Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network (OSTI)

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

2

Assessment of the potential of colloidal fuels in future energy usage. Final report. [97 references  

SciTech Connect

Pulverized coal has been an increasing important source of energy over the past century. Most large utility boilers, all modern coking plants, and many industrial boilers and blast furnaces employ pulverized coal as a major feed stream. In periods of oil shortages, such as during World Wars I and II, the concept of adding powdered coal to oil for use in combustion equipment originally designed for oil has been actively pursued but rarely used. Over this same period of time, there have been attempts to use air suspensions of coal dust in diesel engines in Germany, and in turbines in various countries. The economic advantages to be enjoyed by substitution of powdered coal in oil are not generally realized. Oil costs at $30/bbl represent a fuel value of about $5.00/10/sup 6/ Btu; coal at $25/ton is equivalent to approximately $1.00/10/sup 6/ Btu. Although capital costs for the use of coal are higher than those associated with the use of oil, coal is clearly becoming the least costly fuel. Not only are considerable cost advantages possible, but an improvement in balance of payments and an increase in reliability of fuel supplies are other potential benefits. It is therefore recommended that increased national attention be given to develop these finer grinds of carbonaceous fuels to be used in various suspending fluids. Technical areas where significant additional support appear desirable are described.

1980-02-25T23:59:59.000Z

3

Woodfuel Usage Update 1 I Wood fuel use in Scotland 2011 I Hudson Consulting I September 2011  

E-Print Network (OSTI)

Recycled fibre Energy crops, forest residues and tree stumps The first reports on wood fuel usage data hadWoodfuel Usage Update 1 I Wood fuel use in Scotland 2011 I Hudson Consulting I September 2011 Woodfuel Demand and Usage in Scotland Report 2011 #12;Woodfuel Usage Update 2 I Wood fuel use in Scotland

4

Fuel bundle design for enhanced usage of plutonium fuel  

DOE Patents (OSTI)

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced.

Reese, Anthony P. (San Jose, CA); Stachowski, Russell E. (Fremont, CA)

1995-01-01T23:59:59.000Z

5

The impact of residential density on vehicle usage and fuel consumption  

E-Print Network (OSTI)

on vehicle usage and energy consumption. Journal of Urbanon vehicle usage and fuel consumption Jinwon Kim and Davidon vehicle usage and fuel consumption* Jinwon Kim and David

Kim, Jinwon; Brownstone, David

2010-01-01T23:59:59.000Z

6

Fuel bundle design for enhanced usage of plutonium fuel  

DOE Patents (OSTI)

A nuclear fuel bundle includes a square array of fuel rods each having a concentration of enriched uranium and plutonium. Each rod of an interior array of the rods also has a concentration of gadolinium. The interior array of rods is surrounded by an exterior array of rods void of gadolinium. By this design, usage of plutonium in the nuclear reactor is enhanced. 10 figs.

Reese, A.P.; Stachowski, R.E.

1995-08-08T23:59:59.000Z

7

Resource and Fuels Usage Contacting the Authors  

E-Print Network (OSTI)

) % of 1990 usage Natural gas 577 24% Biomass 494 1190% Renewables 182 106% Nuclear 73 62% Coal 561 908 sectors · LDV is least carbon-intensive Total Energy (PJ) % of 1990 usage Natural gas 122 5% Biomass 891T activity) 9% line (218% PxT activity) In-State Emissions Total Energy (PJ) % of 1990 usage Natural gas 123

California at Davis, University of

8

Automobile usage patterns. Highlight report. Volume XIV  

SciTech Connect

A report is given as part of a series of studies dealing with general public behavior and attitudes towards energy conservation. Specifically, this study concentrates on automobile usage patterns. The study is based on 1,007 telephone interviews and includes topics such as car usage affected by lifestyle, car usage patterns, planned trips as compared with routine or spontaneous trips, times per week trip is usually made, analysis of trips, the extent to which shopping trips are done by phone instead of by car, willingness to cut out trips, factors deterring car use, and a summary which concludes that the primary way that people could cut down automobile use without eliminating leisure time use would be in more careful planning of trip for shopping and errands. Another important finding in this study is lack of sensitivity to gasoline prices. (GRA)

Rappeport, M.; Labaw, P.

1975-09-01T23:59:59.000Z

9

Household Fuel Oil or Kerosene Usage Form  

U.S. Energy Information Administration (EIA)

Contractor’s Street Address . Contractor’s City, State, and ZIP Code . ... is a light distillate fuel oil intended for use in vaporizing pot-type burners.

10

Electric household equipment and electric fuel usage in the Tri-State Region and the United States: 1960-70. Working paper  

SciTech Connect

The possible impact of areawide residential location policy on future residential electricity usage in the Tri-State Metropolitan Region centering on New York City is investigated. This report is concerned with selected residential electric appliance usage in the Tri-State Region as compared with usage of these appliances across the United States between 1960 and 1970. Included are tabular representations of comparisons between residential air conditioner usage in the Tri-State Region and the United States. Tabular comparisons also are made with respect to residential appliance usage and electric fuel usage.

Hillman, B.

1973-08-01T23:59:59.000Z

11

Energy Usage Information: Lessons from the Credit Reporting Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Usage Information: Lessons from the Credit Reporting Industry. Speaker(s): Philip Henderson Date: October 4, 2012 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact:...

12

Energy Usage Information: Lessons from the Credit Reporting Industry.  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Usage Information: Lessons from the Credit Reporting Industry. Energy Usage Information: Lessons from the Credit Reporting Industry. Speaker(s): Philip Henderson Date: October 4, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page There has been much discussion about the use of customer energy usage information to deliver value, such as with benchmarking tools that compare energy use in a building to a peer set, continuous commissioning services that diagnose faults in building systems, and tools that estimate expected savings from upgrades. A utility can use customer information to deliver these kinds of services to its customers directly, but most utilities today do not enable companies to obtain a customer's energy usage information in a systematic, automated way to deliver services to the customer, even if

13

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

14

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Enter the Amount Delivered in Gallons XXXX Type of Fuel Sold was: 1=Fuel Oil #1 2=Fuel Oil #2 3=Kerosene 4=Other Enter the Price per Gallon $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ XXX.XX $ X.XX (select one) 1 2 3 4 MM/DD/YY Page 1 of 2 U.S. Energy Information Administration Independent Statistics & Analysis

15

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

16

Audit Report on "Credit Card Usage at the Ohio Field Office and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on "Credit Card Usage at the Ohio Field Office and the Fernald and Miamisburg Environmental Management Projects," ER-B-99-04 Audit Report on "Credit Card Usage at the Ohio...

17

Woodfuel Usage Update 1 I Wood fuel use in Scotland 2010 I Hudson Consulting I October 2010  

E-Print Network (OSTI)

woodfuel usage in the commercial, industrial and electrical energy sectors of the Scottish market) to 30 of electrical energy generation, was paramount in the initial survey and remains so. Total woodfuel usageWoodfuel Usage Update 1 I Wood fuel use in Scotland 2010 I Hudson Consulting I October 2010

18

Economics and policy implications of industrial fuel usage  

Science Conference Proceedings (OSTI)

The nation's use of wood as fuel is put into perspective, recognizing constraints imposed by governmental initiatives and actions. The forest product industry, and its use of wood for energy, is surveyed. The effect of PURPA on this industry, the nation's leader in cogeneration, is discussed. Proposed energy taxes would reverse recent trends in energy conservation. Low sulphur content frees wood and its residues from environmental legislation. Federal funding is needed to determine the extent of the economically accessible fuel wood. The proposed deregulation of natural gas will affect wood use adversely.

Slinn, D.J.

1983-06-01T23:59:59.000Z

19

Impact of Liquefied Natural Gas usage and payload size on Hybrid Wing Body aircraft fuel efficiency  

E-Print Network (OSTI)

This work assessed Hybrid Wing Body (HWB) aircraft in the context of Liquefied Natural Gas (LNG) fuel usage and payload/range scalability at three scales: H1 (B737), H2 (B787) and H3 (B777). The aircraft were optimized for ...

Mody, Pritesh (Pritesh Chetan)

2010-01-01T23:59:59.000Z

20

Reducing fuel usage through applications of conservation and solar energy  

Science Conference Proceedings (OSTI)

Solar thermal technology, coupled with aggressive conservation measures, offers the prospect of greatly reducing the dependence of industry on oil and natural gas. The near-term market for solar technology is largely in industrial processes operating at temperatures below 288/sup 0/C (550/sup 0/F). Such process heat can be supplied by the relatively unsophisticated solar equipment available today. The number and diversity of industrial plants using process heat at this temperature allows favorable matches between solar technologies and industrial processes. The problems involved with the installation and maintenance of conservation and solar equipment are similar. Both compete for scarce investment capital, and each complicates industrial operations and increases maintenance requirements. Technological innovations requiring new types of equipment and reducing the temperature requirements of industrial processes favor the introduction of solar hardware. The industrial case studies program at the Solar Energy Research Institute has examined technical, economic, and other problems facing the near-term application of solar thermal technology to provide industrial process heat. The plant engineer is in the front line of any measure to reduce energy consumption or to supplement existing fuel supplies. The conditions most favorable to the integration of solar technology are presented and illustrated with examples from actual industrial plants.

May, E. K.; Hooker, D. W.

1980-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Residential hot water usage: A review of published metered studies. Topical report, August-December 1994  

SciTech Connect

The report presents a review of residential hot water usage studies. The studies included were published and publicly available, they measured actual hot water usage or energy usage, and they had sufficient demographic information to determine the number of people per household. The available hot water usage data were normalized to a 135 F setpoint temperature to eliminate the variations in usage caused by different water heater thermostat settings. Typical hot water usage as a function of family size was determined from linear regression analyses of the normalized metered studies` data points. A national average hot water usage of 53 gallons per day was determined from the regression analyses and census data on average household size. The review of metered studies also shows that there is no discernible difference in hot water usage for households with either electric or gas water heaters.

Paul, D.D.; Ide, B.E.; Hartford, P.A.

1994-12-01T23:59:59.000Z

22

On-Off Minimum-Time Control With Limited Fuel Usage: Global Optima Via Linear Programming  

SciTech Connect

A method for finding a global optimum to the on-off minimum-time control problem with limited fuel usage is presented. Each control can take on only three possible values: maximum, zero, or minimum. The simplex method for linear systems naturally yields such a solution for the re-formulation presented herein because it always produces an extreme point solution to the linear program. Numerical examples for the benchmark linear flexible system are presented.

DRIESSEN,BRIAN

1999-09-01T23:59:59.000Z

23

Method and apparatus for minimizing the fuel usage in an internal combustion engine  

SciTech Connect

An apparatus and method is disclosed for minimizing the fuel usage in an internal combustion engine. The subject invention is particularly adapted for use with an engine installation subject to varying loads and which includes a governor for varying fuel flow as a function of load. In operation, the combustibles in the exhaust gas of the engine is continuously monitored. The measured level of combustibles is then compared with a predetermined level corresponding to optimum efficiency. A controller is provided for varying the air/fuel ratio supplied to the engine for maximizing efficiency in correspondence with the preset level. By this arrangement, energy output is increased permitting the governor to further reduce fuel flow, thereby minimizing energy costs.

Smojven, R.R.

1984-09-18T23:59:59.000Z

24

The impact of residential density on vehicle usage and fuel consumption  

E-Print Network (OSTI)

characteristics on household residential choice and auto2009. The impact of residential density on vehicle usage and2010-05) The impact of residential density on vehicle usage

Kim, Jinwon; Brownstone, David

2010-01-01T23:59:59.000Z

25

Winter fuels report  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

Not Available

1995-02-17T23:59:59.000Z

26

Winter fuels report  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

1990-11-29T23:59:59.000Z

27

Winter fuels report  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

1990-10-04T23:59:59.000Z

28

Demand and Usage in Scotland Update Report to March 2008  

E-Print Network (OSTI)

represented high levels of co-firing with pellets, which have since been substituted for other forms of non and co-firing, and displacement of electricity generation from other fossil fuels, such as gas fibre was used for co-firing displacing electricity generation by coal. Over the last year co-firing has

29

Winter fuels report  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1994-10-01T23:59:59.000Z

30

Winter fuels report  

SciTech Connect

The report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; (2) propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; (3) natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; (4) residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the United States and selected cities; and (6) US total heating degree-days by city.

1990-11-01T23:59:59.000Z

31

Fuel Cell Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Reports to someone by E-mail Share Fuel Cell Technologies Office: Annual Progress Reports on Facebook Tweet about Fuel Cell Technologies Office: Annual Progress Reports on...

32

WebKDD 2005: web mining and web usage analysis post-workshop report  

Science Conference Proceedings (OSTI)

In this report, we summarize the contents and outcomes of the recent WebKDD 2005 workshop on Web Mining and Web Usage Analysis that was held in conjunction with the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ... Keywords: clickstream analysis, mining evolving web data, personalization, profiling, recommender systems, web mining

Olfa Nasraoui; Osmar R. Zaïane; Myra Spiliopoulou; Bamshad Mobasher; Brij Masand; Philip S. YU

2005-12-01T23:59:59.000Z

33

Fuel Cell Technologies Office: Market Analysis Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy - Energy Efficiency and Renewable Energy Fuel Cell Technologies Office Market Analysis Reports Reports about fuel cell and hydrogen technology market analysis...

34

Fuel Cell Technologies Office: Market Analysis Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Market Analysis Reports to someone by E-mail Share Fuel Cell Technologies Office: Market Analysis Reports on Facebook Tweet about Fuel Cell Technologies Office: Market Analysis Reports on Twitter Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Google Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Delicious Rank Fuel Cell Technologies Office: Market Analysis Reports on Digg Find More places to share Fuel Cell Technologies Office: Market Analysis Reports on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter

35

Winters fuels report  

SciTech Connect

The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

1995-10-27T23:59:59.000Z

36

The Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New England New England New England New England Central Atlantic Central Atlantic Central Atlantic Central Atlantic Lower Atlantic Lower Atlantic Lower Atlantic Lower Atlantic Gulf Coast Gulf Coast Gulf Coast Gulf Coast West Coast West Coast West Coast West Coast Rocky Mountain Rocky Mountain Rocky Mountain Rocky Mountain Midwest Midwest Midwest Midwest Map of U.S. Regions Map of U.S. Regions Map of U.S. Regions Map of U.S. Regions THE ALTERNATIVE FUEL PRICE REPORT Alternative Fuel Prices Across the Nation March 28, 2002 his is the fifth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the price of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders during the months

37

Outlooks of HLW Partitioning Technologies Usage for Recovering of Platinum Metals from Spent Fuel  

Science Conference Proceedings (OSTI)

The existing practice of management of high level waste (HLW) generated by NPPs, call for a task of selective separation of the most dangerous long-lived radionuclides with the purpose of their subsequent immobilization and disposal. HLW partitioning allows to reduce substantially the cost of vitrified product storage owing to isolation of the most dangerous radionuclides, such as transplutonium elements (TPE) into separate fractions of small volumes, intended for ultimate storage. By now numerous investigations on partitioning of HLW of various composition have been carried out in many countries and a lot of processes permitting to recover cesium, strontium, TPE and rare earth elements (REE) have been already tested. Apart from enumerated radionuclides, a fair quantity of palladium and rhodium presents in spent fuel, but the problem of these elements recovery has not yet been decided at the operating radiochemical plants. A negative effect of platinum group metals (PGM) occurrence is determined by the formation of separate metal phase, which not only worsens the conditions of glass-melting but also shortens considerably the service life of the equipment. At the same time, the exhaustion of PGMs natural resources may finally lead to such a growth of their costs that the spent nuclear fuel would became a substituting source of these elements industrial production. Allowing above mentioned, it is of interest to develop the technique for ''reactor'' palladium and rhodium recovery process which would be compatible with HLW partitioning and could be realized using the same facilities. In the report the data on platinum metals distribution in spent fuel reprocessing products and the several flowsheets for palladium separation from HLW are presented.

Pokhitonov, Y. A.; Estimantovskiy, V.; Romanovski, v.; Zatsev, B.; Todd, T.

2003-02-24T23:59:59.000Z

38

The Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

December 17, 2001 December 17, 2001 his is the fifth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the price of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders during the weeks of October 15 and October 22, 2001, with comparisons to the prices in the previous Price Report for the week of June 4, 2001. Gasoline and Diesel Prices egular grade gasoline averaged $1.265 per gallon nationwide during the week of October 22, 2001. This represents a decrease of $0.414 per gallon from the previous Price Report (June 2001), as illustrated in the table to the right. Prices for the various regions of the

39

2008 FUEL CELL TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

electricity and hot water from a 400 kW fuel cell. Gills Onions' processing facility captures waste biogas2008 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 #12;2008 FUEL CELL TECHNOLOGIES MARKET REPORT i and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff

40

CNEA Fresh Fuel Plate Characterization Summary Report  

SciTech Connect

Characterization summary report outlining the findings of the fresh fuel examinations of the plates received from CNEA.

D. Keiser; F. Rice

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

October 2008 October 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2008 Page 2 WELCOME! Welcome to the October 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 2, 2008 and October 16, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

42

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

9 9 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2009 Page 2 WELCOME! Welcome to the October 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 16, 2009 and October 26, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

43

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

July 2008 July 2008 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2008 Page 2 WELCOME! Welcome to the July 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 21, 2008 and July 31, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

44

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities Alternative Fuel Price Report July 2009 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2009 WELCOME! Welcome to the July 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 20, 2009 and July 31, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

45

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

April 2009 April 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT APRIL 2009 Page 2 WELCOME! Welcome to the April 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2009 and April 15, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

46

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

January 2009 January 2009 Clean Cities Alternative Fuel Price Report CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2009 Page 2 WELCOME! Welcome to the January 2009 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 12, 2009 and January 30, 2009 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

47

Fuel performance: Annual report for 1987  

SciTech Connect

This annual report, the tenth in a series, provides a brief description of fuel performance during 1987 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulator Commission evaluations are included. 384 refs., 13 figs., 33 tabs.

Bailey, W.J.; Wu, S.

1989-03-01T23:59:59.000Z

48

Fuel performance annual report for 1986  

Science Conference Proceedings (OSTI)

This annual report, the ninth in a series, provides a brief description of fuel performance during 1986 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related U.S. Nuclear Regulatory Commission evaluations are included. 550 refs., 12 figs., 31 tabs.

Bailey, W.J.; Wu, S.

1988-03-01T23:59:59.000Z

49

Fuel performance annual report for 1988  

SciTech Connect

This annual report, the eleventh in a series, provides a brief description of fuel performance during 1988 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included. 414 refs., 13 figs., 32 tabs.

Bailey, W.J. (Pacific Northwest Lab., Richland, WA (USA)); Wu, S. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering and Systems Technology)

1990-03-01T23:59:59.000Z

50

Fuel performance annual report for 1989  

SciTech Connect

This annual report, the twelfth in a series, provides a brief description of fuel performance during 1989 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included.

Bailey, W.J.; Berting, F.M. (Pacific Northwest Lab., Richland, WA (United States)); Wu, S. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology)

1992-06-01T23:59:59.000Z

51

Fuel performance annual report for 1985  

Science Conference Proceedings (OSTI)

This annual report, the eighth in a series, provides a brief description of fuel performance during 1985 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

Bailey, W.J.; Wu, S.

1987-02-01T23:59:59.000Z

52

Cofiring: technological option in Romania for promoting cleaner fossil fuels usage.  

E-Print Network (OSTI)

??Co-firing refers to the simultaneous or alternative utilisation of two or more fuels in a combustion unit for the purpose of heat/power generation and it… (more)

Marin, Bogdan

2008-01-01T23:59:59.000Z

53

Fuel Cell Technologies Office: Reports to Congress  

NLE Websites -- All DOE Office Websites (Extended Search)

to the Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the Secretary of Energy (HTAC Report). HTAC, a Federal Advisory Committee, was established to...

54

Fuel Performance Annual Report for 1979  

Science Conference Proceedings (OSTI)

This annual report, the second in a series, provides a brief description of fuel performance in commercial nuclear power plants. Brief summaries are given of fuel surveillance programs, fuel performance problems, and fuel design changes. References to additional, more detailed, information and related NRC evaluation are provided.

Tokar, M.; Mailey, W. J.; Cunningham, M. E.

1981-01-01T23:59:59.000Z

55

Fuel Performance Annual Report for 1980  

SciTech Connect

This annual report, the third in a series, provides a brief description of fuel performance in conmercial nuclear power plants. Brief summaries of fuel surveillance programs and operating experience, fuel performance problems, and fuel design changes are provided. References to additional, more detailed, information and related NRC evaluation are included.

Bailey, W. J.; Rising, K. H.; Tokar, M.

1981-12-01T23:59:59.000Z

56

Alternative Fuel Price Report October 2010 Corrected  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities Alternative Fuel Price Report October 2010 Clean Cities Alternative Fuel Price Report October 2010 WELCOME! Welcome to the October 2010 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 4, 2010 and October 14, 2010 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for

57

National Fuel Cell Bus Program: Accelerated Testing Evaluation Report and Appendices, Alameda-Contra Costa Transit District (AC Transit)  

DOE Green Energy (OSTI)

This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).

Chandler, K.; Eudy, L.

2009-01-01T23:59:59.000Z

58

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

1 1 Clean Cities Alternative Fuel Price Report October 2011 Page 2 WELCOME! Welcome to the October 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between September 30, 2011 and October 14, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

59

Alternative Fuel Price Report January 2011  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

1 1 Clean Cities Alternative Fuel Price Report January 2011 Page 2 WELCOME! Welcome to the January 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 24, 2011 and February 7, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

60

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0 0 Clean Cities Alternative Fuel Price Report January 2010 Page 2 WELCOME! Welcome to the January 2010 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 19, 2010 and January 29, 2010 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Alternative Fuel Price Report April 2010  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0 0 Clean Cities Alternative Fuel Price Report April 2010 Page 2 WELCOME! Welcome to the April 2010 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 2, 2010 and April 12, 2010 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

62

Alternative Fuel Price Report April 2008  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

April 2008 April 2008 8 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT APRIL 2008 WELCOME! Welcome to the April 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2008 and April 11, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

63

Clean Cities Alternative Fuel Price Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

1 1 Clean Cities Alternative Fuel Price Report April 2011 Page 2 WELCOME! Welcome to the April 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between April 1, 2011 and April 15, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

64

Alternative Fuel Price Report January 2008  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jan Jan nuary 2008 8 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JANUARY 2008 WELCOME! Welcome to the January 2008 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between January 21, 2008 and January 31, 2008 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

65

Alternative Fuel Price Report - September 2005  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

September 2005 September 2005 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT SEPTEMBER 2005 Page 2 WELCOME! Welcome to the September issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected in the month of September 2005 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, DOE Regional Offices, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis.

66

2009 Fuel Cell Market Report, November 2010  

DOE Green Energy (OSTI)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

Not Available

2010-11-01T23:59:59.000Z

67

Hallam fuel decladding. Program summary report  

Science Conference Proceedings (OSTI)

This report summarizes the program of decladding the 150 Hallam fuel assemblies, removal of the sodium, and the packaging and shipment of the recovered fuel to Savannah River for eventual reprocessing.

Dennison, W.F.

1980-04-01T23:59:59.000Z

68

2008 Fuel Cell Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL CELL TECHNOLOGIES FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 2008 FUEL CELL TECHNOLOGIES MARKET REPORT i Authors This report was written primarily by Bill Vincent of the Breakthrough Technologies Institute in Washington, DC, with significant assistance from Jennifer Gangi, Sandra Curtin, and Elizabeth Delmont. Acknowledgments This report was the result of hard work and valuable contributions from government staff and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report. The authors also wish to thank Robert Rose and Bud DeFlaviis of the U.S. Fuel Cell Council; Lisa Callaghan-Jerram of Fuel Cell Today; Alison Wise and Rachel Gelman

69

Alternative Fuel Price Report October 2006  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

October 2006 October 2006 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2006 Page 2 WELCOME! Welcome to the October 2006 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected in the months of September and October 2006 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, DOE Regional Offices, and other key stakeholders were contacted to request that they provide prices for

70

Fuel Reliability Program: Global Nuclear Fuel Priority 1 Fuel Inspections Results Assessment Report  

Science Conference Proceedings (OSTI)

In an effort to meet the recommendations of the Electric Power Research Institute (EPRI) report 1015032, Fuel Reliability Guidelines: Fuel Surveillance and Inspection, Global Nuclear Fuel (GNF) worked with the Fuel Reliability Program (FRP) and utilities to assign an inspection prioritization ranking to the GNF-fueled U.S. BWR fleet and conducted and completed a series of fuel inspections from 2007 to 2009 at the highest priority plants. Summary presentations of the inspection results were presented at E...

2011-05-12T23:59:59.000Z

71

2007 Fuel Cell Technologies Market Report  

SciTech Connect

The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

McMurphy, K.

2009-07-01T23:59:59.000Z

72

Progress Report for Advanced Automotive Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 1999 FY 1999 FY 1999 FY 1999 Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Progress Report for Advanced Automotive Fuels Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies Office of Transportation Technologies Office of Transportation Technologies Office of Transportation Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies Office of Advanced Automotive Technologies

73

Fuels Preparation Department monthly report, October 1960  

SciTech Connect

This report describes the operation of the fuels preparation department for the month of October, 1960. Manufacturing, process development, employee relations, financial operations, and plant improvements are discussed.

1960-11-07T23:59:59.000Z

74

2011 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

This report describes data compiled in 2012 on trends in the fuel cell industry for 2011 with some comparison to previous years.

75

2010 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

This report describes data compiled in 2011 on trends in the fuel cell industry for 2010 with some comparison to previous years.

76

2009 Fuel Cell Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

77

2011 Fuel Cell Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 FUEL CELL 2011 FUEL CELL TECHNOLOGIES MARKET REPORT ii Authors This report was a collaborative effort by staff of the Breakthrough Technologies Institute, Inc., in Washington, DC. Acknowledgement The authors relied upon the hard work and valuable contributions of many men and women in government and in the fuel cell industry. The authors especially wish to thank Sunita Satyapal and the staff of the US Department of Energy's Fuel Cell Technologies Program for their support and guidance. The authors also wish to thank Rachel Gelman of the National Renewable Energy Laboratory and the many others who made this report possible. iii Contents List of Figures .....................................................................................................................................................v

78

Survey and update of F-14a mission profiles for TF30 engine usage. Final report  

SciTech Connect

The mission profiles and maintenance procedures relating to the TF30-P-412 engines have been investigated to find out whether an observed reduction in engine usage was due to different aircraft missions or new flight procedures. A survey of fleet squadron personnel revealed mission profiles are essentially the same; however, fewer air combat engagements and landing practices account for the lower usage. The F-14 role is now more evenly distributed between air combat and intercepts, while the total number of these missions remains constant. A future advanced technology engine in this aircraft is likely to encounter higher usage requirements if there are no throttle cycle restrictions.

Cote, S.M.

1982-04-30T23:59:59.000Z

79

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Printable Version 2012 Annual Progress Report V. Fuel Cells This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on fuel...

80

2010 Annual Progress Report for Fuels Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

annual progress report 2010 Fuels Technologies i FY 2010 Progress Report Fuels Technologies Approved by Kevin Stork Team Leader, Fuels Technologies Vehicle Technologies Program FY 2010 Progress rePort For Fuels technologies Energy Efficiency and Renewable Energy Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 February 2011 DOE-FT-2010AR ii Fuels Technologies FY 2010 Progress Report Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the programs and all the

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuel Price Report - November 26, 2004  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

THE ALTERNATIVE FUEL PRICE REPORT Alternative Fuel Prices Across the Nation November 26, 2004 his is the thirteenth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders between November 8 and November 19, 2004, with comparisons to the prices in the previous Price Report, which were collected in June, 2004. The prices contained within this report are meant to represent retail, at-the-pump sales prices for each fuel. In some cases, prices are collected from utilities or government facilities, where taxes are not included. In

82

Spent Fuel Background Report Volume I  

Science Conference Proceedings (OSTI)

This report is an overview of current spent nuclear fuel management in the DOE complex. Sources of information include published literature, internal DOE documents, interviews with site personnel, and information provided by individual sites. Much of the specific information on facilities and fuels was provided by the DOE sites in response to the questionnaire for data for spent fuels and facilities data bases. This information is as accurate as is currently available, but is subject to revision pending results of further data calls. Spent fuel is broadly classified into three categories: (a) production fuels, (b) special fuels, and (c) naval fuels. Production fuels, comprising about 80% of the total inventory, are those used at Hanford and Savannah River to produce nuclear materials for defense. Special fuels are those used in a wide variety of research, development, and testing activities. Special fuels include fuel from DOE and commercial reactors used in research activities at DOE sites. Naval fuels are those developed and used for nuclear-powered naval vessels and for related research and development. Given the recent DOE decision to curtail reprocessing, the topic of main concern in the management of spent fuel is its storage. Of the DOE sites that have spent nuclear fuel, the vast majority is located at three sites-Hanford, INEL, and Savannah River. Other sites with spent fuel include Oak Ridge, West Valley, Brookhaven, Argonne, Los Alamos, and Sandia. B&W NESI Lynchburg Technology Center and General Atomics are commercial facilities with DOE fuel. DOE may also receive fuel from foreign research reactors, university reactors, and other commercial and government research reactors. Most DOE spent fuel is stored in water-filled pools at the reactor facilities. Currently an engineering study is being performed to determine the feasibility of using dry storage for DOE-owned spent fuel currently stored at various facilities. Delays in opening the deep geologic repository and the decision to phase out reprocessing of production fuels are extending the need for interim storage. The report describes the basic storage conditions and the general SNF inventory at individual DOE facilities.

Abbott, D.

1994-03-01T23:59:59.000Z

83

Usage Demographics 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Usage Demographics 2010 Academic Usage Usage by Discipline DOE & Other Lab Usage Usage by Institution Type Last edited: 2012-10-30 13:51:35...

84

Advanced Fuels Campaign FY 2010 Accomplishments Report  

Science Conference Proceedings (OSTI)

The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

Lori Braase

2010-12-01T23:59:59.000Z

85

2008 Fuel Cell Technologies Market Report  

SciTech Connect

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

DOE

2010-06-01T23:59:59.000Z

86

Heavy-duty truck population, activity and usage patterns. Final report  

SciTech Connect

The objective of the study was to update the heavy-duty truck (HDT) population, activity (e.g., vehicle miles traveled (VMT), numbers of starts and trips, trip duration, etc.), and usage patterns type of service/business (e.g., delivery, construction, etc.), area of operation (i.e., local, short-haul, long-haul) for HDT`s registered and/or operated in California. The population and activity estimates were done on a weight-class-specific basis light-heavy-duty, medium-heavy-duty and heavy-heavy-duty. Population, activity and usage estimates were based primarily on Department of Motor Vehicles (DMV) registration data and Truck Inventory and Usage Survey (TIUS) data. In addition to the analysis of existing data (i.e., DMV and TIUS), 42 HDTs were fitted with on-board data loggers that recorded numbers of trips and starts, daily VMT and travel by time-of-day.

Fischer, M.

1998-07-01T23:59:59.000Z

87

On-Board Fuel Processing Committee Report  

NLE Websites -- All DOE Office Websites (Extended Search)

ON-BOARD FUEL PROCESSING ON-BOARD FUEL PROCESSING GO/NO-GO DECISION DOE DECISION TEAM COMMITTEE REPORT August 2004 (Revised) Table of Contents 1. Executive Summary............................................................................................. 1 2. Introduction.......................................................................................................... 2 3. Background.......................................................................................................... 2 4. Process................................................................................................................. 2 5. Recommendation............................................................................................... 3 6. Rationale ........................................................................................................ 4

88

FE annual Report Bioprocessing of Fossil Fuels  

E-Print Network (OSTI)

FE annual Report July 2004 Bioprocessing of Fossil Fuels Abhijeet Borole, Life Sciences Division The overall objective of this research program is to develop novel technologies for processing fossil fuels energy-efficient. Processes based on oxidative as well as reductive reactions are being investigated

89

Report of the Fuel Cycle Research and Development Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee Report of the Fuel Cycle Research and Development Subcommittee of the...

90

Summary report : universal fuel processor.  

DOE Green Energy (OSTI)

The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

Coker, Eric Nicholas; Rice, Steven F. (Sandia National Laboratories, Livermore, CA); Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M. (Sandia National Laboratories, Livermore, CA)

2008-01-01T23:59:59.000Z

91

FY 2005 Progress Report for Fuels Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Report Progress rePort for fuels technologies Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2005 Progress Report for Fuels Technologies Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen January 2006 Fuels Technologies FY 2005 Progress Report Contents I Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 II Fuels and Lubricants to Enable High Efficiency Engine Operation while Meeting 2007 - 2010 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

92

Used Fuel Degradation: Experimental and Modeling Report  

Energy.gov (U.S. Department of Energy (DOE))

The report describes the strategy for coupling process level models to produce an integrated Used Fuel Degradation Model (FDM), and addresses fractional degradation rate, instant release fractions, other continuum modeling approaches, and experimental support.

93

Fuel consolidation demonstration program: Final Report  

Science Conference Proceedings (OSTI)

EPRI, Northeast Utilities, Baltimore Gas and Electric, the US Department of Energy and Combustion Engineering are engaged in a program to develop a system for consolidating spent fuel and a method of storing the consolidated fuel in the spent fuel storage pool which is licensable by the US Nuclear Regulatory Commission. Fuel consolidation offers a means of substantially increasing the capacity of spent fuel storage pools. This is a final report of the Fuel Consolidation Demonstration Program. It provides a review of the overall program, a summary of the results obtained, the lessons learned, and an assessment of the present status of the consolidation system developed in the program. 7 refs., 15 figs., 5 tabs.

Not Available

1990-06-01T23:59:59.000Z

94

Advanced Fuels Campaign FY 2011 Accomplishments Report  

SciTech Connect

One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

Not Listed

2011-11-01T23:59:59.000Z

95

Alternative Fuel Price Report - June 29, 2004  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

June 29, 2004 June 29, 2004 his is the twelfth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders between June 14 and June 25, 2004, with comparisons to the prices in the previous Price Report, which were collected in March, 2004. T The prices contained within this report are meant to represent retail, at-the-pump sales prices for each fuel. In some cases, prices are collected from utilities or government facilities, where taxes are not included. In these instances, though government users may not be required to pay a tax on the fuel, standard federal and

96

Ethanol fuel modification for highway vehicle use. Final report  

DOE Green Energy (OSTI)

A number of problems that might occur if ethanol were used as a blending stock or replacement for gasoline in present cars are identified and characterized as to the probability of occurrence. The severity of their consequences is contrasted to those found with methanol in a previous contract study. Possibilities for correcting several problems are reported. Some problems are responsive to fuel modifications but others require or are better dealt with by modification of vehicles and the bulk fuel distribution system. In general, problems with ethanol in blends with gasoline were found to be less severe than those with methanol. Phase separation on exposure to water appears to be the major problem with ethanol/gasoline blends. Another potentially serious problem with blends is the illict recovery of ethanol for beverage usage, or bootlegging, which might be discouraged by the use of select denaturants. Ethanol blends have somewhat greater tendency to vapor lock than base gasoline but less than methanol blends. Gasoline engines would require modification to operate on fuels consisting mostly of ethanol. If such modifications were made, cold starting would still be a major problem, more difficult with ethanol than methanol. Startability can be provided by adding gasoline or light hydrocarbons. Addition of gasoline also reduces the explosibility of ethanol vapor and furthermore acts as denaturant.

Not Available

1980-01-01T23:59:59.000Z

97

Alternative Fuel Price Report - March 28, 2005  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

March 28, 2005 March 28, 2005 T his is the fourteenth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders between March 8 and March 22, 2005, with comparisons to the prices in the previous Price Report, which were collected in November, 2004. The changes in prices from one reporting period to the next can be attributed not only to price volatility, but also to an inconsistent set of respondents. Thus, differences from one report to the next should not be assumed to reflect trends. The prices contained within this report are meant to represent retail, at-the-pump sales prices for each fuel.

98

Clean Cities: Clean Cities Alternative Fuel Price Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Price Alternative Fuel Price Report to someone by E-mail Share Clean Cities: Clean Cities Alternative Fuel Price Report on Facebook Tweet about Clean Cities: Clean Cities Alternative Fuel Price Report on Twitter Bookmark Clean Cities: Clean Cities Alternative Fuel Price Report on Google Bookmark Clean Cities: Clean Cities Alternative Fuel Price Report on Delicious Rank Clean Cities: Clean Cities Alternative Fuel Price Report on Digg Find More places to share Clean Cities: Clean Cities Alternative Fuel Price Report on AddThis.com... Coordinator Basics Outreach Education & Webinars Meetings Reporting Annual Reporting Database Alternative Fuel Price Report Contacts Clean Cities Alternative Fuel Price Report Clean Cities coordinators are required to collect and report local

99

Determination of usage patterns and emissions for propane/LPG in California. Final report  

SciTech Connect

The purpose of the study was to determine California usage patterns of Liquified Petroleum Gas (LPG), and to estimate propane emissions resulting from LPG transfer operations statewide, and by county and air basin. The study is the first attempt to quantify LPG transfer emissions for California. This was accomplished by analyzing data from a telephone survey of California businesses that use LPG, by extracting information from existing databases.

Sullivan, M.

1992-05-01T23:59:59.000Z

100

Gaseous-fuel safety assessment. Status report  

DOE Green Energy (OSTI)

The Los Alamos National Laboratory, in support of studies sponsored by the Office of Vehicle and Engine Research and Development in the US Department of Energy, has undertaken a safety assessment of selected gaseous fuels for use in light automotive transportation. The purpose is to put into perspective the hazards of these fuels relative to present day fuels and delineated criteria for their safe handling. Fuels include compressed and liquified natural gas (CNG and LNG), liquefied petroleum gas (LPG), and for reference gasoline and diesel. This paper is a program status report. To date, physicochemical property data and general petroleum and transportation information were compiled; basic hazards defined; alternative fuels were safety-ranked based on technical properties alone; safety data and vehicle accident statistics reviewed; and accident scenarios selected for further analysis. Methodology for such analysis is presently under consideration.

Krupka, M.C.; Edeskuty, F.J.; Bartlit, J.R.; Williamson, K.D. Jr.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2004 Office of Fossil Energy Fuel Cell Program Annual Report  

DOE Green Energy (OSTI)

Annual report of fuel cell projects sponsored by Department of Energy, National Energy Technology Laboratory.

NETL

2004-11-01T23:59:59.000Z

102

Transmutation Fuels Campaign FY-09 Accomplishments Report  

Science Conference Proceedings (OSTI)

This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

Lori Braase

2009-09-01T23:59:59.000Z

103

Fuel performance annual report for 1983. Volume 1  

Science Conference Proceedings (OSTI)

This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

Bailey, W.J.; Dunenfeld, M.S.

1985-03-01T23:59:59.000Z

104

Fuel performance annual report for 1990. Volume 8  

SciTech Connect

This annual report, the thirteenth in a series, provides a brief description of fuel performance during 1990 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience and trends, fuel problems high-burnup fuel experience, and items of general significance are provided . References to additional, more detailed information, and related NRC evaluations are included where appropriate.

Preble, E.A.; Painter, C.L.; Alvis, J.A.; Berting, F.M.; Beyer, C.E.; Payne, G.A. [Pacific Northwest Lab., Richland, WA (United States); Wu, S.L. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

1993-11-01T23:59:59.000Z

105

Fuel performance annual report for 1981. [PWR; BWR  

SciTech Connect

This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

Bailey, W.J.; Tokar, M.

1982-12-01T23:59:59.000Z

106

Brain usage  

NLE Websites -- All DOE Office Websites (Extended Search)

usage Name: A W Chen Status: NA Age: NA Location: NA Country: NA Date: NA Question: For my science fair project I would like to know if every part of the brain is used all the...

107

Brain Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage Name: Matt Location: NA Country: NA Date: NA Question: what percentage of the brain does the average human use? Replies: This is a very difficult question to address. Your...

108

Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Greenhouse Gas (GHG) Greenhouse Gas (GHG) Reporting Requirement to someone by E-mail Share Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Facebook Tweet about Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Twitter Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Google Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Delicious Rank Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on Digg Find More places to share Alternative Fuels Data Center: Greenhouse Gas (GHG) Reporting Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Greenhouse Gas (GHG) Reporting Requirement

109

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reinvestment Act (ARRA) This section of the 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on the fuel cell technologies America Recovery and Reinvestment...

110

Clean Cities Alternative Fuel Price Report - April 2012  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

April 2012 April 2012 Clean Cities Alternative Fuel Price Report April 2012 Page 2 WELCOME! Welcome to the April 2012 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative fuels and conventional fuels in the United States. This issue summarizes prices that were collected between March 30, 2012 and April 13, 2012 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were

111

Clean Cities Alternative Fuel Price Report Jan 2012  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

January 2012 January 2012 Clean Cities Alternative Fuel Price Report January 2012 Page 2 WELCOME! Welcome to the January 2012 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative fuels and conventional fuels in the United States. This issue summarizes prices that were collected between January 13, 2012 and January 27, 2012 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were

112

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT  

U.S. Energy Information Administration (EIA)

Version No.: 2013.01. FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT REFERENCE YEAR 2012 ; This report is ; ... 2012 . 10. Type of Report

113

An Update of Dermatologist Usage of the Physician Quality Reporting System in Colorado for 2011  

E-Print Network (OSTI)

Reporting Initiatives in Colorado. Journal of the AmericanQuality Reporting System in Colorado for 2011 Jeffrey H.of Dermatology, University of Colorado Denver, Aurora, CO

Dunn, Jeffrey H; Alvarez, Bryan T; Dellavalle, Robert P; Dunnick, Cory A

2013-01-01T23:59:59.000Z

114

Alternative Fuels Price Report July 3, 2001  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

July 3, 2001 July 3, 2001 his is the fourth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the price of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders during the weeks of May 28 and June 4, 2001, with comparisons to the prices in the previous Price Report for the week of October 9, 2000. Gasoline and Diesel Prices asoline averaged $1.679 per gallon nationwide during the week of June 4, 2001. This represents an increase of $0.138 per gallon from the previous Price Report (October 2000), as illustrated in the table to the right. Prices for the various regions of the country are

115

Fuel plantation research. Progress report  

DOE Green Energy (OSTI)

Research in chemical induction of lightwood is summarized. Four large-scale proof of concept studies have been installed that test five paraquat treatments on a total of 71,228 trees. This wood will be used in actual pulp mill and extraction plant runs to determine oleoresin recovery and possible processing problems. Nearly 3,000 wood samples have been collected to ascertain duration of treatment effects. Results of complementary studies are also reported; most of these are concerned with optimization of paraquat application techniques and the effect of species differences on these methods. A large study was installed to field screen selected insecticides for insect pest control in lightwood operations, and interim results are presented. Dowco 214 (Reldon) proved to be an adequate substitute for BHC and 0.5% concentrations were as effective as 1%. Ten northern and seven western conifer species were tested for their reaction to paraquat treatment. All members of genus Pinus showed appreciable resin soaking but other coniferous genera did not. Feasibility of oleoresin substitution for petrochemicals was investigated.

Stubbs, J.

1977-08-01T23:59:59.000Z

116

Spent Fuel Working Group Report. Volume 1  

SciTech Connect

The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.

O`Toole, T.

1993-11-01T23:59:59.000Z

117

Clean Cities Alternative Fuel Price Report July 2007  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Alternative Fuel Price Report July 2007 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JULY 2007 WELCOME! Welcome to the July 2007 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 3, 2007 and July 13, 2007 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

118

Fuel performance annual report for 1984. Volume 2  

Science Conference Proceedings (OSTI)

This annual report, the seventh in a series, provides a brief description of fuel performance during 1984 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included. 279 refs., 11 figs., 29 tabs.

Bailey, W.J.; Dunenfeld, M.S.

1986-03-01T23:59:59.000Z

119

An annotated compilation of the sources of information related to the usage of electricity in non-industrial applications. Final report  

SciTech Connect

The report is a thorough compilation of the sources of information related to the usage of electricity in non-industrial applications, as available in the open literature and from the U.S. electrical power industry. The report's scope encompasses all aspects of: electric load management; end-use; and the various methods of acquisition, analysis, and implementation of electricity usage data. There are over 400 abstracts; 156 from LRC/AEIC reports, and 264 from the open literature. The abstracts cover references containing over 12,000 pages plus about 2,500 references and 6,200 graphs and tables pertinent to electricity usage in non-industrial applications. In addition to the LRC/AEIC abstracts, this document identifies over 100 sources of directly relevant information (in contrast to general interest sources and material of secondary relevance).

Reznek, B.

1978-07-01T23:59:59.000Z

120

Batteries and fuel cells working group report  

DOE Green Energy (OSTI)

Electrochemical energy systems are dominated by interfacial phenomena. Catalysis, corrosion, electrical and ionic contact, and wetting behavior are critical to the performance of fuel cells and batteries. Accordingly, development of processing techniques to control these surface properties is important to successful commercialization of advanced batteries and fuel cells. Many of the surface processing issues are specific to a particular electrochemical system. Therefore, the working group focused on systems that are of specific interest to DOE/Conservation and Renewable Energy. These systems addressed were: Polymer Electrolyte Membrane (PEM) Fuel Cells, Direct Methanol Oxidation (DMO) Fuel Cells, and Lithium/Polymer Batteries. The approach used by the working group for each of these systems was to follow the current path through the system and to identify the principal interfaces. The function of each interface was specified together with its desired properties. The degree to which surface properties limit performance in present systems was rated. Finally, the surface processing needs associated with the performance limiting interfaces were identified. This report summarizes this information.

Eberhardt, J. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Office of Advanced Transportation Materials; Landgrebe, A. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Electric and Hybrid Propulsion Systems; Lemons, R.; Wilson, M. [Los Alamos National Lab., NM (United States); MacAurther, D. [CHEMAC International Corp., (United States); Savenell, R. [Case Western Reserve Univ., Cleveland, OH (United States); Swathirajan, S. [General Motors Research Labs., Warren, MI (United States); Wilson, D. [Oak Ridge National Lab., TN (United States)

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Batteries and fuel cells working group report  

DOE Green Energy (OSTI)

Electrochemical energy systems are dominated by interfacial phenomena. Catalysis, corrosion, electrical and ionic contact, and wetting behavior are critical to the performance of fuel cells and batteries. Accordingly, development of processing techniques to control these surface properties is important to successful commercialization of advanced batteries and fuel cells. Many of the surface processing issues are specific to a particular electrochemical system. Therefore, the working group focused on systems that are of specific interest to DOE/Conservation and Renewable Energy. These systems addressed were: Polymer Electrolyte Membrane (PEM) Fuel Cells, Direct Methanol Oxidation (DMO) Fuel Cells, and Lithium/Polymer Batteries. The approach used by the working group for each of these systems was to follow the current path through the system and to identify the principal interfaces. The function of each interface was specified together with its desired properties. The degree to which surface properties limit performance in present systems was rated. Finally, the surface processing needs associated with the performance limiting interfaces were identified. This report summarizes this information.

Eberhardt, J. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Office of Advanced Transportation Materials); Landgrebe, A. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Electric and Hybrid Propulsion Systems); Lemons, R.; Wilson, M. (Los Alamos National Lab., NM (United States)); MacAurther, D. (CH

1991-01-01T23:59:59.000Z

122

Spent Fuel Background Report Volume II  

Science Conference Proceedings (OSTI)

This Volume II contains tables that describe DOE fuel storage facilities and the fuel contained in those facilities.

Abbott, D.

1994-03-01T23:59:59.000Z

123

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Annual Progress Report XI. Systems Analysis This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on systems analysis. Systems...

124

National Report Joint Convention on the Safety of Spent Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent...

125

Alternative Fuels Data Center: Natural Gas and Propane Reports  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reports to someone by E-mail Reports to someone by E-mail Share Alternative Fuels Data Center: Natural Gas and Propane Reports on Facebook Tweet about Alternative Fuels Data Center: Natural Gas and Propane Reports on Twitter Bookmark Alternative Fuels Data Center: Natural Gas and Propane Reports on Google Bookmark Alternative Fuels Data Center: Natural Gas and Propane Reports on Delicious Rank Alternative Fuels Data Center: Natural Gas and Propane Reports on Digg Find More places to share Alternative Fuels Data Center: Natural Gas and Propane Reports on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Natural Gas and Propane Reports The Florida Office of Program Policy Analysis and Government Accountability (Office) must complete a report that analyzes the taxation and use of

126

Clean Cities Alternative Fuel Price Report March 2007  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities Alternative Clean Cities Alternative Fuel Price Report March 2007 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT MARCH 2007 Page 2 WELCOME! Welcome to the March 2007 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between February 21, 2007 and March 2, 2007 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that

127

Clean Cities Alternative Fuel Price Report - July 2012  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities Clean Cities Alternative Fuel Price Report July 2012 Clean Cities Alternative Fuel Price Report July 2012 Page 2 WELCOME! Welcome to the July 2012 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative fuels and conventional fuels in the United States. This issue summarizes prices that were collected between July 13, 2012 and July 27, 2012 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were

128

Synthetic fuel utilization. Final report. Task 330  

DOE Green Energy (OSTI)

The presence of large coal resources in this country provided the spur for consideration of liquids derived from hydrogenation of coal in the search for alternate liquid fuels to replace petroleum. Previous developments particularly in German industry beginning in 1910 and reaching a capacity of approximately four million tons of products a year by 1944 and more recently a series of plants in South Africa have shown the practicability of coal liquefaction. A few more advanced processes have been developed variously to bench, pilot or commercial scale from among the thirty or more which were subject to study. Limitation in the amount of hydrogen used in these for reasons of economy and processing facility results in products containing major amounts of aromatics as well as significant portions of the sulfur and nitrogen of the coal feed. Combustion of the largely aromatic liquids can present problems in commercial burners designed for petroleum fuels, and combustion staging used to reduce NO/sub x/ emissions with the latter may encounter difficulties from sooting in the coal-derived fuels, which occurs readily with aromatics. This report presents a review of such problems in utilization of synthetic fuels from coal, emphasizing basic engineering and scientific studies which have been made. A research program involving a number of universities, industrial laboratories, and non-profit research institutions was carried out under the direction of the Department of Energy's Pittsburgh Energy Technology Center. This program is also reviewed. The major subjects covered are those of liquefaction product composition and properties, fuel spray and droplet processes, synfuel pyrolysis, combustion mechanics, soot formation, and pollutant emission. Recommendations concerning needs for investigation are made from an evaluation of the current status of the field and the results obtained in the program. 15 references, 1 figure, 7 tables.

Singer, S.

1983-01-01T23:59:59.000Z

129

Alternative Fuels Data Center: E85 Retail Sales Reporting  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retail Sales Retail Sales Reporting to someone by E-mail Share Alternative Fuels Data Center: E85 Retail Sales Reporting on Facebook Tweet about Alternative Fuels Data Center: E85 Retail Sales Reporting on Twitter Bookmark Alternative Fuels Data Center: E85 Retail Sales Reporting on Google Bookmark Alternative Fuels Data Center: E85 Retail Sales Reporting on Delicious Rank Alternative Fuels Data Center: E85 Retail Sales Reporting on Digg Find More places to share Alternative Fuels Data Center: E85 Retail Sales Reporting on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type E85 Retail Sales Reporting A retailer who dispenses E85 must report to the Indiana Department of State Revenue the total number of gallons of E85 sold from a metered pump.

130

Fourth annual report to Congress, Federal Alternative Motor Fuels Programs  

DOE Green Energy (OSTI)

This annual report to Congress presents the current status of the alternative fuel vehicle programs being conducted across the country in accordance with the Alternative Motor Fuels Act of 1988. These programs, which represent the most comprehensive data collection effort ever undertaken on alternative fuels, are beginning their fifth year. This report summarizes tests and results from the fourth year.

NONE

1995-07-01T23:59:59.000Z

131

Fuel performance annual report for 1991. Volume 9  

Science Conference Proceedings (OSTI)

This report is the fourteenth in a series that provides a compilation of information regarding commercial nuclear fuel performance. The series of annual reports were developed as a result of interest expressed by the public, advising bodies, and the US Nuclear Regulatory Commission (NRC) for public availability of information pertaining to commercial nuclear fuel performance. During 1991, the nuclear industry`s focus regarding fuel continued to be on extending burnup while maintaining fuel rod reliability. Utilities realize that high-burnup fuel reduces the amount of generated spent fuel, reduces fuel costs, reduces operational and maintenance costs, and improves plant capacity factors by extending operating cycles. Brief summaries of fuel operating experience, fuel design changes, fuel surveillance programs, high-burnup experience, problem areas, and items of general significance are provided.

Painter, C.L.; Alvis, J.M.; Beyer, C.E. [Pacific Northwest Lab., Richland, WA (United States); Marion, A.L. [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering; Payne, G.A. [Northwest Coll. and Univ. Association for Science, Richland, WA (United States); Kendrick, E.D. [Nuclear Regulatory Commission, Washington, DC (United States)

1994-08-01T23:59:59.000Z

132

Clean Cities Alternative Fuel Price Report October 2007  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

r r Clean C Citie Fue es A l Pri ltern ice R nati Repo ve ort Oc ctober 2007 7 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT OCTOBER 2007 WELCOME! Welcome to the October 2007 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between October 2, 2007 and October 20, 2007 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in

133

Clean Cities Alternative Fuel Price Report June 2006  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

June 2006 June 2006 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT JUNE 2006 Page 2 WELCOME! Welcome to the June 2006 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected in the months of May and June 2006 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, DOE Regional Offices, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis.

134

Clean Cities Alternative Fuel Price Report July 2010  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

July 2010 July 2010 Clean Cities Alternative Fuel Price Report July 2010 Page 2 WELCOME! Welcome to the July 2010 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 12, 2010 and July 23, 2010 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

135

Usage of Electronic Monograph  

Science Conference Proceedings (OSTI)

Usage of Electronic Monograph. The following table shows the approximate usage of the monograph since April 1998. ...

2013-08-02T23:59:59.000Z

136

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2009 Annual Progress Report V. Fuel Cells This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Program Element Introduction, Dimitrios Papageorgopoulos, U.S. Department of Energy (PDF 262 KB) A. Analysis/Characterization Fuel Cell Systems Analysis (PDF 560 KB), Rajesh Ahluwalia, Argonne National Laboratory Mass Production Cost Estimation for Direct H2 PEM Fuel Cell System for Automotive Applications (PDF 1.4 MB), Brian James, Directed Technologies, Inc. Cost Analyses of Fuel Cell Stack/Systems (PDF 724 KB), Jayanti Sinha , TIAX LLC Fuel Cell Testing at Argonne National Laboratory (PDF 458 KB), Ira

137

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2008 Annual Progress Report V. Fuel Cells This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Sub-Program Overview, Nancy Garland, U.S. Department of Energy (PDF 204 KB) A. Analysis/Characterization Fuel Cell Systems Analysis, Rajesh Ahluwalia, Argonne National Laboratory (PDF 375 KB) Mass Production Cost Estimation for Direct H2 PEM Fuel Cell System for Automotive Applications, Brian James, Directed Technologies, Inc. (PDF 1.0 MB) Cost Analyses of Fuel Cell Stack/Systems, Jayanti Sinha, TIAX LLC (PDF 437 KB) Microstructural Characterization Of PEM Fuel Cell MEAs, Karren More, Oak Ridge National Laboratory (PDF 414 KB)

138

Alternative Fuels Data Center: Request to Report Research on Second  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Request to Report Request to Report Research on Second Generation Biofuels to someone by E-mail Share Alternative Fuels Data Center: Request to Report Research on Second Generation Biofuels on Facebook Tweet about Alternative Fuels Data Center: Request to Report Research on Second Generation Biofuels on Twitter Bookmark Alternative Fuels Data Center: Request to Report Research on Second Generation Biofuels on Google Bookmark Alternative Fuels Data Center: Request to Report Research on Second Generation Biofuels on Delicious Rank Alternative Fuels Data Center: Request to Report Research on Second Generation Biofuels on Digg Find More places to share Alternative Fuels Data Center: Request to Report Research on Second Generation Biofuels on AddThis.com... More in this section...

139

2010 Fuel Cell Technologies Market Report, June 2011  

DOE Green Energy (OSTI)

This report summarizes 2010 data on fuel cells, including market penetration and industry trends. It also covers cost, price, and performance trends, along with policy and market drivers and the future outlook for fuel cells.

Not Available

2011-06-01T23:59:59.000Z

140

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2000 ANNUAL PROGRESS REPORT FUELS F O R ADVANCED CIDI ENGINES A N D FUEL CELLS A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., National Renewable Energy Laboratory, and QSS Group, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Fuels for Advanced CIDI

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Dynamic Systems Analysis Report for Nuclear Fuel Recycle  

SciTech Connect

This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

2008-12-01T23:59:59.000Z

142

Report on interim storage of spent nuclear fuel  

SciTech Connect

The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

1993-04-01T23:59:59.000Z

143

Joint Fuel Cell Bus Workshop Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

equipment is heavy and costly * Slow response time of the fuel cell adversely affects regenerative energy recovery potential and efficiency Barriers to full fuel cell bus...

144

Ethanol production for automotive fuel usage. Final technical report, July 1979-August 1980  

DOE Green Energy (OSTI)

Production of ethanol from potatoes, sugar beets, and wheat using geothermal resources in the Raft River area of Idaho was evaluated. The south-central region of Idaho produces approximately 18 million bushels of wheat, 1.3 million tons of sugar beets, and 27 million cwt potatoes annually. A 20-million-gallon-per-year ethanol facility has been selected as the largest scale plant that can be supported with the current agricultural resources. The conceptual plant was designed to operate on each of these three feedstocks for a portion of the year, but could operate year-round on any of them. The processing facility uses conventional alcohol technology and uses geothermal energy for all process heating. There are three feedstock preparation sections, although the liquefaction and saccharification steps for potatoes and wheat involve common equipment. The fermentation, distillation, and by-product handling sections are common to all three feedstocks. Maximum geothermal fluid requirements are approximately 6000 gpm. It is anticipated that this flow will be supplied by nine production wells located on private and BLM lands in the Raft River KGRA. The geothermal fluid will be flashed from 280/sup 0/F in three stages to supply process steam at 250/sup 0/F, 225/sup 0/F, and 205/sup 0/F for various process needs. Steam condensate plus liquid remaining after the third flash will be returned to receiving strata through six injection wells.

Stenzel, R.A.; Yu, J.; Lindemuth, T.E.; Soo-Hoo, R.; May, S.C.; Yim, Y.J.; Houle, E.H.

1980-08-01T23:59:59.000Z

145

Clean Cities Alternative Fuel Price Report Â… February 2006  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

February 2006 February 2006 CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT FEBRUARY 2006 Page 2 WELCOME! Welcome to the February 2006 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected in the months of January and February 2006 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, DOE Regional Offices, and other key stakeholders were contacted to request that they provide prices

146

Clean Cities Alternative Fuel Price Report - October 2012  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

2 2 Clean Cities Alternative Fuel Price Report October 2012 Page 2 WELCOME! Welcome to the October 2012 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative fuels and conventional fuels in the United States. This issue summarizes prices that were collected between September 28, 2012 and October 12, 2012 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they

147

Fuels Preparation Department monthly report, November 1962  

SciTech Connect

This document details activities of the Fuels Preparation Department during the month of November 1962.

1962-12-07T23:59:59.000Z

148

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Understanding total residential transportation energy usageon Vehicle Usage and Energy Consumption total annual fuelUsage and Energy Consumption Gasoline-equivalent gallons per year total

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

149

DOE Hydrogen and Fuel Cells Program: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

and Fuel Cells Program and the offices of Energy Efficiency and Renewable Energy (EERE), Fossil Energy, Nuclear Energy, and Science. The 2012 Annual Progress Report was published...

150

California Energy Commission - Petroleum Weekly Fuels Watch Report...  

Open Energy Info (EERE)

California Energy Commission - Petroleum Weekly Fuels Watch Report (2010) Contains data from the California Energy Commission on weekly refinery production and stock...

151

California Energy Commission - Petroleum Weekly Fuels Watch Report...  

Open Energy Info (EERE)

California Energy Commission - Petroleum Weekly Fuels Watch Report (2000) Contains data from the California Energy Commission on weekly refinery production and stock...

152

California Energy Commission - Petroleum Weekly Fuels Watch Report...  

Open Energy Info (EERE)

California Energy Commission - Petroleum Weekly Fuels Watch Report (1999) Contains data from the California Energy Commission on weekly refinery production and stock...

153

2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program  

Fuel Cell Technologies Publication and Product Library (EERE)

The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

154

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT ...  

U.S. Energy Information Administration (EIA)

An energy-consuming sector that consists of living quarters and ... buildings. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 3 Commercial Use ...

155

Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Page 1 Hydrogen and Fuel Cell Activities, Progress, and Plans: Report to Congress o Developing technologies for the production of hydrogen from coal that will enable...

156

Clean Cities Alternative Fuel Price Report - April 2013  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 3 Clean Cities Alternative Fuel Price Report April 2013 Page 2 WELCOME! Welcome to the April 2013 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between March 29, 2013 and April 12, 2013 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative and conventional fuels from areas across the country, Clean Cities coordinators, fuel providers, and other key stakeholders were requested to provide prices for fuels in their area

157

Clean Cities Alternative Fuel Price Report, July, 2013  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 3 Clean Cities Alternative Fuel Price Report July 2013 Page 2 WELCOME! Welcome to the July 2013 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between July 12, 2013 and July 26, 2013 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative and conventional fuels from areas across the country, Clean Cities coordinators, fuel providers, and other key stakeholders were requested to provide prices for fuels in their areas

158

Clean Cities Alternative Fuel Price Report - January 2013  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 3 Clean Cities Alternative Fuel Price Report January 2013 Page 2 WELCOME! Welcome to the January 2013 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between January 10, 2013 and January 25, 2013 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative and conventional fuels from areas across the country, Clean Cities coordinators, fuel providers, and other key stakeholders were requested to provide prices for fuels in their area

159

Clean Cities Alternative Fuel Price Report Â… October 2013  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3 3 Clean Cities Alternative Fuel Price Report October 2013 Page 2 WELCOME! Welcome to the October 2013 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep Clean Cities coalitions and other interested parties up to date on the prices of alternative and conventional fuels in the United States. This issue summarizes prices that were collected between October 4, 2013 and October 18, 2013 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative and conventional fuels from areas across the country, Clean Cities coordinators, fuel providers, and other key stakeholders were requested to provide prices for fuels in their areas

160

2007 Fuel Cell Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

membrane R&D research and development RD&D research, development, and demonstration SOFC solid oxide fuel cell UPS uninterruptible power supply USFCC U.S. Fuel Cell Council 2...

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

2008 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

162

Alcohol Fuels Program. Final technical report  

DOE Green Energy (OSTI)

The activities and accomplishments of the alcohol fuels program are reviewed briefly. Educational and promotional activities are described. (MHR)

Weiss, G.M.

1982-01-01T23:59:59.000Z

163

Fuel fabrication acceptance report FSV: initial core  

SciTech Connect

The fabrication of the Fort St. Vrain initial core is described. Detailed summaries of the final fuel element metal loadings and other properties are given. Problems that occurred during fabrication and their resolutions have been given special attention, including the results of analyses made prior to their adoption. A final substantiation for the Fort St. Vrain initial core was provided by a full-core, three-dimensional analysis considering control rod insertion and fuel depletion and with explicit representation of the as-built fuel elements. The calculated power distributions from the three dimensional analysis are well within the limits specified for the reference design. During fabrication of the initial core fuel elements, some difficulties with assayed quantities of uranium and thorium were encountered. These difficulties resulted from changes in the fuel rod standards used in assay equipment calibration and in the techniques employed for assaying fuel particles and fuel rods. As a result the apparent values for the average metal loadings for some fuel rods and fuel elements changed. For certain blends some already-assembled fuel elements were outside the tolerances given in the fuel specification. A study was undertaken to make recommendations on the disposition of already-fabricated fuel and adjustments for the remainder of fuel fabrication. This study focused on utilizing, as much as possible, already-fabricated fuel without compromising the performance of the core. A variety of adjustments were considered and used in some instances, but the most successful method was the imposition of a layer location on fuel elements. By use of this additional core assembly requirement, a distribution of high metal load and low metal load fuel elements was obtained that assured that power perturbations would be small and localized and that temperature perturbations would be small and confined to axial layers where temperatures are nominally low. (auth)

Kapernick, R.J.; Nirschl, R.J.

1973-12-01T23:59:59.000Z

164

Onsite fuel cell program-- a status report  

SciTech Connect

The Onsite Fuel Cell Program is designed to produce data for the pioneering of fuel cell use. A fuel cell is an electrochemical device designed to transform the chemical energy of a hydrorich fuel, such as natural gas, into electricity. Under an Energy Service concept, onsite delivery and sale to consumers is promoted. Field test efforts are surveyed--a commercial laundry in Portland, Oregon, for example. Participating utilities in 40 kW cell field tests are mapped out. A project which will define a fuel cell power plant to meet cost requirements is underway.

Flore, V.B.; Cuttica, J.J.

1983-06-01T23:59:59.000Z

165

DOE Hydrogen and Fuel Cells Program: New Report Analyzes Options...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Report Analyzes Options for Blending Hydrogen into Natural Gas Pipelines Mar 14, 2013 The U.S. Department of Energy's Fuel Cell Technologies Office has issued a new report...

166

Experiences from Ethanol Buses and Fuel Station Report - Nanyang | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - Nanyang Experiences from Ethanol Buses and Fuel Station Report - Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report addresses the experience of introducing ethanol buses and fuel stations in Nanyang (China). Though the demonstration met initial obstacles, significant data and information was collected. The responses from drivers and passengers show that the ethanol buses were well accepted, and the function and performance of the ethanol buses was satisfactory. How to Use This Tool

167

2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

DOE Green Energy (OSTI)

The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

Chalk, S.

2000-12-11T23:59:59.000Z

168

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

DOE Green Energy (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

169

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2006 Annual Progress Report V. Fuel Cells This section of the 2006 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Sub-Program Overview, Valri Lightner, Fuel Cell Team Lead, DOE Hydrogen Program (PDF 169 KB) A. Membrane Electrode Assemblies (MEAs) Integrated Manufacturing for Advanced Membrane Electrode Assemblies, Emory DeCastro, PEMEAS U.S.A., E-TEK Division (PDF 251 KB) Advanced MEAs for Enhanced Operating Conditions, Mark Debe, 3M (PDF 892 KB) Electrocatalyst Supports and Electrode Structures, Mahlon Wilson, Los Alamos National Laboratory (PDF 1.46 MB) Back to Top B. Membranes and MEAs Poly(p-Phenylene Sulfonic Acid)s with Frozen-in Free Volume for Use

170

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2005 Annual Progress Report VII. Fuel Cells This section of the 2005 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Sub-program Overview, Valri Lightner, Department of Energy (PDF 198 KB) A. Membrane Electrode Assemblies (MEA) Integrated Manufacturing for Advanced Membrane Electrode Assemblies, Emory S. De Castro, De Nora N.A., E-TEK Division (PDF 292 KB) Advanced MEAs for Enhanced Operating Conditions, Mark K. Debe, 3M Company (PDF 459 KB) Development of High-temperature Membranes and Improved Cathode Catalysts, Lesia Protsailo, UTC Fuel Cells (PDF 642 KB) Electrocatalyst Supports and Electrode Structures, Eric Brosha, Los

171

Fuels from sugar crops. Second quarterly report  

DOE Green Energy (OSTI)

Substantial progress was made on both the agricultural and the processing aspects of the fuels from biomass research program. Despite droughts and hurricanes, yields on narrow row spacings show substantial gains over conventional spacings at all locations for both sugarcane and sweet sorghum. The biomass gains are most pronounced (40% to 100% increase) for Louisiana sugarcane and for sweet sorghum in Louisiana and Texas (50 to 100% gains). Although biomass increases are smaller in Florida, early ripening and possible soil conservation effects cause interest in close spacing in Florida to be maintained. The concept of integrating sweet sorghum production with sugarcane production could expand the area available for extensive sugar crop production by a factor of 10 or more. Sugar beets and sweet sorghum mesh together well from an agronomic viewpoint and the introduction of the Canadian Separator Equipment Process may make feasible integration of the processing of these crops. Evaluation of U.S. and Brazilian ethanol technology indicates that ethanol can be made quite economically in locations with long sugarcane processing seasons (e.g., Hawaii and Puerto Rico). The Melle Process practiced in Brazil appears to make possible extremely short fermentation times (10 to 16 hours, compared with 24 to 30 hours for U.S. practices). The primary key to reducing processing costs lies in increasing the concentration of ethanol in the fermented mash, not reduction in fermentation time. Suggestions for appropriate improvements have been made and the Reports of Invention filed with DOE's patent office. Five appendices are included.

Lipinsky, E.S.; Kresovich, S.; McClure, T.A.; Helper, E.W.; Lawhon, W.T.

1977-10-31T23:59:59.000Z

172

Microsoft Word - spent nuclear fuel report.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management of Spent Nuclear Fuel Management of Spent Nuclear Fuel at the Savannah River Site DOE/IG-0727 May 2006 REPORT ON MANAGEMENT OF SPENT NUCLEAR FUEL AT THE SAVANNAH RIVER SITE TABLE OF CONTENTS Spent Nuclear Fuel Management Details of Finding 1 Recommendations 2 Comments 3 Appendices 1. Objective, Scope, and Methodology 4 2. Prior Audit Reports 5 3. Management Comments 6 SPENT NUCLEAR FUEL MANGEMENT Page 1 Details of Finding H-Canyon The Department of Energy's (Department) spent nuclear fuel Operations program at the Savannah River Site (Site) will likely require Extended H-Canyon to be maintained at least two years beyond defined operational needs. The Department committed to maintain H-Canyon operational readiness to provide a disposal path for

173

Microsoft Word - Fuel Cycle Subcomm report final v2.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Fuel Cycle of the Fuel Cycle Subcommittee of NEAC June 15, 2011 Washington, D.C. Members: Burton Richter (Chairman) Darleane Hoffman Raymond Juzaitis Sekazi Mtingwa Ron Omberg Joy Rempe Dominique Warin Fuel Cycle Subcommittee Report 6/15/2011 2 I. Introduction and Summary The Fuel Cycle subcommittee of NEAC met April 25-26 in Albuquerque, New Mexico. The main topics of discussion were the Used Nuclear Fuel (UNF) disposal program, the System Study Program's methodology that is to be used to set priorities for R&D on advanced fuel cycles, and the University Programs. In addition to these, we were briefed on the budget, but have no comments other than a hope for a good outcome and restrict ourselves to general advice until more is known. A current complication in the design of the Fuel Cycle R&D FCRD program is the Blue

174

Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2  

Science Conference Proceedings (OSTI)

The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

2002-09-01T23:59:59.000Z

175

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2004 Annual Progress Report IV. Fuel Cells Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Fuel Cells Sub-Program Review, Patrick Davis, DOE (PDF 265 KB) A. MEAs and Catalysts Integrated Manufacturing for Advanced Membrane Electrode Assemblies, Emory DeCastro, De Nora (PDF 486 KB) Development of High-Temperature Membranes and Improved Cathode Catalysts Jeremy Meyers, UTC (PDF 595 KB) Advanced MEAs for Enhanced Operating Conditions, Amenable to High Volume Manufacture, Mark Debe, 3M (PDF 372 KB) Back to Top B. Membranes and MEAs High Temperature Polymer Membranes for Fuel Cells, Tom Zawodzinski, Case West Res. University (PDF 356 KB) Electrodes for Hydrogen-Air PEM Fuel Cells, Francisco Uribe, LANL

176

Nuclear power generation and fuel cycle report 1996  

SciTech Connect

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

177

Spent fuel handling and packaging program. Management summary report  

SciTech Connect

Objective is to design, develop, and demonstrate a spent fuel package for geologic storage and disposal; to design, license, and construct the facilities to produce this package; and to develop and demonstrate technology for the dry, passive surface storage of spent fuel. Progress is reported on engineering and system studies, technical R and D studies, demonstrations, project support studies, spent fuel facility project, and program management.

1978-09-01T23:59:59.000Z

178

Form EIA-457E (2001) -- Household Bottled Gas Usage  

Annual Energy Outlook 2012 (EIA)

Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring February 29, 2004 2001 Residential Energy Consumption Survey Answers to Frequently Asked Questions About the...

179

FY 2012 Progress Report for Fuel & Lubricant Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

911 911 Fuels & Lubricant Technologies VEHICLE TECHNOLOGIES OFFICE 2012 annual progress report U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2012 PROGRESS REPORT FOR FUEL & LUBRICANT TECHNOLOGIES Energy Efficiency and Renewable Energy Vehicle Technologies Office Approved by Kevin Stork Team Leader, Fuel & Lubricant Technologies Vehicle Technologies Office June 2013 DOE/EE-0911 Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report.

180

Nuclear Power Generation and Fuel Cycle Report 1997  

Gasoline and Diesel Fuel Update (EIA)

7) 7) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1997 September 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1997 ii The Nuclear Power Generation and Fuel Cycle Report is prepared by the U.S. Department of Energy's Energy Information Administration. Questions and comments concerning the contents of the report may be directed to:

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Power Generation and Fuel Cycle Report 1996  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 Nuclear Power Generation and Fuel Cycle Report 1996 October 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Energy Information Administration/ Nuclear Power Generation and Fuel Cycle Report 1996 ii Contacts This report was prepared in the Office of Coal, Nuclear, report should be addressed to the following staff Electric and Alternate Fuels by the Analysis and Systems

182

National emissions data system (NEDS) fuel use report (1977). Final report  

SciTech Connect

This report summarizes annual estimates of total consumption of major fuels such as coal, fuel oil, natural gas, gasoline, and diesel fuel. Estimates of the consumption of a number of other comparatively minor fuels are also included. The data are distributed according to major categories of air pollutant emissions sources and are reported for the nation as a whole and for individual states, territories, and the District of Columbia.

1980-03-01T23:59:59.000Z

183

Woodfuel Use Update 1 I Wood fuel use in Scotland 2009 I Hudson Consulting I August 2009  

E-Print Network (OSTI)

energy generation, was paramount in the initial survey and remains so. Total woodfuel usage in financial Demand and Usage in Scotland Update Report to March 2009 #12;Woodfuel Use Update 2 I Wood fuel use in Scotland 2009 I Hudson Consulting I August 2009 Woodfuel Demand and Usage in Scotland 2009 www

184

FY2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS FOR ADVANCED CIDI FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and QSS Group, Inc., for their artistic, editorial and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells

185

Amtrak fuel consumption study. Final report May-Sep 80  

SciTech Connect

This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC) under the sponsorship of the Federal Railroad Administration and in cooperation with Amtrak. A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations. Results of the tests showed that the average fuel consumption for the 157.7 mile trip was 368 gallons and that the average fuel use efficiency was 277 ton-miles per gallon. Fuel consumption and fuel use efficiency were found to increase consistently with increasing train tonnage. One locomotive was also found to consume about 12 percent more fuel than the other locomotive tested. The fuel consumption and trip time results for individual runs varied between +8.0 to -9.5 and +5.4 and -10.7 percent, respectively, of the Train Performance Simulator results. However, when averaged over the ten test runs analyzed, the fuel consumption and trip time results were within 1.04 and 0.03 percent, respectively, of the simulator. Throttle notch settings and train speed profiles also agreed well with simulated results.

Hitz, J.S.

1981-02-01T23:59:59.000Z

186

Shippingport Spent Fuel Canister (SSFC) Design Report Project W-518  

SciTech Connect

The SSFC Design Report Describes A spent fuel canister for Shippingport Core 2 blanket fuel assemblies. The design of the SSFC is a minor modification of the MCO. The modification is limited to the Shield Plug which remains unchanged with regard to interfaces with the canister shell. The performance characteristics remain those for the MCO, which bounds the payload of the SSFC.

JOHNSON, D.M.

2000-01-27T23:59:59.000Z

187

SAE Fuel Cell Codes and Standards Final Scientific/Technical Report 1.0  

DOE Green Energy (OSTI)

This is the SAE Fuel Cell Standards Final Scientific/Technical Report which details the SAE Fuel Cell standards developed and related activies during the reporting period.

Caroline Michaels

2007-11-30T23:59:59.000Z

188

The Alternative Fuel Price Report December 27, 2002  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

27, 2002 27, 2002 his is the eighth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders during the weeks of October 21, October 28, and November 4, 2002, with comparisons to the prices in the previous Price Report, which were collected in July, 2002. (In cases where respondents reported both October and November prices for a fuel, the November prices were used.) The prices contained within this report are meant to represent retail, at-the-pump sales prices for each fuel. In some cases, prices are collected from utilities or government facilities, where taxes are not included. In

189

Alcohol fuel production training program. Final report  

Science Conference Proceedings (OSTI)

The purpose of the project was to offer instruction in the small scale production of ethanol, which can be added to gasoline by about 10%. The course was designed to help farmers in particular to make ethanol to extend fuel use. This project has four objectives. They are: (1) design an alcohol fuel production course with appropriate equipment for hands-on training; (2) offer at least three training sessions on alcohol fuel production in Cumberland County each year of the project; (3) work with the Governor's Task Force on Gasohol to disseminate the necessary information on alcohol production to the public; (4) identify, in consultation with the New Jersey Department of Energy and Agriculture, other training sites in the state and offer at least three training sessions outside of Cumberland County during the second year of the project. As of March 31, 1982, Cumberland County College completed all activities and objectives outlined in its Appropriate Technology project ''Alcohol Fuel Production.'' Given the six month extension requested to accommodate farmers in other parts of the state and the growing season, this project was completed within the stated time schedule. Although the response for the course was high in the beginning of 1981, the increased supply of low cost fuels at the end of the year probably accounts for the decline in the public's willingness to take a course of this nature.

Burke, J.

1982-06-30T23:59:59.000Z

190

Spent nuclear fuel Canister Storage Building CDR Review Committee report  

SciTech Connect

The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

Dana, W.P.

1995-12-01T23:59:59.000Z

191

Annual report, FY 1979 Spent fuel and fuel pool component integrity.  

Science Conference Proceedings (OSTI)

International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

1980-05-01T23:59:59.000Z

192

Microsoft Word - SecureFuelsReport2011_DRAFT2.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secure Fuels from Domestic Secure Fuels from Domestic Resources ______________________________________________________________________________ Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development Prepared by INTEK, Inc. For the U.S. Department of Energy * Office of Petroleum Reserves Naval Petroleum and Oil Shale Reserves Fifth Edition: September 2011 5 th Edition Secure Fuels From Domestic Resources ii September 2011 Fifth Edition Note to Readers Regarding the Revised Edition (September 2011) This report was originally prepared for the U.S. Department of Energy in June 2007. The report and its contents

193

Fifth annual report to congress. Federal alternative motor fuels programs  

DOE Green Energy (OSTI)

This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

NONE

1996-09-01T23:59:59.000Z

194

Clean Cities and Alternative Fuels Data Center Quarterly Report: 1st Quarter FY 2006 (Milestone Report)  

DOE Green Energy (OSTI)

This quarterly report summarizes activities in Clean Cities and the Alternative Fuels Data Center. Find metrics on NREL activities and lists of new information in the AFDC.

Brodt-Giles, D.

2006-03-01T23:59:59.000Z

195

Liquid Fuels from Lignins: Annual Report  

DOE Green Energy (OSTI)

This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

Chum, H. L.; Johnson, D. K.

1986-01-01T23:59:59.000Z

196

Fuel Cell Forklift Project Final Report  

SciTech Connect

This project addresses the DOE’s priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freight’s Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freight’s previous field trial experience with a handful of Plug Power’s GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

Cummings, Clifton C

2013-10-23T23:59:59.000Z

197

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

DOE Green Energy (OSTI)

This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-07-01T23:59:59.000Z

198

AEC FUELS AND MATERIALS DEVELOPMENT PROGRAM. Seventh Annual Report.  

SciTech Connect

This report is the seventh annual report of the unclassified portion of the Fuels and Materials Development Programs being conducted by the General Electric Company's Nuclear Materials and Propulsion Operation under Contract AT(40-1)-2847, issued by the Fuels and Materials Branch, Division of Reactor Development and Technology, of the Atomic Energy Commission. This report covers the period from January 31, 1967 to January 31, 1968, and thus also serves as the quarterly progress report for the final quarter of the year.

1968-01-01T23:59:59.000Z

199

The Alternative Fuel Price Report December 30, 2003  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

December 30, 2003 December 30, 2003 his is the tenth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders during the weeks of December 1 and December 8, 2003, with comparisons to the prices in the previous Price Report, which were collected in February, 2003. The prices contained within this report are meant to represent retail, at-the-pump sales prices for each fuel. In some cases, prices are collected from utilities or government facilities, where taxes are not included. In these instances, though government users may not be required to pay a tax on the fuel, standard federal and

200

The Alternative Fuel Price Report March 3, 2003  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

3, 2003 3, 2003 his is the ninth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders during the weeks of February 3, February 10, and February 17, 2003, with comparisons to the prices in the previous Price Report, which were collected in October, 2002. The prices contained within this report are meant to represent retail, at-the-pump sales prices for each fuel. In some cases, prices are collected from utilities or government facilities, where taxes are not included. In these instances, though government users may not be required to pay a tax on the fuel, standard federal and

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Alternative Fuel Price Report - May 10, 2002  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Central Atlantic Lower Atlantic Gulf Coast West Coast Rocky Mountain Midwest Map of U.S. Regions THE ALTERNATIVE FUEL PRICE REPORT Alternative Fuel Prices Across the Nation May 10, 2002 his is the sixth issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the price of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders during the weeks of April 15 and April 22, 2002, with comparisons to the prices in the previous Price Report, which were collected in February, 2002. Gasoline and Diesel Prices egular grade gasoline averaged $1.404 per gallon nationwide during the week of April

202

The Alternative Fuel Price Report: August 8, 2002  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

August 8, 2002 August 8, 2002 his is the seventh issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders during the weeks of July 15, July 22, and July 29, 2002, with comparisons to the prices in the previous Price Report, which were collected in April, 2002. The prices contained within this report are meant to represent retail, at-the-pump sales prices for each fuel. In some cases, prices are collected from utilities or government facilities, where taxes are not included. In these instances, though government users may not be required to pay a tax on the fuel, standard federal and

203

The Alternative Fuel Price Report March 23, 2004  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

23, 2004 23, 2004 his is the eleventh issue of the Clean Cities Alternative Fuel Price Report, a quarterly newsletter keeping you up to date on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue discusses prices that were gathered from Clean Cities coordinators and stakeholders between March 3 and March 17, 2004, with comparisons to the prices in the previous Price Report, which were collected in December, 2003. The prices contained within this report are meant to represent retail, at-the-pump sales prices for each fuel. In some cases, prices are collected from utilities or government facilities, where taxes are not included. In these instances, though government users may not be required to pay a tax on the fuel, standard federal and

204

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act American Recovery and Reinvestment Act Printable Version 2010 Annual Progress Report XI. American Recovery and Reinvestment Act (ARRA) This section of the 2010 Progress Report for the DOE Hydrogen Program focuses on the fuel cell technologies America Recovery and Reinvestment Act (ARRA). Each technical report is available as an individual Adobe Acrobat PDF. American Recovery and Reinvestment Act Activitites, Sara Dillich, DOE Commercialization Effort for 1 W Consumer Electronics Power Pack, Charles Carlstrom, MTI Micro Fuel Cells, Inc. Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration, Steven Shaffer, Delphi Automotive Systems, LLC Highly Efficient, 5 kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications, John

205

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Electric National Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Technical Report NREL/TP-5600-54860 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 National Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Prepared under Task No. HT12.8110 Technical Report NREL/TP-5600-54860 July 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

206

Brookhaven Logo Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

Logo Usage The Correct Usage of the BNL Logo - The following examples picture correct and incorrect use of the Laboratory logo. If you need assistance in using the logo, contact...

207

Context: Usage and Effectiveness  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Context: Usage and Effectiveness. US Navy Aircraft Halon 1301 Effectivity Analysis.. Tedeschi, M.; Leach, W.; 1995. ...

2011-12-14T23:59:59.000Z

208

Fuel-cell case study. Final report  

DOE Green Energy (OSTI)

The intent of this study was to determine how DOE could build on the lessons learned from a case study of a particular technology program to develop new ways to manage its programs to commercialization. The Department of Energy's (DOE) 40 kw fuel cell commercialization program is assessed, and a number of conclusions to guide its direction are developed. The specific approach used is then extended to a general management concept or model.

Not Available

1978-08-14T23:59:59.000Z

209

Bioethanol Fuel Production Concept Study: Topline Report  

Science Conference Proceedings (OSTI)

The DOE is in the process of developing technologies for converting plant matter other than feed stock, e.g., corn stover, into biofuels. The goal of this research project was to determine what the farming community thinks of ethanol as a fuel source, and specifically what they think of bioethanol produced from corn stover. This project also assessed the image of the DOE and the biofuels program and determined the perceived barriers to ethanol-from-stover production.

Marketing Horizons, Inc.

2001-11-19T23:59:59.000Z

210

Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application  

DOE Green Energy (OSTI)

This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

NONE

1995-09-05T23:59:59.000Z

211

Annual Report: Fuels (30 September 2012)  

SciTech Connect

The thermochemical conversion of fossil fuels through gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feeds (coal, biomass, natural gas, municipal waste, etc.) and to produce a variety of products (heat, specialty chemicals, power, etc.), as well as the inherent nature of the process to facilitate near zero emissions. Currently, the National Energy Technology Laboratory (NETL) Fuels Program has two pathways for syngas utilization: ? The production of transportation fuels, chemicals, or chemical intermediates. ? The hydrogen production as an intermediate for power production via advanced combustion turbines or fuel cells. Work under this activity focuses on the production, separation, and utilization of hydrogen from syngas using novel separation materials and processes. Advanced integrated gasification combined cycle (IGCC) schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research focuses on the development and assessment of membranes tailored for application in the severe environments associated with syngas conversion. The specific goals of this research include: ? Provide data needed to fully understand the impact of syngas environments and hydrogen removal on relevant hydrogen separation materials. ? Utilize the understanding of material stability to engineer a membrane tailored for operations in the severe environments associated with syngas conversion. ? Provide unbiased evaluation of hydrogen separation membranes being developed within the Fuels Program. Precious metals and alloys of historic interest (Pd, Cu, Ag, Au, Pt), as well as novel materials (carbides and phosphides) are candidates for evaluation of function as hydrogen separation membranes. The first step in the transport of hydrogen through dense metals is the adsorption and dissociation of hydrogen on the membrane surface. Observation shows that coal-based syngas contaminants can dramatically influence this process. Therefore, systems studies will determine the optimum location of a given membrane technology in the process, as well as the likely conditions that separation technologies will be exposed to at this location. Experiments are conducted to assess the effect of these conditions on the catalytic activity of the membrane surface in order to identify compositions which have promising combinations of acceptable flux and extended functionality in realistic environments. Efforts under this task were centered around the interpretation of test results and conclusions from previous work in preparation for various submissions to the scientific literature throughout fiscal year 2012 (FY12). The primary goal for efforts under these funds is to conduct limited amounts of experimental testing and/or computational work to complete the studies, followed by compilation and submission of technical manuscripts to peer-reviewed scientific journals. During the past year, work has continued on developing separation materials that are resistant to environments containing H{sub 2}S. Previous work on PdCu has indicated that over a range of PdCu compositions, PdCu is resistant to bulk corrosion by H{sub 2}S. In addition, at certain conditions, PdCu is also resistant to surface poisoning by H{sub 2}S. However, the temperature range at which PdCu is resistant to surface poisoning (> 600?C) is above those temperatures typically encountered in an IGCC flowsheet. Application of knowledge of the binary material will allow development of more complex alloys, as it is unlikely that a simple binary alloy will perform acceptably in all required dimensions, so efforts will focus on engineering ternary alloys that are more promising. Because ternary composition space is so large, high-throughput tools allow us to understand dissociation activity and response to H{sub 2}S across a complex composition space using composition spread alloy film (CSAF) tools. The high-throughput tools have been fully developed and have already provi

Link, Dirk [NETL] [NETL; Morreale, Bryan [NETL] [NETL

2012-09-30T23:59:59.000Z

212

Hydrogen, Fuel Cells and Infrastructure Technologies Program, 2002 Annual Progress Report  

DOE Green Energy (OSTI)

The Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies program's 2002 annual progress report.

Not Available

2002-11-01T23:59:59.000Z

213

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Annual Progress Report 11 Annual Progress Report DOE Hydrogen and Fuel Cells Program I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 II.0 Hydrogen Production Sub-Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II.A Distributed BDL Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 II.A.1 Pacific Northwest National Laboratory: Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

214

2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies Annual Review Meeting Transaction Fuel Cycle Technologies Annual Review Meeting Transaction Report 2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. In order to continue or expand the role for nuclear power in our long- term energy platform, the United States must: Continually improve the safety and security of nuclear energy and its associated technologies worldwide. Develop solutions for the transportation, storage, and long-term disposal of used nuclear fuel and associated wastes.

215

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program Alabama II.K.14 University of Alabama, Tuscaloosa: Protein-Templated Synthesis and Assembly of Nanostructuctures for Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 V.F.1 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .814 V.F.1 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .814 Arizona II.C.1 Arizona State University: Zeolite Membrane Reactor for Water-Gas Shift Reaction for Hydrogen

216

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

85 85 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program 3M Company V.B.1 Effect of System Contaminants on PEMFC Performance and Durability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 V.C.1 Membranes and MEAs for Dry, Hot Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662 V.C.6 Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 V.D.1 Advanced Cathode Catalysts and Supports for PEM Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699 V.D.3 Durable Catalysts for Fuel Cell Protection During Transient Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .714

217

Advanced direct methanol fuel cells. Final report  

DOE Green Energy (OSTI)

The goal of the program was an advanced proton-exchange membrane (PEM) for use as the electrolyte in a liquid feed direct methanol fuel cell which provides reduced methanol crossover while simultaneously providing high conductivity and low membrane water content. The approach was to use a membrane containing precross-linked fluorinated base polymer films and subsequently to graft the base film with selected materials. Over 80 different membranes were prepared. The rate of methanol crossover through the advanced membranes was reduced 90%. A 5-cell stack provided stable performance over a 100-hour life test. Preliminary cost estimates predicted a manufacturing cost at $4 to $9 per kW.

Hamdan, Monjid; Kosek, John A.

1999-11-01T23:59:59.000Z

218

Nuclear Power Generation and Fuel Cycle Report  

Reports and Publications (EIA)

Final issue. This report provides information and forecasts important to the domestic and world nuclear and uranium industries. 1997 represents the most recent publication year.

Dr. Zdenek D.

1997-09-01T23:59:59.000Z

219

Estimating Externalities of Natural Gas Fuel Cycles, Report 4  

SciTech Connect

This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general methodology.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1998-01-01T23:59:59.000Z

220

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Printable Version 2005 Annual Progress Report IV. Production This section of the 2005 Progress Report for the DOE Hydrogen Program focuses on production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Overview, Peter Devlin, Department of Energy (PDF 158 KB) A. Distributed Reforming Autothermal Cyclic Reforming Based Hydrogen Generating and Dispensing System, Ravi Kumar, GE Global Research (PDF 215 KB) Development of a Turnkey Hydrogen Fueling Station, David E. Guro, Air Products and Chemicals, Inc. (PDF 209 KB) A Reversible Planar Solid Oxide Fuel-fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biogas, Greg Tao, Materials and Systems Research Inc. (PDF 336

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2012 Fuel Cell Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

North Carolina, and Louisiana, completing a sale that was first reported in 2011. In 2012, Plug sold an additional 140 units to P&G for a facility in Mehoopany, Pennsylvania....

222

Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report  

DOE Green Energy (OSTI)

Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

James E. Francfort

2003-12-01T23:59:59.000Z

223

Determination of alternative fuels combustion products: Phase 3 report  

DOE Green Energy (OSTI)

This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1997-12-01T23:59:59.000Z

224

Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report  

SciTech Connect

The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), in collaboration with the nuclear industry, has been conducting research and development (R&D) activities on advanced Light Water Reactor (LWR) fuels for the last few years. The emphasis for these activities was on improving the fuel performance in terms of increased burnup for waste minimization and increased power density for power upgrades, as well as collaborating with industry on fuel reliability. After the events at the Fukushima Nuclear Power Plant in Japan in March 2011, enhancing the accident tolerance of LWRs became a topic of serious discussion. In the Consolidated Appropriations Act, 2012, Conference Report 112-75, the U.S. Congress directed DOE-NE to: • Give “priority to developing enhanced fuels and cladding for light water reactors to improve safety in the event of accidents in the reactor or spent fuel pools.” • Give “special technical emphasis and funding priority…to activities aimed at the development and near-term qualification of meltdown-resistant, accident-tolerant nuclear fuels that would enhance the safety of present and future generations of light water reactors.” • Report “to the Committee, within 90 days of enactment of this act, on its plan for development of meltdown-resistant fuels leading to reactor testing and utilization by 2020.” Fuels with enhanced accident tolerance are those that, in comparison with the standard UO2-zirconium alloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, and operational transients, as well as design-basis and beyond design-basis events. The overall draft strategy for development and demonstration is comprised of three phases: Feasibility Assessment and Down-selection; Development and Qualification; and Commercialization. The activities performed during the feasibility assessment phase include laboratory scale experiments; fuel performance code updates; and analytical assessment of economic, operational, safety, fuel cycle, and environmental impacts of the new concepts. The development and qualification stage will consist of fuel fabrication and large scale irradiation and safety basis testing, leading to qualification and ultimate NRC licensing of the new fuel. The commercialization phase initiates technology transfer to industry for implementation. Attributes for fuels with enhanced accident tolerance include improved reaction kinetics with steam and slower hydrogen generation rate, while maintaining acceptable cladding thermo-mechanical properties; fuel thermo-mechanical properties; fuel-clad interactions; and fission-product behavior. These attributes provide a qualitative guidance for parameters that must be considered in the development of fuels and cladding with enhanced accident tolerance. However, quantitative metrics must be developed for these attributes. To initiate the quantitative metrics development, a Light Water Reactor Enhanced Accident Tolerant Fuels Metrics Development Workshop was held October 10-11, 2012, in Germantown, Maryland. This document summarizes the structure and outcome of the two-day workshop. Questions regarding the content can be directed to Lori Braase, 208-526-7763, lori.braase@inl.gov.

Lori Braase

2013-01-01T23:59:59.000Z

225

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of...

226

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Education Printable Version 2004 Annual Progress Report VII. Education Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Education Sub-Program Review, Christy Cooper, DOE (PDF 283 KB) Determine Baseline Knowledge of Hydrogen and Fuel Cells, Tykey Truett , ORNL (PDF 262 KB) Fuel Cell Demonstration with On-site Generation of Hydrogen, Tim Turner, NC State University (PDF 212 KB) Washington State Fuel Cell Education and Demonstration Program, Mira Vowles, Central Washington Univ. (PDF 315 KB) Lansing Community College Alternative Energy Initiative, Ruth Borger, Lansing Community College (PDF 214 KB) Shared Technology Transfer Project, John Griffin, Nicholls State University (PDF 228 KB) Montana Hydrogen Futures Project, Paul Williamson, U. of Montana

227

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Annual Progress Report 1 Annual Progress Report DOE Hydrogen and Fuel Cells Program The Department of Energy Hydrogen and Fuel Cells Program (the Program) conducts comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. The Program is coordinated across the Department of Energy (DOE or the Department), including activities in the offices of Energy Efficiency and Renewable Energy (EERE), Science (SC), Nuclear Energy (NE), and Fossil Energy (FE), and it is aligned with DOE's strategic vision and goals-its efforts will help to secure U.S. leadership in clean energy technologies and advance U.S. economic competitiveness and scientific innovation. With emphasis on applications that will most effectively strengthen our nation's energy security

228

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing R&D Manufacturing R&D Printable Version 2012 Annual Progress Report VI. Manufacturing R&D This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on manufacturing R&D. Manufacturing R&D Sub-Program Overview, Nancy Garland, U.S. Department of Energy Fuel Cell Membrane Electrode Assembly Manufacturing R&D, Michael Ulsh, National Renewable Energy Laboratory Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning, Colin Busby, W. L. Gore & Associates, Inc. Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture, Dan Walczyk, Rensselaer Polytechnic Institute Non-Contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks, Eric Stanfield,

229

APS LOM Shop Usage  

NLE Websites -- All DOE Office Websites (Extended Search)

Division XSD Groups Industry Argonne Home Advanced Photon Source APS LOM Shop Usage User Shop Access - Policies and Procedures User Shop Orientation User Shop...

230

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XVI-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Sunita Satyapal, Director DOE Hydrogen and Fuel Cells Program Fuel Cell Technologies Program DOE Office of...

231

Determination of alternative fuels combustion products: Phase 1 report  

DOE Green Energy (OSTI)

This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1997-09-01T23:59:59.000Z

232

fuel_oil.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Usage Form Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

233

SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report (Report and Appendices)  

DOE Green Energy (OSTI)

This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses. This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008. These results are an addition to those provided in the previous three evaluation reports.

Chandler, K.; Eudy, L.

2009-01-01T23:59:59.000Z

234

SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report (Report and Appendices)  

DOE Green Energy (OSTI)

This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

Eudy, L.; Chandler, K.

2009-08-01T23:59:59.000Z

235

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Printable Version 2011 Annual Progress Report The 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2011. Published in November 2011, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Front Cover and Title Page Table of Contents I. Introduction, Sunita Satyapal, U.S. Department of Energy II. Hydrogen Production Distributed Bio-Derived Liquid Production Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Photoelectrochemical Biological Production Analysis Production Basic Energy Sciences III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Chemical Hydrogen Storage Hydrogen Sorption

236

Plate-Based Fuel Processing System Final Report  

DOE Green Energy (OSTI)

On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI took the initial steam reforming plate-reactor concept and advanced it towards an integrated fuel processing system. A substantial amount of modeling was performed to guide the catalyst development and prototype hardware design and fabrication efforts. The plate-reactor mechanical design was studied in detail to establish design guidelines which would help the plate reactor survive the stresses of repeated thermal cycles (from start-ups and shut-downs). Integrated system performance modeling was performed to predict system efficiencies and determine the parameters with the most significant impact on efficiency. In conjunction with the modeling effort, a significant effort was directed towards catalyst development. CESI developed a highly active, sulfur tolerant, coke resistant, precious metal based reforming catalyst. CESI also developed its own non-precious metal based water-gas shift catalyst and demonstrated the catalysts durability over several thousands of hours of testing. CESI also developed a unique preferential oxidation catalyst capable of reducing 1% CO to < 10 ppm CO over a 35 C operating window through a single pass plate-based reactor. Finally, CESI combined the modeling results and steam reforming catalyst development efforts into prototype hardware. The first generation 3kW(e) prototype was fabricated from existing heat-exchanger plates to expedite the fabrication process. This prototype demonstrated steady state operation ranging from 5 to 100% load conditions. The prototype also demonstrated a 20:1 turndown ratio, 10:1 load transient operation and rapid start-up capability.

Carlos Faz; Helen Liu; Jacques Nicole; David Yee

2005-12-22T23:59:59.000Z

237

Energy usage in super markets  

SciTech Connect

The supermarket industry used 450 billion Btu's of energy each day, enough to heat 2 million homes. But more important than the overall energy usage is what energy is costing the supermarket operator; in many cases energy costs exceed rent. This special research report is designed to help the supermarket management determine if their stores are excessive energy users and to provide valuable data for planning remodels and new stores. The report is presented in five sections. The first two sections, General Observations and Monthly Electrical Usage and Demand Power, can easily be used by all supermarket operators. The third and fourth sections contain more detailed statistics that will be valuable to industry people who want to analyze energy usage more thoroughly. The statistics in section 1-4 are reported for various geographic regions and store sizes. Section five is the sample distribution which provides an insight into what other stores are using for refrigeration, lighting, etc. The information in this report is average for a typical supermarket and should be used only as that when compared to a specific supermarket facility.

Gerke, E.

1976-01-01T23:59:59.000Z

238

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Printable Version 2004 Annual Progress Report The 2004 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D and analysis activities and accomplishments for FY 2004. Published in November 2004, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 203 KB) Table of Contents (PDF 432 KB) I. Introduction (PDF 350 KB) II. Hydrogen Production and Delivery Distributed Production Technologies Separations Biomass Gasification/Pyrolysis Photobiological Production Photoelectrochemical Production Electrolysis High-Temperature Thermochemical Processes Hydrogen Delivery Analysis III. Hydrogen Storage Compressed/Liquid H2 Tanks Chemical Hydrides Metal Hydrides

239

Air quality effects of alternative fuels. Final report  

DOE Green Energy (OSTI)

To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

1997-11-01T23:59:59.000Z

240

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program A Aceves, Salvador . . . . . . . . . . . . . . . . . . . . . . . . III.14, VIII.13 Adams, Michael. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II.K.3 Adams, Thad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III.6 Adzic, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.D.6 Ahluwalia, Rajesh . . . . . . . . . . . . . . . . . . . . . . . .IV.E.2, V.A.3 Ahmed, Shabbir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI.12 Allen, Philip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II.K.16 Allendorf, Mark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.A.8 Anton, Don . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.A.1, IV.D.1 Arif, Muhammad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.A.5

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report  

DOE Green Energy (OSTI)

This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

NONE

1996-01-01T23:59:59.000Z

242

Office of Inspector General audit report on credit card usage at the Ohio Field Office and the Fernald and Miamisburg Environmental Management Projects  

SciTech Connect

In 1994 the Department of Energy (Department) obtained the services of Rocky Mountain BankCard System, through the use of a General Services Administration contract, as a means for the Department and its contractors to make small purchases. The use of credit cards was expected to simplify small purchase procedures and improve cash management. The Ohio Field Office (Field Office) uses the credit card system and oversees usage by its area offices. Contractors under the Field Office also use the credit card system to make small purchases. The Office of Inspector General (OIG) has issued one audit report concerning the use of credit cards. In April 1996, the OIG issued Report WR-B-96-06, Audit of Bonneville Power Administration`s Management of Information Resources. The audit concluded that improvements could be made in implementing credit card and property procedures in Bonneville`s management of computer-related equipment. Specifically, many credit card purchases were made by employees whose authority to buy was not properly documented, and the purchasing files often lacked invoices that would show what was purchased. Additionally, some cardholders split purchases to avoid credit card limits. The objective of this audit was to determine whether the Field Office, Fernald and Miamisburg Environmental Management Projects, Fluor Daniel, and B and W were using credit cards for the appropriate purposes and within the limitations established by Federal and Departmental regulations.

1999-03-01T23:59:59.000Z

243

Adaptive web usage profiling  

Science Conference Proceedings (OSTI)

Web usage models and profiles capture significant interests and trends from past accesses. They are used to improve user experience, say through recommendation of pages, pre-fetching of pages, etc. While browsing behavior changes dynamically over time, ...

Bhushan Shankar Suryavanshi; Nematollaah Shiri; Sudhir P. Mudur

2005-08-01T23:59:59.000Z

244

Robotics and Energy Usage  

E-Print Network (OSTI)

It is commonly assumed that the use of robots in an industrial plant will cut energy usage, because robots require no heat, light, or air conditioning in their work space. However, in analyzing industrial installations, we have found that, in practice, energy usage may either increase or decrease depending on the parameters of the particular facility. This paper describes our findings at the plants of various manufacturers. We performed on-site studies at plants operated by Chrysler Corporation in St. Louis (62 welding robots) and Franklin Manufacturing Company in St. Cloud, Minnesota (4 spray painting robots used in freezer manufacture), We also examined data on energy effects of robots from John Deere, caterpillar, and GM Guide Division. The effect of robots on electricity usage and other forms of energy usage are analyzed in this paper.

Hershey, R. L.; Fenton, S. E.; Letzt, A. M.

1983-01-01T23:59:59.000Z

245

Fuel and Famine: Rural Energy Crisis in the Democratic People's Republic of Korea  

E-Print Network (OSTI)

Energy Use: Summary County Usage, 1990 Fuel Units Urban Rural TotalEnergy Use: Summary County Usage, 1990 Fuel Units Urban Rural TotalEnergy Use: Summary County Usage, 1990 Fuel Units Urban Rural Total

Williams, James H.; von Hippel, David; Hayes, Peter

2000-01-01T23:59:59.000Z

246

Exemplary Units Markup Language usage  

Science Conference Proceedings (OSTI)

Sample UnitsML tools and usage. ... Its usage is limited to demonstrating capabilities of plain XSLT processing with the data stored in UnitsML. ...

247

Winter fuels report. Week ending, January 26, 1996  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers analysts, and State and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; (2) propane net production, imports and stocks on a U.S. level and for PADD`s I, II, and III; (3) natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s; as well as selected National average prices; (4) residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the U.S. and selected cities; and (6) a 6-10 Day and 30-Day outlook for temperature and precipitation and U.S. total heating degree-days by city. The distillate fuel oil and propane supply data are collected and published weekly. The data are based on company submissions for the week ending 7:00 a.m. for the preceding Friday. Weekly data for distillate fuel oil are also published in the Weekly Petroleum Status Report. Monthly data for distillate fuel oil and propane are published in the Petroleum Supply Monthly. The residential pricing information is collected by the EIA and the State Energy Offices on a semimonthly basis for the EIA/State Heating Oil and Propane Program. The wholesale price comparison data are collected daily and are published weekly. Residential heating fuel prices are derived from price quotes for home delivery of No. 2 fuel oil and propane. As such, they reflect prices in effect on the dates shown. Wholesale heating oil and propane prices are estimates using a sample of terminal quotes to represent average State prices on the dates given.

NONE

1996-01-23T23:59:59.000Z

248

Residual fuel outlook - 1981 through 1995. Final report  

SciTech Connect

This report forecasts the future availability of residual fuel and its implications to the marine industry. The results are based on the completion of three separate tasks. The first examines past trends and recent developments in worldwide supply and demand markets for residual and other fuels, while the second investigates upgrading and expansion activities by the refining industry. The combination of these efforts produces an overview of the worldwide residual market and a complete understanding of refiners' economic and technical decision factors determining final product mix production. The last task utilizes information gained in previous tasks to review available longterm forecasts and their underlying assumptions. The forecasts completed by the National Petroleum Council (NPC) were utilized for a depiction of residual availability in 1985, while the Department of Energy's (DOE) Midterm Energy Forecasting System (MEFS) was utilized and adjusted to provide estimates of residual availability in 1990 and 1995.

Varndell, T.B.

1982-03-01T23:59:59.000Z

249

Winter fuels report, week ending October 6, 1995  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topcs: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s, I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Informatoin Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

1995-10-06T23:59:59.000Z

250

Report to the Congress: strategic alcohol fuel reserve  

Science Conference Proceedings (OSTI)

The feasibility of developing a Strategic Alcohol Fuel Reserve (SAFURE) is examined in this report. The analysis compares each of three different ethanol storage program options to that portion of the currently-planned Strategic Petroleum Reserve (SPR) which could be replaced by a particular SAFURE program. These options are: Ethanol Spare Production Capacity Utilization using essentially uneconomical, existing production capacity; Market Diversion through government purchases of ethanol for SAFURE storage, and Dedicated Plants using federal contracts to procure the entire output of five new plants. Based on this most recent analysis and other information currently available, it was concluded that the costs of acquiring, storing and managing an alcohol fuel reserve are substantially higher than the costs of the current SPR program. The net economic and security benefits of the current SPR program are also higher, and the budget costs of the SPR program are lower.

Not Available

1982-12-31T23:59:59.000Z

251

Winter fuels report, week ending November 16, 1990  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs., 12 tabs.

1990-11-21T23:59:59.000Z

252

Characterization of Fuel Cell Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Karren L. More Oak Ridge National Laboratory (ORNL) 1 Bethel Valley Rd. Oak Ridge, TN 37831-6064 Phone: (865) 574-7788 Email: morekl1@ornl.gov DOE Manager HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov Contributors: * David Cullen (ORNL) * Miaofang Chi (ORNL) * Kelly Perry (ORNL) Project Start Date: Fiscal Year (FY) Year 1999 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop and/or apply novel preparation, imaging, and * analytical methods to characterize fuel cell materials and architectures in the as-processed (fresh) state, during

253

Fuel selection study for Fort Leonard Wood, Missouri. Volume 2. Final report  

SciTech Connect

The objectives of the Fuel Selection Study for Fort Leonard Wood, Missouri were: (1) to evaluate specified sources of heating energy - electric or fuel oil, and the necessary associated conversion work for meeting the heating requirements of selected buildings at Fort Leonard Wood, Missouri; and (2) to determine the impact on energy usage and cost savings which would result from increasing insulation levels in the building under review. The buildings considered in this study included 2,862 family housing units, 5 Bachelor Officers' Quarters, an Enlisted Women's Barracks, the Medical Detachment Building, and the Heating Plant supporting the main Fort laundry.

1975-05-01T23:59:59.000Z

254

Fuel selection study for Fort Leonard Wood, Missouri. Volume 1. Final report  

SciTech Connect

The objectives of the Fuel Selection Study for Fort Leonard Wood, Missouri were: (1) to evaluate specified sources of heating energy - electric or fuel oil, and the necessary associated conversion work for meeting the heating requirements of selected buildings at Fort Leonard Wood, Missouri; and (2) to determine the impact on energy usage and cost savings which would result from increasing insulation levels in the building under review. The buildings considered in this study included 2,862 family housing units, 5 Bachelor Officers' Quarters, an Enlisted Women's Barracks, the Medical Detachment Building, and the Heating Plant supporting the main Fort laundry.

1975-05-01T23:59:59.000Z

255

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Printable Version 2010 Annual Progress Report The 2010 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2010. Published in February 2011, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Front Cover Table of Contents I. Introduction, Sunita Satyapal, U.S. Department of Energy II. Hydrogen Production Distributed Bio-Derived Liquid Production Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Photoelectrochemical Biological Production Cross-Cutting/Production III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Center of Excellence Chemical Hydrogen Storage Center of Excellence Hydrogen Sorption Center of Excellence

256

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Printable Version 2009 Annual Progress Report The 2009 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2009. Published in November 2009, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 1.2 MB) Table of Contents (PDF 318 KB) I. Introduction, Sunita Satyapal, U.S. Department of Energy (PDF 1.5 MB) II. Hydrogen Production Distributed Production from Bio-Derived Liquids Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Nuclear Hydrogen Initiative Photoelectrochemical Biological Cross-Cutting/Production III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Center of Excellence

257

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Printable Version 2008 Annual Progress Report The 2008 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2008. Published in November 2008, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 1.2 MB) Table of Contents (PDF 180 KB) I. Introduction, JoAnn Milliken, U.S. Department of Energy (PDF 980 KB) II. Hydrogen Production Distributed Production from Bio-Derived Liquids Electrolysis Separations Biomass Gasification Photoelectrochemical Biological Production Hydrogen From Coal Nuclear Hydrogen Initiative Hi-Temp Thermochemical Cross-Cutting Basic Energy Sciences III. Hydrogen Delivery IV. Hydrogen Storage

258

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Printable Version 2007 Annual Progress Report The 2007 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2007. Published in November 2007, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 711 KB) Table of Contents (PDF 236 KB) I. Introduction, JoAnn Milliken, U.S. Department of Energy (PDF 821 KB) II. Hydrogen Production Distributed Production from Natural Gas Distributed Production from Bio-Derived Liquids Electrolysis Separations Central Biomass Gasification Solar Hi-Temp Thermochemical Water Splitting Photoelectrochemical Biological Production Hydrogen from Coal Nuclear Hydrogen Initiative

259

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Printable Version 2006 Annual Progress Report The 2006 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2006. Published in November 2006, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 226 KB) Table of Contents (PDF 346 KB) I. Introduction, JoAnn Milliken, Acting Program Manager, DOE Hydrogen Program (PDF 369 KB) II. Production Distributed Reforming Hydrogen from Coal Separations Biomass Reforming Biological Production Photoelectrochemical Nuclear Energy Electrolysis High-Temperature Thermochemical III. Delivery Pipelines Liquefaction Analysis Storage Tanks Cross-Cutting IV. Storage Metal Hydrides

260

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Printable Version 2005 Annual Progress Report The 2005 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D and analysis activities and accomplishments for FY 2005. Published in November 2005, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 127 KB) Table of Contents (PDF 401 KB) I. Introduction, Steve Chalk, Department of Energy (PDF 911 KB) II. Basic Research, Harriet Kung, Department of Energy (PDF 1.46 MB) III. Systems Analysis IV. Production Distributed Reforming Hydrogen from Coal Separations Biomass Reforming Biological Production Photoelectrochemical Hydrogen from Nuclear Energy Electrolysis High-temperature Thermochemical

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Education Printable Version 2006 Annual Progress Report IX. Education This section of the 2006 Progress Report for the DOE Hydrogen Program focuses on education. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Education Sub-Program Overview, Christy Cooper, Education Team Lead, DOE Hydrogen Program (PDF 173 KB) Baseline Knowledge Assessment of Hydrogen and Fuel Cells, Tykey Truett, Oak Ridge National Laboratory (PDF 77 KB) Hydrogen/Alternative Energy Center, Ruth Borger, Lansing Community College (PDF 96 KB) Hydrogen Futures Park at University of Montana, Paul Williamson, University of Montana (PDF 158 KB) Hydrogen Technology and Energy Curriculum (HyTEC), Barbara Nagle, Univeristy of California, Berkeley (PDF 359 KB)

262

Molten carbonate fuel cell technology improvement. Final report  

DOE Green Energy (OSTI)

This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, ``Molten Carbonate Fuel Cell Technology Improvement.`` This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

Not Available

1991-06-01T23:59:59.000Z

263

Microsoft Word - Alternative Fuel Price Report July 2011 8-17-11  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

July 2011 July 2011 Clean Cities Alternative Fuel Price Report July 2011 Page 2 WELCOME! Welcome to the July 2011 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between July 14, 2011 and July 29, 2011 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders. METHODOLOGY In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were

264

Automotive materials usage trends  

SciTech Connect

The materials composition of US passenger cars is traced from 1960 and projected into 1990's. Sales-weighted average vehicle-weight trends are analyzed in terms of shifts in the large/small car mix, downsizing, and downweighting. The growth in the usage of lightweight materials: -high strength steels, cast/wrought aluminum, plastics and composites - are examined in detail. Usage trends in a host of other materials such as alloy steels, zinc, lead, copper, etc. are also discussed. An approximate quantitative analysis of changes in the usage of steel by the automotive industry worldwide show that about 10% of total decline in Western-World steel consumption is accounted for by the automotive industry. An assessment is presented for automotive industry use of critical materials such as chromium in alloy steels/cast irons and the platinum group metals in exhaust-gas catalysts. 10 references, 13 figures, 9 tables.

Gjostein, N.A.

1986-01-01T23:59:59.000Z

265

2011 Alkaline Membrane Fuel Cell Workshop Final Report  

SciTech Connect

A workshop addressing the current state-of-the-art in alkaline membrane fuel cells (AMFCs) was held May 8-9, 2011, at the Crystal Gateway Marriott in Arlington, Virginia. This workshop was the second of its kind, with the first being held December 11-13, 2006, in Phoenix, Arizona. The 2011 workshop and associated workshop report were created to assess the current state of AMFC technology (taking into account recent advances), investigate the performance potential of AMFC systems across all possible power ranges and applications, and identify the key research needs for commercial competitiveness in a variety of areas.

Pivovar, B.

2012-02-01T23:59:59.000Z

266

2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program  

DOE Green Energy (OSTI)

In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

Not Available

2012-12-01T23:59:59.000Z

267

Advanced fuel cells for transportation applications. Final report  

DOE Green Energy (OSTI)

This Research and Development (R and D) contract was directed at developing an advanced technology compressor/expander for supplying compressed air to Proton Exchange Membrane (PEM) fuel cells in transportation applications. The objective of this project was to develop a low-cost high-efficiency long-life lubrication-free integrated compressor/expander utilizing scroll technology. The goal of this compressor/expander was to be capable of providing compressed air over the flow and pressure ranges required for the operation of 50 kW PEM fuel cells in transportation applications. The desired ranges of flow, pressure, and other performance parameters were outlined in a set of guidelines provided by DOE. The project consisted of the design, fabrication, and test of a prototype compressor/expander module. The scroll CEM development program summarized in this report has been very successful, demonstrating that scroll technology is a leading candidate for automotive fuel cell compressor/expanders. The objectives of the program are: develop an integrated scroll CEM; demonstrate efficiency and capacity goals; demonstrate manufacturability and cost goals; and evaluate operating envelope. In summary, while the scroll CEM program did not demonstrate a level of performance as high as the DOE guidelines in all cases, it did meet the overriding objectives of the program. A fully-integrated, low-cost CEM was developed that demonstrated high efficiency and reliable operation throughout the test program. 26 figs., 13 tabs.

NONE

1998-02-10T23:59:59.000Z

268

Winter fuels report, week ending: March 25, 1994  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Propane net production, imports and stocks on a US level and for PADD`s I, II, and III; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city. The distillate fuel oil and propane supply data are collected and published weekly.

Not Available

1994-03-31T23:59:59.000Z

269

Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report  

DOE Green Energy (OSTI)

This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

Not Available

1994-03-01T23:59:59.000Z

270

Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group The Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation IV goals and (2) identify key fuel cycle issues associated with Generation IV goals. This included examination of "fuel resource inputs and waste outputs for the range of potential Generation IV fuel cycles, consistent with projected energy demand scenarios." This report summarizes the results of the studies. The membership of the FCCG comprised 8 US members and 7 members from Generation IV International Forum (GIF) countries including members from

271

Reactor fuel conversion assistance request. Technical progress report, August 15, 1992--May 14, 1993  

SciTech Connect

This report is a summary of the progress that has been made on the preparations required to convert the WSU TRIGA reactor from High Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel.

Tripard, G.E.

1993-06-01T23:59:59.000Z

272

Reactor fuel conversion assistance request: Technical progress report, August 15, 1992-December 31, 1994  

SciTech Connect

This report is a summary of the progress that has been made on the preparations required to convert the WSU TRIGA reactor from High Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel.

Tripard, G.E.

1994-12-31T23:59:59.000Z

273

Liquid fossil fuel technology. Quarterly technical progress report, October-December 1979  

Science Conference Proceedings (OSTI)

Activities and progress are reported in: liquid fossil fuel cycle, extraction (enhanced recovery of oil and gas), processing (of petroleum and alternate fuels), utilization (transportation and energy conversion), and systems integration. BETC publications and finances are listed in appendices. (DLC)

Not Available

1980-04-01T23:59:59.000Z

274

Final Report on the Fuel Saving Effectiveness of Various Driver Feedback Approaches  

SciTech Connect

This final report quantifies the fuel-savings opportunities from specific driving behavior changes, identifies factors that influence drivers' receptiveness to adopting fuel-saving behaviors, and assesses various driver feedback approaches.

Gonder, J.; Earleywine, M.; Sparks, W.

2011-03-01T23:59:59.000Z

275

Letter Report: Looking Ahead at Nuclear Fuel Resources  

SciTech Connect

The future of nuclear energy and its ability to fulfill part of the world’s energy needs for centuries to come depend on a reliable input of nuclear fuel, either thorium or uranium. Obviously, the present nuclear fuel cycle is completely dependent on uranium. Future thorium cycles will also depend on 235U or fissile isotopes separated from used fuel to breed 232Th into fissile 233U. This letter report discusses several emerging areas of scientific understanding and technology development that will clarify and enable assured supplies of uranium and thorium well into the future. At the most fundamental level, the nuclear energy community needs to appreciate the origins of uranium and thorium and the processes of planetary accretion by which those materials have coalesced to form the earth and other planets. Secondly, the studies of geophysics and geochemistry are increasing understanding of the processes by which uranium and thorium are concentrated in various locations in the earth’s crust. Thirdly, the study of neutrinos and particularly geoneutrinos (neutrinos emitted by radioactive materials within the earth) has given an indication of the overall global inventories of uranium and thorium, though little indication for those materials’ locations. Crustal temperature measurements have also given hints of the vertical distribution of radioactive heat sources, primarily 238U and 232Th, within the continental crust. Finally, the evolving technologies for laser isotope separation are indicating methods for reducing the energy input to uranium enrichment but also for tailoring the isotopic vectors of fuels, burnable poisons and structural materials, thereby adding another tool for dealing with long-term waste management.

J. Stephen Herring

2013-09-01T23:59:59.000Z

276

Properties of aircraft fuels and related materials. Interim report 15 Feb 82-15 Jul 83  

SciTech Connect

Fuel tests, analyses, and analytical method development were conducted on a number of fuels of an experimental nature in conjunction with ongoing Air Force programs for studying fuel combustion behavior, turbine engine design, and other fuel related technologies. Fuels from conventional and alternate sources were studied, as were fuels of the high density missile propellant type. A wide variety of both physical and chemical properties of the fuels were measured and are tabulated. Studies conducted to aid in the solution of operational problems are also reported.

Hodgson, F.N.; Gable, R.G.; Fritsch, C.D.

1984-03-01T23:59:59.000Z

277

Advanced natural gas fuel technologies for military installations. Final report  

SciTech Connect

Energy conservation efforts reduced Department of Defense (DoD) fossil fuel consumption considerably between FYX5 and FY9 I, yet electricity consumption increased. Electricity consumption accounts for only one-third of DoD energy use, but over half of DoD energy costs. In addition, the production of electricity at coal or nuclear plants often creates environmental concerns, while the use of clean-burning natural gas does not; its use can help DoD bases comply with increasingly stringent environmental regulations. Recent developments in natural gas-fired technologies also demonstrate improved efficiency and productivity at lower costs. This report identifies state-of-the-art and emerging natural gas utilization technologies with potential application on DoD installations. This report describes various technologies that have potential residential, commercial, or industrial applications on DoD installations. Applications include heating, cooling, power generation, food preparation, and several industrial processes.

Savoie, M.J.; Freeman, P.M.; Blazek, C.F.; Potts, N.L.

1994-09-01T23:59:59.000Z

278

Winter fuels report. Week ending: October 13, 1995  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10-Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. This report is published weekly by the EIA starting the second week in October 1995 and will continue until the second week in April 1996. The data will also be available electronically after 5:00 p.m. on Wednesday and Thursday during the heating season through the EIA Electronic Publication System (EPUB). 36 figs., 13 tabs.

NONE

1995-10-19T23:59:59.000Z

279

Winter fuels report. Week ending: December 31, 1993  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; propane net production, imports and stocks on a U.S. level and for PADD`s I,II, and III; natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the U.S. and selected cities; and a 6-10 day, 30 day,and 90 day outlook for temperature and precipitation and U.S. total heating degree-days by city. This report is for the week ending December 31, 1993.

Not Available

1994-01-06T23:59:59.000Z

280

National Report Joint Convention on the Safety of Spent Fuel Management and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Report Joint Convention on the Safety of Spent Fuel National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management This is the first National Report prepared under the terms of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Managementi hereafter referred to as the "Joint Convention". This report satisfies the requirements of the Joint Convention for reporting on the status of safety at spent fuel and radioactive waste management facilities within the United States of America (U.S.). National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management - May 2003

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

usage_household2001.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Usage Indicators Tables Usage Indicators Tables (Million U.S. Households; 60 pages, 247 kb) Contents Pages HC6-1a. Usage Indicators by Climate Zone, Million U.S. Households, 2001 5 HC6-2a. Usage Indicators by Year of Construction, Million U.S. Households, 2001 5 HC6-3a. Usage Indicators by Household Income, Million U.S. Households, 2001 5 HC6-4a. Usage Indicators by Type of Housing Unit, Million U.S. Households, 2001 5 HC6-5a. Usage Indicators by Type of Owner-Occupied Housing Unit, Million U.S. Households, 2001 5 HC6-6a. Usage Indicators by Type of Rented Housing Unit, Million U.S. Households, 2001 5 HC6-7a. Usage Indicators by Four Most Populated States, Million U.S. Households, 2001 5

282

June 2011, Report of the Fuel Cycle Subcommittee of NEAC | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2011, Report of the Fuel Cycle Subcommittee of NEAC June 2011, Report of the Fuel Cycle Subcommittee of NEAC June 2011, Report of the Fuel Cycle Subcommittee of NEAC The Fuel Cycle subcommittee of NEAC met April 25-26 in Albuquerque, New Mexico. The main topics of discussion were the Used Nuclear Fuel (UNF) disposal program, the System Study Program's methodology that is to be used to set priorities for R&D on advanced fuel cycles, and the University Programs. In addition to these, we were briefed on the budget, but have no comments other than a hope for a good outcome and restrict ourselves to general advice until more is known. A current complication in the design of the Fuel Cycle R&D FCRD program is the Blue Ribbon Commission (BRC) which has been created to address the issues involved in long term disposal of used nuclear fuel (UNF) and any of

283

June 2011, Report of the Fuel Cycle Subcommittee of NEAC | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2011, Report of the Fuel Cycle Subcommittee of NEAC June 2011, Report of the Fuel Cycle Subcommittee of NEAC June 2011, Report of the Fuel Cycle Subcommittee of NEAC The Fuel Cycle subcommittee of NEAC met April 25-26 in Albuquerque, New Mexico. The main topics of discussion were the Used Nuclear Fuel (UNF) disposal program, the System Study Program's methodology that is to be used to set priorities for R&D on advanced fuel cycles, and the University Programs. In addition to these, we were briefed on the budget, but have no comments other than a hope for a good outcome and restrict ourselves to general advice until more is known. A current complication in the design of the Fuel Cycle R&D FCRD program is the Blue Ribbon Commission (BRC) which has been created to address the issues involved in long term disposal of used nuclear fuel (UNF) and any of

284

Residential energy usage comparison project: An overview  

SciTech Connect

This report provides an overveiw of the residential energy usage comparison project, an integrated load and market research project sponsored by EPRI and the Southern California Edison Company. Traditional studies of the relative energy consumption of electric and gas household appliances have relied on laboratory analyses and computer simulations. This project was designed to study the appliance energy consumption patterns of actual households. Ninety-two households in Orange County, California, southeast of Los Angeles, served as the study sample. Half of the households received new electric space-conditioning, water-heating, cooking, and clothes-drying equipment; the other half received gas equipment. The electric space-conditioning and water-heating appliances were heat pump technologies. All of the appliances were metered to collect load-shape and energy consumption data. The households were also surveyed periodically to obtain information on their energy needs and their acceptance of the appliances. The metered energy consumption data provide an important benchmark for comparing the energy consumption and costs of alternative end-use technologies. The customer research results provide new insights into customer preferences for fuel and appliance types. 15 figs., 3 tabs.

Smith, B.A.; Uhlaner, R.T.; Cason, T.N. (Quantum Consulting, Inc., Berkeley, CA (USA))

1990-10-01T23:59:59.000Z

285

Estimating externalities of biomass fuel cycles, Report 7  

DOE Green Energy (OSTI)

This report documents the analysis of the biomass fuel cycle, in which biomass is combusted to produce electricity. The major objectives of this study were: (1) to implement the methodological concepts which were developed in the Background Document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles, and by so doing, to demonstrate their application to the biomass fuel cycle; (2) to develop, given the time and resources, a range of estimates of marginal (i.e., the additional or incremental) damages and benefits associated with selected impact-pathways from a new wood-fired power plant, using a representative benchmark technology, at two reference sites in the US; and (3) to assess the state of the information available to support energy decision making and the estimation of externalities, and by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The demonstration of methods, modeling procedures, and use of scientific information was the most important objective of this study. It provides an illustrative example for those who will, in the future, undertake studies of actual energy options and sites. As in most studies, a more comprehensive analysis could have been completed had budget constraints not been as severe. Particularly affected were the air and water transport modeling, estimation of ecological impacts, and economic valuation. However, the most important objective of the study was to demonstrate methods, as a detailed example for future studies. Thus, having severe budget constraints was appropriate from the standpoint that these studies could also face similar constraints. Consequently, an important result of this study is an indication of what can be done in such studies, rather than the specific numerical estimates themselves.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1998-01-01T23:59:59.000Z

286

Second National Report for the Joint Convention on the Safety of Spent Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Second National Report for the Joint Convention on the Safety of Second National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Second National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management This second National Report updates the first National Report published on May 3, 2003, under the terms of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention). This report satisfies the requirements of the Joint Convention for reporting on the status of safety at spent fuel (SF) and radioactive waste management facilities within the United States of America (U.S.). Second National Report for the Joint Convention on the Safety of Spent Fuel

287

Winter fuels report, week ending October 8, 1993  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

1993-10-15T23:59:59.000Z

288

Winter fuels report, week ending January 7, 1994  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing, data for heating oil and propane for those States participating, in the joint Energy Information Administration (EIA)/State Heating, Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1994-01-13T23:59:59.000Z

289

Winter fuels report, week ending January 14, 1994  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1994-01-21T23:59:59.000Z

290

Winter fuels report. Week ending: December 15, 1995  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 figs., 13 tabs.

NONE

1995-12-21T23:59:59.000Z

291

Winter fuels report. Week ending: March 3, 1995  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city. 36 fig., 13 tabs.

NONE

1995-03-09T23:59:59.000Z

292

Winter fuels report, Week ending December 30, 1994  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policy makers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a U.S. level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumptive for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1995-01-06T23:59:59.000Z

293

Winter fuels report, week ending October 15, 1993  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`S; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1993-10-21T23:59:59.000Z

294

Winter fuels report, Week ending December 2, 1994  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policy makers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s 1, 2, and 3; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6--10 Day, 30-day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1994-12-08T23:59:59.000Z

295

Spent fuel and high-level radioactive waste transportation report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

1989-11-01T23:59:59.000Z

296

Spent fuel and high-level radioactive waste transportation report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

1990-11-01T23:59:59.000Z

297

Spent Fuel and High-Level Radioactive Waste Transportation Report  

SciTech Connect

This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

1992-03-01T23:59:59.000Z

298

Winter fuels report. Week ending December 10, 1993  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; propane net production, imports and stocks on a U.S. level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the U.S. and selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and U.S. total heating degree-days by city. 37 figs., 13 tabs.

Not Available

1993-12-16T23:59:59.000Z

299

Energy Dept. Reports: U.S. Fuel Cell Market Production and ...  

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth. December 19, 2013. The Energy Department released three ...

300

Safety Evaluation of the FuelMaker Home Refueling Concept: Final Report  

DOE Green Energy (OSTI)

Report summarizes results of a National Renewable Energy Laboratory safety evaluation of the FuelMaker natural gas vehicle home refueling appliance (HRA, aka Phill).

Waterland, L. R.; Powars, C.; Stickles, P.

2005-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Consolidated Fuel Reprocessing Program progress report, 1 October-31 December 1979. [HEF  

SciTech Connect

Progress is reported in four areas: process research and development, engineering research, engineering systems, technical support, and HTGR fuel reprocessing. (DLC)

Unger, W.E. (comp.)

1980-05-01T23:59:59.000Z

302

Report of the DOE Advanced Fuel-Cell Commercialization Working Group  

DOE Green Energy (OSTI)

This report describes commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

Penner, S.S.

1995-03-01T23:59:59.000Z

303

Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report  

DOE Green Energy (OSTI)

This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

Not Available

1992-08-01T23:59:59.000Z

304

Energy Usage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Energy Usage How much do you spend per year compared to others? A state-by-state map of per capita energy expenditures. Subtopics Storage Consumption Transmission Smart Grid...

305

Memory Usage Considerations on Franklin  

NLE Websites -- All DOE Office Websites (Extended Search)

the memory requirement vvia internal checking in their codes or by some tools. Craypat could track heap usage. And IPM also tracks memory usage. Last edited: 2013-06-30 08:33:51...

306

US Navy mobility fuels: Worldwide survey and analysis of both commercial and Navy fuels. Final report  

SciTech Connect

Quality and worldwide availability of distillate fuels have become increasing concerns to the U.S. Department of Defense. In response to these concerns, the David Taylor Research Center (DTRC) has conducted a worldwide survey of such fuels through a contract with the National Institute for Petroleum and Energy Research (NIPER). Representative fuels were collected at both Navy and commercial ports around the world through a NIPER subcontract to ABS Worldwide Technical Services (ABSTECH). The collected fuels were Naval Distillate Fuel (MIL-F-16884H, NATO F-76), Marine Gas Oil (MGO), Heavy Marine Gas Oil (HMGO), and Marine Diesel Fuel (MDF) for the Navy; Automotive/Truck Diesel for the Army; and Aviation Turbine Fuel (MIL-T-5624L, NATO JP-5) for the Naval Air Propulsion Center. The Navy F-76 fuel samples were characterized at NIPER by 44 different fuel property analyses.

Woodward, P.W.; Shay, J.Y.

1989-07-01T23:59:59.000Z

307

Usage by Job Size  

NLE Websites -- All DOE Office Websites (Extended Search)

Usage by Job Usage by Job Size Table Usage by Job Size Table page loading animation Usage Query Interface System All Hopper Edison Carver Planck Matgen Franklin Hopper 1 Magellan Dirac Bassi Jacquard Seaborg User Account (Repo) Execution Queue All Debug Interactive Premium Regular Short Regular Long Regular Small Regular Medium Regular Big Regular Extra Big Killable Low Transfer IO Task Special System Serial Big Memory Westmere === Inactive === Magellan Serial Magellan Short Magellan Small Magellan Medium Magellan Big Magellan Long Regular 1 Regular 1 Long Regular 16 Regular 32 Regular 48 Full Config Seaborg Serial Batch 16 Batch 32 Batch 64 Submit Queue all interactive debug premium regular low DOE Office all ASCR BER BES FES HEP NP Summary for jobs that completed after Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 @ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

308

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program α-AlH 3 Alpha polymorph of aluminum hydride ~ Approximately @ At °C Degrees Celsius °F Degrees Fahrenheit Δ Change, delta ΔG Gibbs free energy of reaction ΔH Enthalpy of reaction, Enthalpy of hydrogenation ΔH° f standard heat of formation ΔK Stress intensity factor ΔP Pressure drop, pressure change ≈ Equals approximately > Greater than ≥ Greater than or equal to < Less than ≤ Less than or equal to µCHX Microscale combustor/heat exchanger µc-Si Microcrystalline silicon µm Micrometer(s), micron(s) η Viscosity # Number Ω Ohm(s) Ω/cm 2 Ohm(s) per square centimeter Ω-cm 2 Ohm-square centimeter % Percent ® Registered trademark $ United States dollars 11 B-NMR Boron 11 Nuclear Magnetic Resonance

309

Determination of alternative fuels combustion products: Phase 2 final report  

DOE Green Energy (OSTI)

This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

Whitney, K.A.

1997-06-01T23:59:59.000Z

310

Winter Fuels Report for the week ending November 2, 1990  

SciTech Connect

The report is to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADDs) and product supplied on a US level; propane net production, imports and stocks for PADD I, II, and III;natural gas supply and disposition and underground storage for the United States and consumption for all PADDs; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

1990-11-08T23:59:59.000Z

311

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dept. Reports: U.S. Fuel Cell Market Production and Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth December 19, 2013 - 11:36am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released three new reports today showcasing strong growth across the U.S. fuel cell and hydrogen technologies market - continuing America's leadership in clean energy innovation and providing U.S. businesses more affordable, cleaner transportation and power options. According to these reports, the United States continues to be one of the world's largest and fastest growing markets for fuel cell and hydrogen technologies. In 2012, nearly 80 percent of total investment in the global fuel cell industry was made in U.S.

312

The origin of organic pollutants from the combustion of alternative fuels: Phase 5/6 report  

DOE Green Energy (OSTI)

As part of the US Department of Energy National Renewable Energy Laboratory program on alternative automotive fuels, the subcontractor has been conducting studies on the origin and fate of organic pollutants from the combustion of alternative fuels. Laboratory experiments were conducted simulating cold start of four alterative fuels (compressed natural gas, liquefied petroleum gas, methanol-gasoline mix, and ethanol-gasoline mix) using a commercial three-way catalyst under fuel-lean conditions. This report summarizes the results of these experiments. It appears that temperature of the catalyst is a more important parameter for fuel conversion and pollutant formation than oxygen concentration or fuel composition.

Sidhu, S.; Graham, J.; Taylor, P.; Dellinger, B. [Univ. of Dayton, OH (United States). Research Inst.

1998-05-01T23:59:59.000Z

313

Corrugated Membrane Fuel Cell Structures - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Stephen Grot Ion Power Incorporated 720 Governor Lea Rd New Castle, DE 19720-5501 Phone: (302) 832 9550 Email: s.grot@ion-power.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: benjamin@anl.gov Subcontractors: * Graftech International Holdings Inc., Parma, OH * General Motors Corporation, Flint, MI Contract Number: DE-EE0000462 Project Start Date: September 1, 2010 Project End Date: February 28, 2014 Fiscal Year (FY) 2012 Objectives

314

FY2002 Progress Report for Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels for Advanced Compression Fuels for Advanced Compression Ignition Direct Injection (CIDI) Engines Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Approved by Stephen Goguen November 2002 Fuels for Advanced CIDI Engines FY 2002 Progress Report iii CONTENTS CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii INDEX OF PRIMARY CONTACTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. FUEL/LUBRICANT EFFECTS TESTING ON ENGINE PERFORMANCE . . . . . . . . . 13 A. Oil Consumption Contribution to CIDI PM Emissions during Transient Operation . . . . . . . . . . . . . . . . . . . .13

315

Evaluation of Fuel Rod Leakage Mechanisms -- Summary Report: Joint EPRI/ESEERCO/Westinghouse Studies  

Science Conference Proceedings (OSTI)

To achieve a zero fuel defect goal, utilities have identified failed fuel rods and determined failure causes using a combination of poolside ultrasonic testing and visual inspection. Hot cell examinations, described in this report, have helped resolve the status of leaking rods for which there appeared to be no apparent cause of failure. Utilities can incorporate the findings of this project into their poolside fuel inspection planning and fuel quality requirements.

1995-01-07T23:59:59.000Z

316

Hawaii alternative fuels utilization program. Phase 3, final report  

DOE Green Energy (OSTI)

The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.

Kinoshita, C.M.; Staackmann, M.

1996-08-01T23:59:59.000Z

317

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle  

SciTech Connect

In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

1997-02-01T23:59:59.000Z

318

Synthetic Fuel Center construction and alternative test fuels production: Final report, 7 June 1982 to 7 September 1985  

DOE Green Energy (OSTI)

The Synthetic Fuel Center has been established by the Department of Energy as part of the Alternative Fuels Utilization Program. The main function is to provide test fuels in 5-gallon to 500-gallon quantities for research projects on utilization of alternative fuels. In the three-year report period, 26 fuels were prepared for 11 projects. Quantities ranged from 50 to 200 gallons of each fuel; the total production was 2490 gallons. Starting materials for processing or blending included two shale oils, two shale-derived naphthas, and two coal-derived middle distillates. A hydrogenation pilot plant was installed for processing synthetic feedstocks from oil shale and coal. Moderate severity upgrading of shale oil is reported, and the unit is capable of intermediate to high severity conversion of shale oil and coal liquids. Catalytic reforming of shale-derived naphthas at low pressure raised the octane of these paraffinic materials from less than 50 to above 90 Research Octane Number. Processing capabilities include distillation, adsorption, filtration, and centrifuging. Storage tanks from 500-gallon to 10,000-gallon capacity were installed. These are connected through piping and a manifold to the processing unit and other tanks for storage or blending. Fuel blending to target properties or compositions was a major activity. Complete characterizations were made of all feedstocks and products.

Sefer, N.R.; Erwin, J.; Russell, J.A.

1985-09-01T23:59:59.000Z

319

Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts  

SciTech Connect

This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

1997-01-01T23:59:59.000Z

320

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program Competitive Innovation: Accelerating Technology Development The U.S. Department of Energy (DOE) Office of Fossil Energy, through the National Energy Technology Laboratory (NETL) and in collaboration with private industry, universities and national laboratories, has forged Government-industry partnerships under the Solid State Energy Conversion Alliance (SECA) to reduce the cost of solid oxide fuel cells (SOFCs). This fuel cell technology shall form the basis for integrated gasification fuel cell (IGFC) systems utilizing coal for clean and efficient

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

2009 Fuel Cell Market Report, November 2010, Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 FUEL CELL 2009 FUEL CELL MARKET REPORT NOVEMBER 2010 Authors This report was written primarily by Bill Vincent of the Breakthrough Technologies Institute in Washington, DC, with significant assistance from Jennifer Gangi, Sandra Curtin, and Elizabeth Delmont. Acknowledgement This report was the result of hard work and valuable contributions from government staff and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report. The authors also wish to thank Robert Rose and Robert Wichert of the U.S. Fuel Cell Council, Lisa Callaghan-Jerram of Fuel Cell Today Consulting, Rachel Gelman of the National

322

APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report  

DOE Green Energy (OSTI)

The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the plant capacity factor has been increasing, with a recent one-month high of 49%. If a plant capacity factor of 70% can be achieved with the present equipment, the cost of electricity would drop to $2.39 per kg of hydrogen. In this report, the power conversion (76.7%), cell stack (53.1%), and reverse osmosis system (7.14%) efficiencies are also calculated, as is the water cost per kg of hydrogen produced ($0.10 per kg). The monitoring system has identified several areas having the potential to lower costs, including using an reverse osmosis system with a higher efficiency, improving the electrolysis power conversion efficiency, and using air cooling to replace some or all chiller cooling. These activities are managed by the Idaho National Laboratory for the AVTA, which is part of DOE’s FreedomCAR and Vehicle Technologies Program.

James Francfort; Dimitri Hochard

2005-07-01T23:59:59.000Z

323

Fourth National Report for the Joint Convention on the Safety of Spent Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fourth National Report for the Joint Convention on the Safety of Fourth National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Fourth National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management This Fourth United States of America (U.S.) National Report updates the Third Report published in October 2008, under the terms of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention). This report reflects developments in the U.S. through June 2011. This report satisfies the requirements of the Joint Convention for reporting on the status of safety at spent fuel and radioactive waste management facilities within the U.S.

324

Third National Report for the Joint Convention on the Safety of Spent Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Third National Report for the Joint Convention on the Safety of Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management Third National Report for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management This Third United States National Report updates the second National Report published in October 2005, under the terms of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management 1(Joint Convention). This report reflects developments in the United States through September 2008. This report satisfies the requirements of the Joint Convention for reporting on the status of safety at spent fuel and radioactive waste management facilities within

325

Interim report spent nuclear fuel retrieval system fuel handling development testing  

Science Conference Proceedings (OSTI)

Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

1997-06-01T23:59:59.000Z

326

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

327

Ethanol Production for Automotive Fuel Usage  

SciTech Connect

The conceptual design of the 20 million gallon per year anhydrous ethanol facility a t Raft River has been completed. The corresponding geothermal gathering, extraction and reinjection systems to supply the process heating requirement were also completed. The ethanol facility operating on sugar beets, potatoes and wheat will share common fermentation and product recovery equipment. The geothermal fluid requirement will be approximately 6,000 gpm. It is anticipated that this flow will be supplied by 9 supply wells spaced at no closer than 1/4 mile in order to prevent mutual interferences. The geothermal fluid will be flashed in three stages to supply process steam at 250 F, 225 F and 205 F for various process needs. Steam condensate plus liquid remaining after the third flash will all be reinjected through 9 reinjection wells. The capital cost estimated for this ethanol plant employing all three feedstocks is $64 million. If only a single feedstock were used (for the same 20 mm gal/yr plant) the capital costs are estimated at $51.6 million, $43.1 million and $40. 5 million for sugar beets, potatoes and wheat respectively. The estimated capital cost for the geothermal system is $18 million.

Lindemuth, T.E.; Stenzel, R.A.; Yim, Y.J.; Yu, J.

1980-01-31T23:59:59.000Z

328

Building Energy Software Tools Directory: Energy Usage Forecasts  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Usage Forecasts Energy Usage Forecasts Energy Usage Forecasts Quick and easy web-based tool that provides free 14-day ahead energy usage forecasts based on the degree day forecasts for 1,200 stations in the U.S. and Canada. The user enters the daily non-weather base load and the usage per degree day weather factor; the tool applies the degree day forecast and displays the total energy usage forecast. Helpful FAQs explain the process and describe various options for the calculation of the base load and weather factor. Historical degree day reports and 14-day ahead degree day forecasts are available from the same site. Keywords degree days, historical weather, mean daily temperature, load calculation, energy simulation Validation/Testing Degree day data provided by AccuWeather.com, updated daily at 0700.

329

A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI  

Science Conference Proceedings (OSTI)

(OAK/B204) A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

Hiroshi Takahashi; Upendra Rohatgi; T.J. Downar

2000-08-04T23:59:59.000Z

330

Final Report for the H2Fuel Bus  

DOE Green Energy (OSTI)

The H2Fuel Bus is the world's first hydrogen-fueled electric hybrid transit bus. It was a project developed through a public/private partnership involving several leading technological and industrial organizations, with primary funding by the Department of Energy (DOE). The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen fueled buses and to enhance the public awareness and acceptance of emerging hydrogen technologies.

Jacobs, W.D.

1998-11-25T23:59:59.000Z

331

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural GasBiogas, Greg Tao, Materials and Systems Research, Inc. (PDF 902 KB) Hydrogen Generation from...

332

REPORT: Inert-Matrix Fuel: Actinide ''Burning'' and Direct ... - TMS  

Science Conference Proceedings (OSTI)

Jun 27, 2007 ... Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am ...

333

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells: Market Assessment and Analysis of Impacts of Policies, David Greene, Oak Ridge National Laboratory Hydrogen Infrastructure Market Readiness Analysis, Marc...

334

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Handling Equipment Demonstration, Todd Ramsden, National Renewable Energy Laboratory Landfill Gas-to-Hydrogen, Shannon Baxter-Clemmons, South Carolina Hydrogen and Fuel Cell...

335

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Handling Equipment Demonstration, Todd Ramsden, National Renewable Energy Laboratory Landfill Gas-to-Hydrogen, Shannon Baxter-Clemmons, South Carolina Hydrogen and Fuel Cell...

336

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

New York State Hi-Way Initiative, Richard Bourgeois, GE Global Research (PDF 223 KB) Vermont Renewable Hydrogen Production and Transportation Fueling System (New Project), Chris...

337

Microsoft Word - Fuel Cycle Subcomm report final v2.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Fuel Cycle Subcommittee of NEAC June 15, 2011 Washington, D.C. Members: Burton Richter (Chairman) Darleane Hoffman Raymond Juzaitis Sekazi Mtingwa Ron Omberg Joy Rempe...

338

Possible future environmental issues for fossil fuel technologies. Final report  

SciTech Connect

The work reported here was carried out for the Department of Energy's Office of Fossil Energy to identify and assess 15 to 20 major environmental issues likely to affect the implementation of fossil energy technologies between 1985 and 2000. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; and true and modified in situ oil shale retorting. Environmental analysis of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. The 16 environmental issues identified as those most likely for future regulatory actions and the main features of, and the possible regulatory actions associated with, each are as follows: disposal of solid waste from coal conversion and combustion technologies; water consumption by coal and oil shale conversion technologies; siting of coal conversion facilities; the carbon dioxide greenhouse effect; emission of polycyclic organic matter (POM); impacts of outer continental shelf (OCS) oil development; emission of trace elements; groundwater contamination; liquefied natural gas (LNG), safety and environmental factors; underground coal mining - health and safety; fugitive emissions from coal gasification and liquefaction - health and safety; boomtown effects; emission of fine particulates from coal, oil and oil shale technologies; emission of radioactivity from the mining and conversion of coal; emission of nitrogn oxides; and land disturbance from surface mining. (LTN)

Attaway, L.D.

1979-07-01T23:59:59.000Z

339

PROGRESS REPORT ON FUEL ELEMENT DEVELOPMENT AND ASSOCIATED PROJECTS  

SciTech Connect

; 9 < 4 6 9 7 ; 6 8 7 6 sting Deactor (MTR) has sought to develop improved, economical, long-life fuel assemblies through a comprehensive study of various fuel compositions, enrichments, claddings, burnable poisons, fuel and poison distributions, and fuelelement geometry optimization. The core materials, including uranium -- aluminum alloys, uranium oxide -aluminum cermets, thorium, thorium oxide, boron, gadolinium, dysprosium, and iridium, are tested in pilot-plant scale by irradiating them as sandwich type sample fuel plates. In the procurement of these sample plates, fabrication techniques were developed and evaluated for incorporation of all the fuels and poisons (except Ir/sub 2/O/sub 3/) into cores of aluminum or aluminum alloys. Methods were developed to minimize "dog-boning" and to produce graded fuels. Some of the sample plate compcsitions have been irradiated to high burn-up, i.e., over 50% of the U/sup 235/ content, and have operated successfully in the MTR for seven or more cycles. The irradiated uranium-- aluminum alloy and uranium oxide-- aluminum cermet fuel plates have shown excellent dimensional stability and good corrosion resistance to long-term irradiation. However, some of the thorium oxide fuel plates failed during one cycle of irradiation because of blistering, rupturing, or forming of pinholes in the cladding. The isostatic bonding procedure used to bond aluminum plates to the ThO/sub 2/ cores is apparently not adequate for reactor use. The sample fuel plate work has demonstrated the suitability of high wt.% uranium oxide--aluminum fuels for testing reactors, indicated the potential of systematically varying the fuel loading within a single plate, and experimentally verified the applicability of burnable poisons for reducing reactivity changes resulting from fuel burnup. The Deactivity Measurement Facility has proved to be an excellent nondestructive analytical tool for determination of fuel and poison burn-up. This program has stimulated several new developments and revealed many interesting facts in the fabrication and testing of reactor fuel materials. For example: (1) ultrasonic inspection has proved to be an excellent nondestructive method for determination of small voids in the core and unbonded cladding not otherwise detected by radiographing, (2) the ultrasonic inspection of irradiated fuel plates in the MTR canal is feasible, and (3) analytical procedures were developed for the determination of the small quantities of gadolinium added to the cores. The prototype studies consisted of theoretical and experimental evaluations of the hydraulic and heat- transfer characteristics, the structural properties, the economics and the reactor operating characteristics of various full-sized fuel assemblies and shim rods. The results of the sample fuel plate studies were incorporated in these prototypes to obtain optimum practical designs for testing reactors. The fuel element geometries investigated include plates, tube bundles, hexagonal honeycomb, and concentric cylinders. A MTR shim rod with renewable fuel and poison sections was designed, tested hydraulically, and is now considered ready for final in-pile testing. This rod outlasts the existing shim rods, is cheaper, and allows more operational flexibility. A theoretical analysis, hydraulic tests, and a mechanical evaluation have shown that an improvement can be made in plate type fuel elements by using an increased number of thinner high-strength fuel plates in the fuel element. An in-pile prototype test of such an element is now planned. An analysis of roughened surfaces indicates that economy or increases in reactor power may be gained through the use of roughened heat- transfer surfaces in nonboiling watercooled reactors. Preliminary hydraulic tests were performed and indicate that practical roughened surfaces may be formed. Out-of-pile heat-transfer tests are now planned. The theoretical analysis of geometries indicates that tube bundles, honeycomb, and concentric cylinder de

Francis, W.C.; Craig, S.E. ed.

1960-08-16T23:59:59.000Z

340

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices  

DOE Green Energy (OSTI)

This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

Chandler, K.; Eudy, L.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report  

DOE Green Energy (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

Eudy, L.; Chandler, K.

2011-03-01T23:59:59.000Z

342

Final safety analysis report for the irradiated fuels storage facility  

SciTech Connect

A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1$sup 1$/$sub 2$ cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100$sup 0$F is reached. (LK)

Bingham, G.E.; Evans, T.K.

1976-01-01T23:59:59.000Z

343

Report of the Fuel Cycle Research and Development Subcommittee of the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report of the Fuel Cycle Research and Development Subcommittee of Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee The Fuel Cycle (FC) Subcommittee of NEAC met February 7-8, 2012 in Washington (Drs. Hoffmann and Juzaitis were unable to attend). While the meeting was originally scheduled to occur after the submission of the President's FY 2013 budget, the submission was delayed a week; thus, we could have no discussion on balance in the NE program. The Agenda is attached as Appendix A. The main focus of the meeting was on accident tolerant fuels, an important post Fukushima issue, and on issues related to the report of the Blue Ribbon Commission on America's Nuclear Future (BRC) as related to the

344

Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices  

DOE Green Energy (OSTI)

The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

NONE

1997-06-01T23:59:59.000Z

345

Use of alcohol fuel: engine-conversion demonstration. Final report  

DOE Green Energy (OSTI)

The use of ethanol as a fuel extender when mixed with gasoline, and the use of both hydrated and anhydrous ethanol as a fuel in gasoline and diesel engines are discussed. Required engine modifications for efficient use of ethanol are described, and include engine compression alterations, carburetor adjustments, and arrangement for fuel preheating. In 1981 and 1982 a demonstration of ethanol use in spark ignition engines was conducted at a major public park in South Carolina. The demonstration included a controlled road test with a pick-up truck and a demonstration of ethanol use in small, air cooled gasoline engines. One problem that was identified was that of contaminated fuel that clogged the fuel system after a few days' operation. (LEW)

Marsh, W.K. (ed.)

1982-01-01T23:59:59.000Z

346

Improving energy usage  

SciTech Connect

The Phillips Petroleum Company's Borger Refinery and NGL Process Center Energy Conservation program has been one of surveying, making revisions and additions to, and redesign of processes and equipment to conserve energy. Special emphasis has been placed on minimizing energy usage in the design of new processes in the plants. In 1972 an average of 758,800 Btu's were used to process each barrel of fresh charge. Now 7.5 days of fresh charge are being saved to the plant each year. The energy-use reduction programs discussed were: (1) furnace and boiler excess-oxygen and combustibles control program; (2) installation of an Applied Automation, Inc., Fractionator Computer Control System named Optrol; and (3) the steam-trap program. 1 figure. (DP)

Haage, P.R.

1983-03-01T23:59:59.000Z

347

Study of costs associated with alternative fuels development: A case study. Research report  

SciTech Connect

The primary objective of the study was to conduct a case study of large-scale fuel conversion project to assess selected costs and related issues. An inventory of public transit agencies engaged in demonstration projects involving alternative fuels as conducted with representative sample of large public transit systems in the nation. Included in the survey were questions pertaining to fuel supply arrangements, fuel reserve storage requirements and/or deficiencies; future plans for managing energy resources and costs associated with fuel conversion/alternative fuels use -- whether planned or currently in operation. The case study approach was used to document the methodological and logistical problems encountered during the course of projects involving alternative fuels use compared with a control sample using diesel fuel. Monthly status reports on the alternative fuel project included data on accumulated mileage, road calls/unscheduled maintenance, fuel consumption, fuel cost per mile, alternative fuel purchases, schedule of activities, personnel, safety , and diesel emission test results. The data collected indicate several conclusions and future implications about technical and safety issues associated with the testing and use of liquefied natural gas (LNG).

Lede, N.W.

1995-07-01T23:59:59.000Z

348

Fuel cells: applied research fuel cell materials and electrocatalysis. Annual report, January 1976--December 1976  

DOE Green Energy (OSTI)

Research is described on electrocatalysis of fuel cell reactions including the topics (1) mixed oxides as oxygen electrodes, (2) electrolyte effects on the oxygen reduction reaction, (3) anion effects on the oxygen reduction reaction, and (4) selection and evaluation of electrocatalysts for oxygen reduction in KHCO/sub 3//K/sub 2/CO/sub 3/ buffered electrolytes. Phosphoric acid fuel cell studies include inhibition of sintering of fuel cell catalyst particles: electrochemical methods for surface regeneration and temperature effects on the oxygen reduction reaction at platinum in phosphoric acid electrolyte. Research on the characterization of overpotentials of solid electrolyte fuel cells and selection and evaluation of interconnector materials for solid electrolyte fuel cells is summarized. (WHK)

Srinivasan, S; Isaacs, H S

1977-09-01T23:59:59.000Z

349

HPSS Usage Examples at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Examples Advanced Usage Examples Transferring Data from Batch Jobs Once you have set up your automatic HPSS authentication you can access HPSS within batch scripts. Read More ...

350

Technology development goals for automotive fuel cell power systems. Final report, Appendix B-2  

DOE Green Energy (OSTI)

Directed Technologies, Inc. has previously submitted a detailed technical assessment and concept design for a mid-size, five-passenger fuel cell electric vehicle (FCEV), under contract to the Argonne National Laboratory. As a supplement to that contract, DTI has reviewed the literature and conducted a preliminary evaluation of two energy carriers for the FCEV: hydrogen and methanol. This report compares the estimated fuel efficiency, cost of producing and delivering the fuel, and the resultant life cycle costs of the FCEV when fueled directly by hydrogen and when fueled by methanol with on-board reforming to produce the required hydrogen-rich gas for the fuel cell. This work will be supplemented and expanded under the Ford contract with the Department of Energy to develop the FCEV and its fuel infrastructure.

Thomas, C.E.; James, B.D.

1995-07-01T23:59:59.000Z

351

Phosphoric acid fuel cells in residential applications: Final report  

DOE Green Energy (OSTI)

The residential market for the phosphoric acid fuel cell (PAFC) was assessed for the states of the Northeast and North Central census regions. The investment that could be supported by the fuel savings of a 1 kw PAFC installed in 1992 would be in the range of $1300-$1800, based on a 5 year pay out. The most critical market factor affecting the economics of the fuel cell in residential application is the price differential between electricity and natural gas. The fuel cell looks more attractive in the populous states of the Northeast and North Central region as the differential between gas and electricity prices is 27% more than that for the national average. Extending application of the fuel cell to meet residential space heating needs look unattractive. In space heating the return comes from more efficient use of gas rather than reducing purchase of high priced electricity and the energy requirement varies dramatically over the season leading to poor fuel cell capacity utilization. This analysis provides several valuable results useful in formulating future fuel cell research plans. 19 tabs.

Hackworth, J.H.; Goudarzi, L.; Griswold, D.

1987-06-01T23:59:59.000Z

352

TRIGA high wt -% LEU fuel development program. Final report  

SciTech Connect

The principal purpose of this work was to investigate the characteristics of TRIGA fuel where the contained U-235 was in a relatively high weight percent (wt %) of LEU (low enriched uranium - enrichment of less than 20%) rather than a relatively low weight percent of HEU (high enriched uranium). Fuel with up to 45 wt % U was fabricated and found to be acceptable after metallurgical examinations, fission product retention tests and physical property examinations. Design and safety analysis studies also indicated acceptable prompt negative temperature coefficient and core lifetime characteristics for these fuels.

West, G.B.

1980-07-01T23:59:59.000Z

353

Experiences from Ethanol Buses and Fuel Station Report - La Spezia | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - La Spezia Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary Name: Experiences from Ethanol Buses and Fuel Station Report - La Spezia Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report summarizes the introduction and utilization of E95 buses and E95 pumps in the region of La Spezia (Italy) within the framework of the BioEthanol for Sustainable Transport (BEST) project. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

354

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices  

Science Conference Proceedings (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

Eudy, L.; Chandler, K.

2011-10-01T23:59:59.000Z

355

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report  

DOE Green Energy (OSTI)

SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

Eudy, L.; Chandler, K.

2013-01-01T23:59:59.000Z

356

Preliminary assessment of the gaseous fuels aftermarket conversion industry. Final report  

Science Conference Proceedings (OSTI)

The purpose of the report is to provide information to be used in assessing the potential impacts of EPA's proposed Gaseous Fuels and Clean Fuel Fleet rulemakings on the aftermarket conversion industry. Therefore, the report will focus on issues germane to determining these impacts (such as financial profiles of companies involved, future trends in industry development and sales, and costs of complying with conversion requirements) rather than assessing the viability of current technologies or the emissions benefits of alternative fuels. Moreover, the report focuses on conversions to CNG and LPG as conversions to these fuels are most viable at this time, even though EPA's proposed conversion regulations could potentially apply to any fuel (e.g., liquid natural gas).

Not Available

1992-09-28T23:59:59.000Z

357

Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995  

DOE Green Energy (OSTI)

This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

NONE

1995-03-01T23:59:59.000Z

358

Feasibility study of repowering the USCGC vindicator (WMEC-3) with modular diesel fueled direct fuel cells. Final report  

SciTech Connect

In 1988, AEL was awarded a Small Business Innovation Research (SBIR) Phase I contract on Navy Topic N88-94 by the NAVSEA RD Officer, Code 03R. In 1990, this topic moved to Phase II with a contract involving the lab demonstration of the use of diesel type fuel in high temperature molten carbonate or Direct Fuel Cells (DFCs). The Phase II work was successfully completed in 1992. In 1995, Navy Code 03R agreed to transfer Topic N88-94 to the USCG RD Office, G-SIR. The Phase III Feasibility Study was awarded to AEL in 1996 to perform the work described in this report. The USCGC VINDICATOR (WMEC-3) has been evaluated as the candidate ship for fuel cell repowering at 2.58 MW. It is a former T-AGOS ship with diesel-electric propulsion and ship`s service. The four 600 kW diesel generators (2.4 MW) would be replaced with twelve 215 kW DFC one-sided-fit fuel cell modules embodying a `no-maintenance` rapid changeout approach. The repowered ship would be faster, consume half of the fuel for the equivalent range, be super-quiet, be air pollution-free, cut the crew complement and produce potable water onboard as a byproduct. The study evaluated technical aspects of fuel cells, naval architectural removals and additions, maintenance, risk and cost-effectiveness issues. The use of electric utility type DFCs, with the cost reduction and mass production advantages of this on-land marketplace will make possible early introduction of marine-derivative fuel cell power plants for ship applications. It is concluded that repowering ships with fuel cells is feasible and that the next step is a Preliminary Design.

Kumm, W.H.; Lisie, H.L.

1997-05-01T23:59:59.000Z

359

Low enrichment fuel conversion for Iowa State University. Final report  

SciTech Connect

The UTR-10 research and teaching reactor at Iowa State University (ISU) has been converted from high-enriched fuel (HEU) to low- enriched fuel (LEU) under Grant No. DE-FG702-87ER75360 from the Department of Energy (DOE). The original contract period was August 1, 1987 to July 31, 1989. The contract was extended to February 28, 1991 without additional funding. Because of delays in receiving the LEU fuel and the requirement for disassembly of the HEU assemblies, the contract was renewed first through May 31, 1992, then through May 31, 1993 with additional funding, and then again through July 31, 1994 with no additional funding. In mid-August the BMI cask was delivered to Iowa State. Preparations are underway to ship the HEU fuel when NRC license amendments for the cask are approved.

Bullen, D.B.; Wendt, S.E.

1996-10-17T23:59:59.000Z

360

Technology assessment of alternative transportation fuels. Annual report  

DOE Green Energy (OSTI)

A brief summary is presented of major accomplishments in a research program on the impact of synthetic fuels, electric vehicles, and railroad electification on energy consumption by the US transportation sector. (LCL)

Not Available

1978-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

2006 Alkaline Membrane Fuel Cell Workshop Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

AZ, USA Sponsored by Army Research Office (ARO) Principal Investigator Bryan Pivovar Fuel Cell Team Leader Los Alamos National Laboratory PO Box 1663, MS D429 Los Alamos, NM...

362

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

129 KB) Novel, Low-cost Solid Membrane Water Electrolyzer (Phase II Project), John A. Kosek, Giner, Inc. (PDF 149 KB) Complex Coolant Fluid for PEM Fuel Cell Systems, Satish C....

363

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Concept Project, Raymond Hobbs, Arizona Public Service (PDF 281 KB) NextEnergy Center Microgrid and Hydrogen Fueling Facility, Dave McLean, NextEnergy Center (PDF 113 KB) Back to...

364

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems, Richard Rocheleau, University of Hawaii (PDF 785 KB) NextEnergy Center Microgrid and Hydrogen Fueling Facility, David McLean, NextEnergy Center (PDF 452 KB) Back to...

365

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy (PDF 186 KB) Development of HyTrans Model and Integrated Scenario Analysis, David Greene, Oak Ridge National Laboratory (PDF 304 KB) Fuel-Cycle...

366

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Annual Progress Report IV. Hydrogen Storage This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on hydrogen storage. Each technical report is available...

367

Licensed fuel facility status report: Inventory difference data, January 1986-June 1986  

SciTech Connect

NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

1987-02-01T23:59:59.000Z

368

Licensed fuel facility status report: Inventory difference data, July 1986-December 1986  

SciTech Connect

NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

1987-08-01T23:59:59.000Z

369

[Fuel substitution of vehicles by natural gas: Summaries of four final technical reports  

DOE Green Energy (OSTI)

This report contains summary information on three meetings and highlights of a fourth meeting held by the Society of Automotive Engineers on natural gas fueled vehicles. The meetings covered the following: Natural gas engine and vehicle technology; Safety aspects of alternately fueled vehicles; Catalysts and emission control--Meeting the legislative standards; and LNG--Strengthening the links.

NONE

1996-05-01T23:59:59.000Z

370

Methanol fuel vehicle demonstration: Exhaust emission testing. Final report  

DOE Green Energy (OSTI)

Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

Hyde, J.D. [New York State Dept. of Environmental Conservation, Albany, NY (US). Automotive Emissions Lab.

1993-07-01T23:59:59.000Z

371

Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report  

DOE Green Energy (OSTI)

This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

1997-05-01T23:59:59.000Z

372

The UCONABC usage control model  

Science Conference Proceedings (OSTI)

In this paper, we introduce the family of UCONABC models for usage control (UCON), which integrate Authorizations (A), oBligations (B), and Conditions (C). We call these core models because they address the essence of UCON, leaving ... Keywords: access control, digital rights management, privacy, trust, usage control

Jaehong Park; Ravi Sandhu

2004-02-01T23:59:59.000Z

373

Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas Emissions Identify Vehicle Usage Mission Constraints for Reducing Greenhouse Gas Emissions October 7, 2013 - 11:46am Addthis YOU ARE HERE: Step 2 As Federal agencies work to identify opportunities for right-sizing the fleet and replacing inefficient vehicles with new, efficient, and/or alternatively fueled models to reduce greenhouse gas (GHG) emissions, they should flag potential mission constraints associated with vehicle usage. This may involve further data collection to understand the mission considerations associated with individual vehicles. For instance, in Figure 1, Vehicle 004 appears to be underutilized, having both a low user-to-vehicle ratio and a relatively low time in use per day. However,

374

Fuel cell collaboration in the United States. A report to the Danish Partnership for Hydrogen and Fuel Cells  

SciTech Connect

The purpose of this report is to provide members of the Danish Partnership for Hydrogen and Fuel Cells with information regarding collaborative opportunities in the United States. The report is designed to provide an overview of key issues and activities and to provide guidance on strategies for finding U.S. research and commercial partners and gaining access to the U.S. market. Section 1 of this report provides an overview of the key drivers of policy at the federal and state government levels regarding hydrogen and fuel cell technologies and provides a perspective of the U.S. industry and key players. It also suggests three general pathways for accessing U.S. opportunities: enhancing visibility; developing vendor relationships; and establishing a formal presence in the U.S. The next sections summarize focus areas for commercial and research activity that currently are of the greatest interest in the U.S. Section 2 describes major programs within the federal government and national laboratories, and discusses various methods for identifying R and D funding opportunities, with an overview of federal acquisition regulations. Section 3 reviews the efforts of several state governments engaging the fuel cell industry as an economic driver and presents an overview of acquisition at the state level. Section 4 discusses university research and development (R and D) and university-industry partnerships. There are 12 appendices attached to the report. These appendices provide more detailed information regarding the key federal government agencies involved in fuel cells and hydrogen, state-specific policies and activities, national laboratories and universities, and other information regarding the fuel cell and hydrogen industry in the U.S. (Author)

Not Available

2011-08-15T23:59:59.000Z

375

Near Term Hybrid Passenger Vehicle Development Program. Phase I, Final report. Appendix A: mission analysis and performance specification studies. Volume II. Appendices  

DOE Green Energy (OSTI)

These appendices to the mission analysis report for the Near Term Hybrid Vehicle program contain data on passenger vehicle usage by purpose, trip length, travel speed, vehicle age, vehicle ownership and fuel economy, and US demographics. (LCL)

Traversi, M.; Barbarek, L.A.C.

1979-05-18T23:59:59.000Z

376

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XVII-1 XVII-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Alabama V.F.5 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-226 V.F.5 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-226 Arizona VI.3 Arizona State University: Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI-17 Arkansas XII.4 FedEx Freight: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment .

377

HTGR fuel recycle development program. Quarterly progress report for the period ending August 31, 1978  

SciTech Connect

The work reported includes the development of unit processes and equipment for reprocessing of High-Temperature Gas-Cooled Reactor (HTGR) fuel, the design and development of an integrated pilot line to demonstrate the head end of HTGR reprocessing using unirradiated fuel materials, and design work in support of Hot Engineering Tests (HET). Work is also described on tradeoff studies concerning the required design of facilities and equipment for the large-scale recycle of HTGR fuels in order to guide the development activities for HTGR fuel recycle.

1978-09-01T23:59:59.000Z

378

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

1981-06-25T23:59:59.000Z

379

High-pressure coal fuel processor development. Final report  

DOE Green Energy (OSTI)

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. [Caterpillar, Inc., Peoria, IL (United States)

1992-12-01T23:59:59.000Z

380

CleanFleet. Final report: Volume 4, fuel economy  

DOE Green Energy (OSTI)

Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day. The energy adjusted fuel economy (distance per energy consumed) of the alternative fuel vans operating on a typical FedEx duty cycle was between 13 percent lower and 4 percent higher than that of control vans from the same manufacturer. The driving range of vans operating on liquid and gaseous alternative fuels was 1 percent to 59 percent lower than for vans operating on unleaded gasoline. The driving range of the electric G-Vans was less than 50 miles. These comparisons are affected to varying degrees by differences in engine technology used in the alterative fuel and control vehicles. Relative fuel economy results from dynamometer emissions tests were generally consistent with those obtained from FedEx operations.

NONE

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clean air program: Design guidelines for bus transit systems using alcohol fuel (methanol and ethanol) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

This report provides design guidelines for the safe use of alcohol fuel (Methanol or Ethanol). It is part of a series of individual monographs being published by the FTA providing guidelines for the safe use of Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes, for the subject fuel, the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; DeMarco, V.R.; Hathaway, W.T.; Kangas, R.

1996-08-01T23:59:59.000Z

382

AECL/U.S. INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors Fuel Requirements and Down-Select Report  

SciTech Connect

This report documents the first milestone of the International Nuclear Energy Research Initiative (INERI) U.S./Euratom Joint Proposal 1.8 entitled “Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Light-Water Reactors.” The milestone represents the assessment and preliminary study of a variety of fuels that hold promise as transmutation and minor actinide burning fuel compositions for light-water reactors. The most promising fuels of interest to the participants on this INERI program have been selected for further study. These fuel compositions are discussed in this report.

William Carmack; Randy Fielding; Pavel Medvedev; Mitch Meyer

2005-08-01T23:59:59.000Z

383

Durable Catalysts for Fuel Cell Protection during Transient Conditions - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Radoslav T. Atanasoski (Primary Contact), George D. Vernstrom, Gregory M. Haugen, Jimmy Wong, Theresa M. Watschke, Ljiljana L. Atanasoska, Amy E. Hester Fuel Cell Components Program, 3M Company 3M Center, Building 201-2N-05 St. Paul, MN 55144-1000 Phone: (651) 733-9441 Email: rtatanasoski@mmm.com Timothy C. Crowtz, Jessie E. Harlow, Robbie J. Sanderson, David A. Stevens, Jeff R. Dahn Dalhousie University, Halifax, Nova Scotia, Canada David A. Cullen, Karren L. More, Shawn Reeves Oak Ridge National Laboratory, Oak Ridge, TN Deborah J. Myers, Xiaoping Wang, Ramachandran Subbaraman, Vojislav R. Stamenkovic, Nenad M. Markovic Argonne National Laboratory, LeMont, IL Sumit Kundu, Wendy Lee AFCC Automotive Fuel Cell Cooperation, Burnaby,

384

Direct Methanol Fuel Cell Material Handling Equipment Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Todd Ramsden National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3704 Email: todd.ramsden@nrel.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Subcontractor: Oorja Protonics, Inc., Fremont, CA Project Start Date: June 1, 2010 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Operate and maintain fuel-cell-powered material * handling equipment (MHE) using direct methanol fuel cell (DMFC) technology. Compile operational data of DMFCs and validate their * performance under real-world operating conditions. Provide an independent technology assessment that * focuses on DMFC system performance, operation, and

385

Hydrogen Fuel Quality Research and Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Tommy Rockward (Primary Contact), C. Quesada, K. Rau, E. Brosha, F. Garzon, R. Mukundan, and C. Padró Los Alamos National Laboratory (LANL) P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 667-9587 Email: trock@lanl.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: September 30, 2015 Fiscal Year (FY) 2012 Objectives Determine the allowable levels of hydrogen fuel * contaminants in support of the development of science- based international standards for hydrogen fuel quality (International Organization for Standardization [ISO] TC197 WG-12). Validate the ASTM International test method for * determining low levels of non-hydrogen constituents.

386

Hydrogen by Wire - Home Fueling System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Luke T. Dalton Proton Energy Systems 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2128 Email: ldalton@protonenergy.com DOE Manager HQ: Eric L. Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contract Number: DE-SC0001149 Project Start Date: August 15, 2010 Project End Date: August 14, 2012 Fiscal Year (FY) 2012 Objectives Develop enabling technologies for 350-bar hydrogen * home fueling Design key electrolysis cell stack and system components * Fabricate, inspect and assemble prototype components * Demonstrate prototype 350-bar hydrogen generation * Demonstrate prototype 350-bar home fueling technologies * Technical Barriers This project addresses the following technical barriers

387

Final Technical Report: Residential Fuel Cell Demonstration by the Delaware County Electric Cooperative, Inc.  

Science Conference Proceedings (OSTI)

This demonstration project contributes to the knowledge base in the area of fuel cells in stationary applications, propane fuel cells, edge-of-grid applications for fuel cells, and energy storage in combination with fuel cells. The project demonstrated that it is technically feasible to meet the whole-house electrical energy needs of a typical upstate New York residence with a 5-kW fuel cell in combination with in-home energy storage without any major modifications to the residence or modifications to the consumption patterns of the residents of the home. The use of a fuel cell at constant output power through a 120-Volt inverter leads to system performance issues including: • relatively poor power quality as quantified by the IEEE-defined short term flicker parameter • relatively low overall system efficiency Each of these issues is discussed in detail in the text of this report. The fuel cell performed well over the 1-year demonstration period in terms of availability and efficiency of conversion from chemical energy (propane) to electrical energy at the fuel cell output terminals. Another strength of fuel cell performance in the demonstration was the low requirements for maintenance and repair on the fuel cell. The project uncovered a new and important installation consideration for propane fuel cells. Alcohol added to new propane storage tanks is preferentially absorbed on the surface of some fuel cell reformer desulfurization filters. The experience on this project indicates that special attention must be paid to the volume and composition of propane tank additives. Size, composition, and replacement schedules for the de-sulfurization filter bed should be adjusted to account for propane tank additives to avoid sulfur poisoning of fuel cell stacks. Despite good overall technical performance of the fuel cell and the whole energy system, the demonstration showed that such a system is not economically feasible as compared to other commercially available technologies such as propane reciprocating engine generators.

Mark Hilson Schneider

2007-06-06T23:59:59.000Z

388

2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL CELL TECHNOLOGIES FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2011 i Authors This report was a collaborative effort by staff of the Breakthrough Technologies Institute, Inc., in Washington, DC. Acknowledgement The authors relied upon the hard work and valuable contributions of many men and women in government and in the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance in the preparation of this report. The authors also wish to thank Lisa Callaghan- Jerram of Pike Research and Rachel Gelman of the National Renewable Energy Laboratory, and the many others who made this report possible. ii Contents List of Figures ............................................................................................................................................... iv

389

Hydrogen and Fuel Cell Technical Advisory Committee Biennial Report to the Secretary of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

and Fuel Cell and Fuel Cell Technical Advisory Committee Biennial Report to the Secretary of Energy A Letter Report Prepared by the Hydrogen and Fuel Cell Technical Advisory Committee Covering Activities of October 2006 to August 2007 Fulfilling the Requirements of the 2005 Energy Policy Act, Section 807 of Title VIII, Hydrogen September 10, 2007 September 10, 2007 The Honorable Samuel W. Bodman Secretary of Energy 7A-257 Forrestal Building U.S. Department of Energy 1000 Independence Avenue, SW Washington, DC 20585 Dear Mr. Secretary: On behalf of the Hydrogen and Fuel Cell Technical Advisory Committee (HTAC or Committee), we are pleased to submit for your consideration our first report. This letter report summarizes the Committee's findings and recommendations developed during the period October 2006 -

390

Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and...  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-09-16343 Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results James E. Francfort Richard B. Carlson Mindy L. Kirkpatrick Matthew G. Shirk John G. Smart...

391

Liquid fossil-fuel technology. Quarterly technical progress report, October-December 1982  

Science Conference Proceedings (OSTI)

Progress accomplished for the quarter ending December 1982 is reported for the following research areas: liquid fossil fuel cycle; extraction (technology assessment, gas research, oil research); liquid processing (characterization, thermodynamics, processing technology); utilization; and project integration and technology transfer. (ATT)

Linville, B. (ed.)

1982-01-01T23:59:59.000Z

392

Final Report - MEA and Stack Durability for PEM Fuel Cells  

DOE Green Energy (OSTI)

Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets. The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain the same. (6) Through the use of statistical lifetime analysis methods, it is possible to develop new MEAs with predicted durability approaching the DOE 2010 targets. (7) A segmented cell was developed that extend the resolution from ~ 40 to 121 segments for a 50cm2 active area single cell which allowed for more precise investigation of the local phenomena in a operating fuel cell. (8) The single cell concept was extended to a fuel size stack to allow the first of its kind monitoring and mapping of an operational fuel cell stack. An internal check used during this project involved evaluating the manufacturability of any new MEA component. If a more durable MEA component was developed in the lab, but could not be scaled-up to ‘high speed, high volume manufacturing’, then that component was not selected for the final MEA-fuel cell system demonstration. It is the intent of the team to commercialize new products developed under this project, but commercialization can not occur if the manufacture of said new components is difficult or if the price is significantly greater than existing products as to make the new components not cost competitive. Thus, the end result of this project is the creation of MEA and fuel cell system technology that is capable of meeting the DOEs 2010 target of 40,000 hours for stationary fuel cell systems (although this lifetime has not been demonstrated in laboratory or field testing yet) at a cost that is economically viable for the developing fuel cell industry. We have demonstrated over 2,000 hours of run time for the MEA and system developed under this project.

Yandrasits, Michael A.

2008-02-15T23:59:59.000Z

393

Fuel cells for transportation program: FY1997 national laboratory annual report  

DOE Green Energy (OSTI)

The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

NONE

1997-12-31T23:59:59.000Z

394

Molten Carbonate Fuel Cell (MCFC) Product Development Test. Second annual report  

DOE Green Energy (OSTI)

This is the second annual report covering progress made under DOE cooperative agreement DE-FC21-92MC29237, Molten Carbonate Fuel Cell Product Development Test. The project is for the design, construction, and testing of a 2MW carbonate fuel cell power plant in the City of Santa Clara, California. The report is divided into sections which describe the progress in various program activities, and provides an overview of the program, including the project objectives, site location, and schedule.

Not Available

1994-12-15T23:59:59.000Z

395

RADIOISOTOPE FUELED AUXILIARY POWER UNIT. Quarterly Progress Report No. 7, July-September 1958  

SciTech Connect

Progress made in the development of SNAP-1 and -3 is reported. SNAP-1 development reported includes: boiler development, fuel development, properties of cerium dioxide, materials corrosion, power conversion system development, shielding analysis, hazards evaluation, and ground test development. SNAP-3 development includes: power conversion analysis, thermoelectric generator development, and fuel element development. Information is given on the handling and transportation equipment for SNAP-1. (N.W.R.)

1963-10-31T23:59:59.000Z

396

Fuel property effects on engine combustion processes. Final report  

DOE Green Energy (OSTI)

A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

Cernansky, N.P.; Miller, D.L.

1995-04-27T23:59:59.000Z

397

Market assessment of fuel cell total energy systems summary report  

DOE Green Energy (OSTI)

An investigation of the potential market penetration of fuel cell total energy systems (FCTES) into the nonindustrial, single building market is summarized. Nine building types, two types of construction, and the ten Department of Energy (DOE) regions were used to model the market for the time period 1985--2000. Input data developed for the penetration model included size distributions of each building type and performance and cost characteristics of FCTES and competing conventional systems. Two fuel cell systems, fuel cell - heat pump and fuel cell - central boiler and chiller, were assumed to compete with two conventional systems, electric heat pump and central chiller-boiler models. Two fuel cell supply situations were considered: (a) one in which only 40 kW(e) modules were available, and (b) one in which a catalog of 25, 40, 100, and 250 kW(e) modules were available. Data characterizing the economic climate, the intended market, and system cost and performance were used to determine the present value of life-cycle costs for each system in each market segment. Two market models were used to estimate FCTES sales. In the first, the perfect market model, FCTES sales were assumed to occur in all segments in which that system had the lowest present-valued costs. In the second, a market diffusion model was used to obtain a more probable (and lower) sales estimate than that of the perfect market model. Results are presented as FCTES sales for each market segment by FCTES module size and the effect on primary energy use by fuel type.

Mixon, W.R.; Christian, J.E.; Jackson, W.L.; Pine, G.D.; Hagler, H.; Shanker, R.; Koppelman, L.; Greenstein, D.

1979-03-01T23:59:59.000Z

398

Final Technical Report for the MIT Annular Fuel Research Project  

SciTech Connect

MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research ENergy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in poer density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghuse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited.

Mujid S. Kazimi; Pavel Hejzlar

2008-01-31T23:59:59.000Z

399

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Usage and Refueling Trends to Minimize Greenhouse Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions October 7, 2013 - 11:42am Addthis YOU ARE HERE Step 2 Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized. Two examples of this type of analysis focus on: Alternative fuel consumption Vehicle utilization. Figure 1 - An image of a vertical, stacked bar chart titled 'Alternative Fuel Use in AFVs.' The frequency data axis is labeled 'Gallons of Gasoline Equivalent' with a scale of 0-1,400,000 in increments of 200,000. The stacked bar labeled 'CNG Dual Fuel Vehicles' shows CNG from 0-300,000 gallons and Gasoline from 300,000-800,000 gallons. The stacked bar labeled 'E-85 Flex Fuel Vehicles' shows E85 from 0-1,000,000 gallons and Gasoline from 1,000,000-1,250,000 gallons.

400

step 1: retrieve usage step 2: convert usage  

E-Print Network (OSTI)

planet #12;step 2: convert usage data to ghg electricity conversion EPA eGRID database provides state by state data on: lbs CO2 / MWh lbs NOx / MWH eGRID Massachusetts ­ specific conversion factors only

Paulsson, Johan

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Hydrogen and Fuel Cells Program: Reports to Congress  

NLE Websites -- All DOE Office Websites (Extended Search)

Roadmaps, and Vision Documents Program Records Annual Progress Reports Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities...

402

NREL: Hydrogen and Fuel Cells Research - New Report Analyzes...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Report Analyzes Options for Blending Hydrogen into Natural Gas Pipelines March 20, 2013 A new report by NREL hydrogen systems analysts explores the issues and opportunities...

403

Estimating Externalities of Hydro Fuel Cycles, Report 6  

DOE Green Energy (OSTI)

There are three major objectives of this hydropower study: (1) to implement the methodological concepts that were developed in the background document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles and, by so doing, to demonstrate their application to the hydroelectric fuel cycle (different fuel cycles have unique characteristics that need to be addressed in different ways); (2) to develop, given the time and resources, the best range of estimates of externalities associated with hydroelectric projects, using two benchmark projects at two reference sites in the US; and (3) to assess the state of the information that is available to support the estimation of externalities associated with the hydroelectric fuel cycle and, by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The main consideration in defining these objectives was a desire to have more information about externalities and a better method for estimating them. As set forth in the agreement between the US and the EC, the study is explicitly and intentionally not directed at any one audience. This study is about a methodology for estimating externalities. It is not about how to use estimates of externalities in a particular policy context.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1994-12-01T23:59:59.000Z

404

Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"  

Science Conference Proceedings (OSTI)

Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

Dr. Andrew Myers

2005-12-30T23:59:59.000Z

405

[Alternative fuel vehicles for clean cities]. Final report from the City of Philadelphia Managing Director`s Office  

DOE Green Energy (OSTI)

The City of Philadelphia was awarded a grant for the ``development of a Public Information Component for the Clean Cities Program involving alternative fuels usage within the city of Philadelphia and the surrounding counties in the Philadelphia region``. During the summer of 1993, it was felt that the public needed considerable information on the costs, benefits, emission data, conversion information, and infrastructure requirements. Embodied in the 1993 proposal was the notion that a model could be developed within some type of structure charged with the tasks of market introduction of alternative fuels in the Greater Philadelphia area in a concerted, comprehensive way. As originally envisioned, in executing this grant, the City had several objectives in mind. Among these were the following: the organizing of various media events to showcase alternative fuels usage; (2) to begin a networking process with fleet managers in the area; (3) to provide sources of information to fleet managers and others interested in, and concerned with the conversion to alternative fuels; (4) documentation on research and analysis associated with alternative fuels.

Hadalski, J.M.

1995-09-30T23:59:59.000Z

406

Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites December 2008 U.S. Department of Energy Office of Civilian Radioactive Waste Management Washington, D.C. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel The picture on the cover is the Connecticut Yankee Independent Spent Fuel Storage Installation site in Haddam, Connecticut, with 43 dry storage NRC-licensed dual-purpose (storage and transport) casks. ii Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel EXECUTIVE SUMMARY The House Appropriations Committee Print that accompanied the Consolidated Appropriations Act, 2008, requests that the U.S. Department of Energy (the Department):

407

SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports  

DOE Green Energy (OSTI)

This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

Eudy, L.; Chandler, K.

2012-05-01T23:59:59.000Z

408

An assessment of worldwide supercomputer usage  

SciTech Connect

This report provides a comparative study of advanced supercomputing usage in Japan and the United States as of Spring 1994. It is based on the findings of a group of US scientists whose careers have centered on programming, evaluating, and designing high-performance supercomputers for over ten years. The report is a follow-on to an assessment of supercomputing technology in Europe and Japan that was published in 1993. Whereas the previous study focused on supercomputer manufacturing capabilities, the primary focus of the current work was to compare where and how supercomputers are used. Research for this report was conducted through both literature studies and field research in Japan.

Wasserman, H.J.; Simmons, M.L.; Hayes, A.H.

1995-01-01T23:59:59.000Z

409

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

410

PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY  

SciTech Connect

The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

S. T. Khericha

2007-04-01T23:59:59.000Z

411

Development of a Turnkey Hydrogen Fueling Station Final Report  

Science Conference Proceedings (OSTI)

The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

2010-07-29T23:59:59.000Z

412

Advanced thermally stable jet fuels: Technical progress report, July 1994--September 1994  

DOE Green Energy (OSTI)

There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 3 subtasks which are described: Pyrolysis of n-alkylbenzenes; Thermal decomposition of n-tetradecane in near-critical region; and Re-examining the effects of reactant and inert gas pressure on tetradecane pyrolysis--Effect of cold volume in batch reactor. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Investigation of the quantitative degradation chemistry of fuels, is subtask, Effects of high surface area activated carbon and decalin on thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Screening potential jet fuel stabilizers using the model compound dodecane; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, is subtask, Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels. 25 refs., 64 figs., 22 tabs.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

1994-07-01T23:59:59.000Z

413

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

DOE Green Energy (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

414

Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994  

DOE Green Energy (OSTI)

There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation in a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

1995-02-01T23:59:59.000Z

415

Estimating Externalities of Coal Fuel Cycles, Report 3  

SciTech Connect

The agreement between the US DOE and the EC established the specific objectives of the study: (a) to develop a methodological framework that uses existing data and models to quantify the external costs and benefits of energy; (b) to demonstrate the application of the framework to estimate the externalities of the coal, biomass, oil, natural gas, hydro, nuclear, photovoltaic, and wind fuel cycles (by agreement with the EC, the US addressed the first six of these); and (c) to identify major gaps in the availability of information to quantify impacts, damages, benefits, and externalities of fuel cycles; and to suggest priorities for future research. The main consideration in defining these objectives was a desire to have more information about externalities, and a better method for estimating them.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1994-09-01T23:59:59.000Z

416

Hogged Wood Fuel Supply and Price Analysis : Final Report.  

SciTech Connect

This study discusses the factors that determine the supply and demand for hogged wood in the Pacific Northwest, with particular emphasis on the role of the regional pulp and paper industry and lumber industry. Because hogged wood is often a substitute for conventional fuels, the consumption and price of natural gas, electricity, fuel oil and coal are also addressed. A detailed and comprehensive examination of the indicies relating to the hogged wood market is provided, including analysis and graphing of all time series variables. A spreadsheet- based forecasting model is developed and presented with an emphasis on explaining the process used to arrive at the final model. 42 refs., 46 figs., 14 tabs. (MHB)

Biederman, Richard T.; Blazek, Christopher F.

1991-05-01T23:59:59.000Z

417

Winter fuels report. Week ending, October 21, 1994  

Science Conference Proceedings (OSTI)

Demand for distillate fuel oil is expected to show a slight decline this winter (October 1, 1994-March 31, 1995) from last, according to the Energy Information Administration`s (EIA) 4th Quarter 1994 Short-Term Energy Outlook (STEO) Mid-World Oil Price Case forecast. EIA projects winter demand to decline one percent to 3.3 million barrels per day, assuming normal weather conditions. The effects of expected moderate growth in the economy and industrial production will likely be offset by much warmer temperatures than those a year ago. EIA projects prices for both residential heating oil and diesel fuel to be moderately higher than prices last winter. Increases are likely, primarily because crude oil prices are expected to be higher than they were a year earlier (Table FE5).

Zitomer, M.; Griffith, A.; Zyren, J.

1994-10-01T23:59:59.000Z

418

FEASIBILITY REPORT FOR FABRICATION OF SNAP FUEL ELEMENTS  

SciTech Connect

The general requirements for the SNAP Reactor Cores include the fabrication of fuel elements. These elements consist nominally of 90 wt% zirconium-10 wt% highly enriched uranium (93% U/sup 235/) rods hydrided to an NH of 6.0-6.5 and machined. Alloying will be accomplished by triple arc melting. Forming will be done by extrusion, massive hydriding by techniques developed at Atomics International, and cladding by conventional means. (auth)

Kirsch, T.S.

1963-12-11T23:59:59.000Z

419

Messiah College Biodiesel Fuel Generation Project Final Technical Report  

SciTech Connect

Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

2012-03-30T23:59:59.000Z

420

Nuclear Fuel Cycle Reasoner: PNNL FY13 Report  

SciTech Connect

In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

Hohimer, Ryan E.; Strasburg, Jana D.

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Energy-efficient alcohol-fuel production. Technical final report  

Science Conference Proceedings (OSTI)

The proposed utilization schedule for the alcohol fuel plant and methane generator is to produce 180 proof ethanol during the spring, summer, and fall (April to October). The ethanol will be used in the farm tractors and trucks during the planting, growing, and harvesting seasons. Some alcohol can be stored for use during the winter. The still will not be operated during the winter (November to March) when the methane from the digester will be used to replace fuel oil for heating a swine farrowing building. There are tentative plans to develop a larger methane generator, which will utilize all of the manure (dairy, beef, horses, and swine) produced on the ISU farm. If this project is completed, there will be enough methane to produce all of the alcohol fuel needed to operate all of the farm equipment, heat the buildings, and possibly generate electricity for the farm. The methane generating system developed is working so well that there is a great deal of interest in expanding the project to where it could utilize all of the livestock waste on the farm for methane production.

Not Available

1982-01-01T23:59:59.000Z

422

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

423

Grease/fat waste utilized as a fuel. Final report  

Science Conference Proceedings (OSTI)

Chicken processing plants produce wastewater loaded with grease-oil-fat matter. Depending upon plant size, location, and pretreatment requirements some processing plants discharge untreated wastewater directly into publicly owned treatment works (POTW) while other plants pretreat, removing up to 98% of the grease-oil-fat (GOF) matter, prior to discharging the resulting effluent. The purpose of this study is to evaluate the energy potential of the GOF waste, analyze systems to separate the GOF waste from the process wastewater, select possible incineration systems which may utilize the GOF waste as fuel and recover the heat for plant use. The objective of this project is to theoretically determine if the GOF material, presently disposed of as waste, can be utilized as furnace fuel in a manner which is cost effective. Commercially available equipment in the areas of wastewater pretreatment, incineration, and heat recovery are analyzed for effective utilization. Results indicate that chicken processing plant GOF waste can be effectively utilized as fuel rather than disposed as waste which has compounded problems at landfills, treatment plants, oxidation pools, and receiving waters. 2 figures, 11 tables.

Davis, J.A.

1982-09-30T23:59:59.000Z

424

Sustainable Harvest for Food and Fuel Preliminary Food & Fuel Gap Analysis Report  

SciTech Connect

To promote economic growth and energy security, and to protect the environment, the U.S. is pursuing a national strategy of energy independence and climatic protection in which domestic renewable carbon-neutral biofuels displace 30 percent of U.S. oil consumption by the mid-21st century. Such fuels, including ethanol and biodiesel, will be produced from biological feed stocks (biomass). The availability of this billion-ton biomass will hinge on the application of modern scientific and engineering tools to create a highly-integrated biofuel production system. Efforts are underway to identify and develop energy crops, ranging from agricultural residues to genetically engineered perennials; to develop biology-based processing methods; and, to develop large-scale biorefineries to economically convert biomass into fuels. In addition to advancing the biomass-to-biofuel research and development agenda, policy makers are concurrently defining the correct mix of governmental supports and regulations. Given the volumes of biomass and fuels that must flow to successfully enact a national biomass strategy, policies must encourage large-scale markets to form and expand around a tightly integrated system of farmers, fuel producers and transporters, and markets over the course of decades. In formulating such policies, policy makers must address the complex interactions of social, technical, economic, and environmental factors that bound energy production and use. The Idaho National Laboratory (INL) is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy (DOE). The INL Bioenergy Program supports the DOE and the U.S. Department of Agriculture. Key multidisciplinary INL capabilities are being leveraged to address major science and technology needs associated with the cost-effective utilization of biomass. INL’s whole crop utilization (WCU) vision is focused on the use of the entire crop, including both the grain and traditionally discarded plant biomass to produce food, feed, fiber, energy, and value-added products.

Ray Grosshans; Kevin M. Kostelnik; Jake Jacobson

2007-04-01T23:59:59.000Z

425

Report of the Fuel Cycle Subcommittee of the Nuclear Energy Advisory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Subcommittee of the Nuclear Energy Fuel Cycle Subcommittee of the Nuclear Energy Advisory Committee Report of the Fuel Cycle Subcommittee of the Nuclear Energy Advisory Committee The Fuel Cycle Subcommittee (FCSC) of NEAC met in Washington, August 17- 19, 2010. DOE's new science-based approach to all matters related to nuclear energy is being implemented. The general approach was outlined to NEAC in the briefing on the NE Roadmap. There are many new directions being considered, and this meeting of the FCSC was to brief the Subcommittee on new directions in nuclear energy that might go beyond our present 4.5% enriched LWRs. The goal is to develop new concepts that have advantages over present systems in some combination of cost, passive safety, proliferation resistance, sustainability, and used fuel disposition.

426

Report of the Fuel Cycle Subcommittee of the Nuclear Energy Advisory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Fuel Cycle Subcommittee of the Nuclear Energy of the Fuel Cycle Subcommittee of the Nuclear Energy Advisory Committee Report of the Fuel Cycle Subcommittee of the Nuclear Energy Advisory Committee The Fuel Cycle Subcommittee (FCSC) of NEAC met in Washington, August 17- 19, 2010. DOE's new science-based approach to all matters related to nuclear energy is being implemented. The general approach was outlined to NEAC in the briefing on the NE Roadmap. There are many new directions being considered, and this meeting of the FCSC was to brief the Subcommittee on new directions in nuclear energy that might go beyond our present 4.5% enriched LWRs. The goal is to develop new concepts that have advantages over present systems in some combination of cost, passive safety, proliferation resistance, sustainability, and used fuel disposition.

427

Advanced thermally stable jet fuels. Technical progress report, April 1995--June 1995  

Science Conference Proceedings (OSTI)

Research continued on thermally stable jet fuel from coal liquids and petroleum distillates. The oxidative and thermal stabilities of ten fuels have been studied by differential scanning calorimetry and in microautoclave reactors. The compositions of the stressed fuels (as well as the unreacted fuels) were characterized by gas chromatography and gas chromatography/mass spectrometry. In addition, simulated distillation curves were determined by thermogravimetric analysis. The product distributions and reaction mechanisms for the thermal decomposition of n-alkanes in near-critical and supercritical regions were studied. The emphasis of the work in this reporting period has been placed on reaction mechanisms and product distributions. Work is continuing on obtaining additional {sup 13}C-labeled jet fuel components for future thermal stressing studies. Compounds of current interest include 6-{sup 13}C-dodecane and 1-cyclohexyl-1-{sup 13}C-hexane. Further analysis of the formation of solids from the thermal stressing of decane and decalin has been performed.

Schobert, H.H.; Eser, S.; Boehman, A.; Song, C. [and others

1995-08-01T23:59:59.000Z

428

Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary  

Science Conference Proceedings (OSTI)

The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

Shedrow, C.B.

1999-11-29T23:59:59.000Z

429

Novel carbon-ion fuel cells. Quarterly technical report, April--June 1996  

DOE Green Energy (OSTI)

This report presents research to develop a new type of of fuel cell using a solid electrolyte that transports carbon ions. This new class of fuel cell would use solid C dissolved in molten metal (carbide) as a fuel reservoir and anode; thus expensive gas or liquid fuel would not be required. Thermodynamic efficiency of carbon-ion fuel cells is reviewed, as are electrolyte crystal structures (oxide and fluorite carbides). The sequence of laboratory research procedures for developing a solid C-ion electrolyte and to determine the ionic conductivity of C ions therein is outlined; results of the laboratory research to date are summarized, including XRD analysis of crystal structures and transition temperatures of carbides (La, Ce, Be, Al) and SIMS of carbon isotopes.

Cocks, F.H.

1996-11-01T23:59:59.000Z

430

Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report  

SciTech Connect

This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in fiscal Year (FY)-1979 and early FY-1980. Volume 3 contains reports from 6 government contractors on LPG, anhydrous ammonia, and hydrogen energy systems. Report subjects include: simultaneous boiling and spreading of liquefied petroleum gas (LPG) on water; LPG safety research; state-of-the-art of release prevention and control technology in the LPG industry; ammonia: an introductory assessment of safety and environmental control information; ammonia as a fuel, and hydrogen safety and environmental control assessment.

1980-10-01T23:59:59.000Z

431

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

DOE Green Energy (OSTI)

The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

1993-05-01T23:59:59.000Z

432

Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report  

Science Conference Proceedings (OSTI)

The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

Mills, G. [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

1993-05-01T23:59:59.000Z

433

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1 II. Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II-1 II.0 Hydrogen Production Sub-Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II-3 II.A Distributed Biomass-Derived Liquids Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-11 II.A.1 Pacific Northwest National Laboratory: Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

434

Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices  

DOE Green Energy (OSTI)

This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The evaluation period in this report (January 2008 through February 2009) has been chosen to coincide with a UTC Power propulsion system changeout that occurred on January 15, 2008.

Chandler, K.; Eudy, L.

2009-05-01T23:59:59.000Z

435

Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982  

SciTech Connect

This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

436

Final Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL  

Office of Scientific and Technical Information (OSTI)

Project Report Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL Nuclear Engineering Education Research Program (grant # DE-FG07-99ID13767) Rodney C. Ewing (co-PI) Lumin Wang (co-PI) October 30,2002 For the Period of 07/01/1999 to 06/30/2002 Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 1 1. Background Excess actinides result from the dismantlement of nuclear weapons (239Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241Am, Cm and 237Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burn- up of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-

437

Exhaust emission testing of two ethanol variable fueled 1992 Chevrolet Luminas. Test results - 1993. Technical report  

SciTech Connect

The report describes the exhaust emission testing results for two 1992 low-mileage Chevrolet Lumina ethanol variable fuel vehicles. The vehicles were tested on both Indolene and E85 fuel using the Federal Test Procedure (FTP) for exhaust emissions. In the future, the EPA will retest the Luminas at future mileage accumulations of 20,000, 50,000 and possibly 100,000. At these future mileage accumulations, the vehicles will also be tested using intermediate fuel blends for both exhaust and evaporative emissions.

Samulski, M.

1994-01-01T23:59:59.000Z

438

Shale oil: potential for electric power fuels. Final report  

SciTech Connect

This paper reviews the status of the oil shale industry and the impact it will have on the electric power industry in the years 1990 to 2000. The nontechnical problems are not addressed in detail as they have been suitably dealt with elsewhere. The available technologies for producing shale oil are reviewed. The major problem most processes face today is scale-up to commercial size. An industry of nearly 400,000 BPD is anticipated for 1990. The industry could grow to 1,000,000 BPD by the year 2000 with the introduction of second generation processes in the 1990s. The availability of shale oil may have a direct impact on the electric power industry initially. As the refineries improve their ability to handle shale oil, the availability of this fuel to the electric power industry for direct firing will decrease. The offgas from the oil shale industry could be of major importance to the electric power industry. One-quarter to one-third of the energy produced by the oil shale industry will be in the form of offgas (the gas produced in the retorting process). This will usually be a low Btu gas and therefore likely to be utilized on site to make electricity. The high yield of distillate fuels from shale oil could be important to the utility industry's demand for distillate fuels in peak shaving power generation. In addition to the potential supply implications, a shale oil industry and the people to support it will represent a substantial increase in power generation required in the shale oil region.

Gragg, M.; Lumpkin, R.E.; Guthrie, H.D.; Woinsky, S.G.

1981-12-01T23:59:59.000Z

439

Fossil fuel derivatives with reduced carbon. Phase I final report  

Science Conference Proceedings (OSTI)

This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

1999-06-30T23:59:59.000Z

440

Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1982  

Science Conference Proceedings (OSTI)

Highlights of research activities at Bartlesville Energy Technology Center for the quarter ending March 1982 are summarized. Major research areas are: liquid fossil fuel cycle; extraction (resource assessment and enhanced production); processing (characterization, thermodynamics, processing technology); utilization; and product integration and technology transfer. Special reports include: EOR data base - major new industry tool; properties of crude oils available via telephone hookup; alternative fuels data bank stresses transportation. (ATT)

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel usage reporting" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Texas Bi-Fuel Liquefied Petroleum Gas Pickup Study: Final Report  

DOE Green Energy (OSTI)

Alternative fuels may be an effective means for decreasing America's dependence on imported oil; creating new jobs; and reducing emissions of greenhouse gases, exhaust toxics, and ozone-forming hydrocarbons. However, data regarding in-use fuel economy and maintenance characteristics of alternative fuel vehicles (AFVs) have been limited in availability. This study was undertaken to compare the operating and maintenance characteristics of bi-fuel vehicles (which use liquefied petroleum gas, or propane, as the primary fuel) to those of nominally identical gasoline vehicles. In Texas, liquefied petroleum gas is one of the most widely used alternative fuels. The largest fleet in Texas, operated by the Texas Department of Transportation (TxDOT), has hundred of bi-fuel (LPG and gasoline) vehicles operating in normal daily service. The project was conducted over a 2-year period, including 18 months (April 1997-September 1998) of data collection on operations, maintenance, and fuel consumption of the vehicles under study. This report summarizes the project and its results.

Huang, Y.; Matthews, R. D.; Popova, E. T.

1999-05-24T23:59:59.000Z

442

Liquid Tin Anode Direct Coal Fuel Cell Final Program Report  

DOE Green Energy (OSTI)

This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

Tao, Thomas

2012-01-26T23:59:59.000Z