Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources  

SciTech Connect (OSTI)

In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

Bays, J. Timothy; King, David L.

2013-05-10T23:59:59.000Z

2

Alternative Fuels Data Center: Low Carbon Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Carbon Fuel Low Carbon Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Low Carbon Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Low Carbon Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Low Carbon Fuel Standard on Google Bookmark Alternative Fuels Data Center: Low Carbon Fuel Standard on Delicious Rank Alternative Fuels Data Center: Low Carbon Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Low Carbon Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Carbon Fuel Standard Low Carbon Fuel Standard California's Low Carbon Fuel Standard (LCFS) Program requires a reduction in the carbon intensity of transportation

3

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

4

Alternative Fuels Data Center: Low Carbon Fuels Standard Collaboration  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Carbon Fuels Low Carbon Fuels Standard Collaboration to someone by E-mail Share Alternative Fuels Data Center: Low Carbon Fuels Standard Collaboration on Facebook Tweet about Alternative Fuels Data Center: Low Carbon Fuels Standard Collaboration on Twitter Bookmark Alternative Fuels Data Center: Low Carbon Fuels Standard Collaboration on Google Bookmark Alternative Fuels Data Center: Low Carbon Fuels Standard Collaboration on Delicious Rank Alternative Fuels Data Center: Low Carbon Fuels Standard Collaboration on Digg Find More places to share Alternative Fuels Data Center: Low Carbon Fuels Standard Collaboration on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Carbon Fuels Standard Collaboration The New Hampshire Department of Environmental Services may engage in

5

FUEL CELLS – MOLTEN CARBONATE FUEL CELLS | Overview  

Science Journals Connector (OSTI)

The molten carbonate fuel cell (MCFC) emerged during the twentieth century as one of the key fuel cell types. It uses an electrolyte of alkali metal carbonates, operates typically at 650 °C, and is best suited to hydrocarbon fuels such as natural gas, coal gas, or biogas. The high operating temperature enables such fuels to be fed directly to the MCFC stacks, leading to conversion efficiencies greater than 50%. Molten carbonate fuel cell systems are ideally suited to applications that need continuous base load power. The first commercial systems, at the 300 kW scale, are therefore being used in applications such as hospitals and hotels.

A.L. Dicks

2009-01-01T23:59:59.000Z

6

Low Carbon Fuel Standards  

E-Print Network [OSTI]

S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

7

Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)  

SciTech Connect (OSTI)

This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

2012-10-01T23:59:59.000Z

8

California Low Carbon Fuels Infrastructure Investment Initiative...  

Broader source: Energy.gov (indexed) [DOE]

California Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and...

9

Carbonate fuel cell anodes  

DOE Patents [OSTI]

A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

Donado, R.A.; Hrdina, K.E.; Remick, R.J.

1993-04-27T23:59:59.000Z

10

Low Carbon Fuel Standards  

E-Print Network [OSTI]

gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

11

Types of Fuel Cells | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells Current Technology Types of Fuel Cells Types of Fuel Cells Fuel cells are classified primarily by the kind of electrolyte they employ. This classification...

12

Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Carbon Fuel and Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement on AddThis.com...

13

Direct Carbon Fuel Cell Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Carbon Fuel Cell Workshop Direct Carbon Fuel Cell Workshop July 30, 2003 Table of Contents Disclaimer Papers and Presentations Carbon Anode Electrochemistry Carbon Conversion Fuel Cells Coal Preprocessing Prior to Introduction Into the Fuel Cell Potential Market Applications for Direct Carbon Fuel Cells Discussion of Key R&D Needs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

14

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

order for the low carbon fuel standard, 2012. URL http://mediated e?ects of low carbon fuel policies. AgBioForum, 15(Gas Reductions under Low Carbon Fuel Standards? American

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

15

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

security, renewable energy, bio- fuel, carbon tax, mandate,and taxpayer cost of bio- fuel excise tax credits dwarf the

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

16

Carbon-based Fuel Cell  

SciTech Connect (OSTI)

The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

Steven S. C. Chuang

2005-08-31T23:59:59.000Z

17

Thermodynamics of an Aqueous-Alkaline/Carbonate Carbon Fuel Cell  

Science Journals Connector (OSTI)

In view of the fact that aqueous-alkaline hydrogen fuel cells have been used to power an Austin car and a commercial Black Cab in London, these recent results suggest the potential use of aqueous-alkaline carbon fuel cells for vehicular transportation. ... Thus, biocarbons can be a sustainable, environmentally friendly fuel for carbon fuel cell applications, whose production complements the production of bioethanol and biodiesel fuels in a biomass refinery. ... Our interest in the aqueous-alkaline biocarbon fuel cell is stimulated by the fact that aqueous-alkaline hydrogen fuel cells have been used to power an Austin car and a commercial London Black Cab.29-31 Thus, the development of a functional aqueous-alkaline carbon fuel cell could facilitate the replacement of non-renewable, liquid hydrocarbon transportation fuels by renewable, solid biocarbons. ...

Michael Jerry Antal, Jr.; Gérard C. Nihous

2008-02-28T23:59:59.000Z

18

Review of Fuels for Direct Carbon Fuel Cells  

Science Journals Connector (OSTI)

Review of Fuels for Direct Carbon Fuel Cells ... After optimization for minimum activation polarization, the authors then produced impedance spectra to assess cell performance and achieved a peak power density of around 18 and 53 mW cm–2 at 700 and 800 °C, respectively. ... solid oxide fuel cell system under 600° just by optimizing the anode microstructure and operating conditions. ...

Adam C. Rady; Sarbjit Giddey; Sukhvinder P. S. Badwal; Bradley P. Ladewig; Sankar Bhattacharya

2012-01-31T23:59:59.000Z

19

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

biofuels. Let p denote the fuel price, q denote the quantitya carbon tax, domestic fuel price increases, and domesticbiofuel mandate on domestic fuel price, fuel, h dq t d ? dp

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

20

Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels  

DOE Patents [OSTI]

The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

Subramanian, Vaidyanathan; Murugesan, Sankaran

2014-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Synthetic fuels, carbon dioxide and climate  

Science Journals Connector (OSTI)

The observed increase in atmospheric carbon dioxide (CO2) has been attributed to the use of fossil fuels. There is concern that the generation and use of synthetic fuels derived from oil shale and coal will accelerate the increase of CO2.

Alex R. Sapre; John R. Hummel; Ruth A. Reck

1982-01-01T23:59:59.000Z

22

Sulfur tolerant molten carbonate fuel cell anode and process  

DOE Patents [OSTI]

Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

Remick, Robert J. (Naperville, IL)

1990-01-01T23:59:59.000Z

23

Liquid fuels perspective on ultra low carbon vehicles | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels perspective on ultra low carbon vehicles Fuels challenges in the evolving global energy market deer11simnick.pdf More Documents & Publications Green Racing Initiative:...

24

Greenhouse Gas Reductions Under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

LCFS limits carbon emissions per unit of current energycarbon fuel standard expressed as a limit on the emissions per energy

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2007-01-01T23:59:59.000Z

25

Greenhouse Gas Reductions under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

LCFS limits carbon emissions per unit of current energycarbon fuel standard expressed as a limit on the emissions per energy

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2008-01-01T23:59:59.000Z

26

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis  

E-Print Network [OSTI]

Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis ¨Ozge I¸slegen Graduate School excellent research assistance. #12;Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis Abstract: For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer

Silver, Whendee

27

Structure of middle distillate fuels on the atomic carbon and hydrogen to carbon ratio at alpha position to aromatic rings  

SciTech Connect (OSTI)

The alkyl, naphthenic, or total carbon atoms of the functional groups at alpha position to aromatic rings and their hydrogen to carbon ratio are some of the important parameters for structural analysis of fossil fuel products. In this paper, the authors present a number of novel formula-structure relationships for precise determination of different carbon atom types at alpha position to aromatic rings and the average number of hydrogens per alpha-carbon.

Glavincevski, B.; Gulder, O.L.; Gardner, L

1988-01-01T23:59:59.000Z

28

Exhaust and evaporative emissions from gasohol-type fuels  

SciTech Connect (OSTI)

An experimental study was conducted at the US Department of Energy's Bartlesville (Okla.) Energy Technology Center in cooperation with the Environmental Protection Agency to determine the characteristics of gasohol-type fuels with respect to exhaust and evaporative emissions. Five fuels, 2 gasolines (reference and commercial unleaded) and 3 gasohols (90% gasoline/10% ethanol) were tested in a fleet of 10 late-model automobiles. Six were equipped with oxidation catalysts and 4 were equipped with three-way catalysts. The results obtained from the 1978 Federal test procedure indicate that the addition of ethanol to the base gasoline, whether it is a reference fuel (Indolene) or a commercial fuel, has measurable effects on exhaust and evaporative emissions. However, on the average, the magnitude of these effects was generally within the 1978 emission standards established by the EPA. More specifically, the addition of ethanol, in the case of vehicles with oxidation catalysts, decreased hydrocarbons by an average of 27%, decreased carbon monoxide by 43%, decreased volumetric fuel economy by 3%, and increased oxides of nitrogen by 16%. Evaporative emissions were increased by 40%. In the case of vehicles with three-way catalysts, the addition of ethanol to the base fuel, on the average, decreased carbon monoxide by 7%, decreased fuel economy by 5%, increased hydrocarbons by 12%, increased oxides of nitrogen by 7%, and increased evaporative emissions by 49%.

Naman, T.M.; Allsup, J.R.

1980-08-01T23:59:59.000Z

29

Affordable, Low-Carbon Diesel Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Affordable, Low-Carbon Diesel Fuel Affordable, Low-Carbon Diesel Fuel from Domestic Coal and Biomass January 14, 2009 DOE/NETL-2009/1349 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement,

30

Fuels for fuel cells: Fuel and catalyst effects on carbon formation  

SciTech Connect (OSTI)

The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

Borup, R. L. (Rodney L.); Inbody, M. A. (Michael A.); Perry, W. L. (William Lee); Parkinson, W. J. (William Jerry),

2002-01-01T23:59:59.000Z

31

Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels  

SciTech Connect (OSTI)

This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2}) that simulates the composition of the coal syngas. At 800 C, the stack achieved a power density of 1176 W, which represents the largest power level demonstrated for CO in the literature. Although the FB-DCFC performance results obtained in this project were definitely encouraging and promising for practical applications, DCFC approaches pose significant technical challenges that are specific to the particular DCFC scheme employed. Long term impact of coal contaminants, particularly sulfur, on the stability of cell components and cell performance is a critically important issue. Effective current collection in large area cells is another challenge. Lack of kinetic information on the Boudouard reactivity of wide ranging solid fuels, including various coals and biomass, necessitates empirical determination of such reaction parameters that will slow down development efforts. Scale up issues will also pose challenges during development of practical FB-DCFC prototypes for testing and validation. To overcome some of the more fundamental problems, initiation of federal support for DCFC is critically important for advancing and developing this exciting and promising technology for third generation electricity generation from coal, biomass and other solid fuels including waste.

Turgut Gur

2010-04-30T23:59:59.000Z

32

Carbon dioxide emission reduction using molten carbonate fuel cell systems  

Science Journals Connector (OSTI)

Abstract The contribution of the molten carbonate fuel cell system (MCFCs) to carbon dioxide (CO2) emission reduction in power application is analyzed. \\{MCFCs\\} can separate and concentrate CO2 emitted from traditional thermal power plants (PPs) without reducing the plant's overall energy efficiency. \\{MCFCs\\} can also be used by itself as an effective CO2 separator or concentrator by managing the anode gas stream to increase the heat utilization of the system. The CO2 separated and concentrated by \\{MCFCs\\} is most effectively captured by condensation. \\{MCFCs\\} is currently used as a CO2 separator only to a limited extent due to its high cost and relatively small scale operation. However, \\{MCFCs\\} will substantially contribute to reduce CO2 emissions in power generation applications in the near future.

Jung-Ho Wee

2014-01-01T23:59:59.000Z

33

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation`s carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. [Energy Research Corp., Danbury, CT (United States); Meyers, S.J. [Fluor Daniel, Inc., Irvine, CA (United States); Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-12-01T23:59:59.000Z

34

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect (OSTI)

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. (Energy Research Corp., Danbury, CT (United States)); Meyers, S.J. (Fluor Daniel, Inc., Irvine, CA (United States)); Hauserman, W.B. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-01-01T23:59:59.000Z

35

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption by Fuel Type, 1970-2020 Energy Consumption by Fuel Type, 1970-2020 Source: EIA, International Energy Outlook 2000 Previous slide Next slide Back to first slide View graphic version Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by

36

Electrolyte paste for molten carbonate fuel cells  

DOE Patents [OSTI]

The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

Bregoli, Lawrance J. (Southwick, MA); Pearson, Mark L. (New London, CT)

1995-01-01T23:59:59.000Z

37

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

A Low-Carbon Fuel Standard for California Part 1: TechnicalEnergy Air Quality, and Fuels 2000. Schwarzenegger, Arnold.Order S-01-07: Low Carbon Fuel Standard. Sacramento, CA.

2007-01-01T23:59:59.000Z

38

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

ITS—RR—07—07 A Low-Carbon Fuel Standard for California PartEnergy Commission. A Low Carbon Fuel Standard For CaliforniaPont, et al. (2007). Full Fuel Cycle Assessment Well To Tank

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

39

Fossil Fuels and Carbon Capture and Storage  

Science Journals Connector (OSTI)

Reducing CO2...emissions, including those from the energy sector, ­presents a major challenge to the world at large. Fossil fuels provide two-thirds of the world’s electricity, with coal, in particular, the fuel ...

Keith Burnard; Sean McCoy

2012-01-01T23:59:59.000Z

40

Fuel assembly transfer basket for pool type nuclear reactor vessels  

DOE Patents [OSTI]

A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation  

SciTech Connect (OSTI)

Hydrogen he1 cells have been under development for a number of years and are now nearing commercial applications. Direct carbon fuel cells, heretofore, have not reached practical stages of development because of problems in fuel reactivity and cell configuration. The carbon/air fuel cell reaction (C + O{sub 2} = CO{sub 2}) has the advantage of having a nearly zero entropy change. This allows a theoretical efficiency of 100 % at 700-800 C. The activities of the C fuel and CO{sub 2} product do not change during consumption of the fuel. Consequently, the EMF is invariant; this raises the possibility of 100% fuel utilization in a single pass. (In contrast, the high-temperature hydrogen fuel cell has a theoretical efficiency of and changes in fuel activity limit practical utilizations to 75-85%.) A direct carbon fuel cell is currently being developed that utilizes reactive carbon particulates wetted by a molten carbonate electrolyte. Pure COZ is evolved at the anode and oxygen from air is consumed at the cathode. Electrochemical data is reported here for the carbon/air cell utilizing carbons derived from he1 oil pyrolysis, purified coal, purified bio-char and petroleum coke. At 800 O C, a voltage efficiency of 80% was measured at power densities of 0.5-1 kW/m2. Carbon and hydrogen fuels may be produced simultaneously at lugh efficiency from: (1) natural gas, by thermal decomposition, (2) petroleum, by coking or pyrolysis of distillates, (3) coal, by sequential hydrogasification to methane and thermal pyrolysis of the methane, with recycle of the hydrogen, and (4) biomass, similarly by sequential hydrogenation and thermal pyrolysis. Fuel production data may be combined with direct C and H2 fuel cell operating data for power cycle estimates. Thermal to electric efficiencies indicate 80% HHV [85% LHV] for petroleum, 75.5% HHV [83.4% LHV] for natural gas and 68.3% HHV [70.8% LHV] for lignite coal. Possible benefits of integrated carbon and hydrogen fuel cell power generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

Steinberg, M; Cooper, J F; Cherepy, N

2002-01-02T23:59:59.000Z

42

Oxygen electrode reaction in molten carbonate fuel cells  

SciTech Connect (OSTI)

Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

Appleby, A.J.; White, R.E.

1992-07-07T23:59:59.000Z

43

Ex-situ and In-situ Stability Studies of PEM Fuel Cell Catalysts: the effect of carbon type and humidification on the thermal degradation of carbon supported catalysts  

SciTech Connect (OSTI)

One of the most significant challenges for proton exchange membrane fuel cells in stationary power generation systems is lifetime, where 40,000 hours of operation with less than 10% decay in performance is desired. There are several different membrane electrode assembly (MEA) associated degradation mechanisms inhibiting MEAs from obtaining their desired lifetime targets. The focus of this research is on the loss of cathode surface area over time, which results in MEA performance losses, since MEA performance is proportional to cathode catalyst surface area. Two proposed mechanisms, support oxidation and platinum dissolution, are studied using different accelerated tests. These results are compared to cathode catalyst surface area loss data from real-time fuel cell tests in order to decouple the two degradation mechanisms.

Haugen, G. M.; Stevens, D. A.; Hicks, M. T.; Dahn, J. R.

2005-11-01T23:59:59.000Z

44

California Low Carbon Fuels Infrastructure Investment Initiative...  

Broader source: Energy.gov (indexed) [DOE]

* Transform entire existing gas stations into clean transportation hubs, offering new fuel options to a broader customer base * Create cost-effective efficiencies for quick...

45

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End...

46

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network [OSTI]

do fossil fuel carbon dioxide emissions from California go?do fossil fuel carbon dioxide emissions from California go?1° distribution of carbon dioxide emissions from fossil fuel

2008-01-01T23:59:59.000Z

47

Ocean Sequestration of Crop Residue Carbon: Recycling Fossil Fuel Carbon Back to Deep Sediments  

Science Journals Connector (OSTI)

burial of crop residues in the deep ocean (hereafter, CROPS: Crop Residue Oceanic Permanent Sequestration). ... As long as fuels exist with higher energy yield-to-carbon content (E/C) ratios than biomass, it will always be more energy efficient and less carbon polluting to sequester the biomass in the deep oceans, and use those fuels with higher E/C ratios for power generation, rather than to burn biomass for power generation. ...

Stuart E. Strand; Gregory Benford

2009-01-12T23:59:59.000Z

48

Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte  

DOE Patents [OSTI]

An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

Johnsen, Richard (Waterbury, CT); Yuh, Chao-Yi (New Milford, CT); Farooque, Mohammad (Danbury, CT)

2011-05-10T23:59:59.000Z

49

Air blast type coal slurry fuel injector  

DOE Patents [OSTI]

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, Ramkrishna G. (San Antonio, TX)

1986-01-01T23:59:59.000Z

50

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black  

E-Print Network [OSTI]

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black-based materials that have good catalytic activity, but the electrical conductivity of the AC is poor compared as a binder, as opposed to Nafion with Pt, which greatly reduces the cost of the cathode materials. AC

51

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

52

Demonstration of a Carbonate Fuel Cell on Coal Derived Gas  

E-Print Network [OSTI]

system has run on actual syn-gas. Consequently, the Electric Power Research Institute (“EPRI”) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energy’s coal gasification plant in Plaquemine, Louisiana...

Rastler, D. M.; Keeler, C. G.; Chi, C. V.

53

* Corresponding author -kfingerman@berkeley.edu 1 Integrating Water Sustainability into the Low Carbon Fuel Standard  

E-Print Network [OSTI]

it to Average Fuel Carbon Intensity (AFCI) (c) Charge a tax on water use for biofuel production (d) Establish Carbon Fuel Standard Kevin Fingerman1* , Daniel Kammen1,2 , and Michael O'Hare2 1 Energy & Resources (Chapagain and Hoekstra, 2004). As the State of California implements the Low Carbon Fuel Standard (LCFS

Kammen, Daniel M.

54

Strategic jet engine system design in light of uncertain fuel and carbon prices  

E-Print Network [OSTI]

Strategic jet engine system design in light of uncertain fuel and carbon prices UTC a strategic engine design that is robust with regard to fuel and carbon price uncertainty in 2030, a SurplusIn order to find a strategic engine design that is robust with regard to fuel and carbon price uncertainty

Sóbester, András

55

Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis  

Broader source: Energy.gov [DOE]

This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

56

An overview of alternative fossil fuel price and carbon regulation scenarios  

E-Print Network [OSTI]

of Alternative Fossil Fuel Price and Carbon RegulationScenario, (2) a High Fuel Price Scenario, which includescap- and-trade and high fuel prices – are compared to other

Wiser, Ryan; Bolinger, Mark

2004-01-01T23:59:59.000Z

57

Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis  

SciTech Connect (OSTI)

This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

Remick, R.; Wheeler, D.

2010-09-01T23:59:59.000Z

58

E-Print Network 3.0 - alternative-fuel vehicle types Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alternative fuels and the vehicles that use them Define fuel efficiency... . -Which automobile manufacturers offer a type of alternative fuel vehicle? -How will driving perhaps......

59

Fuel processing for fuel cells: a model for fuel conversion and carbon formation in the adiabatic steam reformer  

SciTech Connect (OSTI)

In present fuel cell power plants the fuel processor is a catalytic steam reformer which is limited to the use of fuels such as naphtha and natural gas. The sulfur content of these feeds must be reduced to low levels by hydrotreatment before contacting the nickel catalyst in the reformer. However, future fuel cell power plants may be required to ue coal-derived liquid fuel or heavy petroleum distillates which are more difficult to hydrotreat and reform. To meet this requirement, an adiabatic steam reformer is being developed by United Technologies Corporation with the support of the Electric Power Research Institute. In the adiabatic reformer, air is added to the process stream to provide, by combustion, the heat for endothermic reforming in a catalyst bed. In the inlet section of the reformer, air and fuel combust, and reforming is initiated on special catalysts whose primary functon is to prevent formation and accumulation of carbon. Following the inlet section, catalysts with high activity for steam reforming complete the conversion of the remaining fuel, principally methane. The objective of the present program is to establish a reactor model for the adiabatic reformer which would predict process stream compositions and temperatures and include carbon formation processes. Progress is reported on the four tasks: (1) determine rate expressions for catalytic reactions occurring in the adiabatic reformer; (2) establish a reactor model to predict process stream compositions in the adiabatic reformer using data from Task 1 for cataytic reactions and data from the literature for homogeneous gas-phase reactions; (3) determine critical conditions for carbon formation on selected catalysts using microbalance experiments; and (4) establish a model to predict carbon formation by combination of the model for process stream composition from Task 2 and data for carbon formation from Task 3. (WHK)

Bett, J.A.S.; Cutlip, M.C.; Foley, P.F.; Lesieur, R.R.; Meyer, A.P.; Sederquist, R.A.; Setzer, H.J.

1981-01-01T23:59:59.000Z

60

Alternative Fuels Data Center: Austin Lays Plans for Carbon-Neutral City  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Austin Lays Plans for Austin Lays Plans for Carbon-Neutral City Fleet to someone by E-mail Share Alternative Fuels Data Center: Austin Lays Plans for Carbon-Neutral City Fleet on Facebook Tweet about Alternative Fuels Data Center: Austin Lays Plans for Carbon-Neutral City Fleet on Twitter Bookmark Alternative Fuels Data Center: Austin Lays Plans for Carbon-Neutral City Fleet on Google Bookmark Alternative Fuels Data Center: Austin Lays Plans for Carbon-Neutral City Fleet on Delicious Rank Alternative Fuels Data Center: Austin Lays Plans for Carbon-Neutral City Fleet on Digg Find More places to share Alternative Fuels Data Center: Austin Lays Plans for Carbon-Neutral City Fleet on AddThis.com... Jan. 15, 2011 Austin Lays Plans for Carbon-Neutral City Fleet L earn how Austin, Texas, is planning to build a carbon-neutral city fleet

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Carbonized Hemoglobin Functioning as a Cathode Catalyst for Polymer Electrolyte Fuel Cells  

Science Journals Connector (OSTI)

development, i.e., (a) transition from poly(styrenesulfonic acid) to Nafion-type membranes; (b) a 10- to 100-fold redn. in the platinum loading in electrode by using nanosize electrocatalyst particles supported on high surface area carbon and impregnation of the proton conducting electrolyte into the active layer of the electrode; (c) optimization of structure of electrode and of membrane and electrode assembly to enhance power densities to 0.5-0.7 W/cm2 at desirable efficiencies; and (d) using Nafion-type membranes for direct methanol fuel cells instead of liq. ... Preparative procedures were optimized to enhance the performance of these nanocomposites as anode electrocatalysts in direct methanol fuel cells. ... To improve the performance of proton-exchange membrane fuel cells (PEMFCs), it is necessary to optimize the structure of the interface between polymer electrolyte and catalyst particles in the electrodes of PEMFCs. ...

Jun Maruyama; Ikuo Abe

2006-02-09T23:59:59.000Z

62

DOE Hydrogen and Fuel Cells Program Record 5003: Carbon Displacement Using Net-Zero Carbon Sources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Date: January 4, 2006 3 Date: January 4, 2006 Title: Carbon Displacement Using Net-Zero Carbon Sources Originator: Elvin Yuzugullu Approved by: JoAnn Milliken Date: April 4, 2006 Item: "... if 175 billion kWh of grid electricity (10% of the growth of the electric generation market in 2025) is replaced by fuel cells operating on hydrogen at 50% LHV efficiency, about 10.5 million tons of hydrogen would be needed. If this hydrogen were made from a non-carbon (e.g. nuclear) or net-zero carbon (e.g. biomass, coal with carbon sequestration) source, then it could potentially displace about 27.5 million tons of carbon." Calculations/References: Analysis by TIAX for DOE, August 24, 2005: * "10.5 million tons of hydrogen" Required H 2 = 175 billion kWhe

63

Electrolyte matrix for molten carbonate fuel cells  

DOE Patents [OSTI]

A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

Huang, C.M.; Yuh, C.Y.

1999-02-09T23:59:59.000Z

64

Monthly, global emissions of carbon dioxide from fossil fuel consumption  

SciTech Connect (OSTI)

This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

Andres, Robert Joseph [ORNL; Gregg, JS [Riso National Laboratory, Roskilde, Denmark; Losey, London M [ORNL; Marland, Gregg [ORNL; Boden, Thomas A [ORNL

2011-01-01T23:59:59.000Z

65

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels  

Science Journals Connector (OSTI)

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels ... Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. ... Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. ...

Alexie M. Kolpak; Jeffrey C. Grossman

2011-06-20T23:59:59.000Z

66

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir  

E-Print Network [OSTI]

Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

Wehrli, Bernhard

67

Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures  

Science Journals Connector (OSTI)

Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures ... (1-4) Although the concept of SOFCs was first reported more than one century ago,(5) major technological advances in cell materials, reactor configuration, operation mode, and balance of plant system integration and optimization were realized in the last 20–30 years only. ... The hybrid start-up process is optimized with respect to a specific setup as an example, but is of general nature and utility to similar systems. ...

Chao Su; Yubo Chen; Wei Wang; Ran Ran; Zongping Shao; João C. Diniz da Costa; Shaomin Liu

2014-05-23T23:59:59.000Z

68

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2  

Open Energy Info (EERE)

Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Jump to: navigation, search Tool Summary Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background analysis Resource Type: Dataset Website: cdiac.ornl.gov/trends/emis/meth_reg.html Country: United States, Canada, Mexico, Argentina, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela, Austria, Azerbaijan, Belarus, Belgium, Luxembourg, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Russia, Slovakia, Spain, Sweden, Switzerland, Turkey, Turkmenistan, Ukraine, United Kingdom, Uzbekistan, Iran, Kuwait, Qatar, Saudi Arabia, United Arab Emirates, Algeria, Egypt, South Africa, Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, Philippines, Singapore, South Korea, Taiwan, Thailand

69

Growth of Carbon Support for Proton-Exchange-Membrane Fuel Cell by  

E-Print Network [OSTI]

Growth of Carbon Support for Proton-Exchange-Membrane Fuel Cell by Pulsed-Laser Deposition (PLDGDL)(catalyst) (pulsed laser deposition PLD) (plasma plume) () #12;III Abstract key word: Fuel CellPulsed Laser. People begin to develop fuel cells for seeking alternative energy sources. Fuel cell use the chemical

70

Strategic power plant investment planning under fuel and carbon price uncertainty.  

E-Print Network [OSTI]

??The profitability of power plant investments depends strongly on uncertain fuel and carbon prices. In this doctoral thesis, we combine fundamental electricity market models with… (more)

Geiger, Ansgar

2011-01-01T23:59:59.000Z

71

Fabrication of carbon-aerogel electrodes for use in phosphoric acid fuel cells .  

E-Print Network [OSTI]

??An experiment was done to determine the ability to fabricate carbon aerogel electrodes for use in a phosphoric acid fuel cell (PAFC). It was found… (more)

Tharp, Ronald S

2005-01-01T23:59:59.000Z

72

Carbon Ionic Conductors for use in Novel Carbon-Ion Fuel Cells  

SciTech Connect (OSTI)

Carbon-consuming fuel cells have many potential advantages, including increased efficiency and reduced pollution in power generation from coal. A large amount of work has already been done on coal fuel cells that utilize yttria-stabilized zirconium carbide as an oxygen-ion superionic membrane material. But high-temperature fuel cells utilizing yttria-stabilized zirconium require partial combustion of coal to carbon monoxide before final oxidation to carbon dioxide occurs via utilization of the oxygen- ion zirconia membrane. A carbon-ion superionic membrane material would enable an entirely new class of carbon fuel cell to be developed, one that would use coal directly as the fuel source, without any intervening combustion process. However, a superionic membrane material for carbon ions has not yet been found. Because no partial combustion of coal would be required, a carbon-ion superionic conductor would allow the direct conversion of coal to electricity and pure CO{sub 2} without the formation of gaseous pollutants. The objective of this research was to investigate ionic lanthanide carbides, which have an unusually high carbon-bond ionicity as potential superionic carbide-ion conductors. A first step in this process is the stabilization of these carbides in the cubic structure, and this stabilization has been achieved via the preparation of pseudobinary lanthanide carbides. The diffusion rates of carbon have been measured in these carbides as stabilized to preserve the high temperature cubic structure down to room temperature. To prepare these new compounds and measure these diffusion rates, a novel, oxide-based preparation method and a new C{sup 13}/C{sup 12} diffusion technique have been developed. The carbon diffusion rates in La{sup 0.5}Er{sup 0.5}C{sub 2}, Ce{sup 0.5}Er{sup 0.5}C{sub 2}, and La{sup 0.5}Y{sup 0.5}C{sub 2}, and Ce{sup 0.5}Tm0.5C{sub 2} modified by the addition of 5 wt %Be{sub 2}C, have been determined at temperatures from 850 C to 1150 C. The resulting diffusion constants as measured were all less than 10{sup -11} cm{sup 2}/sec, and therefore these compounds are not superionic. However, there remain a large number of potentially superionic pseudobinary lanthanide compounds and a number of alternate ionic carbides which might act as dopants to produce vacancies on the carbon-ion sublattice and thereby increase carbon-ion diffusion rates. The discovery of a superionic carbon conductor would usher in a truly revolutionary new coal technology, and could dramatically improve the way in which we generate electricity from coal. The work completed to date is a promising first step towards this end.

Franklin H. Cocks; W. Neal Simmons; Paul A. Klenk

2005-11-01T23:59:59.000Z

73

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents [OSTI]

A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

1996-01-01T23:59:59.000Z

74

Modeling of Seismic Signatures of Carbonate Rock Types  

E-Print Network [OSTI]

Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used to identify different...

Jan, Badr H.

2011-02-22T23:59:59.000Z

75

Large historical changes of fossil-fuel black carbon aerosols  

SciTech Connect (OSTI)

Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Sathaye, J.A.

2002-09-26T23:59:59.000Z

76

Landfill Gas Cleanup for Carbonate Fuel Cell Power Generation: Final Report  

SciTech Connect (OSTI)

Landfill gas represents a significant fuel resource both in the United States and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

77

Pyrochlore-type catalysts for the reforming of hydrocarbon fuels  

DOE Patents [OSTI]

A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

2012-03-13T23:59:59.000Z

78

Optical Properties and Radiation-Enhanced Evaporation of Nanofluid Fuels Containing Carbon-Based Nanostructures  

E-Print Network [OSTI]

and thermal systems as an advanced heat-transfer fluid, e.g., advanced cooling of electronics systemsOptical Properties and Radiation-Enhanced Evaporation of Nanofluid Fuels Containing Carbon characteristics of nanofluid fuels with stable suspension of carbon-based nanostructures under radiation

Qiao, Li

79

Contributions of weather and fuel mix to recent declines in U.S. energy and carbon intensity  

E-Print Network [OSTI]

in a lower energy-and-carbon-intensive mix of economicintensity into fuel mix and energy intensity terms. Thisof fuel mix and weather on energy and carbon intensity using

Davis, W. Bart; Sanstad, Alan H.; Koomey, Jonathan G.

2002-01-01T23:59:59.000Z

80

|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|  

E-Print Network [OSTI]

Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search| *Stay Updated every week With a Free|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Subscription To "Inside The Industry"As Well as a Weekly Updated Patents Page Gulliver's fuel cell travels

Lovley, Derek

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|  

E-Print Network [OSTI]

Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search| *Stay Updated every week With a Free|Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Subscription To "Inside The Industry"As Well as a Weekly Updated Patents Page Fuel cell power Publication Date

Lovley, Derek

82

Pt/CARBON XEROGEL CATALYSTS FOR PEM FUEL CELLS Nathalie JOBa  

E-Print Network [OSTI]

Pt/CARBON XEROGEL CATALYSTS FOR PEM FUEL CELLS Nathalie JOBa , Frédéric MAILLARDb , Jean of proton exchange membrane (PEM) fuel cells in order to decrease the mass transport limitations The catalytic layer configuration is a key-element in the design of PEM fuel cells [1]. Indeed, besides

Paris-Sud XI, Université de

83

Cost-Effective Choices of Marine Fuels in a Carbon-Constrained World: Results from a Global Energy Model  

Science Journals Connector (OSTI)

Cost-Effective Choices of Marine Fuels in a Carbon-Constrained World: Results from a Global Energy Model ... † Department

Maria Taljegard; Selma Brynolf; Maria Grahn; Karin Andersson; Hannes Johnson

2014-10-06T23:59:59.000Z

84

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents [OSTI]

A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

Steinfeld, G.; Meyers, S.J.; Lee, A.

1996-09-10T23:59:59.000Z

85

Carbonation of Fly Ash in Oxy-fuel CFB Combustion  

Science Journals Connector (OSTI)

Oxy-fuel combustion of fossil fuel is one of the most promising methods to produce a stream of concentrated CO2 ready for sequestration. Oxy-fuel FBC (fluidized bed combustion) can use limestone as a sorbent for

Chunbo Wang; Lufei Jia; Yewen Tan…

2007-01-01T23:59:59.000Z

86

Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance  

SciTech Connect (OSTI)

Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 #2;C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Colbow, Vesna; Dutta, Monica; Harvey, Davie; Wessel, Silvia

2012-04-01T23:59:59.000Z

87

Greenhouse Gas Reductions Under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

capping an industry’s carbon emissions per unit of output.be an increase in carbon emissions. The LCFS may also reducestandard, which limits carbon emissions per unit of output,

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2007-01-01T23:59:59.000Z

88

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect (OSTI)

Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

Steinfield, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

89

Simulated coal-gas-fueled molten carbonate fuel cell development program  

SciTech Connect (OSTI)

In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

Johnson, W.H.

1992-07-01T23:59:59.000Z

90

Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests  

SciTech Connect (OSTI)

In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

Johnson, W.H.

1992-07-01T23:59:59.000Z

91

Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995  

SciTech Connect (OSTI)

This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

NONE

1995-03-01T23:59:59.000Z

92

>Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis (NDP-058a) Prepared by Antoinette L. Brenkert Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 Date Published: February 1998 (Revised for the Web: 2003) CONTENTS Abstract Documentation file for Data Base NDP-058a (2-1998) Data Base NDP-058a (2-1998) Abstract Carbon Dioxide Emission Estimates from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring for 1995 on a One Degree Grid Cell Basis. (March 1998) Antoinette L. Brenkert DOI: 10.3334/CDIAC/ffe.ndp058.2003 This data package presents the gridded (one degree latitude by one degree longitude) summed emissions from fossil-fuel burning, hydraulic cement

93

Large historical changes of fossil-fuel black carbon aerosols T. Novakov,1  

E-Print Network [OSTI]

. Hansen,3 T. W. Kirchstetter,1 M. Sato,3 J. E. Sinton,1 and J. A. Sathaye1 Received 26 September 2002, M. Sato, J. E. Sinton, and J. A. Sathaye, Large historical changes of fossil-fuel black carbon

94

Conductivity measurements of molten metal oxides and their evaluation in a Direct Carbon Fuel Cell (DCFC)  

E-Print Network [OSTI]

ABSTRACT Since Direct Carbon Fuel Cell (DCFC) technology is in a beginning stage, emphasis should be laid on addressing the fundamental aspects. A molten electrolyte is required to facilitate ionic contact between solid ...

Yarlagadda, Venkata Raviteja

2011-09-08T23:59:59.000Z

95

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

96

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

2007-01-01T23:59:59.000Z

97

Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive  

Science Journals Connector (OSTI)

Review of Dimethyl Carbonate (DMC) Manufacture and Its Characteristics as a Fuel Additive ... Add to ACS ChemWorx ... Regeneration of this catalyst with dry HCl is an added complication. ...

Michael A. Pacheco; Christopher L. Marshall

1997-01-21T23:59:59.000Z

98

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

A. Miller (1980). "Oil Shales and Carbon Dioxide." Sciencefor CO2 evolved from oil shale." Fuel Processing TechnologyCTLs, or CTL synfuels), and oil shale-based synthetic crude

2007-01-01T23:59:59.000Z

99

Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Jixin Chen,*,z  

E-Print Network [OSTI]

Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Operations Jixin Chen,*,z Jason B. Siegel, Ann Arbor, Michigan 48109, USA This paper investigates the effects of dead-ended anode (DEA) operation of a PEM fuel cell. The presence of oxygen in the anode channel, although normally less than 5% in molar

Stefanopoulou, Anna

100

Electrochemical Removal of Carbon Monoxide in Reformate Hydrogen for Fueling Proton Exchange Membrane  

E-Print Network [OSTI]

Electrochemical Removal of Carbon Monoxide in Reformate Hydrogen for Fueling Proton Exchange Membrane Fuel Cells Sivagaminathan Balasubramanian, Charles E. Holland,* and John W. Weidner*,z Center in reformate hydrogen. In this design, the potential and gas flow are switched between the two filter cells so

Weidner, John W.

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Clathrates as effective p-type and n-type tetrahedral carbon semiconductors  

Science Journals Connector (OSTI)

Based on ab initio calculations, we predict that a carbon clathrate compound (hexagonal C40) is suitable to be n doped by Li insertion and p doped by substitutional boron. This material represents an example of n- and p-type tetrahedral carbon semiconductor, alternative to the n-doped diamondlike films whose realization is still in progress. Although this compound has not been synthesized so far, its study can also provide insights into the properties of nanostructured carbon thin films, grown by supersonic cluster beam deposition techniques that display local morphologies similar to the channels and fullereniclike cages present in the system here investigated.

M. Bernasconi; S. Gaito; G. Benedek

2000-05-15T23:59:59.000Z

102

Performance characteristic of a tubular carbon-based fuel cell short stack coupled with a dry carbon gasifier  

Science Journals Connector (OSTI)

Abstract A carbon gasified carbon-based fuel cell (CFC) short stack was fabricated and investigated for generating effective carbon fuel cell reactions. Anode-supported tubular CFC cells with a 45 cm2 active electrode area were used to manufacture the CFC short stack, which was coupled with a dry gasifier induced by a reverse Boudouard reaction. Activated carbon (BET area 1800 m2/g) powder was mixed with K2CO3 powder (5 wt.%) and used to fill a dry gasifier as a solid carbon fuel, and pure CO2 gas was supplied to the gasifier. The CO fuel generated by the reverse Boudouard reaction in the dry gasifier increased the performance of the CFC short stack. The tubular CFC short stack showed a maximum power of 29.4 W at 800 °C. It was operated under a range of operating conditions by changing the operating temperature, flow rate of the pure CO2 and the thermal cycle operation. The results indicate that the fabricated tubular CFC is a promising power generation system candidate for many practical applications, such as residential power generation (RPG) and stationary power systems.

Tak-Hyoung Lim; Sun-Kyung Kim; Ui-Jin Yun; Jong-Won Lee; Seung-Bok Lee; Seok-Joo Park; Rak-Hyun Song

2014-01-01T23:59:59.000Z

103

Rapid Separation of Petroleum Fuels by Hydrocarbon Type  

Science Journals Connector (OSTI)

......various fuels such as gasoline and jet fuel into...cleaning solvent and straight-run distillate have...various fuels such as gasoline and jet fuel into...cleaning solvent and straight-run distillate have...aromatic content of gasoline usually in- creases......

Robert Stevenson

1971-05-01T23:59:59.000Z

104

Oxygen electrode reaction in molten carbonate fuel cells. Final report, September 15, 1987--September 14, 1990  

SciTech Connect (OSTI)

Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and the product D{sub O}{sup 1/2}C{sub O} were examined and the apparent activation energies were determined to be about 122 and 175 kJ/ mol, respectively.

Appleby, A.J.; White, R.E.

1992-07-07T23:59:59.000Z

105

Black Carbon Emissions by Rocket Engines Types of rocket engines Emissions  

E-Print Network [OSTI]

Black Carbon Emissions by Rocket Engines Types of rocket engines Emissions Liquid Hydrogen. Note: Black carbon does not deplete ozone. What happens is the black carbon emissions from the rocket. Other black carbon emissions: The number one contributor to black carbon is burning biomass. Also

Toohey, Darin W.

106

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...  

Open Energy Info (EERE)

Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background...

107

Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic Three Human Cell Types Respond to Multi-Walled Carbon...

108

Rapid Separation of Petroleum Fuels by Hydrocarbon Type  

Science Journals Connector (OSTI)

......below) . A comparison of two turbine fuels is presented in Figure...MIN Figure 3. Comparison of Turbine Fuels. Elution order: satu...constructed. A synthetic sample of turbine fuel was prepared from pure...coefficient characterizing efficiency of the fractionation. In contrast......

Robert Stevenson

1971-05-01T23:59:59.000Z

109

Direct electrochemical conversion of carbon anode fuels in molton salt media  

SciTech Connect (OSTI)

We are conducting research into the direct electrochemical conversion of reactive carbons into electricity--with experimental evidence of total efficiencies exceeding 80% of the heat of combustion of carbon. Together with technologies for extraction of reactive carbons from broad based fossil fuels, direct carbon conversion addresses the objectives of DOE's ''21st Century Fuel Cell'' with exceptionally high efficiency (>70% based on standard heat of reaction, {Delta}H{sub std}), as well as broader objectives of managing CO{sub 2} emissions. We are exploring the reactivity of a wide range of carbons derived from diverse sources, including pyrolyzed hydrocarbons, petroleum cokes, purified coals and biochars, and relating their electrochemical reactivity to nano/microstructural characteristics.

Cherepy, N; Krueger, R; Cooper, J F

2001-01-17T23:59:59.000Z

110

The feasibility of a unitised regenerative fuel cell with a reversible carbon-based hydrogen storage electrode.  

E-Print Network [OSTI]

??This thesis seeks to experimentally demonstrate the possibility of reversible storage of hydrogen directly into a carbon-based electrode of a PEM unitised regenerative fuel cell.… (more)

Jazaeri, M

2013-01-01T23:59:59.000Z

111

Selection and preparation of activated carbon for fuel gas storage  

DOE Patents [OSTI]

Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

1990-10-02T23:59:59.000Z

112

Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.  

SciTech Connect (OSTI)

Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian metallurgical industry) and supplied to the partner for tests in a stack of fuel cells. A feasibility study on the cost of the Russian material for a BSP is to be done on Tasks 1, 2 in case the annual order makes up 400,000 sheets. The goal of Task 3 of the project is to research on possible implementation of cermet compositions on the basis of LiAlO{sub 2}, TiN, B{sub 4}C, ceramics with Ni and Ni-Mo binders. BaCeO{sub 3} conductive ceramics with metal binders of Ni, Ni-Cr etc. were also planned to be studied. As a result of these works, a pilot batch of samples is to be made and passed to FCE for tests. The goal of Task 4 of the Project is development of a new alloy or alloys with a ceramic coating that will have upgraded corrosion stability in operation within a SOFC. A new alloy was to be worked out by the way of modification of compositions of industrial alloys. Ceramic coatings are to be applied onto ferrite steel produced serially by iron and steel industry of Russia as sheet iron.

Krumpelt, M.

2004-06-01T23:59:59.000Z

113

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

114

Dissolution of Irradiated Commercial UO2 Fuels in Ammonium Carbonate and Hydrogen Peroxide  

SciTech Connect (OSTI)

We propose and test a disposition path for irradiated nuclear fuel using ammonium carbonate and hydrogen peroxide media. We demonstrate on a 13 g scale that >98% of the irradiated fuel dissolves. Subsequent expulsion of carbonate from the dissolver solution precipitates >95% of the plutonium, americium, curium, and substantial amounts of fission products, effectively partitioning the fuel at the dissolution step. Uranium can be easily recovered from solution by any of several means, such as ion exchange, solvent extraction, or direct precipitation. Ammonium carbonate can be evaporated from solution and recovered for re-use, leaving an extremely compact volume of fission products, transactinides, and uranium. Stack emissions are predicted to be less toxic, less radioactive, chemically simpler, and simpler to treat than those from the conventional PUREX process.

Soderquist, Chuck Z.; Johnsen, Amanda M.; McNamara, Bruce K.; Hanson, Brady D.; Chenault, Jeffrey W.; Carson, Katharine J.; Peper, Shane M.

2011-01-18T23:59:59.000Z

115

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China  

Science Journals Connector (OSTI)

Abstract The increasing discrepancy between on-road and type-approval fuel consumption for \\{LDPVs\\} (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 \\{LDPVs\\} in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline \\{LDPVs\\} for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 10 ± 2% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 30 ± 12% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to \\{LDPVs\\} driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 23 ± 5% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for \\{LDPVs\\} with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for \\{LDPVs\\} in China.

Shaojun Zhang; Ye Wu; Huan Liu; Ruikun Huang; Puikei Un; Yu Zhou; Lixin Fu; Jiming Hao

2014-01-01T23:59:59.000Z

116

INCOMPLETE CARBON-OXYGEN DETONATION IN TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

Incomplete carbon-oxygen detonation with reactions terminating after burning of C{sup 12} in the leading C{sup 12} + C{sup 12} reaction (C-detonation) may occur in the low-density outer layers of white dwarfs exploding as Type Ia supernovae (SNe Ia). Previous studies of carbon-oxygen detonation structure and stability at low densities were performed under the assumption that the velocity of a detonation wave is derived from complete burning of carbon and oxygen to iron. In fact, at densities {rho} {<=} 10{sup 6} g cm{sup -3} the detonation in SNe Ia may release less than a half of the available nuclear energy. In this paper, we study basic properties of such detonations. We find that the length of an unsupported steady-state C-detonation is {approx_equal}30-100 times greater than previously estimated and that the decreased energy has a drastic effect on the detonation stability. In contrast to complete detonations which are one-dimensionally stable, C-detonations may be one-dimensionally unstable and propagate by periodically re-igniting themselves via spontaneous burning. The re-ignition period at {rho} {<=} 10{sup 6} g cm{sup -3} is estimated to be greater than the timescale of an SN Ia explosion. This suggests that propagation and quenching of C-detonations at these densities could be affected by the instability. Potential observational implications of this effect are discussed.

Dominguez, Inma [Departamento de Fisica Teorica y del Cosmos, University of Granada, 18071 Granada (Spain); Khokhlov, Alexei [Department of Astronomy and Astrophysics and the Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)

2011-04-01T23:59:59.000Z

117

Carbon dioxide emission index as a mean for assessing fuel quality  

SciTech Connect (OSTI)

Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

2008-07-01T23:59:59.000Z

118

Carbon Nanotube Film by Filtration as Cathode Catalyst Support for Proton-Exchange Membrane Fuel Cell  

Science Journals Connector (OSTI)

Carbon Nanotube Film by Filtration as Cathode Catalyst Support for Proton-Exchange Membrane Fuel Cell ... 1-10 Some early investigations found that by using the normal paste method and simply replacing carbon black particles with disordered multiwalled CNTs as the support for Pt catalyst nanoparticles higher PEMFC and DMFC performances were achieved. ... activity of the CNT cathode catalysts was measured in a direct methanol fuel cell by use of a Pt-Ru/C anode, and use of a Nafion-115 membrane. ...

Wenzhen Li; Xin Wang; Zhongwei Chen; Mahesh Waje; Yushan Yan

2005-09-08T23:59:59.000Z

119

Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal  

Science Journals Connector (OSTI)

Abstract The performance of a demineralised and devolatilised coal from the Morwell mine in the Latrobe Valley, Victoria, has been investigated in a direct carbon fuel cell (DCFC) operated at 850 °C. The focus of the investigation has been on understanding degradation issues as a function of time involving a sequence of electrochemical impedance spectroscopy and voltage-current characteristic. Diffusion limited processes dominate the electrode polarisation losses in pure N2 atmosphere, however, these decrease substantially in the presence of CO2 as the anode chamber purge gas, due to in situ generation of fuel species by the reaction of CO2 with carbon. Post-mortem analysis of anode by SEM and XRD revealed only a minor degradation due to its reduction, particle agglomeration as well as the formation of small quantity of new phases. However, major fuel cell performance degradation (increase of ohmic resistive and electrode polarisation losses) occurred due to loss of carbon/anode contacts and a reduction in the electron-conducting pathways as the fuel was consumed. The investigations revealed that the demineralised coal char can be used as a viable fuel for DCFC, however, further developments on anode materials and fuel feed mechanism would be required to achieve long-term sustained performance.

Adam C. Rady; Sarbjit Giddey; Aniruddha Kulkarni; Sukhvinder P.S. Badwal; Sankar Bhattacharya

2014-01-01T23:59:59.000Z

120

Carbon monoxide-silicon carbide interaction in HTGR fuel particles  

Science Journals Connector (OSTI)

The corrosion of the coating-layers of silicon carbide (SiC) by carbon monoxide (CO) was observed in irradiated Triso-coated uranium dioxide particles, used in high-temperature gas-cooled reactors, by optical ...

Kazuo Minato; Toru Ogawa; Satoru Kashimura; Kousaku Fukuda…

1991-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Pt NANOCLUSTERS ON CARBON NANOMATERIALS FOR HYDROGEN FUEL CELLS  

Science Journals Connector (OSTI)

The detailed study of carbon nanomaterials constitution with allowance for of reduction conversions Pt (II, IV) allows to realize directional looking up of methods of preparation of platinum catalysts for redo...

N.S. KUYUNKO; S.D. KUSHCH; V.E. MURADYAN…

2007-01-01T23:59:59.000Z

122

Ignition quality determination of diesel fuels from hydrogen type distribution of hydrocarbons  

SciTech Connect (OSTI)

Hydrogen types of diesel like hydrocarbon fuels which have dominant effect on the ignition quality have been identified. A scheme of characterizing the chemistry of hydrocarbon fuels in terms of these hydrogen types using proton nuclear resonance spectrometry has been proposed. Using this analysis technique on 70 different diesel fuels, whose cetane numbers were determined on a number of standard cetane rating engines, an empirical expression which relates the ignition quality to the hydrogen type distribution of the fuels has been developed. The developed expression and the relationship between the ignition delay and cetane number imply that the effective activation energy term in the usual semiempirical ignition delay expression is not a constant for a given fuel but is a function of pressure and temperature as well as the fuel chemistry.

Gulder, O.L.; Glavincevski, B.

1986-02-01T23:59:59.000Z

123

Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide  

DOE Patents [OSTI]

A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

2000-01-01T23:59:59.000Z

124

Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant  

SciTech Connect (OSTI)

Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

Steinfeld, G.; Wilson, W.G.

1993-06-01T23:59:59.000Z

125

Advanced power systems featuring a closely coupled catalytic gasification carbonate fuel cell plant  

SciTech Connect (OSTI)

Pursuing the key national goal of clean and efficient uulization of the abundant domestic coal resources for power generation, a study was conducted with DOE/METC support to evaluate the potential of integrated gasification/carbonate fuel cell power generation systems. By closely coupling the fuel cell with the operation of a catalytic gasifier, the advantages of both the catalytic gasification and the high efficiency fuel cell complement each other, resulting in a power plant system with unsurpassed efficiencies approaching 55% (HHV). Low temperature catalytic gasification producing a high methane fuel gas offers the potential for high gas efficiencies by operating with minimal or no combustion. Heat required for gasification is provided by combination of recycle from the fuel cell and exothermic methanation and shift reactions. Air can be supplemented if required. In combination with internally reforming carbonate fuel cells, low temperature catalytic gasification can achieve very attractive system efficiencies while producing extremely low emissions compared to conventional plants utilizing coal. Three system configurations based on recoverable and disposable gasification catalysts were studied. Experimental tests were conducted to evaluate these gasification catalysts. The recoverable catalyst studied was potassium carbonate, and the disposable catalysts were calcium in the form of limestone and iron in the form of taconite. Reactivities of limestone and iron were lower than that of potassium, but were improved by using the catalyst in solution form. Promising results were obtained in the system evaluations as well as the experimental testing of the gasification catalysts. To realize the potential of these high efficiency power plant systems more effort is required to develop catalytic gasification systems and their integration with carbonate fuel cells.

Steinfeld, G.; Wilson, W.G.

1993-01-01T23:59:59.000Z

126

Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning  

Science Journals Connector (OSTI)

A high-negative voltage at the cathode initiates a dark discharge resulting in a reduction of the carbon dioxide concentration in exhaust gas from the burning of hydrocarbon fuel. An experiment indicated that nearly 44% of the carbon dioxide in exhaust gas disappears after a high-voltage application to the cathode. The energy needed for the endothermic reaction of the carbon dioxidedissociation corresponding to this concentration reduction is provided mainly by the internal energy reduction of the discharge gas which is nearly 20 times the electrical energy for electron emission.

Han S. Uhm; Chul H. Kim

2009-01-01T23:59:59.000Z

127

SPOUTED BED ELECTRODES (SBE) FOR DIRECT UTILIZATION OF CARBON IN FUEL CELLS  

SciTech Connect (OSTI)

This Phase I project was focused on an investigation of spouted bed particulate electrodes for the direct utilization of solid carbon in fuel cells. This approach involves the use of a circulating carbon particle/molten carbonate slurry in the cell that provides a few critical functions: it (1) fuels the cell continuously with entrained carbon particles; (2) brings particles to the anode surfaces hydrodynamically; (3) removes ash from the anode surfaces and the cell hydrodynamically; (4) provides a facile means of cell temperature control due to its large thermal capacitance; (5) provides for electrolyte maintenance and control in the electrode separator(s); and (6) can (potentially) improve carbon conversion rates by ''pre-activating'' carbon particle surfaces via formation of intermediate oxygen surface complexes in the bulk molten carbonate. The approach of this scoping project was twofold: (1) adaptation and application of a CFD code, originally developed to simulate particle circulation in spouted bed electrolytic reactors, to carbon particle circulation in DCFC systems; and (2) experimental investigation of the hydrodynamics of carbon slurry circulation in DCFC systems using simulated slurry mixtures. The CFD model results demonstrated that slurry recirculation can be used to hydrodynamically feed carbon particles to anode surfaces. Variations of internal configurations were investigated in order to explore effects on contacting. It was shown that good contacting with inclined surfaces could be achieved even when the particles are of the same density as the molten carbonate. The use of CO{sub 2} product gas from the fuel cell as a ''lift-gas'' to circulate the slurry was also investigated with the model. The results showed that this is an effective method of slurry circulation; it entrains carbon particles more effectively in the draft duct and produces a somewhat slower recirculation rate, and thus higher residence times on anode surfaces, and can be controlled completely via pressure balance. Experimental investigations in a rectangular spouted vessel hydrodynamics apparatus (SVHA) showed that hydrodynamics can be used to control the circulation, residence time, and distribution of carbon within the spouted bed, as well as provide good particle contact with anode surfaces. This was shown to be a function of viscosity, carbon loading, and particle size, as well as relative densities. Higher viscosities and smaller particle sizes favor more efficient particle entrainment in the draft duct, and particle recirculation. Both the computational and experimental results are consistent with each another and exhibit the same general qualitative behavior. Based upon this work, a design of a prototype SBE/DCFC cell was developed and is presented.

J.M. Calo

2004-12-01T23:59:59.000Z

128

Evaluation of cast carbon steel and aluminum for rack insert in MCO Mark 1A fuel basket  

SciTech Connect (OSTI)

This document evaluates the effects ofusing a cast carbon steel or aluminum instead of 3O4L stainless steel in the construction ofthe fuel rack insert for the Spent Nuclear Fuel MCO Mark IA fuel baskets. The corrosion, structural, and cost effects are examined.

Graves, C.E., Fluor Daniel Hanford

1997-03-21T23:59:59.000Z

129

Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs  

E-Print Network [OSTI]

) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

Mammadova, Elnara

2012-10-19T23:59:59.000Z

130

Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report  

SciTech Connect (OSTI)

The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

131

Three-Dimensional Carbon Nanotube-Textile Anode for High-Performance Microbial Fuel  

E-Print Network [OSTI]

Three-Dimensional Carbon Nanotube-Textile Anode for High-Performance Microbial Fuel Cells Xing Xie energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC

Cui, Yi

132

Analysis of Molten Carbonate Fuel Cell Performance Using a Three-Phase Homogeneous Model  

E-Print Network [OSTI]

temperatures, nickel oxide dissolves in the melt. This slow loss of active material contributes to an increase as compared to nickel oxide. The search for alternate cathode materials could be simplified through the use-phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell MCFC cathode

Popov, Branko N.

133

Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity  

E-Print Network [OSTI]

carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

134

Ranking of enabling technologies for oxy-fuel based carbon capture  

SciTech Connect (OSTI)

The USDOE National Energy Technology Laboratory (NETL) has begun a process to identify and rank enabling technologies that have significant impacts on pulverized coal oxy-fuel systems. Oxy-fuel combustion has been identified as a potential method for effectively capturing carbon in coal fired power plants. Presently there are a number of approaches for carbon capture via oxy-fuel combustion and it is important to order those approaches so that new research can concentrate on those technologies with high potentials to substantially lower the cost of reduced carbon electricity generation. NETL evaluates these technologies using computer models to determine the energy use of each technology and the potential impact of improvements in the technologies on energy production by a power plant. Near-term sub-critical boiler technologies are targeted for this analysis because: • most of the world continues to build single reheat sub-critical plants; • the overwhelming number of coal fired power plants requiring retrofit for CO2 capture are sub-critical plants. In addition, even in the realm of new construction, subcritical plants are common because they are well understood, easy to operate and maintain, fuel tolerant, and reliable. Following the initial investigation into sub-critical oxy-fuel technology, future investigations will move into the supercritical range.

Ochs, T.L.; Oryshchyn, D.L.; Ciferno, J.P.

2007-06-01T23:59:59.000Z

135

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Developed and Developing World Speaker(s): Lee Schipper Date: February 15, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon A new "Great Wall" has emerged in China, this one a string of miles of cars stuck in traffic. Emissions from road transport in developing countries are expected to rise sharply in the coming decades if current trends continue. Projections of passenger and freight activity, vehicle use, and CO2 emissions push up overall CO2 emissions by a factor of three in Latin American and five in Asia by 2030, even with fuel economy improvements. The increase in car use is in part a result of growing incomes and economic activity, but it also reflects the poor quality of transit and

136

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

137

Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons  

Science Journals Connector (OSTI)

Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons ... (1, 3-6) Methanol and derived dimethyl ether (DME) are also excellent fuels in internal combustion engines (ICE) and in a new generation of direct oxidation methanol fuel cells (DMFC), as well as convenient starting materials for producing light olefins (ethylene and propylene) and subsequently practically any derived hydrocarbon product. ... Methanol produced this way was used in the 19th century for lighting, cooking, and heating purposes but was later replaced by cheaper fuels, especially kerosene. ...

George A. Olah; Alain Goeppert; G. K. Surya Prakash

2008-12-08T23:59:59.000Z

138

A fast method for updating global fossil fuel carbon dioxide emissions  

Science Journals Connector (OSTI)

We provide a fast and efficient method for calculating global annual mean carbon dioxide emissions from the combustion of fossil fuels by combining data from an established data set with BP annual statistics. Using this method it is possible to retrieve an updated estimate of global CO2 emissions six months after the actual emissions occurred. Using this data set we find that atmospheric carbon dioxide emissions have increased by over 40% from 1990 to 2008 with an annual average increase of 3.7% over the five-year period 2003?2007. In 2008 the growth rate in the fossil fuel carbon dioxide emissions was smaller than in the preceding five years, but it was still over 2%. Global mean carbon dioxide emissions in 2008 were 8.8?GtC? yr?1. For the latter part of the last century emissions of carbon dioxide have been greater from oil than from coal. However during the last few years this situation has changed. The recent strong increase in fossil fuel CO2 emissions is mainly driven by an increase in emissions from coal, whereas emissions from oil and gas to a large degree follow the trend from the 1990s.

G Myhre; K Alterskj?r; D Lowe

2009-01-01T23:59:59.000Z

139

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2012 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2009. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

140

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2013 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2010. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2011 revision of this database contains estimates of the annual, global mean value of del 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2008. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric del 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

142

Table 2. 2010 state energy-related carbon dioxide emissions by fuel  

U.S. Energy Information Administration (EIA) Indexed Site

2010 state energy-related carbon dioxide emissions by fuel " 2010 state energy-related carbon dioxide emissions by fuel " "million metric tons of carbon dioxide" ,,,,,," Shares " "State","Coal","Petroleum","Natural Gas ","Total","Coal","Petroleum","Natural Gas" "Alabama",67.81545193,35.95576449,28.97505976,132.7462762,0.5108651925,0.2708608145,0.218273993 "Alaska",1.364880388,19.58916888,17.77313443,38.72718369,0.03524347131,0.5058247724,0.4589317562 "Arizona",43.2377726,34.82066125,17.85460129,95.91303514,0.4508018387,0.3630440972,0.1861540641 "Arkansas",27.72445786,23.82768621,14.56726112,66.11940519,0.4193089424,0.3603735717,0.2203174859 "California",5.157135123,241.2575077,123.3955377,369.8101805,0.01394535736,0.6523820067,0.3336726359

143

Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage  

Science Journals Connector (OSTI)

The oxy-fuel process is one of three carbon capture technologies which supply CO2 ready for sequestration – the others being post-combustion capture and IGCC with carbon capture. As yet no technology has emerged as a clear winner in the race to commercial deployment. The oxy-fuel process relies on recycled flue gas as the main heat carrier through the boiler and results in significantly different flue gas compositions. Sulphur has been shown in the study to have impacts in the furnace, during ash collection, CO2 compression and transport as well as storage, with many options for its removal or impact control. In particular, the effect of sulphur containing species can pose a risk for corrosion throughout the plant and transport pipelines. This paper presents a technical review of all laboratory and pilot work to identify impacts of sulphur impurities from throughout the oxy-fuel process, from combustion, gas cleaning, compression to sequestration with removal and remedial options. An economic assessment of the optimum removal is not considered. Recent oxy-fuel pilot trials performed in support of the Callide Oxy-fuel Project and other pilot scale data are interpreted and combined with thermodynamic simulations to develop a greater fundamental understanding of the changes incurred by recycling the flue gas. The simulations include a sensitivity analysis of process variables and comparisons between air fired and oxy-fuel fired conditions - such as combustion products, SO3 conversion and limestone addition.

Rohan Stanger; Terry Wall

2011-01-01T23:59:59.000Z

144

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...  

Gasoline and Diesel Fuel Update (EIA)

74.6 77.3 90.7 86.5 77.3 68.4 See footnotes at end of table. 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States Energy Information...

145

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...  

U.S. Energy Information Administration (EIA) Indexed Site

70.4 69.1 87.1 75.2 71.6 61.0 See footnotes at end of table. 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States Energy Information...

146

ANALYTIC APPROXIMATION OF CARBON CONDENSATION ISSUES IN TYPE II SUPERNOVAE  

SciTech Connect (OSTI)

I present analytic approximations for some issues related to condensation of graphite, TiC, and silicon carbide in oxygen-rich cores of supernovae of Type II. Increased understanding, which mathematical analysis can support, renders researchers more receptive to condensation in O-rich supernova gases. Taking SN 1987A as typical, my first analysis shows why the abundance of CO molecules reaches an early maximum in which free carbon remains more abundant than CO. This analysis clarifies why O-rich gas cannot oxidize C if {sup 56}Co radioactivity is as strong as in SN 1987A. My next analysis shows that the CO abundance could be regarded as being in chemical equilibrium if the CO molecule is given an effective binding energy rather than its laboratory dissociation energy. The effective binding energy makes the thermal dissociation rate of CO equal to its radioactive dissociation rate. This preserves possible relevance for the concept of chemical equilibrium. My next analysis shows that the observed abundances of CO and SiO molecules in SN 1987A rule out frequent suggestions that equilibrium condensation of SUNOCONs has occurred following atomic mixing of the He-burning shell with more central zones in such a way as to reproduce roughly the observed spectrum of isotopes in SUNOCONs while preserving C/O > 1. He atoms admixed along with the excess carbon would destroy CO and SiO molecules, leaving their observed abundances unexplained. The final analysis argues that a chemical quasiequilibrium among grains (but not gas) may exist approximately during condensation, so that its computational use is partially justified as a guide to which mineral phases would be stable against reactions with gas. I illustrate this point with quasiequilibrium calculations by Ebel and Grossman that have shown that graphite is stable even when O/C >1 if prominent molecules are justifiably excluded from the calculation of chemical equilibrium.

Clayton, Donald D., E-mail: claydonald@gmail.com [Department of Physics and Astronomy, Clemson University, Clemson, SC (United States)

2013-01-01T23:59:59.000Z

147

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

148

Carbon nanotube (CNT) gas sensors for emissions from fossil fuel burning  

Science Journals Connector (OSTI)

Abstract Fossil fuels endow wide applications in industrial, transportation, and power generation sectors. However, smoke released by burning fossil fuels contains toxic gases, which pollutes the environment and severely affects human health. Carbon nanotubes (CNTs) are potential material for gas sensors due to their high structural porosity and high specific surface area. Defects present on the CNT sidewalls and end caps facilitate adsorption of gas molecules. The chemical procedures adopted to purify and disperse carbon nanotubes create various chemical groups on their surface, which further enhance the adsorption of gas molecules and thus improve the sensitivity of CNTs. Present review focuses on CNT chemiresistive gas sensing mechanisms, which make them suitable for the development of next generation sensor technology. The resistance of carbon nanotubes decreases when oxidizing gas molecules adsorb on their surface, whereas, adsorption of reducing gas molecules results in increasing the resistance of CNTs. Sensing ability of carbon nanotubes for the gases namely, NO, NO2, CO, CO2 and SO2, released on burning of fossil fuels is reviewed. This review provides basic understanding of sensing mechanisms, creation of adsorption sites by chemical processes and charge transfer between adsorbed gas molecules and surface of CNTs. In addition, useful current update on research and development of CNT gas sensors is provided.

M. Mittal; A. Kumar

2014-01-01T23:59:59.000Z

149

Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report  

SciTech Connect (OSTI)

This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol.

Sinskey, Anthony J. [MIT] [MIT; Worden, Robert Mark [Michigan State University MSU] [Michigan State University MSU; Brigham, Christopher [MIT] [MIT; Lu, Jingnan [MIT] [MIT; Quimby, John Westlake [MIT] [MIT; Gai, Claudia [MIT] [MIT; Speth, Daan [MIT] [MIT; Elliott, Sean [Boston University] [Boston University; Fei, John Qiang [MIT] [MIT; Bernardi, Amanda [MIT] [MIT; Li, Sophia [MIT] [MIT; Grunwald, Stephan [MIT] [MIT; Grousseau, Estelle [MIT] [MIT; Maiti, Soumen [MSU] [MSU; Liu, Chole [MSU] [MSU

2013-12-16T23:59:59.000Z

150

The European carbon balance. Part 1: fossil fuel emissions  

SciTech Connect (OSTI)

We analyzed the magnitude, the trends and the uncertainties of fossil-fuel CO2 emissions in the European Union 25 member states (hereafter EU-25), based on emission inventories from energy-use statistics. The stability of emissions during the past decade at EU-25 scale masks decreasing trends in some regions, offset by increasing trends elsewhere. In the recent 4 years, the new Eastern EU-25 member states have experienced an increase in emissions, reversing after a decade-long decreasing trend. Mediterranean and Nordic countries have also experienced a strong acceleration in emissions. In Germany, France and United Kingdom, the stability of emissions is due to the decrease in the industry sector, offset by an increase in the transportation sector. When four different inventories models are compared, we show that the between-models uncertainty is as large as 19% of the mean for EU-25, and even bigger for individual countries. Accurate accounting for fossil CO2 emissions depends on a clear understanding of system boundaries, i.e. emitting activities included in the accounting. We found that the largest source of errors between inventories is the use of distinct systems boundaries (e.g. counting or not bunker fuels, cement manufacturing, nonenergy products). Once these inconsistencies are corrected, the between-models uncertainty can be reduced down to 7% at EU-25 scale. The uncertainty of emissions at smaller spatial scales than the country scale was analyzed by comparing two emission maps based upon distinct economic and demographic activities. A number of spatial and temporal biases have been found among the two maps, indicating a significant increase in uncertainties when increasing the resolution at scales finer than 200 km. At 100km resolution, for example, the uncertainty of regional emissions is estimated to be 60 gCm2 yr1, up to 50% of the mean. The uncertainty on regional fossil-fuel CO2 fluxes to the atmosphere could be reduced by making accurate 14C measurements in atmospheric CO2, and by combining them with transport models.

Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Paris, J. D. [Laboratoire des Sciences du Climat et de l'Environement, France; Peylin, Philippe [National Center for Scientific Research, Gif-sur-Yvette, France; Piao, S. L. [National Center for Scientific Research, Gif-sur-Yvette, France; River, L. [National Center for Scientific Research, Gif-sur-Yvette, France; Marland, Gregg [ORNL; Levin, I. [University of Heidelberg; Pregger, T. [Universitat Stuttgart; Scholz, Y. [Universitat Stuttgart; Friedrich, R. [Universitat Stuttgart; Schulze, E.-D. [Max Planck Institute for Biogeochemistry

2009-05-01T23:59:59.000Z

151

Electrolyte matrix in a molten carbonate fuel cell stack  

DOE Patents [OSTI]

A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

Reiser, C.A.; Maricle, D.L.

1987-04-21T23:59:59.000Z

152

Electrolyte matrix in a molten carbonate fuel cell stack  

DOE Patents [OSTI]

A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack.

Reiser, Carl A. (Glastonbury, CT); Maricle, Donald L. (Glastonbury, CT)

1987-04-21T23:59:59.000Z

153

Summary report : direct approaches for recycling carbon dioxide into synthetic fuel.  

SciTech Connect (OSTI)

The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is compatible with much of the existing fuel infrastructure.

Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); Ambrosini, Andrea; Diver, Richard B., Jr.; Siegel, Nathan Phillip; Miller, James Edward; Gelbard, Fred; Evans, Lindsey R.

2009-01-01T23:59:59.000Z

154

Transportation Sector Energy Use by Fuel Type Within a Mode from EIA AEO  

Open Energy Info (EERE)

Sector Energy Use by Fuel Type Within a Mode from EIA AEO Sector Energy Use by Fuel Type Within a Mode from EIA AEO 2011 Early Release Dataset Summary Description Supplemental Table 46 of EIA AEO 2011 Early Release Source EIA Date Released December 08th, 2010 (3 years ago) Date Updated Unknown Keywords AEO Annual Energy Outlook EIA Energy Information Administration Fuel mode TEF transportation Transportation Energy Futures Data text/csv icon Transportation_Sector_Energy_Use_by_Fuel_Type_Within_a_Mode.csv (csv, 144.3 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

155

Behavior of carbonate-rich fuels in ACFBC and PFBC conditions  

SciTech Connect (OSTI)

Estonian oil shale is known as one of richest in carbonate fuels. High mineral matter content (60--75% in dry mass), moderate moisture (9--12%) and carbonate carbon dioxide content (17--19%), and low heating value (LHV 8--10 MJ/kg as received) are characteristic for Estonian oil shale. Approximately half of the mineral matter is in the carbonate form, mainly as calcium carbonate. The sulfur content of dry mass is 1.5--1.7% and Ca/S molar ratio is 8--10. Due to limestone present in oil shale, the additional sorbent for sulfur retention during combustion is not needed. The behavior of carbonates as well as the formation of ash at fluidized bed combustion (FBC) was the main topics to study. At Thermal Engineering Department (TED) of Tallinn Technical University a laboratory pressurized combustion facility was used for investigation the decomposition of soil shale carbonates in atmospheric and pressurized burning conditions. The experiments with oil shale were performed at pressures 0.1 MPa and 1.2 MPa and at the temperature 850 C. Based on the carbonate decomposition rate (CDR) 0.3--0.4 established experimentally at pressurized combustion, it may be concluded that the heating value of oil shale increases approximately by 5.5--8% and the carbon dioxide concentration in flue gas decreases by 13--20% compared with the conditions of the complete decomposition of carbonate. Combustion of oil shale was tested in 0.15--1.0 MW{sub th} test facilities. The tests confirmed the suitability of both ACFBC and PFBC technologies to utilize oil shale. The tests showed a nearly complete binding of sulfur by oil shale ash and a limited formation of NO{sub x} at combustion. Oil shale FBC is characterized by the formation of large amounts (40--85% from total) of fine-grained fly ash.

Ots, A.; Arro, H.; Pihu, T.; Prikk, A.

1999-07-01T23:59:59.000Z

156

Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9072 9072 September 2010 Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis Robert Remick National Renewable Energy Laboratory Douglas Wheeler DJW Technology, LLC National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-560-49072 September 2010 Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis Robert Remick National Renewable Energy Laboratory Douglas Wheeler DJW Technology, LLC Prepared under Task No. H278.7210

157

Techno-economic analysis of sour gas oxy-fuel combustion power cycles for carbon capture and sequestration  

E-Print Network [OSTI]

The world's growing energy demand coupled with the problem of global warming have led us to investigate new energy sources that can be utilized in a way to reduce carbon dioxide emissions than traditional fossil fuel power ...

Chakroun, Nadim Walid

2014-01-01T23:59:59.000Z

158

State-By-State Carbon Dioxide Emissions from Fossil Fuel Use in the United States 1960–2000  

Science Journals Connector (OSTI)

Time series of fossil fuel carbon emissions from 1960–2000 for each of the U.S. states and the District of Columbia are presented and discussed. Comparison of the nationally summarized results with other natio...

T. J. Blasing; Christine Broniak…

2005-10-01T23:59:59.000Z

159

New materials for intermediate-temperature solid oxide fuel cells to be powered by carbon- and sulfur-containing fuels.  

E-Print Network [OSTI]

??Unlike polymer electrolyte fuel cells, solid-oxide fuel cells (SOFCs) have the potential to use a wide variety of fuels, including hydrocarbons and gasified coal or… (more)

Yang, Lei

2011-01-01T23:59:59.000Z

160

Carbon and energy prices under uncertainty: A theoretical analysis of fuel switching with heterogenous power plants  

Science Journals Connector (OSTI)

Abstract European power producers have a major influence on the EU ETS, given that both their CO2 emissions and their EUA (European Union Allowance) allocations account for more than half of the total volumes of the scheme. Fuel switching is often considered as the main short-term abatement measure under the EU ETS. It consists in substituting combined cycle gas turbines (CCGTs) for hard-coal plants in power generation. Thereby coal plants run for shorter periods, and CO2 emissions are reduced. This paper provides the first theoretical analysis of fuel switching, in a context where power plants involved are not equally efficient. We begin with a preliminary work using illustrative examples and sensitivity analyses, which enables us to observe how differences in the efficiency of power plants impact the cost of fuel switching, and how this is related to the level of switching effort. Based on this, we build a theoretical model taking into account the effect of differences in the efficiency of power plants involved in fuel switching. We also investigate the effect of the timing of fuel switching abatements, within the temporally defined environment of our dynamic model. Results demonstrate that the gas price and uncontrolled CO2 emissions act together on the carbon price. We show that the influence of the gas price on the carbon price depends on the level of uncontrolled CO2 emissions, due to heterogeneity of power plants that are used in the fuel switching process. Furthermore, we show that the time of occurrence of uncontrolled emissions matters so that shocks have a stronger impact when they occur in a period that is closed to the end of the phase.

Vincent Bertrand

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

World Energy Consumption by Fuel Type, 1970-2020  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Natural gas is projected to be the fastest-growing component of primary world energy consumption, more than doubling between 1997 and 2020. Gas accounts for the largest increment in electricity generation (41 percent of the total increment of energy used for electricity generation). Combined-cycle gas turbine power plants offer some of the highest commercially available plant efficiencies, and natural gas is environmentally attractive because it emits less sulfur dioxide, carbon dioxide, and particulate matter than does oil or coal. In the IEO2000 projection, world natural gas consumption reaches the level of coal by 2005, and by 2020 gas use exceeds coal by 29 percent. Oil currently provides a larger share of world energy consumption than any other energy source and is expected to remain in that position

162

A validated dynamic model of the first marine molten carbonate fuel cell  

Science Journals Connector (OSTI)

In this work we present a modular, dynamic and multi-dimensional model of a molten carbonate fuel cell (MCFC) onboard the offshore supply vessel “Viking Lady” serving as an auxiliary power unit. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the vessel. The model is able to capture detailed thermodynamic, heat transfer and electrochemical reaction phenomena within the fuel cell layers. The model has been calibrated and validated with measured performance data from a prototype installation onboard the offshore supply vessel. The calibration process included parameter identification, sensitivity analysis to identify the critical model parameters, and iterative calibration of these to minimize the overall prediction error. The calibrated model has a low prediction error of 4% for the operating range of the cell, exhibiting at the same time a physically sound qualitative behavior in terms of thermodynamic heat transfer and electrochemical phenomena, both on steady-state and transient operation. The developed model is suitable for a wide range of studies covering the aspects of thermal efficiency, performance, operability, safety and endurance/degradation, which are necessary to introduce fuel cells in ships. The aim of this MCFC model is to aid to the introduction, design, concept approval and verification of environmentally friendly marine applications such as fuel cells, in a cost-effective, fast and safe manner.

E. Ovrum; G. Dimopoulos

2012-01-01T23:59:59.000Z

163

Electroreduction of Oxygen in Polymer Electrolyte Fuel Cells by Activated Carbon Coated Cobalt Nanocrystallites Produced by Electric Arc Discharge  

Science Journals Connector (OSTI)

Electroreduction of Oxygen in Polymer Electrolyte Fuel Cells by Activated Carbon Coated Cobalt Nanocrystallites Produced by Electric Arc Discharge ... A recent review of the encapsulation of rare earth and iron group metals (Fe, Co, Ni) using electric arc discharge has been published by Saito. ... Nanotubes have been observed after activation of catalytically inactive carbon-coated Co nanocrystallites generated by electric arc discharge. ...

G. Lalande; D. Guay; J. P. Dodelet; S. A. Majetich; M. E. McHenry

1997-03-18T23:59:59.000Z

164

,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_epjk_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_epjk_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

165

Selective adsorption of tert-butylmercaptan and tetrahydrothiophene on modified activated carbons for fuel processing in fuel cell applications  

Science Journals Connector (OSTI)

Abstract The effects of surface oxidation and KOH impregnation on activated carbon for the selective adsorption of tert-butylmercaptan (TBM) and tetrahydrothiophene (THT) present in natural fuel gas were studied. Physicochemical properties of the adsorbents were characterized by N2 adsorption, X-ray diffraction (XRD), temperature programmed desorption (TPD), scanning electron microscopy (SEM), and surface pH measurements. Oxidation treatments by HNO3 or H2O2 gave rise to considerable increases in both TBM and THT adsorption capacity, about a threefold enhancement from those on pristine activated carbon. Notably, it was found that the oxidative modifications led to an enhancement in THT adsorption selectivity, whereas KOH impregnation led to a marked increase in TBM adsorption selectivity. The properties of the adsorption sites and the adsorption strength of TBM and THT on the sites were characterized. These results agree well with the experimental sulfur adsorption capacities of the samples and can be explained by an adsorption model proposed in this work.

Phuoc Hoang Ho; So-Yun Lee; Doohwan Lee; Hee-Chul Woo

2014-01-01T23:59:59.000Z

166

A synthesis of carbon dioxide emissions from fossil-fuel combustion  

E-Print Network [OSTI]

basis (e.g. , to remove bunker fuels, cement production,+ imports ?exports ? bunkers ? non ? fuel uses ? stockMarland and Rotty, 1984). Bunker fuels are fuels used in

2012-01-01T23:59:59.000Z

167

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Department of Energy. “Alternative Fuels Data Center (HomeMotor Fuels: the Alternative Fuels Trade Model. Oak Ridge,Challenges for Alternative Fuel Vehicle and Transportation

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

168

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Department of Energy. “Alternative Fuels Data Center (HomeMotor Fuels: the Alternative Fuels Trade Model. Oak Ridge,Challenges for Alternative Fuel Vehicle and Transportation

2007-01-01T23:59:59.000Z

169

Vehicle type choice under the influence of a tax reform and rising fuel prices  

Science Journals Connector (OSTI)

Abstract Differentiated vehicle taxes are considered by many a useful tool for promoting environmentally friendly vehicles. Various structures have been implemented in several countries, e.g. Ireland, France, The Czech Republic, and Denmark. In many countries the tax reforms have been followed by a steep change in new vehicle purchases toward more diesel vehicles and more fuel-efficient vehicles. The paper analyses to what extent a vehicle tax reform similar to the Danish 2007 reform may explain changes in purchasing behaviour. The paper investigates the effects of a tax reform, fuel price changes, and technological development on vehicle type choice using a mixed logit model. The model allows a simulation of the effect of car price changes that resemble those induced by the tax reform. This effect is compared to the effects of fuel price changes and technology improvements. The simulations show that the effect of the tax reform on fuel efficiency is similar to the effect of rising fuel prices while the effect of technological development is much larger. The conclusion is that while the tax reform appeared in the same year as a large increase in fuel efficiency, it seems likely that it only explains a small part of the shift in fuel efficiency that occurred and that the main driver was the technological development.

Stefan L. Mabit

2014-01-01T23:59:59.000Z

170

Electro-catalytic oxidation device for removing carbon from a fuel reformate  

DOE Patents [OSTI]

An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

Liu, Di-Jia (Naperville, IL)

2010-02-23T23:59:59.000Z

171

Reducing Our Carbon Footprint: Converting Plants to Fuel (LBNL Science at the Theater)  

ScienceCinema (OSTI)

Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmental and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.

Somerville, Chris

2011-04-28T23:59:59.000Z

172

Dioxin and trace metal emissions from combustion of carbonized RDF slurry fuels  

SciTech Connect (OSTI)

In 1994, the U.S. generated approximately 209 million tons of Municipal Solid Waste (MSW), with 61% landfilled, 24% recycled, and 15% processed through Municipal Waste Combustion (MWC). In order to divert a larger portion of this generated MSW from landfills, MWC will have to play a growing role in MSW disposal. However, recently promulgated New Source Performance Standards (NSPS) for MWC will add an additional financial burden, through mandated emission reductions and air pollution control technologies, to an already financially pressured MWC marketplace. In the past, Refuse Derived Fuel (RDF), a solid fuel produced from MSW, has been fired in industrial and coal boilers as an alternative means of MWC. While lower sulfur dioxide (SO{sub 2}) emissions provided the impetus, firing RDF in industrial and coal boilers frequently suffered from several disadvantages including increased solids handling, increased excess air requirements, increased air emissions, increased slag formation in the boiler, and higher fly ash resistivity. This paper summarizes the latest emissions and combustion tests with the carbonized RDF slurry fuel. With EnerTech`s SlurryCarb{trademark} process, a pumpable slurry of RDF is continuously pressurized with a pump to between 1200 and 2500 psi. The RDF slurry is pressurized above the saturated steam curve to maintain a liquid state when the slurry is heated to approximately 480-660{degrees}F. Slurry pressure and temperature then are maintained for less than 30 minutes in plug-flow reactors. At this temperature and pressure, oxygen functional groups in the molecular structure of the RDF are split off as carbon dioxide gas. This evolved carbon dioxide gas comprises a significant weight percentage of the feed RDF, but only a minimal percentage of the heating value.

Klosky, M. [EnerTech Environmental, Inc., Atlanta, GA (United States); Fisher, M. [American Plastics Council, Washington, DC (United States); Singhania, A. [American Plastics Council/Amoco Chemicals, Alpharetta, GA (United States)] [and others

1997-12-01T23:59:59.000Z

173

Activated carbon aerogel as electrode material for coin-type EDLC cell in organic electrolyte  

Science Journals Connector (OSTI)

Abstract Carbon aerogel (CA) was prepared by a carbonization of resorcinol–formaldehyde (RF) polymer gels, and it was chemically activated with KOH to obtain activated carbon aerogel (ACA) for electrode material for EDLC in organic electrolyte. Coin-type EDLC cells with two symmetrical carbon electrode were assembled using the prepared carbon materials. Electrochemical performance of the carbon electrodes was measured by galvanostatic charge/discharge and cyclic voltammetry methods. Activated carbon aerogel (20.9 F/g) showed much higher specific capacitance than carbon aerogel (7.9 F/g) and commercial activated carbon (8.5 F/g) at a scan rate of 100 mV/s. This indicates that chemical activation with KOH served as an efficient method to improve electrochemical performance of carbon aerogel for EDLC electrode in organic electrolyte. The enhanced electrochemical performance of activated carbon aerogel was attributed to the high effective surface area and the well-developed pore structure with appropriate pore size obtained from activation with KOH.

Soon Hyung Kwon; Eunji Lee; Bum-Soo Kim; Sang-Gil Kim; Byung-Jun Lee; Myung-Soo Kim; Ji Chul Jung

2014-01-01T23:59:59.000Z

174

Molecular gas in early-type galaxies: Fuel for residual star formation  

E-Print Network [OSTI]

Abstract: Molecular gas in early-type galaxies: Fuel for residual star formation Timothy A. Davis Survey 2. The ATLAS3D CARMA Survey 3. Kinematic Misalignments 4. Origin of the molecular gas The ATLAS3D is to determine how (major and minor) mergers, gas, star formation and feedback affect the transformation

Bureau, Martin

175

EFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA Jianbang Liu1,2  

E-Print Network [OSTI]

to electrical energy consumed to produce the discharge.) Consequently, ignition by laser sources has beenEFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA DISCHARGES Jianbang Liu1,2 , Fei Wang1 with air ignited by transient plasma discharge were investigated and compared with spark discharge ignition

176

Landfill gas cleanup for carbonate fuel cell power generation. Final report  

SciTech Connect (OSTI)

To utilize landfill gas for power generation using carbonate fuel cells, the LFG must be cleaned up to remove sulfur and chlorine compounds. This not only benefits the operation of the fuel cell, but also benefits the environment by preventing the emission of these contaminants to the atmosphere. Commercial technologies for gas processing are generally economical in relatively large sizes (3 MMSCFD or larger), and may not achieve the low levels of contaminants required. To address the issue of LFG clean-up for fuel cell application, a process was developed utilizing commercially available technology. A pilot-scale test facility utilizing this process was built at a landfill site in Anoka, Minnesota using the EPRI fuel cell test facility used for coal gas testing. The pilot plant was tested for 1000 hours, processing 970,000 SCF (27,500 Nm{sup 3}) of landfill gas. Testing indicated that the process could achieve the following concentrations of contaminants in the clean gas: Less than 80 ppbv hydrogen sulfide; less than 1 ppm (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv if any individual chlorinated hydrocarbon; and 1.5 ppm (average) Sulfur Dioxide. The paper describes the LFG composition for bulk and trace compounds; evaluation of various methods to clean landfill gas; design of a LFG cleanup system; field test of pilot-scale gas cleanup process; fuel cell testing on simulated landfill gas; single cell testing on landfill gas contaminants and post test analysis; and design and economic analyses of a full scale gas cleanup system.

Steinfeld, G.; Sanderson, R.

1998-02-01T23:59:59.000Z

177

Manufacture of Carbon Materials of Aerogel Type from Carbon Blacks of Various Origins  

Science Journals Connector (OSTI)

The influence exerted by the structure and origin of samples of technical grade carbon, conditions of their thermal treatment (temperature, nature of a gas medium) and preliminary impregnation with activating ...

S. S. Stavitskaya; V. E. Goba; A. N. Tomashevskaya…

178

Can ethanol alone meet California's low carbon fuel standard? An evaluation of feedstock  

Science Journals Connector (OSTI)

The feasibility of meeting California's low carbon fuel standard (LCFS) using ethanol from various feedstocks is assessed. Lifecycle greenhouse gas (GHG) emissions, direct agricultural land use, petroleum displacement directly due to ethanol blending, and production costs for a number of conventional and lignocellulosic ethanol pathways are estimated under various supply scenarios. The results indicate that after considering indirect land use effects, all sources of ethanol examined, except Midwest corn ethanol, are viable options to meet the LCFS. However, the required ethanol quantity depends on the GHG emissions performance and ethanol availability. The quantity of ethanol that can be produced from lignocellulosic biomass resources within California is insufficient to meet the year 2020 LCFS target. Utilizing lignocellulosic ethanol to meet the LCFS is more attractive than utilizing Brazilian sugarcane ethanol due to projected lower direct agricultural land use, dependence on imported energy, ethanol cost, required refueling infrastructure modifications and penetration of flexible fuel E85 vehicles. However, advances in cellulosic ethanol technology and commercial production capacity are required to support moderate- to large-scale introduction of low carbon intensity cellulosic ethanol. Current cellulosic ethanol production cost estimates suffer from relatively high uncertainty and need to be refined based on commercial scale production data when available.

Yimin Zhang; Satish Joshi; Heather L MacLean

2010-01-01T23:59:59.000Z

179

Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell  

Science Journals Connector (OSTI)

Ordered hierarchical nanostructured carbon (OHNC) has been fabricated through inverse replication of silica template and explored for the first time to support high loading of Pt nanoparticles as cathode catalyst in proton exchange membrane fuel cells (PEMFC). ... Ordered porous carbon materials with three-dimensionally interconnected pore structures and highly developed porosity have a variety of potential applications such as catalyst supports in low temperature fuel cells,(1, 2) electrode materials for electric double-layer capacitors(3, 4) and for lithium ion batteries,(5) adsorbents, and hydrogen storage materials. ... Carbon black Vulcan XC-72 (VC) is widely used as an electrocatalyst support in the PEMFCs due to its relatively large surface area and excellent chemical stability in the fuel cell environment. ...

Baizeng Fang; Jung Ho Kim; Minsik Kim; Jong-Sung Yu

2009-02-04T23:59:59.000Z

180

Accelerator-Based Irradiation Creep of Pyrolytic Carbon Used in TRISO Fuel Particles for the (VHTR) Very Hight Temperature Reactors  

SciTech Connect (OSTI)

Pyrolytic carbon (PyC) is one of the important structural materials in the TRISO fuel particles which will be used in the next generation of gas-cooled very-high-temperature reactors (VHTR). When the TRISO particles are under irradiation at high temperatures, creep of the PyC layers may cause radial cracking leading to catastrophic particle failure. Therefore, a fundamental understanding of the creep behavior of PyC during irradiation is required to predict the overall fuel performance.

Lumin Wang; Gary Was

2010-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

various data sets, estimates of bunker fuel consumption forvarious data sets, estimates of bunker fuel consumption foras international marine bunker fuel. For the remaining 5% of

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

182

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

as international marine bunker fuel. For the remaining 5% ofOf the distillate fuel consumed by all marine vessels, weresidual fuel oil from international marine travel. However,

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

183

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Prospects for Hydrogen and Fuel Cells,” Organization forquiet and powerful. .Hydrogen and fuel cells also offer thevehicles (PHEVs), hydrogen fuel cell vehicles (FCVs) are

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

184

Uncertainty analysis of criticality safety for the plate type fuel assembly storage rack  

Science Journals Connector (OSTI)

To evaluate the criticality safety of the fresh and the spent fuel storage racks in an open pool type research reactor designed by KAERI, the upper subcriticality limit (USL) analysis was carried out. First, the bias and its uncertainty of MCNP code system with ENDF/B-VII library were evaluated using the calculation results of the 183 benchmark experiments. The criticality calculations for the fuel storage rack are carried out under a normal state, an increased water temperature, a fuel assembly drop, and an eccentric insertion which can affect the criticality. Considering biases and uncertainties for the MCNP code system, abnormal conditions, and the manufacturing tolerance of the cell tube thickness, the USL value that can guarantee sufficient subcriticality is determined. It was found that the criticality of the fresh and the spent fuel storage racks currently designed satisfy the USL condition. Additionally, it was concluded that the pitch size of a fresh fuel storage rack can be reduced for efficient space availability, and even under a worst case in which the fresh storage rack is surrounded by a lower water density and the smallest pitch size satisfies the USL conditions.

Tae Young Han; Chang Je Park; Byung Chul Lee; Jae Man Noh

2013-01-01T23:59:59.000Z

185

Handbook of fuel cell performance  

SciTech Connect (OSTI)

The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

1980-05-01T23:59:59.000Z

186

Determination of optimum electrolyte composition for molten carbonate fuel cells. Quarterly technical progress report, October--December 1987  

SciTech Connect (OSTI)

The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

Yuh, C.Y.; Pigeaud, A.

1987-12-31T23:59:59.000Z

187

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

from diesel (or marine bunker fuel) to electricity, assumingports. Marine capacity will be competing with non-fuel goods

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

188

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

from diesel (or marine bunker fuel) to electricity, assumingports. Marine capacity will be competing with non-fuel goods

2007-01-01T23:59:59.000Z

189

Bond Distortions in Armchair Type Single Wall Carbon Nanotubes  

E-Print Network [OSTI]

The energy band gap structure and stability of (3,3) and (10,10) nanotubes have been comparatively investigated in the frameworks of the traditional form of the Su-Schrieffer-Heeger (SSH) model and a toy model including the contributions of bonds of different types to the SSH Hamiltonian differently. Both models give the same energy band gap structure but bond length distortions in different characters for the nanotubes.

N. Sunel; E. Rizaoglu; K. Harigaya; O. Ozsoy

2005-03-03T23:59:59.000Z

190

Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources  

Science Journals Connector (OSTI)

Molten carbonate fuel cell (MCFC)/gas turbine (GT) hybrid system has attracted a great deal of research effort due to its higher electricity efficiency. However, its technology has remained at the conceptual level due to incomplete examination of the related issues, challenges and variables. To contribute to the development of system technology, the MCFC/GT hybrid system is analyzed and discussed herein. A qualitative comparison of the two kinds of MCFC/GT hybrid system, indirect and direct, is hindered by the many variables involved. However, the indirect system may be preferred for relatively small-scale systems with the micro-GT. The direct system can be more competitive in terms of system efficiency and GT selection due to the optionality of system layouts as well as even higher GT inlet temperature. System layout is an important factor influencing the system efficiency. The other issues such as GT selection, system pressurization and part-load operation are also significant.

Jung-Ho Wee

2011-01-01T23:59:59.000Z

191

Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation  

Science Journals Connector (OSTI)

A study was conducted to compare the electricity generation costs of a number of current commercial technologies with technologies expected to become commercially available within the coming decade or so. The amount of greenhouse gas emissions resulting per kWh of electricity generated were evaluated. A range of fossil fuel alternatives (with and without physical carbon sequestration), were compared with the baseline case of a pulverised coal, steam cycle power plant. Nuclear, hydro, wind, bioenergy and solar generating plants were also evaluated. The objectives were to assess the comparative costs of mitigation per tonne of carbon emissions avoided, and to estimate the total amount of carbon mitigation that could result from the global electricity sector by 2010 and 2020 as a result of fuel switching, carbon dioxide sequestration and the greater uptake of renewable energy. Most technologies showed potential to reduce both generating costs and carbon emission avoidance by 2020 with the exception of solar power and carbon dioxide sequestration. The global electricity industry has potential to reduce its carbon emissions by over 15% by 2020 together with cost saving benefits compared with existing generation.

Ralph E.H. Sims; Hans-Holger Rogner; Ken Gregory

2003-01-01T23:59:59.000Z

192

Attenuated degradation of a PEMFC cathode during fuel starvation by using carbon-supported IrO2  

Science Journals Connector (OSTI)

IrO2, a water electrolysis catalyst, has been known to be effective in preventing corrosion of the carbon support in proton exchange membrane fuel cells (PEMFCs). Particulate IrO2 can agglomerate easily, which can decrease substantially the catalytic surface area required for oxygen evolution reaction, causing the loss of catalytic efficiency. Furthermore, agglomerated IrO2 nanoparticles can have an adverse effect on the oxygen reduction reaction by covering the active surface area of the Pt/C cathode catalyst, which is a damaging factor for the intrinsic performance of PEMFC. Carbon-supported iridium oxide, IrO2/C, which can prevent the agglomeration of Ir nanoparticles more effectively, was synthesized to overcome these problems. Compared to the cell with the Pt/C cathode only, the cell with 10 wt.% IrO2 particles and Pt/C cathode showed stronger durability during fuel starvation but the cell performance at normal operation decreased severely by 35%. The cell with the same amount of IrO2 dispersed on a carbon support, 10 wt.% IrO2/C, showed similar durability during fuel starvation maintaining the cell performance comparable to the cell using a Pt/C cathode only. Carbon-supported IrO2, IrO2/C, was more effective than IrO2 particles in both maintaining the intrinsic performance and improving the cell durability during fuel starvation.

Injoon Jang; Imgon Hwang; Yongsug Tak

2013-01-01T23:59:59.000Z

193

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

194

Influence from fuel type on the performance of an air-blown cyclone gasifier  

Science Journals Connector (OSTI)

Abstract Entrained flow gasification of biomass using the cyclone principle has been proposed in combination with a gas engine as a method for combined heat and power production in small to medium scale (gasifier also has the potential to operate using ash rich fuels since the reactor temperature is lower than the ash melting temperature and the ash can be separated after being collected at the bottom of the cyclone. The purpose of this work was to assess the fuel flexibility of cyclone gasification by performing tests with five different types of fuels; torrefied spruce, peat, rice husk, bark and wood. All of the fuels were dried to below 15% moisture content and milled to a powder with a maximum particle size of around 1 mm. The experiments were carried out in a 500 kWth pilot gasifier with a 3-step gas cleaning process consisting of a multi-cyclone for removal of coarse particles, a bio-scrubber for tar removal and a wet electrostatic precipitator for removal of fine particles and droplets from the oil scrubber (aerosols). The lower heating value (LHV) of the clean producer gas was 4.09, 4.54, 4.84 and 4.57 MJ/Nm3 for peat, rice husk, bark and wood, respectively, at a fuel load of 400 kW and an equivalence ratio of 0.27. Torrefied fuel was gasified at an equivalence ratio of 0.2 which resulted in a LHV of 5.75 MJ/Nm3 which can be compared to 5.50 MJ/Nm3 for wood powder that was gasified at the same equivalence ratio. A particle sampling system was designed in order to collect ultrafine particles upstream and downstream the gasifier cleaning device. The results revealed that the gas cleaning successfully removed >99.9% of the particulate matter smaller than 1 ?m.

M. Risberg; O.G.W. Öhrman; B.R. Gebart; P.T. Nilsson; A. Gudmundsson; M. Sanati

2014-01-01T23:59:59.000Z

195

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

61 4.3 Carbon capture andPart II: Policy Analysis Page 5 R12: Carbon capture andstorage If carbon capture and storage (CCS) technologies

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

196

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

61 4.3 Carbon capture andPart II: Policy Analysis Page 5 R12: Carbon capture andstorage If carbon capture and storage (CCS) technologies

2007-01-01T23:59:59.000Z

197

The Elephant in the Room: Dealing with Carbon Emissions from Synthetic Transportation Fuels Production  

SciTech Connect (OSTI)

Carbon dioxide (CO2), produced by conversion of hydrocarbons to energy, primarily via fossil fuel combustion, is one of the most ubiquitous and significant greenhouse gases (GHGs). Concerns over climate change precipitated by rising atmospheric GHG concentrations have prompted many industrialized nations to begin adopting limits on emissions to inhibit increases in atmospheric CO2 levels. The United Nations Framework Convention on Climate Change states as a key goal the stabilization of atmospheric CO2 at a level that prevents “dangerous anthropogenic interference” with the planet’s climate systems. This will require sharply reducing emissions growth rates in developing nations, and reducing CO2 emissions in the industrialized world to half current rates in the next 50 years. And ultimately, stabilization will require that annual emissions drop to almost zero.Recently, there has been interest in producing synthetic transportation fuels via coal-to-liquids (CTL) production, particularly in countries where there is an abundant supply of domestic coal, including the United States. This paper provides an overview of the current state of CTL technologies and deployment, a discussion of costs and technical requirements for mitigating the CO2 impacts associated with a CTL facility, and the challenges facing the CTL industry as it moves toward maturity.

Parker, Graham B.; Dahowski, Robert T.

2007-07-11T23:59:59.000Z

198

Polarization Losses under Accelerated Stress Test Using Multiwalled Carbon Nanotube Supported Pt Catalyst in PEM Fuel Cells  

SciTech Connect (OSTI)

The electrochemical behavior for Pt catalysts supported on multiwalled carbon nanotubes and Vulcan XC-72 in proton exchange membrane fuel cells under accelerated stress test was examined by cyclic voltammetry, electrochemical impedance spectroscopy, and polarization technique. Pt catalyst supported on multiwalled carbon nanotubes exhibited highly stable electrochemical surface area, oxygen reduction kinetics, and fuel cell performance at a highly oxidizing condition, indicating multiwalled carbon nanotubes show high corrosion resistance and strong interaction with Pt nanoparticles. The Tafel slope, ohmic resistances, and limiting current density determined were used to differentiate kinetic, ohmic, mass-transfer polarization losses from the actual polarization curve. Kinetic contribution to the total overpotential was larger throughout the stress test. However, the fraction of kinetic overpotential decreased and mass-transfer overpotential portion remained quite constant during accelerated stress test, whereas the fraction of ohmic overpotential primarily originating from severe proton transport limitation in the catalyst layer increased under the anodic potential hold.

Park, Seh K.; Shao, Yuyan; Kou, Rong; Viswanathan, Vilayanur V.; Towne, Silas A.; Rieke, Peter C.; Liu, Jun; Lin, Yuehe; Wang, Yong

2011-03-01T23:59:59.000Z

199

High-temperature Chemical Compatibility of As-fabricated TRIGA Fuel and Type 304 Stainless Steel Cladding  

SciTech Connect (OSTI)

Chemical interaction between TRIGA fuel and Type-304 stainless steel cladding at relatively high temperatures is of interest from the point of view of understanding fuel behavior during different TRIGA reactor transient scenarios. Since TRIGA fuel comes into close contact with the cladding during irradiation, there is an opportunity for interdiffusion between the U in the fuel and the Fe in the cladding to form an interaction zone that contains U-Fe phases. Based on the equilibrium U-Fe phase diagram, a eutectic can develop at a composition between the U6Fe and UFe2 phases. This eutectic composition can become a liquid at around 725°C. From the standpoint of safe operation of TRIGA fuel, it is of interest to develop better understanding of how a phase with this composition may develop in irradiated TRIGA fuel at relatively high temperatures. One technique for investigating the development of a eutectic phase at the fuel/cladding interface is to perform out-of-pile diffusion-couple experiments at relatively high temperatures. This information is most relevant for lightly irradiated fuel that just starts to touch the cladding due to fuel swelling. Similar testing using fuel irradiated to different fission densities should be tested in a similar fashion to generate data more relevant to more heavily irradiated fuel. This report describes the results for TRIGA fuel/Type-304 stainless steel diffusion couples that were annealed for one hour at 730 and 800°C. Scanning electron microscopy with energy- and wavelength-dispersive spectroscopy was employed to characterize the fuel/cladding interface for each diffusion couple to look for evidence of any chemical interaction. Overall, negligible fuel/cladding interaction was observed for each diffusion couple.

Dennis D. Keiser, Jr.; Jan-Fong Jue; Eric Woolstenhulme; Kurt Terrani; Glenn A. Moore

2012-09-01T23:59:59.000Z

200

Effects of marine atmosphere on the cell performance in molten carbonate fuel cells  

Science Journals Connector (OSTI)

The effects of NaCl, a main component in seawater, on molten carbonate fuel cell (MCFC) performance is investigated using a single cell test with 1, 5, and 10 wt.% NaCl-impregnated cathodes for marine applications. The cell performance increases with increasing amounts of impregnated NaCl in the cathode. This cell performance enhancement is due to the reduction in the charge transfer resistance of the electrode. From the analysis of the electrolyte composition using the inductively coupled plasma (ICP) and ion chromatography (IC) methods after cell operation, it is confirmed that the Na+ ions are accumulated in the carbonate melts, and approximately 80 at.% of the Cl- ions are emitted into the anode outlet as HCl. Expecting that the emitted \\{HCl\\} causes severe corrosion of the utilities, the concentrations of accumulated Na+ ions of emitted \\{HCl\\} in the anode outlet are calculated when air with a sea-salt particle concentration of 5–500 ugm?3 is supplied to the MCFC stack. Although \\{HCl\\} is a very corrosive gas, it is expected that the emitted \\{HCl\\} does not cause severe corrosion because, even at a high sea-salt concentration of 500 ugm?3, the emitted \\{HCl\\} concentration is low enough to operate the stack safely.

Shin Ae Song; Hyun Koo Kim; Hyung Chul Ham; Jonghee Han; Suk Woo Nam; Sung Pil Yoon

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Corrosion of 304 stainless steel in molten-carbonate fuel cells  

SciTech Connect (OSTI)

The corrosion behavior of 304 stainless steel was characterized with cyclic voltammetry in a eutectic Li/K and Li/Na carbonate melt under anode and cathode gas of the molten-carbonate fuel cell (MCFC). The corrosion rate of 304 steel was determined in four different environments of the MCFC with electrochemical methods and from cross-sectional analysis of corrosion layers. These four environments were open-circuit and MCFC-load conditions both under anode and cathode gas. At open-circuit conditions corrosion was more severe under the oxidizing cathode gas then under the reducing anode gas. On the contrary, at load conditions corrosion was more severe under anode than under cathode gas. The anodic polarization under anode gas enhances corrosion, whereas the high anodic polarization under cathode gas leads to anodic protection. Corrosion currents were measured with chronoamperometry and determined with Tafel extrapolation from quasi-stationary polarization-curve measurements. The difference between the corrosion layer thickness estimated from these corrosion currents and the corrosion layer thickness determined from cross-sectional analysis is mainly die to contributing currents of either the MCFC-anode gas reaction under anode gas or the MCFC-cathode gas reaction under cathode gas.

Keijzer, M.; Hemmes, K.; Put, P.J.J.M. van der; Schoonman, J.; Wit, J.H.W. de [Delft Univ. of Technology (Netherlands)] [Delft Univ. of Technology (Netherlands); Lindbergh, G. [Royal Inst. of Tech., Stockholm (Sweden)] [Royal Inst. of Tech., Stockholm (Sweden)

1999-07-01T23:59:59.000Z

202

Report Title: The Fossil Fuel Industry in New Mexico: A Comprehensive Impact Analysis Type of Report: Technical Report  

E-Print Network [OSTI]

Fuels 33 Summary Impacts 40 Works Cited 45 #12;3 List of Tables Table Title Page 1 Tax and Income Data0 Report Title: The Fossil Fuel Industry in New Mexico: A Comprehensive Impact Analysis Type AWARD Number: DE-NT0004397 Name and Address of Submitting Organization: Arrowhead Center New Mexico

Johnson, Eric E.

203

A computer model for the transient analysis of compact research reactors with plate type fuel  

SciTech Connect (OSTI)

A coupled neutronics and core thermal-hydraulic performance model has been developed for the analysis of plate type U-Al fueled high-flux research reactor transients. The model includes point neutron kinetics, one-dimensional, non-homogeneous, equilibrium two-phase flow and beat transfer with provision for subcooled boiling, and spatially averaged one-dimensional beat conduction. The feedback from core regions other than the fuel elements is included by employing a lumped parameter approach. Partial differential equations are discretized in space and the combined equation set representing the model is converted to an initial value problem. A variable-order, variable-time-step time advancement scheme is used to solve these ordinary differential equations. The model is verified through comparisons with two other computer code results and partially validated against SPERT-II tests. It is also used to analyze a series of HFIR reactivity transients.

Sofu, T. [Argonne National Lab., IL (United States); Dodds, H.L. [Tennessee Univ., Knoxville, TN (United States). Dept. of Nuclear Engineering

1994-03-01T23:59:59.000Z

204

Alternative Fuels Data Center: Emissions Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Reduction Emissions Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Emissions Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Emissions Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Emissions Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Emissions Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Emissions Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Emissions Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reduction Requirements Recognizing the impact of carbon-emitting fuels on climate change and to

205

N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites  

E-Print Network [OSTI]

of the carbon honeycomb structure known as graphene, are semi-conductive depending on the lattice vector by which they are rolled. Intrinsically n-type, semiconducting nanotubes are highly susceptible to oxygen doping and become p-type in atmosphere.7... to the current research for a number of reasons. The first is that CNTs exhibit different electrical properties depending on their chirality, or the arrangement of the graphene hexagons relative to the tube axis. These electronic differences can make...

Freeman, Dallas

2012-07-16T23:59:59.000Z

206

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

of residual fuel oil are identical in the inventory and inCARB SEDS inventory fuel use Residual fuel oil Distillatein their oil and gas extraction processes. In its inventory,

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

207

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

biofuel”) and bio-based and FT diesel fuels are indicated,Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel energyDiesel Bio-Diesel Hydrogen Electric Figure 5-16: Fuel energy

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

208

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

biofuel”) and bio-based and FT diesel fuels are indicated,Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel energyDiesel Bio-Diesel Hydrogen Electric Figure 5-19: Fuel energy

2007-01-01T23:59:59.000Z

209

Analysis of Strategies of Companies under Carbon Constraint: Relationship between Profit Structure of Companies and Carbon/Fuel Price Uncertainty  

E-Print Network [OSTI]

This paper examines the relationship between future carbon prices and the expected profit of companies by case studies with model companies. As the future carbon price will vary significantly in accordance with the political ...

Hashimoto, Susumu

210

FESD Proposal, Type I VOICE: Volcano, Ocean, Ice, and Carbon Experiments  

E-Print Network [OSTI]

in continental ice volume and sea level produce changes in pressure and stress within the crust and mantleFESD Proposal, Type I VOICE: Volcano, Ocean, Ice, and Carbon Experiments Project Manager: Charles during Pleistocene ice ages. We posit that changes in sea level and ice volume drive changes in volcanism

Huybers, Peter

211

Substrate Degradation Kinetics, Microbial Diversity, and Current Efficiency of Microbial Fuel Cells Supplied with Marine Plankton  

Science Journals Connector (OSTI)

...experiments, the rate of TOC consumption increased. This carbon...established on the active fuel cell anodes, respiration...using an upflow microbial fuel cell. Environ. Sci...carbon production and consumption in anoxic marine sediments...three types of microbial fuel cell. Enzymol. Microbiol...

Clare E. Reimers; Hilmar A. Stecher III; John C. Westall; Yvan Alleau; Kate A. Howell; Leslie Soule; Helen K. White; Peter R. Girguis

2007-08-31T23:59:59.000Z

212

Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts – The influence of the platinum to carbon ratio on the degradation rate  

Science Journals Connector (OSTI)

Abstract A colloidal synthesis approach is used to prepare supported proton exchange membrane fuel cell (PEMFC) catalysts with various Pt loadings – from low to extremely high ones. The catalyst samples are used to continue our investigation of the role of the Pt:C ratio in the degradation processes. The influence of the platinum loading on the electrochemical surface area (ECSA) loss is evaluated in a systematic electrochemical study by using two commercially available carbon blacks, namely Vulcan XC72R and Ketjenblack EC-300J. Accelerated degradation tests simulating load cycle and start-up/shutdown conditions are carried out in accordance with the Fuel Cell Commercialization Conference of Japan (FCCJ) recommendations. Under conditions simulating the load cycle of PEM fuel cells no unambiguous correlation between the ECSA loss and the Pt:C ratio is found. By contrast, under conditions simulating the repetitive start-up/shutdown processes of \\{PEMFCs\\} the ECSA loss first increases with increasing Pt loading. However, it decreases again for very high loadings. Furthermore, the Vulcan samples exhibited higher ECSA losses than the Ketjenblack samples, indicating the important role of the physical and chemical properties of pristine carbon supports in the carbon degradation mechanism.

Jozsef Speder; Alessandro Zana; Ioannis Spanos; Jacob J.K. Kirkensgaard; Kell Mortensen; Marianne Hanzlik; Matthias Arenz

2014-01-01T23:59:59.000Z

213

Near-frictionless carbon coatings for spark-ignited direct-injected fuel systems. Final report, January 2002.  

SciTech Connect (OSTI)

This report describes an investigation by the Tribology Section of Argonne National Laboratory (ANL) into the use of near-frictionless carbon (NFC) coatings for spark-ignited, direct-injected (SIDI) engine fuel systems. Direct injection is being pursued in order to improve fuel efficiency and enhance control over, and flexibility of, spark-ignited engines. SIDI technology is being investigated by the Partnership for a New Generation of Vehicles (PNGV) as one route towards meeting both efficiency goals and more stringent emissions standards. Friction and wear of fuel injector and pump parts were identified as issues impeding adoption of SIDI by the OTT workshop on ''Research Needs Related to CIDI and SIDI Fuel Systems'' and the resulting report, Research Needs Related to Fuel Injection Systems in CIDI and SIDI Engines. The following conclusions were reached: (1) Argonne's NFC coatings consistently reduced friction and wear in existing and reformulated gasolines. (2) Compared to three commercial DLC coatings, NFC provided the best friction reduction and protection from wear in gasoline and alternative fuels. (3) NFC was successfully deposited on production fuel injectors. (4) Customized wear tests were performed to simulate the operating environment of fuel injectors. (5) Industry standard lubricity test results were consistent with customized wear tests in showing the friction and wear reduction of NFC and the lubricity of fuels. (6) Failure of NFC coatings by tensile crack opening or spallation did not occur, and issues with adhesion to steel substrates were eliminated. (7) This work addressed several of the current research needs of the OAAT SIDI program, as defined by the OTT report Research Needs Related to Fuel Injection Systems in CIDI and SIDI Engines.

Hershberger, J.; Ozturk, O.; Ajayi, O. O.; Woodford, J. B.; Erdemir, A.; Fenske, G. R.

2002-04-05T23:59:59.000Z

214

Molten Metal Anodes for Direct Carbon-Solid Oxide Fuel Cells.  

E-Print Network [OSTI]

??The aim of this thesis was to enable the direct utilization of solid carbonaceous fuels like coal and biomass, in solid oxide fuel cells (SOFC).… (more)

Jayakumar, Abhimanyu

2012-01-01T23:59:59.000Z

215

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel energy exceeds ethanol fuel energy on a GGE basis.2006. Ethanol can contribute to energy and environmental2006. Ethanol can contribute to energy and environmental

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

216

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel energy exceeds ethanol fuel energy on a GGE basis.2006. Ethanol can contribute to energy and environmental2006. Ethanol can contribute to energy and environmental

2007-01-01T23:59:59.000Z

217

Thermally induced dispersion mechanisms for aluminum-based plate-type fuels under rapid transient energy deposition  

SciTech Connect (OSTI)

A thermally induced dispersion model was developed to analyze for dispersive potential and determine onset of fuel plate dispersion for Al-based research and test reactor fuels. Effect of rapid energy deposition in a fuel plate was simulated. Several data types for Al-based fuels tested in the Nuclear Safety Research Reactor in Japan and in the Transient Reactor Test in Idaho were reviewed. Analyses of experiments show that onset of fuel dispersion is linked to a sharp rise in predicted strain rate, which futher coincides with onset of Al vaporization. Analysis also shows that Al oxidation and exothermal chemical reaction between the fuel and Al can significantly affect the energy deposition characteristics, and therefore dispersion onset connected with Al vaporization, and affect onset of vaporization.

Georgevich, V.; Taleyarkham, R.P.; Navarro-Valenti, S.; Kim, S.H.

1995-12-31T23:59:59.000Z

218

A joint model for vehicle type and fuel type choice: evidence from a cross-nested logit study  

Science Journals Connector (OSTI)

Growing environmental concerns and oil price volatility have led to increasing interest in the potential demand for alternative fuel vehicles. Dedicated fuel vehicles such as EV and CNG vehicles use only the alte...

Stephane Hess; Mark Fowler; Thomas Adler; Aniss Bahreinian

2012-05-01T23:59:59.000Z

219

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Catalysis Dimethyl Ether Flash Pyrolysis Fischer Tropschpure hydrogen fuel product. Flash pyrolysis Pyrolysis is the

2007-01-01T23:59:59.000Z

220

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Catalysis Dimethyl Ether Flash Pyrolysis Fischer Tropschpure hydrogen fuel product. Flash pyrolysis Pyrolysis is the

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

hydrogen production could fuel about 30 million fuel cell cars,H2 fuel cell car uses 0.7 kg H2/day. However, hydrogen cancar, 30-50% more efficient than a gasoline hybrid, quiet and powerful. .Hydrogen and fuel cells

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

222

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

hydrogen production could fuel about 30 million fuel cell cars,H2 fuel cell car uses 0.7 kg H2/day. However, hydrogen cancar, 30-50% more efficient than a gasoline hybrid, quiet and powerful. .Hydrogen and fuel cells

2007-01-01T23:59:59.000Z

223

Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production  

E-Print Network [OSTI]

J. Different types of gasifiers and their integration withCO 2 in a pressurized-gasifier-based process. Energ Fuel.fluidized bed biomass steam gasifier-bed material and fuel

Liu, Zhongzhe

2013-01-01T23:59:59.000Z

224

Effects of fuel type and equivalence ratios on the flickering of triple flames  

SciTech Connect (OSTI)

An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A. [Department of Power Engineering, Jadavpur University, Salt Lake Campus, Kolkata 700098 (India)

2009-02-15T23:59:59.000Z

225

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

226

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

2007-01-01T23:59:59.000Z

227

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

for calculating the carbon intensity of biofuels. London:is introduced with a carbon intensity of -14 gCO 2 eq. /the average biofuel carbon intensity to 40 gCO 2 eq. /MJ by

2007-01-01T23:59:59.000Z

228

,"U.S. Residual Fuel Oil Prices by Sales Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Prices by Sales Type" Prices by Sales Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","9/2013","1/15/1983" ,"Data 2","Sulfur Less Than or Equal to 1%",2,"Monthly","9/2013","1/15/1983" ,"Data 3","Sulfur Greater Than 1%",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_resid_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm"

229

The kerogen types and pyrolysis kinetics of several Chinese carbonate source rocks  

SciTech Connect (OSTI)

The kerogen types and pyrolysis kinetics of several Chinese carbonate source rocks are studied in this paper. Samples involved are from Proterozoic to Neogene, including marine and lacustrine environments. Their TOC range from 0.15% to 1.69%. The carbonate contents are more than 80% except the Paleozoic Pingliang marl, Shanganning Basin. The maturations range from immature to late stage of oil generation. The Green River calcareous shale and Ghareb marl, Jordan are included for comparison. The study of kerogen types is based on analyses of kerogens including: optical method, elemental analysis, infrared spectrum, rock eval pyrolysis, pyrolysis-gas chromatography, and C-13 Nuclear Magnetic Resonance Spectrometry. The results of the study shows that most of the kerogens studied belong to type 1 or sapropelic type 2 (2a), while the kerogens from Triassic Qinglong limestone (restricted by), Jiangsu and Neogene Guantao limestone (small fault lacustrine), Shandong belong to mixed type 2 (2b). The study of pyrolysis kinetics is based on standard Rock Eval information (5 C/min.), a two-stage first order reaction model and optimization method which has been confirmed to be a simple, practical and effective method by a previous study. The current study reveals that different kerogen types have their own kinetic characteristics. Generally, kinetics parameters of type 1 and type 2a kerogens are greater than those of type 2b. However, high-sulfur type 1 and type 2a kerogens, such as those from Ghareb marl, Jordan, and Proterozoic kerogen, North China have relatively low kinetics parameters. The study also shows that kerogens with similar hydrocarbon potential (HI) and elemental composition (atomic H/C, O/C) may have very different kinetic processes.

Zhang, Youcheng (Texas A and M Univ., College Station, TX (United States). Dept. of Oceanography); Shisheng Hao (Petroleum Univ., Beijing (China). Dept. of Geosciences)

1992-01-01T23:59:59.000Z

230

Effects of spent fuel types on offsite consequences of hypothetical accidents  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) conducts experimental work on the development of waste forms suitable for several types of spent fuel at its facility on the Idaho National Engineering and Environmental Laboratory (INEEL) located 48 km West of Idaho Falls, ID. The objective of this paper is to compare the offsite radiological consequences of hypothetical accidents involving the various types of spent nuclear fuel handled in nonreactor nuclear facilities. The highest offsite total effective dose equivalents (TEDEs) are estimated at a receptor located about 5 km SSE of ANL facilities. Criticality safety considerations limit the amount of enriched uranium and plutonium that could be at risk in any given scenario. Heat generated by decay of fission products and actinides does not limit the masses of spent fuel within any given operation because the minimum time elapsed since fissions occurred in any form is at least five years. At cooling times of this magnitude, fewer than ten radionuclides account for 99% of the projected TEDE at offsite receptors for any credible accident. Elimination of all but the most important nuclides allows rapid assessments of offsite doses with little loss of accuracy. Since the ARF (airborne release fraction), RF (respirable fraction), LPF (leak path fraction) and atmospheric dilution factor ({chi}/Q) can vary by orders of magnitude, it is not productive to consider nuclides that contribute less than a few percent of the total dose. Therefore, only {sup 134}Cs, {sup 137}Cs-{sup 137m}Ba, and the actinides significantly influence the offsite radiological consequences of severe accidents. Even using highly conservative assumptions in estimating radiological consequences, they remain well below current Department of Energy guidelines for highly unlikely accidents.

Courtney, J. C.; Dwight, C. C.; Lehto, M. A.

2000-02-18T23:59:59.000Z

231

Fuel-Type Characterization of Carbonaceous Fly-Ash Particles using EDS-Derived Surface Chemistries and Its Application to Particles Extracted from Lake Sediments  

Science Journals Connector (OSTI)

9 April 1996 research-article Fuel-Type Characterization of Carbonaceous...the high temperature combustion of fossil fuels are found in high concentrations (e...extracted from lake sediments when their fuel-type is known. For example, potential...

1996-01-01T23:59:59.000Z

232

Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide  

DOE Patents [OSTI]

An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H.J. (Cambridge, MA)

2000-01-01T23:59:59.000Z

233

The Marine Isolate Novosphingobium sp. PP1Y Shows Specific Adaptation to Use the Aromatic Fraction of Fuels as the Sole Carbon and Energy Source  

Science Journals Connector (OSTI)

In some ways, strain PP1Y has properties more similar to OHCBs rather than to other Sphingomonads. In fact, these marine bacteria use petroleum and fuels as carbon and energy sources and form...10, 31]. With the ...

Eugenio Notomista; Francesca Pennacchio; Valeria Cafaro…

2011-04-01T23:59:59.000Z

234

Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium  

Science Journals Connector (OSTI)

Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium ... A simple and efficient process was presented for the selective hydrogenation of 5-hydroxymethylfurfural (HMF) into the high-quality liquid fuel 2,5-dimethylfuran (DMF) in the presence of tetrahydrofuran (THF). ... (1-3) Among the many possible chemicals, 5-hydroxymethylfurfural (HMF), which can be produced from a variety of biomass-derived carbohydrates,(4-8) is recognized as a versatile intermediate (Scheme 1), and it can be further converted into a series of high-quality fuels such as ethyl levulinate (EL),(9) 5-ethoxymethylfurfural (EMF),(10) 2,5-dimethylfuran (DMF),(11) C9–C15 alkanes,(12) and high-value chemicals such as levulinic acid (LA),(13) 2,5-dihydroxymethylfurfural (DHMF),(14) 2,5-diformylfuran (DFF),(15) and 2,5-furandicarboxylic acid (FDCA). ...

Lei Hu; Xing Tang; Jiaxing Xu; Zhen Wu; Lu Lin; Shijie Liu

2014-02-02T23:59:59.000Z

235

A Feasibility Study of Fuel Cell Cogeneration in Industry  

E-Print Network [OSTI]

% based on the HHV of the fuel. Four primary types of fuel cells have thus far emerged. They are classified by the type of electrolyte: Proton Exchange Membrane Fuel Cell (PEMFC), Phosphoric Acid Fuel Cell (PAFC), Molten Carbonate Fuel Cell (MCFC... Electrolyte PEMFC 80-1OO?C ion exchange membrane PAFC 150-220?C phosphoric acid MCFC 600-700?C molten carbonate SOFC 650-1000?C solid metal oxide T bl 3 E .. a e mISSIOn and sound pressure levels of PC25C (ONSI Corp., 1995) Emissions at 200 kW California...

Phelps, S. B.; Kissock, J. K.

236

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

237

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

238

Thin graphite bipolar plate with associated gaskets and carbon cloth flow-field for use in an ionomer membrane fuel cell  

DOE Patents [OSTI]

The present invention comprises a thin graphite plate with associated gaskets and pieces of carbon cloth that comprise a flow-field. The plate, gaskets and flow-field comprise a "plate and gasket assembly" for use in an ionomer membrane fuel cell, fuel cell stack or battery.

Marchetti, George A. (Western Springs, IL)

2003-01-03T23:59:59.000Z

239

Sizing particles of natural uranium and nuclear fuels using poly-allyl-diglycol carbonate autoradiography  

Science Journals Connector (OSTI)

......particles of natural uranium and nuclear fuels...low enriched, depleted and natural uranium and also aged...committed doses and cancer risks(4...Bristol, UK, sized uranium fragments found...nuclear fuels of depleted uranium (depUO2......

G. Hegyi; R. B. Richardson

2008-07-01T23:59:59.000Z

240

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Carbon capture technology: future fossil fuel use and mitigating climate change  

E-Print Network [OSTI]

sources for countries heavily reliant on imported fuels4 . Why CCS is not just a synonym for `clean coal

242

Novel Carbon Monoxide Sensor for PEM Fuel Cell Systems C.T. Holt, A.-M. Azad, S.L. Swartz, W.J. Dawson, and P.K. Dutta  

E-Print Network [OSTI]

Novel Carbon Monoxide Sensor for PEM Fuel Cell Systems C.T. Holt, A.-M. Azad, S.L. Swartz, W The importance of carbon monoxide sensors for automotive PEM fuel cell systems is illustrated by a schematic will protect the PEM fuel cell stack; detection of CO is extremely important because too much CO will poison

Azad, Abdul-Majeed

243

Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering  

SciTech Connect (OSTI)

Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov [AO Mittal Steel Temirtau, Temirtau (Kazakhstan)

2007-07-01T23:59:59.000Z

244

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

245

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

246

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

projection to meet the 2050 stabilization goal, the average carbon intensitycarbon intensity reductions. Developing consistent and reasonable cost projectionsprojection should be interpreted as a conservative rate of reduction in the average carbon intensity

2007-01-01T23:59:59.000Z

247

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

projection to meet the 2050 stabilization goal, the average carbon intensitycarbon intensity reductions. Developing consistent and reasonable cost projectionsprojection should be interpreted as a conservative rate of reduction in the average carbon intensity

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

248

Platinum/Carbon Nanotube Nanocomposite Synthesized in Supercritical Fluid as Electrocatalysts for Low-Temperature Fuel Cells  

SciTech Connect (OSTI)

Carbon nanotube (CNT)-supported Pt nanoparticles catalysts have been synthesized in supercritical carbon dioxide (scCO2) using platinum (II) acetylacetonate as metal precursor. The structure of the catalysts has been characterized with transmission electron micrograph (TEM) and X-ray photoelectron spectroscopy (XPS). TEM images show that platinum particles size is in the range of 5-10nm. XPS analysis indicates the presence of zero-valence platinum. The Pt-CNT exhibited high catalytic activity both for methanol oxidation and oxygen reduction reaction. The higher catalytic activity has been attributed to the large surface area of carbon nanotubes and the decrease in the overpotential for methanol oxidation and oxygen reduction reaction. Cyclic voltammetric measurements at different scan rates showed that the oxygen reduction reaction at the Pt-CNT electrode is a diffusion-controlled process. Analysis of the electrode kinetics using Tafel plot suggests that Pt-CNT from scCO2 provides a strong electrocatalytic activity for oxygen reduction reaction. For the methanol oxidation reaction, a high ratio of forward anodic peak current to reverse anodic peak current was observed at room temperature, which implies good oxidation of methanol to carbon dioxide on the Pt-CNT electrode. This work demonstrates that Pt-CNT nanocomposites synthesized in supercritical carbon dioxide are effective electrocatalysts for low-temperature fuel cells.

Lin, Yuehe; Cui, Xiaoli; Yen, Clive; Wai, Chien M.

2005-07-28T23:59:59.000Z

249

Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009  

Broader source: Energy.gov [DOE]

Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

250

IDENTIFICATION OF DAMAGE TYPES IN CARBON FIBER REINFORCED PLASTIC LAMINATES BY A NOVEL OPTICAL FIBER ACOUSTIC EMISSION SENSOR  

E-Print Network [OSTI]

IDENTIFICATION OF DAMAGE TYPES IN CARBON FIBER REINFORCED PLASTIC LAMINATES BY A NOVEL OPTICAL technology. PZT sensors have been being used as AE sensors. However, because this kind of sensor has bulk

Boyer, Edmond

251

Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide  

DOE Patents [OSTI]

A hydrocarbon fuel reforming method is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first mixture of an oxygen-containing gas and a first fuel is directed into a first tube 108 to produce a first reaction reformate. A second mixture of steam and a second fuel is directed into a second tube 116 annularly disposed about the first tube 108 to produce a second reaction reformate. The first and second reaction reformates are then directed into a reforming zone 144 and subject to a catalytic reforming reaction. In another aspect of the method, a first fuel is combusted with an oxygen-containing gas in a first zone 108 to produce a reformate stream, while a second fuel under steam reforming in a second zone 116. Heat energy from the first zone 108 is transferred to the second zone 116.

Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

2001-03-27T23:59:59.000Z

252

Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide  

DOE Patents [OSTI]

A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

2001-01-01T23:59:59.000Z

253

Carbon nanotube/microwave interactions and applications to hydrogen fuel cells.  

E-Print Network [OSTI]

??One of the leading problems that will be carried into the 21st century is that of alternative fuels to get our planet away from the… (more)

Imholt, Timothy James

2004-01-01T23:59:59.000Z

254

Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors  

SciTech Connect (OSTI)

In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H{sub 2}SO{sub 4}) and hydrogen peroxide (H{sub 2}O{sub 2}) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted.

Lee, Seul-Yi [Department of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of); Yop Rhee, Kyong [Industrial Liaison Research Institute, Department of Mechanical Engineering, College of Engineering, Kyung Hee University, 446-701 Yongin (Korea, Republic of); Nahm, Seung-Hoon [Center for New and Renewable Energy Measurement, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

2014-02-15T23:59:59.000Z

255

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

over the vehicle's useful life. Low carbon fuels include hydrogen, biomethane, electricity, or natural gas blends of at least 90%. State agencies must phase in fuel economy...

256

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents [OSTI]

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

1994-09-13T23:59:59.000Z

257

Solar-induced chemical vapor deposition of diamond-type carbon films  

DOE Patents [OSTI]

An improved chemical vapor deposition method for depositing transparent continuous coatings of sp.sup.3 -bonded diamond-type carbon films, comprising: a) providing a volatile hydrocarbon gas/H.sub.2 reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and b) directing a concentrated solar flux of from about 40 to about 60 watts/cm.sup.2 through said reactant mixture to produce substrate temperatures of about 750.degree. C. to about 950.degree. C. to activate deposition of the film on said substrate.

Pitts, J. Roland (Lakewood, CO); Tracy, C. Edwin (Golden, CO); King, David E. (Lakewood, CO); Stanley, James T. (Beaverton, OR)

1994-01-01T23:59:59.000Z

258

Particles of spilled oil-absorbing carbon in contact with water  

DOE Patents [OSTI]

Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.

Muradov, Nazim (Melbourne, FL)

2011-03-29T23:59:59.000Z

259

Oxygen reduction on carbon-supported platinum fuel-cell electrodes in H/sub 3/PO/sub 4/  

SciTech Connect (OSTI)

The reduction of oxygen on carbon supported fuel cell electrodes was investigated in phosphoric acid electrolytes in the concentration range of 85% to 101% and at temperatures from 25/sup 0/ to 180/sup 0/C. In purified acid the Tafel slope in the potential region of 0.7 to 0.9 V RHE is approx. 120 mV/decade and is invariant with temperature. The activation energy for oxygen reduction is between 8 kcal and 13 kcal/mole. In impure 101% electrolyte the Tafel slope increases from a value of 85 mV/decade at 80/sup 0/C to 105 mV/decade at 180/sup 0/C and the activation energy is 18.29 kcal/mole. The major discrepancies in the literature can be rationalized on the basis of impurity effects. In pure electrolytes, the kinetic parameters on smooth platinum and high area carbon supported platinum are the same.

McBreen, J.; Olender, H.; Srinivasan, S.

1981-01-01T23:59:59.000Z

260

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Electricity Natural gas combined cycle and renewablecoal gasification combined cycle with carbon captureand storage Natural gas combined cycle Price change and

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Electricity Natural gas combined cycle and renewablecoal gasification combined cycle with carbon captureand storage Natural gas combined cycle Price change and

2007-01-01T23:59:59.000Z

262

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

section). Also, no conversion factor or carbon content isincludes the use of conversion factors. Since refinery fuelrefineries, a conversion factor specific to California

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

263

The Potential for Single-walled Carbon Nanotubes in Renewable Energy: Photovoltaics and Fuel Production  

Science Journals Connector (OSTI)

This presentation will detail our recent studies aimed at exploring how single-walled carbon nanotubes may be incorporated into sustainable energy conversion ...

Blackburn, Jeffrey

264

Response to “Comment on ‘Experimental observation of carbon dioxide reduction in exhaust gas from hydrocarbon fuel burning’ ” [Phys. Plasmas17, 014701 (2010)  

Science Journals Connector (OSTI)

A high-voltage cathode initiates an electron emission resulting in a reduction in the carbon dioxide concentration in exhaust gas from the burning of hydrocarbon fuel. Assuming that the observed carbon dioxide reduction is originated from the molecular decomposition the energy needed for the endothermic reaction of this carbon dioxide reduction may stem primarily from the internal energy reduction in the exhaust gas in accordance of the first law of the thermodynamics. An oxygen increase due to the reduction in carbon dioxide in a discharge gas was observed in real time.

Han S. Uhm; Chul H. Kim

2010-01-01T23:59:59.000Z

265

Enhanced air/fuel mixing for automotive Stirling engine turbulator-type combustors  

SciTech Connect (OSTI)

This patent describes a combustor for use in a Stirling engine and the like. It comprises: a combustor chamber; a fuel inlet couple to the chamber to inject fuel therein; a turbulator means disposed in the chambers downstream of the fuel inlet means for injecting combustion air into the chamber, the turbulator means being so positioned to cause a mixing of the combustion air and fuel injected in the chamber; diverter means for dividing the combustion air and creating a primary mixing zone downstream fa the primary mixing zone; and wherein the primary mixing zone comprises a fuel rich zone where combustion initiates and the secondary mixing zone has sufficient combustion air to complete combustion of the fuel.

Riecke, G.T.; Stotts, R.E.

1992-02-25T23:59:59.000Z

266

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

267

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

268

Convection-type PEM fuel cell control system performance testing and modeling.  

E-Print Network [OSTI]

??The PEM (Polymer Electrolyte Membrane) fuel cell is a promising technology for mobile applications because of its compactness, low operating temperature, and quick startup time.… (more)

Hoy, Jeannette M.

2008-01-01T23:59:59.000Z

269

Gas turbine alternative fuels combustion characteristics  

SciTech Connect (OSTI)

An experimental investigation was conducted to obtain combustion performance and exhaust pollutant concentrations for specific synthetic hydrocarbon fuels. Baseline comparison fuels used were gasoline and diesel fuel number two. Testing was done over a range of fuel to air mass ratios, total mass flow rates, and input combustion air temperatures in a flame-tube-type gas turbine combustor. Test results were obtained in terms of released heat and combustion gas emission values. The results were comparable to those obtained with the base fuels with variations being obtained with changing operating conditions. The release of carbon particles during the tests was minimal. 22 refs., 12 figs., 2 tabs.

Rollbuhler, R.J.

1989-02-01T23:59:59.000Z

270

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

271

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

study, such as diesel hybrid electric vehicles (D HEVs). Thefuel vehicle Yes Diesel hybrid electric vehicle No SparkF-T Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel

2007-01-01T23:59:59.000Z

272

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

study, such as diesel hybrid electric vehicles (D HEVs). Thefuel vehicle Yes Diesel hybrid electric vehicle No SparkF-T Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

273

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel economies for diesel vehicles, electric vehicles, and10%, /85%) Low-GHG FT diesel blends Electric charging & H2study, such as diesel hybrid electric vehicles (D HEVs). The

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

274

Separation of carbon dioxide with the use of chemical-looping combustion and gasification of fuels  

Science Journals Connector (OSTI)

Matters regarding using new technology for chemical-looping combustion of fuels for solving the problem of...2 (CO2 sequestration) are discussed. The primary results of investigations and possible schemes for imp...

G. A. Ryabov; O. M. Folomeev; D. S. Litun; D. A. Sankin

2009-06-01T23:59:59.000Z

275

An assessment of carbon sources for the production of synthetic fuels from nuclear hydrogen  

E-Print Network [OSTI]

In the transportation sector, the current dependence on petroleum to satisfy large transportation fuel demand in the US is unsustainable. Oil resources are finite, and causing heavy US reliance on oil imports. Therefore, ...

Leung, MinWah

2007-01-01T23:59:59.000Z

276

Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide  

DOE Patents [OSTI]

Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

Clawson, Lawrence G. (7 Rocky Brook Rd., Dover, MA 02030); Mitchell, William L. (111 Oakley Rd., Belmont, MA 02178); Bentley, Jeffrey M. (20 Landmark Rd., Westford, MA 01886); Thijssen, Johannes H. J. (1 Richdale Ave.#2, Cambridge, MA 02140)

2002-01-01T23:59:59.000Z

277

Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency  

E-Print Network [OSTI]

CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

Baumann, Philip Douglas

2012-06-07T23:59:59.000Z

278

Verification Calculation Results to Validate the Procedures and Codes for Pin-by-Pin Power Computation in VVER Type Reactors with MOX Fuel Loading  

SciTech Connect (OSTI)

One of the important problems for ensuring the VVER type reactor safety when the reactor is partially loaded with MOX fuel is the choice of appropriate physical zoning to achieve the maximum flattening of pin-by-pin power distribution. When uranium fuel is replaced by MOX one provided that the reactivity due to fuel assemblies is kept constant, the fuel enrichment slightly decreases. However, the average neutron spectrum fission microscopic cross-section for {sup 239}Pu is approximately twice that for {sup 235}U. Therefore power peaks occur in the peripheral fuel assemblies containing MOX fuel which are aggravated by the interassembly water. Physical zoning has to be applied to flatten the power peaks in fuel assemblies containing MOX fuel. Moreover, physical zoning cannot be confined to one row of fuel elements as is the case with a uniform lattice of uranium fuel assemblies. Both the water gap and the jump in neutron absorption macroscopic cross-sections which occurs at the interface of fuel assemblies with different fuels make the problem of calculating space-energy neutron flux distribution more complicated since it increases nondiffusibility effects. To solve this problem it is necessary to update the current codes, to develop new codes and to verify all the codes including nuclear-physical constants libraries employed. In so doing it is important to develop and validate codes of different levels--from design codes to benchmark ones. This paper presents the results of the burnup calculation for a multiassembly structure, consisting of MOX fuel assemblies surrounded by uranium dioxide fuel assemblies. The structure concerned can be assumed to model a fuel assembly lattice symmetry element of the VVER-1000 type reactor in which 1/4 of all fuel assemblies contains MOX fuel.

Chizhikova, Z.N.; Kalashnikov, A.G.; Kapranova, E.N.; Korobitsyn, V.E.; Manturov, G.N.; Tsiboulia, A.A.

1998-12-01T23:59:59.000Z

279

Development of molten carbonate fuel cell power plant technology. Quarterly technical progress report No. 2, January 1-March 31, 1980  

SciTech Connect (OSTI)

The overall objective of this 29-month program is to develop and verify the design of a prototype molten carbonate fuel cell stack which meets the requirements of 1990's competitive coal-fired electrical utility central station or industrial cogeneration power plants. During this quarter, effort was continued in all four major task areas: Task 1 - system studies to define the reference power plant design; Task 2 - cell and stack design, development and verification; Task 3 - preparation for fabrication and testing of the full-scale prototype stack; and Task 4 - developing the capability for operation of stacks on coal-derived gas. In the system study activity of Task 1, preliminary module and cell stack design requirements were completed. Fuel processor characterization has been completed by Bechtel National, Inc. Work under Task 2 defined design approaches for full-scale stack busbars and electrical isolation of reactant manifolds and reactant piping. Preliminary design requirements were completed for the anode. Conductive nickel oxide for cathode fabrication has been made by oxidation and lithiation of porous nickel sheet stock. A method of mechanizing the tape casting process for increased production rates was successfully demonstrated under Task 3. In Task 4, theoretical calculations indicated that hydrogen cyanide and ammonia, when present as impurities in the stack fuel gas, will have no harmful effects. Laboratory experiments using higher than anticipated levels of ethylene showed no harmful effects. Components for the mobile test facility are being ordered.

Not Available

1980-08-01T23:59:59.000Z

280

Carbon Cycle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The technique and preliminary results of LEU U-Mo full-size IRT type fuel testing in the MIR reactor  

SciTech Connect (OSTI)

In March 2007 in-pile testing of LEU U-Mo full-size IRT type fuel elements was started in the MIR reactor. Four prototype fuel elements for Uzbekistan WWR SM reactor are being tested simultaneously - two of tube type design and two of pin type design. The dismountable irradiation devices were constructed for intermediate reloading and inspection of fuel elements during reactor testing. The objective of the test is to obtain the experimental results for determination of more reliable design and licensing fuel elements for conversion of the WWR SM reactor. The heat power of fuel elements is measured on-line by thermal balance method. The distribution of fission density and burn-up of uranium in the volume of elements are calculated by using the MIR reactor MCU code (Monte-Carlo) model. In this paper the design of fuel elements, the technique, main parameters and preliminary results are described. (author)

Izhutov, A.L.; Starkov, V.A.; Pimenov, V.V.; Fedoseev, V.Ye. [Research Reactor Complex, RIAR, 433510, Dimitrovgrad-10, Ulyanovsk Region (Russian Federation); Dobrikova, I.V.; Vatulin, A.V.; Suprun, V.B. [A.A. Bochvar All-Russian Scientific Research Institute of Inorganic Materials, P. O. Box 369, 123060, Moscow (Russian Federation); Kartashov, Ye.F.; Lukichev, V.A. [Research and Development Institute of Nuclear Energy and Industry, P. O. Box 788, 107014, Moscow (Russian Federation); Troyanov, V.M.; Enin, A.A.; Tkachev, A.A. [OAO 'TVEL' 119017, ul. B. Ordinka 24/26, Moscow (Russian Federation)

2008-07-15T23:59:59.000Z

282

Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell  

Science Journals Connector (OSTI)

Abstract This paper studies a gas-steam combined cycle system with CO2 capture by integrating the MCFC (molten carbonate fuel cell). With the Aspen plus software, this paper builds the model of the overall MCFC-GT hybrid system with CO2 capture and analyzes the effects of the key parameters on the performances of the overall system. The result shows that compared with the gas-steam combined cycle system without CO2 capture, the efficiency of the new system with CO2 capture does not decrease obviously and keeps the same efficiency with the original gas steam combined cycle system when the carbon capture percentage is 45%. When the carbon capture percentage reaches up to 85%, the efficiency of the new system is about 54.96%, only 0.67 percent points lower than that of the original gas-steam combined cycle system. The results show that the new system has an obvious superiority of thermal performance. However, its technical economic performance needs be improved with the technical development of MCFC and ITM (oxygen ion transfer membrane). Achievements from this paper will provide the useful reference for CO2 capture with lower energy consumption from the traditional power generation system.

Liqiang Duan; Jingnan Zhu; Long Yue; Yongping Yang

2014-01-01T23:59:59.000Z

283

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

Emissions Monitoring Combined Heat and Power Carbon Dioxide18.7 to 36.8 *Combined Heat and Power (CHP) ** Uncertaintiesin electric and Combined Heat and Power (CHP) plants, diesel

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

284

Criticality Analysis for Proposed Maximum Fuel Loading in a Standardized SNF Canister with Type 1a Baskets  

SciTech Connect (OSTI)

This document represents a summary version of the criticality analysis done to support loading SNF in a Type 1a basket/standard canister combination. Specifically, this engineering design file (EDF) captures the information pertinent to the intact condition of four fuel types with different fissile loads and their calculated reactivities. These fuels are then degraded into various configurations inside a canister without the presence of significant moderation. The important aspect of this study is the portrayal of the fuel degradation and its effect on the reactivity of a single canister given the supposition there will be continued moderation exclusion from the canister. Subsequent analyses also investigate the most reactive ‘dry’ canister in a nine canister array inside a hypothetical transport cask, both dry and partial to complete flooding inside the transport cask. The analyses also includes a comparison of the most reactive configuration to other benchmarked fuels using a software package called TSUNAMI, which is part of the SCALE 5.0 suite of software.

Chad Pope; Larry L. Taylor; Soon Sam Kim

2007-02-01T23:59:59.000Z

285

Fees and rebates on new vehicles: Impacts on fuel efficiency, carbon dioxide emissions, and consumer surplus  

Science Journals Connector (OSTI)

Several incentive systems are examined that provide rebates on vehicles with higher-than-average fuel efficiency and levy fees on vehicles with less efficiency. The rebates and fees are applied to new vehicles at the time of purchase, and the rates are set such that the total outlay for rebates equals the revenues from fees. We find that moderately-sized rebates and fees result in a substantial increase in average fuel efficiency. Most of the effect is due to manufacturers' incorporating more fuel-efficiency technologies into the vehicles that they offer, since the rebates and fees effectively lower the price to manufacturers of these technologies. Consumer surplus is found to rise, and the profits of domestic manufacturers are estimated to drop only slightly under most systems and actually to rise under one system.

Kenneth E. Train; William B. Davis; Mark D. Levine

1997-01-01T23:59:59.000Z

286

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect (OSTI)

Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

2005-06-01T23:59:59.000Z

287

Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type  

Broader source: Energy.gov [DOE]

The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs)...

288

Identification of pore type and origin in a Lower Cretaceous carbonate reservoir using NMR T2 relaxation times  

E-Print Network [OSTI]

IDENTIFICATION OF PORE TYPE AND ORIGIN IN A LOWER CRETACEOUS CARBONATE RESERVOIR USING NMR T 2 RELAXATION TIMES A Thesis by DOMENICO LODOLA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 2004 Major Subject: Geology IDENTIFICATION OF PORE TYPE AND ORIGIN IN A LOWER CRETACEOUS CARBONATE RESERVOIR USING NMR T2 RELAXATION TIMES A Thesis by DOMENICO LODOLA Submitted to Texas A&M University...

Lodola, Domenico Domenico

2004-09-30T23:59:59.000Z

289

Methanol-tolerant carbon aerogel-supported Pt–Au catalysts for direct methanol fuel cell  

Science Journals Connector (OSTI)

Pt–Au nanoparticles supported on carbon aerogel, namely 2:1 has been synthesized by the microwave-assisted polyol process. The structure of Pt–Au nanoparticles is characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrochemical property of Pt–Au catalysts for methanol oxidation is evaluated by cyclic voltammetry (CV). The results show that Au-modified Pt catalysts exhibit a high methanol tolerance and improved electrochemical catalytic activity, suggesting that carbon aerogel supported Pt–Au catalysts are better catalysts for the electrochemical oxidation of methanol than conventional Pt catalysts.

Hong Zhu; Zhijun Guo; Xinwei Zhang; Kefei Han; Yubao Guo; Fanghui Wang; Zhongming Wang; Yongsheng Wei

2012-01-01T23:59:59.000Z

290

Annual Energy Outlook 2006 with Projections to 2030 - Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide Emissions Carbon Dioxide Emissions Annual Energy Outlook 2006 with Projections to 2030 Higher Energy Consumption Forecast Increases Carbon Dioxide Emissions Figure 107. Carbn dioxide emissions by sector and fuel, 2004 and 2030 (million metric tons). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data CO2 emissions from the combustion of fossil fuels are proportional to fuel consumption. Among fossil fuel types, coal has the highest carbon content, natural gas the lowest, and petroleum in between. In the AEO2006 reference case, the shares of these fuels change slightly from 2004 to 2030, with more coal and less petroleum and natural gas. The combined share of carbon-neutral renewable and nuclear energy is stable from 2004 to 2030 at

291

Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells  

Science Journals Connector (OSTI)

Abstract Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO2)/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the \\{BMFCs\\} via a direct redox reaction between permanganate ions (MnO4?) and MWCNTs. The results indicate that the MnO2/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO2 (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

Yubin Fu; Jian Yu; Yelong Zhang; Yao Meng

2014-01-01T23:59:59.000Z

292

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

293

OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING  

SciTech Connect (OSTI)

This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode and the complete fuel cell. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. This approach can be used to model porous electrodes as it represents the real system much better than the conventional agglomerate model. Using the homogeneous model the polarization characteristics of the MCFC cathode and fuel cell were studied under different operating conditions. Both the cathode and the full cell model give good fits to the experimental data.

Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

2002-09-01T23:59:59.000Z

294

Optimal Design of a Fossil Fuel-Based Hydrogen Infrastructure with Carbon Capture and Sequestration: Case Study in Ohio  

E-Print Network [OSTI]

Infrastructure with Carbon Capture and Sequestration: CaseINFRASTRUCTURE WITH CARBON CAPTURE AND SEQUESTRATION: CASEhydrogen production with carbon capture and sequestration,

Johnson, Nils; Yang, Christopher; Ni, Jason; Johnson, Joshua; Lin, Zhenhong; Ogden, Joan M

2005-01-01T23:59:59.000Z

295

Effect of Fuel Type on the Attainable Power of the Encapsulated Nuclear Heat Source Reactor  

SciTech Connect (OSTI)

The Encapsulated Nuclear Heat Source (ENHS) is a small liquid metal cooled fast reactor that features uniform composition core, at least 20 effective full power years of operation without refueling, nearly zero burnup reactivity swing and heat removal by natural circulation. A number of cores have been designed over the last few years to provide the first three of the above features. The objective of this work is to find to what extent use of nitride fuel, with either natural or enriched nitrogen, affects the attainable power as compared to the reference metallic fueled core. All the compared cores use the same fuel rod diameter, D, and length but differ in the lattice pitch, P, and Pu weight percent. Whereas when using Pb-Bi eutectic for both primary and intermediate coolants the P/D of the metallic fueled core is 1.36, P/D for the nitride cores are, respectively, 1.21 for natural nitrogen and 1.45 for enriched nitrogen. A simple one-dimensional thermal hydraulic model has been developed for the ENHS reactor. Applying this model to the different designs it was found that when the IHX length is at its reference value of 10.4 m, the power that can be removed by natural circulation using nitride fuel with natural nitrogen is 65% of the reference power of 125 MWth that is attainable using metallic fuel. However, using enriched nitrogen the attainable power is 110% of the reference. To get 125 MWth the effective IHX length need be 8.7 m and 30.5 m for, respectively, enriched and natural nitrogen nitride fuel designs. (authors)

Okawa, Tsuyoshi; Greenspan, Ehud [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

2006-07-01T23:59:59.000Z

296

Rock Physics-Based Carbonate Reservoir Pore Type Evaluation by Combining Geological, Petrophysical and Seismic Data  

E-Print Network [OSTI]

model, similar to modern marine hydrological environments within carbonate islands. How to evaluate carbonate reservoir permeability heterogeneity from 3 D seismic data has been a dream for reservoir geoscientists, which is a key factor to optimize...

Dou, Qifeng

2012-07-16T23:59:59.000Z

297

Forests, carbon and global climate  

Science Journals Connector (OSTI)

...through fossil-fuel combustion and land-use change...Atmosphere analysis Biomass Carbon metabolism Carbon...through fossil-fuel combustion and land-use change...during fossil fuel and biomass combustion and the release of ammo...

2002-01-01T23:59:59.000Z

298

Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels  

SciTech Connect (OSTI)

This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

Steven Markovich

2010-06-30T23:59:59.000Z

299

Method And Apparatus For Converting Hydrocarbon Fuel Into Hydrogen Gas And Carbon Dioxide  

DOE Patents [OSTI]

A method is disclosed for synthesizing hydrogen gas from hydrocarbon fuel. A first mixture of steam and a first fuel is directed into a first tube 208 to subject the first mixture to a first steam reforming reaction in the presence of a first catalyst 214. A stream of oxygen-containing gas is pre-heated by transferring heat energy from product gases. A second mixture of the pre-heated oxygen-containing gas and a second fuel is directed into a second tube 218 disposed about the first tube 208 to subject the second mixture to a partial oxidation reaction and to provide heat energy for transfer to the first tube 208. A first reaction reformate from the first tube 208 and a second reaction reformate from the second tube 218 are directed into a third tube 224 disposed about the second tube 218 to subject the first and second reaction reformates to a second steam reforming reaction, wherein heat energy is transferred to the third tube 224 from the second tube 218.

Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

2000-09-26T23:59:59.000Z

300

OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING  

SciTech Connect (OSTI)

The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Microencapsulation of the NiO cathode has been adopted as a surface modification technique to increase the stability of NiO cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. A simple first principles model was developed to understand the influence of exchange current density and conductivity of the electrode material on the polarization of MCFC cathodes. The model predictions suggest that cobalt can be used to improve the corrosion resistance of NiO cathode without affecting its performance. Cobalt was deposited on NiO cathode by electroless deposition. The morphology and thermal oxidation behavior of Co coated NiO was studied using scanning electron microscopy and thermal gravimetric analysis respectively. The electrochemical performance of cobalt encapsulated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. The electrochemical oxidation behavior of cobalt-coated electrodes is similar to that of the bare NiO cathode. Dissolution of nickel into the molten carbonate melt was less in case of cobalt encapsulated nickel cathodes. Co coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, cobalt coated nickel shows similar polarization characteristics as nickel oxide. A similar surface modification technique has been used to improve the performance of the SS 304 current collectors used in MCFC cells. SS 304 was encapsulated with nanostructured layers of NiCo and NiMo by electroless deposition. The corrosion behavior of bare and surface modified SS 304 in molten carbonate under cathode gas atmosphere was investigated with cyclic voltammetry, open circuit potential studies, Tafel polarization, impedance analysis and atomic absorption spectroscopy. This study confirms that the presence of surface modification leads to the formation of complex scales with better barrier properties and electronic conductivity.

Dr. Ralph E. White

2000-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

List of Fuel Cells Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 1021 Fuel Cells Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1021) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 2003 Climate Change Fuel Cell Buy-Down Program (Federal) Federal Grant Program United States Commercial Nonprofit Schools Local Government State Government Fed. Government Fuel Cells No Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential

302

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

303

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

304

Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper  

Science Journals Connector (OSTI)

... were used without further purification. Electrolyte solutions were prepared with deionized water (Ricca Chemical, ASTM Type I). Preparation of oxide-derived Cu 1

Christina W. Li; Jim Ciston; Matthew W. Kanan

2014-04-09T23:59:59.000Z

305

Fuel Cell Handbook, Fifth Edition  

SciTech Connect (OSTI)

Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Energy and Environmental Solutions

2000-10-31T23:59:59.000Z

306

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

... 71.1 77.5 78.8 79.6 75.7 66.7 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

307

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

... 66.6 71.5 74.5 75.7 71.4 61.6 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

308

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

58.8 64.9 67.0 67.7 63.6 54.6 Dash (-) No data reported. a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

309

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

... 60.5 64.5 68.5 69.4 65.4 55.2 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

310

Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type  

Gasoline and Diesel Fuel Update (EIA)

... 51.6 56.2 59.3 60.4 56.2 45.4 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

311

Fuel Cell Handbook, Fourth Edition  

SciTech Connect (OSTI)

Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

312

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

313

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

314

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

315

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

316

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

317

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

318

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

319

Effect of an AC electric field on the conductance of single-wall semiconductor-type carbon nanotubes  

SciTech Connect (OSTI)

The effect of an ac electric field on the conductance of a system of single-wall semiconductor-type carbon nanotubes placed in a dc electric field is considered. The strength vectors of dc and ac electric fields are directed along the nanotube axis. The electronic system of carbon nanotubes is considered in the context of the Boltzmann kinetic equation in the relaxation-time approximation. The dependence of the current density in the system on the characteristics of applied fields is studied. The effect of absolute negative conductance is detected.

Belonenko, M. B.; Glazov, S. Yu., E-mail: ser-glazov@yandex.ru [Volgograd State Pedagogical University (Russian Federation); Mescheryakova, N. E., E-mail: Dandelion1@yandex.ru [Volgograd Business Institute (Russian Federation)

2010-09-15T23:59:59.000Z

320

Proposed subcritical measurements for fresh and spent highly enriched plate type fuel assemblies  

SciTech Connect (OSTI)

A collaborative experimental research program has been established between industry and university partners to evaluate the subcritical behavior of fresh and spent highly enriched fuel assemblies at the University of Missouri Research Reactor (MURR). This proposed program will involve a series of subcritical measurements using the Oak Ridge National Laboratory (ORNL) developed {sup 252}Cf source-driven noise technique. Measurements evaluating the subcritical behavior of simple arrays of fresh MURR assemblies will be performed for evaluating the spectral effects of materials typically found in shipping casks such as lead, steel, aluminum, and boron. Also, measurements will be performed on spent assemblies to characterize physics parameters which may be useful in determining the subcritical behavior of fuels for reactivity credit of actinide burnup and fission product poisoning.

Zino, J.F.; Williamson, T.G. [Westinghouse Savannah River Company, Aiken, SC (United States); Mihalczo, J.T. [Oak Ridge National Lab., TN (United States)] [and others

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Response of Different Types of Sulfur Compounds to Oxidative Desulfurization of Jet Fuel  

Science Journals Connector (OSTI)

Michael T. Timko *†, Ezequiel Schmois ‡, Pushkaraj Patwardhan ‡, Yuko Kida ‡, Caleb A. Class ‡, William H. Green ‡, Robert K. Nelson §, and Christopher M. Reddy § ... Refer to ref 3 for a summary of our previous efforts to identify specific BT isomers in jet fuel using one-dimensional gas chromatography and mass spectrometry (GC–MS), and ref 44 provides even greater detail. ... We then analyzed the JP-8 samples using GC×GC–SCD to resolve the UCM and identify specific compound classes within it. ...

Michael T. Timko; Ezequiel Schmois; Pushkaraj Patwardhan; Yuko Kida; Caleb A. Class; William H. Green; Robert K. Nelson; Christopher M. Reddy

2014-04-24T23:59:59.000Z

322

Fuel cell components and systems having carbon-containing electrically-conductive hollow fibers  

DOE Patents [OSTI]

According to one embodiment, a system includes a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst coupled to the hollow fiber, an anode extending along at least part of a length of the structure, and a cathode extending along at least part of the length of the structure, the cathode being on an opposite side of the hollow fiber as the anode. In another embodiment, a method includes acquiring a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst along one side thereof, adding an anode that extends along at least part of a length of the structure, and adding a cathode that extends along at least part of the length of the structure on an opposite side as the anode.

Langry, Kevin C.; Farmer, Joseph C.

2014-07-08T23:59:59.000Z

323

Fuel cell systems for personal and portable power applications  

SciTech Connect (OSTI)

Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

Fateen, S. A. (Shaheerah A.)

2001-01-01T23:59:59.000Z

324

An experimental study of a heatexchanger-type steam reformer with a low steam/carbon ratio. Effect of carbon deposition on the distribution of flow among the catalyst tubes and of temperature among and along the tubes  

SciTech Connect (OSTI)

An experimental heat-exchanger-type steam reformer containing eight full-sized tubes of catalyst was operated at low steam/carbon ratios up to the point of onset of carbon deposition. The following phenomena were investigated: the effect of carbon deposition on the distribution of the gas stream among the tubes, the effect of this distribution on the nonuniformity of temperature on the outer surface of the tubes, and the distribution of carbon deposition in the beds of catalyst. At steam/carbon ratios close to the onset of carbon deposition, the average pressure differential through the tubes rose at a rate of 0.1-0.5 kg/cm/sup 2/ . hr. The temperature at the bottom of the catalyst tubes varied about 10 /sup 0/C due to the deposition of carbon. Most of the carbon is deposited within about 1,000 mm from the top of the bed.

Miyasuai T; Kosaka, S.; Suzuki, A.; Yoshioka, S.

1985-07-01T23:59:59.000Z

325

DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year. The current projected performance and cost of these systems are presented in Table 1 against the DOE Hydrogen Storage System targets. These analyses were performed in support of the Hydrogen Storage

326

Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons  

DOE Patents [OSTI]

A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

Muradov, Nazim Z. (Melbourne, FL)

2011-08-23T23:59:59.000Z

327

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

328

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

329

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

330

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

331

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

332

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

333

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

334

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

335

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

336

Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills  

SciTech Connect (OSTI)

Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

J.G. Groppo; T.L. Robl

2005-09-30T23:59:59.000Z

337

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

SciTech Connect (OSTI)

Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

2008-08-13T23:59:59.000Z

338

Chapter 4 - Hydrogen and Fuel Cell Systems  

Science Journals Connector (OSTI)

Abstract In this chapter, hydrogen and fuel cell systems are introduced. Hydrogen is closely related to fuel cells because fuel cells are very efficient devices for power generation which when supplied with hydrogen generate non-polluting effluents, mainly water or steam. A hydrogen economy is necessary in the context of continuous growth of population and per-capita energy consumption. In this context, renewable energy solutions—especially solar—become more important and their harvesting requires hydrogen as energy carrier. Therefore the role of hydrogen and fuel cell systems in power generation becomes very important. As detailed in the chapter, these systems are useful for converting the fluctuating and intermittent energy of renewable sources and providing power on demand. Hydrogen and fuel cell systems can work either as grid-connected or as independent power generators. Connection to the grid allows for better load leveling and major savings as well as for reduction of pollution associated with power generation. Hydrogen can also be used to power residences and to cogenerate heat or other commodities. In addition, hydrogen and fuel cell technologies are much required for the transportation sector, where they can contribute to pollution and cost reduction and increased efficiency. Hydrogen production methods are reviewed in this chapter with a focus on electrolysis and thermochemical cycles. These systems appear to be leading technologies for the future. Other revised hydrogen production methods are gasification and reforming, which are very relevant for biomass conversion into hydrogen. Photochemical and photo-biochemical hydrogen production methods are also discussed. All types of fuel cells are introduced; these include alkaline, proton-exchange-membrane, phosphoric acid, molten carbonate, solid oxide, direct methanol, and direct ammonia fuel cells. Construction and specific application for power generation are presented for each type. The modeling and optimization aspects of fuel cells and their systems are explained. Several power generation systems with fuel cells are discussed, in which each type of fuel cells has specific system requirements. The overall system must include various types of separators, pumps, and compressors depending on the case. In aqueous systems water must be recycled, e.g., in the case of proton-exchange membrane fuel cells water must be actually fed in excess so that the membrane is wetted. Also for a direct methanol fuel cell water must be recovered and recycled. In molten carbonate fuel cell systems carbon dioxide must be recovered and recycled. In solid oxide fuel cell systems, the fuel must be supplied in excess and is not completely consumed; therefore it is important to couple these systems with gas turbines.

Ibrahim Dincer; Calin Zamfirescu

2014-01-01T23:59:59.000Z

339

Reactivity during bench-scale combustion of biomass fuels for carbon capture and storage applications  

Science Journals Connector (OSTI)

Abstract Reactivities of four biomass samples were investigated in four combustion atmospheres using non-isothermal thermogravimetric analysis (TGA) under two heating rates. The chosen combustion atmospheres reflect carbon capture and storage (CCS) applications and include O 2 and CO 2 -enrichment. Application of the Coats–Redfern method assessed changes in reactivity. Reactivity varied due to heating rate: the reactivity of char oxidation was lower at higher heating rates while devolatilisation reactions were less affected. In general, and particularly at the higher heating rate, increasing [ O 2 ] increased combustion reactivity. A lesser effect was observed when substituting N 2 for CO 2 as the comburent; in unenriched conditions this tended to reduce char oxidation reactivity while in O 2 -enriched conditions the reactivity marginally increased. Combustion in a typical, dry oxyfuel environment (30% O 2 , 70% CO 2 ) was more reactive than in air in TGA experiments. These biomass results should interest researchers seeking to understand phenomena occurring in larger scale CCS-relevant experiments.

S. Pickard; S.S. Daood; M. Pourkashanian; W. Nimmo

2014-01-01T23:59:59.000Z

340

The relationship between carbon dioxide emissions and economic growth: quantile panel-type analysis  

Science Journals Connector (OSTI)

This paper samples the data of 138 countries during the 1971–2007 period, and performs an empirical test to validate the relationship between carbon dioxide emissions and economic growth. It first performs panel ...

Kuan-Min Wang

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Alternative Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Grants

342

Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle Replacement Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Replacement Grants

343

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

344

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

345

Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Labeling Requirement

346

Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Fueling Biofuel Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Fueling Infrastructure Tax Credit

347

Alternative Fuels Data Center: Alternative Fuels Promotion and Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Fuels Promotion and Information to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion and Information on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion and Information

348

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

349

Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Fuels Taxation Study Commission to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Taxation Study Commission

350

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fueling Alternative Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

351

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

352

Alternative Fuels Data Center: Alternative Fuel Production Subsidy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Production Subsidy Prohibition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Production Subsidy Prohibition

353

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

354

Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Infrastructure Tax Credit

355

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fueling Ethanol Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota

356

Alternative Fuels Data Center: Alternative Fuels Feasibility Study  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Alternative Fuels Feasibility Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Feasibility Study The North Carolina State Energy Office, Department of Administration,

357

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Registration

358

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

359

Alternative Fuels Data Center: xTL Fuels  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

xTL Fuels to someone xTL Fuels to someone by E-mail Share Alternative Fuels Data Center: xTL Fuels on Facebook Tweet about Alternative Fuels Data Center: xTL Fuels on Twitter Bookmark Alternative Fuels Data Center: xTL Fuels on Google Bookmark Alternative Fuels Data Center: xTL Fuels on Delicious Rank Alternative Fuels Data Center: xTL Fuels on Digg Find More places to share Alternative Fuels Data Center: xTL Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels xTL Fuels Synthetic liquid transportation fuels, collectively known as xTL fuels, are produced through specialized conversion processes. These production methods, including the Fischer-Tropsch process, produce fuels from carbon-based feedstocks, such as biomass, coal, or natural gas, and can

360

Energy efficiency and carbon dioxide emissions reduction opportunities in the U.S. cement industry  

E-Print Network [OSTI]

Table 2. Energy Consumption, Carbon Emissions Coefficients,and Carbon Emissions from Energy Consumption, and CarbonEnergy – Related Carbon Emissions Fuel Energy Use Carbon (

Martin, Nathan; Worrell, Ernst; Price, Lynn

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect (OSTI)

Uses for structured catalytic supports, such as ceramic straight-channel monoliths and ceramic foams, have been established for a long time. One of the most prominent examples is the washcoated ceramic monolith as a three-way catalytic converter for gasoline-powered automobiles. A distinct alternative to the ceramic monolith is the metal foam, with potential use in fuel cell-powered automobiles. The metal foams are characterized by their pores per inch (ppi) and density ({rho}). In previous research, using 5 wt% platinum (Pt) and 0.5 wt% iron (Fe) catalysts, washcoated metal foams, 5.08 cm in length and 2.54 cm in diameter, of both varying and similar ppi and {rho} were tested for their activity (X{sub CO}) and selectivity (S{sub CO}) on a CO preferential oxidation (PROX) reaction in the presence of a H{sub 2}-rich gas stream. The variances in these metal foams' activity and selectivity were much larger than expected. Other structured supports with 5 wt% Pt, 0-1 wt% Fe weight loading were also examined. A theory for this phenomenon states that even though these structured supports have a similar nominal catalyst weight loading, only a certain percentage of the Pt/Fe catalyst is exposed on the surface as an active site for CO adsorption. We will use two techniques, pulse chemisorption and temperature programmed desorption (TPD), to characterize our structured supports. Active metal count, metal dispersion, and other calculations will help clarify the causes for the activity and selectivity variations between the supports. Results on ceramic monoliths show that a higher Fe loading yields a lower dispersion, potentially because of Fe inhibition of the Pt surface for CO adsorption. This theory is used to explain the reason for activity and selectivity differences for varying ppi and {rho} metal foams; less active and selective metal foams have a lower Fe loading, which justifies their higher metal dispersion. Data on the CO desorption temperature and average metal crystallite size for TPD are also collected.

Paul Chin; George W. Roberts; James J. Spivey

2003-12-31T23:59:59.000Z

362

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

363

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

364

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

365

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

366

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

367

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

368

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

369

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

370

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

371

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

372

Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701  

SciTech Connect (OSTI)

It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D. [Hadley Center for Climate Predictions & Research, Exeter (United Kingdom)

2005-07-16T23:59:59.000Z

373

Review problems on photosynthesis, carbon cycle. Julie Wright, HAS222d/253e 2007 1) Photosynthesis resembles the hydrogen fuel cell we studied in the lab. The following reactions  

E-Print Network [OSTI]

resembles the hydrogen fuel cell we studied in the lab. The following reactions were taken from the review) the overall reaction of photosynthesis is: H2O + CO2 ---> O2 + CH2O E'o = -1.24 Hydrogen fuel cell: 2H2O does hydrogen combustion differ from sugar/alcohol/biofuels combustion ecologically? 2) Why is carbon

374

Novel Dual-Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fuel Power Plants  

SciTech Connect (OSTI)

CO{sub 2} captured from coal-fired power plants represents three-quarters of the total cost of an entire carbon sequestration process. Conventional amine absorption or cryogenic separation requires high capital investment and is very energy intensive. Our novel membrane process is energy efficient with great potential for economical CO{sub 2} capture. Three classes of microporous sol-gel derived silica-based membranes were developed for selective CO{sub 2} removal under simulated flue gas conditions (SFG), e.g. feed of 10% vol. CO{sub 22} in N{sub 2}, 1 atm total pressure, T = 50-60 C, RH>50%, SO2>10 ppm. A novel class of amine-functional microporous silica membranes was prepared using an amine-derivatized alkoxysilane precursor, exhibiting enhanced (>70) CO{sub 2}:N{sub 2} selectivity in the presence of H{sub 2}O vapor, but its CO{sub 2} permeance was lagging (<1 MPU). Pure siliceous membranes showed higher CO{sub 2} permeance (1.5-2 MPU) but subsequent densification occurred under prolonged SFG conditions. We incorporated NiO in the microporous network up to a loading of Ni:Si = 0.2 to retard densification and achieved CO2 permeance of 0.5 MPU and CO{sub 2}:N{sub 2} selectivity of 50 after 163 h exposure to SFG conditions. However, CO{sub 2} permeance should reach greater than 2.0 MPU in order to achieve the cost of electricity (COE) goal set by DOE. We introduced the atomic layer deposition (ALD), a molecular deposition technique that substantially reduces membrane thickness with intent to improve permeance and selectivity. The deposition technique also allows the incorporation of Ni or Ag cations by proper selection of metallorganic precursors. In addition, preliminary economic analysis provides a sensitivity study on the performance and cost of the proposed membranes for CO{sub 2} capture. Significant progress has been made toward the practical applications for CO{sub 2} capture. (1 MPU = 1.0 cm{sup 3}(STP){center_dot}cm-2{center_dot}min-1{center_dot}atm-1)

C. Brinker; George Xomeritakis; C.-Y. Tsai; Ying-Bing Jiang

2009-04-30T23:59:59.000Z

375

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Regulations User Type Jurisdiction Biodiesel Ethanol Natural Gas Propane (LPG) Hydrogen Fuel Cells EVs HEVs or PHEVs NEVs Aftermarket Conversions Fuel Economy or Efficiency Idle...

376

On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles  

SciTech Connect (OSTI)

A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of trangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k--epsilon model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 x 10/sup 4/, 10/sup 5/, 2 x 10/sup 5/, and for laminar flow of Re--2400. Friction factor and heat transfer ceofficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data.

Yuh-Shan Yueh; Ching-Chang Chieng

1987-08-01T23:59:59.000Z

377

On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles  

SciTech Connect (OSTI)

A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of triangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k-{epsilon} model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 {times} 10{sup 4}, 10{sup 5}, 2 {times} 10{sup 5}, and for laminar flow of Re {approximately} 2,400. Friction factor and heat transfer coefficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data.

Yueh, Yuhshan; Chieng, Chingchang (National Tsing Hua Univ., Hsinchu (Taiwan))

1987-08-01T23:59:59.000Z

378

Flashback Characteristics of Syngas-Type Fuels Under Steady and Pulsating Conditions  

SciTech Connect (OSTI)

The objective of this project was to improve understanding and modeling of flashback, a significant issue in low emissions combustors containing high levels of hydrogen. Experimental studies were performed over a range of fuel compositions, flow velocities, reactant temperatures, and combustor pressures to study the factors leading to flashback. In addition, high speed imaging of the flashback phenomenon was obtained. One of the key conclusions of this study was that there existed multiple mechanisms which lead to flashback, each with different underlying parametric dependencies. Specifically, two mechanisms of 'flashback' were noted: rapid flashback into the premixer, presumably through the boundary layer, and movement of the static flame position upstream along the centerbody. The former and latter mechanisms were observed at high and low hydrogen concentrations. In the latter mechanism, flame temperature ratio, not flame speed, appeared to be the key parameter describing flashback tendencies. We suggested that this was due to an alteration of the vortex breakdown location by the adverse pressure gradient upstream of the flame, similar to the mechanism proposed by Sattelmayer and co-workers [1]. As such, a key conclusion here was that classical flashback scalings derived from, e.g., Bunsen flames, were not relevant for some parameter regimes found in swirling flames. In addition, it was found that in certain situations, pure H2 flames could not be stabilized, i.e., the flame would either flashback or blowout at ignition. This result could have significant implications on the development of future high hydrogen turbine systems.

Tim Lieuwen

2007-09-30T23:59:59.000Z

379

Alternative Fuels Data Center: Alternative Fuel Public Transportation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Public Transportation Vehicle Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

380

Alternative Fuels Data Center: Alternative Fuel Resale and Generation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Resale and Generation Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) Conversion Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

382

Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Municipal Alternative Municipal Alternative Fuel Tax Regulation to someone by E-mail Share Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Facebook Tweet about Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Twitter Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Google Bookmark Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Delicious Rank Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on Digg Find More places to share Alternative Fuels Data Center: Municipal Alternative Fuel Tax Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Municipal Alternative Fuel Tax Regulation

383

Alternative Fuels Data Center: Alternative Fuel Definition and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Definition and Specifications to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition and Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

384

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

385

Alternative Fuels Data Center: Alternative Fuel Research and Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Research and Development Funding to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Research and Development Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

386

Carbon isotope chemostratigraphy of the Middle Riphean type section (Avzyan Formation, Southern Urals, Russia)  

E-Print Network [OSTI]

Urals, Russia): Signal recovery in a fold-and-thrust belt Julie K. Bartley a,, Linda C. Kah b , Julie L The Avzyan Formation of the southern Ural Mountains, Russia, forms part of the Middle Riphean (1300­1000 Ma Mesoproterozoic age. © 2006 Elsevier B.V. All rights reserved. Keywords: Mesoproterozoic; Russia; Urals; Carbonate

Perfect, Ed

387

Production of exotic, short lived carbon isotopes in ISOL-type facilities  

E-Print Network [OSTI]

The beam intensities of short-lived carbon isotopes at Isotope Separation On-Line (ISOL) facilities have been limited in the past for technical reasons. The production of radioactive ion beams of carbon isotopes is currently of high interest for fundamental nuclear physics research. To produce radioactive ions a target station consisting of a target in a container connected to an ion source via a transfer line is commonly used. The target is heated to vaporize the product for transport. Carbon in elementary form is a very reactive element and react strongly with hot metal surfaces. Due to the strong chemisorption interaction, in the target and ion source unit, the atoms undergo significant retention on their way from the target to the ion source. Due to this the short lived isotopes decays and are lost leading to low ion yields. A first approach to tackle these limitations consists of incorporating the carbon atoms into less reactive molecules and to use materials for the target housing and the transfer line ...

Franberg, Hanna; Köster, Ulli; Ammann, Markus

2008-01-01T23:59:59.000Z

388

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

389

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

annual generation by fuel type. .of total annual generation by fuel type. Other Renewablesof annual estimates of total generation by fuel type and

Coughlin, Katie

2013-01-01T23:59:59.000Z

390

Carbon Fiber  

ScienceCinema (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-07-23T23:59:59.000Z

391

Carbon Fiber  

SciTech Connect (OSTI)

Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

McGetrick, Lee

2014-04-17T23:59:59.000Z

392

2 - Types of gasifier for synthetic liquid fuel production: design and technology  

Science Journals Connector (OSTI)

Abstract There are many successful commercial coal gasifiers. The basic form and concept details, the design of the gasifier internals, and the operation of commercial coal gasifiers are closely guarded as proprietary information. In fact, the production of gas from carbonaceous feedstocks has been an expanding area of technology. This chapter will present the different categories of gasification reactors as they apply to various types of feedstocks. Within each category there are several commonly known processes, some of which are in current use and some of which are in lesser use.

J.G. Speight

2015-01-01T23:59:59.000Z

393

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

for sale fuel labeled as pure biodiesel unless the fuel contains no other type of petroleum product, is registered as biodiesel fuel with the federal government, and meets all...

394

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Data Included in the Alternative Fuel Stations Download The following data fields are provided in the downloadable files for alternative fuel stations. Field Value Description fuel_type_code Type: string The type of alternative fuel the station provides. Fuel types are given as code values as described below: Value Description BD Biodiesel (B20 and above)

395

House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide  

E-Print Network [OSTI]

and Terrestrial Sequestration of Carbon Dioxide Howard Herzog Principal Research Engineer Massachusetts Institute to the Technical Group of the Carbon Sequestration Leadership Forum (see www.cslforum.org). Just two weeks ago, thank you for the opportunity to appear before you today to discuss Carbon Dioxide (CO2) geological

396

Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based Fuels  

Science Journals Connector (OSTI)

Forest Bioenergy or Forest Carbon? ... Forest carbon consequences of biomass harvest for bioenergy production can significantly delay and reduce GHG mitigation and should be included in life cycle studies. ... The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. ...

Jon McKechnie; Steve Colombo; Jiaxin Chen; Warren Mabee; Heather L. MacLean

2010-12-10T23:59:59.000Z

397

Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes for air-cathode microbial fuel cells{  

E-Print Network [OSTI]

Development and evaluation of carbon and binder loading in low-cost activated carbon cathodes materials in order to optimize and extend the lifetime of AC cathodes in MFCs. 1. Introduction A microbial, with the cathode typically limiting power production.5,6 Catalysts can be used to reduce the activation energy

398

Carbon monoxide sensor and method of use thereof  

DOE Patents [OSTI]

Carbon monoxide sensors suitable for use in hydrogen feed streams and methods of use thereof are disclosed. The sensors are palladium metal/insulator/semiconductor (Pd-MIS) sensors which may possess a gate metal layer having uniform, Type 1, or non-uniform, Type 2, film morphology. Type 1 sensors display an increased sensor response in the presence of carbon monoxide while Type 2 sensors display a decreased response to carbon monoxide. The methods and sensors disclosed herein are particularly suitable for use in proton exchange membrane fuel cells (PEMFCs).

McDaniel; Anthony H. (Livermore, CA), Medlin; J. Will (Boulder, CO), Bastasz; Robert J. (Livermore, CA)

2007-09-04T23:59:59.000Z

399

Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel-Efficient and Fuel-Efficient and Alternative Fuel Vehicle Use to someone by E-mail Share Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Facebook Tweet about Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Twitter Bookmark Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Google Bookmark Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Delicious Rank Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on Digg Find More places to share Alternative Fuels Data Center: Fuel-Efficient and Alternative Fuel Vehicle Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

400

Multi-phase Multi-dimensional Analysis of PEM Fuel Cells with Carbon Monoxide Poisoning and Oxygen Bleeding.  

E-Print Network [OSTI]

??Polymer electrolyte membrane (PEM) fuel cells are promising alternative green power source for mobile, portable and stationary applications. However, their cost, durability, and performance are… (more)

Li, Yaqun

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

UNDERSTANDING OF CATALYST DEACTIVATION CAUSED BY SULFUR POISONING AND CARBON DEPOSITION IN STEAM REFORMING OF LIQUID HYDROCARBON FUELS.  

E-Print Network [OSTI]

??The present work was conducted to develop a better understanding on the catalyst deactivation in steam reforming of sulfur-containing liquid hydrocarbon fuels for hydrogen production.… (more)

Xie, Chao

2011-01-01T23:59:59.000Z

402

Comparison of Two U.S. Power-Plant Carbon Dioxide Emissions Data Sets  

Science Journals Connector (OSTI)

Comparison of Two U.S. Power-Plant Carbon Dioxide Emissions Data Sets ... The varying proportions of CO2 emitted from each fuel type over the course of a year lead to an annual cycle in the carbon isotope ratio (?13C), with a range of about 2 ‰. ... The large range of carbon emissions within the bituminous rank class suggests that rank-specific carbon emission factors are provincial rather than global. ...

Katherine V. Ackerman; Eric T. Sundquist

2008-06-25T23:59:59.000Z

403

Net carbon flux from agriculture: Carbon emissions, carbon sequestration, crop yield, and land-use change  

Science Journals Connector (OSTI)

There is a potential to sequester carbon in soil by changing agricultural management practices. ... fossil-fuel use, agricultural inputs, and the carbon emissions associated with fossil fuels and other ... with f...

Tristram O. West; Gregg Marland

2003-04-01T23:59:59.000Z

404

Low Carbon Fuel Standards  

E-Print Network [OSTI]

security and climate change concerns, transportation is the principal culprit. It consumes half the oil

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

405

Nanocarbon-Based Nanocatalysts: Synthesis and Applications in Fuel Cells  

SciTech Connect (OSTI)

In this book chapter, we review the recent progress in synthesis and fuel cell applications of nanocatalysts based on carbon nanotubes, mesoporous carbon and other nanostructured carbon materials.

Lin, Yuehe; Cui, Xiaoli

2009-01-01T23:59:59.000Z

406

The p-Process in the Carbon Deflagration Model for Type Ia Supernovae and Chronology of the Solar System Formation  

SciTech Connect (OSTI)

We study nucleosynthesis of p-nuclei in the carbon deflagration model for Type Ia supernovae (SNe Ia) by assuming that seed nuclei are produced by the s-process in accreting layers on a carbon-oxygen white dwarf during mass accretion from a binary companion. We find that about 50 % of the p-nuclides are synthesized in proportion to the solar abundance and that p-isotopes of Mo and Ru which are significantly underproduced in Type II supernovae (SNe II) are produced up to a level close to other p-nuclei. Comparing the yields of iron and p-nuclei in SNe Ia we find that SNe Ia can contribute to the galactic evolution of the p-nuclei. Next, we consider nucleochronology of the solar system formation by using four radioactive nuclides and apply the result of the p-process nucleosynthesis to simple galactic chemical evolution models. We find that when assumed three phases of interstellar medium are mixed by the interdiffusion with the timescale of about 40 Myr 53Mn/55Mn value in the early solar system is consistent with a meteoritic value. In addition, we put constraints to a scenario that SNe Ia induce the core collapse of the molecular cloud, which leads to the formation of the solar system.

Kusakabe, Motohiko [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Iwamoto, Nobuyuki [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nomoto, Ken'ichi [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2006-07-12T23:59:59.000Z

407

Carbon Sequestration Advisory Committee (Nebraska) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carbon Sequestration Advisory Committee (Nebraska) Carbon Sequestration Advisory Committee (Nebraska) Carbon Sequestration Advisory Committee (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Climate Policies Provider Nebraska Carbon Sequestration Advisory Committee Under this statute, the Director of Natural Resources will document and quantify carbon sequestration and greenhouse emissions reductions

408

NETL: Carbon Capture FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

How is CO2 captured? How is CO2 captured? Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Chilled Ammonia CO2 Capture Process Facility at American Electric Power's (AEP) Mountaineer Plant Carbon dioxide (CO2) capture involves separating CO2 from other gases generated by industrial processes or burning fossil fuels. CO2 capture can remove as much as 95% of the CO2 from these processes. There are two major types of anthropogenic CO2 sources: mobile and stationary. Mobile sources include things like cars, trucks, trains, boats, and aircrafts that burn fossil fuels and generate CO2. Capturing CO2 from mobile sources is currently impractical. Stationary sources include power plants and industrial facilities that burn fossil fuels, as

409

Estimating carbon dioxide emissions factors for the California electric power sector  

E-Print Network [OSTI]

utility-specific annual generation by fuel type (CEC, 1990;Generation annual fuel specific generation by fuel type and

Marnay, Chris; Fisher, Diane; Murtishaw, Scott; Phadke, Amol; Price, Lynn; Sathaye, Jayant

2002-01-01T23:59:59.000Z

410

The effects of fuel type and stove design on emissions and efficiency of natural-draft semi-gasifier biomass cookstoves  

Science Journals Connector (OSTI)

Abstract To assess the effects of stove design and fuel type on efficiency and emissions, five configurations of natural-draft, top-lit up-draft (TLUD) semi-gasifier cookstoves were tested with two biomass fuels.  An energy balance model was developed using measured temperature data to identify the major sources of efficiency loss.  Emissions and efficiency varied substantially with stove design and fuel type, and transient increases in CO emission correlated with refueling.  The highest measured thermal efficiency was 42%.  The lowest CO and PM emissions were 0.6 g MJd? 1 and 48 g MJd? 1. These results fall within Tier 3 for high-power efficiency and emissions and suggest that development of a Tier 4 natural-draft semi-gasifier cookstove is possible. The energy balance illustrates that up to 60% of the energy input as fuel can remain as char once the fuel has gasified. This result suggests that both thermal and overall efficiencies should be calculated when evaluating TLUD cookstoves.

Jessica Tryner; Bryan D. Willson; Anthony J. Marchese

2014-01-01T23:59:59.000Z

411

Catalytic ignition of fuel/oxygen/nitrogen mixtures over platinum  

SciTech Connect (OSTI)

Ignition of fuel/oxygen/nitrogen mixtures over platinum wire is experimentally studied by using microcalorimetry and by restricting the flow to the low Reynolds number range so that axisymmetry prevails. The fuels studied are propane, butane, propylene, ethylene, carbon monoxide, and hydrogen. Parameters investigated include flow velocity, fuel type and concentration, and oxygen concentration. The catalytic ignition temperatures of the various fuels are accurately determined over extensive ranges of fuel/oxygen/nitrogen concentrations. Results show two distinctly opposite ignition trends depending on the nature of the fuel. That is, the ignition temperature of lean propane/air and butane/air mixtures decreases as their fuel concentration is increased, while the reverse trend is observed for lean mixtures of propylene, ethylene, carbon monoxide, and hydrogen with air. Furthermore, the ignition of propane depends primarily on fuel concentration, while the ignition of carbon monoxide depends on fuel and oxygen concentrations to a comparable extent. These results are explained on the basis of hierarchical surface adsorption strengths of the different reactants in effecting catalytic ignition. Additional phenomena of interest are observed and discussed.

Cho, P.; Law, C.K.

1986-11-01T23:59:59.000Z

412

Experimental and numerical analysis of transport phenomena in an internal indirect fuel reforming type Solid Oxide Fuel Cells using Ni/SDC as a catalyst  

Science Journals Connector (OSTI)

This paper presents experimental and numerical studies on the fuel reforming process on an Ni/SDC catalyst. To optimize the reforming reactors, detailed data about the entire reforming process is required. In the present paper kinetics of methane/steam reforming on the Ni/SDC catalyst was experimentally investigated. Measurements including different thermal boundary conditions, the fuel flow rate and the steam-to-methane ratios were performed. The reforming rate equation derived from experimental data was implemented in into numerical model which was numerically solved in order to discuss this process in details.

G Brus; S Kimijima; J S Szmyd

2012-01-01T23:59:59.000Z

413

Carbon Capture and Storage From Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere  

Science Journals Connector (OSTI)

The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2...emissions from biomass conversion processes can also be captured. If that is done...

Christian Azar; Kristian Lindgren; Eric Larson; Kenneth Möllersten

2006-01-01T23:59:59.000Z

414

Enhanced biodegradation of diesel fuel through the addition of particulate organic carbon and inorganic nutrients in coastal marine waters  

Science Journals Connector (OSTI)

Diesel fuel pollution in coastal waters, resulting from recreational ... operations, is common and can adversely affect marine biota. The purpose of this study was...Spartina alterniflora...), inorganic nutrients...

Michael F. Piehler; Hans W. Paerl

1996-06-01T23:59:59.000Z

415

Alternative Fuels Data Center: Alternative Fuel Excise Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Excise Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Excise Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Excise Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Excise Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Excise Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Excise Tax Distributors who sell or use motor fuel, including special fuels, are subject to an excise tax of $0.075 per gallon. Motor fuels that are not

416

Operational Manual for Coating, SEM Lab., Inst. of Geophysics, NCU. July 20, 2007 Two types of coating material: Pt, Carbon  

E-Print Network [OSTI]

sure SPI-MODULE Carbon Coater is connected to SPI-MODULE Control) (Make sure Carbon Fiber is connected~40 amperes. 9.3 Outgassing: turn the switch to CONT, rotate VOLTAGE, heating Carbon Fiber until it become red. (This process is to remove entrapped gas in Carbon Fiber.) 9.4 Turn the switch to PULSE, push PULSE

Lin, Andrew Tien-Shun

417

Influence of carbon support on the performance of platinum based oxygen reduction catalysts in a polymer electrolyte fuel cell  

Science Journals Connector (OSTI)

In a hydrogen fuelled PEMFC voltage losses are dominated by cathodic overvoltages. Considering the superior performance of DMFC anode catalysts based on carbon materials of the Sibunit...2 g?1 as supports for PEMFC

Jörg Kaiser; Pavel A. Simonov…

2007-12-01T23:59:59.000Z

418

Method of fabricating electrode catalyst layers with directionally oriented carbon support for proton exchange membrane fuel cell  

DOE Patents [OSTI]

A membrane electrode assembly (MEA) of the invention comprises an anode and a cathode and a proton conductive membrane therebetween, the anode and the cathode each comprising a patterned sheet of longitudinally aligned transition metal-containing carbon nanotubes, wherein the carbon nanotubes are in contact with and are aligned generally perpendicular to the membrane, wherein a catalytically active transition metal is incorporated throughout the nanotubes.

Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL)

2012-03-20T23:59:59.000Z

419

Carbon sequestration and greenhouse gas emissions in urban turf  

E-Print Network [OSTI]

D. C. Lal, R. (2004), Carbon emission from farm operations,facts: Average carbon dioxide emissions resulting fromcalculation of carbon dioxide (CO 2 ) emissions from fuel

Townsend-Small, Amy; Czimczik, Claudia I

2010-01-01T23:59:59.000Z

420

American Clean Coal Fuels | Open Energy Information  

Open Energy Info (EERE)

Fuels Fuels Jump to: navigation, search Name American Clean Coal Fuels Address 123 NW 12th ave Place Portland, Oregon Zip 97209 Sector Biofuels Product Uses gasification to turn carbon based feedstocks into syngas for biofuels Website http://www.cleancoalfuels.com/ Coordinates 45.5238219°, -122.6831677° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5238219,"lon":-122.6831677,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EIA - International Energy Outlook 2007 - Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Relaated Carbon Dioxide Emissions Energy-Relaated Carbon Dioxide Emissions International Energy Outlook 2007 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2004, non-OECD emissions of carbon dioxide were greater than OECD emissions for the first time. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 57 percent. Figure 77. World Energy-Related Carbon Dioxide Emissions by Region, 2003-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center on 202-585-8800. Figure Data Figure 78. World energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy at 202-586-8800. Figure Data Carbon dioxide is the most abundant anthropogenic (human-caused) greenhouse

422

EIA - International Energy Outlook 2008-Energy-Related Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Energy-Related Carbon Dioxide Emissions Energy-Related Carbon Dioxide Emissions International Energy Outlook 2008 Chapter 7 - Energy-Related Carbon Dioxide Emissions In 2005, non-OECD emissions of carbon dioxide exceeded OECD emissions by 7 percent. In 2030, carbon dioxide emissions from the non-OECD countries are projected to exceed those from the OECD countries by 72 percent. Figure 75. World Energy-Related Carbon Dioxide Emissions, 2005-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 76. World Energy-Related Carbon Dioxide Emissions by Fuel Type, 1990-2030 (Billion Metric Tons). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 77. Average Annual Growth in Energy-Related Carbon Dioxide Emissions in the OECD Economies, 2005-2030 (Percent per Year). Need help, contact the National Energy Information Center at 202-586-8800.

423

Subtask 2.6 - Assessment of Alternative Fuels on CO2 Production  

SciTech Connect (OSTI)

Many coal-based electric generating units use alternative fuels, and this effort assessed the impact of alternative fuels on CO{sub 2} production and other emissions and also assessed the potential impact of changes in emission regulations under the Clean Air Act (CAA) for facilities utilizing alternative fuels that may be categorized as wastes. Information was assembled from publicly available U.S. Department of Energy Energy Information Administration databases that included alternative fuel use for 2004 and 2005. Alternative fuel types were categorized along with information on usage by coal-based electric, number of facilities utilizing each fuel type, and the heating value of solid, liquid, and gaseous alternative fuels. The sulfur dioxide, nitrogen oxide, and carbon dioxide emissions associated with alternative fuels and primary fuels were also evaluated. Carbon dioxide emissions are also associated with the transport of all fuels. A calculation of carbon dioxide emissions associated with the transport of biomass-based fuels that are typically accessed on a regional basis was made. A review of CAA emission regulations for coal-based electric generating facilities from Section 112 (1) and Section 129 (2) for solid waste incinerators was performed with consideration for a potential regulatory change from Section 112 (1) regulation to Section 129 (2). Increased emission controls would be expected to be required if coal-based electric generating facilities using alternative fuels would be recategorized under CAA Section 129 (2) for solid waste incinerators, and if this change were made, it is anticipated that coal-fired electric generating facilities might reduce the use of alternative fuels. Conclusions included information on the use profile for alternative fuels and the impacts to emissions as well as the impact of potential application of emission regulations for solid waste incinerators to electric generating facilities using alternative fuels.

Debra Pflughoeft-Hassett; Darren Naasz

2009-06-16T23:59:59.000Z

424

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

425

Go Green Save Fuel LLC | Open Energy Information  

Open Energy Info (EERE)

Green Save Fuel LLC Green Save Fuel LLC Jump to: navigation, search Name Go Green Save Fuel, LLC Place Seattle, Washington Zip 98134 Sector Carbon Product Seattle-based lobbyist seeking to make individuals and companies more aware of their carbon footprint and henceforth convert to "green" alternatives. Coordinates 47.60356°, -122.329439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.60356,"lon":-122.329439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Tax Ethanol Fuel Blend Tax Rate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced

427

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Decals to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Decals An individual may place alternative fuel into the fuel tank of a motor

428

Alternative Fuels Data Center: Alternative Fuel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Tax Fuel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Exemption Alternative fuels used in a manner that the Internal Revenue Service (IRS) deems as nontaxable are exempt from federal fuel taxes. Common nontaxable

429

Alternative Fuels Data Center: Alternative Fuels Tax or Fee  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuels Tax Alternative Fuels Tax or Fee to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax or Fee on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax or Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax or Fee A state excise tax applies to special fuels at a rate of $0.25 per gallon on a gasoline gallon equivalent basis. Special fuels include compressed

430

Alternative Fuels Data Center: Alternative Fuel and Vehicle Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Vehicle Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Vehicle Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Vehicle Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Vehicle Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Vehicle Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Vehicle Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Vehicle Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Vehicle Tax Liquid alternative fuels used to operate on-road vehicles are taxed at a rate of $0.175 per gallon. These fuels are taxed at the same rate as

431

Alternative Fuels Data Center: Fuel Exclusivity Contract Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Exclusivity Fuel Exclusivity Contract Regulation to someone by E-mail Share Alternative Fuels Data Center: Fuel Exclusivity Contract Regulation on Facebook Tweet about Alternative Fuels Data Center: Fuel Exclusivity Contract Regulation on Twitter Bookmark Alternative Fuels Data Center: Fuel Exclusivity Contract Regulation on Google Bookmark Alternative Fuels Data Center: Fuel Exclusivity Contract Regulation on Delicious Rank Alternative Fuels Data Center: Fuel Exclusivity Contract Regulation on Digg Find More places to share Alternative Fuels Data Center: Fuel Exclusivity Contract Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Exclusivity Contract Regulation Motor fuel franchise dealers may obtain alternative fuels from a supplier

432

Alternative Fuels Data Center: Alternative Fuel Excise Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Excise Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Excise Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Excise Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Excise Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Excise Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Excise Tax Compressed natural gas (CNG) motor fuel is subject to the state fuel excise tax at the rate of $0.30 per 120 cubic feet, measured at 14.73 pounds per

433

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

434

Miniature ceramic fuel cell  

DOE Patents [OSTI]

A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

1997-06-24T23:59:59.000Z

435

Getting the carbon out Alex Farrell, Daniel Sperling  

E-Print Network [OSTI]

-in hybrids and hydrogen fuel-cell vehicles. Eventually, consumers will have an array of low-carbon fuel such as blending low-carbon biofuels into conventional gasoline, selling low-carbon fuels such as hydrogen and for their customers. At first, fuel providers will most likely offer liquid fuels that work in today's cars

436

Hydrogen storage enhanced in Li-doped carbon replica of zeolites: A possible route to achieve fuel cell demand  

Science Journals Connector (OSTI)

We first report the atomistic grand canonical Monte Carlo simulations of the synthesis of two realistic ordered microporous carbon replica in two siliceous forms of faujasite zeolite (cubic Y-FAU and hexagonal EMT). Atomistic simulations of hydrogen adsorption isotherms in these two carbon structures and their Li-doped composites were carried out to determine their storage capacities at 77 and 298 K. We found that these new forms of carbon solids and their Li-doped versions show very attractive hydrogen storage capacities at 77 and 298 K respectively. However for a filling pressure of 300 bars and at room temperature bare carbons do not show advantageous performances compared to a classical gas cylinder despite of their crystalline micropore network. In comparison Li-doped nanostructures provide reversible gravimetric and volumetric hydrogen storage capacities twice larger ( 3.75 ? wt ? % and 33.7 ? kg / m 3 ). The extreme lattice stiffness of their skeleton will prevent them from collapsing under large external applied pressure an interesting skill compared to bundle of carbon nanotubes and metal organic frameworks (MOFs). These new ordered composites are thus very promising materials for hydrogen storage issues by contrast with MOFs.

Thomas Roussel; Christophe Bichara; Keith E. Gubbins; Roland J.-M. Pellenq

2009-01-01T23:59:59.000Z

437

Energetic analysis of a syngas-fueled chemical-looping combustion combined cycle with integration of carbon dioxide sequestration  

Science Journals Connector (OSTI)

Abstract Chemical-looping combustion for power generation has significant advantages over conventional combustion. Mainly, it allows an integration of CO2 capture in the power plant without energy penalty; secondly, a less exergy destruction in the combustion chemical transformation is achieved, leading to a greater overall thermal efficiency. Most efforts have been devoted to systems based on methane as a fuel, although other systems for alternative fuels have can be proposed. This paper focus on the study of the energetic performance of this concept of combustion in a gas turbine combined cycle when synthesis gas is used as fuel. After optimization of some thermodynamic parameters of the cycle, the power plant performance is evaluated under diverse working conditions and compared to a conventional gas turbine system. Energy savings related with CO2 capture and storage have been quantified. The overall efficiency increase is found to be significant, reaching values of around 5% (even more in some cases). In order to analyze the influence of syngas composition on the results, different H2-content fuels are considered. In a context of real urgency to reduce green house gas emissions, this work is intended to contribute to the conceptual development of highly efficient alternative power generation systems.

Ángel Jiménez Álvaro; Ignacio López Paniagua; Celina González Fernández; Rafael Nieto Carlier; Javier Rodríguez Martín

2014-01-01T23:59:59.000Z

438

A Study of Fast Reactor Fuel Transmutation in a Candidate Dispersion Fuel Design  

SciTech Connect (OSTI)

Dispersion fuels represent a significant departure from typical ceramic fuels to address swelling and radiation damage in high burnup fuel. Such fuels use a manufacturing process in which fuel particles are encapsulated within a non-fuel matrix. Dispersion fuels have been studied since 1997 as part of an international effort to develop and test very high density fuel types for the Reduced Enrichment for Research and Test Reactors (RERTR) program.[1] The Idaho National Laboratory is performing research in the development of an innovative dispersion fuel concept that will meet the challenges of transuranic (TRU) transmutation by providing an integral fission gas plenum within the fuel itself, to eliminate the swelling that accompanies the irradiation of TRU. In this process, a metal TRU vector produced in a separations process is atomized into solid microspheres. The dispersion fuel process overcoats the microspheres with a mixture of resin and hollow carbon microspheres to create a TRUC. The foam may then be heated and mixed with a metal power (e.g., Zr, Ti, or Si) and resin to form a matrix metal carbide, that may be compacted and extruded into fuel elements. In this paper, we perform reactor physics calculations for a core loaded with the conceptual fuel design. We will assume a “typical” TRU vector and a reference matrix density. We will employ a fuel and core design based on the Advanced Burner Test Reactor (ABTR) design.[2] Using the CSAS6 and TRITON modules of the SCALE system [3] for preliminary scoping studies, we will demonstrate the feasibility of reactor operations. This paper will describe the results of these analyses.

Mark DeHart; Hongbin Zhang; Eric Shaber; Matthew Jesse

2010-11-01T23:59:59.000Z

439

VISION Model: Description of Model Used to Estimate the Impact of Highway Vehicle Technologies and Fuels on Energy Use and Carbon Emissions to 2050  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ESD/04-1 ESD/04-1 VISION Model: Description of Model Used to Estimate the Impact of Highway Vehicle Technologies and Fuels on Energy Use and Carbon Emissions to 2050 Center for Transportation Research Argonne National Laboratory Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy Argonne National Laboratory, a U.S. Department of Energy Office of Science laboratory, is operated by The University of Chicago under contract W-31-109-Eng-38. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes

440

Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report P. Pfeifer (Primary Contact), C. Wexler, P. Yu, G. Suppes, F. Hawthorne, S. Jalisatgi, M. Lee, D. Robertson University of Missouri 223 Physics Building Columbia, MO 65211 Phone: (573) 882-2335 Email: pfeiferp@missouri.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FG36-08GO18142 Subcontractors: Midwest Research Institute, Kansas City, MO Project Start Date: September 1, 2008 Project End Date: November 30, 2013 Fiscal Year (FY) 2012 Objectives Fabricate high-surface-area, multiply surface- * functionalized carbon ("substituted materials") for reversible hydrogen storage with superior storage

Note: This page contains sample records for the topic "fuel type carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Putting the pressure on carbon dioxide | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Putting the pressure on carbon dioxide Improving the chances for fuel recovery and carbon sequestration Artwork from this research graces the cover of Environmental Science...

442

Prospects for Enhancing Carbon Sequestration and Reclamation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Prospects for Enhancing Carbon Sequestration and Reclamation of Degraded Lands with Fossil-fuel Combustion By-products. Prospects for Enhancing Carbon Sequestration and Reclamation...

443

Carbon Fiber Technology Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

444

Carbon Fiber Technology Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

445

Carbon Fiber Technology Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Carbon Fiber Technology Facility Carbon Fiber Technology Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

446

Rotating disk electrode measurements on the CO tolerance of a high-surface area Pt/Vulcan carbon fuel cell catalyst  

SciTech Connect (OSTI)

The authors examine the electrocatalytic properties of a Pt/Vulcan carbon catalyst toward the electro-oxidation of CO and CO/H{sub 2} mixtures under proton exchange membrane fuel cell (PEMFC) relevant conditions (60 to 80 C, continuous reactant flow), employing rotating disk electrode (RDE) measurements. They demonstrate that the recently introduced thin-film RDE technique can be applied to predict the performance of real fuel cell anodes operating on CO-contaminated H{sub 2}. The method involves attaching the catalyst particles to a glassy carbon RDE via a thin Nafion film. The thin-film RDE technique opens the possibility for the mass-transport-free determination of the electrode kinetics at 100% catalyst utilization. At identical mass-specific current densities, the overpotentials for CO/H{sub 2} oxidation measured with the thin-film RDE technique are in excellent agreement with performance data from PEMFC anodes. The kinetics of pure CO oxidation were investigated with CO/N{sub 2} mixtures, revealing that the CO oxidation activity increases with decreasing CO partial pressure (negative reaction order). The observed ignition potential for CO oxidation was the same for both the CO/N{sub 2} and the CO/H{sub 2} mixtures. Two H{sub 2} oxidation mechanisms in the presence of CO can be distinguished: (1) a high Tafel slope region at low overpotentials, where H{sub 2} oxidation occurs in vacancies of the CO adlayer; and (2) a low Tafel slope region at high overpotentials where H{sub 2} and CO oxidation occur simultaneously.

Schmidt, T.J.; Behm, R.J. [Univ. Ulm (Germany). Abteilung Oberflaechenchemie und Katalyse] [Univ. Ulm (Germany). Abteilung Oberflaechenchemie und Katalyse; Gasteiger, H.A. [Adam Opel AG, Ruesselsheim (Germany). Global Alternative Propulsion Center] [Adam Opel AG, Ruesselsheim (Germany). Global Alternative Propulsion Center

1999-04-01T23:59:59.000Z

447

Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance  

E-Print Network [OSTI]

resource. Cathode materials can account for 47-75% of the MFC capital costs,5 and therefore it is important to choose less expensive materials as the cathode catalyst. Several catalysts have been considered for useInfluence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction

448

Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Retailer Fuel Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Retailer Tax Credit Retailers that sell fuel blends of gasoline containing up to 15% ethanol by

449

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Tax All licensed on-road vehicles fueled by compressed natural gas or liquefied

450

Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Job Fuel Job Creation Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Job Creation Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Job Creation Tax Credit Businesses involved in alternative fuel vehicle (AFV) and component

451

Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Cell Vehicle Tax Fuel Cell Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Vehicle Tax Credit South Carolina residents that claim the federal fuel cell vehicle tax credit are eligible for a state income tax credit equal to 20% of the

452

Alternative Fuels Data Center: Alternative Fuel Excise Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Excise Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Excise Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Excise Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Excise Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Excise Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Excise Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Excise Tax Liquefied natural gas, liquid fuel derived from coal, and liquid hydrocarbons derived from biomass are subject to a federal excise tax of

453

Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Sales Renewable Fuel Sales Volume Goals to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Sales Volume Goals The Wisconsin Legislature sets goals for minimum annual renewable fuel

454

Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuel Renewable Fuel Retailer Tax Incentive to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Retailer Tax Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Retailer Tax Incentive A licensed retail motor fuel dealer may receive a quarterly incentive for

455

Alternative Fuels Data Center: Alternative Fuel Tax Rate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Tax Alternative Fuel Tax Rate to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax Rate on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax Rate on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Rate on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Rate on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax Rate on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax Rate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Rate A distributor of any alternative fuel used to operate an internal combustion engine must pay a license tax of $0.0025 for each gallon of

456

Alternative Fuels Data Center: Fuel Dispenser Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Dispenser Fuel Dispenser Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Fuel Dispenser Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Fuel Dispenser Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Fuel Dispenser Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Fuel Dispenser Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Fuel Dispenser Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Fuel Dispenser Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Dispenser Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or

457

Alternative Fuels Data Center: E85 Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: E85 Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: E85 Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: E85 Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: E85 Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: E85 Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: E85 Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type E85 Fueling Infrastructure Grants The Twin Cities Clean Cities Coalition offers funding assistance to fuel