Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuelb gasc ngld" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006; 6 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fue -- 41 133 23 2,119 8 547 -- Conventional Boiler Use 41 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process -- 2,244 62 52 2,788 39 412 -- Process Heating -- 346 59 19 2,487 32 345 -- Process Cooling and Refrigeration -- 206 * 1 32 * * -- Machine Drive

2

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

Next MECS will be conducted in 2010 Table 5.8 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23 2,119 8 547 Conventional Boiler Use 84 71 17 1,281 8 129 CHP and/or Cogeneration Process 0 62 6 838 1 417 Direct Uses-Total Process 2,639 62 52 2,788 39 412 Process Heating 379 59 19 2,487 32 345 Process Cooling and Refrigeration

3

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2006; 7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21 46 Indirect Uses-Boiler Fuel 24,584 21 4 2,059 2 25 Conventional Boiler Use 24,584 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process 773,574 10 9 2,709 10 19 Process Heating

4

Table 5.7 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2010; 7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18 39 Indirect Uses-Boiler Fuel 12,979 7 3 2,074 3 26 Conventional Boiler Use 12,979 3 1 712 1 3 CHP and/or Cogeneration Process -- 4 3 1,362 2 23 Direct Uses-Total Process 675,152 4 9 2,549 7 13 Process Heating

5

Table 5.5 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010; 5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process -- 0 4 3 1,362 2 23 -- Direct Uses-Total Process

6

Table 5.6 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010; 6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280 -- Process Cooling and Refrigeration -- 182 * Q 25

7

Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006; 5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 15,658 835,382 40 22 5,357 21 46 5,820 Indirect Uses-Boiler Fuel -- 12,109 21 4 2,059 2 25 -- Conventional Boiler Use 12,109 11 3 1,245 2 6 CHP and/or Cogeneration Process 0 10 1 814 * 19 Direct Uses-Total Process

8

table5.6_02  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002; 6 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal RSE Net Residual and Natural LPG and (excluding Coal Row End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Factors Total United States RSE Column Factors: 1 1 2.4 1.1 1.3 1 0 0 TOTAL FUEL CONSUMPTION 16,273 2,840 208 141 5,794 103 1,182 6,006 3.3 Indirect Uses-Boiler Fuel -- 12 127 35 2,162 8 776 -- 5.5 Conventional Boiler Use -- 9 76 25 1,306 8 255 -- 5.6 CHP and/or Cogeneration Process -- 4 51 10 857 * 521 -- 3.7 Direct Uses-Total Process -- 2,218 60 43 2,986 64 381 -- 2.9 Process Heating -- 343

9

table5.5_02  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002; 5 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Fuel Oil Coal Net Residual and Natural LPG and (excluding Coal RSE Total Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Other(e) Row End Use (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) (trillion Btu) Factors Total United States RSE Column Factors: 1 1 2.4 1.1 1.4 1 0 0 TOTAL FUEL CONSUMPTION 16,273 832,257 33 24 5,641 26 53 6,006 3.4 Indirect Uses-Boiler Fuel -- 3,540 20 6 2,105 2 35 -- 5.3 Conventional Boiler Use -- 2,496 12 4 1,271 2 11 -- 5.6

10

table5.8_02  

U.S. Energy Information Administration (EIA) Indexed Site

8 End Uses of Fuel Consumption, 2002; 8 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Net Demand Fuel Oil Coal RSE for Residual and Natural LPG and (excluding Coal Row End Use Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Factors Total United States RSE Column Factors: 0.3 2.4 1.1 1.3 1 0 TOTAL FUEL CONSUMPTION 3,297 208 141 5,794 103 1,182 3.3 Indirect Uses-Boiler Fuel 23 127 35 2,162 8 776 5.5 Conventional Boiler Use 11 76 25 1,306 8 255 5.6 CHP and/or Cogeneration Process 12 51 10 857 * 521 3.7 Direct Uses-Total Process 2,624 60 43 2,986 64 381 2.9 Process Heating 355 58 24 2,742 60 368 3.2

11

table5.7_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2002; 7 End Uses of Fuel Consumption, 2002; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Net Demand Fuel Oil Coal for Residual and Natural LPG and (excluding Coal RSE Electricity(a) Fuel Oil Diesel Fuel(b) Gas(c) NGL(d) Coke and Breeze) Row End Use (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) (million short tons) Factors Total United States RSE Column Factors: 0.3 2.4 1.1 1.4 1 0 TOTAL FUEL CONSUMPTION 966,231 33 24 5,641 26 53 3.4 Indirect Uses-Boiler Fuel 6,714 20 6 2,105 2 35 5.3 Conventional Boiler Use 3,199 12 4 1,271 2 11 5.6 CHP and/or Cogeneration Process 3,515 8 2

12

"End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke...

13

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 1 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable Preserving and Specialty Food * 0 0 0 * 0 0 0 3115 Dairy Product * 0 * * 0 0 0 * 3116 Animal Slaughtering and Processing

14

Originally Released: July 2009  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2006 2 Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 3 0 * 2 * 0 * * 3112 Grain and Oilseed Milling 3 0 * 2 * 0 0 * 311221 Wet Corn Milling * 0 0 0 0 0 0 * 31131 Sugar Manufacturing * 0 * 0 * 0 * 0 3114 Fruit and Vegetable Preserving and Specialty Food * 0 0 0 * 0 0 0 3115 Dairy Product * 0 * * 0 0 0 * 3116 Animal Slaughtering and Processing * 0 * * 0 0 0 * 312 Beverage and Tobacco Products * 0 * 0 * 0 0 0 3121 Beverages * 0 * 0 0 0 0 0 3122 Tobacco * 0 0 0 * 0 0 0 313 Textile Mills 0 0

15

Table 2.1 Nonfuel (Feedstock) Use of Combustible Energy, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and Oilseed Milling 6 0 * 1 Q 0 0 2 311221 Wet Corn Milling 2 0 0 0 0 0 0 2 31131 Sugar Manufacturing * 0 * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 * * 1 * 0 0 * 3115 Dairy Products Q 0 * * * 0 0 * 3116 Animal Slaughtering and Processing

16

table2.1_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 1 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * * 7 0 0 * * 311221 Wet Corn Milling * 0 * 0 0 0 0 * 31131 Sugar * 0 * * 0 0 * * 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 3121 Beverages * * * 0 0 0 0 *

17

Table 7.4 Average Prices of Selected Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 Average Prices of Selected Purchased Energy Sources, 2010; 4 Average Prices of Selected Purchased Energy Sources, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: U.S. Dollars per Physical Units. Residual Distillate LPG and Economic Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal Characteristic(a) (kWh) (gallons) (gallons) (1000 cu ft) (gallons) (short tons) Total United States Value of Shipments and Receipts (million dollars) Under 20 0.093 1.55 2.58 6.64 1.80 78.29 20-49 0.075 1.66 2.45 6.44 1.80 80.13 50-99 0.070 1.64 1.79 6.04 2.19 68.10 100-249 0.061 1.62 2.38 5.51 1.69 100.69 250-499 0.056 1.69 2.41 5.54 1.59 92.51 500 and Over 0.054 1.54 2.35 5.08 1.15 96.25 Total

18

Table 7.9 Expenditures for Purchased Energy Sources, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2010; 9 Expenditures for Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 10,111 5,328 130 431 3,391 150 442 29 210 3112 Grain and Oilseed Milling 2,130 932 2 12 673 Q 294 0 158 311221 Wet Corn Milling 1,002 352 1 5 296 1 239 0 107 31131 Sugar Manufacturing 367 105 7 18 87 1 118 29 2 3114 Fruit and Vegetable Preserving and Specialty Foods 1,408 698 17 Q 579 18 7 0 18 3115 Dairy Products 1,186 695 20 40 412 8 1 0 10 3116 Animal Slaughtering and Processing

19

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes  

U.S. Energy Information Administration (EIA) Indexed Site

2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006; 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2006; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes Column: Energy Sources Unit: Trillion Btu Economic Residual Distillate LPG and Coke and Characteristic(a) Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal Breeze Other(e) Total United States Value of Shipments and Receipts (million dollars) Under 20 47 0 3 5 Q 20 1 17 20-49 112 7 Q 20 1 12 1 64 50-99 247 29 Q 26 88 33 * 68 100-249 313 28 1 97 12 48 43 85 250-499 297 * * 121 154 3 5 13 500 and Over 2,547 * * 130 2,043 301 6 66 Not Ascertained (f) 3,399 0 0 0 0 0 0 3,399 Total 6,962 64 17 398 2,299 417 56 3,711 Employment Size Under 50 161 4 Q 48 15 19 0 64 50-99 390 41 1 97 145 27 1 77 100-249

20

table7.6_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

6 Quantity of Purchased Energy Sources, 2002; 6 Quantity of Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural LPG and Coal and Breeze RSE NAICS Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) (million (million Other(e) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) Factors Total United States RSE Column Factors: 0.9 0.9 1.2 1.5 0.9 1.5 0.8 0.6 1.1 311 Food 1,082 W 2 3 566 1 9 * 40 8.2 311221 Wet Corn Milling 220 W * * 59 * 6 0 9 1.1 31131 Sugar 71 733 * * 22 * 2 * 3 1 311421 Fruit and Vegetable Canning 47 1,987 * * 35 * 0 0 1 12.6

Note: This page contains sample records for the topic "fuelb gasc ngld" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

table7.4_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

4 Average Prices of Selected Purchased Energy Sources, 2002; 4 Average Prices of Selected Purchased Energy Sources, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: U.S. Dollars per Physical Units. Residual Distillate Natural LPG and RSE Economic Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal Row Characteristic(a) (kWh) (gallons) (gallons) (1000 cu ft) (gallons) (short tons) Factors Total United States RSE Column Factors: 0.7 1.2 2.2 0.7 0.5 1.6 Value of Shipments and Receipts (million dollars) Under 20 0.067 0.6 1.01 5.05 0.9 60.2 11.2 20-49 0.056 0.55 0.89 4.69 0.88 40.36 6.5 50-99 0.05 0.61 0.91 4.21 0.62 47.85 4.7 100-249 0.043 0.59 0.92 3.84 0.45 41.33 5.5 250-499 0.038 0.52 0.79 3.94

22

table7.5_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

5 Average Prices of Selected Purchased Energy Sources, 2002; 5 Average Prices of Selected Purchased Energy Sources, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: U.S. Dollars per Million Btu. RSE Economic Residual Distillate Natural LPG and Row Characteristic(a) Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal Factors Total United States RSE Column Factors: 0.7 1.2 2.2 0.7 0.5 1.6 Value of Shipments and Receipts (million dollars) Under 20 19.67 3.98 7.29 4.91 9.79 2.57 11.3 20-49 16.48 3.64 6.42 4.57 9.97 1.77 6.5 50-99 14.79 4.07 6.53 4.1 7.14 2.11 4.7 100-249 12.72 3.94 6.6 3.74 5.2 1.87 5.5 250-499 11.2 3.46 5.69 3.84 5.97 1.74 4.6 500 and Over 11.64 3.88 5.23 3.48 5.83 1.84 1.7 Total 14.13

23

Table 2.3 Nonfuel (Feedstock) Use of Combustible Energy, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Nonfuel (Feedstock) Use of Combustible Energy, 2010; 3 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Residual Distillate LPG and Coke and Characteristic(a) Total Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal Breeze Other(e) Total United States Value of Shipments and Receipts (million dollars) Under 20 41 * 1 26 * * 0 13 20-49 38 6 1 4 6 1 Q 14 50-99 110 W 1 38 W 9 4 26 100-249 342 39 1 154 19 52 4 73 250-499 344 * * 76 75 138 46 10 500 and Over 2,482 W 1 215 W 260 16 87 Not Ascertained (f) 2,746 0 0 0 0 0 0 2,746 Total 6,104 92 6 514 1,989 460 74 2,970 Employment Size Under 50 228 7 2 104 71 * 0 43 50-99 201 W 1 63 33 29 W 35 100-249

24

table2.2_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

2 Nonfuel (Feedstock) Use of Combustible Energy, 2002; 2 Nonfuel (Feedstock) Use of Combustible Energy, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. RSE NAICS Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Total Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal and Breeze Other(e) Factors Total United States RSE Column Factors: 1.4 0.4 1.6 1.2 1.2 1.1 0.7 1.2 311 Food 8 * Q 7 0 0 * * 10.2 311221 Wet Corn Milling * 0 * 0 0 0 0 * 0.7 31131 Sugar * 0 * * 0 0 * * 0.9 311421 Fruit and Vegetable Canning * * * 0 0 0 0 * 1.7 312 Beverage and Tobacco Products 1 * * * 0 0 0 1 2.3 3121 Beverages * * * 0 0 0 0 * 28.9 3122 Tobacco 1 0 0 * 0 0 0 1 0.8 313 Textile Mills 1 0 * 1 0 0 0 * 0.8 314 Textile Product Mills * 0 0 * 0 * 0 * 2 315 Apparel

25

table7.9_02.xls  

U.S. Energy Information Administration (EIA) Indexed Site

9 Expenditures for Purchased Energy Sources, 2002; 9 Expenditures for Purchased Energy Sources, 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. RSE NAICS Residual Distillate Natural LPG and Coke Row Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal and Breeze Other(e) Factors Total United States RSE Column Factors: 0.9 0.9 1.1 1.5 0.9 1.4 0.8 0.7 1.2 311 Food 6,943 3,707 58 135 2,546 38 276 8 175 8 311221 Wet Corn Milling 683 252 2 1 237 * 165 0 26 1.1 31131 Sugar 224 39 11 8 84 * 63 8 10 1 311421 Fruit and Vegetable Canning 333 139 5 8 168 Q 0 0 4 13.5 312 Beverage and Tobacco Products 780 479 8 18 201 9 40 0 25 5.8 3121 Beverages 665 413 4 Q 182 8 16 0 25 5.6 3122 Tobacco 115

26

N.J. Themelis Trip to China, October 2007 Trip of Nickolas Themelis, WTERT Chair, to China, October 18-  

E-Print Network (OSTI)

and Permitted (at 50% RDF co-firing) CO ppm@ 10%02 TCDD TEF ngldNm3@ 7%02 HCI uncontrolled ppm@ 8%02 HCI

Columbia University

27

A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.  

SciTech Connect

This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

2011-12-20T23:59:59.000Z

28

Table A3. Total First Use (formerly Primary Consumption) of Combustible Energ  

U.S. Energy Information Administration (EIA) Indexed Site

Nonfuel Purposes by" Nonfuel Purposes by" " Census Region, Industry Group, and Selected Industries, 1994: Part 1 " " (Estimates in Btu or Physical Units)" " "," "," "," "," "," "," "," ","Coke"," "," " " "," "," ","Residual","Distillate","Natural Gas(c)"," ","Coal","and Breeze"," ","RSE" "SIC"," ","Total","Fuel Oil","Fuel Oil(b)","(billion","LPG","(1000","(1000 ","Other(d)","Row"

29

"Table A25. Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

. Average Prices of Selected Purchased Energy Sources by Census" . Average Prices of Selected Purchased Energy Sources by Census" " Region, Industry Group, and Selected Industries, 1991: Part 1" " (Estimates in Dollars per Physical Unit)" ,,,,," " " "," "," ","Residual","Distillate","Natural Gas(c)"," "," ","RSE" "SIC"," ","Electricity","Fuel Oil","Fuel Oil(b)","(1000","LPG","Coal","Row" "Code(a)","Industry Groups and Industry","(kWh)","(gallon)","(gallon)","cu ft)","(gallon)","(short ton)","Factors"

30

Comparative results of the combustion of lignin briquettes and black coal  

SciTech Connect

A new type of biofuel - hydrolytic lignin briquettes - was tested as compared with ordinary SS coal from the Kuznetsk Basin in fuel-bed firing in a Universal-6 boiler. It was found that the (total) efficiency of the boiler with the firing of lignin briquettes was 38% higher than that with the use of black coal. Carbon loss in the combustion of briquettes was 1%, whereas it was 48.2% in the combustion of black coal. The emission of harmful gas pollutants into the environment in the combustion of briquettes was lower than that in the combustion of coal by a factor of 4.5.

V.G. Lurii [Institute for Fossil Fuels, Moscow (Russian Federation)

2008-12-15T23:59:59.000Z

31

"Table A40. Average Prices of Selected Purchased Energy Sources by Census"  

U.S. Energy Information Administration (EIA) Indexed Site

Region, Census Division, Industry Group, and Selected Industries, 1994: Part 1" Region, Census Division, Industry Group, and Selected Industries, 1994: Part 1" " (Estimates in Dollars per Physical Units)" ,,,,," " " "," "," ","Residual","Distillate","Natural Gas(c)"," "," ","RSE" "SIC"," ","Electricity","Fuel Oil","Fuel Oil(b)","(1000","LPG","Coal","Row" "Code(a)","Industry Group and Industry","(kWh)","(gallons)","(gallons)","cu ft)","(gallons)","(short tons)","Factors" ,,"Total United States" ,"RSE Column Factors:",0.8,1,1.3,0.8,1.6,0.8

32

Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA.  

Science Conference Proceedings (OSTI)

The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.

Ottmar, Roger, D.; Blake, John, I.; Crolly, William, T.

2012-01-01T23:59:59.000Z

33

Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests.  

SciTech Connect

Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or thousands of measured surface fuelbeds representing the fine scale variation in fire behavior on the landscape is constrained in terms of creating compatible custom fire behavior fuel models. In this study, we demonstrate an objective method for taking ecologically complex fuelbeds from inventory observations and converting those into a set of custom fuel models that can be mapped to the original landscape. We use an original set of 629 fuel inventory plots measured on an 80,000 ha contiguous landscape in the upper Atlantic Coastal Plain of the southeastern United States. From models linking stand conditions to component fuel loads, we impute fuelbeds for over 6000 stands. These imputed fuelbeds were then converted to fire behavior parameters under extreme fuel moisture and wind conditions (97th percentile) using the fuel characteristic classification system (FCCS) to estimate surface fire rate of spread, surface fire flame length, shrub layer reaction intensity (heat load), non-woody layer reaction intensity, woody layer reaction intensity, and litter-lichen-moss layer reaction intensity. We performed hierarchical cluster analysis of the stands based on the values of the fire behavior parameters. The resulting 7 clusters were the basis for the development of 7 custom fire behavior fuel models from the cluster centroids that were calibrated against the FCCS point data for wind and fuel moisture. The latter process resulted in calibration against flame length as it was difficult to obtain a simultaneous calibration against both rate of spread and flame length. The clusters based on FCCS fire behavior parameters represent reasonably identifiable stand conditions, being: (1) pine dominated stands with more litter and down woody debriscomponents than other stands, (2) hardwood and pine stands with no shrubs, (3) hardwood dominated stands with low shrub and high non-woody biomass and high down woody debris, (4) stands with high grass and forb (i.e., non-woody) biomass as well as substantial shrub biomass, (5) stands with both high shrub and litter biomass, (6) pine-mixed hardwood stands with moderate litter biomass and low shrub biomass, and (7) baldcypress-tupelo stands. Models representing these stand clusters generated flame lengths from 0.6 to 2.3 musing a 30 km h{sub 1} wind speed and fireline intensities of 100-1500 kW m{sub 1} that are typical within the range of experience on this landscape. The fuel models ranked 1 < 2 < 7 < 5 < 4 < 3 < 6 in terms of both flame length and fireline intensity. The method allows for ecologically complex data to be utilized in order to create a landscape representative of measured fuel conditions and to create models that interface with geospatial fire models.

Parresol, Bernard, R.; Scott, Joe, H.; Andreu, Anne; Prichard, Susan; Kurth, Laurie

2012-01-01T23:59:59.000Z

34

Plant-scale anodic dissolution of unirradiated IFR fuel pins  

Science Conference Proceedings (OSTI)

This report discusses anodic dissolution which is a major operation in the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR), an advanced reactor design developed at Argonne National Laboratory. This process involves electrorefining the heavy metals (uranium and plutonium) from chopped, steel-clad fuel segments. The heavy metals are electrotransported from anodic dissolution baskets to solid and liquid cathodes in a molten salt electrolyte (LiCl-KCI) at 500{degrees}C. Uranium is recovered on a solid cathode mandrel, while a uranium-plutonium mixture is recovered in a liquid cadmium cathode. The anode configuration consists of four baskets mounted on an anode shaft. These baskets provide parallel circuits in the electrolyte and salt flow through the chopped fuelbed as the baskets are rotated. The baskets for the engineering-scale tests were sized to contain up to 2.5 kg of heavy metal. Anodic dissolution of 10 kg batches of chopped, steel-clad simulated tuel (U-10% Zr and U-Zr-Fs alloy) was demonstrated.

Gay, E.C.; Tomczuk, Z.; Miller, W.E.

1993-09-01T23:59:59.000Z

35

A self-consistent MoD-WM/MM structural refinement method: characterization of hydrogen bonding in the orytricha nova G-1uar  

DOE Green Energy (OSTI)

This paper generalizes the MoD-QM/MM hybrid method, developed for ab initio computations of protein electrostatic potentials [Gasc6n, l.A.; Leung, S.S.F.; Batista, E.R.; Batista, V.S. J. Chem. Theory Comput. 2006,2, 175-186], as a practical algorithm for structural refinement of extended systems. The computational protocol involves a space-domain decomposition scheme for the formal fragmentation of extended systems into smaller, partially overlapping, molecular domains and the iterative self-consistent energy minimization of the constituent domains by relaxation of their geometry and electronic structure. The method accounts for mutual polarization of the molecular domains, modeled as Quantum-Mechanical (QM) layers embedded in the otherwise classical Molecular-Mechanics (MM) environment according to QM/MM hybrid methods. The method is applied to the description of benchmark models systems that allow for direct comparisons with full QM calculations, and subsequently applied to the structural characterization of the DNA Oxytricha nova Guanine quadruplex (G4). The resulting MoD-QM/MM structural model of the DNA G4 is compared to recently reported highresolution X-ray diffraction and NMR models, and partially validated by direct comparisons between {sup 1}H NMR chemical shifts that are highly sensitive to hydrogen-bonding and stacking interactions and the corresponding theoretical values obtained at the density functional theory DFT QM/MM (BH&H/6-31 G*:Amber) level in conjunction with the gauge independent atomic orbital (GIAO) method for the ab initio self consistent-field (SCF) calculation of NMR chemical shifts.

Batista, Enrique R [Los Alamos National Laboratory; Newcomer, Micharel B [YALE UNIV; Raggin, Christina M [YALE UNIV; Gascon, Jose A [YALE UNIV; Loria, J Patrick [YALE UNIV; Batista, Victor S [YALE UNIV

2008-01-01T23:59:59.000Z