey Lake Red Beds (502'), Rustler Formation (288'), Salado Formation (1379'), and most of the Castile Formation (1240'). Beds within the lower part of the Salado, and the upper anhydrite of the Castile, are thinner than normal; these beds are displaced upward structurally by the upper Castile halite which is highly thickened (about 968'). The lowest halite is thin (51') and the basal anhydrite was not completely penetrated. Subsequent seismic and borehole data has shown WIPP 11 to be in a structural complex now identified as the disturbed zone. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level waste, though there are no plans at this time to dispose of high level waste or spent fuel at WIPP.

  7. Status of Waste Isolation Pilot Plant compliance with 40 CFR 191B, December 1992

    SciTech Connect (OSTI)

    Marietta, M.G.; Anderson, D.R.

    1993-10-01T23:59:59.000Z

    Before disposing of transuranic radioactive waste at the Waste Isolation Pilot Plant (WIPP), the US Department of Energy (DOE) must evaluate compliance with long-term regulations of the US Environmental Protection Agency (EPA). Sandia National Laboratories (SNL) is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This paper describes the 1992 preliminary comparison with Subpart B of the Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191), which regulates long-term releases of radioactive waste. Results of the 1992 PA are preliminary, and cannot be used to determine compliance or noncompliance with EPA regulations because portions of the modeling system and data base are incomplete. Results are consistent, however, with those of previous iterations of PA, and the SNL WIPP PA Department has high confidence that compliance with 40 CFR 191B can be demonstrated. Comparison of predicted radiation doses from the disposal system also gives high confidence that the disposal system is safe for long-term isolation.

  8. The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant

    SciTech Connect (OSTI)

    Kolb, G.J.

    1991-01-01T23:59:59.000Z

    The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

  9. EM Waste Isolation Pilot Plant Team's Holiday Spirit Shines | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement ||More Emphasis onEnergy One Systemof

  10. DOE Waste Isolation Pilot Plant Receives EPA Recertification | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C. - EnergyEnergy LearnFebruaryof

  11. US Department of Energy Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlong version) The0 - 20 Publications 1.HowUPF: SafetyUS

  12. Independent Oversight Review, Waste Isolation Pilot Plant - April 2013 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012 | Department ofFederal

  13. Independent Oversight Review, Waste Isolation Pilot Plant - November 2012 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012 | Department

  14. Performance Assessment Updates for Waste Isolation Pilot Plant

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera STAT.Paul L. JoskowDepartmentServiceL l

  15. Waste Isolation Pilot Plant Attracts World Interest | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington's CentraliaWashingtonSystemsLights,

  16. Waste Isolation Pilot Plant Recovery Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington's

  17. Waste Isolation Pilot Plant Typifies Optimizing Resources to Maximize

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington'sResults | Department of Energy

  18. Waste Isolation Pilot Plant Update | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington'sResults | Department of

  19. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington'sResults | DepartmentConservation

  20. Waste Isolation Pilot Plant Status and Plans - 2010

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatus and Plans

  1. Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatusin 2013 |

  2. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30,WP-073.99 4.22Primary

  3. Waste Isolation Pilot Plant 2003 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actionssubmitted as

  4. Enterprise Assessments Review, Waste Isolation Pilot Plant - December

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartmentImmobilization2014 |

  5. Enterprise Assessments Review, Waste Isolation Pilot Plant - December

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartmentImmobilization2014 |2014 |

  6. DOE - Office of Legacy Management -- Pasadena Chemical Corp Pilot Plant -

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co - OH 34Pantex SewageTX 01

  7. DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co -0-19GasK

  8. DOE - Office of Legacy Management -- Waste Isolation Pilot Plant - 019

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami - FL06TNWashingtonWaste

  9. Hanford Shipment Arrives Safely At Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric EdlundWaste07 Revision 0

  10. Chemical and Radiochemical Analyses of Waste Isolation Pilot Plant (WIPP)

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden2|Superior Energy Performance 禄18-8914of2010 DOESamples

  11. Sandia National Laboratories: Waste Isolation Pilot Plant Accident

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave Energy Converter Modeling andScaled

  12. Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnologyDepartmentStorage Interface TransportationDepartment

  13. Waste Isolation Pilot Plant (WIPP) Source Term Attribution Analysis |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWaste

  14. Waste Isolation Pilot Plant Activites | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWasteActivites Waste

  15. Waste Isolation Pilot Plant Transportation Security | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWasteActivitesTransportation

  16. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 PrintingNeed|3 ANNUAL REPORT3 ORSSABSafety

  17. Summary of Waste Isolation Pilot Plant (WIPP) Hypotheses | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommittee onGASRainey STAR CenterJune

  18. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012 Greenbuy Program. | DepartmentManagementLasSavings

  19. Waste Isolation Pilot Plant Land Management Plan DOE/WIPP-93-004

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective ActionsWaste Isolation Pilot

  20. ,"New York Natural Gas Lease and Plant Fuel Consumption (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

  1. Plant variability and bio-fuel properties

    SciTech Connect (OSTI)

    Agblevor, F.A.; Besler-Guran, S.; Wiselogel, A.E. [National Renewable Energy Lab., Golden, CO (United States)

    1995-11-01T23:59:59.000Z

    Thermochemically converting biomass feedstocks to fuels is one of the major thrusts of renewable energy research at the National Renewable Energy Laboratory. Among several thermochemical routes is the fast pyrolysis process which produces liquid fuels from woody and herbaceous biomass feedstocks. Because of the large variability in the composition of biomass feedstocks due to plant variety and environmental factors, it is important to assess how these variabilities affect the properties of thermochemical liquid fuels (bio-oils) produced from these resources. Similar varieties of switchgrass (Panicum virgatum L.) that were grown at three different locations and three hybrid poplar clones that were grown at one location were used in these studies. The feedstocks were pyrolyzed in a fluidized bed reactor at 500{degrees}C. The gas products were analyzed on-line and the liquid products were analyzed for elemental composition and higher heating values. Apart from small difference in the yield of char/ash, the yields of pyrolysis oils and gases were similar for switchgrass feedstocks grown at all three locations. The char/ash yields ranged from 21.1 to 22.9%; total liquids (organic liquids + water) yields ranged from 59%-60.5%; and the gas yields ranged from 11%-12% (wt). The higher heating values (HHVs) of the oils were similar (24.3-24.6 MJ/kg). For the hybrid poplar feedstocks, total liquids (65%-69%), char/ash (10%-11%), and gas yields (15.6%-17%) were similar for all three poplar clones; however, the elemental composition and the HHVs of the pyrolysis oils had statistically significant differences. The NC5260 pyrolysis oils had lower HHV (22.0{+-}0.5 MG/kg) compared to the DN clones (23.2{+-}0.3 MJ/kg). The yields of total liquids and organics for the three clones were higher than those for the switchgrass feedstocks. The gas yields for the hybrid poplar clones were higher than for the switchgrass, but had compositions similar to those of the switchgrass feedstocks.

  2. Waste Isolation Pilot Plant Site Environmental Report for calendar year 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    This is the 1989 Site Environmental Report (SER) for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP is a government owned and contractor-operated facility. The WIPP project is operated by Westinghouse Electric Corporation for the US Department of Energy (DOE). The mission of the WIPP is to provide a research and development facility to demonstrate the safe disposal of transuranic (TRU) waste generated by the defense activities of the US Government. This report provides a comprehensive description of environmental activities at the WIPP during calendar year 1989. The WIPP facility will not receive waste until all concerns affecting opening the WIPP are addressed to the satisfaction of the Secretary of Energy. Therefore, this report describes the status of the preoperational activities of the Radiological Environmental Surveillance (RES) program, which are outlined in the Radiological Baseline Program for the Waste Isolation Pilot Plant (WTSD-TME-057). 72 refs., 13 figs., 20 tabs.

  3. Separation of packaging plastics by froth flotation in a continuous pilot plant

    SciTech Connect (OSTI)

    Carvalho, Teresa, E-mail: teresa.carvalho@ist.utl.p [CERENA, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Durao, Fernando; Ferreira, Celia [CERENA, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2010-11-15T23:59:59.000Z

    The objective of the research was to apply froth flotation to separate post-consumer PET (Polyethylene Terephthalate) from other packaging plastics with similar density, in a continuously operated pilot plant. A representative sample composed of 85% PET, 2.5% PVC (Polyvinyl Chloride) and 11.9% PS (Polystyrene) was subjected to a combination of alkaline treatment and surfactant adsorption followed by froth flotation. A mineral processing pilot plant, owned by a Portuguese mining company, was adapted for this purpose. The experimentation showed that it is possible to produce an almost pure concentrate of PET, containing 83% of the PET in feed, in a single bank of mechanical flotation cells. The concentrate grade attained was 97.2% PET, 1.1% PVC and 1.1% PS. By simulation it was shown that the Portuguese recycling industry specifications can be attained if one cleaning and one scavenger stages are added to the circuit.

  4. Socioeconomic study for the proposed waste isolation pilot plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    This document presents the historical and existing socioeconomic conditions in the vicinity of the proposed plant, projected changes in those conditions with and without the plant, and an outline of the various techniques used to make these projections. The analysis predicts impacts on the general economy in the area near the plant and on employment, personal income, population, social structure, the private economic sector, housing, land use, community services and facilities, and local government finances. Among the most important results are the following predictions: The economy of the area will derive $165 million directly and indirectly during the first 7.5 years of the project. After that, it will derive about $21 million directly and indirectly during each year of full operation. About 2100 jobs will be created directly and indirectly at the peak of the construction and about 950 jobs during the full operation. A net in-migration will occur: about 2250 people at the peak of the construction and about 1000 people during operation. A housing shortage may begin in Carlsbad in 1981 or 1982 and last for about 2 years.

  5. EIS-0026-S: Supplemental Environmental Impact Statement Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Office of Environmental Restoration and Waste Management prepared this statement to update the environmental record established during preparation of DOE/EIS-0026, Waste Isolation Pilot Plant, by evaluating the environmental impacts associated with new information, new circumstances, and modifications to the actions evaluated in DOE/EIS-0026 that were proposed in light of the new information.

  6. Core analyses for selected samples from the Culebra Dolomite at the Waste Isolation Pilot Plant site

    SciTech Connect (OSTI)

    Kelley, V.A.; Saulnier, G.J. Jr. (INTERA, Inc., Austin, TX (USA))

    1990-11-01T23:59:59.000Z

    Two groups of core samples from the Culebra Dolomite Member of the Rustler Formation at and near the Waste Isolation Pilot Plant were analyzed to provide estimates of hydrologic parameters for use in flow-and-transport modeling. Whole-core and core-plug samples were analyzed by helium porosimetry, resaturation and porosimetry, mercury-intrusion porosimetry, electrical-resistivity techniques, and gas-permeability methods. 33 refs., 25 figs., 10 tabs.

  7. The Scaleup of Structured Packing from Distillation Pilot Plant Testing to Commercial Application

    E-Print Network [OSTI]

    Berven, O. J.; Ulowetz, M. A.

    fractionator was performed, it was necessary to inventory the column with feed and, under total reflux conditions, draw off distillate or bottoms product until the proper composition profile was achieved. To investigate various design options, both... stream by a factor of five. In summary, from the customer's point of view, the application of structured packing to the main fractionator in the SFP fractionation train is a cOOluercial success. NEW DISTILLATION DEVELOPMENT PILOT PLANT Since...

  8. Data used in preliminary performance assessment of the Waste Isolation Pilot Plant (1990)

    SciTech Connect (OSTI)

    Rechard, R.P (Sandia National Labs., Albuquerque, NM (USA)); Luzzolino, H. (Geo-Centers, Inc., Albuquerque, NM (USA)); Sandha, J.S. (Science Applications International Corp., Albuquerque, NM (USA))

    1990-12-01T23:59:59.000Z

    This report documents the data available as of August 1990 and used by the Performance Assessment Division of Sandia National Laboratories in its December 1990 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Parameter values are presented in table form for the geologic subsystem, engineered barriers, borehole flow properties, climate variability, and intrusion characteristics. Sources for the data and a brief discussion of each parameter are provided. 101 refs., 72 figs., 21 tabs.

  9. Natural Gas Lease and Plant Fuel Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month Week 1 Week 2 Week 3 Week

  10. Peat gasification pilot plant program. Project 70105 quarterly report No. 2, September 1-November 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The objective of this program is twofold: (1) to modify an existing pilot plant; and (2) to operate the pilot plant with peat to produce substitute natural gas (SNG). Activities include the design, procurement, and installation of peat drying, grinding, screening, and lockhopper feed systems. Equipment installed for the program complements the existing pilot plant facility. Drying, grinding, and screening equipment for peat was installed and operated during the previous reporting periods. Three gasification tests (PT-1 through PT-3) had also been conducted using the toluene slurry feed system. Installation of the lockhopper dry feed system was completed on schedule. Shakedown of the system has begun. Operation of the modified 400-ton storage and transport system was successfully demonstrated with peat containing 10% moisture. Preparations for Test PT-4 are currently underway. Data analyses for Test PT-2 were completed and are presented. The low-pressure Plexiglas unit was modified to investigate the use of a downflowing pneumatic feed system for the dryer bed. Initial testing was begun.

  11. Material accountancy in the Ningyo-Toge uranium enrichment pilot plant

    SciTech Connect (OSTI)

    Akiba, M; Iwamoto, T.; Hori, M.; Ikeda, K.; Tani, A.

    1987-01-01T23:59:59.000Z

    The uranium enrichment pilot plant at PNC Ningyo-Toge Works, Japan, started operation in August 1979. Since then, inspection activities by the government of Japan and the International Atomic Energy Agency (IAEA) have been carried out. A basic measure of safeguards is evaluation of material unaccounted for (MUF) by closing the material balance. As the plant now produces uranium of <5% enrichment, a material balance is closed only once a year. Until now, eight physical inventories have been taken. This paper describes the operator's procedures for material accountability and the values of MUF reported to the government of Japan and the IAEA.

  12. Equipment specifications for an electrochemical fuel reprocessing plant

    SciTech Connect (OSTI)

    Hemphill, Kevin P [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  13. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen Telescope Looks4KickoffDepartment

  14. Cost and quality of fuels for electric utility plants, 1984

    SciTech Connect (OSTI)

    Not Available

    1985-07-01T23:59:59.000Z

    Information on the cost and quality of fossil fuel receipts in 1984 to electric utility plants is presented, with some data provided for each year from 1979 through 1984. Data were collected on Forms FERC-423 and EIA-759. Fuels are coal, fuel oil, and natural gas. Data are reported by company and plant, by type of plant, and by State and Census Region, with US totals. This report contains information on fossil fuel receipts to electric utility plants with a combined steam capacity of 50 megawatts or larger. Previous reports contained data on all electric plants with a combined capacity of 25 megawatts or larger. All historical data in this publication have been revised to reflect the new reporting threshold. Peaking unit data are no longer collected. A glossary of terms, technical notes, and references are also provided. 7 figs., 62 tabs.

  15. Ethanol Plant Production of Fuel Ethanol

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4. Weekly 4-Week

  16. Natural Gas Lease and Plant Fuel Consumption

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly Download Series History

  17. H-Coal Pilot Plant. Volume I. 1. 0 - executive summary and general project description, 2. 0 - general reference section. Final report. [Contains titles and abstracts of 42 topical reports and titles of relevant reports issued by associated organizations (Chevron, Conoco, EPRI, HRI, Mobil, and ORNL)

    SciTech Connect (OSTI)

    Not Available

    1984-04-01T23:59:59.000Z

    This Final Report documents the Phase III operations of the H-Coal direct liquefaction Pilot Plant at Catlettsburg, Kentucky, by Ashland Synthetic Fuels, Inc. The project was initiated in 1965 under the Office of Coal Research, US Department of Interior Contract No. 14-32-0002-154 with Hydrocarbon Research, Inc., and was completed under US Department of Energy Contract No. DE-AC05-76ET10143 with Ashland Synthetic Fuels, Inc. Data generated by HRI's Bench Scale and 3-ton per day Process Development Units were used as the design basis for the Pilot Plant. Subsequent Pilot Plant operations confirmed the validity of the data base. This report contains process, mechanical and environmental assessments of the Pilot Plant germane to commercial scale-up.

  18. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect (OSTI)

    Srinivasan, K. K.; Krishnan, S. R.

    2012-05-09T23:59:59.000Z

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas???????垄????????????????air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed ???????垄????????????????relative combustion phasing???????垄???????????????聺). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20???????????????掳 to 60???????????????掳BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  19. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    SciTech Connect (OSTI)

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

    2007-09-28T23:59:59.000Z

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, 揝eparation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  20. Cost and quality of fuels for electric plants 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  1. The start-up of the DIOS pilot plant (DIOS Project)

    SciTech Connect (OSTI)

    Sawada, Terutoshi

    1995-12-01T23:59:59.000Z

    The DIOS process has been successfully developed as an 8-year project commenced in April 1988. Based on the results of the element studies reported at the previous conference and at other meetings, the pilot plant, with a designed capacity of 500 t/d, was constructed and started up in october 1993. After the starting operation with the single smelting reduction furnace in the beginning of the first campaign, the pilot plant has been principally operated in integration, that is, with the smelting reduction furnace connected with the preheating and prereduction furnaces. So far five campaigns have been successfully conducted on schedule. The operation has been improved gradually and the designed performance has been achieved. New processes are targeted at the direct use of coal and iron ore fines to eliminate not only the problematic coke ovens but also pellet and sinter plants. The direct smelting reduction processes currently at the most advanced stage of development are the DIOS in Japan, the AISI in the USA and the HIsmelt in Australia.

  2. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    SciTech Connect (OSTI)

    Hill, L.R.; Aguilar, R.; Mercer, J.W. [Sandia National Labs., Albuquerque, NM (United States); Newman, G. [GRAM, Inc., Albuquerque, NM (United States)

    1997-01-01T23:59:59.000Z

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with borehole locations and times-of-drilling charts are included.

  3. Perspective of the Science Advisor to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    WEART,WENDELL D.

    1999-09-03T23:59:59.000Z

    In 1975 Sandia National Laboratories (SNL) was asked by the predecessor to the Department of Energy to assume responsibility for the scientific programs necessary to assure the safe and satisfactory development of a geologic repository in the salt beds of southeast New Mexico. Sandia has continued in the role of Science Advisor to the Waste Isolation Pilot Plant (WIPP) to the present time. This paper will share the perspectives developed over the past 25 years as the project was brought to fruition with successful certification by the Environmental Protection Agency (EPA) on May 13, 1998 and commencement of operations on April 26, 1999.

  4. From science to compliance: Geomechanics studies of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HANSEN,FRANCIS D.

    2000-06-05T23:59:59.000Z

    Mechanical and hydrological properties of salt provide excellent bases for geological isolation of hazardous materials. Regulatory certification of the Waste Isolation Pilot Plant (WIPP) testifies to the nearly ideal characteristics of bedded salt deposits in southeast New Mexico. The WIPP history includes decades of testing and scientific investigations, which have resulted in a comprehensive understanding of salt's mechanical deformational and hydrological properties over an applicable range of stresses and temperatures. Comprehensive evaluation of salt's favorable characteristics helped demonstrate regulatory compliance and ensure isolation of radioactive waste placed in a salt geological setting.

  5. Waste acceptance criteria for the Waste Isolation Pilot Plant. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    This Revision 4 of the Waste Acceptance Criteria (WAC), WIPP-DOE-069, identifies and consolidates existing criteria and requirements which regulate the safe handling and preparation of Transuranic (TRU) waste packages for transportation to and emplacement in the Waste Isolation Pilot Plant (WIPP). This consolidation does not invalidate any existing certification of TRU waste to the WIPP Operations and Safety Criteria (Revision 3 of WIPP-DOE--069) and/or Transportation: Waste Package Requirements (TRUPACT-II Safety Analysis Report for Packaging [SARP]). Those documents being consolidated, including Revision 3 of the WAC, currently support the Test Phase.

  6. Peat gasification pilot plant program. Project 70105 quarterly report No. 1, October 1, 1980-August 31, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    Over 200 peat gasification tests were conducted in laboratory-scale and PDU-scale (process development unit) equipment since 1976. A kinetic model for peat gasification was developed from laboratory and PDU data. The encouraging results of these tests and the model projections show that on the basis of its chemistry and kinetics, peat is an excellent raw material for commercial synthetic natural gas (SNG) production. To further advance peat gasification technology, DOE and GRI initiated a pilot-plant-scale program using an existing coal gasification pilot plant. This facility was adapted to peat processing and can convert 50 tons of peat to about 0.5 million standard cubic feet of SNG daily. The pilot plant is described in Appendix A. Only three major pieces of equipment - a peat dryer, a grinder, and a screener - were required to prepare the pilot plant for peat processing. This modification phase was completed in the winter of 1980-1981. After a number of drying, grinding, and screening tests, peat was first fed to the gasifier in April 1981, initiating the pilot plant studies to develop the PEATGAS process. Since that time, the gasification of Minnesota peat by the PEATGAS process has been successfully demonstrated in a series of gasification tests. This report covers the work done between October 1, 1980, and August 31, 1981, under DOE Contract No. AC01-80ET14688.

  7. Illinois Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0DecadeWithdrawals (MillionPlant Fuel

  8. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 1, Third comparison with 40 CFR 191, Subpart B

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Before disposing of transuranic radioactive wastes in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This volume contains an overview of WIPP performance assessment and a preliminary comparison with the long-term requirements of the Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B).

  9. Two Approaches to the Geologic Disposal of Long-Lived Nuclear Waste: Yucca Mountain, Nevada and the Waste Isolation Pilot Plant, Carlsbad, New Mexico

    SciTech Connect (OSTI)

    Levich, R. A.; Patterson, R. L.; Linden, R. M.

    2002-02-26T23:59:59.000Z

    A key component of the US energy program is to provide for the safe and permanent isolation of spent nuclear fuel and long-lived radioactive waste produced through programs related to national defense and the generation of electric power by nuclear utilities. To meet this challenge, the US Department of Energy (DOE) has developed a multi-faceted approach to the geologic disposal of long-lived nuclear wastes. Two sites are being developed or studied as current or potential deep geologic repositories for long lived radioactive wastes, the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico and Yucca Mountain, Nevada.

  10. Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration...

    Energy Savers [EERE]

    Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration Presentation by Acumentrics...

  11. Modeling of the AISI Two-Zone Smelter, Part II: Physical Modeling and the AISI Pilot Plant Trials

    SciTech Connect (OSTI)

    Keller, Joseph George; Zhang, X.; Fuehan, R. J.; Vassilicos, A.; Sarma, B.

    2001-06-01T23:59:59.000Z

    Physical modeling experiments were conducted for the American Iron and Steel Institute (AISI) two-zone smelter process. The effects of geometrical and operating parameters on backmixing flow rates were investigated. It was found that the driving force for a backmixing flow in the AISI smelter comes from gas stirring in a liquid bath. The backmixing flow rate in the AISI smelter is proportional to a bath depth and an opening area of a barrier. Based on the results of the physical modeling experiments, a dimensional analysis was performed to extrapolate the water modeling results to the operating conditions in the AISI pilot plant. Copper tracer trials were conducted at the AISI pilot plant to investigate the backmixing flow of the AISI two-zone smelter process. The results obtained from the pilot plant trials and the water modeling experiments were compared.

  12. Solids flow control and measurement in the PEATGAS pilot-plant program

    SciTech Connect (OSTI)

    Wohadlo, S.J.; Biljetina, R.; Laurens, R.M.; Bachta, R.

    1982-01-01T23:59:59.000Z

    In a pilot plant gasification program, the measurement and control of major process variables such as flow, temperature, pressure, density and level are essential to develop accurate material balance and reliable scale-up data. Of these, solids mass flow metering and control usually present the most difficult application. Problems are encountered because of (a) solids characteristics, which can cause erosion and plugging; (b) measurement requirements, which are often at elevated pressures and temperatures; and (c) changes in stream characteristics, such as density, viscosity and solids concentration. This paper reviews the approaches used to measure and control solid-liquid and solid-gas mixtures and elaborates on the design, installation and operating experiences of a lockhopper dry feed system commissioned to control solids feed to the gasifier. Accurate and reliable solids flow measurement and control was achieved during the operation of the PEATGAS pilot plant. Standard instrumentation, modified to meet process requirements, was used to measure multi-component flows of solid-gas and solid-liquid mixtures. In addition, a lockhopper feed system using an innovative solids rate control and measurement technique was installed, commissioned and operated. IGT as a process developer will continue to look for new or improved instrumentation that might be better suited to measure important process variables such as the solids mass flow applications discussed herein.

  13. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility for the demonstration of the permanent isolation of transuranic radioactive wastes in a geologic formation. The facility was constructed in southeastern New Mexico in a manner intended to meet criteria established by the scientific and regulatory community for the safe, long-term disposal of transuranic wastes. The US Department of Energy (DOE) is preparing an application to demonstrate compliance with the requirements outlined in Title 40, Part 191 of the Code of Federal Regulations (CFR) for the permanent disposal of transuranic wastes. As mandated by the Waste Isolation Pilot Plant (WIPP) Land Withdrawal Act of 1992, the US Environmental Protection Agency (EPA) must evaluate this compliance application and provide a determination regarding compliance with the requirements within one year of receiving a complete application. Because the WIPP is a very complex program, the DOE has planned to submit the application as a draft in two parts. This strategy will allow for the DOE and the EPA to begin technical discussions on critical WIPP issues before the one-year compliance determination period begins. This report is the first of these two draft submittals.

  14. Accounting strategy of tritium inventory in the heavy water detritiation pilot plant from ICIT Rm. Valcea

    SciTech Connect (OSTI)

    Bidica, N.; Stefanescu, I. [Inst. of Cryogenics and Isotopes Technologies, Uzinei Str. No. 4, Rm. Valcea (Romania); Cristescu, I. [TLK, Forschungszentrum Karlsruhe, Postfach 3640, D76021 Karlsruhe (Germany); Bornea, A.; Zamfirache, M.; Lazar, A.; Vasut, F.; Pearsica, C.; Stefan, I. [Inst. of Cryogenics and Isotopes Technologies, Uzinei Str. No. 4, Rm. Valcea (Romania); Prisecaru, I.; Sindilar, G. [Univ. Politehnica of Bucharest, Splaiul Independentei 313, Bucharest (Romania)

    2008-07-15T23:59:59.000Z

    In this paper we present a methodology for determination of tritium inventory in a tritium removal facility. The method proposed is based on the developing of computing models for accountancy of the mobile tritium inventory in the separation processes, of the stored tritium and of the trapped tritium inventory in the structure of the process system components. The configuration of the detritiation process is a combination of isotope catalytic exchange between water and hydrogen (LPCE) and the cryogenic distillation of hydrogen isotopes (CD). The computing model for tritium inventory in the LPCE process and the CD process will be developed basing on mass transfer coefficients in catalytic isotope exchange reactions and in dual-phase system (liquid-vapour) of hydrogen isotopes distillation process. Accounting of tritium inventory stored in metallic hydride will be based on in-bed calorimetry. Estimation of the trapped tritium inventory can be made by subtraction of the mobile and stored tritium inventories from the global tritium inventory of the plant area. Determinations of the global tritium inventory of the plant area will be made on a regular basis by measuring any tritium quantity entering or leaving the plant area. This methodology is intended to be applied to the Heavy Water Detritiation Pilot Plant from ICIT Rm. Valcea (Romania) and to the Cernavoda Tritium Removal Facility (which will be built in the next 5-7 years). (authors)

  15. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 1, Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This volume includes the following chapters: Waste Isolation Pilot Plant RCRA A permit application; facility description; waste analysis plan; groundwater monitoring; procedures to prevent hazards; RCRA contingency plan; personnel training; corrective action for solid waste management units; and other Federal laws.

  16. Scenario development for the Waste Isolation Pilot Plant: Building confidence in the assessment

    SciTech Connect (OSTI)

    Galson, D.A. [Galson Sciences Limited, (United Kingdom); Swift, P.N. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01T23:59:59.000Z

    Scenario developments is part of the iterative performance assessment (PA) process for the Waste Isolation Pilot Plant (WIPP). Scenario development for the WIPP has been the subject of intense external review, and is certain to be the subject of continued scrutiny as the project proceeds toward regulatory compliance. The principal means of increasing confidence is this aspect of the PA will be through the use of a systematic and thorough procedure toward developing the scenarios and conceptual models on which the assessment is to be based. Early and ongoing interaction with project reviewers can assist with confidence building. Quality of argument and clarity of presentation in PA will be of key concern. Appropriate tools are required for documenting and tracking assumptions, through a single assessment phase, and between iterative assessment phases. Risks associated with future human actions are of particular concern to the WIPP project, and international consensus on the principles for incorporation of future human actions in assessments would be valuable.

  17. Limestone/adipic acid FGD and stack opacity reduction pilot plant tests at Big Rivers

    SciTech Connect (OSTI)

    Laslo, D.; Bakke, E.; Chisholm, E.

    1984-01-01T23:59:59.000Z

    Big Rivers Electric Corporation (BREC) contracted Peabody Process Systems, Inc. (PPSI) to install a flue gas cleaning (FGC) pilot plant at the BREC R.D. Green Station Unit No. 2 located at Sebree, KY. A six month test program was completed demonstrating technology for: alternatives to using lime as an alkali; methods for improving cake dewatering; identification of the causes of high stack opacity; and methods for the reduction of high stack opacity. This paper presents highlights extracted from the reports submitted by PPSI to BREC on this test program. BREC was primarily interested in reduction of operating costs, if possible, by using an alkali less expensive than lime, and by improving the poor dewatering characteristic inherent in a dolomitic lime system. BREC was also within compliance for particulate emissions and opacity in the duct after the dry electrostatic precipitator, but not in compliance with the stack opacity regulation, and therefore wanted to investigate methods for stack opacity reduction.

  18. Waste Isolation Pilot Plant Title I operator dose calculations. Final report, LATA report No. 90

    SciTech Connect (OSTI)

    Hughes, P.S.; Rigdon, L.D.

    1980-02-01T23:59:59.000Z

    The radiation exposure dose was estimated for the Waste Isolation Pilot Plant (WIPP) operating personnel who do the unloading and transporting of the transuranic contact-handled waste. Estimates of the radiation source terms for typical TRU contact-handled waste were based on known composition and properties of the waste. The operations sequence for waste movement and storage in the repository was based upon the WIPP Title I data package. Previous calculations had been based on Conceptual Design Report data. A time and motion sequence was developed for personnel performing the waste handling operations both above and below ground. Radiation exposure calculations were then performed in several fixed geometries and folded with the time and motion studies for individual workers in order to determine worker exposure on an annual basis.

  19. Waste Isolation Pilot Plant site environmental report for calendar year 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) monitors a comprehensive set of parameters in order to detect any potential environmental impacts and establish baselines for future quantitative environmental impact evaluations. Surface water and groundwater, soil, and biotics are measured for background radiation. Nonradiological environmental monitoring activities include meteorological, air quality, soil properties, and the status of the local biological community. Ecological studies focus on the immediate area surrounding the site with emphasis on the salt storage pile, whereas baseline radiological surveillance covers a broader geographic area including nearby ranches, villages, and cities. Since the WIPP is still in a preoperational state, no waste has been received; therefore, certain elements required by Order DOE 5400.1 are not presented in this report. 15 figs. 19 tabs.

  20. Scenario development for the Waste Isolation Pilot Plant: Building confidence in the assessment

    SciTech Connect (OSTI)

    Galson, D.A.; Swift, P.N.

    1994-07-01T23:59:59.000Z

    Scenario development is part of the iterative performance assessment (PA) process for the Waste Isolation Pilot Plant (WIPP). Scenario development for the WIPP has been the subject of intense external review and is certain to be the subject of continued scrutiny as the project proceeds toward regulatory compliance. The principal means of increasing confidence in this aspect of the PA will be through the use of the systematic and thorough procedure toward developing the scenarios and conceptual models on which the assessment is to be based. Early and ongoing interaction with project reviewers can assist with confidence building. Quality of argument and clarity of presentation in PA will be of key concern. Appropriate tools are required for documenting and tracking assumptions, through a single assessment phase, and between iterative assessment phases. Risks associated with future human actions are of particular concern to the WIPP project, and international consensus on the principles for incorporation of future human actions in assessments would be valuable.

  1. Software/firmware design specification for 10-MWe solar-thermal central-receiver pilot plant

    SciTech Connect (OSTI)

    Ladewig, T.D.

    1981-03-01T23:59:59.000Z

    The software and firmware employed for the operation of the Barstow Solar Pilot Plant are completely described. The systems allow operator control of up to 2048 heliostats, and include the capability of operator-commanded control, graphic displays, status displays, alarm generation, system redundancy, and interfaces to the Operational Control System, the Data Acquisition System, and the Beam Characterization System. The requirements are decomposed into eleven software modules for execution in the Heliostat Array Controller computer, one firmware module for execution in the Heliostat Field Controller microprocessor, and one firmware module for execution in the Heliostat Controller microprocessor. The design of the modules to satisfy requirements, the interfaces between the computers, the software system structure, and the computers in which the software and firmware will execute are detailed. The testing sequence for validation of the software/firmware is described. (LEW)

  2. Technical basis for external dosimetry at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Bradley, E.W. [Science Applications International Corp., Oak Ridge, TN (United States); Wu, C.F.; Goff, T.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

    1993-12-31T23:59:59.000Z

    The WIPP External Dosimetry Program, administered by Westinghouse Electric Corporation, Waste Isolation Division, for the US Department of Energy (DOE), provides external dosimetry support services for operations at the Waste Isolation Pilot Plant (WIPP) Site. These operations include the receipt, experimentation with, storage, and disposal of transuranic (TRU) wastes. This document describes the technical basis for the WIPP External Radiation Dosimetry Program. The purposes of this document are to: (1) provide assurance that the WIPP External Radiation Dosimetry Program is in compliance with all regulatory requirements, (2) provide assurance that the WIPP External Radiation Dosimetry Program is derived from a sound technical base, (3) serve as a technical reference for radiation protection personnel, and (4) aid in identifying and planning for future needs. The external radiation exposure fields are those that are documented in the WIPP Final Safety Analysis Report.

  3. Microbial Gas Generation Under Expected Waste Isolation Pilot Plant Repository Conditions: Final Report

    SciTech Connect (OSTI)

    Gillow, J.B.; Francis, A.

    2011-07-01T23:59:59.000Z

    Gas generation from the microbial degradation of the organic constituents of transuranic (TRU) waste under conditions expected in the Waste Isolation Pilot Plant (WIPP) was investigated. The biodegradation of mixed cellulosic materials and electron-beam irradiated plastic and rubber materials (polyethylene, polyvinylchloride, hypalon, leaded hypalon, and neoprene) was examined. We evaluated the effects of environmental variables such as initial atmosphere (air or nitrogen), water content (humid ({approx}70% relative humidity, RH) and brine inundated), and nutrient amendments (nitogen phosphate, yeast extract, and excess nitrate) on microbial gas generation. Total gas production was determined by pressure measurement and carbon dioxide (CO{sub 2}) and methane (CH{sub 4}) were analyzed by gas chromatography; cellulose degradation products in solution were analyzed by high-performance liquid chromatography. Microbial populations in the samples were determined by direct microscopy and molecular analysis. The results of this work are summarized.

  4. Waste Isolation Pilot Plant disposal phase supplemental environmental impact statement. Implementation plan

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    The Implementation Plan for the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement (SEIS-II) has two primary purposes: (1) To report on the results of the scoping process (2) To provide guidance for preparing SEIS-II SEIS-II will be the National Environmental Policy Act (NEPA) review for WIPP`s disposal phase. Chapter 1 of this plan provides background on WIPP and this NEPA review. Chapter 2 describes the purpose and need for action by the Department of Energy (hereafter DOE or the Department), as well as a description of the Proposed Action and alternatives being considered. Chapter 3 describes the work plan, including the schedule, responsibilities, and planned consultations with other agencies and organizations. Chapter 4 describes the scoping process, presents major issues identified during the scoping process, and briefly indicates how issues will be addressed in SEIS-II.

  5. Historical Background on the Performance Assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    RECHARD,ROBERT P.

    1999-10-21T23:59:59.000Z

    In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the U.S. Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a Research and development facility for the safe management storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and after site selection, the U.S. Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance. assessment conducted in 1996, which is summarized in this special issue of Reliability Engineering and System Safety. This performance assessment was the culmination of four preliminary performance assessments conducted between 1989 and 1992. This paper provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project.

  6. Environmental management assessment of the Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This document contains the results of the Environmental Management Assessment of the Waste Isolation Pilot Plant (WIPP). This Assessment was conducted by EH-24 from July 19 through July 30, 1993 to advise the Secretary of Energy of the adequacy of management systems established at WIPP to ensure the protection of the environment and compliance with Federal, state, and DOE environmental requirements. The mission of WIPP is to demonstrate the safe disposal of transuranic (TRU) waste. During this assessment, activities and records were reviewed and interviews were conducted with personnel from the management and operating contractors. This assessment revealed that WIPP`s environmental safety and health programs are satisfactory, and that all levels of the Waste Isolation Division (WID) management and staff consistently exhibit a high level of commitment to achieve environmental excellence.

  7. Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report

    SciTech Connect (OSTI)

    Beauheim, Richard L.; Domski, Paul S.; Roberts, Randall M.

    1999-07-01T23:59:59.000Z

    This report presents interpretations of hydraulic tests conducted in bedded evaporates of the Salado Formation from May 1992 through May 1995 at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. The WIPP is a US Department of Energy research and development facility designed to demonstrate safe disposal of transuranic wastes from the nation's defense programs. The WIPP disposal horizon is located in the lower portion of the Permian Salado Formation. The hydraulic tests discussed in this report were performed in the WIPP underground facility by INTERA inc. (now Duke Engineering and Services, Inc.), Austin, Texas, following the Field Operations Plan and Addendum prepared by Saulnier (1988, 1991 ) under the technical direction of Sandia National Laboratories, Albuquerque, New Mexico.

  8. A formal expert judgment procedure for performance assessments of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Trauth, K.M. [Sandia National Labs., Albuquerque, NM (United States); Guzowski, R.V. [Science Applications International Corp., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States). Business Administration & Economics Div.

    1994-09-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is an experimental facility located in southeastern New Mexico. It has been designed to determine the feasibility of the geologic disposal of defense-generated transuranic waste in a deep bedded-salt formation. The WIPP was also designed for disposal and will operate in that capacity if approved. The WIPP Performance Assessment Department at Sandia National Laboratories has been conducting analyses to assess the long-term performance of the WIPP. These analyses sometimes require the use of expert judgment. This Department has convened several expert-judgment panels and from that experience has developed an internal quality-assurance procedure to guide the formal elicitation of expert judgment. This protocol is based on the principles found in the decision-analysis literature.

  9. Identification and evaluation of appropriate backfills for the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Bynum, R.V. [Science Applications International Corp. (United States); Stockman, C.; Papenguth, H. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1998-08-01T23:59:59.000Z

    A backfill system has been designed for the Waste Isolation Pilot Plant (WIPP) which will control the chemical environment of the post-closure repository to a domain where the actinide solubility is within its lowest region. The actinide solubility is highly dependent on the chemical species which constitute the fluid, the resulting pH of the fluid, and the oxidation state of the actinide which is stable under the specific conditions. The use of magnesium oxide (MgO) has the backfill material not only controls the pH of the expected fluids, but also effectively removes carbonate from the system, which has a significant impact on actinide solubility. The backfill selection process, emplacement system design, and confirmatory experimental results are presented.

  10. Characterization of subjective uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; MARTELL,MARY-ALENA; TIERNEY,MARTIN S.

    2000-05-18T23:59:59.000Z

    The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191,40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of subjective uncertainty is discussed, including assignment of distributions, uncertain variables selected for inclusion in analysis, correlation control, sample size, statistical confidence on mean complementary cumulative distribution functions, generation of Latin hypercube samples, sensitivity analysis techniques, and scenarios involving stochastic and subjective uncertainty.

  11. Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-09-01T23:59:59.000Z

    This Safety Evaluation Report (SER) documents the Department of Energy抯 (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

  12. Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Holt, R.M.; Powers, D.W. (IT Corporation (USA))

    1990-12-01T23:59:59.000Z

    The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

  13. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-02T23:59:59.000Z

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  14. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  15. Certifying the Waste Isolation Pilot Plant: Lessons Learned from the WIPP Experience

    SciTech Connect (OSTI)

    Anderson, D.R. (Rip); Chu, Margaret S.Y.; Froehlich, Gary K.; Howard, Bryan A.; Howarth, Susan M.; Larson, Kurt W.; Pickering, Susan Y.; Swift, Peter N.

    1999-07-13T23:59:59.000Z

    In May 1998, the US Environmental Protection Agency (EPA) certified the US Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) as being in compliance with applicable long-term regulations governing the permanent disposal of spent nuclear fuel, high-level, and transuranic radioactive wastes. The WIPP is the first deep geologic repository in the US to have successfully demonstrated regulatory compliance with long-term radioactive waste disposal requirements. The first disposal of TRU waste at WIPP occurred on March 26, 1999. Many of the lessons learned during the WIPP Project's transition from site characterization and experimental research to the preparation of a successful application may be of general interest to other repository programs. During a four-year period (1992 to 1996), the WIPP team [including the DOE Carlsbad Area Office (CAO), the science advisor to CAO, Sandia National Laboratories (SNL), and the management and operating contractor of the WIPP site, Westinghouse Electric Corporation (WID)] met its aggressive schedule for submitting the application without compromising the integrity of the scientific basis for the long-term safety of the repository. Strong leadership of the CAO-SNL-WID team was essential. Within SNL, a mature and robust performance assessment (PA) allowed prioritization of remaining scientific activities with respect to their impact on regulatory compliance. Early and frequent dialog with EPA staff expedited the review process after the application was submitted. Questions that faced SNL are familiar to geoscientists working in site evaluation projects. What data should be gathered during site characterization? How can we know when data are sufficient? How can we know when our understanding of the disposal system is sufficient to support our conceptual models? What constitutes adequate ''validation'' of conceptual models for processes that act over geologic time? How should we use peer review and expert judgment? Other lessons learned by SNL and the WIPP team are more specific to the regulatory context of the project and the demands imposed by pervasive review by the regulator and other external organizations. How should we document the relationship between site data and the parameter values used in computer models? How can we manage software configuration and use it to support the regulatory requirement that analyses be traceable and reproducible? Can we institute a quality assurance (QA) program that will meet the regulatory requirements and enhance the process without unreasonable budget and schedule impacts? How can we resolve technical disputes, both within the project and with external critics? How should we involve regulators and stakeholders in the compliance process? The WIPP teams answers to these questions, and others like them, were, in many cases, pragmatic solutions based on the needs of the pro-warn at the time. Some problems encountered and their solutions may be of limited interest. However, that it is possible to license a geologic repository in a regulatory proceeding while incorporating meaningful public review and criticism is a lesson of general interest to all radioactive waste management programs.

  16. Preliminary comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1990

    SciTech Connect (OSTI)

    Bertram-Howery, S.G.; Marietta, M.G.; Rechard, R.P.; Anderson, D.R. (Sandia National Labs., Albuquerque, NM (USA)); Swift, P.N. (Tech. Reps., Inc., Albuquerque, NM (USA)); Baker, B.L. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Bean, J.E. Jr.; McCurley, R.D.; Rudeen, D.K. (New Mexico Engineering Research Inst., Albuquerque, NM (USA)); Beyeler, W.; Brinster, K.F.; Guzowski, R.V.; Sch

    1990-12-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is planned as the first mined geologic repository for transuranic (TRU) wastes generated by defense programs of the United States Department of Energy (DOE). Before disposing of waste at the WIPP, the DOE must evaluate compliance with the United states Environmental Protection Agency's (EPA) Standard, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR Part 191, US EPA, 1985). Sandia National Laboratories (SNL) is evaluating long-term performance against criteria in Subpart B of the Standard. Performance assessment'' as used in this report includes analyses for the Containment Requirements ({section} 191.13(a)) and the Individual Protection Requirements ({section} 191.15). Because proving predictions about future human actions or natural events is not possible, the EPA expects compliance to be determined on the basis of specified quantitative analyses and informed, qualitative judgment. The goal of the WIPP performance-assessment team at SNL is to provide as detailed and thorough a basis as practical for the quantitative aspects of that decision. This report summarizes SNL's late-1990 understanding of the WIPP Project's ability to evaluate compliance with Subpart B. 245 refs., 88 figs., 23 tabs.

  17. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    SciTech Connect (OSTI)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01T23:59:59.000Z

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  18. 10-MWe solar-thermal central-receiver pilot plant, solar-facilities design integration: plant-support subsystem procurement documentation (RADL Item 7-44D)

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    Purchase specifications are given for the specific long lead items to be procured for the 10 MWe Solar Pilot Plant. The hardware is grouped into two categories: 480 Volt Load Center and 480 Volt Motor Control Centers; and Power, Control and Instrumentation Cable. The purchase orders for each procurement are included. Need dates for each item are identified. (LEW)

  19. EDF Nuclear Power Plants Operating Experience with MOX fuel

    SciTech Connect (OSTI)

    Thibault, Xavier [EDF Generation, Tour EDF Part Dieu - 9 rue des Cuirassiers B.P.3181 - 69402 Lyon Cedex 03 (France)

    2006-07-01T23:59:59.000Z

    EDF started Plutonium recycling in PWR in 1987 and progressively all the 20 reactors, licensed in using MOX fuel, have been loaded with MOX assemblies. At the origin of MOX introduction, these plants operated at full power in base load and the core management limited the irradiation time of MOX fuel assemblies to 3 annual cycles. Since 1995 all these reactors can operate in load follow mode. Since that time, a large amount of experience has been accumulated. This experience is very positive considering: - Receipt, handling, in core behaviour, pool storage and shipment of MOX fuel; - Operation of the various systems of the plant; - Environment impact; - Radioprotection; - Safety file requirements; - Availability for the grid. In order to reduce the fuel cost and to reach a better adequacy between UO{sub 2} fuel reprocessing flow and plutonium consumption, EDF had decided to improve the core management of MOX plants. This new core management call 'MOX Parity' achieves parity for MOX and UO{sub 2} assemblies in term of discharge burn-up. Compared to the current MOX assembly the Plutonium content is increased from 7,08% to 8,65% (equivalent to natural uranium enriched to respectively 3,25% and 3,7%) and the maximum MOX assembly burn-up moves from 42 to 52 GWd/t. This amount of burn-up is obtained from loading MOX assemblies for one additional annual cycle. Some, but limited, adaptations of the plant are necessary. In addition a new MOX fuel assembly has been designed to comply with the safety criteria taking into account the core management performances. These design improvements are based on the results of an important R and D program including numerous experimental tests and post-irradiated fuel examinations. In particular, envelope conditions compared to MOX Parity neutronic solicitations has been extensively investigated in order to get a full knowledge of the in reactor fuel behavior. Moreover, the operating conditions of the plant have been evaluated in many details and finally no important impact is anticipated. The industrial maturity of plutonium recycling activities is fully demonstrated and a new progress can be done with a complete confidence. The licensing process of 'MOX Parity' core management is in progress and its implementation on the 20 PWR is now expected at mid 2007. (author)

  20. Pilot plant assessment of blend properties and their impact on critical power plant components

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    A series of tests were performed to determine the effects of blending eastern bituminous coals with western subbituminous coals on utility boiler operation. Relative to the baseline bituminous coal, the testing reported here indicated that there were significant impacts to boiler performance due to the blending of the eastern and western coals. Results indicated that fuel blending can be used to adequately control flue gas emissions of both SO{sub 2} and NO{sub x} at the expense of reduced milling efficiency, increased sootblowing in the high-temperature and low-temperature regions of the boiler and, to a lesser extent, decreased collection efficiency for an electrostatic precipitator. The higher reactivity of the subbituminous coal increased the overall combustion efficiency, which may tend to decrease the impact of milling efficiency losses. The extent of these impacts was directly related to the percentage of subbituminous coal in the blends. At the lowest blend ratios of subbituminous coal, the impacts were greatly reduced.

  1. Fuel cell power plants in a distributed generator application

    SciTech Connect (OSTI)

    Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31T23:59:59.000Z

    ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

  2. Draft forecast of the final report for the comparison to 40 CFR Part 191, Subpart B, for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Bertram-Howery, S.G.; Marietta, M.G.; Anderson, D.R.; Gomez, L.S.; Rechard, R.P. (Sandia National Labs., Albuquerque, NM (USA)); Brinster, K.F.; Guzowski, R.V. (Science Applications International Corp., Albuquerque, NM (USA))

    1989-12-01T23:59:59.000Z

    The United States Department of Energy is planning to dispose of transuranic wastes, which have been generated by defense programs, at the Waste Isolation Pilot Plant. The WIPP Project will assess compliance with the requirements of the United States Environmental Protection Agency. This report forecasts the planned 1992 document, Comparison to 40 CFR, Part 191, Subpart B, for the Waste Isolation Pilot Plant (WIPP). 130 refs., 36 figs., 11 tabs.

  3. Basic data report for drillholes at the H-11 complex (Waste Isolation Pilot Plant-WIPP)

    SciTech Connect (OSTI)

    Mercer, J.W. (Sandia National Labs., Albuquerque, NM (USA)); Snyder, R.P. (Geological Survey, Denver, CO (USA))

    1990-05-01T23:59:59.000Z

    Drillholes H-11b1, H-11b2, and H-11b3 were drilled from August to December 1983 for site characterization and hydrologic studies of the Culebra Dolomite Member of the Upper Permian Rustler Formation at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico. In October 1984, the three wells were subjected to a series of pumping tests designed to develop the wells, provide information on hydraulic communication between the wells, provide hydraulic properties information, and to obtain water samples for quality of water measurements. Based on these tests, it was determined that this location would provide an excellent pad to conduct a convergent-flow non-sorbing tracer test in the Culebra dolomite. In 1988, a fourth hole (H-11b4) was drilled at this complex to provide a tracer-injection hole for the H-11 convergent-flow tracer test and to provide an additional point at which the hydraulic response of the Culebra H-11 multipad pumping test could be monitored. A suite of geophysical logs was run on the drillholes and was used to identify different lithologies and aided in interpretation of the hydraulic tests. 4 refs., 6 figs., 6 tabs.

  4. Waste Isolation Pilot Plant annual site environmental report for calendar year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Operational Environmental Monitoring Plan (OEMP) defined a comprehensive set of parameters which are monitored to detect potential environmental impacts and establish baselines for future environmental evaluations. Surface water and groundwater, air, soil, and biotics are monitored for radioactivity levels. Nonradiological environmental monitoring activities include air, water quality, soil properties, meteorological measurements and determination of the status of the local biological community. Ecological studies focus on the immediate area surrounding the WIPP site with emphasis on the salt storage pile. The baseline radiological surveillance covers a broader geographic area including nearby ranches, villages, and cities. Since the WIPP is still in its preoperational phase (i.e., no waste has been received) certain operational requirements of DOE Orders 5400.1, 5400.5, and the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T) are not relevant. Therefore, this report does not discuss items such as radionuclide emissions and effluents and subsequent doses to the public.

  5. Actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP): FY94 results

    SciTech Connect (OSTI)

    Novak, C.F. [ed.

    1995-08-01T23:59:59.000Z

    This document contains six reports on actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP). These reports, completed in FY94, are relevant to the estimation of the potential dissolved actinide concentrations in WIPP brines under repository breach scenarios. Estimates of potential dissolved actinide concentrations are necessary for WIPP performance assessment calculations. The specific topics covered within this document are: the complexation of oxalate with Th(IV) and U(VI); the stability of Pu(VI) in one WIPP-specific brine environment both with and without carbonate present; the solubility of Nd(III) in a WIPP Salado brine surrogate as a function of hydrogen ion concentration; the steady-state dissolved plutonium concentrations in a synthetic WIPP Culebra brine surrogate; the development of a model for Nd(III) solubility and speciation in dilute to concentrated sodium carbonate and sodium bicarbonate solutions; and the development of a model for Np(V) solubility and speciation in dilute to concentrated sodium Perchlorate, sodium carbonate, and sodium chloride media.

  6. Correlation of drillhole and shaft logs. Waste Isolation Pilot Plant (WIPP) project, southeastern New Mexico

    SciTech Connect (OSTI)

    Jarolimek, L.; Timmer, M.J.; Powers, D.W.

    1983-03-01T23:59:59.000Z

    This report on stratigraphic correlations from drillhole and shaft data along a generally north-south section across the potential extent of underground excavations of the Waste Isolation Pilot Plant (WIPP) facility was prepared as part of the Site Validation Field Program Plan. The results provide (1) input for the report entitled ''Results of Site Validation Experiments,'' (2) input for other WIPP-related investigations, including the Design Validation Program, and (3) a framework for further underground activities at WIPP. In general, this correlation study confirmed previous findings, including: relatively high consistency of thickness and lateral continuity of all beds within the Salado Formation, especially in the host rock interval; gentle, generally south and southeastward dips/slopes of the host rock interval strata; close correspondence between stratigraphic data obtained from the present underground excavations and data derived from the previous investigative drillholes and shafts; and depositional origin of the undulations on the top of Marker Bed (MB) 139 and relatively small variation in its thickness (1.2 to 4.1 feet).

  7. Consideration of nuclear criticality when disposing of transuranic waste at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    RECHARD,ROBERT P.; SANCHEZ,LAWRENCE C.; STOCKMAN,CHRISTINE T.; TRELLUE,HOLLY R.

    2000-04-01T23:59:59.000Z

    Based on general arguments presented in this report, nuclear criticality was eliminated from performance assessment calculations for the Waste Isolation Pilot Plant (WIPP), a repository for waste contaminated with transuranic (TRU) radioisotopes, located in southeastern New Mexico. At the WIPP, the probability of criticality within the repository is low because mechanisms to concentrate the fissile radioisotopes dispersed throughout the waste are absent. In addition, following an inadvertent human intrusion into the repository (an event that must be considered because of safety regulations), the probability of nuclear criticality away from the repository is low because (1) the amount of fissile mass transported over 10,000 yr is predicted to be small, (2) often there are insufficient spaces in the advective pore space (e.g., macroscopic fractures) to provide sufficient thickness for precipitation of fissile material, and (3) there is no credible mechanism to counteract the natural tendency of the material to disperse during transport and instead concentrate fissile material in a small enough volume for it to form a critical concentration. Furthermore, before a criticality would have the potential to affect human health after closure of the repository--assuming that a criticality could occur--it would have to either (1) degrade the ability of the disposal system to contain nuclear waste or (2) produce significantly more radioisotopes than originally present. Neither of these situations can occur at the WIPP; thus, the consequences of a criticality are also low.

  8. Characterization of stochastic uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; DAVIS,FREDDIE J.; JOHNSON,J.D.

    2000-05-19T23:59:59.000Z

    The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191, 40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of stochastic uncertainty is discussed including drilling intrusion time, drilling location penetration of excavated/nonexcavated areas of the repository, penetration of pressurized brine beneath the repository, borehole plugging patterns, activity level of waste, and occurrence of potash mining. Additional topics discussed include sampling procedures, generation of individual 10,000 yr futures for the WIPP, construction of complementary cumulative distribution functions (CCDFs), mechanistic calculations carried out to support CCDF construction the Kaplan/Garrick ordered triple representation for risk and determination of scenarios and scenario probabilities.

  9. Historical Background on Assessment the Performance of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Rechard, R.P.

    1999-06-01T23:59:59.000Z

    In 1979, six years after selecting the Delaware Basin as a potential disposal area, Congress authorized the US Department of Energy to build the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, as a research and development facility for the safe management, storage, and disposal of waste contaminated with transuranic radioisotopes. In 1998, 19 years after authorization and 25 years after site selection, the US Environmental Protection Agency (EPA) certified that the WIPP disposal system complied with its regulations. The EPA's decision was primarily based on the results from a performance assessment conducted in 1996. This performance assessment was the culmination of four preliminary performance assessments conducted between 1989 and 1992. This report provides a historical setting and context for how the performance of the deep geologic repository at the WIPP was analyzed. Also included is background on political forces acting on the project. For example, the federal requirement to provide environmental impact statements and negotiated agreements with the State of New Mexico influenced the type of scientific areas that were investigated and the engineering analysis prior to 1989 for the WIPP.

  10. Performance Assessment in Support of the 1996 Compliance Certification Application for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Anderson, D.R.; Basabilvazo, G.; Helton, J.C.; Jow, H.-N.; Marietta, M.G.

    1998-10-14T23:59:59.000Z

    The conceptual and computational structure of a performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) is described. Important parts of thk structure are @ maintenance of a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertain, with stochastic uncefinty arising from the many possible disruptions that could occur over the 10,000 Y regulatory period fiat applies to the WIPP and subjective uncertainty arising from `the imprecision with which many of the quantities rquired in tie `hdysis are known, (ii) use of Latin hypercttbe sampling to incorporate the effects of subjective uncefirtty, (iii) use of Monte Carlo (i.e., random) sampling to incorporate the effects of stochastic uncetinty, and OV) efficient use of tie necessarily limited number of mechanistic calculations that can be performed to SUPPOII the analysis. The WIPP is under development by the U.S. Department of Ener~ (DOE) for the geologic (i.e., deep underground) disposal of transuranic (TRU) waste, with the indicated PA supporting a ~Compliance Certification Application (CCA) by the DOE to the U.S. Environmental Protection Agency (EPA) in October 1996 for tie necessary certifications for the WIPP to begin operation. If certified, the WIPP will be the first operational faciliv in tie United States for the geologic disposal of ra&oactive waste.

  11. Uncertainty and Sensitivity Analysis in Performance Assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Helton, J.C.

    1998-12-17T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is under development by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. This development has been supported by a sequence of performance assessments (PAs) carried out by Sandla National Laboratories (SNL) to assess what is known about the WIPP and to provide .tidance for future DOE research and development activities. Uncertainty and sensitivity analysis procedures based on Latin hypercube sampling and regression techniques play an important role in these PAs by providing an assessment of the uncertainty in important analysis outcomes and identi~ing the sources of thk uncertainty. Performance assessments for the WIPP are conceptually and computational] y interesting due to regulatory requirements to assess and display the effects of both stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, where stochastic uncertainty arises from the possible disruptions that could occur over the 10,000 yr regulatory period associated with the WIPP and subjective uncertainty arises from an inability to unambi-aously characterize the many models and associated parameters required in a PA for the WIPP. The interplay between uncertainty analysis, sensitivity analysis, stochastic uncertainty and subjective uncertainty are discussed and illustrated in the context of a recent PA carried out by SNL to support an application by the DOE to the U.S. Environmental Protection Agency for the certification of the WIPP for the disposal of TRU waste.

  12. Summary discussion of the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; ANDERSON,D. RICHARD; BASABILVAZO,G.; JOW,HONG-NIAN; MARIETTA,MELVIN G.

    2000-05-19T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is under development by the US Department of Energy (DOE) for the geologic disposal of transuranic waste. The construction of complementary cumulative distribution functions (CCDFs) for total radionuclide release from the WIPP to the accessible environment is described. The resultant CCDFs (1) combine releases due to cuttings and cavings, spallings, direct brine release, and long-term transport in flowing groundwater, (2) fall substantially to the left of the boundary line specified by the U.S. Environmental Protection Agency's (EPA's) standard 40 CFR 191 for the geologic disposal of radioactive waste, and (3) constitute an important component of the DOE's successful Compliance Certification Application to the EPA for the WIPP. Insights and perspectives gained in the performance assessment (PA) that led to these CCDFs are described, including the importance of (1) an iterative approach to PA, (2) uncertainty and sensitivity analysis, (3) a clear conceptual model for the analysis, (4) the separation of stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, (5) quality assurance procedures, (6) early involvement of peer reviewers, regulators, and stake holders, (7) avoidance of conservative assumptions, and (8) adequate documentation.

  13. Conceptual structure of the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; ANDERSON,D. RICHARD; BASABILVAZO,G.; JOW,HONG-NIAN; MARIETTA,MELVIN G.

    2000-05-18T23:59:59.000Z

    The conceptual structure of the 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) is described. This structure involves three basic entities (EN1, EN2, EN3): (1) EN1, a probabilistic characterization of the likelihood of different futures occurring at the WIPP site over the next 10,000 yr, (2) EN2, a procedure for estimating the radionuclide releases to the accessible environment associated with each of the possible futures that could occur at the WIPP site over the next 10,000 yr, and (3) EN3, a probabilistic characterization of the uncertainty in the parameters used in the definition of EN1 and EN2. In the formal development of the 1996 WIPP PA, EN1 is characterized by a probability space (S{sub st}, P{sub st}, p{sub st}) for stochastic (i.e., aleatory) uncertainly; EN2 is characterized by a function {line_integral} that corresponds to the models and associated computer programs used to estimate radionuclide releases; and EN3 is characterized by a probability space (S{sub su}, P{sub su}, p{sub su}) for subjective (i.e., epistemic) uncertainty. A high-level overview of the 1996 WIPP PA and references to additional sources of information are given in the context of (S{sub st}, P{sub st}, p{sub st}), {line_integral} and (S{sub su}, P{sub su}, p{sub su}).

  14. Annual site environmental monitoring report for the Waste Isolation Pilot Plant, Calendar year 1985

    SciTech Connect (OSTI)

    Reith, C.; Prince, K.; Fischer, T.; Rodriguez, A.; Uhland, D.; Winstanley, D.

    1986-04-01T23:59:59.000Z

    This is the first Annual Site Environmental Monitoring Report for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP project is operated by the US Department of Energy (DOE) for the purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes generated by the defense activities of the U.S. Government. The report provides a comprehensive description of environmental activities at WIPP during Calendar Year 1985, including: a description of the WIPP project and its mission; a description of the local environment, including demographics; a summary of environmental program information, including an update on the status of environmental permits and compliance activities; a presentation of the findings of the Radiological Baseline Program (RBP), which is a program to characterize radionuclide activities in the environment around the WIPP site; and a summary of findings of the Ecological Monitoring Program (EMP), which examines non-radiological impacts of WIPP construction on the surrounding ecosystem. The WIPP facility is under construction, and will not receive radioactive wastes before October 1988. Therefore, this report describes the status of preoperational (as opposed to operational) environmental activities. 29 refs., 17 figs., 22 tabs.

  15. Waste Isolation Pilot Plant site environmental report for calendar year 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    US Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires each DOE facility that conducts significant environmental protection programs to prepare an Annual Site Environmental Report (ASER). The purpose of the ASER is to summarize environmental data in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts. This ASER not only documents the required data, it also documents new and continued monitoring and compliance activities during the 1994 calendar year. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP) (DOE/WIPP 94-024). The EMP defines a comprehensive set of parameters that must be monitored to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater, air, soil, and biotics are monitored for radiological and nonradiological activity levels. The baseline radiological surveillance program covers the broader geographic area that encompasses nearby ranches, villages, and cities. Nonradiological studies focus on the area immediately surrounding the WIPP site.

  16. Computational implementation of a systems prioritization methodology for the Waste Isolation Pilot Plant: A preliminary example

    SciTech Connect (OSTI)

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mathematics; Anderson, D.R. [Sandia National Labs., Albuquerque, NM (United States). WIPP Performance Assessments Departments; Baker, B.L. [Technadyne Engineering Consultants, Albuquerque, NM (United States)] [and others

    1996-04-01T23:59:59.000Z

    A systems prioritization methodology (SPM) is under development to provide guidance to the US DOE on experimental programs and design modifications to be supported in the development of a successful licensing application for the Waste Isolation Pilot Plant (WIPP) for the geologic disposal of transuranic (TRU) waste. The purpose of the SPM is to determine the probabilities that the implementation of different combinations of experimental programs and design modifications, referred to as activity sets, will lead to compliance. Appropriate tradeoffs between compliance probability, implementation cost and implementation time can then be made in the selection of the activity set to be supported in the development of a licensing application. Descriptions are given for the conceptual structure of the SPM and the manner in which this structure determines the computational implementation of an example SPM application. Due to the sophisticated structure of the SPM and the computational demands of many of its components, the overall computational structure must be organized carefully to provide the compliance probabilities for the large number of activity sets under consideration at an acceptable computational cost. Conceptually, the determination of each compliance probability is equivalent to a large numerical integration problem. 96 refs., 31 figs., 36 tabs.

  17. Preparations and Planning for EPA Recertification of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Casey, S. C.; Shoemaker, P. E.; Patterson, R. L.

    2002-02-25T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Recertification Project was established to meet the requirement of the WIPP Land Withdrawal Act (LWA)1 to demonstrate continued compliance with U.S. Environmental Protection Agency (EPA) disposal regulations at five-year intervals. This paper delineates the objective of the first recertification effort, sets out project goals, and establishes guiding assumptions. It describes the overall direction for a highly complex and interdependent set of tasks leading to recertification of the WIPP repository in 2004. This paper also lays out a high-level schedule for producing the WIPP Compliance Recertification Application (CRA). The major principle behind recertification is that the EPA recertification decision will not involve rulemaking or judicial review. To ensure that the EPA is able to retain this principle, the U.S. Department of Energy (DOE) will not be incorporating changes through the recertification process. Only changes previously approved by the EPA will be included in the CRA. The EPA can approve significant changes to the current WIPP Certification through rulemaking. Non-significant changes are approved without rulemaking through the planned change reporting process [Title 40 Code of Federal Regulations (CFR), Section 194.4(b)].

  18. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    SciTech Connect (OSTI)

    Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States). Geophysics Dept.

    1997-03-05T23:59:59.000Z

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports.

  19. Conceptual structure of performance assessments conducted for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Marietta, M.G.; Rechard, R.P. [Sandia National Labs., Albuquerque, NM (United States)

    1993-04-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico is being developed by the US Department of Energy as a disposal facility for transuranic waste. In support of this project, Sandia National Laboratories is conducting an ongoing performance assessment (PA) for the WIPP. The ordered triple representation for risk proposed by Kaplan and Garrick is used to provide a clear conceptual structure for this PA. This presentation describes how the preceding representation provides a basis in the WIPP PA for (1) the definition of scenarios and the calculation of scenario probabilities and consequences, (2) the separation of subjective and stochastic uncertainties, (3) the construction of the complementary cumulative distribution functions required in comparisons with the US Environmental Protection Agency`s standard for the geologic disposal of radioactive waste (i.e., 40 CFR Part 191, Subpart B), and (4) the performance of uncertainty and sensitivity studies. Results obtained in a preliminary PA for the WIPP completed in December of 1991 are used for illustration.

  20. Incorporating long-term climate change in performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Swift, P.N. [Sandia National Labs., Albuquerque, NM (United States); Baker, B.L. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States); Economy, K. [Ecodynamics Research Associates, Albuquerque, NM (United States); Garner, J.W. [Applied Physics, Inc., Albuquerque, NM (United States); Helton, J.C. [Arizona State Univ., Tempe, AZ (United States); Rudeen, D.K. [New Mexico Engineering Research Institute, Albuquerque, NM (United States)

    1994-03-01T23:59:59.000Z

    The United States Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico for the disposal of transuranic wastes generated by defense programs. Applicable regulations (40 CFR 191) require the DOE to evaluate disposal-system performance for 10,000 yr. Climatic changes may affect performance by altering groundwater flow. Paleoclimatic data from southeastern New Mexico and the surrounding area indicate that the wettest and coolest Quaternary climate at the site can be represented by that at the last glacial maximum, when mean annual precipitation was approximately twice that of the present. The hottest and driest climates have been similar to that of the present. The regularity of global glacial cycles during the late Pleistocene confirms that the climate of the last glacial maximum is suitable for use as a cooler and wetter bound for variability during the next 10,000 yr. Climate variability is incorporated into groundwater-flow modeling for WIPP PA by causing hydraulic head in a portion of the model-domain boundary to rise to the ground surface with hypothetical increases in precipitation during the next 10,000 yr. Variability in modeled disposal-system performance introduced by allowing had values to vary over this range is insignificant compared to variability resulting from other causes, including incomplete understanding of transport processes. Preliminary performance assessments suggest that climate variability will not affect regulatory compliance.

  1. Radioactive and nonradioactive waste intended for disposal at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    SANCHEZ,LAWRENCE C.; DREZ,P.E.; RATH,JONATHAN S.; TRELLUE,H.R.

    2000-05-19T23:59:59.000Z

    Transuranic (TRU) waste generated by the handling of plutonium in research on or production of US nuclear weapons will be disposed of in the Waste Isolation Pilot Plant (WIPP). This paper describes the physical and radiological properties of the TRU waste that will be deposited in the WIPP. This geologic repository will accommodate up to 175,564 m{sup 3} of TRU waste, corresponding to 168,485 m{sup 3} of contact-handled (CH-) TRU waste and 7,079 m{sup 3} of remote-handled (RH-) TRU waste. Approximately 35% of the TRU waste is currently packaged and stored (i.e., legacy) waste, with the remainder of the waste to be packaged or generated and packaged in activities before the year 2033, the closure time for the repository. These wastes were produced at 27 US Department of Energy (DOE) sites in the course of generating defense nuclear materials. The radionuclide and nonradionuclide inventories for the TRU wastes described in this paper were used in the 1996 WIPP Compliance Certification Application (CCA) performance assessment calculations by Sandia National Laboratories/New Mexico (SNL/NM).

  2. Waste Isolation Pilot Plant site environmental report, for calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Order 5400.1 General Environmental Protection Program, requires DOE facilities, that conduct environmental protection programs, to annually prepare a Site Environmental Report (SER). The purpose of the SER is to provide an abstract of environmental assessments conducted in order to characterize site environmental management performance, to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit. The content of this SER is not restricted to a synopsis of the required data, in addition, information pertaining to new and continued monitoring and compliance activities during the 1995 calendar year are also included. Data contained in this report are derived from those monitoring programs directed by the Waste Isolation Pilot Plant (WIPP) Environmental Monitoring Plan (EMP). The EMP provides inclusive guidelines implemented to detect potential impacts to the environment and to establish baseline measurements for future environmental evaluations. Surface water, groundwater. air, soil, and biotic matrices are monitored for an array of radiological and nonradiological factors. The baseline radiological surveillance program encompasses a broader geographic area that includes nearby ranches, villages, and cities. Most elements of nonradiological assessments are conducted within the geographic vicinity of the WIPP site.

  3. Hydrostatic and shear consolidation tests with permeability measurements on Waste Isolation Pilot Plant crushed salt

    SciTech Connect (OSTI)

    Brodsky, N.S. [RE/SPEC, Inc., Rapid City, SD (United States)

    1994-03-01T23:59:59.000Z

    Crushed natural rock salt is a primary candidate for use as backfill and barrier material at the Waste Isolation Pilot Plant (WIPP) and therefore Sandia National Laboratories (SNL) has been pursuing a laboratory program designed to quantify its consolidation properties and permeability. Variables that influence consolidation rate that have been examined include stress state and moisture content. The experimental results presented in this report complement existing studies and work in progress conducted by SNL. The experiments described in this report were designed to (1) measure permeabilities of consolidated specimens of crushed salt, (2) determine the influence of brine saturation on consolidation under hydrostatic loads, and 3) measure the effects of small applied shear stresses on consolidation properties. The laboratory effort consisted of 18 individual tests: three permeability tests conducted on specimens that had been consolidated at Sandia, six hydrostatic consolidation and permeability tests conducted on specimens of brine-saturated crushed WIPP salt, and nine shear consolidation and permeability tests performed on crushed WIPP salt specimens containing 3 percent brine by weight. For hydrostatic consolidation tests, pressures ranged from 1.72 MPa to 6.90 MPa. For the shear consolidation tests, confining pressures were between 3.45 MPa and 6.90 MPa and applied axial stress differences were between 0.69 and 4.14 MPa. All tests were run under drained conditions at 25{degrees}C.

  4. The Geologic and Hydrogeologic Setting of the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Swift, P.N.; Corbet, T.F.

    1999-03-04T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is a mined repository constructed by the US Department of Energy for the permanent disposal of transuranic wastes generated since 1970 by activities related to national defense. The WIPP is located 42 km east of Carlsbad, New Mexico, in bedded salt (primarily halite) of the Late Permian (approximately 255 million years old) Salado Formation 655 m below the land surface. Characterization of the site began in the mid-1970s. Construction of the underground disposal facilities began in the early 1980s, and the facility received final certification from the US Environmental Protection Agency in May 1998. Disposal operations are planned to begin following receipt of a final permit from the State of New Mexico and resolution of legal issues. Like other proposed geologic repositories for radioactive waste, the WIPP relies on a combination of engineered and natural barriers to isolate the waste from the biosphere. Engineered barriers at the WIPP, including the seals that will be emplaced in the access shafts when the facility is decommissioned, are discussed in the context of facility design elsewhere in this volume. Physical properties of the natural barriers that contribute to the isolation of radionuclides are discussed here in the context of the physiographic, geologic, and hydrogeologic setting of the site.

  5. Software quality assurance in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    FROEHLICH,GARY K.; OGDEN,HARVEY C.; BYLE,KATHLEEN A.

    2000-05-23T23:59:59.000Z

    The US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP), located in southeast New Mexico, is a deep geologic repository for the permanent disposal of transuranic waste generated by DOE defense-related activities. Sandia National Laboratories (SNL), in its role as scientific advisor to the DOE, is responsible for evaluating the long-term performance of the WIPP. This risk-based Performance Assessment (PA) is accomplished in part through the use of numerous scientific modeling codes, which rely for some of their inputs on data gathered during characterization of the site. The PA is subject to formal requirements set forth in federal regulations. In particular, the components of the calculation fall under the configuration management and software quality assurance aegis of the American Society of Mechanical Engineers(ASME) Nuclear Quality Assurance (NQA) requirements. This paper describes SNL's implementation of the NQA requirements regarding software quality assurance (SQA). The description of the implementation of SQA for a PA calculation addresses not only the interpretation of the NQA requirements, it also discusses roles, deliverables, and the resources necessary for effective implementation. Finally, examples are given which illustrate the effectiveness of SNL's SQA program, followed by a detailed discussion of lessons learned.

  6. Peat gasification pilot plant program. Project 70105 quarterly report No. 3, December 1, 1981-February 28, 1982

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The objective of this program is twofold: (1) to modify an existing pilot plant; and (2) to operate the pilot plant with peat to produce substitute natural gas (SNG). Activities include the design, procurement, and installation of peat drying, grinding, screening, and lockhopper feed systems. Equipment installed for the program complements the existing pilot plant facility. The lockhopper system was successfully integrated with the gasifier, and shakedown of the newly installed unit was completed. Test PT-4, the first test using this system, was completed during January. Results far exceeded the objectives set for this test. One hundred fifty tons of Minnesota peat containing up to 25-weight-percent moisture were fed to the gasifier at a pressure of 300 psig. Peat conversions averaged more than 90%. Over 57 hours of steady operating time were selected for data analysis. Post-run inspection following Test PT-4 was completed. Peat dried to 10 and 20-weight-percent moisture is currently being stored in preparation for Test PT-5, scheduled to begin in March.

  7. Cost and quality of fuels for electric utility plants 1991

    SciTech Connect (OSTI)

    Not Available

    1992-08-04T23:59:59.000Z

    Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ``Monthly Power Plant Report.`` These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

  8. Cost and quality of fuels for electric utility plants 1991

    SciTech Connect (OSTI)

    Not Available

    1992-08-04T23:59:59.000Z

    Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

  9. An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992

    SciTech Connect (OSTI)

    Rechard, R.P.

    1995-10-01T23:59:59.000Z

    This document provides an overview of the process used to assess the performance of the Waste Isolation Pilot Plant (WIPP), a proposed repository for transuranic wastes that is located in southeastern New Mexico. The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive flasks (40 CFR 191). Much has been written about the individual building blocks that comprise the foundation of PA theory and practice, and that WIPP literature is well cited herein. However, the present approach is to provide an accurate, well documented overview of the process, from the perspective of the mechanical steps used to perform the actual PA calculations. Specifically, the preliminary stochastic simulations that comprise the WIPP PAs of 1990, 1991. and 1992 are summarized.

  10. Regulatory issues for Waste Isolation Pilot Plant long-term compliance with U.S. Environmental Protection Agency 40 CFR 191B and 268

    SciTech Connect (OSTI)

    Anderson, D.R.; Marietta, M.G. [Sandia National Labs., Albuquerque, NM (United States); Higgins, P.J. Jr. [USDOE Albuquerque Field Office, NM (United States). Waste Isolation Pilot Plant Project Integration Office

    1993-10-01T23:59:59.000Z

    Before disposing of transuranic radioactive waste at the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with long-term regulations of the United States Environmental Protection Agency (EPA), specifically the Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191), and the Land Disposal Restrictions (40 CFR 268) of the Hazardous and Solid Waste Amendments to the Resource Conservation and Recovery Act (RCRA). Sandia National Laboratories (SNL) is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for final compliance evaluations. This paper provides background information on the regulations, describes the SNL WIPP PA Departments approach to developing a defensible technical basis for consistent compliance evaluations, and summarizes the major observations and conclusions drawn from the 1991 and 1992 PAs.

  11. Competitiveness of Biomass-Fueled Electrical Power Plants Bruce A. McCarl

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Competitiveness of Biomass-Fueled Electrical Power Plants Bruce A. McCarl Professor Department with suggested rollbacks in greenhouse gas emissions is by employing power plant fueled with biomass. We examine structure. We consider fueling power plants from milling residues, whole trees, logging residues, switch

  12. Reprocessing of nuclear fuels at the Savannah River Plant

    SciTech Connect (OSTI)

    Gray, L.W.

    1986-10-04T23:59:59.000Z

    For more than 30 years, the Savannah River Plant (SRP) has been a major supplier of nuclear materials such as plutonium-239 and tritium-3 for nuclear and thermonuclear weapons, plutonium-238 for space exploration, and isotopes of americium, curium, and californium for use in the nuclear research community. SRP is a complete nuclear park, providing most of the processes in the nuclear fuel cycle. Key processes involve fabrication and cladding of the nuclear fuel, target, and control assemblies; rework of heavy water for use as reactor moderator; reactor loading, operation, and unloading; chemical recovery of the reactor transmutation products and spent fuels; and management of the gaseous, liquid, and solid nuclear and chemical wastes; plus a host of support operations. The site's history and the key processes from fabrication of reactor fuels and targets to finishing of virgin plutonium for use in the nuclear weapons complex are reviewed. Emphasis has been given to the chemistry of the recovery and purification of weapons grade plutonium from irradiated reactor targets.

  13. Probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Greenfield, M.A. [Univ. of California, Los Angeles, CA (United States); Sargent, T.J. [Univ. of Chicago, IL (United States)]|[Stanford Univ., CA (United States). Hoover Institution

    1998-01-01T23:59:59.000Z

    In its most recent report on the annual probability of failure of the waste hoist brake system at the Waste Isolation Pilot Plant (WIPP), the annual failure rate is calculated to be 1.3E({minus}7)(1/yr), rounded off from 1.32E({minus}7). A calculation by the Environmental Evaluation Group (EEG) produces a result that is about 4% higher, namely 1.37E({minus}7)(1/yr). The difference is due to a minor error in the US Department of Energy (DOE) calculations in the Westinghouse 1996 report. WIPP`s hoist safety relies on a braking system consisting of a number of components including two crucial valves. The failure rate of the system needs to be recalculated periodically to accommodate new information on component failure, changes in maintenance and inspection schedules, occasional incidents such as a hoist traveling out-of-control, either up or down, and changes in the design of the brake system. This report examines DOE`s last two reports on the redesigned waste hoist system. In its calculations, the DOE has accepted one EEG recommendation and is using more current information about the component failures rates, the Nonelectronic Parts Reliability Data (NPRD). However, the DOE calculations fail to include the data uncertainties which are described in detail in the NPRD reports. The US Nuclear Regulatory Commission recommended that a system evaluation include mean estimates of component failure rates and take into account the potential uncertainties that exist so that an estimate can be made on the confidence level to be ascribed to the quantitative results. EEG has made this suggestion previously and the DOE has indicated why it does not accept the NRC recommendation. Hence, this EEG report illustrates the importance of including data uncertainty using a simple statistical example.

  14. 1997 annual ground control operating plan for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This plan presents background information and a working guide to assist Mine Operations and Engineering in developing strategies for addressing ground control issues at the Waste Isolation Pilot Plant (WIPP). With the anticipated receipt of waste in late 1997, this document provides additional detail to Panel 1 activities and options. The plan also serves as a foundation document for development and revision of the annual long-term ground control plan. Section 2.0 documents the current status of all underground excavations with respect to location, geology, geometry, age, ground support, operational use, projected life, and physical conditions. Section 3.0 presents the methods used to evaluate ground conditions, including visual observations of the roof, ribs, and floor, inspection of observation holes, and review of instrumentation data. Section 4.0 lists several ground support options and specific applications of each. Section 5.0 discusses remedial ground control measures that have been implemented to date. Section 6.0 presents projections and recommendations for ground control actions based on the information in Sections 2.0 through 5.0 of this plan and on a rating of the critical nature of each specific area. Section 7.0 presents a summary statement, and Section 8.0 includes references. Appendix A provides an overview and critique of ground control systems that have been, or may be, used at the site. Because of the dynamic nature of the underground openings and associated geotechnical activities, this plan will be revised as additional data are incorporated.

  15. Interpretations of Tracer Tests Performed in the Culebra Dolomite at the Waste Isolation Pilot Plant Site

    SciTech Connect (OSTI)

    MEIGS,LUCY C.; BEAUHEIM,RICHARD L.; JONES,TOYA L.

    2000-08-01T23:59:59.000Z

    This report provides (1) an overview of all tracer testing conducted in the Culebra Dolomite Member of the Rustler Formation at the Waste Isolation Pilot Plant (WPP) site, (2) a detailed description of the important information about the 1995-96 tracer tests and the current interpretations of the data, and (3) a summary of the knowledge gained to date through tracer testing in the Culebra. Tracer tests have been used to identify transport processes occurring within the Culebra and quantify relevant parameters for use in performance assessment of the WIPP. The data, especially those from the tests performed in 1995-96, provide valuable insight into transport processes within the Culebra. Interpretations of the tracer tests in combination with geologic information, hydraulic-test information, and laboratory studies have resulted in a greatly improved conceptual model of transport processes within the Culebra. At locations where the transmissivity of the Culebra is low (< 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a single-porosity medium in which advection occurs largely through the primary porosity of the dolomite matrix. At locations where the transmissivity of the Culebra is high (> 4 x 10{sup -6} m{sup 2}/s), we conceptualize the Culebra as a heterogeneous, layered, fractured medium in which advection occurs largely through fractures and solutes diffuse between fractures and matrix at multiple rates. The variations in diffusion rate can be attributed to both variations in fracture spacing (or the spacing of advective pathways) and matrix heterogeneity. Flow and transport appear to be concentrated in the lower Culebra. At all locations, diffusion is the dominant transport process in the portions of the matrix that tracer does not access by flow.

  16. Continuous Improvement and the Safety Case for the Waste Isolation Pilot Plant Geologic Repository - 13467

    SciTech Connect (OSTI)

    Van Luik, Abraham; Patterson, Russell; Nelson, Roger [US Department of Energy, Carlsbad Field Office, 4021 S. National parks Highway, Carlsbad, NM 88220 (United States)] [US Department of Energy, Carlsbad Field Office, 4021 S. National parks Highway, Carlsbad, NM 88220 (United States); Leigh, Christi [Sandia National Laboratories Carlsbad Operations, 4100 S. National parks Highway, Carlsbad, NM 88220 (United States)] [Sandia National Laboratories Carlsbad Operations, 4100 S. National parks Highway, Carlsbad, NM 88220 (United States)

    2013-07-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is a geologic repository 2150 feet (650 m) below the surface of the Chihuahuan desert near Carlsbad, New Mexico. WIPP permanently disposes of transuranic waste from national defense programs. Every five years, the U.S. Department of Energy (DOE) submits an application to the U.S. Environmental Protection Agency (EPA) to request regulatory-compliance re-certification of the facility for another five years. Every ten years, DOE submits an application to the New Mexico Environment Department (NMED) for the renewal of its hazardous waste disposal permit. The content of the applications made by DOE to the EPA for re-certification, and to the NMED for permit-renewal, reflect any optimization changes made to the facility, with regulatory concurrence if warranted by the nature of the change. DOE points to such changes as evidence for its having taken seriously its 'continuous improvement' operations and management philosophy. Another opportunity for continuous improvement is to look at any delta that may exist between the re-certification and re-permitting cases for system safety and the consensus advice on the nature and content of a safety case as being developed and published by the Nuclear Energy Agency's Integration Group for the Safety Case (IGSC) expert group. DOE at WIPP, with the aid of its Science Advisor and teammate, Sandia National Laboratories, is in the process of discerning what can be done, in a reasonably paced and cost-conscious manner, to continually improve the case for repository safety that is being made to the two primary regulators on a recurring basis. This paper will discuss some aspects of that delta and potential paths forward to addressing them. (authors)

  17. An appraisal of the 1992 preliminary performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Lee, W.W.L.; Chaturvedi, L.; Silva, M.K.; Weiner, R.; Neill, R.H. [Environmental Evaluation Group, Albuquerque, NM (United States)]|[Environmental Evaluation Group, Carlsbad, NM (United States)

    1994-09-01T23:59:59.000Z

    The purpose of the New Mexico Environmental Evaluation Group is to conduct an independent technical evaluation of the Waste Isolation Pilot Plant (WIPP) Project to ensure the protection of the public health and safety and the environment. The WIPP Project, located in southeastern New Mexico, is being constructed as a repository for the disposal of transuranic (TRU) radioactive wastes generated by the national defense programs. The Environmental Evaluation Group (EEG) has reviewed the WIPP 1992 Performance Assessment (Sandia WIPP Performance Assessment Department, 1992). Although this performance assessment was released after the October 1992 passage of the WIPP Land Withdrawal Act (PL 102-579), the work preceded the Act. For individual and ground-water protection, calculations have been done for 1000 years post closure, whereas the US Environmental Protection Agency`s Standards (40 CFR 191) issued in 1993 require calculations for 10,000 years. The 1992 Performance Assessment continues to assimilate improved understanding of the geology and hydrogeology of the site, and evolving conceptual models of natural barriers. Progress has been made towards assessing WIPP`s compliance with the US Environmental Protection Agency`s Standards (40 CFR 191). The 1992 Performance Assessment has addressed several items of major concern to EEG, outlined in the July 1992 review of the 1991 performance assessment (Neill et al., 1992). In particular, the authors are pleased that some key results in this performance assessment deal with sensitivity of the calculated complementary cumulative distribution functions (CCDF) to alterative conceptual models proposed by EEG -- that flow in the Culebra be treated as single-porosity fracture-flow; with no sorption retardation unless substantiated by experimental data.

  18. Waste Isolation PIlot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 1

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-04-03T23:59:59.000Z

    This Geotechnical Analysis Report (GAR) presents and interprets geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports quarterly to document the geomechanical performance during and immediately after early excavations of the underground facility. Since completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2005, to June 30, 2006. It is divided into nine chapters. Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the geomechanical monitoring program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5 and 6 present the results of geomechanical monitoring in the two main portions of the WIPP underground (the access drifts and the waste disposal area). Chapter 7 discusses the results of the Geoscience Program, which include fracture mapping and borehole observations. Chapter 8 summarizes the results of geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 9 lists references.

  19. Audit of selected aspects of the Waste Isolation Pilot Plant cost structure, Carlsbad, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1994-08-22T23:59:59.000Z

    The Department of Energy`s (DOE) Waste Isolation Pilot Plant (WIPP), located near Carlsbad, New Mexico, is a research and development facility intended to demonstrate that transuranic waste from the Government`s defense activities can be safely disposed of in a deep geologic formation. The Fiscal Year 1994 budget for WIPP is about $185 million and includes funding for the operation of WIPP and for experiments being done by other DOE facilities. DOE`s current plan is for WIPP to begin receiving transuranic waste in June 1998. This audit was requested by the Assistant Secretary for Environmental Management because two recent reports, one issues by the Office of Inspector General (OIG), were critical of the staffing and cost-effectiveness of WIPP, and because of recent mission changes at WIPP. The audit team consisted of representatives from the DOE, auditors from the OIG, and technical specialists hired by the OIG to assist in the audit. The purpose of the audit was to determine whether WIPP was appropriately staffed to meet programmatic requirements in the most cost-effective manner. The Secretary of Energy expected DOE facilities to benchmark their performance against other facilities to strive for best in class status, and the Westinghouse management and operating contract for WIPP required the facility to be operated in a cost-effective manner. However, the authors determined that Westinghouse did not use benchmarks and that WIPP could be managed more cost-effectively, with fewer personnel, while maintaining its current level of excellence. They concluded that the WIPP staffing level could be significantly reduced with a decrease in costs at WIPP of about $11.4 million per year.

  20. The Waste Isolation Pilot Plant: A Success Story with International Cooperation

    SciTech Connect (OSTI)

    Matthews, M.

    2002-02-26T23:59:59.000Z

    The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) administers and operates the Waste Isolation Pilot Plant (WIPP) site, which hosts a deep geologic repository for safe disposal of U.S. defense-related TRU waste and is located 42 kilometers (km) east of Carlsbad, New Mexico. CBFO also manages the National Transuranic Waste Program (NTP), which oversees TRU waste management from generation to disposal. The WIPP began receiving waste in March 1999. In some areas of broad international interest, the CBFO has developed a leading expertise through its 25-year WIPP repository and TRU waste characterization activities. In addition to participating in relevant and beneficial experiments, the CBFO will provide the international community convenient access to this information by sponsoring and hosting symposia and workshops on relevant topics and by participation in international waste management organizations and topical meetings. In recognition of the successes at WIPP, the Inter national Atomic Energy Agency (IAEA) has designated WIPP as an International Center of Excellence and part of IAEA's Network of Centers of Excellence. The IAEA will foster cooperative training in and demonstration of waste disposal technologies in underground research facilities (URFs).such as WIPP. The CBFO, supported by its Science Advisor, has agreed to exchange scientific information with eight foreign radioactive waste management organizations, and three more national radioactive waste management and disposal organizations have expressed interest in similar agreements. These activities result in the cost-effective acquisition of scientific information in support of increased WIPP facility operational and post-closure assurance and reliability. It also demonstrates the CBFO's intent and resolve to honor international commitments and obligations.

  1. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2004 - June 2005, Volume 1

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-04-03T23:59:59.000Z

    This Geotechnical Analysis Report (GAR) presents and interprets the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP). The data, which are obtained as part of a regular monitoring program, are used to characterize conditions, to compare actual performance to the design assumptions, and to evaluate and forecast the performance of the underground excavations. GARs have been available to the public since 1983. During the Site and Preliminary Design Validation (SPDV) Program, the architect/engineer for the project produced these reports quarterly to document the geomechanical performance during and immediately after early excavations of the underground facility. Since the completion of the construction phase of the project in 1987, the management and operating contractor for the facility has prepared these reports annually. This report describes the performance and condition of selected areas from July 1, 2004, to June 30, 2005. It is divided into nine chapters. Chapter 1 provides background information on WIPP, its mission, and the purpose and scope of the Geomechanical Monitoring Program. Chapter 2 describes the local and regional geology of the WIPP site. Chapters 3 and 4 describe the geomechanical instrumentation in the shafts and shaft stations, present the data collected by that instrumentation, and provide interpretation of these data. Chapters 5 and 6 present the results of geomechanical monitoring in the two main portions of the WIPP underground (the access drifts and the waste disposal area). Chapter 7 discusses the results of the Geoscience Program, which include fracture mapping and borehole observations. Chapter 8 summarizes the results of the geomechanical monitoring and compares the current excavation performance to the design requirements. Chapter 9 lists the references and bibliography.

  2. Annual water quality data report for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Lyon, M.L. (International Technology Corp., Torrance, CA (USA)) [International Technology Corp., Torrance, CA (USA)

    1989-04-01T23:59:59.000Z

    This is the fourth Annual Water Quality Data Report for the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The WIPP project is operated by the United States Department of Energy (DOE) for the purpose of providing a research and development facility to demonstrate the safe disposal of transuranic radioactive wastes generated by the defense activities of the United States Government. This report presents water quality data collected from January 1988 through December 1988 from 16 designated pre-operational (WIPP facility) monitoring wells, two additional wells, and 10 privately-owned wells in the vicinity of the WIPP. Additionally, water samples were collected from the Air Intake Shaft during shaft construction activities at the WIPP. This report lists pertinent information regarding the monitoring wells sampled, sampling zone, dates pumped, and types of samples collected during 1988. Comparative data from previous samplings of all wells can be found in Uhland and Randall (1986), Uhland et al. (1987), Randall et al. (1988), as well as in this report. The data reported by the Water Quality Sampling Program in this and previous reports indicate that serial sampling is a very useful tool in determining sample representativeness from wells in the WIPP vicinity. Serial sample field chemistry data are demonstrated to be highly accurate and precise as indicated by the excellent overall average percent spike recovery values and low RPD values reported for the sampling events. Serial sample field chemistry data and laboratory water quality parameter analyses gathered by the WQSP since January 1985 are the foundation for a pre-operational water quality baseline at the WIPP. 32 refs., 66 figs., 96 tabs.

  3. Inspection of Emergency Management at the Waste Isolation Pilot Plant- Volume II, August 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy抯 Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health and emergency management programs at the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP emergency management program. The results of the review of the WIPP environment, safety, and health (ES&H) programs are discussed in Volume I of this report, and the combined results are discussed in a summary report. The results of this review indicate that, overall, CBFO and WTS have effectively addressed nearly all of the weaknesses identified during the May 2000 OA emergency management review. Furthermore, as a consequence of that effort, CBFO and WTS have implemented a hazardous material emergency management program that, with few exceptions, meets Departmental expectations for providing a system that protects responders, site workers, and the public in the event of an emergency at WIPP. Section 2 of this volume provides an overall discussion of the results of the review of the WIPP emergency management program, including positive aspects, findings, and other items requiring management attention. Section 3 provides OA抯 conclusions regarding the overall effectiveness of CBFO and WTS management of the emergency management program. Section 4 presents the ratings assigned as a result of this review. Appendix A provides supplemental information, including team composition. Appendix B identifies the findings that require corrective action and follow-up. Appendices C- F detail the results of the reviews of individual emergency management program elements.

  4. LCV-Gas utilization in CHP plants with dual-fuel engines

    SciTech Connect (OSTI)

    Mohr, H.

    1998-07-01T23:59:59.000Z

    The utilization of LCV-gases has been increased during the last years, especially in decentralized CHP plants from local power and heat distributors or industry works. Compared with the standard natural gas delivered by the main grid LCV gases are cheaper, wherefore it is possible to decrease energy costs. LCV gases are coming from local natural gas fields or a wide range of technical origins (e. g. steel production, gasification processes, biological processes). Therefore the composition of LCV gases could differ. The basis of this gases are normally methane or combinations of hydrogen and carbon monoxide together with quite large quantities of inert gases. The utilization of LCV gases in internal combustion engines requires high demands on the engine technique and the engine control system. A lot of items must to be considered when designing engines for every special purpose, especially in comparison to utilization of standard natural gas. The combustion system of dual-fuel engines as developed by B+V Industrietechnik GmbH (formerly Blohm + Voss Industrie GmbH) offers a lot of advantages for the utilization of LCV gases. There are two basic possibilities to supply the gases to the engine, one on low pressure level and the other one on high pressure level. The energy content of the pilot fuel injection is much higher than the corresponding value of a spark ignition system. Thus, gases with very low lower heating values and high contents of inert gases can be inflamed stable without problems. This engine type allows a LCV gas utilization with high electrical and thermal efficiencies. As an example for the utilization of a LCV gas the CHP engine plant for Hoogovens Ijmuiden in Holland, one of the largest European steel production companies, is presented.

  5. PILOT PLANT STUDIES OF THE BIOCONVERSION OF CELLULOSE AND PRODUCTION OF ETHANOL

    E-Print Network [OSTI]

    Wilke, C.R.

    2010-01-01T23:59:59.000Z

    Analysis of the Kudzu Plant ..Chemical Analysis of the Kudzu Plant. As promised in a1-30-77), the study on the Kudzu plant has been completed.

  6. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financialof EnergyFranklinRenewableScience

  7. Decommissioning samples from the Ft. Lewis, WA, solvent refined coal pilot plant: chemical analysis and biological testing

    SciTech Connect (OSTI)

    Weimer, W.C.; Wright, C.W.

    1985-10-01T23:59:59.000Z

    This report presents the results from chemical analyses and limited biological assays of three sets of samples from the Ft. Lewis, WA solvent refined coal (SRC) pilot plant. The samples were collected during the process of decommissioning this facility. Chemical composition was determined for chemical class fractions of the samples by using high-resolution gas chromatography (GC), high-resolution GC/mass spectrometry (MS) and high-resolution MS. Biological activity was measuring using both the histidine reversion microbial mutagenicity assay with Salmonella typhimurium, TA98 and an initiation/promotion mouse-skin tumorigenicity assay. 19 refs., 7 figs., 27 tabs.

  8. Performance assessment in support of the 1996 compliance certification application for the Waste Isolation Pilot Plant: A decision analysis perspective

    SciTech Connect (OSTI)

    Helton, J.C. [Arizona State Univ., Tempe, AZ (United States). Dept. of Mathematics; Anderson, D.R.; Jow, H.N.; Marietta, M.G. [Sandia National Labs., Albuquerque, NM (United States); Basabilvazo, G. [Dept. of Energy, Carlsbad, NM (United States)

    1998-08-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is under development by the US Department of Energy (DOE) for the geologic disposal of transuranic waste. The primary regulatory requirements (i.e., 40 CFR 191 and 40 CFR 194) placed on the WIPP by the US Environmental Protection Agency (EPA) involve a complementary cumulative distribution function (CCDF) for normalized radionuclide releases to the accessible environment. The interpretation and use of this CCDF from a decision analysis perspective is discussed and illustrated with results from the 1996 performance assessment for the WIPP, which was carried out to support a compliance certification application by the DOE to the EPA for the WIPP.

  9. Report of biological investigations at the Los Medanos Waste Isolation Pilot Plant (WIPP) area of New Mexico during FY 1978

    SciTech Connect (OSTI)

    Best, T.L.; Neuhauser, S. (eds.)

    1980-03-01T23:59:59.000Z

    The US Department of Energy is considering the construction of a Waste Isolation Pilot Plant (WIPP) in Eddy County, NM. This location is approximately 40 km east of Carlsbad, NM. Biological studies during FY 1978 were concentrated within a 5-mi radius of drill hole ERDA 9. Additional study areas have been established at other sites in the vicinity, e.g., the Gnome site, the salt lakes and several stations along the Pecos River southward from Carlsbad, NM, to the dam at Red Bluff Reservoir in Texas. The precise locations of all study areas are presented and their biology discussed.

  10. A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations

    SciTech Connect (OSTI)

    Butcher, B.M.

    1997-08-01T23:59:59.000Z

    A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.

  11. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 3, Model parameters: Sandia WIPP Project

    SciTech Connect (OSTI)

    Not Available

    1992-12-29T23:59:59.000Z

    This volume documents model parameters chosen as of July 1992 that were used by the Performance Assessment Department of Sandia National Laboratories in its 1992 preliminary performance assessment of the Waste Isolation Pilot Plant (WIPP). Ranges and distributions for about 300 modeling parameters in the current secondary data base are presented in tables for the geologic and engineered barriers, global materials (e.g., fluid properties), and agents that act upon the WIPP disposal system such as climate variability and human-intrusion boreholes. The 49 parameters sampled in the 1992 Preliminary Performance Assessment are given special emphasis with tables and graphics that provide insight and sources of data for each parameter.

  12. Hydrogen generation by metal corrosion in simulated Waste Isolation Pilot Plant environments. Final report

    SciTech Connect (OSTI)

    Telander, M.R.; Westerman, R.E. [Battelle Pacific Northwest Lab., Richland, WA (United States)

    1997-03-01T23:59:59.000Z

    The corrosion and gas-generation characteristics of four material types: low-carbon steel (the current waste packaging material for the Waste Isolation Pilot Plant), Cu-base and Ti-base (alternative packaging) materials, and Al-base (simulated waste) materials were determined in both the liquid and vapor phase of Brine A, a brine representative of an intergranular Salado Formation brine. Test environments consisted primarily of anoxic brine with overpressures of N{sub 2}, CO{sub 2}, H{sub 2}S, and H{sub 2}. Limited tests of low-carbon steel were also performed in simulated-backfill environments and in brine environments with pH values ranging from 3 to 11. Low-carbon steel reacted at a slow, measurable rate with anoxic brine, liberating H{sub 2} on an equimolar basis with Fe reacted. Presence of CO{sub 2} caused the initial reaction to proceed more rapidly, but CO{sub 2}-induced passivation stopped the reaction if the CO{sub 2} were present in sufficient quantities. Addition of H{sub 2}S to a CO{sub 2}-passivated system caused reversal of the passivation. Low-carbon steel immersed in brine with H{sub 2}S showed no reaction, apparently because of passivation of the steel by formation of FeS. Addition of CO{sub 2} to an H{sub 2}S-passivated system did not reverse the passivation. Cu- and Ti-base materials showed essentially no corrosion when exposed to brine and overpressures of N{sub 2}, CO{sub 2}, and H{sub 2}S except for the rapid and complete reaction between Cu-base materials and H{sub 2}S. The Al-base materials reacted at approximately the same rate as low-carbon steel when immersed in anoxic Brine A; considerably more rapidly in the presence of CO{sub 2} or H{sub 2}S; and much more rapidly when iron was present in the system as a brine contaminant. High-purity Al was much more susceptible to corrosion than the 6061 alloy. No significant reaction took place on any material in any environment in the vapor-phase exposures.

  13. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01T23:59:59.000Z

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  14. DRSPALL :spallings model for the Waste Isolation Pilot Plant 2004 recertification.

    SciTech Connect (OSTI)

    Gilkey, Amy P. (GRAM Inc., Albuquerque, NM); Hansen, Clifford W.; Schatz, John F. (John F. Schatz Research & Consulting, Inc., Del Mar, CA); Rudeen, David Keith (GRAM Inc., Albuquerque, NM); Lord, David L.

    2006-02-01T23:59:59.000Z

    This report presents a model to estimate the spallings releases for the Waste Isolation Pilot Plant Performance Assessment (WIPP PA). A spallings release in the context of WIPP PA refers to a portion of the solid waste transported from the subsurface repository to the ground surface due to inadvertent oil or gas drilling into the WIPP repository at some time after site closure. Some solid waste will be removed by the action of the drillbit and drilling fluid; this waste is referred to as cuttings and cavings. If the repository is pressurized above hydrostatic at the time of intrusion, solid waste material local to the borehole may be subject to mechanical failure and entrainment in high-velocity gases as the repository pressure is released to the borehole. Solid material that fails and is transported into the wellbore and thus to the surface comprise the spallings releases. The spallings mechanism is analogous to a well blowout in the modern oil and gas drilling industry. The current spallings conceptual model and associated computer code, DRSPALL, were developed for the 2004 recertification because the prior spallings model used in the 1996 WIPP Compliance Certification Application (CCA) was judged by an independent peer review panel as inadequate (DOE 1996, 9.3.1). The current conceptual model for spallings addresses processes that take place several minutes before and after a borehole intrusion of a WIPP waste room. The model couples a pipe-flow wellbore model with a porous flow repository model, allowing high-pressure gas to flow from the repository to the wellbore through a growing cavity region at the well bottom. An elastic stress model is applied to the porous solid domain that allows for mechanical failure of repository solids if local tensile stress exceeds the tensile strength of the waste. Tensile-failed solids may be entrained into the wellbore flow stream by a fluidized bed model, in which case they are ultimately transported to the land surface comprising a release. In July 2003, DOE/SNL presented the spallings conceptual model to a independent peer review panel in accordance with NUREG 1297 guidelines (NRC, 1988). The panel ultimately judged the model as adequate for implementation in WIPP PA (Yew et al., 2003). This report documents the spallings model history from 1997 to the implementation of DRSPALL in the 2004 Compliance Recertification Application (CRA) (DOE, 2004). The scope of this report includes descriptions of the conceptual model, numerical model, verification and validation techniques, model sensitivity studies, and WIPP PA spallings results as presented in the 2004 CRA.

  15. Robust Solution to Difficult Hydrogen Issues When Shipping Transuranic Waste to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Countiss, S. S.; Basabilvazo, G. T.; Moody, D. C. III; Lott, S. A.; Pickerell, M.; Baca, T.; CH2M Hill; Tujague, S.; Svetlik, H.; Hannah, T.

    2003-02-27T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) has been open, receiving, and disposing of transuranic (TRU) waste since March 26, 1999. The majority of the waste has a path forward for shipment to and disposal at the WIPP, but there are about two percent (2%) or approximately 3,020 cubic meters (m{sup 3}) of the volume of TRU waste (high wattage TRU waste) that is not shippable because of gas generation limits set by the U.S. Nuclear Regulatory Commission (NRC). This waste includes plutonium-238 waste, solidified organic waste, and other high plutonium-239 wastes. Flammable gases are potentially generated during transport of TRU waste by the radiolysis of hydrogenous materials and therefore, the concentration at the end of the shipping period must be predicted. Two options are currently available to TRU waste sites for solving this problem: (1) gas generation testing on each drum, and (2) waste form modification by repackaging and/or treatment. Repackaging some of the high wattage waste may require up to 20:1 drum increase to meet the gas generation limits of less than five percent (5%) hydrogen in the inner most layer of confinement (the layer closest to the waste). (This is the limit set by the NRC.) These options increase waste handling and transportation risks and there are high costs and potential worker exposure associated with repackaging this high-wattage TRU waste. The U.S. Department of Energy (DOE)'s Carlsbad Field Office (CBFO) is pursuing a twofold approach to develop a shipping path for these wastes. They are: regulatory change and technology development. For the regulatory change, a more detailed knowledge of the high wattage waste (e.g., void volumes, gas generation potential of specific chemical constituents) may allow refinement of the current assumptions in the gas generation model for Safety Analysis Reports for Packaging for Contact-Handled (CH) TRU waste. For technology development, one of the options being pursued is the use of a robust container, the ARROW-PAK{trademark} System. (1) The ARROW-PAK{trademark} is a macroencapsulation treatment technology, developed by Boh Environmental, LLC, New Orleans, Louisiana. This technology has been designed to withstand any unexpected hydrogen deflagration (i.e. no consequence) and other benefits such as criticality control.

  16. Advantages of the shielded containers at the Waste Isolation Pilot Plant.

    SciTech Connect (OSTI)

    Nelson, Roger A. (U.S. Department of Energy, Carlsbad, NM); Dunagan, Sean C.

    2010-05-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) disposal operations currently employ two different disposal methods: one for Contact Handled (CH) waste and another for Remote Handled (RH) waste. CH waste is emplaced in a variety of payload container configurations on the floor of each disposal room. In contrast, RH waste is packaged into a single type of canister and emplaced in pre-drilled holes in the walls of disposal rooms. Emplacement of the RH waste in the walls must proceed in advance of CH waste emplacement and therefore poses logistical constraints, in addition to the loss of valuable disposal capacity. To improve operational efficiency and disposal capacity, the Department of Energy (DOE) has proposed a shielded container for certain RH waste streams. RH waste with relatively low gammaemitting activity would be packaged in lead-lined containers, shipped to WIPP in existing certified transportation packages for CH waste and emplaced in WIPP among the stacks of CH waste containers on the floor of a disposal room. RH waste with high gamma-emitting activity would continue to be emplaced in the boreholes along the walls. The new RH container is similar to the nominal 208-liter (55-gallon) drum, however it includes about 2.5 cm (1 in) of lead, sandwiched between thick steel sheets. Furthermore, the top and bottom are made of thick plate steel to strengthening the package to meet transportation requirements. This robust configuration provides an overpack for materials that otherwise would be RH waste. This paper describes the container and the regulatory approach used to meet the requirements imposed by regulations that apply to WIPP. This includes a Performance Assessment used to evaluate WIPP's long-term performance and the DOE's approach to gain approval for the transportation of shielded containers. This paper also describes estimates of the DOE's RH transuranic waste inventory that may be packaged and emplaced in shielded containers. Finally, the paper includes a discussion of how the DOE proposes to track the waste packaged into shielded containers against the RH waste inventory and how this will comply with the regulated volume.

  17. Basic Data Report for Drillholes on the H-19 Hydropad (Waste Isolation Pilot Plant--WIPP)

    SciTech Connect (OSTI)

    Mercer, J.W.; Cole, D.L.; Holt, R.M.

    1998-10-09T23:59:59.000Z

    Seven holes were drilled and wells (H-19b0, H-19b2, H-19b3, H-19b4, H-19b5, H-19b6, and H-19b7) were constructed on the H-19 hydropad to conduct field activities in support of the Culebra Transport Program. These wells were drilled and completed on the Waste Isolation Pilot Plant (WIPP) site during February to September 1995. An eighth hole, H-19b1, was drilled but had to be abandoned before the target depth was reached because of adverse hole conditions. The geologic units penetrated at the H-19 location include surficial deposits of Holocene age, rocks from the Dockum Group of Upper Triassic age, the Dewey Lake Redbeds, and Rustler Formation of the Permian age. The Rustler Formation has been further divided into five informal members which include the Forty-niner Member, Magenta Member, Tamarisk Member, Culebra Dolomite Member, and an unnamed lower member. The Rustler Formation, particularly the Culebra Dolomite Member, is considered critical for hydrologic site characterization. The Culebra is the most transmissive saturated unit above the WIPP repository and, as such, is considered to be the most likely pathway for radionuclide transport to the accessible environment in the unlikely event the repository is breached. Seven cores from the Culebra were recovered during drilling activities at the H-19 hydropad and detailed descriptions of these cores were made. On the basis of geologic descriptions, four hydrostratigraphic units were identified in the Culebra cores and were correlated with the mapping units from the WFP air intake shaft. The entire length of H-19b1 was cored and was described in detail. During coring of H-19b1, moisture was encountered in the upper part of the Dewey Lake Redbeds. A 41-ft-thick section of this core was selected for detailed description to qualify the geologic conditions related to perched water in the upper Dewey Lake. In addition to cuttings and core, a suite of geophysical logs run on the drillholes was used to identify and correlate different lithologies among the seven wells.

  18. Cyclone reburn using coal-water fuel: Pilot-scale development and testing. Final report

    SciTech Connect (OSTI)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01T23:59:59.000Z

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  19. Cyclone reburn using coal-water fuel: Pilot-scale development and testing

    SciTech Connect (OSTI)

    Eckhart, C.F.; DeVault, R.F.

    1991-10-01T23:59:59.000Z

    There is an ongoing effort to develop retrofit technologies capable of converting oil- and/or gas-fired boilers to coal combustion. The objective of this project is to demonstrate the technical feasibility of an improved portion of a previously developed retrofit system designed for the purpose of converting oil/gas boilers. This improvement would almost entirely eliminate the use of premium fuels, thereby significantly increasing the economical attractiveness of the system. Specifically, the goals in this program were to replace natural gas as a reburning fuel with coal-water fuel (CWF). The advantages of such a system include: (1) increased return on investment (ROI) for conversions; (2) nearly complete elimination of premium oil or gas fuel; (3) a more integrated approach to the conversion of oil- or gas-designed boilers to CWF.

  20. Investigation of an integrated switchgrass gasification/fuel cell power plant. Final report for Phase 1 of the Chariton Valley Biomass Power Project

    SciTech Connect (OSTI)

    Brown, R.C.; Smeenk, J. [Iowa State Univ., Ames, IA (United States); Steinfeld, G. [Energy Research Corp., Danbury, CT (United States)

    1998-09-30T23:59:59.000Z

    The Chariton Valley Biomass Power Project, sponsored by the US Department of Energy Biomass Power Program, has the goal of converting switchgrass grown on marginal farmland in southern Iowa into electric power. Two energy conversion options are under evaluation: co-firing switchgrass with coal in an existing utility boiler and gasification of switchgrass for use in a carbonate fuel cell. This paper describes the second option under investigation. The gasification study includes both experimental testing in a pilot-scale gasifier and computer simulation of carbonate fuel cell performance when operated on gas derived from switchgrass. Options for comprehensive system integration between a carbonate fuel cell and the gasification system are being evaluated. Use of waste heat from the carbonate fuel cell to maximize overall integrated plant efficiency is being examined. Existing fuel cell power plant design elements will be used, as appropriate, in the integration of the gasifier and fuel cell power plant to minimize cost complexity and risk. The gasification experiments are being performed by Iowa State University and the fuel cell evaluations are being performed by Energy Research Corporation.

  1. Engineering support services for the DOE/GRI coal gasification research program. Safety audits of pilot plants and PDU's

    SciTech Connect (OSTI)

    Bostwick, L.E.; Hubbard, D.A.; Lee, M.D.; Miller, G.R.; Bernard, D.M.

    1981-04-01T23:59:59.000Z

    M.W. Kellogg (formerly Pullmann Kellogg) was requested by DOE to investigate and to evaluate normal and emergency operating procedures and the drawing record systems of the coal gasification pilot plants and process development units (PDU). The purpose of this Safety Audit was to identify deficiencies in operating policies or procedures which could lead to potential hazards. The evaluation of safety-related documentation at the pilot plants and PDU's was also included in the audit. The safety audit visits and meetings were conducted at the following research sites: Bell Aerosopace, BCR BI-GAS, Exxon, IGT Hygas/Peatgas, Rockwell International, and Westinghouse. Kellogg conducted the safety audits requested by DOE. These reviews show the developers as possessing very sincere, positive attitudes toward safety and as being committed to ongoing safety programs. Kellogg found that (in general) all of the developers: use written statements of objectives, operating procedures and check lists; have some form of formal safety training for operators; review equipment and procedural revisions with operators; and maintain timely and accurate drawing records.

  2. Biological removal of organic constituents in quench waters from high-Btu coal-gasification pilot plants

    SciTech Connect (OSTI)

    Stamoudis, V C; Luthy, R G

    1980-02-01T23:59:59.000Z

    Studies were initiated to assess the efficiency of bench-scale, activated-sludge treatment for removal of organic constituents from coal-gasification process effluents. Samples of pilot-plant, raw-gas quench waters were obtained from the HYGAS process of the Institute of Gas Technology and from the slagging, fixed-bed (SFB) process of the Grand Forks Energy Technology Center. The types of coal employed were Bituminous Illinois No. 6 for the HYGAS and Indian Head lignite for the SFB process. These pilot-plant quench waters, while not strictly representative of commercial condensates, were considered useful to evaluate the efficiency of biological oxidation for the removal of organics. Biological-reactor influent and effluent samples were extracted using a methylene chloride pH-fractionation method into acid, base, and neutral fractions, which were analyzed by capillary-column gas-chromatography/mass-spectrometry. Influent acid fractions of both HYGAS and SFB condensates showed that nearly 99% of extractable and chromatographable organic material comprised phenol and alkylated phenols. Activated-sludge treatment removed these compounds almost completely. Removal efficiency of base-fraction organics was generally good, except for certain alkylated pyridines. Removal of neutral-fraction organics was also good, except for certain alkylated benzenes, certain polycyclic aromatic hydrocarbons, and certain cycloalkanes and cycloalkenes, especially at low influent concentrations.

  3. Biological removal of organic constituents in quench water from a slagging, fixed-bed coal-gasification pilot plant

    SciTech Connect (OSTI)

    Stamoudis, V C; Luthy, R G

    1980-02-01T23:59:59.000Z

    This study is part of an effort to assess the efficiency of activated-sludge treatment for removal of organic constituents from high-Btu coal-gasification pilot-plant quench waters. A sample of raw-gas quench water was obtained from the Grand Forks Energy and Technology Center's pilot plant, which employs the slagging, fixed-bed gasification process. The quench water generated in the processing of Indian Head lignite was pretreated to reduce ammonia and alkalinity, and then diluted and subjected to long-term biological treatment, followed by detailed characterization and analysis of organic constituents. The pretreated (influent) and treated (effluent) samples were extracted using a methylene chloride, pH-fractionation method to obtain acid, base, and neutral fractions, which were analyzed by capillary-column gas chromatography/mass spectrometry (GC/MS). Over 99% of the total extractable and chromatographable organic material in the influent acid fraction was composed of phenol and alkylated phenols. Biological treatment removed these compounds almost completely. Major components of the influent base fraction were alkylated pyridines, anilines, aminopyrroles, imidazoles and/or pyrazoles, diazines, and quinolines. Removal efficiency of these compounds ranged between 90 and 100%. The influent neutral fraction was composed mainly of cycloalkanes, cycloalkenes, naphthalene, indole, acetophenone, and benzonitrile. Alkylated benzenes were generally absent. Removal efficiencies of these compounds were generally very good, except for certain alkylated cycloalkanes and cycloalkenes. Results are compared with those of a similar study on HYGAS coal-gasification quench water.

  4. EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat...

  5. Balance of Plant (BoP) Components Validation for Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Balance of Plant (BoP) Components Validation for Fuel Cells Balsu Lakshmanan - General Motors Input from: Andrew Bosco, Craig Gittleman, Todd Vest & others. Outline * System...

  6. Retrofit of Soederberg smelter at Alusaf Bayside plant. Part 2: Start-up and operation of pilot plant

    SciTech Connect (OSTI)

    Ferreira, J.A. [Alusaf Ltd., Richards Bay (South Africa)

    1996-10-01T23:59:59.000Z

    Construction, commissioning and the first of operation of twelve 165 kA pointed pilot cells with prebaked anodes at Alusaf works are described. These pilot cells were developed, using VAW technology, to reduce the emission levels and increase productivity of the 14 year old 120 kA VSS lines at Bayside smelter. VAW was contracted to design a cell that utilizes as much of the existing hardware as possible and that fits into the existing floor space. Results of extensive modeling showed that major parts of the existing busbar system could be kept. The amperage of the modernized prebake cells could be increased to 165 kA. Twelve prototype pots were commissioned in July 1994. During the first year of operation excellent production results were achieved. The production of these cells are {approx_equal} 56% higher than for the VSS cells. The pilot pots have a current efficiency in excess of 95%, specific energy consumption of 13.6 kWh/kg Al and a net carbon consumption of 410 kg/ton Al.

  7. PROBABILISTIC SAFETY ASSESSMENT OF OPERATIONAL ACCIDENTS AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect (OSTI)

    Rucker, D.F.

    2000-09-01T23:59:59.000Z

    This report presents a probabilistic safety assessment of radioactive doses as consequences from accident scenarios to complement the deterministic assessment presented in the Waste Isolation Pilot Plant (WIPP) Safety Analysis Report (SAR). The International Council of Radiation Protection (ICRP) recommends both assessments be conducted to ensure that ''an adequate level of safety has been achieved and that no major contributors to risk are overlooked'' (ICRP 1993). To that end, the probabilistic assessment for the WIPP accident scenarios addresses the wide range of assumptions, e.g. the range of values representing the radioactive source of an accident, that could possibly have been overlooked by the SAR. Routine releases of radionuclides from the WIPP repository to the environment during the waste emplacement operations are expected to be essentially zero. In contrast, potential accidental releases from postulated accident scenarios during waste handling and emplacement could be substantial, which necessitates the need for radiological air monitoring and confinement barriers (DOE 1999). The WIPP Safety Analysis Report (SAR) calculated doses from accidental releases to the on-site (at 100 m from the source) and off-site (at the Exclusive Use Boundary and Site Boundary) public by a deterministic approach. This approach, as demonstrated in the SAR, uses single-point values of key parameters to assess the 50-year, whole-body committed effective dose equivalent (CEDE). The basic assumptions used in the SAR to formulate the CEDE are retained for this report's probabilistic assessment. However, for the probabilistic assessment, single-point parameter values were replaced with probability density functions (PDF) and were sampled over an expected range. Monte Carlo simulations were run, in which 10,000 iterations were performed by randomly selecting one value for each parameter and calculating the dose. Statistical information was then derived from the 10,000 iteration batch, which included 5%, 50%, and 95% dose likelihood, and the sensitivity of each assumption to the calculated doses. As one would intuitively expect, the doses from the probabilistic assessment for most scenarios were found to be much less than the deterministic assessment. The lower dose of the probabilistic assessment can be attributed to a ''smearing'' of values from the high and low end of the PDF spectrum of the various input parameters. The analysis also found a potential weakness in the deterministic analysis used in the SAR, a detail on drum loading was not taken into consideration. Waste emplacement operations thus far have handled drums from each shipment as a single unit, i.e. drums from each shipment are kept together. Shipments typically come from a single waste stream, and therefore the curie loading of each drum can be considered nearly identical to that of its neighbor. Calculations show that if there are large numbers of drums used in the accident scenario assessment, e.g. 28 drums in the waste hoist failure scenario (CH5), then the probabilistic dose assessment calculations will diverge from the deterministically determined doses. As it is currently calculated, the deterministic dose assessment assumes one drum loaded to the maximum allowable (80 PE-Ci), and the remaining are 10% of the maximum. The effective average of drum curie content is therefore less in the deterministic assessment than the probabilistic assessment for a large number of drums. EEG recommends that the WIPP SAR calculations be revisited and updated to include a probabilistic safety assessment.

  8. Contact-Handled Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-29T23:59:59.000Z

    The purpose of this document is to summarize the waste acceptance criteria applicable to the transportation, storage, and disposal of contact-handled transuranic (CH-TRU) waste at the Waste Isolation Pilot Plant (WIPP). These criteria serve as the U.S. Department of Energy's (DOE) primary directive for ensuring that CH-TRU waste is managed and disposed of in a manner that protects human health and safety and the environment.The authorization basis of WIPP for the disposal of CH-TRU waste includes the U.S.Department of Energy National Security and Military Applications of Nuclear EnergyAuthorization Act of 1980 (reference 1) and the WIPP Land Withdrawal Act (LWA;reference 2). Included in this document are the requirements and associated criteriaimposed by these acts and the Resource Conservation and Recovery Act (RCRA,reference 3), as amended, on the CH-TRU waste destined for disposal at WIPP.|The DOE TRU waste sites must certify CH-TRU waste payload containers to thecontact-handled waste acceptance criteria (CH-WAC) identified in this document. Asshown in figure 1.0, the flow-down of applicable requirements to the CH-WAC istraceable to several higher-tier documents, including the WIPP operational safetyrequirements derived from the WIPP CH Documented Safety Analysis (CH-DSA;reference 4), the transportation requirements for CH-TRU wastes derived from theTransuranic Package Transporter-Model II (TRUPACT-II) and HalfPACT Certificates ofCompliance (references 5 and 5a), the WIPP LWA (reference 2), the WIPP HazardousWaste Facility Permit (reference 6), and the U.S. Environmental Protection Agency(EPA) Compliance Certification Decision and approval for PCB disposal (references 7,34, 35, 36, and 37). The solid arrows shown in figure 1.0 represent the flow-down of allapplicable payload container-based requirements. The two dotted arrows shown infigure 1.0 represent the flow-down of summary level requirements only; i.e., the sitesmust reference the regulatory source documents from the U.S. Nuclear RegulatoryCommission (NRC) and the New Mexico Environment Department (NMED) for acomprehensive and detailed listing of the requirements.This CH-WAC does not address the subject of waste characterization relating to adetermination of whether the waste is hazardous; rather, the sites are referred to theWaste Analysis Plan (WAP) contained in the WIPP Hazardous Waste Facility Permit fordetails of the sampling and analysis protocols to be used in determining compliance withthe required physical and chemical properties of the waste. Requirements andassociated criteria pertaining to a determination of the radiological properties of thewaste, however, are addressed in appendix A of this document. The collectiveinformation obtained from waste characterization records and acceptable knowledge(AK) serves as the basis for sites to certify that their CH-TRU waste satisfies the WIPPwaste acceptance criteria listed herein.

  9. Shipping Remote Handled Transuranic Waste to the Waste Isolation Pilot Plant - An Operational Experience

    SciTech Connect (OSTI)

    Anderson, S.; Bradford, J.; Clements, T.; Crisp, D.; Sherick, M. [CH2M-WG Idaho, Idaho Falls, ID (United States); D'Amico, E. [Washington TRU Solutions, Denver, CO (United States); Lattin, W. [United States Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States); Watson, K. [United States Department of Energy, Carlsbad Field Office, Carlsbad, NM (United States)

    2008-07-01T23:59:59.000Z

    On January 18, 2007, the first ever shipment of Remote Handled Transuranic (RH TRU) waste left the gate at the Idaho National Laboratory (INL), headed toward the Waste Isolation Pilot Plant (WIPP) for disposal, thus concluding one of the most stressful, yet rewarding, periods the authors have ever experienced. The race began in earnest on October 16, 2006, with signature of the New Mexico Environment Department Secretary's Final Order, ruling that the '..draft permit as changed is hereby approved in its entirety.' This established the effective date of the approved permit as November 16, 2006. The permit modification was a consolidation of several Class 3 modification requests, one of which included incorporation of RH TRU requirements and another of which incorporated the requirements of Section 311 of Public Law 108-137. The obvious goal was to complete the first shipment by November 17. While many had anticipated its approval, the time had finally come to actually implement, and time seemed to be the main item lacking. At that point, even the most aggressive schedule that could be seriously documented showed a first ship date in March 2007. Even though planning for this eventuality had started in May 2005 with the arrival of the current Idaho Cleanup Project (ICP) contractor (and even before that), there were many facility and system modifications to complete, startup authorizations to fulfill, and many regulatory audits and approvals to obtain before the first drum could be loaded. Through the dedicated efforts of the ICP workers, the partnership with Department of Energy (DOE) - Idaho, the coordinated integration with the Central Characterization Project (CCP), the flexibility and understanding of the regulatory community, and the added encouragement of DOE - Carlsbad Field Office and at Headquarters, the first RH TRU canister was loaded on December 22, 2006. Following final regulatory approval on January 17, 2007, the historic event finally occurred the following day. While some of the success of this endeavor can be attributed to the sheer will and determination of the individuals involved, the fact that it was established and managed as a separate sub-project under the ICP, accounts for a majority of the success. Utilizing a structured project management approach, including development of, and management to, a performance baseline, allowed for timely decision making and the flexibility to adapt to changing conditions as the various aspects of the project matured. This paper provides some insight into how this was achieved, in a relatively short time, and provides an overview of the experience of start-up of a new retrieval, characterization, loading, and transportation operation in the midst of an aggressive cleanup project. Additionally, as one might expect, everything within the project did not go as planned, which provides a great opportunity to discuss some lessons learned. Finally, the first shipment was just the beginning. There are 224 additional shipments scheduled. In keeping with the theme of WM 2008, Phoenix Rising: Moving Forward in Waste Management, this paper will address the future opportunities and challenges of RH TRU waste management at the INL. (authors)

  10. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. Displacing Natural Gas Consumption and Lowering...

  11. Status of radioiodine control for nuclear fuel reprocessing plants

    SciTech Connect (OSTI)

    Burger, L.L.; Scheele, R.D.

    1983-07-01T23:59:59.000Z

    This report summarizes the status of radioiodine control in a nuclear fuel reprocessing plant with respect to capture, fixation, and disposal. Where possible, we refer the reader to a number of survey documents which have been published in the last four years. We provide updates where necessary. Also discussed are factors which must be considered in developing criteria for iodine control. For capture from gas streams, silver mordenite and a silver nitrate impregnated silica (AC-6120) are considered state-of-the-art and are recommended. Three aqueous scrubbing processes have been demonstrated: Caustic scrubbing is simple but probably will not give an adequate iodine retention by itself. Mercurex (mercuric nitrate-nitric acid scrubbing) has a number of disadvantages including the use of toxic mercury. Iodox (hyperazeotropic nitric acid scrubbing) is effective but employs a very corrosive and hazardous material. Other technologies have been tested but require extensive development. The waste forms recommended for long-term storage or disposal are silver iodide, the iodates of barium, strontium, or calcium, and silver loaded sorbents, all fixed in cement. Copper iodide in bitumen (asphalt) is a possibility but requires testing. The selection of a specific form will be influenced by the capture process used.

  12. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01T23:59:59.000Z

    for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

  13. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Adam E. Calihman; Lyrik Y. Pitzman; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-07-30T23:59:59.000Z

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, ceramic, cermet (ceramic/metal), and thin film membranes were prepared, characterized, and evaluated for H{sub 2} transport. For selected ceramic membrane compositions an optimum range for transition metal doping was identified, and it was determined that highest proton conductivity occurred for two-phase ceramic materials. Furthermore, a relationship between transition metal dopant atomic number and conductivity was observed. Ambipolar conductivities of {approx}6 x 10{sup -3} S/cm were achieved for these materials, and {approx} 1-mm thick membranes generated H{sub 2} transport rates as high as 0.3 mL/min/cm{sup 2}. Cermet membranes during this quarter were found to have a maximum conductivity of 3 x 10{sup -3} S/cm, which occurred at a metal phase contact of 36 vol.%. Homogeneous dense thin films were successfully prepared by tape casting and spin coating; however, there remains an unacceptably high difference in shrinkage rates between the film and support, which led to membrane instability. Further improvements in high pressure membrane seals also were achieved during this quarter, and a maximum pressure of 100 psig was attained. CoorsTek optimized many of the processing variables relevant to manufacturing scale production of ceramic H{sub 2} transport membranes, and SCI used their expertise to deposit a range of catalysts compositions onto ceramic membrane surfaces. Finally, MTI compiled relevant information regarding Vision 21 fossil fuel plant operation parameters, which will be used as a starting point for assessing the economics of incorporating a H{sub 2} separation unit.

  14. Heat exchanger for fuel cell power plant reformer

    DOE Patents [OSTI]

    Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

    1988-01-01T23:59:59.000Z

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  15. Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 3289 0 0FuelFuel Consumption

  16. Fuel Cell Power Plant Experience Naval Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCase Study Fuel CellSummit |PowerPower

  17. Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Marthrough Monthly2.FuelFuel Consumption (Million

  18. An analysis of salt and moisture deposition on the air sampling probes in the exhaust shaft of the waste isolation pilot plant

    E-Print Network [OSTI]

    Weaver, Gregg Shelton

    1996-01-01T23:59:59.000Z

    A study was performed to determine the source of moist salt formations on air sampling , probes at the top of the exhaust shaft used in ventilating the waste repository at the Waste Isolation Pilot Plant (WIPP). An earlier study by Texas A&M Univ...

  19. Waste Isolation Pilot Plant Carlsbad, New Mexico REPRESENTATIONS, CERTIFICATIONS, AND NOTICES APPLICABLE TO OFFERS IN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective Actions Actionssubmitted

  20. Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers

    SciTech Connect (OSTI)

    Krish Krishnamurthy; Divy Acharya; Frank Fitch

    2008-09-30T23:59:59.000Z

    In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW Conesville, Ohio plant and contrasted with the cryogenic air separation option (ASU). Design of a large scale CAR unit was completed to support this techno-economic assessment. Based on the finding that the overall cost potential of the CAR technology compared to cryogenic ASU is nominal at current performance levels and that the risks related to both material and process scale up are still significant, the team recommended not to proceed to Phase 2. CAR process economics continue to look attractive if the original and still 'realistic' target oxygen capacities could be realized in practice. In order to achieve this end, a new fundamental materials development program would be needed. With the effective oxygen capacities of the current CAR materials there is, however, insufficient economic incentive to use this commercially unproven technology in oxy-fuel power plant applications in place of conventional ASUs. In addition, it is now clear that before a larger scale pilot demonstration of the CAR technology is made, a better understanding of the impact of flue-gas impurities on the CAR materials and of thermal transients in the beds is required.

  1. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    SciTech Connect (OSTI)

    Perkins, W.C.; Durant, W.S.; Dexter, A.H.

    1980-12-01T23:59:59.000Z

    The occurrence of certain potential events in nuclear fuel reprocessing plants could lead to significant consequences involving risk to operating personnel or to the general public. This document is a compilation of such potential initiating events in nuclear fuel reprocessing plants. Possible general incidents and incidents specific to key operations in fuel reprocessing are considered, including possible causes, consequences, and safety features designed to prevent, detect, or mitigate such incidents.

  2. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    SciTech Connect (OSTI)

    RECHARD,ROBERT P.

    2000-03-01T23:59:59.000Z

    The opening of the Waste Isolation Pilot Plant on March 26, 1999, was the culmination of a regulatory assessment process that had taken 25 years. National policy issues, negotiated agreements, and court settlements during the first 15 years of the project had a strong influence on the amount and type of scientific data collected up to this point. Assessment activities before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to satisfy negotiated agreements with the State of New Mexico, or (3) to develop general understanding of selected natural phenomena associated with nuclear waste disposal. In the last 10 years, federal compliance policy and actual regulations were sketched out, and continued to evolve until 1996. During this period, stochastic simulations were introduced as a tool for the assessment of the WIPP's performance, and four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  3. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 7: Appendix GCR Volume 2

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    This report contains the second part of the geological characterization report for the Waste Isolation Pilot Plant. Both hydrology and geochemistry are evaluated. The following aspects of hydrology are discussed: surface hydrology; ground water hydrology; and hydrology drilling and testing. Hydrologic studies at the site and adjacent site areas have concentrated on defining the hydrogeology and associated salt dissolution phenomena. The geochemical aspects include a description of chemical properties of geologic media presently found in the surface and subsurface environments of southeastern New Mexico in general, and of the proposed WIPP withdrawal area in particular. The characterization does not consider any aspect of artificially-introduced material, temperature, pressure, or any other physico-chemical condition not native to the rocks of southeastern New Mexico.

  4. Milestones for disposal of radioactive waste at the Waste Isolation Pilot Plant (WIPP) in the United States

    SciTech Connect (OSTI)

    Rechard, R.P.

    1998-04-01T23:59:59.000Z

    Since its identification as a potential deep geologic repository in about 1973, the regulatory assessment process for the Waste Isolation Pilot Plant (WIPP) in New Mexico has developed over the past 25 years. National policy issues, negotiated agreements, and court settlements over the first half of the project had a strong influence on the amount and type of scientific data collected. Assessments and studies before the mid 1980s were undertaken primarily (1) to satisfy needs for environmental impact statements, (2) to develop general understanding of selected natural phenomena associated with nuclear waste disposal, or (3) to satisfy negotiated agreements with the State of New Mexico. In the last third of the project, federal compliance policy and actual regulations were sketched out, but continued to evolve until 1996. During this eight-year period, four preliminary performance assessments, one compliance performance assessment, and one verification performance assessment were performed.

  5. A select bibliography with abstracts of reports related to Waste Isolation Pilot Plant geotechnical studies (1972--1990)

    SciTech Connect (OSTI)

    Powers, D.W. [Powers (Dennis W.), Anthony, TX (United States); Martin, M.L. [International Technology, Inc., Las Vegas, NV (United States)

    1993-08-01T23:59:59.000Z

    This select bibliography contains 941 entries. Each bibliographic entry contains the citation of a report, conference paper, or journal article containing geotechnical information about the Waste Isolation Pilot Plant (WIPP). The entries cover the period from 1972, when investigation began for a WIPP Site in southeastern New Mexico, through December 1990. Each entry is followed by an abstract. If an abstract or suitable summary existed, it has been included; 316 abstracts were written for other documents. For some entries, an annotation has been provided to clarify the abstract, comment on the setting and significance of the document, or guide the reader to related reports. An index of key words/phrases is included for all entries.

  6. The effect of stratigraphic dip on brine inflow and gas migration at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Webb, S.W. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Larson, K.W. [INTERA, Inc., Albuquerque, NM (United States)] [INTERA, Inc., Albuquerque, NM (United States)

    1996-02-01T23:59:59.000Z

    The natural dip of the Salado Formation at the Waste Isolation Pilot Plant (WIPP), although regionally only about 111, has the potential to affect brine inflow and gas-migration distances due to buoyancy forces. Current models, including those in WIPP Performance Assessment calculations, assume a perfectly horizontal repository and stratigraphy. With the addition of buoyancy forces due to the dip, brine and gas flow patterns can be affected. Brine inflow may increase due to countercurrent flow, and gas may preferentially migrate up dip. This scoping study has used analytical and numerical modeling to evaluate the impact of the dip on brine inflow and gas-migration distances at the WIPP in one, two, and three dimensions. Sensitivities to interbed permeabilities, two-phase curves, gas-generation rates, and interbed fracturing were studied.

  7. Environmental assessment for the reuse of TNX as a multi-purpose pilot plant campus at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental and safety impacts of DOE planning to allow asset reuse of the TNX Area at the Savannah River Site (SRS) located near Aiken, South Carolina. The proposed action would include providing for a location for the Centers of Excellence at or adjacent to SRS and entering into a cooperative agreement with a non-profit management and operations (management firm) contractor to operate and market the TNX facilities and equipment. The area (formerly TNX) would be called a Multi-Purpose Pilot Plant Campus (MPPC) and would be used: (1) as location for technology research, development, demonstration, and commercial operations; (2) to establish partnerships with industry to develop applied technologies for commercialization; and (3) serve as administrative headquarters for Centers of Excellence in the program areas of soil remediation, radioecology, groundwater contamination, and municipal solid waste minimization.

  8. Construction of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Munson, D.E.; Matalucci, R.V. [Sandia National Lab., Albuquerque, NM (United States)] [Sandia National Lab., Albuquerque, NM (United States); Hoag, D.L.; Blankenship D.A. [RE/SPEC Inc., Albuquerque, NM (United States)] [and others] [RE/SPEC Inc., Albuquerque, NM (United States); and others

    1997-02-01T23:59:59.000Z

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories has the responsibility for experimental activities at the WIPP and has emplaced several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The construction of the tests relied heavily on earlier excavations at the WIPP site to provide a basis for selecting excavation, surveying, and instrumentation methods, and achievable construction tolerances. The tests were constructed within close tolerances to provide consistent room dimensions and accurate placement of gages. This accuracy has contributed to the high quality of data generated which in turn has facilitated the comparison of test results to numerical predictions. The purpose of this report is to detail the construction activities of the TSI tests.

  9. MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IEOWC <SurgeWECSailsOWC.png TechnologyUFCAP

  10. West Virginia Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion CubicCubic39,287Sales1Feet)Fuel

  11. Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions (Billion2008Sep-14 Oct-14Year (Million CubicFuel

  12. New Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecade Year-0Industrial ConsumersFuel

  13. North Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecade Year-0Feet)Elements)Fuel Consumption

  14. Ohio Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade (Million Cubic Feet) Ohio NaturalFuel

  15. Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan (Million CubicFuel

  16. Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0Sales (BillionDecadeFuel

  17. Pennsylvania Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)Decade Year-0SalesElements) IndustrialFuel

  18. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet) Base Gas)1,727Feet)Fuel Consumption

  19. Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan Feb Mar Apr May JunFuel Consumption

  20. Arkansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)YearIndustrial Consumers (Number ofFuel

  1. Kansas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15 0 0ExtensionsYear JanFuel Consumption

  2. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14 15Industrial Consumers (Number ofFuel

  3. Michigan Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15 15 15 3Year Jan Feb (MillionFuel

  4. Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb (Million CubicFuel

  5. Montana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19343 369 384Fuel Consumption (Million Cubic

  6. Lease and Plant Fuel Consumption of Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948 138,676

  7. Colorado Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 (Million Cubic Feet)Fuel Consumption

  8. Florida Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013Fuel Consumption (Million

  9. California Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998 10,643Elements) GasFuel

  10. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28 198Separation 321 (Million Cubic Feet)Fuel

  11. More Economical Sulfur Removal for Fuel Processing Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutesDepartment ofMonthly enabled TDA to

  12. More Economical Sulfur Removal for Fuel Processing Plants | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012 Monthly Project Bulletin:More About

  13. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 4: Uncertainty and sensitivity analyses for 40 CFR 191, Subpart B

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Additional information about the 1992 PA is provided in other volumes. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions, the choice of parameters selected for sampling, and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect compliance with 40 CFR 191B are: drilling intensity, intrusion borehole permeability, halite and anhydrite permeabilities, radionuclide solubilities and distribution coefficients, fracture spacing in the Culebra Dolomite Member of the Rustler Formation, porosity of the Culebra, and spatial variability of Culebra transmissivity. Performance with respect to 40 CFR 191B is insensitive to uncertainty in other parameters; however, additional data are needed to confirm that reality lies within the assigned distributions.

  14. The Waste Isolation Pilot Plant Deep Geological Repository: A Domestic and Global Blueprint for Safe Disposal of High-Level Radioactive Waste - 12081

    SciTech Connect (OSTI)

    Eriksson, Leif G. [Nuclear Waste Dispositions, Winter Park, Florida 32789 (United States); Dials, George E. [B and W Conversion Services, LLC, Lexington, Kentucky 40513 (United States)

    2012-07-01T23:59:59.000Z

    At the end of 2011, the world's first used/spent nuclear fuel and other long-lived high-level radioactive waste (HLW) repository is projected to open in 2020, followed by two more in 2025. The related pre-opening periods will be at least 40 years, as it also would be if USA's candidate HLW-repository is resurrected by 2013. If abandoned, a new HLW-repository site would be needed. On 26 March 1999, USA began disposing long-lived radioactive waste in a deep geological repository in salt at the Waste Isolation Pilot Plant (WIPP) site. The related pre-opening period was less than 30 years. WIPP has since been re-certified twice. It thus stands to reason the WIPP repository is the global proof of principle for safe deep geological disposal of long-lived radioactive waste. It also stands to reason that the lessons learned since 1971 at the WIPP site provide a unique, continually-updated, blueprint for how the pre-opening period for a new HLW repository could be shortened both in the USA and abroad. (authors)

  15. WASHINGTON GROUP TEAM WINS NEW CONTRACT TO MANAGE WASTE ISOLATION PILOT PLANT IN NEW MEXICO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. |VolunteeringMap2-5: EastW.W7WAPD-SC-545#

  16. Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National Accelerator LaboratoryHot andguide|SeasonsLoreleiSince

  17. Fire Hazard Analysis of the Waste Isolation Pilot Plant | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs Find Jobs Clean energy jobs

  18. WIPP | U.S. Department of Energy | Waste Isolation Pilot Plant (WIPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign Register todayUser

  19. WIPP | U.S. Department of Energy | Waste Isolation Pilot Plant (WIPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign Register todayUser

  20. Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 DocumentationAnalysis of Crossover

  1. Microsoft Word - Waste Isolation Pilot Plant Summary Report May 22.2014.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource Program Preliminary Needs535:UFC5, 2010UPDATES: MarchC IG

  2. Department of Energy Announces Selection of Transportation Contractors at the Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files DataADVANCES INNuclearDepartment of Energy Announces

  3. DOE/WIPP-10-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S. Department of4223WIPP-10-2225

  4. DOE/WIPP-11-2225 Waste Isolation Pilot Plant Annual Site Environmental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S. Department

  5. Cook-off Experiments with Surrogate Waste Isolation Pilot Plant (WIPP) Drum

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison Uranium activities onDepartment ofScott

  6. Administrative Compliance Order HWB-14-21 Waste Isolation Pilot Plant |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAbout Us 禄Settlement EvaluationsEnergyDepartment

  7. Source Term Analysis for the Waste Isolation Pilot Plant (WIPP) Release

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small Business Webinar June 20,

  8. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmall BusinessSmall1AmesFermiU.S.

  9. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmall BusinessSmall1AmesFermiU.S.

  10. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmall BusinessSmall1AmesFermiU.S.

  11. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmall

  12. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmallU.S. Department of Energy

  13. U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof Energy Two2015 TysonSmallU.S. Department of Energy

  14. Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, February 5, 2014

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of Energy Sof EnergyDepartment of EnergyEnergy, Office

  15. Waste Isolation Pilot Plant Status and Plans - 2010 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department of EnergyDepartmentEnergy WRPSWasteActivites

  16. Sampling Report for August 15, 2014 Waste Isolation Pilot Plant Samples |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartmentRestrictionsExample Sheet) | Department of|Products |:Department

  17. Sampling Report for May-June, 2014 Waste Isolation Pilot Plant Samples |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartmentRestrictionsExample Sheet) | Department of|Products

  18. Biochemical Conversion Pilot Plant (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for aCould WorkVehicles,000 mrem SiteBiochemical

  19. Investigation of Incident at Waste Isolation Pilot Plant by Technical Assessment Team

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTSDOE-IG-0882DepartmentEnergyEnergyIntroduction to

  20. After Review, DOE Competitively Awards Contract For the Management of Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011 SimulationAftab Ahmed PostdocAfterTom

  1. Strategic Plan for Groundwater Monitoring at the Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout 禄 Staff125,849| OSTI, US Dept ofStrategic

  2. The Karst and Related Issues at the Waste Isolation Pilot Plant (WIPP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience andFebruaryTheFarrelCellsDepartment

  3. reliable, efficient, ultra-clean Fuel Cell Power Plant Experience

    E-Print Network [OSTI]

    (US Army CERL) propane 路 5 kW adiabatic fuel processor (US Army CERL) 颅 B-100 bio diesel 路 Bench scale

  4. South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) YearPriceThousandThousand479,7416.18DecadeElements)South

  5. Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. (Million Cubic

  6. Texas Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 (Million Cubic Feet)

  7. Lease and Plant Fuel Consumption of Natural Gas (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 14343 342 328 370 396After898 701200973

  8. Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 04 19 15Year Jan Feb MarFeet)

  9. Cost and Quality of Fuels for Electric Plants - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompany LevelPhysicalAdministration

  10. Power Plant and Industrial Fuel Use Act | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > Financial InfoPower

  11. Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand28Decreases349,980Additions (Million CubicFeet)

  12. U.S. Fuel Ethanol Plant Production Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone: FAX: LastElectricityAvailabilityAll Petrolem

  13. Cost and Quality of Fuels for Electric Utility Plants

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECSYearThousandPADDecade1)

  14. Cost and Quality of Fuels for Electric Utility Plants 1997

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECSYearThousandPADDecade1)7

  15. Fuel Cell Power Plants Renewable and Waste Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable and Waste Fuels

  16. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions

    SciTech Connect (OSTI)

    Michael L. Fenger; Richard A. Winschel

    2005-08-31T23:59:59.000Z

    A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and September of 2005 and are included in Appendices E and F.

  17. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect (OSTI)

    Not Available

    1981-06-25T23:59:59.000Z

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  18. Resource Conservation and Recovery Act, Part B permit application [of the Waste Isolation Pilot Plant (WIPP)]. Volume 11, Chapter D, Appendix D4--Chapter D, Appendix D17: Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This volume contains appendices D4 through D17 which cover the following: Waste Isolation Pilot Plant site environmental report; ecological monitoring program at the Waste Isolation Pilot Plant; site characterization; regional and site geology and hydrology; general geology; dissolution features; ground water hydrology; typical carbon sorption bed efficiency; VOC monitoring plan for bin-room tests; chemical compatibility analysis of waste forms and container materials; probable maximum precipitation; WHIP supplementary roof support system room 1, panel 1; and corrosion risk assessment of the Waste Isolation Pilot Plant ``humid`` test bins.

  19. Renewable Fuel Heating Plant SyStem SpecificationS

    E-Print Network [OSTI]

    with the new Research Support Facility) environmental impact Carbon offsets: The plant initially will offset 4.8 million pounds of CO2 (or 2,200 metric tonnes of carbon) each year TEAM Initiative & Executive Order 13423

  20. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  1. Lucky Charms leftovers to fuel plant | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    fuel. The new boiler will replace a natural-gas boiler, making the mill partially self-sustaining, in addition to cutting its carbon footprint by 21 percent by reducing carbon...

  2. California Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998 10,643 10,998WithdrawalsFeet)

  3. HH22 Reformer, Fuel Cell Power Plant,Reformer, Fuel Cell Power Plant, & Vehicle Refueling System& Vehicle Refueling System

    E-Print Network [OSTI]

    sufficient hydrogen demand develops. #12;4 Relevant DOE Program Objectives Reduce dependence on foreign oil Promote use of diverse, domestic energy resources 颅 Natural gas reformation Develop and demonstrate on test fill tank, CNG/H2 ICE vehicles and H2 Fuel Cell vehicles. Fuel dispensing integrated with City

  4. Formerly utilized MED/AEC sites remedial action program: radiological survey of the former Virginia-Carolina Chemical Corporation Uranium Recovery Pilot Plant, Nichols, Florida. Final report

    SciTech Connect (OSTI)

    Haywood, F F; Doane, R W; Goldsmith, W A; Shinpaugh, W H; Crawford, D J; Fox, W F; Leggett, R W; Stone, D R

    1980-01-01T23:59:59.000Z

    The results of a radiological survey conducted at the site of a former uranium recovery pilot plant operated by the Virginia-Carolina Chemical Corporation is presented. All that remains of this operation is a concrete pad situated within the boundary of a phosphate products plant now operated by Conserv, Inc., at the Nichols, Florida site. The survey included measurements designed to characterize the residual radioactivity in the vicinity of this pilot plant and to compare the quantities with federal guidelines for the release of decontaminated property for unrestricted use. The results of this survey indicate that only small quantities of radioactivity exist above normal background levels for that area. Some soil contamination was found in the vicinity of a concrete pad on which the pilot plant stood. Much of this contamination was due to /sup 226/Ra and /sup 238/U. Some beta-gamma dose rates in excess of applicable guidelines were observed in this same area. External gamma-ray exposure rates at 1 m above the ground range from 20 to 100 ..mu..R/hr. None of the direct measurements of alpha contamination were above guideline levels.

  5. Historic American Engineering Record, Idaho National Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex

    SciTech Connect (OSTI)

    Susan Stacy; Julie Braun

    2006-12-01T23:59:59.000Z

    Just as automobiles need fuel to operate, so do nuclear reactors. When fossil fuels such as gasoline are burned to power an automobile, they are consumed immediately and nearly completely in the process. When the fuel is gone, energy production stops. Nuclear reactors are incapable of achieving this near complete burn-up because as the fuel (uranium) that powers them is burned through the process of nuclear fission, a variety of other elements are also created and become intimately associated with the uranium. Because they absorb neutrons, which energize the fission process, these accumulating fission products eventually poison the fuel by stopping the production of energy from it. The fission products may also damage the structural integrity of the fuel elements. Even though the uranium fuel is still present, sometimes in significant quantities, it is unburnable and will not power a reactor unless it is separated from the neutron-absorbing fission products by a method called fuel reprocessing. Construction of the Fuel Reprocessing Complex at the Chem Plant started in 1950 with the Bechtel Corporation serving as construction contractor and American Cyanamid Company as operating contractor. Although the Foster Wheeler Corporation assumed responsibility for the detailed working design of the overall plant, scientists at Oak Ridge designed all of the equipment that would be employed in the uranium separations process. After three years of construction activity and extensive testing, the plant was ready to handle its first load of irradiated fuel.

  6. New York Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) in KansasYearDecadeYearDecadeand Plant Fuel Consumption

  7. Ohio Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecade Year-0YearSalesDecadeInputand Plant Fuel

  8. Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996) inDecadeDecadeFeet) Year Jan Feband Plant Fuel

  9. Six Utah plants help fuel rise in geothermal projects | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the Americas |DOE FormerEnergy DataPlanEnergy Six Utah plants

  10. Nevada Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb MarthroughYear Jan Feband Plant Fuel Consumption

  11. Balance of Plant (BoP) Components Validation for Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid- EngineB2Bagdad Plant

  12. Internal Technical Report, Safety Analysis Report 5 MW(e) Raft River Pilot Plant

    SciTech Connect (OSTI)

    Brown, E.S.; Homer, G.B.; Spencer, S.G.; Shaber, C.R.

    1980-05-30T23:59:59.000Z

    The Raft River Geothermal Site is located in Southern Idaho's Raft River Valley, southwest of Malta, Idaho, in Cassia County. EG and G idaho, Inc., is the DOE's prime contractor for development of the Raft River geothermal field. Contract work has been progressing for several years towards creating a fully integrated utilization of geothermal water. Developmental progress has resulted in the drilling of seven major DOE wells. Four are producing geothermal water from reservoir temperatures measured to approximately 149 C (approximately 300 F). Closed-in well head pressures range from 69 to 102 kPa (100 to 175 psi). Two wells are scheduled for geothermal cold 60 C (140 F) water reinjection. The prime development effort is for a power plant designed to generate electricity using the heat from the geothermal hot water. The plant is designated as the ''5 MW(e) Raft River Research and Development Plant'' project. General site management assigned to EG and G has resulted in planning and development of many parts of the 5 MW program. Support and development activities have included: (1) engineering design, procurement, and construction support; (2) fluid supply and injection facilities, their study, and control; (3) development and installation of transfer piping systems for geothermal water collection and disposal by injection; and (4) heat exchanger fouling tests.

  13. Hog Fuel Drying Using Vapour Recompression

    E-Print Network [OSTI]

    Azarniouch, M. K.; MacEachen, I.

    1984-01-01T23:59:59.000Z

    A continuous hog fuel drying pilot plant based on the principle of mixing hog fuel with a hot oil (e.g., crude tall oil) as the heat transfer medium, and recirculating the suspension through a steam heated exchanger was designed, built...

  14. Radiological health review of the Final Environmental Impact Statement Waste Isolation Pilot Plant. Volumes 1 and 2. DOE/EIS-0026

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Purpose of the Environmental Evaluation Group (EEG) is to conduct an independent technical evaluation of the potential radiation exposure to people from the proposed Federal radioactive Waste Isolation Pilot Plant (WIPP) near Carlsbad, in order to protect the public health and safety and ensure that there is minimal environmental degradation. Analyses are conducted of reports issued by the US DOE and its contractors, other Federal agencies and other organizations, as they relate to the potential health, safety and environmental impacts from WIPP.

  15. Draft Title 40 CFR 191 compliance certification application for the Waste Isolation Pilot Plant. Volume 3: Appendix BIR Volume 1

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Transuranic Waste Baseline Inventory Report (WTWBIR) establishes a methodology for grouping wastes of similar physical and chemical properties, from across the US Department of Energy (DOE) transuranic (TRU) waste system, into a series of ``waste profiles`` that can be used as the basis for waste form discussions with regulatory agencies. The majority of this document reports TRU waste inventories of DOE defense sites. An appendix is included which provides estimates of commercial TRU waste from the West Valley Demonstration Project. The WIPP baseline inventory is estimated using waste streams identified by the DOE TRU waste generator/storage sites, supplemented by information from the Mixed Waste Inventory Report (MWIR) and the 1994 Integrated Data Base (IDB). The sites provided and/or authorized all information in the Waste Stream Profiles except the EPA (hazardous waste) codes for the mixed inventories. These codes were taken from the MWIR (if a WTWBIR mixed waste stream was not in MWIR, the sites were consulted). The IDB was used to generate the WIPP radionuclide inventory. Each waste stream is defined in a waste stream profile and has been assigned a waste matrix code (WMC) by the DOE TRU waste generator/storage site. Waste stream profiles with WMCs that have similar physical and chemical properties can be combined into a waste matrix code group (WMCG), which is then documented in a site-specific waste profile for each TRU waste generator/storage site that contains waste streams in that particular WMCG.

  16. Hydrogeochemical studies of the Rustler Formation and related rocks in the Waste Isolation Pilot Plant Area, Southeastern New Mexico

    SciTech Connect (OSTI)

    Siegel, M.D.; Lambert, S.J.; Robinson, K.L. (eds.)

    1991-08-01T23:59:59.000Z

    Chemical, mineralogical, isotopic, and hydrological studies of the Culebra dolomite member of the Rustler Formation and related rocks are used to delineate hydrochemical facies and form the basis for a conceptual model for post-Pleistocene groundwater flow and chemical evolution. Modern flow within the Culebra in the Waste Isolation Pilot Plant (WIPP) area appears to be largely north-to-south; however, these flow directions under confined conditions are not consistent with the salinity distribution in the region surrounding the WIPP Site. Isotopic, mineralogical, and hydrological data suggest that vertical recharge to the Culebra in the WIPP area and to the immediate east and south has not occurred for several thousand years. Eastward increasing {sup 234}U/{sup 238}U activity ratios suggest recharge from a near-surface Pleistocene infiltration zone flowing from the west-northwest and imply a change in flow direction in the last 30,000 to 12,000 years. 49 refs., 34 figs., 4 tabs.

  17. Analysis of solutes in groundwaters from the Rustler Formation at and near the Waste Isolation Pilot Plant site

    SciTech Connect (OSTI)

    Robinson, K.L.

    1997-09-01T23:59:59.000Z

    Between 1976 and 1986, groundwater samples from more than 60 locations in the vicinity of the Waste Isolation Pilot Plant site were collected and analyzed for a variety of major, minor, and trace solutes. Most of the samples were from the Rustler Formation (the Culebra Dolomite, the Magenta Dolomite, or the zone at the contact between the Rustler and underlying Salado Formations) or the Dewey Lake Red Beds. The analytical data from the laboratories are presented here with accompanying discussions of sample collection methods, supporting field measurements, and laboratory analytical methods. A comparison of four data sets and a preliminary evaluation of the data for the major solutes (Cl{sup {minus}}, SO{sub 4}{sup {minus}2}, Na, K, Ca, and Mg) shows that the data for samples analyzed by UNC/Bendix for SNL seem to be the most reliable, but that at some locations, samples representative of the native, unperturbed groundwater have not been collected. At other locations, the water chemistry has apparently changed between sampling episodes.

  18. Waste Isolation Pilot Plant shaft sealing system compliance submittal design report. Volume 2 of 2: Appendix E

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report describes a shaft sealing design for the Waste Isolation Pilot Plant (WIPP), a proposed nuclear waste repository in bedded salt. The system is designed to limit entry of water and release of contaminants through the four existing shafts after the WIPP is decommissioned. The design approach applies redundancy to functional elements and specifies multiple, common, low-permeability materials to reduce uncertainty in performance. The system comprises 13 elements that completely fill the shafts with engineered materials possessing high density and low permeability. Laboratory and field measurements of component properties and performance provide the basis for the design and related evaluations. Hydrologic, mechanical, thermal, and physical features of the system are evaluated in a series of calculations. These evaluations indicate that the design guidance is addressed by effectively limiting transport of fluids within the shafts, thereby limiting transport of hazardous material to regulatory boundaries. Additionally, the use or adaptation of existing technologies for placement of the seal components combined with the use of available, common materials assure that the design can be constructed.

  19. Pilot plant studies for a new hot water process for extraction of bitumen from Utah tar sands

    SciTech Connect (OSTI)

    Dahlstrom, D.A.

    1996-12-31T23:59:59.000Z

    A process development pilot plant for extracting bitumen from tar sands under arid conditions are described. The hot water recovery process under development is required to maximize heat and water recovery, recover more than 90% of the bitumen, minimize the operating cost, and eliminate the use of a tailings pond by increasing the effectiveness of solids separation and dewatering. Technical aspects of process flow conditions, the liquid cyclone separator under development, and testing to analyze the influence of flow rates, size distribution in discharge streams, amount of bitumen recovery from different streams, and air addition are summarized. Test results indicate that bitumen recovery should be at least 90%, water content from thickener underflow and dewater coarse solids averages about 30 weight percent moisture, and the forced vortex cyclone can produce an underflow solids concentration of 69 to 72 weight percent moisture. The proposed flow sheet is believed to be a very low-cost method for bitumen recovery. 5 refs., 3 figs., 2 tabs.

  20. Review and perspectives on spallings release models in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Knowles, M.K; Hansen, F.D.; Thompson, T.W.; Schatz, J.F.; Gross, M.

    2000-05-22T23:59:59.000Z

    The Waste Isolation Pilot Plant was licensed for disposal of transuranic wastes generated by the US Department of Energy. The facility consists of a repository mined in a bedded salt formation, approximately 650 m below the surface. Regulations promulgated by the US Environmental Protection Agency require that performance assessment calculations for the repository include the possibility that an exploratory drilling operation could penetrate the waste disposal areas at some time in the future. Release of contaminated solids could reach the surface during a drilling intrusion. One of the mechanisms for release, known as spallings, can occur if gas pressures in the repository exceed the hydrostatic pressure of a column of drilling mud. Calculation of solids releases for spallings depends critically on the conceptual models for the waste, for the spallings process, and assumptions regarding driller parameters and practices. The paper presents a review of the evolution of these models during regulatory review of the Compliance Certification Application for the repository. A summary and perspectives on the implementation of conservative assumptions in model development are also provided.

  1. Permeability of natural rock salt from the Waste Isolation Pilot Plant (WIPP) during damage evolution and healing

    SciTech Connect (OSTI)

    Pfeifle, T.W. [RE/SPEC Inc., Rapid City, SD (United States); Hurtado, L.D. [Sandia National Lab., Albuquerque, NM (United States)

    1998-06-01T23:59:59.000Z

    The US Department of Energy has developed the Waste Isolation Pilot Plant (WIPP) in the bedded salt of southeastern New Mexico to demonstrate the safe disposal of radioactive transuranic wastes. Four vertical shafts provide access to the underground workings located at a depth of about 660 meters. These shafts connect the underground facility to the surface and potentially provide communication between lithologic units, so they will be sealed to limit both the release of hazardous waste from and fluid flow into the repository. The seal design must consider the potential for fluid flow through a disturbed rock zone (DRZ) that develops in the salt near the shafts. The DRZ, which forms initially during excavation and then evolves with time, is expected to have higher permeability than the native salt. The closure of the shaft openings (i.e., through salt creep) will compress the seals, thereby inducing a compressive back-stress on the DRZ. This back-stress is expected to arrest the evolution of the DRZ, and with time will promote healing of damage. This paper presents laboratory data from tertiary creep and hydrostatic compression tests designed to characterize damage evolution and healing in WIPP salt. Healing is quantified in terms of permanent reduction in permeability, and the data are used to estimate healing times based on considerations of first-order kinetics.

  2. Instrumentation of the thermal/structural interactions in situ tests at the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Div.; Hoag, D.L.; Blankenship, D.A.; DeYonge, W.F.; Schiermeister, D.M. [RE/SPEC, Inc., Albuquerque, NM (United States); Jones, R.L.; Baird, G.T. [Tech Reps, Inc., Albuquerque, NM (United States)

    1997-04-01T23:59:59.000Z

    The Department of Energy has constructed the Waste Isolation Pilot Plant (WIPP) to develop the technology for the disposal of radioactive waste from defense programs. Sandia National Laboratories had the responsibility for the experimental activities at the WIPP and fielded several large-scale Thermal/Structural Interactions (TSI) in situ tests to validate techniques used to predict repository performance. The instrumentation of these tests involved the placement of over 4,200 gages including room closure gages, borehole extensometers, stress gages, borehole inclinometers, fixed reference gages, borehole strain gages, thermocouples, thermal flux meters, heater power gages, environmental gages, and ventilation gages. Most of the gages were remotely read instruments that were monitored by an automated data acquisition system, but manually read instruments were also used to provide early deformation information and to provide a redundancy of measurement for the remote gages. Instruments were selected that could operate in the harsh environment of the test rooms and that could accommodate the ranges of test room responses predicted by pretest calculations. Instruments were tested in the field prior to installation at the WIPP site and were modified to improve their performance. Other modifications were made to gages as the TSI tests progressed using knowledge gained from test maintenance. Quality assurance procedures were developed for all aspects of instrumentation including calibration, installation, and maintenance. The instrumentation performed exceptionally well and has produced a large quantity of quality information.

  3. Guidebook for performance assessment parameters used in the Waste Isolation Pilot Plant compliance certification application. Volume 2: Appendices

    SciTech Connect (OSTI)

    Howarth, S.M.; Martell, M.A.; Weiner, R. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Lattier, C. [GRAM, Inc., Albuquerque, NM (United States)] [GRAM, Inc., Albuquerque, NM (United States)

    1998-06-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Compliance Certification Application (CCA) Performance Assessment (PA) Parameter Database and its ties to supporting information evolved over the course of two years. When the CCA was submitted to the Environmental Protection Agency (EPA) in October 1996, information such as identification of parameter value or distribution source was documented using processes established by Sandia National Laboratories WIPP Quality Assurance Procedures. Reviewers later requested additional supporting documentation, links to supporting information, and/or clarification for many parameters. This guidebook is designed to document a pathway through the complex parameter process and help delineate flow paths to supporting information for all WIPP CCA parameters. In addition, this report is an aid for understanding how model parameters used in the WIPP CCA were developed and qualified. To trace the source information for a particular parameter, a dual-route system was established. The first route uses information from the Parameter Records package as it existed when the CCA calculations were run. The second route leads from the EPA Parameter Database to additional supporting information.

  4. Guidebook for performance assessment parameters used in the Waste Isolation Pilot Plant compliance certification application. Volume 1: Main report

    SciTech Connect (OSTI)

    Howarth, S.M.; Martell, M.A.; Weiner, R. [Sandia National Labs., Albuquerque, NM (United States); Lattier, C. [GRAM, Inc., Albuquerque, NM (United States)

    1998-06-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) Compliance Certification Application (CCA) Performance Assessment (PA) Parameter Database and its ties to supporting information evolved over the course of two years. When the CCA was submitted to the Environmental Protection Agency (EPA) in October 1996, information such as identification of parameter value or distribution source was documented using processes established by Sandia National Laboratories WIPP Quality Assurance Procedures. Reviewers later requested additional supporting documentation, links to supporting information, and/or clarification for many parameters. This guidebook is designed to document a pathway through the complex parameter process and help delineate flow paths to supporting information for all WIPP CCA parameters. In addition, this report is an aid for understanding how model parameters used in the WIPP CCA were developed and qualified. To trace the source information for a particular parameter, a dual-route system was established. The first route uses information from the Parameter Records Package as it existed when the CCA calculations were run. The second route leads from the EPA Parameter Database to additional supporting information.

  5. The Waste Isolation Pilot Plant - An International Center of Excellence for ''Training in and Demonstration of Waste Disposal Technologies''

    SciTech Connect (OSTI)

    Matthews, Mark L.; Eriksson, Leif G.

    2003-02-25T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) site, which is managed and operated by the United States (U.S.) Department of Energy (USDOE) Carlsbad Field Office (CBFO) and located in the State of New Mexico, presently hosts an underground research laboratory (URL) and the world's first certified and operating deep geological repository for safe disposition of long-lived radioactive materials (LLRMs). Both the URL and the repository are situated approximately 650 meters (m) below the ground surface in a 250-million-year-old, 600-m-thick, undisturbed, bedded salt formation, and they have been in operation since 1982 and 1999, respectively. Founded on long-standing CBFO collaborations with international and national radioactive waste management organizations, since 2001, WIPP serves as the Center of Excellence in Rock Salt for the International Atomic Energy Agency's (IAEA's) International Network of Centers on ''Training in and Demonstration of Waste Disposal Technologies in Underground Research Facilities'' (the IAEA Network). The primary objective for the IAEA Network is to foster collaborative projects among IAEA Member States that: supplement national efforts and promote public confidence in waste disposal schemes; contribute to the resolution of key technical issues; and encourage the transfer and preservation of knowledge and technologies.

  6. Chemical, biomedical and ecological studies of SRC-I materials from the Fort Lewis Pilot Plant: a status report

    SciTech Connect (OSTI)

    Mahlum, D.D. (ed.)

    1981-01-01T23:59:59.000Z

    This document discusses studies performed with solvent refined coal (SRC) materials obtained from the Fort Lewis Pilot Plant during operation in the SRC-I mode. The development of analytical methodology is presented as well as results obtained from the application of these methods to light oil (LO), wash solvent (WS) and process solvent (PS). Results of cellular and animal studies with LO, WS and PS are included, along with a description of methods for the generation and characterization of LO and PS aerosols, and for exposing rats, mice and guinea pigs to these aerosols. The effects of SRC-I product on seed germination and plant growth which have also been studied are discussed. The SRC-I product, feed coal and the mineral residue have been analyzed for organic and inorganic constituents. The higher-boiling-point material, PS, exhibited significant mutagenic activity in the Ames assay; LO and WS were inactive. Process solvent also caused transformation of cultured Syrian hamster embryo cells. Additional chemical fractionation studies suggest that primary aromatic amines are major determinants of the observed mutagenic activity. Skin-painting studies with SRC-II naphtha, heavy distillate, shale oil and petroleum crude indicate a good correlation between the results of the cellular assays and skin carcinogenesis in mice. Wash solvent was more toxic after oral administration to rats than was light oil or process solvent. The effects of LO, WS and PS on development were studied after administration to pregnant rats. The tissue distribution of a number of components of PS was studied after oral administration of PS to rats. The effect of SRC-I product on the germination and growth of barley was investigated by mixing or layering the product with soil and placing the mixture in a field lysimeter.

  7. The Effect of Variable Quality Fuels on Cogeneration Plant Performance

    E-Print Network [OSTI]

    Ahner, D. J.; Oliva, J. J.

    on system economic evaluation. The effects of the range of heating values, quantity delivered, process heat to power requirement and use of supplemental fuel will be illustrated and described. The relative economics of alternatives for a specific... and oil energy used by u. S. utilities and equivalent to 40% of the coal energy they consume. Since waste materials must be col lected and concentrated for disposal, this material can become a significant and viable energy source for valuable power...

  8. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 contains an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.

  9. Receiver subsystem analysis report (RADL Item 4-1). 10-MWe Solar Thermal Central-Receiver Pilot Plant: solar-facilities design integration

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    The results are presented of those thermal hydraulic, structural, and stress analyses required to demonstrate that the Receiver design for the Barstow Solar Pilot Plant will satisfy the general design and performance requirements during the plant's design life. Recommendations resulting from those analyses and supporting test programs are presented regarding operation of the receiver. The analyses are limited to receiver subsystem major structural parts (primary tower, receiver unit core support structure), pressure parts (absorber panels, feedwater, condensate and steam piping/components, flash tank, and steam mainfold) and shielding. (LEW)

  10. Distillate fuel-oil processing for phosphoric acid fuel-cell power plants

    SciTech Connect (OSTI)

    Ushiba, K. K.

    1980-02-01T23:59:59.000Z

    The current efforts to develop distillate oil-steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high-temperature steam reforming (HTSR); autothermal reforming (ATR); autothermal gasification (AG); and ultra desulfurization followed by steam reforming. Sulfur in the feed is a key problem in the process development. A majority of the developers consider sulfur as an unavoidable contaminant of distillate fuel and are aiming to cope with it by making the process sulfur-tolerant. In the HTSR development, the calcium aluminate catalyst developed by Toyo Engineering represents the state of the art. United Technology (UTC), Engelhard, and Jet Propulsion Laboratory (JPL) are also involved in the HTSR research. The ATR of distillate fuel is investigated by UTC and JPL. The autothermal gasification (AG) of distillate fuel is being investigated by Engelhard and Siemens AG. As in the ATR, the fuel is catalytically gasified utilizing the heat generated by in situ partial combustion of feed, however, the goal of the AG is to accomplish the initial breakdown of the feed into light gases and not to achieve complete conversion to CO and H/sub 2/. For the fuel-cell integration, a secondary reforming of the light gases from the AG step is required. Engelhard is currently testing a system in which the effluent from the AG section enters the steam-reforming section, all housed in a single vessel. (WHK)

  11. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    SciTech Connect (OSTI)

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.

    1987-01-01T23:59:59.000Z

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

  12. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01T23:59:59.000Z

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  13. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    SciTech Connect (OSTI)

    Janeen Denise Robertson

    1999-02-01T23:59:59.000Z

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  14. Texas Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2perSep-14 Oct-14DecadeDecadeFueland Plant

  15. Colorado Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 46 47ExtensionsYearWithdrawalsand Plant

  16. Florida Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 6330 0 1 0 0 0 1979-2013 AdjustmentsYearand Plant

  17. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; R.D. Carneim; P.F. Becher; C-H. Hsueh; Aaron L. Wagner; Jon P. Wagner

    2002-04-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur.

  18. Paducah Gaseous Diffusion Plant proposed pilot pump-and-treat project. Final report

    SciTech Connect (OSTI)

    Bodenstein, G.W.; Bonczek, R.R.; Early, T.O.; Huff, D.D.; Jones, K.S.; Nickelson, M.D.; Rightmire, C.T.

    1994-01-01T23:59:59.000Z

    On March 23, 1992, R.C. Sleeman of the Department of Energy, Oak Ridge Operations Office requested that a Groundwater Corrective Actions Team be assembled to evaluate the technical merit of and the need to implement a proposed groundwater pump-and-treat demonstration project for the Northwest contaminant plume at the Paducah Gaseous Diffusion Plant. In addition to other suggestions, the Team recommended that further characterization data be obtained for the plume. In the Fall of 1993 additional, temporary well points were installed so that groundwater samples from the shallow groundwater system and the Regional Gravel Aquifer (RGA) could be obtained to provide a three-dimensional view of groundwater contamination in the region of the plume. The results indicate that pure-phase DNAPL (trichloroethylene [TCE]) probably are present in the source area of the plume and extend in depth to the base of the RGA. Because the DNAPL likely will represent a source of a dissolved phase plume for decades it is essential that source containment take place. The Team recommends that although effective hydraulic containment can be achieved, other alternatives should be considered. For example, recent advances in emplacing low permeability barrier walls to depths of 100 to 150 ft make it possible to consider encirclement of the source of the Northwest plume.

  19. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 3, Chapter C, Appendix C3 (conclusion)--Chapter C, Appendix C9: Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This volume contains appendices for the following: results of extraction procedure (EP) toxicity data analyses; summary of headspace gas analysis in Rocky Flats Plant sampling program-FY 1988; waste drum gas generation sampling program at Rocky Flats Plant during FY 1988; TRU waste sampling program waste characterization; summary of headspace gas analyses in TRU waste sampling program; summary of volatile organic compounds analyses in TRU waste sampling program; totals analysis versus toxicity characteristic leaching procedure; Waste Isolation Pilot Plant waste characterization sampling and analysis methods; Waste Isolation Pilot Plant waste characterization analytical methods; data reduction, validation and reporting; examples of waste screening checklists; and Waste Isolation Pilot Plant generator/storage site waste screening and acceptance audit program.

  20. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01T23:59:59.000Z

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air is heated prior to entering the diffusion tower. Further analytical analysis is required to predict the thermal and mass transport with the air heating configuration.

  1. SOXAL{trademark} pilot plant demonstration at Niagara Mohawk`s Dunkirk Station

    SciTech Connect (OSTI)

    Strangway, P.K. [Niagara Mohawk Power Corp., Syracuse, NY (United States)

    1995-12-31T23:59:59.000Z

    The Clean Air Act Amendments of 1990 made it necessary to accelerate the development of scrubber systems for use by some utilities burning sulfur-containing fuels, primarily coal. While many types of Flue Gas Desulfurization (FGD) systems operate based on lime and limestone scrubbing, these systems have drawbacks when considered for incorporation into long-term emissions control plans. Although the costs associated with disposal of large amounts of scrubber sludge may be manageable today, the trend is toward increased disposal costs. Many new SO{sub 2} control technologies are being pursued in the hope of developing an economical regenerable FGD system did recovers the SO{sub 2} as a saleable commercial product, thus minimizing the formation of disposal waste. Some new technologies include the use of exotic chemical absorbents which are alien to the utility industry and utilities` waste treatment facilities. These systems present utilities with new environmental issues. The SOXAL{trademark} process has been developed so as to eliminate such issues.

  2. Reducing Our Carbon Footprint: Converting Plants to Fuel (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Somerville, Chris

    2011-04-28T23:59:59.000Z

    Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmental and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.

  3. Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet

    SciTech Connect (OSTI)

    Arlin Olson

    2012-02-28T23:59:59.000Z

    The US Department of Energy is responsible for managing the disposal of radioactive liquid waste in underground storage tanks at the Hanford site in Washington State. The Hanford waste treatment and immobilization plant (WPT) will separate the waste into a small volume of high level waste (HLW), containing most of the radioactive constituents, and a larger volume of low activity waste (LAW), containing most of the non-radioactive chemical and hazardous constituents. The HLW and LAW will be converted into immobilized waste forms for disposal. Currently there is inadequate LAW vitrification capacity planned at the WTP to complete the mission within the required timeframe. Therefore additional LAW capacity is required. One candidate supplemental treatment technology is the fluidized bed steam reformer process (FBSR). This report describes the demonstration testing of the FBSR process using a mineralizing flowsheet for treating simulated Hanford LAW and secondary waste from the WTP (WTP SW). The FBSR testing project produced leach-resistant solid products and environmentally compliant gaseous effluents. The solid products incorporated normally soluble ions into an alkali alumino-silicate (NaS) mineral matrix. Gaseous emissions were found to be within regulatory limits. Cesium and rhenium were captured in the mineralized products with system removal efficiencies of 99.999% and 99.998 respectively. The durability and leach performance of the FBSR granular solid were superior to the low activity reference material (LMR) glass standards. Normalized product consistency test (PCT) release rates for constituents of concern were approximately 2 orders of magnitude less than that of sodium in the Hanford glass [standard].

  4. Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report

    SciTech Connect (OSTI)

    Beauheim, R.L. (Sandia National Labs., Albuquerque, NM (United States)); Saulnier, G.J. Jr.; Avis, J.D. (INTERA, Inc., Austin, TX (United States))

    1991-08-01T23:59:59.000Z

    Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

  5. Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Silva, M.K.; Neill, R.H.

    1994-09-01T23:59:59.000Z

    The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

  6. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J. [and others

    1997-02-01T23:59:59.000Z

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  7. Inspection of Environment, Safety, and Health Management at the Waste Isolation Pilot Plant- Volume I, August 2002

    Broader source: Energy.gov [DOE]

    The Secretary of Energy抯 Office of Independent Oversight and Performance Assurance (OA) conducted an inspection of environment, safety, and health (ES&H) and emergency management programs at the Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) in July and August 2002. The inspection was performed as a joint effort by the OA Office of Environment, Safety and Health Evaluations and the Office of Emergency Management Oversight. This volume discusses the results of the review of the WIPP ES&H programs. The results of the review of the WIPP emergency management program are discussed in Volume II of this report, and the combined results are discussed in a summary report. As discussed throughout this report, the ISM program at WIPP is generally effective. Although improvements are warranted in some areas, the current programs have contributed to overall effective ES&H performance and a good safety record at WIPP. Section 2 of this volume provides an overall discussion of the results of the review of the WIPP ES&H programs, including positive aspects and weaknesses. Section 3 provides OA抯 conclusions regarding the overall effectiveness of CBFO and WTS management of the ES&H programs. Section 4 presents the ratings assigned as a result of this review. Appendix A provides supplemental information, including team composition. Appendix B identifies the specific finding that requires corrective action and follow-up. Appendix C presents the results of the review of selected guiding principles of ISM. Appendix D presents the results of the review of the CBFO and WTS feedback and continuous improvement processes. The results of the review of the application of the core functions of ISM for the selected WIPP activities are discussed in Appendix E.

  8. Resource Conservation and Recovery Act, Part B permit application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 4, Revision 1.0

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    The US Department of Energy is currently constructing the Waste Isolation Pilot near Carlsbad, New Mexico. The full-scale pilot plant will demonstrate the feasibility of the safe disposal of defense-related nuclear waste in a bedded salt formation at a depth of 2160 feet below the surface. WIPP will provide for the permanent storage of 25,000 cu ft of remote-handled (RH) transuranic waste and 6,000,000 cu ft of contact-handled (CH) transuranic waste. This paper covers the major mechanical/structural design considerations for the waste hoist and its hoist tower structure. The design of the hoist system and safety features incorporates state-of-the-art technology developed in the hoist and mining industry to ensure safe operation for transporting nuclear waste underground. Also included are design specifications for VOC-10 monitoring system.

  9. Steam/fuel system optimization report: 6000-tpd SRC-I Demonstration Plant

    SciTech Connect (OSTI)

    Vakil, T.D.

    1983-07-01T23:59:59.000Z

    The design and configuration of the steam and fuel system for the 6000-ton-per-day (tpd) SRC-I Demonstration plant have been optimized, based on requirements for each area of the plant that were detailed in Area Baseline Designs of December 1982. The system was optimized primarily for the two most likely modes of plant operation, that is, when the expanded-bed hydrocracker (EBH) is operating at either high or low conversion, with all other units operating. However, the design, as such, is also operable under four other anticipated operating modes. The plant is self-sufficient in fuel except when the coker/calciner unit is not operating; then the required fuel oil import ranges from 80 to 125 MM Btu/h, lower heating value (LHV). The system affords stable operation under varying fuel gas availability and is reliable, flexible, and efficient. The optimization was based on maximizing overall efficiency of the steam system. The system was optimized to operate at five different steam-pressure levels, which are justifiable based on the plant's team requirements for process, heat duty, and power. All identified critical equipment drives will be run by steam turbines. Also part of the optimization was elimination of the steam evaporator in the wastewater treatment area. This minimized the impact on the steam system of operating in either the discharge of zero-discharge mode; the steam system remains essentially the same for either mode. Any further optimization efforts should be based on overall cost-effectiveness.

  10. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai, Alex; Banta, Larry; Tucker, D.A.; Gemmen, R.S.

    2008-06-01T23:59:59.000Z

    This paper presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The facility provides for the testing and simulation of different fuel cell models that in turn help identify the key issues encountered in the transient operation of such systems. An empirical model of the facility consisting of a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in Transfer Function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H-Infinity robust control algorithm. The controller抯 main objective is to track and maintain hybrid operational constraints in the fuel cell抯 cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence.

  11. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Adam E. Calihman; Lyrik Y. Pitzman; Pamela M. Van Calcar; Richard A. Mackay; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Tim R. Armstrong; Mike J. Holmes; Aaron L. Wagner

    2001-04-30T23:59:59.000Z

    Eltron Research Inc., and team members, are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, it was demonstrated that increasing the transition metal loading in a model perovskite composition resulted in an increase in hydrogen flux. Improved flux corresponded to the emergence of additional phases in the ceramic membrane, and highest flux was achieved for a composite consisting of pseudo-cubic and rhombohedral perovskite phases. A 0.9-mm thick membrane of this material generated a hydrogen flux in excess of 0.1 mL/min/cm{sup 2}, which was approximately 35 times greater than analogs with lower transition metal levels. The dopant level and crystal structure also correlated with membrane density and coefficient of thermal expansion, but did not appear to affect grain size or shape. Additionally, preliminary ceramic-metal (cermet) composite membranes demonstrated a 10-fold increase in flux relative to analogous membranes composed of only the ceramic component. The hydrogen flux for these cermet samples corresponded to a conductivity of {approx} 10{sup -3} S/cm, which was consistent with the predicted proton conductivity of the ceramic phase. Increasing the sweep gas flow rate in test reactors was found to significantly increase hydrogen flux, as well as apparent material conductivity for all samples tested. Adding humidity to the feed gas stream produced a small increase in hydrogen flux. However, the catalyst on ceramic membrane surfaces did not affect flux, which suggested that the process was membrane-diffusion limited. Representative samples and fabrication processes were evaluated on the basis of manufacturing practicality. it was determined that optimum membrane densification occurs over a very narrow temperature range for the subject ceramics. Additionally, calcination temperatures currently employed result in powders that are difficult mill and screen. These issues must be addressed to improve large-scale fabricability.

  12. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; George Farthing; Dan Rowley; Tim R. Armstrong; M.K. Ferber; Aaron L. Wagner; Jon P. Wagner

    2002-07-30T23:59:59.000Z

    Eltron Research Inc. and their team members are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, new cermet compositions were tested that demonstrated similar performance to previous materials. A 0.5-mm thick membrane achieved at H{sub 2} transport rate of 0.2 mL/min/cm{sup 2} at 950 C, which corresponded to an ambipolar conductivity of 3 x 10{sup -3} S/cm. Although these results were equivalent to those for other cermet compositions, this new composition might be useful if it demonstrates improved chemical or mechanical stability. Ceramic/ceramic composite membranes also were fabricated and tested; however, some reaction did occur between the proton- and electron-conducting phases, which likely compromised conductivity. This sample only achieved a H{sub 2} transport rate of {approx} 0.006 mL/min/cm{sup 2} and an ambipolar conductivity of {approx}4 x 10{sup -4} S/cm. Chemical stability tests were continued, and candidate ceramic membranes were found to react slightly with carbon monoxide under extreme testing conditions. A cermet compositions did not show any reaction with carbon monoxide, but a thick layer of carbon formed on the membrane surface. The most significant technical accomplishment this quarter was a new high-pressure seal composition. This material maintained a pressure differential across the membrane of {approx} 280 psi at 800 C, and is still in operation.

  13. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Tony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Alexandra Z. LaGuardia; Tom F. Barton; Sara L. Rolfe; Richard N. Kleiner; James E. Stephan; Mike J. Holmes; Aaron L. Wagner

    2001-10-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, mixed proton/electron conductivity and hydrogen transport was measured as a function of metal phase content for a range of ceramic/metal (cermet) compositions. It was found that optimum performance occurred at 44 wt.% metal content for all compositions tested. Although each cermet appeared to have a continuous metal phase, it is believed that hydrogen transport increased with increasing metal content partially due to beneficial surface catalyst characteristics resulting from the metal phase. Beyond 44 wt.% there was a reduction in hydrogen transport most likely due to dilution of the proton conducting ceramic phase. Hydrogen separation rates for 1-mm thick cermet membranes were in excess of 0.1 mL/min/cm{sup 2}, which corresponded to ambipolar conductivities between 1 x 10{sup -3} and 8 x 10{sup -3} S/cm. Similar results were obtained for multiphase ceramic membranes comprised of a proton-conducting perovskite and electron conducting metal oxide. These multi-phase ceramic membranes showed only a slight improvement in hydrogen transport upon addition of a metal phase. The highest hydrogen separation rates observed this quarter were for a cermet membrane containing a hydrogen transport metal. A 1-mm thick membrane of this material achieved a hydrogen separation rate of 0.3 mL/min/cm{sup 2} at only 700 C, which increased to 0.6 mL/min/cm{sup 2} at 950 C.

  14. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    Shane E. Roark; Anthony F. Sammells; Richard A. Mackay; Lyrik Y. Pitzman; Thomas A. Zirbel; Stewart R. Schesnack; Thomas F. Barton; Sara L. Rolfe; U. (Balu) Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-01-30T23:59:59.000Z

    Eltron Research Inc., and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying composite membrane composition and microstructure to maximize hydrogen permeation without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this quarter, a composite metal membrane based on an inexpensive hydrogen permeable metal achieved permeation rates in excess of 25 mL/min/cm{sup 2}. Preliminary attempts to incorporate this metal into a cermet were successful, and a thick cermet membrane (0.83 mm) with 40 vol.% metal phase achieved a permeation rate of nearly 0.4 mL/min/cm{sup 2}. Increasing the metal phase content and decreasing membrane thickness should significantly increase permeation, while maintaining the benefits derived from cermets. Two-phase ceramic/ceramic composite membranes had low hydrogen permeability, likely due to interdiffusion of constituents between the phases. However, these materials did demonstrate high resistance to corrosion, and might be good candidates for other composite membranes. Temperature-programmed reduction measurements indicated that model cermet materials absorbed 2.5 times as much hydrogen than the pure ceramic analogs. This characteristic, in addition to higher electron conductivity, likely explains the relatively high permeation for these cermets. Incorporation of catalysts with ceramics and cermets increased hydrogen uptake by 800 to more than 900%. Finally, new high-pressure seals were developed for cermet membranes that maintained a pressure differential of 250 psi. This result indicated that the approach for high-pressure seal development could be adapted for a range of compositions. Other items discussed in this report include mechanical testing, new proton conducting ceramics, supported thin films, and alkane to olefin conversion.

  15. Performance Confirmation Strategies for the Waste Isolation Pilot Plant - A Historical Perspective from an Operating Disposal Facility - 12248

    SciTech Connect (OSTI)

    Wagner, Steve [John Hart and Associate for Sandia National Laboratories, Carlsbad, New Mexico 88220 (United States)

    2012-07-01T23:59:59.000Z

    Performance confirmation is an important element of the Waste Isolation Pilot Plant (WIPP) program. Performance confirmation was first used during the early WIPP site characterization phase to focus experimental activities that address the development of probabilistic repository performance models and to address stakeholder assurance needs. The program is currently used to analyze the conditions of the repository and its surroundings to ensure that the basis for the repository's long-term radioactive waste containment predictions is valid. This basis is related to the parameters, assumptions, conceptual and numerical models that are used to predict or validate the potential radioactive waste containment performance of the system. The concept of performance confirmation for the WIPP is one that has evolved since the first repository work was initiated decades ago and plays an important role in assuring adequate repository performance both now and in the long-term. The WIPP mission has progressed from a pilot project to an operational disposal facility and will progress to eventual site closure when disposal operations are completed. Performance confirmation is an important part of each of these progressions. The concept of disposing radioactive waste in a geologic repository today involves a complete understanding of many technical, political, regulatory, societal and economic elements. Many of these elements overlap and solving all relevant issues necessary to site, operate and decommission a disposal facility should be done with knowledge of each element's requirements and impacts. Performance confirmation is one tool that can help to coordinate many of these elements into a program that actively investigates what is thought to be adequately understood about the system and what information is lacking. A performance confirmation program is used to determine ways to challenge and verify those areas that are thought to be understood and to find ways to understand those areas that are not well understood. Performance confirmation programs have been used twice at WIPP, first during site characterization and PA development and later in a Compliance Monitoring program. At first, only certain technical aspects of the system were deemed important because it was a scientifically-based, government project. Early site characterization work was design to gather information about the geology and hydrology of the area and the mechanical properties of the natural barrier. The information would be used in a PA to determine the long-term containment performance of the disposal system. A performance confirmation element was used to identify the sensitive elements of the system that were certain, well understood or justified and those that were not. It identified experimental and analytical programs that could be used to reduce uncertainty, confirm sensitive assumptions and provide useful data. This performance confirmation program provided data to justify the adequacy of the information used in PA to demonstrate compliance with EPA's containment requirements. Performance confirmation will continue to be used in the post-closure period for at least 30 years and likely up to the end of the 100-year institutional controls period. As the technical basis for the repository matures throughout the operational period, the currently planned post-closure monitoring program will need to be reassessed prior to implementation. However, the intent of the program will be the same as it was for the previous programs, to ensure the ultimate goal of the repository. This goal is to safely isolate waste from the accessible environment and ensure public and environmental safety. (authors)

  16. Use of plasma fuel systems at thermal power plants in Russia, Kazakhstan, China, and Turkey

    SciTech Connect (OSTI)

    Karpenko, E.I.; Karpenko, Y.E.; Messerle, V.E.; Ustimenko, A.B. [Russian Academy of Sciences, Ulan Ude (Russian Federation). Institute of Thermal Physics

    2009-05-15T23:59:59.000Z

    The technology of plasma ignition of solid fuels is described, as well as its creation and development steps, the technoeconomic characteristics of plasma igniter systems, schemes of their installation in pulverized-coal boilers, and results of their application at pulverized coal-fired power plants.

  17. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    Benson, Charles; Wilson, Robert

    2014-04-30T23:59:59.000Z

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of 搊pportunity gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner抯 aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco抯 offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project抯 burner while achieving robust flame stability and very low levels of air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the project抯 technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

  18. Multivariable Robust Control of a Simulated Hybrid Solid Oxide Fuel Cell Gas Turbine Plant

    SciTech Connect (OSTI)

    Tsai A, Banta L, Tucker D

    2010-08-01T23:59:59.000Z

    This work presents a systematic approach to the multivariable robust control of a hybrid fuel cell gas turbine plant. The hybrid configuration under investigation built by the National Energy Technology Laboratory comprises a physical simulation of a 300kW fuel cell coupled to a 120kW auxiliary power unit single spool gas turbine. The public facility provides for the testing and simulation of different fuel cell models that in turn help identify the key difficulties encountered in the transient operation of such systems. An empirical model of the built facility comprising a simulated fuel cell cathode volume and balance of plant components is derived via frequency response data. Through the modulation of various airflow bypass valves within the hybrid configuration, Bode plots are used to derive key input/output interactions in transfer function format. A multivariate system is then built from individual transfer functions, creating a matrix that serves as the nominal plant in an H{sub {infinity}} robust control algorithm. The controller抯 main objective is to track and maintain hybrid operational constraints in the fuel cell抯 cathode airflow, and the turbo machinery states of temperature and speed, under transient disturbances. This algorithm is then tested on a Simulink/MatLab platform for various perturbations of load and fuel cell heat effluence. As a complementary tool to the aforementioned empirical plant, a nonlinear analytical model faithful to the existing process and instrumentation arrangement is evaluated and designed in the Simulink environment. This parallel task intends to serve as a building block to scalable hybrid configurations that might require a more detailed nonlinear representation for a wide variety of controller schemes and hardware implementations.

  19. Uncertainty and Sensitivity Analysis Results Obtained in the 1996 Performance Assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Bean, J.E.; Berglund, J.W.; Davis, F.J.; Economy, K.; Garner, J.W.; Helton, J.C.; Johnson, J.D.; MacKinnon, R.J.; Miller, J.; O'Brien, D.G.; Ramsey, J.L.; Schreiber, J.D.; Shinta, A.; Smith, L.N.; Stockman, C.; Stoelzel, D.M.; Vaughn, P.

    1998-09-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WPP) is located in southeastern New Mexico and is being developed by the U.S. Department of Energy (DOE) for the geologic (deep underground) disposal of transuranic (TRU) waste. A detailed performance assessment (PA) for the WIPP was carried out in 1996 and supports an application by the DOE to the U.S. Environmental Protection Agency (EPA) for the certification of the WIPP for the disposal of TRU waste. The 1996 WIPP PA uses a computational structure that maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the many possible disruptions that could occur over the 10,000 yr regulatory period that applies to the WIPP and subjective uncertainty arising from the imprecision with which many of the quantities required in the PA are known. Important parts of this structure are (1) the use of Latin hypercube sampling to incorporate the effects of subjective uncertainty, (2) the use of Monte Carlo (i.e., random) sampling to incorporate the effects of stochastic uncertainty, and (3) the efficient use of the necessarily limited number of mechanistic calculations that can be performed to support the analysis. The use of Latin hypercube sampling generates a mapping from imprecisely known analysis inputs to analysis outcomes of interest that provides both a display of the uncertainty in analysis outcomes (i.e., uncertainty analysis) and a basis for investigating the effects of individual inputs on these outcomes (i.e., sensitivity analysis). The sensitivity analysis procedures used in the PA include examination of scatterplots, stepwise regression analysis, and partial correlation analysis. Uncertainty and sensitivity analysis results obtained as part of the 1996 WIPP PA are presented and discussed. Specific topics considered include two phase flow in the vicinity of the repository, radionuclide release from the repository, fluid flow and radionuclide transport in formations overlying the repository, and complementary cumulative distribution functions used in comparisons with regulatory standards (i.e., 40 CFR 191, Subpart B).

  20. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    confirmed that installation of renewable energy generating projects (wind and large scale solar photovoltaic) is not financially viable as payback realization would take greater...

  1. Demonstration of a Carbonate Fuel Cell on Coal Derived Gas

    E-Print Network [OSTI]

    Rastler, D. M.; Keeler, C. G.; Chi, C. V.

    system has run on actual syn-gas. Consequently, the Electric Power Research Institute (揈PRI) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energy抯 coal gasification plant in Plaquemine, Louisiana...

  2. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect (OSTI)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31T23:59:59.000Z

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did not have the diluent requirements of Prototype-1 and was demonstrated at targeted gas turbine conditions. The TVC combustor, Prototype-2, premixes the syngas with air for low emission performance. The combustor was designed for operation with syngas and no additional diluents. The combustor was successfully operated at targeted gas turbine conditions. Another goal of the program was to advance the status of development tools for syngas systems. In Task 3 a syngas flame evaluation facility was developed. Fundamental data on syngas flame speeds and flame strain were obtained at pressure for a wide range of syngas fuels with preheated air. Several promising reduced order kinetic mechanisms were compared with the results from the evaluation facility. The mechanism with the best agreement was selected for application to syngas combustor modeling studies in Task 6. Prototype-1 was modeled using an advanced LES combustion code. The tools and combustor technology development culminate in a full-scale demonstration of the most promising technology in Task 8. The combustor was operated at engine conditions and evaluated against the various engine performance requirements.

  3. Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR {section} 761.75[c])

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2002-03-19T23:59:59.000Z

    This initial report is being submitted pursuant to Title 40 Code of Federal Regulations (CFR) {section} 761.75(c) to request authorization to allow the disposal of transuranic (TRU) wastes containing polychlorinated biphenyls (PCBs) which are duly regulated under the Toxic Substances Control Act (TSCA). Approval of this initial report will not affect the disposal of TRU or TRU mixed wastes that do not contain PCBs. This initial report also demonstrates how the Waste Isolation Pilot Plant (WIPP) meets or exceeds the technical standards for a Chemical Waste Landfill. Approval of this request will allow the U.S. Department of Energy (DOE) to dispose of approximately 88,000 cubic feet (ft3) (2,500 cubic meters [m3]) of TRU wastes containing PCBs subject to regulation under the TSCA. This approval will include only those PCB/TRU wastes, which the TSCA regulations allow for disposal of the PCB component in municipal solid waste facilities or chemical waste landfills (e.g., PCB remediation waste, PC B articles, and bulk PCB product waste). Disposal of TRU waste by the DOE is congressionally mandated in Public Law 102-579 (as amended by the National Defense Authorization Act for Fiscal Year 1997, Pub. L. 104-201, referred to as the WIPP Land Withdrawal Act [LWA]). Portions of the TRU waste inventory contain hazardous waste constituents regulated under 40 CFR Parts 260 through 279, and/or PCBs and PCB Items regulated under 40 CFR Part 761. Therefore, the DOE TRU waste program must address the disposal requirements for these hazardous waste constituents and PCBs. To facilitate the disposal of TRU wastes containing hazardous waste constituents, the owner/operators received a Hazardous Waste Facility Permit (HWFP) from the New Mexico Environment Department (NMED) on October 27, 1999. The permit allows the disposal of TRU wastes subject to hazardous waste disposal requirements (TRU mixed waste). Informational copies of this permit and other referenced documents are available from the WIPP website. To facilitate the disposal of TRU wastes containing PCBs, the owner/operators are hereby submitting this initial report containing information required pursuant to the Chemical Waste Landfill Approval requirements in 40 CFR {section} 761.75(c). Although WIPP is defined as a miscellaneous unit and not a landfill by the New Mexico Hazardous Waste Act, WIPP meets or exceeds all applicable technical standards for chemical waste landfills by virtue of its design and programs as indicated in the Engineering Report (Attachment B). The layout of this initial report is consistent with requirements (i.e., Sections 2.0 through 12.0 following the sequence of 40 CFR {section} 761.75[c][i] -[ix] with sections added to discuss the Contingency and Training Plans; and Attachment B of this initial report addresses the requirements of 40 CFR {section} 761.75[b][1] through [9] in this order). This initial report includes a description of three proposed changes that will be subject to ''conditional approval.'' The first will allow the disposal of remote-handled (RH) PCB/TRU waste at WIPP. The second will allow the establishment of a central confirmation facility at WIPP. The third will allow for an increase in contact-handled Working Copy Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization DOE/WIPP 02-3196 (CH) waste storage capacities. These proposed changes are discussed further in Section 3.3 of this initial report. ''Conditional approval'' of these requests would allow these activities at WIPP contingent upon: - Approval of the HWFP modification (NMED) and Compliance Certification Application (CCA) change request (Environmental Protection Agency [EPA]) - Inspection of facility prior to implementing the change (if deemed necessary by the EPA) - Written approval from the EPA This initial report also includes the following three requests for waivers to the technical requirements for Chemical Waste Landfills pursuant to 40 CFR {section} 761.75(c)(4): - Hydrologic Conditions (40 CFR {section} 761.75[b][3]) - Monitoring Systems (40 CFR {sect

  4. 10-MWe solar-thermal central-receiver pilot plant, solar facilities design integration: collector-field optimization report (RADL item 2-25)

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Appropriate cost and performance models and computer codes have been developed to carry out the collector field optimization, as well as additional computer codes to define the actual heliostat locations in the optimized field and to compute in detail the performance to be expected of the defined field. The range of capabilities of the available optimization and performance codes is described. The role of the optimization code in the definition of the pilot plant is specified, and a complete description of the optimization process itself is given. The detailed cost model used by the optimizer for the commercial system optimization is presented in the form of equations relating the cost element to each of the factors that determine it. The design basis for the commercial system is presented together with the rationale for its selection. The development of the individual heliostat performance code is presented. Use of the individual heliostat code in a completed study of receiver panel power under sunrise startup conditions is described. The procedure whereby performance and heliostat spacing data from the representative commercial-scale system are converted into coefficients of use in the layout processor is described, and the actual procedure used in the layout processor is described. Numerous special studies in support of the pilot plant design are described. (LEW)

  5. Resource Conservation and Recovery Act, Part B Permit Application [for the Waste Isolation Pilot Plant (WIPP)]. Volume 5, Chapter D, Appendix D1 (conclusion), Revision 3

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    The reference design for the underground facilities at the Waste Isolation Pilot Plant was developed using the best criteria available at initiation of the detailed design effort. These design criteria are contained in the US Department of Energy document titled Design Criteria, Waste Isolation Pilot Plant (WIPP). Revised Mission Concept-IIA (RMC-IIA), Rev. 4, dated February 1984. The validation process described in the Design Validation Final Report has resulted in validation of the reference design of the underground openings based on these criteria. Future changes may necessitate modification of the Design Criteria document and/or the reference design. Validation of the reference design as presented in this report permits the consideration of future design or design criteria modifications necessitated by these changes or by experience gained at the WIPP. Any future modifications to the design criteria and/or the reference design will be governed by a DOE Standard Operation Procedure (SOP) covering underground design changes. This procedure will explain the process to be followed in describing, evaluating and approving the change.

  6. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    SciTech Connect (OSTI)

    Durant, W.S.; Perkins, W.C.; Lee, R.; Stoddard, D.H.

    1982-05-20T23:59:59.000Z

    The Safety Technology Group is developing methodology that can be used to assess the risk of operating a plant to reprocess spent nuclear fuel. As an early step in the methodology, a preliminary hazards analysis identifies safety-related incidents. In the absence of appropriate safety features, these incidents could lead to significant consequences and risk to onsite personnel or to the public. This report is a compilation of potential safety-related incidents that have been identified in studies at SRL and in safety analyses of various commercially designed reprocessing plants. It is an expanded revision of the version originally published as DP-1558, Published December 1980.

  7. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    SciTech Connect (OSTI)

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01T23:59:59.000Z

    The risks involved in the routine release of /sup 85/Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of /sup 85/Kr. Instead of releasing the /sup 85/Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing /sup 85/Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from /sup 85/Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of /sup 85/Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for /sup 85/Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated /sup 3/H and /sup 14/C also encourage delaying implementation of the /sup 85/Kr recovery in the early plants.

  8. Potential sites for joint venture biomass fueled power plants. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-02T23:59:59.000Z

    The US Army is investigating wood-fired boilers. One application is for wood fuels to fire fixed power plant installations where the technology is well proven. Approximately 170 Army bases were evaluated for their heating and electrical needs versus fuel availability from on-base forests. Approximately 20 bases met the minimum demand and resource criteria. Potential joint venture partner classes were identified as new Contractor Owned/Contractor Operated (COCO) entrepreneurs; existing utilities and industries in the vicinity of the bases; and existing Government Owned/Contractor Operated (GOCO) entrepreneurs.

  9. Pilot-scale testing of a fuel oil-explosives cofiring process for recovering energy from waste explosives: Final report

    SciTech Connect (OSTI)

    Bradshaw, W.M.

    1988-08-01T23:59:59.000Z

    The US Army generates and stores a significant quantity of explosives and explosive-related materials that do not meet specifications for their primary use. Current explosives disposal processes do not recover any resources from these materials. The heat of combustion of these materials is typically 9 to 15 kJ/g (4000 to 6500 Btu/lb), which is 21 to 33% of the high heating value of No. 2 fuel oil. One secondary use for explosives is to cofire them with other fuels to recover their energy content. Bench-scale testing has shown that cofiring is feasible and safe within certain guidelines. To further evaluate cofiring, a proof-of-principle test was conducted in a 300-kW (10/sup 6/ Btu/h) combustion chamber. The test program was discontinued before completion because of failures largely unrelated to the explosives contained in the fuel. This report presents the results of the proof-of-principle tests, as well as design and operational changes that would eliminate problems encountered during the course of the test program. It is clearly feasible to cofire explosives and fuel oil. However, more data are needed before the process can be tested in a production boiler, furnace, or incinerator. 20 refs., 14 figs., 9 tabs.

  10. Augmented air supply for fuel cell power plant during transient load increases

    SciTech Connect (OSTI)

    Beal, D.W.; Scheffer, G.W.

    1988-03-08T23:59:59.000Z

    In a fuel cell power plant, a system for supplying air to an oxygen side of the cells in the plant is described comprising: (a) conduit means for feeding air to the oxygen side of the plant; (b) a constant speed blower connected to the conduit means for blowing an air stream into the conduit means at a constant velocity; (c) a motorized control valve in the conduit means between the blower and the oxygen side, the control valve being adjustable to vary the amount of air flowing to the oxygen side; (d) branch conduit means opening into the conduit means for providing an air flow path from the blower to the oxygen side which bypasses the control valve; (e) fast acting valve means in the branch conduit means, the fast acting valve means being relatively instantly transformable from a closed condition to an open condition and return, and the fast acting valve means being normally in the closed condition; (f) flow meter means in the conduit means for measuring amounts of oxygen flowing from the control valve from the control valve and the fast acting valve means to the oxygen side; (g) current monitoring means connected to a loaf line from the power plant for monitoring load changes imposed upon the cells in the power plant; and (h) microprocessor means for controlling operation of the system, the microprocessor means being operably connected to the current monitoring means, to the flow meter means, to the fast acting valve means and to the control valve.

  11. ZERO EMISSION POWER PLANTS USING SOLID OXIDE FUEL CELLS AND OXYGEN TRANSPORT MEMBRANES

    SciTech Connect (OSTI)

    G. Maxwell Christie; Troy M. Raybold

    2003-06-10T23:59:59.000Z

    Over 16,700 hours of operational experience was gained for the Oxygen Transport Membrane (OTM) elements of the proposed SOFC/OTM zero-emission power generation concept. It was repeatedly demonstrated that OTMs with no additional oxidation catalysts were able to completely oxidize the remaining depleted fuel in a simulated SOFC anode exhaust at an O{sub 2} flux that met initial targets. In such cases, neither residual CO nor H{sub 2} were detected to the limits of the gas chromatograph (<10 ppm). Dried OTM afterburner exhaust streams contained up to 99.5% CO{sub 2}. Oxygen flux through modified OTMs was double or even triple that of the standard OTMs used for the majority of testing purposes. Both the standard and modified membranes in laboratory-scale and demonstration-sized formats exhibited stable performance over extended periods (2300 to 3500 hours or 3 to 5 months). Reactor contaminants, were determined to negatively impact OTM performance stability. A method of preventing OTM performance degradation was developed and proven to be effective. Information concerning OTM and seal reliability over extended periods and through various chemical and thermal shocks and cycles was also obtained. These findings were used to develop several conceptual designs for pilot (10 kWe) and commercial-scale (250 kWe) SOFC/OTM zero emission power generation systems.

  12. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessment for the Waste Isolation Pilot Plant: Cuttings, cavings and spallings

    SciTech Connect (OSTI)

    BERGLUND,J.W.; GARNER,J.W.; HELTON,JON CRAIG; JOHNSON,J.D.; SMITH,L.N.; ANDERSON,R.P.

    2000-05-22T23:59:59.000Z

    The following topics related to the treatment of cuttings, cavings and spallings releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented: (1) mathematical description of models. (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented results indicate that direct releases due to cuttings, cavings and spallings do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for cuttings, cavings and spallings releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency standard for the geologic disposal of radioactive waste (40 CFR 191, 40 CFR 194).

  13. TRU (transuranic) waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the Waste Isolation Pilot Plant: Revision 2

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Compliance requirements are presented for certifying that unclassified, newly generated (NG), contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated; however, interim storage sites may have additional requirements consistent with these requirements. All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig.

  14. Uncertainty and sensitivity analysis for two-phase flow in the vicinity of the repository in the 1996 performance assessment for the Waste Isolation Pilot Plant: Undisturbed conditions

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; BEAN,J.E.; ECONOMY,K.; GARNER,J.W.; MACKINNON,ROBERT J.; MILLER,JOEL D.; SCHREIBER,JAMES D.; VAUGHN,PALMER

    2000-05-19T23:59:59.000Z

    Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment for the Waste Isolation Pilot Plant are presented for two-phase flow the vicinity of the repository under undisturbed conditions. Techniques based on Latin hypercube sampling, examination of scatterplots, stepwise regression analysis, partial correlation analysis and rank transformation are used to investigate brine inflow, gas generation repository pressure, brine saturation and brine and gas outflow. Of the variables under study, repository pressure is potentially the most important due to its influence on spallings and direct brine releases, with the uncertainty in its value being dominated by the extent to which the microbial degradation of cellulose takes place, the rate at which the corrosion of steel takes place, and the amount of brine that drains from the surrounding disturbed rock zone into the repository.

  15. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessments for the Waste Isolation Pilot Plant: Direct brine release

    SciTech Connect (OSTI)

    STOELZEL,D.M.; O'BRIEN,D.G.; GARNER,J.W.; HELTON,JON CRAIG; JOHNSON,J.D.; SCOTT,L.N.

    2000-05-19T23:59:59.000Z

    The following topics related to the treatment of direct brine releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented (1) mathematical description of models, (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented analyses indicate that direct brine releases do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for direct brine releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (4O CFR 191.40 CFR 194).

  16. TRU (transuranic) waste certification compliance requirements for acceptance of contact-handled wastes retrieved from storage to be shipped to the Waste Isolation Pilot Plant: Revision 2

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Compliance requirements are presented for certifying that unclassified, contact-handled (CH) transuranic (TRU) solid defense wastes retrieved from storage at DOE sites meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for acceptance of newly generated CH waste to be shipped to the WIPP are addressed in another document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig.

  17. Air intake shaft performance tests (Shaft 5): In situ data report (May 1988--July 1995). Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program

    SciTech Connect (OSTI)

    Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.; Hoag, D.L.; Ball, J.R. [RE/SPEC Inc., Albuquerque, NM (United States); Baird, G.T.; Jones, R.L. [Tech Reps, Inc., Albuquerque, NM (United States)

    1995-07-01T23:59:59.000Z

    Data are presented from the Air Intake Shaft Test, an in situ test fielded at the Waste Isolation Pilot Plant (WIPP). The construction of this shaft, well after the initial three access shafts, presented an unusual opportunity to obtain valuable detailed data on the mechanical response of a shaft for application to seal design. These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. Construction of the test began in December 1987; gage data in this report cover the period from May 1988 through July 1995, with the bulk of the data obtained after obtaining access in November, 1989 and from the heavily instrumented period after remote gage installation between May, 1990, and October, 1991.

  18. Evaluation of the magnitude and effects of bundle duct interaction in fuel assemblies at developmental plant conditions

    SciTech Connect (OSTI)

    Serell, D.C.; Kaplan, S.

    1980-09-01T23:59:59.000Z

    Purpose of this evaluation is to estimate the magnitude and effects of irradiation and creep induced fuel bundle deformations in the developmental plant. This report focuses on the trends of the results and the ability of present models to evaluate the assembly temperatures in the presence of bundle deformation. Although this analysis focuses on the developmental plant, the conclusions are applicable to LMFBR fuel assemblies in general if they have wire spacers.

  19. Stranded Fuel, Orphan Sites, Dead Plants: Transportation Planning Considerations After the BRC Report - 13393

    SciTech Connect (OSTI)

    Thrower, Alex W. [The Thrower Group LLC, Richmond, VA (United States)] [The Thrower Group LLC, Richmond, VA (United States)

    2013-07-01T23:59:59.000Z

    The author explores transportation, packaging and storage questions related to a primary recommendation of the Blue Ribbon Commission on America's Nuclear Future; i.e., that fuel from shutdown plants be removed to consolidated storage as soon as possible to enable final decommissioning and beneficial re-use of those sites. The paper discusses the recommendations of the BRC, the implications and challenges that implementing those recommendations present, and provides recommended solutions for beginning the multi-year planning, coordination, material acquisition, and communications processes that will be needed to move fuel from shutdown plants when a destination site becomes available. Removal of used nuclear fuel from shutdown reactor sites (which are serving no other purpose other than storing SNF and GTCC, at considerable expense) was a central recommendation of the BRC, for a number of reasons. This recommendation was one of the most widely acclaimed that the Commission put forward. However, there are significant challenges (such as availability of fuel canister overpacks, lack of infrastructure, handling constraints and others) that will need to be addressed, apart from the critically important identification of a suitable and workable storage destination site. Resolving these logistical challenges will need to begin even before a destination site is identified, given the long lead-times required for planning and procurement. Based on information available today, it is possible to make informed predictions about what will be needed to modify existing contractual arrangements with utilities, address equipment and infrastructure needs, and begin working with states, tribes and local governments to start initial preparation needs. If DOE, working with industry and other experienced parties, can begin planning and acquisition activities in the near term, overall schedule risk can be reduced and potential cost avoidance achieved. The most immediate benefit will accrue to the operators of the shutdown plants, but beginning to accept fuel as required under the NWPA will reduce the liability to the federal government, and also offer some assurance to other utilities and the public that DOE (or another entity if one is established) is capable of meeting its obligations under the NWPA. The indirect benefits, therefore, will be quite broad. (authors)

  20. DOE/WIPP 02-3196 - Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization, March 19, 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL is a U.S. Department of4223