Sample records for fuel type carbon

  1. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10T23:59:59.000Z

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  2. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

  3. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

    2012-10-01T23:59:59.000Z

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  4. Carbon Fuel Particles Used in Direct Carbon Conversion Fuel Cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2008-10-21T23:59:59.000Z

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  5. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2012-01-24T23:59:59.000Z

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  6. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F.; Cherepy, Nerine

    2012-10-09T23:59:59.000Z

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  7. Carbon fuel particles used in direct carbon conversion fuel cells

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

    2011-08-16T23:59:59.000Z

    A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

  8. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, Rafael A. (Chicago, IL); Hrdina, Kenneth E. (Glenview, IL); Remick, Robert J. (Bolingbrook, IL)

    1993-01-01T23:59:59.000Z

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.

  9. Carbonate fuel cell anodes

    DOE Patents [OSTI]

    Donado, R.A.; Hrdina, K.E.; Remick, R.J.

    1993-04-27T23:59:59.000Z

    A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.

  10. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

  11. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. For

  12. Carbon fuel cells with carbon corrosion suppression

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2012-04-10T23:59:59.000Z

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  13. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  14. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    flexible-fuel cars, launched the Advanced Battery Consortium and the Partnership for a New Generation

  15. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    EORGE O SODI , Fish Pond Oil Pollution, 2004. fuels such asway of reducing vehicular pollution, oil companies responded

  16. Greening up fossil fuels with carbon sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greening up fossil fuels with carbon sequestration 1663 Los Alamos science and technology magazine Latest Issue:May 2015 All Issues submit Greening up fossil fuels with carbon...

  17. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    emissions for fuels such as biofuels, electric- ity, andcould, for instance, sell biofuels or buy credits fromthat 36 billion gallons of biofuels be sold annu- ally by

  18. Molten carbonate fuel cell

    DOE Patents [OSTI]

    Kaun, T.D.; Smith, J.L.

    1986-07-08T23:59:59.000Z

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  19. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    order for the low carbon fuel standard, 2012. URL http://mediated e?ects of low carbon fuel policies. AgBioForum, 15(Gas Reductions under Low Carbon Fuel Standards? American

  20. Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels

    DOE Patents [OSTI]

    Subramanian, Vaidyanathan; Murugesan, Sankaran

    2014-04-29T23:59:59.000Z

    The present invention relates to formation of nanocubes of sillenite type compounds, such as bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, via a hydrothermal synthesis process, with the resulting compound(s) having multifunctional properties such as being useful in solar energy conversion, environmental remediation, and/or energy storage, for example. In one embodiment, a hydrothermal method is disclosed that transforms nanoparticles of TiO.sub.2 to bismuth titanate, i.e., Bi.sub.12TiO.sub.20, nanocubes, optionally loaded with palladium nanoparticles. The method includes reacting titanium dioxide nanotubes with a bismuth salt in an acidic bath at a temperature sufficient and for a time sufficient to form bismuth titanate crystals, which are subsequently annealed to form bismuth titanate nanocubes. After annealing, the bismuth titanate nanocubes may be optionally loaded with nano-sized metal particles, e.g., nanosized palladium particles.

  1. Atmospheric Lifetime of Fossil Fuel Carbon Dioxide

    E-Print Network [OSTI]

    Scherer, Norbert F.

    Atmospheric Lifetime of Fossil Fuel Carbon Dioxide David Archer,1 Michael Eby,2 Victor Brovkin,3 released from combustion of fossil fuels equilibrates among the various carbon reservoirs of the atmosphere literature on the atmospheric lifetime of fossil fuel CO2 and its impact on climate, and we present initial

  2. Electrolyte reservoir for carbonate fuel cells

    DOE Patents [OSTI]

    Iacovangelo, C.D.; Shores, D.A.

    1984-05-23T23:59:59.000Z

    An electrode for a carbonate fuel cell and method of making same are described wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

  3. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    is only one type of fossil fuel and one alternative fuel andGHG emissions and reducing fossil fuel use, and ?nd biofuelin GHG intensity of both fossil fuels and renewable fuels,

  4. Type Ia Supernova Carbon Footprints

    E-Print Network [OSTI]

    Thomas, R C; Aragon, C; Antilogus, P; Bailey, S; Baltay, C; Bongard, S; Buton, C; Canto, A; Childress, M; Chotard, N; Copin, Y; Fakhouri, H K; Gangler, E; Hsiao, E Y; Kerschhaggl, M; Kowalski, M; Loken, S; Nugent, P; Paech, K; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Rubin, D; Runge, K; Scalzo, R; Smadja, G; Tao, C; Weaver, B A; Wu, C; Brown, P J; Milne, P A

    2011-01-01T23:59:59.000Z

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of 5 Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 d relative to maximum. Detections are based on the presence of relatively strong C II 6580 absorption "notches" in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the 5 SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibits high-velocity (v > 20,000 km/s) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broad band light curve/color behavior: Three of the 5 have relatively narrow light curves but also blue colors, and a fourth may be a dust-reddened member of this family. Accounting for signal-to-noise and phase, we ...

  5. Sulfur tolerant molten carbonate fuel cell anode and process

    DOE Patents [OSTI]

    Remick, Robert J. (Naperville, IL)

    1990-01-01T23:59:59.000Z

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  6. Cathode side hardware for carbonate fuel cells

    DOE Patents [OSTI]

    Xu, Gengfu (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    2011-03-29T23:59:59.000Z

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of LSC (La.sub.0.8Sr.sub.0.2CoO.sub.3) and lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1).

  7. Effect of carbon coating on scuffing performance in diesel fuels

    SciTech Connect (OSTI)

    Ajayi, O. O.; Alzoubi, M. F.; Erdemir, A.; Fenske, G. R.

    2000-06-29T23:59:59.000Z

    Low-sulfur and low-aromatic diesel fuels are being introduced in order to reduce various types of emissions in diesel engines to levels in compliance with current and impending US federal regulations. The low lubricity of these fuels, however, poses major reliability and durability problems for fuel injection components that depend on diesel fuel for their lubrication. In the present study, the authors evaluated the scuff resistance of surfaces in regular diesel fuel containing 500 ppm sulfur and in Fischer-Tropsch synthetic diesel fuel containing no sulfur or aromatics. Tests were conducted with the high frequency reciprocating test rig (HFRR) using 52100 steel balls and H-13 tool-steel flats with and without Argonne's special carbon coatings. Test results showed that the sulfur-containing fuels provide about 20% higher scuffing resistance than does fuel without sulfur. Use of the carbon coating on the flat increased scuffing resistance in both regular and synthetic fuels by about ten times, as measured by the contact severity index at scuffing. Scuffing failure in tests conducted with coated surfaces did not occur until the coating had been removed by the two distinct mechanisms of spalling and wear.

  8. Types of Fuel Cells | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional StarkFuel Cells » Types

  9. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect (OSTI)

    Turgut Gur

    2010-04-30T23:59:59.000Z

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2}) that simulates the composition of the coal syngas. At 800 C, the stack achieved a power density of 1176 W, which represents the largest power level demonstrated for CO in the literature. Although the FB-DCFC performance results obtained in this project were definitely encouraging and promising for practical applications, DCFC approaches pose significant technical challenges that are specific to the particular DCFC scheme employed. Long term impact of coal contaminants, particularly sulfur, on the stability of cell components and cell performance is a critically important issue. Effective current collection in large area cells is another challenge. Lack of kinetic information on the Boudouard reactivity of wide ranging solid fuels, including various coals and biomass, necessitates empirical determination of such reaction parameters that will slow down development efforts. Scale up issues will also pose challenges during development of practical FB-DCFC prototypes for testing and validation. To overcome some of the more fundamental problems, initiation of federal support for DCFC is critically important for advancing and developing this exciting and promising technology for third generation electricity generation from coal, biomass and other solid fuels including waste.

  10. Fuels for fuel cells: Fuel and catalyst effects on carbon formation

    SciTech Connect (OSTI)

    Borup, R. L. (Rodney L.); Inbody, M. A. (Michael A.); Perry, W. L. (William Lee); Parkinson, W. J. (William Jerry),

    2002-01-01T23:59:59.000Z

    The goal of this research is to explore the effects of fuels, fuel constituents, additives and impurities on the performance of on-board hydrogen generation devices and consequently on the overall performance of fuel cell systems using reformed hydrocarbon fuels. Different fuels and components have been tested in automotive scale, adiabatic autothermal reactors to observe their relative reforming characteristics with various operating conditions. Carbon formation has been modeled and was experimentally monitored in situ during operation by laser measurements of the effluent reformate. Ammonia formation was monitored, and conditions varied to observe under what conditions N H 3 is made.

  11. Cathode side hardware for carbonate fuel cells

    DOE Patents [OSTI]

    Xu, Gengfu (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    2011-04-05T23:59:59.000Z

    Carbonate fuel cathode side hardware having a thin coating of a conductive ceramic formed from one of Perovskite AMeO.sub.3, wherein A is at least one of lanthanum and a combination of lanthanum and strontium and Me is one or more of transition metals, lithiated NiO (Li.sub.xNiO, where x is 0.1 to 1) and X-doped LiMeO.sub.2, wherein X is one of Mg, Ca, and Co.

  12. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2005-03-01T23:59:59.000Z

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the program period in the areas of technology, manufacturing processes, cost reduction and balance-of-plant equipment designs is discussed in this report.

  13. Molten carbonate fuel cell technology improvement

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, Molten Carbonate Fuel Cell Technology Improvement.'' This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

  14. The effect of fuel type in unsaturated spent fuel tests

    SciTech Connect (OSTI)

    Finn, P.A.; Gong, M.; Bates, J.K.; Emery, J.W.; Hoh, J.C.

    1994-04-01T23:59:59.000Z

    Two well-characterized types of spent nuclear fuel (ATM-103 and ATM-106) were tested under simulated unsaturated conditions with simulated groundwater at 90{degree}C. The actinides present in the leachate were measured after periods of approximately 60, 120, and 275 days. The vessels were acid stripped after 120 and 275 days. Both colloidal and soluble actinide species were detected in the leachates which had pHs ranging from 4 to 7. Alpha spectroscopy studies of filtered and unfiltered leachates showed that large amounts of actinides may be bound in colloids. The uranium phases identified in the colloids were schoepite and soddyite. The actinide release behavior of the two fuels appears to be different. The ATM-106 fuel began to release actinides later than the ATM-103 fuel, but after 275 days, it had released more. The amount of americium released from the two fuels was a higher percentage of the maximum amount of americium present than was the percentage of the simultaneous amount of uranium released.

  15. Electrolyte paste for molten carbonate fuel cells

    DOE Patents [OSTI]

    Bregoli, Lawrance J. (Southwick, MA); Pearson, Mark L. (New London, CT)

    1995-01-01T23:59:59.000Z

    The electrolyte matrix and electrolyte reservoir plates in a molten carbonate fuel cell power plant stack are filled with electrolyte by applying a paste of dry electrolyte powder entrained in a dissipatable carrier to the reactant flow channels in the current collector plate. The stack plates are preformed and solidified to final operating condition so that they are self sustaining and can be disposed one atop the other to form the power plant stack. Packing the reactant flow channels with the electrolyte paste allows the use of thinner electrode plates, particularly on the anode side of the cells. The use of the packed electrolyte paste provides sufficient electrolyte to fill the matrix and to entrain excess electrolyte in the electrode plates, which also serve as excess electrolyte reservoirs. When the stack is heated up to operating temperatures, the electrolyte in the paste melts, the carrier vaporizes, or chemically decomposes, and the melted electrolyte is absorbed into the matrix and electrode plates.

  16. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    560-49072 September 2010 Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis Robert Remick National Renewable Energy Laboratory Douglas Wheeler...

  17. Demonstration of a Carbonate Fuel Cell on Coal Derived Gas

    E-Print Network [OSTI]

    Rastler, D. M.; Keeler, C. G.; Chi, C. V.

    Several studies indicate that carbonate fuel cell systems have the potential to offer efficient, cost competitive, and environmentally preferred power plants operating on natural gas or coal derived gas (“syn-gas”). To date, however, no fuel cell...

  18. Wildland fire emissions, carbon, and climate: Modeling fuel consumption

    E-Print Network [OSTI]

    rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called evaluated with an independent, quality assured, fuel consumption data set. Furthermore, anecdotal evidenceWildland fire emissions, carbon, and climate: Modeling fuel consumption Roger D. Ottmar U

  19. California Low Carbon Fuels Infrastructure Investment Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change Request |82:91:4Applications |

  20. Fuel moisture influences on fire-altered carbon in masticated fuels: An experimental study

    E-Print Network [OSTI]

    ] Biomass burning is a significant contributor to atmospheric carbon emissions but may also provide mastication (mechanical forest thinning) and fire convert biomass to black carbon is essential moisture and its role in dictating both the quantity and quality of the carbon produced in masticated fuel

  1. Supporting Information Enhanced Activated Carbon Cathode Performance for Microbial Fuel

    E-Print Network [OSTI]

    S1 Supporting Information Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black Xiaoyuan Zhang 1 , Xue Xia 2 , Ivan Ivanov 1 , Xia Huang 2 , Bruce E. Logan *1 1, School of Environment, Tsinghua University, Beijing 100084, P.R.China *Corresponding Author: Phone: (1

  2. Method of making molten carbonate fuel cell ceramic matrix tape

    DOE Patents [OSTI]

    Maricle, Donald L. (226 Forest La., Glastonbury, CT 06033); Putnam, Gary C. (47 Walker St., Manchester, CT 06040); Stewart, Jr., Robert C. (1230 Copper Hill Rd., West Suffield, CT 06093)

    1984-10-23T23:59:59.000Z

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  3. Coated powder for electrolyte matrix for carbonate fuel cell

    DOE Patents [OSTI]

    Iacovangelo, Charles D. (Schenectady, NY); Browall, Kenneth W. (Schenectady, NY)

    1985-01-01T23:59:59.000Z

    A plurality of electrolyte carbonate-coated ceramic particle which does not differ significantly in size from that of the ceramic particle and wherein no significant portion of the ceramic particle is exposed is fabricated into a porous tape comprised of said coated-ceramic particles bonded together by the coating for use in a molten carbonate fuel cell.

  4. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    SciTech Connect (OSTI)

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01T23:59:59.000Z

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  5. Greening up fossil fuels with carbon sequestration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat AnnualGreen BusinessGreenGovGreening up

  6. Air blast type coal slurry fuel injector

    DOE Patents [OSTI]

    Phatak, Ramkrishna G. (San Antonio, TX)

    1986-01-01T23:59:59.000Z

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  7. Air blast type coal slurry fuel injector

    DOE Patents [OSTI]

    Phatak, R.G.

    1984-08-31T23:59:59.000Z

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  8. Fuel assembly transfer basket for pool type nuclear reactor vessels

    DOE Patents [OSTI]

    Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

    1991-01-01T23:59:59.000Z

    A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

  9. Once through molten carbonate fuel cell system

    SciTech Connect (OSTI)

    Wertheim, R.J.

    1990-02-20T23:59:59.000Z

    This patent describes a fuel cell system. It comprises: a plurality of fuel cells connected electrically through a load, each cell comprising a cathode electrode, an anode electrode, an electrolyte disposed therebetween, a cathode chamber, and an anode chamber; an autothermal reformer for partial oxidation and steam reforming reactions; means for introducing fuel wherein the fuel enters the system through the autothermal reformer; means for delivering the gases from the autothermal reformer to the anode chamber; means for delivering the gases from a heat recovery means to a burner; means for introducing pre-heated air, the air being a source of oxygen and nitrogen for the system, to the burner wherein excess fuel is burned; means for delivering the resulting gases to the cathode chamber; means for delivering the effluent gases from the cathode chamber to the autothermal reformer; and means for exhausting excess gases from the system. The water produced in the anode chamber and the excess oxygen in the cathode chamber are utilized in the autothermal reformer for the partial oxidation and steam reformation reactions.

  10. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Lakes Regional Biomass Energy Program & Renewable Fuels1998. Biomass for renewable energy, fuels, and chemicals.Carbon Fuel Standard For California Energy crops and biomass

  11. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Lakes Regional Biomass Energy Program & Renewable Fuels1998. Biomass for renewable energy, fuels, and chemicals.Carbon Fuel Standard For California Energy crops and biomass

  12. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

  13. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    A Low-Carbon Fuel Standard for California Part 1: TechnicalEnergy Air Quality, and Fuels 2000. Schwarzenegger, Arnold.Order S-01-07: Low Carbon Fuel Standard. Sacramento, CA.

  14. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    ITS—RR—07—07 A Low-Carbon Fuel Standard for California PartEnergy Commission. A Low Carbon Fuel Standard For CaliforniaPont, et al. (2007). Full Fuel Cycle Assessment Well To Tank

  15. Electrolyte matrix for molten carbonate fuel cells

    DOE Patents [OSTI]

    Huang, Chao M. (Danbury, CT); Yuh, Chao-Yi (New Milford, CT)

    1999-01-01T23:59:59.000Z

    A matrix for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 .mu.m to 20 .mu.m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling.

  16. Electrolyte matrix for molten carbonate fuel cells

    DOE Patents [OSTI]

    Huang, C.M.; Yuh, C.Y.

    1999-02-09T23:59:59.000Z

    A matrix is described for a carbonate electrolyte including a support material and an additive constituent having a relatively low melting temperature and a relatively high coefficient of thermal expansion. The additive constituent is from 3 to 45 weight percent of the matrix and is formed from raw particles whose diameter is in a range of 0.1 {micro}m to 20 {micro}m and whose aspect ratio is in a range of 1 to 50. High energy intensive milling is used to mix the support material and additive constituent during matrix formation. Also disclosed is the use of a further additive constituent comprising an alkaline earth containing material. The further additive is mixed with the support material using high energy intensive milling. 5 figs.

  17. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

  18. Fast Reactor Fuel Type and Reactor Safety Performance

    SciTech Connect (OSTI)

    R. Wigeland; J. Cahalan

    2009-09-01T23:59:59.000Z

    Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

  19. Demonstration of a Carbonate Fuel Cell on Coal Derived Gas 

    E-Print Network [OSTI]

    Rastler, D. M.; Keeler, C. G.; Chi, C. V.

    1993-01-01T23:59:59.000Z

    system has run on actual syn-gas. Consequently, the Electric Power Research Institute (“EPRI”) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energy’s coal gasification plant in Plaquemine, Louisiana...

  20. The ongoing University of Minnesota low carbon fuels policy

    E-Print Network [OSTI]

    Minnesota, University of

    · Most of our CO2 emissions come from electricity production and from transportation · Compared to these · Greenhouse gases are messing with the climate · Most of our GHG emissions are in the form of carbon dioxide-human environment effects of fuels' production and use ·Consider great range of uncertainty for some impacts

  1. Carbonate fuel cell and components thereof for in-situ delayed addition of carbonate electrolyte

    DOE Patents [OSTI]

    Johnsen, Richard (Waterbury, CT); Yuh, Chao-Yi (New Milford, CT); Farooque, Mohammad (Danbury, CT)

    2011-05-10T23:59:59.000Z

    An apparatus and method in which a delayed carbonate electrolyte is stored in the storage areas of a non-electrolyte matrix fuel cell component and is of a preselected content so as to obtain a delayed time release of the electrolyte in the storage areas in the operating temperature range of the fuel cell.

  2. Cathode preparation method for molten carbonate fuel cell

    DOE Patents [OSTI]

    Smith, James L. (Lemont, IL); Sim, James W. (Evergreen Park, IL); Kucera, Eugenia H. (Downers Grove, IL)

    1988-01-01T23:59:59.000Z

    A method of preparing a porous cathode structure for use in a molten carbonate fuel cell begins by providing a porous integral plaque of sintered nickel oxide particles. The nickel oxide plaque can be obtained by oxidizing a sintered plaque of nickel metal or by compacting and sintering finely divided nickel oxide particles to the desired pore structure. The porous sintered nickel oxide plaque is contacted with a lithium salt for a sufficient time to lithiate the nickel oxide structure and thus enhance its electronic conductivity. The lithiation can be carried out either within an operating fuel cell or prior to assembling the plaque as a cathode within the fuel cell.

  3. Fossil fuel derivatives with reduced carbon. Phase I final report

    SciTech Connect (OSTI)

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30T23:59:59.000Z

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  4. Combustion characteristics of hydrogen - carbon monoxide-based gaseous fuels

    SciTech Connect (OSTI)

    White, D.J.; Kubasco, A.J.; Lecren, R.T.; Notardonato, J.J.

    1983-01-01T23:59:59.000Z

    An experimental rig program has been conducted with the objective of evaluating the combustion performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Bluewater gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an ''optimum'' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit low NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  5. High efficiency carbonate fuel cell/turbine hybrid power cycle

    SciTech Connect (OSTI)

    Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

    1996-07-01T23:59:59.000Z

    The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

  6. Comparison of platinum deposit methods on carbon aerogels used in Proton Exchange Membrane Fuel Cells (PEMFC)

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Comparison of platinum deposit methods on carbon aerogels used in Proton Exchange Membrane Fuel: carbon aerogel, platinum, Strong Electrostatic Adsorption, chemical reduction, UV With the rarefaction the diffusive phenomena limiting electrochemical performances. By contrast, carbon aerogels present

  7. Molten carbonate fuel cell cathode with mixed oxide coating

    DOE Patents [OSTI]

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07T23:59:59.000Z

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  8. Optical Properties and Radiation-Enhanced Evaporation of Nanofluid Fuels Containing Carbon-Based Nanostructures

    E-Print Network [OSTI]

    Qiao, Li

    Optical Properties and Radiation-Enhanced Evaporation of Nanofluid Fuels Containing Carbon characteristics of nanofluid fuels with stable suspension of carbon-based nanostructures under radiation-based nanofluids containing multiwalled carbon nanotubes (MWCNTs) or carbon nanoparticles (CNPs) are both higher

  9. Modeling of Seismic Signatures of Carbonate Rock Types 

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22T23:59:59.000Z

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used ...

  10. Modeling of Seismic Signatures of Carbonate Rock Types

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22T23:59:59.000Z

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used to identify different...

  11. Pt/CARBON XEROGEL CATALYSTS FOR PEM FUEL CELLS Nathalie JOBa

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Pt/CARBON XEROGEL CATALYSTS FOR PEM FUEL CELLS Nathalie JOBa , Frédéric MAILLARDb , Jean, France ABSTRACT Carbon xerogels have been used to replace carbon black as catalyst support at the cathode in this electrode. Carbon xerogels are very clean nanostructured carbons with well-defined pore texture, which

  12. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs.

  13. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Remick, R.; Wheeler, D.

    2010-09-01T23:59:59.000Z

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  14. Towards constraints on fossil fuel emissions from total column carbon dioxide

    E-Print Network [OSTI]

    Keppel-Aleks, G.; Wennberg, P. O; O'Dell, C. W; Wunch, D.

    2013-01-01T23:59:59.000Z

    G. Keppel-Aleks et al. : Fossil fuel constraints from X CO 2P. P. : Assess- ment of fossil fuel carbon dioxide and otherstrong localized sources: fossil fuel power plant emissions

  15. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    increase in fuel consumers’ and ethanol producers’ surplusof cane ethanol, higher emissions, lower expenditure on fuelthe sum of fuel consumer, oil producer, and ethanol producer

  16. Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana

    SciTech Connect (OSTI)

    Kevin Peavey; Norm Bessette

    2007-09-30T23:59:59.000Z

    The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

  17. Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir

    E-Print Network [OSTI]

    Wehrli, Bernhard

    Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir Sebastian. Wehrli (2012), Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir; revised 25 November 2011; accepted 30 November 2011; published 4 January 2012. [1] Organic carbon (OC

  18. Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Jixin Chen,*,z

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Carbon Corrosion in PEM Fuel Cell Dead-Ended Anode Operations Jixin Chen,*,z Jason B. Siegel on the electrode carbon corrosion of the Proton Exchange Membrane (PEM) fuel cell. A reduced order isothermal model. This model explains, and can be used to quantify, the carbon corrosion behavior dur- ing DEA operation

  19. Molten carbonate fuel cell technology improvement. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    This report summarizes the work performed under Department of Energy Contract DEAC21-87MC23270, ``Molten Carbonate Fuel Cell Technology Improvement.`` This work was conducted over a three year period and consisted of three major efforts. The first major effort was the power plant system study which reviewed the competitive requirements for a coal gasifier/molten carbonate fuel cell power plant, produced a conceptual design of a CG/MCFC, and defined the technology development requirements. This effort is discussed in Section 1 of the report. The second major effort involved the design and development of a new MCFC cell configuration which reduced the material content of the cell to a level competitive with competing power plants, simplified the cell configuration to make the components more manufacturable and adaptable to continuous low cost processing techniques, and introduced new-low-pressure drop flow fields for both reactant gases. The new flow fields permitted the incorporation of recirculation systems in both reactant gas systems, permitting simplified cooling techniques and the ability to operate on both natural gas and a wide variety of gasifier fuels. This cell technology improvement is discussed in Section 2. The third major effort involved the scaleup of the new cell configuration to the full-area, 8-sq-ft size and resulted in components used for a 25-kW, 20-cell stack verification test. The verification test was completed with a run of 2200 hours, exceeding the goal of 2000 hours and verifying the new cell design. TWs test, in turn, provided the confidence to proceed to a 100-kW demonstration which is the goal of the subsequent DOE program. The scaleup and stack verification tests are discussed in Sections 3, 4, 5, and 6 of this report.

  20. Pyrochlore-type catalysts for the reforming of hydrocarbon fuels

    DOE Patents [OSTI]

    Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

    2012-03-13T23:59:59.000Z

    A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

  1. Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News

    E-Print Network [OSTI]

    Lovley, Derek

    Solar Power To Help Convert Carbon Dioxide Into Fuel : Renewable Energy News TUESDAY 25 MAY, 2010 | | Solar Power To Help Convert Carbon Dioxide Into Fuel by Energy Matters Microbiologist Derek Lovley dioxide into transportation fuels, with the help of special micro-organisms and solar power. The team

  2. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    for diesel and the other oil products aggregate as gasoline.range of the elasticities for diesel and other oil products.the price of other oil products. A carbon tax increases

  3. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    technologies for making fluid fuels from coal." Energy andfuels. For this reason, carbon must be rejected from the crude oil in refining (through fluid

  4. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    technologies for making fluid fuels from coal." Energy andfuels. For this reason, carbon must be rejected from the crude oil in refining (through fluid

  5. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

    1996-01-01T23:59:59.000Z

    A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

  6. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01T23:59:59.000Z

    reduction in global crude oil consumption, which accountsconsumption of oil products from di?erent types of crude andin consumption of oil products from the two types of crude

  7. Greenhouse Gas Reductions under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P; Knittel, Christopher R; Hughes, Jonathan E.

    2008-01-01T23:59:59.000Z

    Association, Historic U.S. Fuel Ethanol Production. http://state subsides for fuel ethanol are excluded. The constantblending more ethanol into the fuel supply. The assumption

  8. Greenhouse Gas Reductions Under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2007-01-01T23:59:59.000Z

    Association, Historic U.S. Fuel Ethanol Production. http://state subsides for fuel ethanol are excluded. The constantblending more ethanol into the fuel supply. The assumption

  9. Carbon-based composite electrocatalysts for low temperature fuel cells

    DOE Patents [OSTI]

    Popov, Branko N. (Columbia, SC); Lee, Jog-Won (Columbia, SC); Subramanian, Nalini P. (Kennesaw, GA); Kumaraguru, Swaminatha P. (Honeoye Falls, NY); Colon-Mercado, Hector R. (Columbia, SC); Nallathambi, Vijayadurga (T-Nagar, IN); Li, Xuguang (Columbia, SC); Wu, Gang (West Columbia, SC)

    2009-12-08T23:59:59.000Z

    A process for synthesis of a catalyst is provided. The process includes providing a carbon precursor material, oxidizing the carbon precursor material whereby an oxygen functional group is introduced into the carbon precursor material, and adding a nitrogen functional group into the oxidized carbon precursor material.

  10. Growth of Carbon Support for Proton-Exchange-Membrane Fuel Cell by

    E-Print Network [OSTI]

    Growth of Carbon Support for Proton-Exchange-Membrane Fuel Cell by Pulsed-Laser Deposition (PLDGDL)(catalyst) (pulsed laser deposition PLD) (plasma plume) () #12;III Abstract key word: Fuel CellPulsed Laser. People begin to develop fuel cells for seeking alternative energy sources. Fuel cell use the chemical

  11. Carbon Capture and Storage from Fossil Fuel Use 1 Howard Herzog and Dan Golomb

    E-Print Network [OSTI]

    Institute of Technology Laboratory for Energy and the Environment Glossary Carbon sequestration: captureCarbon Capture and Storage from Fossil Fuel Use 1 Howard Herzog and Dan Golomb Massachusetts gas wells. Carbon capture: the separation and entrapment of CO2 from large stationary sources. CO2

  12. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10T23:59:59.000Z

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  13. Three Human Cell Types Respond to Multi-Walled Carbon Nanotubes...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Cell Types Respond to Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanobelts with Cell-Specific Transcriptomic Three Human Cell Types Respond to Multi-Walled Carbon...

  14. Solar Reforming of Carbon Dioxide to Produce Diesel Fuel

    SciTech Connect (OSTI)

    Dennis Schuetzle; Robert Schuetzle

    2010-12-31T23:59:59.000Z

    This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Asse

  15. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect (OSTI)

    A. Patel; K. Artyushkova; P. Atanassov; V. Colbow; M. Dutta; D. Harvey; S. Wessel

    2012-04-30T23:59:59.000Z

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  16. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect (OSTI)

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Colbow, Vesna; Dutta, Monica; Harvey, Davie; Wessel, Silvia

    2012-04-01T23:59:59.000Z

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 #2;C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  17. Contributions of weather and fuel mix to recent declines in U.S. energy and carbon intensity

    E-Print Network [OSTI]

    Davis, W. Bart; Sanstad, Alan H.; Koomey, Jonathan G.

    2002-01-01T23:59:59.000Z

    in a lower energy-and-carbon-intensive mix of economicintensity into fuel mix and energy intensity terms. Thisof fuel mix and weather on energy and carbon intensity using

  18. REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS

    SciTech Connect (OSTI)

    Mr. Paul Chin; Dr. Xiaolei Sun; Professor George W. Roberts; Professor James J. Spivey; Mr. Amornmart Sirijarhuphan; Dr. James G. Goodwin, Jr.; Dr. Richard W. Rice

    2002-12-31T23:59:59.000Z

    Several different catalytic reactions must be carried out in order to convert hydrocarbons (or alcohols) into hydrogen for use as a fuel for polyelectrolyte membrane (PEM) fuel cells. Each reaction in the fuel-processing sequence has a different set of characteristics, which influences the type of catalyst support that should be used for that particular reaction. A wide range of supports are being evaluated for the various reactions in the fuel-processing scheme, including porous and non-porous particles, ceramic and metal straight-channel monoliths, and ceramic and metal monolithic foams. These different types of support have distinctly different transport characteristics. The best choice of support for a given reaction will depend on the design constraints for the system, e.g., allowable pressure drop, and on the characteristics of the reaction for which the catalyst is being designed. Three of the most important reaction characteristics are the intrinsic reaction rate, the exothermicity/endothermicity of the reaction, and the nature of the reaction network, e.g., whether more than one reaction takes place and, in the case of multiple reactions, the configuration of the network. Isotopic transient kinetic analysis was used to study the surface intermediates. The preferential oxidation of low concentrations of carbon monoxide in the presence of high concentrations of hydrogen (PROX) is an important final step in most fuel processor designs. Data on the behavior of straight-channel monoliths and foam monolith supports will be presented to illustrate some of the factors involved in choosing a support for this reaction.

  19. |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|

    E-Print Network [OSTI]

    Lovley, Derek

    |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search| *Stay Updated every week With a Free Subscription To "Inside The Industry"As Well as a Weekly Updated Patents Page Fuel cell power Publication Date

  20. |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search|

    E-Print Network [OSTI]

    Lovley, Derek

    |Archives| Charts| Companies/Links| Conferences| How A Fuel Cell Works | Patents| | Types of Fuel Cells | The Basics | Fuel Cell News | Basics on Hydrogen | Search| *Stay Updated every week With a Free Subscription To "Inside The Industry"As Well as a Weekly Updated Patents Page Gulliver's fuel cell travels

  1. Selection and preparation of activated carbon for fuel gas storage

    DOE Patents [OSTI]

    Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

    1990-10-02T23:59:59.000Z

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  2. Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

    SciTech Connect (OSTI)

    Buchholz, B A; Cheng, A S; Dibble, R W

    2003-03-03T23:59:59.000Z

    Experimental tests were conducted on a Cummins 85.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NO{sub x}), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for the higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NO{sub x}, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMs). These measurements revealed that carbon from the biodiesel portion of the blended fuel was marginally less likely to contribute to PM, compared to the carbon from the diesel portion of the fuel. The results are different than those obtained in previous tests with the oxygenate ethanol, which was observed to be far less likely contribute to PM than the diesel component of the blended fuel. The data suggests that chemical structure of the oxygen- carbon bonds in an oxygenate affects the PM formation process.

  3. Liquid fuels perspective on ultra low carbon vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and EmissionsDepartment ofEnergy fuels

  4. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProducts |Catalysis of Fuel Cell Reactions |

  5. Carbonate fuel cell system development for industrial cogeneration. Final report Mar 80-Aug 81

    SciTech Connect (OSTI)

    Schnacke, A.W.; Reinstrom, R.M.; Najewicz, D.J.; Dawes, M.H.

    1981-09-01T23:59:59.000Z

    A survey of various industries was performed to investigate the feasibility of using natural gas-fueled carbonate fuel cell power plants as a cogeneration heat and power source. Two applications were selected: chlorine/caustic soda and aluminum. Three fuel processor technologies, conventional steam reforming, autothermal reforming and an advanced steam reformer concept were used to define three thermodynamic cycle concepts for each of the two applications. Performance and economic studies were conducted for the resulting systems. The advanced steam reformer was found among those studied to be most attractive and was evaluated further and compared to internally reforming the fuel within the fuel cell anodes. From the results of the studies it was concluded that the issues most affecting gas-fired carbonate fuel cell power plant commercial introduction are fuel cell and stack development, fuel reformer technology and the development of reliable, cost-effective heat transfer equipment.

  6. Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

  7. Fabrication of carbon-aerogel electrodes for use in phosphoric acid fuel cells

    E-Print Network [OSTI]

    Tharp, Ronald S

    2005-01-01T23:59:59.000Z

    An experiment was done to determine the ability to fabricate carbon aerogel electrodes for use in a phosphoric acid fuel cell (PAFC). It was found that the use of a 25% solution of the surfactant Cetyltrimethylammonium ...

  8. Conductivity measurements of molten metal oxides and their evaluation in a Direct Carbon Fuel Cell (DCFC)

    E-Print Network [OSTI]

    Yarlagadda, Venkata Raviteja

    2011-09-08T23:59:59.000Z

    ABSTRACT Since Direct Carbon Fuel Cell (DCFC) technology is in a beginning stage, emphasis should be laid on addressing the fundamental aspects. A molten electrolyte is required to facilitate ionic contact between solid ...

  9. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    some market failures and provides a useful analysis of thePolicy Analysis Page 21 A third market failure comes aboutfailures occur due to A Low Carbon Fuel Standard for California Part II: Policy Analysis

  10. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

  11. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

  12. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    A. Miller (1980). "Oil Shales and Carbon Dioxide." Sciencefor CO2 evolved from oil shale." Fuel Processing TechnologyCTLs, or CTL synfuels), and oil shale-based synthetic crude

  13. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    A. Miller (1980). "Oil Shales and Carbon Dioxide." Sciencefor CO2 evolved from oil shale." Fuel Processing TechnologyCTLs, or CTL synfuels), and oil shale-based synthetic crude

  14. Carbon nanotube-coated macroporous sponge for microbial fuel cell Liangbing Hu,b

    E-Print Network [OSTI]

    Cui, Yi

    available graphite-based electrodes, such as graphite rods,10 graphite discs,5 graphite felt,11 carbon cloth developed for chemical fuel cells and batteries, but neglects the biological role of MFC electrodes

  15. Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell

    E-Print Network [OSTI]

    Zhao, Tianshou

    Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell S and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China a r t i c l e i n f o Article history: Received 26 carbon supported PtRh catalysts and compare their catalytic activities with that of Pt/C in alkaline

  16. Black Carbon Emissions by Rocket Engines Types of rocket engines Emissions

    E-Print Network [OSTI]

    Toohey, Darin W.

    Black Carbon Emissions by Rocket Engines Types of rocket engines Emissions Liquid Hydrogen) and tetroxide (24) Large amounts of nitrogen oxides. Kerosene Rockets 2 and black carbon (soot). Focus: New carbon in the stratosphere. The large amount of black carbon emitted by these engines is caused

  17. Landfill gas cleanup for carbonate fuel cell power generation. Final report

    SciTech Connect (OSTI)

    Steinfield, G.; Sanderson, R.

    1998-02-01T23:59:59.000Z

    Landfill gas represents a significant fuel resource both in the US and worldwide. The emissions of landfill gas from existing landfills has become an environmental liability contributing to global warming and causing odor problems. Landfill gas has been used to fuel reciprocating engines and gas turbines, and may also be used to fuel carbonate fuel cells. Carbonate fuel cells have high conversion efficiencies and use the carbon dioxide present in landfill gas as an oxidant. There are, however, a number of trace contaminants in landfill gas that contain chlorine and sulfur which are deleterious to fuel cell operation. Long-term economical operation of fuel cells fueled with landfill gas will, therefore, require cleanup of the gas to remove these contaminants. The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. A pilot plant cleaned approximately 970,000 scf of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations: less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorinated hydrocarbon; and 1.5 ppm sulfur dioxide.

  18. Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Alivisatos, Paul

    2011-06-03T23:59:59.000Z

    Paul Alivisatos, LBNL Director speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 4, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  19. Producing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions

    E-Print Network [OSTI]

    effects of global warming. In this article we describe a process which producesa lowProducing Fuel and Electricity from Coal with Low Carbon Dioxide Emissions K. Blok, C.A. Hendriks the electricity production cost by one third. The secondprovides hydrogenor a hydrogen-rich fuel gas

  20. Corrosion behavior and interfacial resistivity of bipolar plate materials under molten carbonate fuel cell cathode conditions

    SciTech Connect (OSTI)

    Schoeler, A.C.; Kaun, T.D.; Bloom, I.; Lanagan, M.; Krumpelt, M.

    2000-03-01T23:59:59.000Z

    A material is needed for bipolar plate materials in molten carbonate fuel cells (MCFCs) that combines the low oxide resistivity of 316L stainless steel (SS) with the low corrosion rate of the type 310 SS. The authors tested a group of materials that included Nitronic 50 SS and a newly developed high-temperature nickel-rich alloy, having chromium contents ranging from 16 to 31 wt %. Their results indicate that chromium content is the primary determinant of oxide scale composition and resistivity. In the MCFC cathode compartment, all tested alloys formed a duplex structure with an inner Cr-rich layer and an outer Fe-rich one. The composition of the inner Cr-rich layer was determined by the chromium content of the base alloy and has a controlling effect on scale resistivity. Oxide scale resistivity was measured for three electrolyte compositions: Li/K, Li/Na, and newly developed (Li, Na, Ca, Ba) carbonates. Changes in the physical/mechanical properties (spallation/cracking) in the oxide scale of 316L SS provided an understanding of its resistivity fluctuations over time.

  1. Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs 

    E-Print Network [OSTI]

    Mammadova, Elnara

    2012-10-19T23:59:59.000Z

    ) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

  2. Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs

    E-Print Network [OSTI]

    Mammadova, Elnara

    2012-10-19T23:59:59.000Z

    ) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research...

  3. Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDFThousand7. ConsumptionNov-14

  4. U.S. Residual Fuel Oil Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea: U.S. East Coast502 2.170

  5. Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S.Feet)

  6. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.9 53.948.6

  7. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.9 53.948.601.2

  8. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.9 53.948.601.213.7

  9. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.9

  10. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data59.2 58.987.1 81.2 38.0

  11. Humidifier for fuel cell using high conductivity carbon foam

    DOE Patents [OSTI]

    Klett, James W.; Stinton, David P.

    2006-12-12T23:59:59.000Z

    A method and apparatus of supplying humid air to a fuel cell is disclosed. The extremely high thermal conductivity of some graphite foams lends itself to enhance significantly the ability to humidify supply air for a fuel cell. By utilizing a high conductivity pitch-derived graphite foam, thermal conductivity being as high as 187 W/m.dot.K, the heat from the heat source is more efficiently transferred to the water for evaporation, thus the system does not cool significantly due to the evaporation of the water and, consequently, the air reaches a higher humidity ratio.

  12. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information AdministrationPetroleum Marketing Annual 1999 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States (Cents per Gallon...

  13. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1998 191 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States (Cents per Gallon...

  14. Novel carbon-ion fuel cells. Second quarter 1995 technical progress report, April 1995--June 1995

    SciTech Connect (OSTI)

    LaViers, H.

    1995-06-30T23:59:59.000Z

    Research continued on carbon-ion fuel cells. This period, the project is proceeding with the construction of an apparatus to create a solid electrolyte in the form of castings, or highly pressed and sintered pellets of CeC{sub 2} and LaC{sub 2} and to test the castings or pellets for the ionic conduction of carbon-ions across the electrolyte.

  15. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    SciTech Connect (OSTI)

    Krumpelt, M.

    2004-06-01T23:59:59.000Z

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian metallurgical industry) and supplied to the partner for tests in a stack of fuel cells. A feasibility study on the cost of the Russian material for a BSP is to be done on Tasks 1, 2 in case the annual order makes up 400,000 sheets. The goal of Task 3 of the project is to research on possible implementation of cermet compositions on the basis of LiAlO{sub 2}, TiN, B{sub 4}C, ceramics with Ni and Ni-Mo binders. BaCeO{sub 3} conductive ceramics with metal binders of Ni, Ni-Cr etc. were also planned to be studied. As a result of these works, a pilot batch of samples is to be made and passed to FCE for tests. The goal of Task 4 of the Project is development of a new alloy or alloys with a ceramic coating that will have upgraded corrosion stability in operation within a SOFC. A new alloy was to be worked out by the way of modification of compositions of industrial alloys. Ceramic coatings are to be applied onto ferrite steel produced serially by iron and steel industry of Russia as sheet iron.

  16. Optimal Design of a Fossil Fuel-Based Hydrogen Infrastructure with Carbon Capture and Sequestration: Case Study in Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ni, Jason; Johnson, Joshua; Lin, Zhenhong; Ogden, Joan M

    2005-01-01T23:59:59.000Z

    M.W. , Initiating hydrogen infrastructures: preliminaryNatural Gas Based Hydrogen Infrastructure – Optimizingof a Fossil Fuel-Based Hydrogen Infrastructure with Carbon

  17. Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels

    SciTech Connect (OSTI)

    Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

    2000-01-19T23:59:59.000Z

    While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces of the wear scars and tracks were characterized by optical and scanning electron microscopy, and by Raman spectroscopy.

  18. An option making for nuclear fuel reprocessing by using supercritical carbon dioxide

    SciTech Connect (OSTI)

    Enokida, Youichi; Sawada, Kayo; Shimada, Takashi; Yamamoto, Ichiro [EcoTopia Science Institute, Nagoya University, 1 furo-cho, Chikusa-ku, Nagoya, Aichi (Japan)

    2007-07-01T23:59:59.000Z

    A four-year-research has been completed as a collaborative work by Nagoya University Mitsubishi Heavy Industries Corporation and Japan Atomic Energy Agency (JAEA) in order to develop a super critical carbon dioxide (SF-CO{sub 2}) based technology, 'SUPER-DIREX process', for nuclear fuel reprocessing. As a result obtained in Phase II of the Japan's feasibility Studies on Commercialized Fast Reactor Cycle Systems, this technology was evaluated as one of the alternatives for the advanced Purex process for he future FBR fuel cycle. Although further investigation is required for a scaled-up demonstration of processing spent fuels by SUPER-DIREX process, we could conclude that an option has been made for nuclear fuel reprocessing by using supercritical carbon dioxide. (authors)

  19. Tribological behavior of near-frictionless carbon coatings in high- and low-sulfur diesel fuels.

    SciTech Connect (OSTI)

    Alzoubi, M. F.; Ajayi, O. O.; Eryilmaz, O. L.; Ozturk, O.; Erdemir, A.; Fenske, G.

    2000-01-19T23:59:59.000Z

    The sulfur content in diesel fuel has a significant effect on diesel engine emissions, which are currently subject to environmental regulations. It has been observed that engine particulate and gaseous emissions are directly proportional to fuel sulfur content. With the introduction of low-sulfur fuels, significant reductions in emissions are expected. The process of sulfur reduction in petroleum-based diesel fuels also reduces the lubricity of the fuel, resulting in premature failure of fuel injectors. Thus, another means of preventing injector failures is needed for engines operating with low-sulfur diesel fuels. In this study, the authors evaluated a near-frictionless carbon (NFC) coating (developed at Argonne National Laboratory) as a possible solution to the problems associated with fuel injector failures in low-lubricity fuels. Tribological tests were conducted with NFC-coated and uncoated H13 and 52100 steels lubricated with high- and low- sulfur diesel fuels in a high-frequency reciprocating test machine. The test results showed that the NFC coatings reduced wear rates by a factor of 10 over those of uncoated steel surfaces. In low-sulfur diesel fuel, the reduction in wear rate was even greater (i.e., by a factor of 12 compared to that of uncoated test pairs), indicating that the NFC coating holds promise as a potential solution to wear problems associated with the use of low-lubricity diesel fuels.

  20. CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS

    SciTech Connect (OSTI)

    Ma, H.; Woosley, S. E.; Malone, C. M. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Almgren, A.; Bell, J. [Center for Computational Sciences and Engineering, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States)

    2013-07-01T23:59:59.000Z

    A leading model for Type Ia supernovae (SNe Ia) begins with a white dwarf near the Chandrasekhar mass that ignites a degenerate thermonuclear runaway close to its center and explodes. In a series of papers, we shall explore the consequences of ignition at several locations within such dwarfs. Here we assume central ignition, which has been explored before, but is worth revisiting, if only to validate those previous studies and to further elucidate the relevant physics for future work. A perturbed sphere of hot iron ash with a radius of {approx}100 km is initialized at the middle of the star. The subsequent explosion is followed in several simulations using a thickened flame model in which the flame speed is either fixed-within the range expected from turbulent combustion-or based on the local turbulent intensity. Global results, including the explosion energy and bulk nucleosynthesis (e.g., {sup 56}Ni of 0.48-0.56 M{sub Sun }) turn out to be insensitive to this speed. In all completed runs, the energy released by the nuclear burning is adequate to unbind the star, but not enough to give the energy and brightness of typical SNe Ia. As found previously, the chemical stratification observed in typical events is not reproduced. These models produce a large amount of unburned carbon and oxygen in central low velocity regions, which is inconsistent with spectroscopic observations, and the intermediate mass elements and iron group elements are strongly mixed during the explosion.

  1. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    None

    2010-07-12T23:59:59.000Z

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  2. Electrolyte matrix in a molten carbonate fuel cell stack

    DOE Patents [OSTI]

    Reiser, C.A.; Maricle, D.L.

    1987-04-21T23:59:59.000Z

    A fuel cell stack is disclosed with modified electrolyte matrices for limiting the electrolytic pumping and electrolyte migration along the stack external surfaces. Each of the matrices includes marginal portions at the stack face of substantially greater pore size than that of the central body of the matrix. Consequently, these marginal portions have insufficient electrolyte fill to support pumping or wicking of electrolyte from the center of the stack of the face surfaces in contact with the vertical seals. Various configurations of the marginal portions include a complete perimeter, opposite edge portions corresponding to the air plenums and tab size portions corresponding to the manifold seal locations. These margins will substantially limit the migration of electrolyte to and along the porous manifold seals during operation of the electrochemical cell stack. 6 figs.

  3. Carbon attrition during the circulating fluidized bed combustion of a packaging-derived fuel

    SciTech Connect (OSTI)

    Mastellone, M.L. [Univ. Federico II of Naples, Napoli (Italy). Dept. of Chemical Engineering] [Univ. Federico II of Naples, Napoli (Italy). Dept. of Chemical Engineering; Arena, U. [National Research Council, Napoli (Italy). Inst. for Combustion Research] [National Research Council, Napoli (Italy). Inst. for Combustion Research; [Univ. of Naples, Caserta (Italy). Dept. of Environmental Sciences

    1999-05-01T23:59:59.000Z

    Cylindrical pellets of a market-available packaging-derived fuel, obtained from a mono-material collection of polyethylene terephthalate (PET) bottles, were batchwise fed to a laboratory scale circulating fluidized bed (CFB) combustor. The apparatus, whose riser was 41 mm ID and 4 m high, was operated under both inert and oxidizing conditions to establish the relative importance of purely mechanical attrition and combustion-assisted attrition in generating carbon fines. Silica sand particles of two size distributions were used as inert materials. For each run, carbon load and carbon particle size distribution in the riser and rates of attrited carbon fines escaping the combustor were determined as a function of time. A parallel investigation was carried out with a bubbling fluidized bed (BFB) combustor to point out peculiarities of attrition in CFB combustors. After devolatilization, PET pellets generated fragile aggregates of char and sand, which easily crumbled, leading to single particles, partially covered by a carbon-rich layer. The injected fixed carbon was therefore present in the bed in three phases: an A-phase, made of aggregates of sand and char, an S-phase, made of individual carbon-covered sand particles and an F-phase, made of carbon fines, abraded by the surfaces of the A- and S-phases. The effects of the size of inert material on the different forms under which fixed carbon was present in the bed and on the rate of escape of attrited carbon fines from the combustor were investigated. Features of carbon attrition in CFB and BFB combustors are discussed.

  4. Performance of an industrial type combustor burning simulated fuels of medium BTU content

    E-Print Network [OSTI]

    Goehring, Howard Lee

    1983-01-01T23:59:59.000Z

    studied fuels were those produced by coal gasification (1, 2, 3, 4, 5). Other widely studied fuels include petroleum distillates, alcohol type fuel, fuel made from tar sands, fuel made from oil shale (1), petro- chemical process plants "off-gases" (2...). Harmful emissions can be reduced by using steam injection (8, 2, 9). Also the amount of equipment needed to produce and refine fuels, such as coal gas, is large; whereas, in the case of steam, the amount of' equipment needed is relatively small. Also...

  5. Molten carbonate fuel cell (MCFC) product development test. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This report summarizes the technical progress that has occurred in conjunction with Cooperative Agreement No. DE-FC21-92MC28065, Molten Carbonate Fuel Cell Product Development Test (PDT) during the period of October 1, 1994 through September 30, 1995. Information is presented on stack design, manufacturing, stack assembly, procurement, site preparation, and test plan.

  6. Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells

    E-Print Network [OSTI]

    Zabrodskii, A G; Malyshkin, V G; Sapurina, I Y

    2006-01-01T23:59:59.000Z

    The effectiveness of carbon supported polyaniline as anode catalyst in a fuel cell (FC) with direct formic acid electrooxidation is experimentally demonstrated. A prototype FC with such a platinum-free composite anode exhibited a maximum room-temperature specific power of about 5 mW/cm2

  7. Landfill gas cleanup for carbonate fuel cell power generation. CRADA final report

    SciTech Connect (OSTI)

    Steinfeld, G.; Sanderson, R.

    1998-02-01T23:59:59.000Z

    The overall objective of the work reported here was to evaluate the extent to which conventional contaminant removal processes could be combined to economically reduce contaminant levels to the specifications for carbonate fuel cells. The technical effort was conducted by EPRI, consultant David Thimsen, Kaltec of Minnesota, Energy Research Corporation (ERC) and Interpoll Laboratories. The Electric Power Research Institute (EPRI) made available two test skids originally used to test an ERC 30 kW carbonate fuel cell at the Destec Coal Gasification Plan in Plaquemine, LA. EPRI`s carbonate fuel cell pilot plant was installed at the Anoka County Regional Landfill in Ramsey, Minnesota. Additional gas cleaning equipment was installed to evaluate a potentially inexpensive, multi-stage gas cleaning process to remove sulfur and chlorine in the gas to levels acceptable for long-term, economical carbonate fuel cell operation. The pilot plant cleaned approximately 970,000 scf (27,500 Nm{sup 3}) of gas over 1,000 hours of operation. The testing showed that the process could achieve the following polished gas concentrations. Less than 80 ppbv hydrogen sulfide; less than 1 ppmv (the detection limit) organic sulfur; less than 300 ppbv hydrogen chloride; less than 20--80 ppbv of any individual chlorined hydrocarbon; and 1.5 ppm sulfur dioxide. These were the detection limits of the analytical procedures employed. It is probable that the actual concentrations are below these analytical limits.

  8. Author's personal copy Radiation transfer in photobiological carbon dioxide fixation and fuel

    E-Print Network [OSTI]

    Pilon, Laurent

    and fuel production by microalgae Laurent Pilon a,Ã, Halil Berberoglu b,1 , Razmig Kandilian a a Mechanical a c t Solar radiation is the energy source driving the metabolic activity of microorganisms able to photobiologically fixate carbon dioxide and convert solar energy into biofuels. Thus, careful radiation transfer

  9. Combined Power Generation and Carbon Sequestration Using Direct FuelCell

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2006-03-01T23:59:59.000Z

    The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.

  10. OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON

    SciTech Connect (OSTI)

    A.F. SAROFIM; BROWN UNIVERSITY. R.A. LISAUSKAS; D.B. RILEY, INC.; E.G. EDDINGS; J. BROUWER; J.P. KLEWICKI; K.A. DAVIS; M.J. BOCKELIE; M.P. HEAP; REACTION ENGINEERING INTERNATIONAL. D.W. PERSHING; UNIVERSITY OF UTAH. R.H. HURT

    1998-01-01T23:59:59.000Z

    Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers, ?in-furnace NO x control,? which includes: staged low-NO x burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of ?in-furnace? NO x control processes. 2) To devise new, or improve existing, approaches for maximum ?in-furnace? NO x control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NO x burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NO x burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NO x burners. 3 Determine the limits on NO control by in-furnace NO x control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NO x burners and coal reburning systems. 6 Modify the char burnout model in REI?s coal combustion code to take account of recently obtained fundamental data on char reactivity during the late stages of burnout. This will improve our ability to predict carbon burnout with low-NO x firing systems.

  11. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2000-01-01T23:59:59.000Z

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  12. Carbon dioxide emission index as a mean for assessing fuel quality

    SciTech Connect (OSTI)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    2008-07-01T23:59:59.000Z

    Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

  13. Behavior of carbonate-rich fuels in ACFBC and PFBC conditions

    SciTech Connect (OSTI)

    Ots, A.; Arro, H.; Pihu, T.; Prikk, A.

    1999-07-01T23:59:59.000Z

    Estonian oil shale is known as one of richest in carbonate fuels. High mineral matter content (60--75% in dry mass), moderate moisture (9--12%) and carbonate carbon dioxide content (17--19%), and low heating value (LHV 8--10 MJ/kg as received) are characteristic for Estonian oil shale. Approximately half of the mineral matter is in the carbonate form, mainly as calcium carbonate. The sulfur content of dry mass is 1.5--1.7% and Ca/S molar ratio is 8--10. Due to limestone present in oil shale, the additional sorbent for sulfur retention during combustion is not needed. The behavior of carbonates as well as the formation of ash at fluidized bed combustion (FBC) was the main topics to study. At Thermal Engineering Department (TED) of Tallinn Technical University a laboratory pressurized combustion facility was used for investigation the decomposition of soil shale carbonates in atmospheric and pressurized burning conditions. The experiments with oil shale were performed at pressures 0.1 MPa and 1.2 MPa and at the temperature 850 C. Based on the carbonate decomposition rate (CDR) 0.3--0.4 established experimentally at pressurized combustion, it may be concluded that the heating value of oil shale increases approximately by 5.5--8% and the carbon dioxide concentration in flue gas decreases by 13--20% compared with the conditions of the complete decomposition of carbonate. Combustion of oil shale was tested in 0.15--1.0 MW{sub th} test facilities. The tests confirmed the suitability of both ACFBC and PFBC technologies to utilize oil shale. The tests showed a nearly complete binding of sulfur by oil shale ash and a limited formation of NO{sub x} at combustion. Oil shale FBC is characterized by the formation of large amounts (40--85% from total) of fine-grained fly ash.

  14. Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report

    SciTech Connect (OSTI)

    Sinskey, Anthony J. [MIT] [MIT; Worden, Robert Mark [Michigan State University MSU] [Michigan State University MSU; Brigham, Christopher [MIT] [MIT; Lu, Jingnan [MIT] [MIT; Quimby, John Westlake [MIT] [MIT; Gai, Claudia [MIT] [MIT; Speth, Daan [MIT] [MIT; Elliott, Sean [Boston University] [Boston University; Fei, John Qiang [MIT] [MIT; Bernardi, Amanda [MIT] [MIT; Li, Sophia [MIT] [MIT; Grunwald, Stephan [MIT] [MIT; Grousseau, Estelle [MIT] [MIT; Maiti, Soumen [MSU] [MSU; Liu, Chole [MSU] [MSU

    2013-12-16T23:59:59.000Z

    This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation Calvin–Benson–Bassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol.

  15. Experimental and Analytical Study of Exponential Power Excursion in Plate-Type Fuel

    E-Print Network [OSTI]

    Sargentini, Lucia

    This paper presents an investigation of transient heat transfer, which may occur in nuclear reactors with plate-type fuel during a reactivity initiated accident. Analytical solutions of the heat transfer equation were ...

  16. Design and Test of a Carbon-Tolerant Alkaline Fuel Cell

    E-Print Network [OSTI]

    Urquidi-Macdonald, M; Grimes, P; Tewari, A; Sambhy, V; Urquidi-Macdonald, Mirna; Sen, Ayusman; Grimes, Patrick; Tewari, Ashutosh; Sambhy, Varun

    2005-01-01T23:59:59.000Z

    This paper presents new results which may constitute a breakthrough in the effort to develop fuel cells truly suitable for use in cars and trucks. For decades, researchers have known that the alkaline fuel cell (AFC) is much cheaper to make, more efficient and more durable than the more popular PEM fuel cell; however, "carbon poisoning" (either from CO2 in air or from contaminants in reformed methanol) causes big problems in the kind of oxygen-hydrogen AFC commonly used in space. This paper reports successful tests of a technique for coating the electrodes with polystyrene which, in conjunction with older common-sense techniques, appears to solve the problem. This kind of design is applicable to cars run on hydrogen fuel, on reformed methanol or even direct methanol. Developing a test methodology was a major part of the work. A foreword by one of the sponsors at NSF discusses the larger importance of this work for energy security and the environment.

  17. Method of preparing a dimensionally stable electrode for use in a molten carbonate fuel cell

    DOE Patents [OSTI]

    Swarr, T.E.; Wnuck, W.G.

    1986-01-29T23:59:59.000Z

    A method is disclosed for preparing a dimensionally stable electrode structure, particularly nickel-chromium anodes, for use in a molten carbonate fuel cell stack. A low-chromium to nickel alloy is provided and oxidized in a mildly oxidizing gas of sufficient oxidation potential to oxidize chromium in the alloy structure. Typically, a steam/H/sub 2/ gas mixture in a ratio of about 100/1 and at a temperature below 800/sup 0/C is used as the oxidizing medium. This method permits the use of less than 5 wt % chromium in nickel alloy electrodes while obtaining good resistance to creep in the electrodes of a fuel cell stack.

  18. Summary report : direct approaches for recycling carbon dioxide into synthetic fuel.

    SciTech Connect (OSTI)

    Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); Ambrosini, Andrea; Diver, Richard B., Jr.; Siegel, Nathan Phillip; Miller, James Edward; Gelbard, Fred; Evans, Lindsey R.

    2009-01-01T23:59:59.000Z

    The consumption of petroleum by the transportation sector in the United States is roughly equivalent to petroleum imports into the country, which have totaled over 12 million barrels a day every year since 2004. This reliance on foreign oil is a strategic vulnerability for the economy and national security. Further, the effect of unmitigated CO{sub 2} releases on the global climate is a growing concern both here and abroad. Independence from problematic oil producers can be achieved to a great degree through the utilization of non-conventional hydrocarbon resources such as coal, oil-shale and tarsands. However, tapping into and converting these resources into liquid fuels exacerbates green house gas (GHG) emissions as they are carbon rich, but hydrogen deficient. Revolutionary thinking about energy and fuels must be adopted. We must recognize that hydrocarbon fuels are ideal energy carriers, but not primary energy sources. The energy stored in a chemical fuel is released for utilization by oxidation. In the case of hydrogen fuel the chemical product is water; in the case of a hydrocarbon fuel, water and carbon dioxide are produced. The hydrogen economy envisions a cycle in which H{sub 2}O is re-energized by splitting water into H{sub 2} and O{sub 2}, by electrolysis for example. We envision a hydrocarbon analogy in which both carbon dioxide and water are re-energized through the application of a persistent energy source (e.g. solar or nuclear). This is of course essentially what the process of photosynthesis accomplishes, albeit with a relatively low sunlight-to-hydrocarbon efficiency. The goal of this project then was the creation of a direct and efficient process for the solar or nuclear driven thermochemical conversion of CO{sub 2} to CO (and O{sub 2}), one of the basic building blocks of synthetic fuels. This process would potentially provide the basis for an alternate hydrocarbon economy that is carbon neutral, provides a pathway to energy independence, and is compatible with much of the existing fuel infrastructure.

  19. N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites

    E-Print Network [OSTI]

    Freeman, Dallas

    2012-07-16T23:59:59.000Z

    Carbon nanotubes were dispersed and functionalized with polyethylene imine (PEI) before incorporation in a polyvinyl acetate matrix. The resulting samples exhibit air-stable N-type characteristics with electrical conductivities as great as 1600 S...

  20. N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites 

    E-Print Network [OSTI]

    Freeman, Dallas

    2012-07-16T23:59:59.000Z

    Carbon nanotubes were dispersed and functionalized with polyethylene imine (PEI) before incorporation in a polyvinyl acetate matrix. The resulting samples exhibit air-stable N-type characteristics with electrical conductivities as great as 1600 S...

  1. Creep resistant, metal-coated LiFeO.sub.2 anodes for molten carbonated fuel cells

    DOE Patents [OSTI]

    Khandkar, Ashok C. (Salt Lake City, UT)

    1994-01-01T23:59:59.000Z

    A porous, creep-resistant, metal-coated, LiFeO.sub.2 ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well.

  2. Creep resistant, metal-coated LiFeO[sub 2] anodes for molten carbonated fuel cells

    DOE Patents [OSTI]

    Khandkar, A.C.

    1994-08-23T23:59:59.000Z

    A porous, creep-resistant, metal-coated, LiFeO[sub 2] ceramic electrode for fuel cells is disclosed. The electrode is particularly useful for molten carbonate fuel cells (MCFC) although it may have utilities in solid oxide fuel cells (SOFC) as well. 11 figs.

  3. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect (OSTI)

    Brunton, Jack; Furukawa, Vance; Frost, Grant; Danna, Mike; Figueroa, Al; Scroppo, Joseph

    1992-11-01T23:59:59.000Z

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  4. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation`s molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  5. An overview of alternative fossil fuel price and carbon regulation scenarios

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2004-10-01T23:59:59.000Z

    The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2) current oil prices, (3) externally generated oil price forecasts, and (4) the historical difficulty in accurately forecasting oil prices. Overall, a spread between the FE-EERE High Oil Price and Reference scenarios of well over $8/bbl is supported by the literature. We conclude that a wide range of carbon regulation scenarios are possible, especially within the time frame considered by EERE and FE (through 2050). The Working Group's Carbon Cap-and-Trade Scenario is found to be less aggressive than many Kyoto-style targets that have been analyzed, and similar in magnitude to the proposed Climate Stewardship Act. The proposed scenario is more aggressive than some other scenarios found in the literature, however, and ignores carbon banking and offsets and does not allow nuclear power to expand. We are therefore somewhat concerned that the stringency of the proposed carbon regulation scenario in the 2010 to 2025 period will lead to a particularly high estimated cost of carbon reduction. As described in more detail later, we encourage some flexibility in the Working Group's ultimate implementation of the Carbon Cap-and-Trade Scenario. We conclude by identifying additional scenarios that might be considered in future analyses, describing a concern with the proposed specification of the High Fuel Price Scenario, and highlighting the possible difficulty of implementing extreme scenarios with current energy modeling tools.

  6. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01T23:59:59.000Z

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  7. Design and implementation of Carbon Monoxide and Oxygen emissions measurement in swirl-stabilized oxy-fuel combustion

    E-Print Network [OSTI]

    Sommer, Andrew (Andrew Zhang)

    2013-01-01T23:59:59.000Z

    Oxy-fuel combustion in natural gas power generation is a technology of growing interest as it provides the most efficient means of carbon capture. Since all the emissions from these power plants are sequestered, there are ...

  8. Techno-economic analysis of sour gas oxy-fuel combustion power cycles for carbon capture and sequestration

    E-Print Network [OSTI]

    Chakroun, Nadim Walid

    2014-01-01T23:59:59.000Z

    The world's growing energy demand coupled with the problem of global warming have led us to investigate new energy sources that can be utilized in a way to reduce carbon dioxide emissions than traditional fossil fuel power ...

  9. Molted carbonate fuel cell product design and improvement - 4th quarter, 1995. Quarterly report, October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The primary objective of this project is to establish the commercial readiness of MW-class IMHEX Molten Carbonate Fuel Cell power plants. Progress is described on marketing, systems design and analysis, product options and manufacturing.

  10. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  11. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2011-01-18T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  12. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2012-04-10T23:59:59.000Z

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  13. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    independent budgeting of fossil fuel CO 2 over Europe by (CO2008), Where do fossil fuel carbon dioxide emissions from2004), Estimates of annual fossil-fuel CO 2 emitted for each

  14. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    independent budgeting of fossil fuel CO 2 over Europe by (CO2008 Where do fossil fuel carbon dioxide emissions frompatterns and mixing of fossil fuel-derived CO 2 is important

  15. Carbon-14 in waste packages for spent fuel in a tuff repository

    SciTech Connect (OSTI)

    Van Konynenburg, R.A.; Smith, C.F.; Culham, H.W.; Smith, H.D.

    1986-10-14T23:59:59.000Z

    Carbon-14 is produced naturally by cosmic ray neutrons in the upper atmosphere. It is also produced in nuclear reactors, in amounts much smaller than the global inventory. About one-third of this is released directly to the atmosphere, and the other two-thirds remains in the spent fuel. Both the Environmental Protection Agency and the Nuclear Regulatory Commission have established limits on release of the {sup 14}C in spent fuel. This is of particular concern for the proposed repository in tuff, because of the unsaturated conditions and the consequent possibility of gaseous transport of {sup 14}C as CO{sub 2}. Existing measurements and calculations of the {sup 14}C inventory in spent fuel are reviewed. The physical distribution and chemical forms of the {sup 14}C are discussed. Available data on the release of {sup 14}C from spent fuel in aqueous solutions and in gaseous environments of air, nitrogen, and helium are reviewed. Projected {sup 14}C behavior in a tuff repository is described. It is concluded that {sup 14}C release measurements from spent fuel into moist air at temperatures both above and below the in situ boiling point of water as well as detailed transport calculations for the tuff geological environment will be needed to determine whether the 10CFR60 and 40CFR191 requirements can be met. 56 refs., 1 tab.

  16. Concentration of carbon types from fly ash by density gradient centrifugation

    SciTech Connect (OSTI)

    Maroto-Valer, M.M.; Taulbee, D.N.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1998-12-31T23:59:59.000Z

    Although the increasing amount of unburned carbon in fly ash is known to preclude the use of ash in the cement industry, very little is known about the characteristics of the unburned carbon. Three types of carbon particles have been identified microscopically: inertinite, isotropic coke and anisotropic coke. This manuscript describes a method to isolate these three types of carbon. A preliminary enrichment, followed by density gradient centrifugation (DGC) with a high-density polytungstate media (2.85 g/cm{sup 3} max), resulted in an enrichment of inertinites from a starting concentration of 3.8% to 61%, isotropic coke from 13.4% to 65%, and anisotropic coke from 19.2% to 74%. Large scale runs (LS) have been conducted to accumulate sufficient sample for subsequent analyses. The recovery weights and petrography composition of the PS and LS fractions are very similar.

  17. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gurney, Kevin

    Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  18. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30T23:59:59.000Z

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  19. Electro-catalytic oxidation device for removing carbon from a fuel reformate

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL)

    2010-02-23T23:59:59.000Z

    An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

  20. Reducing Our Carbon Footprint: Converting Plants to Fuel (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Somerville, Chris

    2011-04-28T23:59:59.000Z

    Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmental and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.

  1. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    61 4.3 Carbon capture andPart II: Policy Analysis Page 5 R12: Carbon capture andstorage If carbon capture and storage (CCS) technologies

  2. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    61 4.3 Carbon capture andPart II: Policy Analysis Page 5 R12: Carbon capture andstorage If carbon capture and storage (CCS) technologies

  3. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    If carbon capture and storage (CCS) technologies that are12: If carbon capture and storage (CCS) technologies thatof carbon capture and storage (CCS) technologies that are

  4. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    If carbon capture and storage (CCS) technologies that are12: If carbon capture and storage (CCS) technologies thatof carbon capture and storage (CCS) technologies that are

  5. A dynamic, dependent type system for nuclear fuel cycle code generation

    SciTech Connect (OSTI)

    Scopatz, A. [The University of Chicago 5754 S. Ellis Ave, Chicago, IL 60637 (United States)

    2013-07-01T23:59:59.000Z

    The nuclear fuel cycle may be interpreted as a network or graph, thus allowing methods from formal graph theory to be used. Nodes are often idealized as nuclear fuel cycle facilities (reactors, enrichment cascades, deep geologic repositories). With the advent of modern object-oriented programming languages - and fuel cycle simulators implemented in these languages - it is natural to define a class hierarchy of facility types. Bright is a quasi-static simulator, meaning that the number of material passes through a facility is tracked rather than natural time. Bright is implemented as a C++ library that models many canonical components such as reactors, storage facilities, and more. Cyclus is a discrete time simulator, meaning that natural time is tracked through out the simulation. Therefore a robust, dependent type system was developed to enable inter-operability between Bright and Cyclus. This system is capable of representing any fuel cycle facility. Types declared in this system can then be used to automatically generate code which binds a facility implementation to a simulator front end. Facility model wrappers may be used either internally to a fuel cycle simulator or as a mechanism for inter-operating multiple simulators. While such a tool has many potential use cases it has two main purposes: enabling easy performance of code-to-code comparisons and the verification and the validation of user input.

  6. Carbon dioxide reduction to alcohols using perovskite-type electrocatalysts

    SciTech Connect (OSTI)

    Schwartz, M.; Cook, R.L.; Kehoe, V.M.; MacDuff, R.C.; Patel, J.; Sammells, A.F. (Eltron Research, Inc., Boulder, CO (United States))

    1993-03-01T23:59:59.000Z

    Electrochemical reduction of CO[sub 2] under ambient conditions to methanol, ethanol, and n-propanol is reported at perovskite-type A[sub 1.8]A[prime][sub 0.2]CuO[sub 4] (A = La, Pr, and Gd; A[prime] = Sr and Th) electrocatalysts when incorporated into gas diffusion electrodes. In the absence of copper at the perovskite B lattice site, no activity was found. This investigation resulted in the identification of electrochemical conditions whereby perovskite-type electrocatalysts could achieve cumulative Faradaic efficiencies for CO[sub 2] reduction to methanol, ethanol, and n-propanol up to [congruent] 40% at current densities of 180 mA/cm[sup 2].

  7. Probabilistic Analysis of a Monod-type equation by use of a single chamber Microbial Fuel Cell

    E-Print Network [OSTI]

    Probabilistic Analysis of a Monod-type equation by use of a single chamber Microbial Fuel Cell Eric for our society. Microbial fuel cells (MFCs) represent a new form of renewable energy by converting of a single chamber Microbial Fuel Cell affect the power density produced in the Microbial Fuel Cell

  8. A Carbon Corrosion Model to Evaluate the Effect of Steady State and Transient Operation of a Polymer Electrolyte Membrane Fuel Cell

    E-Print Network [OSTI]

    Pandy, Arun; Gummalla, Mallika; Atrazhev, Vadim V; Kuzminyh, Nikolay Yu; Sultanov, Vadim I; Burlatsky, Sergei F

    2014-01-01T23:59:59.000Z

    A carbon corrosion model is developed based on the formation of surface oxides on carbon and platinum of the polymer electrolyte membrane fuel cell electrode. The model predicts the rate of carbon corrosion under potential hold and potential cycling conditions. The model includes the interaction of carbon surface oxides with transient species like OH radicals to explain observed carbon corrosion trends under normal PEM fuel cell operating conditions. The model prediction agrees qualitatively with the experimental data supporting the hypothesis that the interplay of surface oxide formation on carbon and platinum is the primary driver of carbon corrosion.

  9. Determination of structural characteristics of saturates from diesel and kerosene fuels by carbon-13 nuclear magnetic resonance spectrometry

    SciTech Connect (OSTI)

    Cookson, D.J.; Smith, B.E.

    1985-04-01T23:59:59.000Z

    Two saturated hydrocarbon fractions, one mainly consisting of n-alkanes and the other containing only branched plus cyclic saturates, have been separated from each of a variety of diesel fuels (approximate boiling range 230-320/sup 0/C) and kerosene fuels (approximately 190-230/sup 0/C) using silica chromatography and urea clathration. The n-alkane fractions have been simply characterized by using conventional /sup 13/C NMR spectrometry, yielding average carbon chain lengths. The branched plus cyclic saturates fractions have been characterized by using the gated spin echo (GASPE) /sup 13/C NMR subspectra for each CH/sub n/ group type (n = 0 to 3) and allows the fractional abundances of CH/sub n/ groups to be measured. These data have been employed in devising and calculating a number of novel average structure parameters which report on the extent of branching and occurrence of ring structures in the fractions investigated. Spectral data are also used to identify some specific submolecular structures. 29 references, 7 figures, 4 tables.

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Carbon Fuel and Fuel-Efficient Vehicle Acquisition Requirement Washington state agencies must consider purchasing low carbon fuel vehicles or converting conventional vehicles...

  11. Analysis of Strategies of Companies under Carbon Constraint: Relationship between Profit Structure of Companies and Carbon/Fuel Price Uncertainty

    E-Print Network [OSTI]

    Hashimoto, Susumu

    This paper examines the relationship between future carbon prices and the expected profit of companies by case studies with model companies. As the future carbon price will vary significantly in accordance with the political ...

  12. FESD Preliminary Proposal, Type I VOICE: Volcano, Ocean, Ice, and Carbon Experiments

    E-Print Network [OSTI]

    Huybers, Peter

    (University of Michigan), Jerry McManus (Columbia Univer- sity), Suzanne Carbotte (Columbia University), JoergFESD Preliminary Proposal, Type I VOICE: Volcano, Ocean, Ice, and Carbon Experiments Project Manager: Charles Langmuir (Harvard University) PIs: Peter Huybers (Harvard University), David Lund

  13. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  14. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    potential direction for technological innovation in transportation fuels. Therefore, we recommended that fuels produced using CCS

  15. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    potential direction for technological innovation in transportation fuels. Therefore, we recommended that fuels produced using CCS

  16. Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications.

    SciTech Connect (OSTI)

    Swain; Greg M.

    2009-04-13T23:59:59.000Z

    The original funding under this project number was awarded for a period 12/1999 until 12/2002 under the project title Diamond and Hydrogenated Carbons for Advanced Batteries and Fuel Cells: Fundamental Studies and Applications. The project was extended until 06/2003 at which time a renewal proposal was awarded for a period 06/2003 until 06/2008 under the project title Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes. The work under DE-FG02-01ER15120 was initiated about the time the PI moved his research group from the Department of Chemistry at Utah State University to the Department of Chemistry at Michigan State University. This DOE-funded research was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder.

  17. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    fuel energy exceeds ethanol fuel energy on a GGE basis.the production of ethanol and other fuels. Both grain foral. (1999). Effects of Fuel Ethanol Use on Fuel-Cycle Energy

  18. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    fuel energy exceeds ethanol fuel energy on a GGE basis.production of ethanol and other fuels. Cereals are generallyal. (1999). Effects of Fuel Ethanol Use on Fuel-Cycle Energy

  19. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

  20. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

  1. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

  2. Might Carbon-Atmosphere White Dwarfs Harbour a New Type of Pulsating Star?

    E-Print Network [OSTI]

    G. Fontaine; P. Brassard; P. Dufour

    2008-03-14T23:59:59.000Z

    In the light of the recent and unexpected discovery of a brand new type of white dwarfs, those with carbon-dominated atmospheres, we examine the asteroseismological potential of such stars. The motivation behind this is based on the observation that past models of carbon-atmosphere white dwarfs have partially ionized outer layers that bear strong resemblance with those responsible for mode excitation in models of pulsating DB (helium-atmosphere) and pulsating DA (hydrogen-atmosphere) white dwarfs. Our exciting main result is that, given the right location in parameter space, some carbon-atmosphere white dwarfs are predicted to show pulsational instability against gravity modes. We are eagerly waiting the results of observational searches for luminosity variations in these stars.

  3. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    from Fuel Combustion in 2004.. 34Emissions from Fuel Combustion in California, Million MetricEmission Estimates from the Combustion of Fossil Fuels in

  4. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Prospects for Hydrogen and Fuel Cells,” Organization forquiet and powerful. .Hydrogen and fuel cells also offer thevehicles (PHEVs), hydrogen fuel cell vehicles (FCVs) are

  5. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    by electricity generation/CHP facilities by distillate fuelFossil Fuel Consumption for Electricity and Heat GenerationFossil Fuel Consumption for Electricity and Heat Generation

  6. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Daniel Rutherford. 2007. Full Fuel Cycle Assessment Tank ToLarry Waterland. 2007. Full Fuel Cycle Assessment Well Tos digest. TIAX LLC, “Full Fuel Cycle Assessment – Well to

  7. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Daniel Rutherford. 2007. Full Fuel Cycle Assessment Tank ToLarry Waterland. 2007. Full Fuel Cycle Assessment Well Tos digest. TIAX LLC, “Full Fuel Cycle Assessment – Well to

  8. The Cellular Burning Regime in Type Ia Supernova Explosions - I. Flame Propagation into Quiescent Fuel

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

    2003-12-03T23:59:59.000Z

    We present a numerical investigation of the cellular burning regime in Type Ia supernova explosions. This regime holds at small scales (i.e. below the Gibson scale), which are unresolved in large-scale Type Ia supernova simulations. The fundamental effects that dominate the flame evolution here are the Landau-Darrieus instability and its nonlinear stabilization, leading to a stabilization of the flame in a cellular shape. The flame propagation into quiescent fuel is investigated addressing the dependence of the simulation results on the specific parameters of the numerical setup. Furthermore, we investigate the flame stability at a range of fuel densities. This is directly connected to the questions of active turbulent combustion (a mechanism of flame destabilization and subsequent self-turbulization) and a deflagration-to-detonation transition of the flame. In our simulations we find no substantial destabilization of the flame when propagating into quiescent fuels of densities down to ~10^7 g/cm^3, corroborating fundamental assumptions of large-scale SN Ia explosion models. For these models, however, we suggest an increased lower cutoff for the flame propagation velocity to take the cellular burning regime into account.

  9. Carbon monoxide sensor for PEM fuel cell systems Christopher T. Holta,*

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    reforming) or with air and water (autothermal reforming). In the second step, carbon monoxide is reduced

  10. Molten carbonate fuel cell product design & improvement - 2nd quarter, 1996. Quarterly report, April 1--June 30, 1996

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The main objective of this project is to establish the commercial readiness of a molten carbonate fuel cell power plant for distributed power generation, cogeneration, and compressor station applications. This effort includes marketing, systems design and analysis, packaging and assembly, test facility development, and technology development, improvement, and verification.

  11. Some evidence on determinants of fuel economy as a function of driving cycle and test type

    SciTech Connect (OSTI)

    Santini, D.J.; Anderson, J.

    1993-08-01T23:59:59.000Z

    Statistical methods are used with 107 vehicles whose fuel economy was presented and reported for five test types in a single publication by Consumers Union (CU) for 1986--1988 vehicles. Standard loglinear statistical formulations (i.e., multiplicative models of interactions) are used with data from this and supplementary sources to develop coefficients estimating the percent fuel economy gain per percent change in engine/vehicle design characteristic. The coefficients are developed for the five different test conditions evaluated by CU and are compared with each other on the basis of attributes of the tests. The insights of engineering models are used to develop expectations regarding the shift in size of coefficients as driving cycles change. In both the engineering models and the statistical model, the effect of weight is estimated to be higher in urban driving than in highway driving. For two test categories -- field tests and dynamometer tests -- the benefits of weight reduction are statistically estimated to be greatest in urban driving conditions. The effect on idle fuel flow rate of designing vehicles to hold performance roughly constant by maintaining power per kilogram and/or displacement per kilogram is examined, and its implication for the size of the weight effect is simply approximated from Sovran`s 1983 engineering model results. The fuel-economy-decreasing effect of the desire for performance is estimated to be somewhat larger in the statistical analysis than in the NAS study, when engine technology is held constant.

  12. A TEM study of soot, carbon nanotubes, and related fullerene nanopolyhedra in common fuel-gas combustion sources

    SciTech Connect (OSTI)

    Murr, L.E. [Department of Metallurgical and Materials Engineering, The University of Texas at El Paso, El Paso, TX 79968 (United States)]. E-mail: fekberg@utep.edu; Soto, K.F. [Department of Metallurgical and Materials Engineering, The University of Texas at El Paso, El Paso, TX 79968 (United States)

    2005-07-15T23:59:59.000Z

    Nanoparticle aggregates collected by thermophoretic precipitation from natural gas-air and propane-air kitchen stove top flame exhausts, natural gas-air water heater roof-top exhausts, and other common fuel-gas combustion sources were observed by transmission electron microscopy to consist of occasional aggregates of mostly turbostratic carbon spherules, aggregates of crystalline graphite nanoparticles mixed with other fullerene nanoforms; and aggregates of various sizes of multiwall carbon nanotubes and other multishell, fullerene polyhedra for optimal blue-flame combustion. The carbon nanotube structures and end cap variations as well as fullerene polyhedral structures were observed to be the same as those for arc-evaporation produced nanoaggregates. Nanoparticle aggregation or the occurrence of carbon nanoforms always occurred as aggregates with nominal sizes ranging from about 0.5 {mu}m to 1.5 {mu}m.

  13. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    with carbon capture and storage (BECCS) technology [6,7] .carbon dioxide emissions by major fuel, 2009…………….2 Fig.1.4 Schematic of CO 2 capture systems and technologies……………………………..carbon footprint. One unique technique is using in-situ CO 2 capture technology,

  14. Molten carbonate fuel cell (MCFC) product development test. Annual report, September 1993--September 1994

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    M-C Power Corporation will design, fabricate, install, test and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location at the Naval Air Station Miramar, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: Inverter, Reformer, Desulfurization Vessels, Hot Gas Recycle Blower, Heat Recovery Steam Generator, and Recycle Gas Cooler. SDG and E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

  15. Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H.J. (Cambridge, MA)

    2000-01-01T23:59:59.000Z

    An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.

  16. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    the carbon intensity of biofuels. London: E4tech, ECCM,85 Mathews, John A. 2007. Biofuels: What a Biopact betweenLehman. 2006. Carbon-Negative Biofuels from Low- Input High-

  17. The Cellular Burning Regime in Type Ia Supernova Explosions - II. Flame Propagation into Vortical Fuel

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

    2003-12-08T23:59:59.000Z

    We investigate the interaction of thermonuclear flames in Type Ia supernova explosions with vortical flows by means of numerical simulations. In our study, we focus on small scales, where the flame propagation is no longer dominated by the turbulent cascade originating from large-scale effects. Here, the flame propagation proceeds in the cellular burning regime, resulting from a balance between the Landau-Darrieus instability and its nonlinear stabilization. The interaction of a cellularly stabilized flame front with a vortical fuel flow is explored applying a variety of fuel densities and strengths of the velocity fluctuations. We find that the vortical flow can break up the cellular flame structure if it is sufficiently strong. In this case the flame structure adapts to the imprinted flow field. The transition from the cellularly stabilized front to the flame structure dominated by vortices of the flow proceeds in a smooth way. The implications of the results of our simulations for Type Ia Supernova explosion models are discussed.

  18. Preferential oxidation of methanol and carbon monoxide for gas cleanup during methanol fuel processing

    SciTech Connect (OSTI)

    Birdsell, S.A.; Vanderborgh, N.E.; Inbody, M.A. [Los Alamos National Lab., NM (United States)

    1993-07-01T23:59:59.000Z

    Methanol fuel processing generates hydrogen for low-temperature, PEM fuel cell systems now being considered for transportation and other applications. Although liquid methanol fuel is convenient for this application, existing fuel processing techniques generate contaminants that degrade fuel cell performance. Through mathematical models and laboratory experiments chemical processing is described that removes CO and other contaminants from the anode feed stream.

  19. An unusual halotolerant a-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli

    E-Print Network [OSTI]

    Sussman, Joel L.

    An unusual halotolerant a-type carbonic anhydrase from the alga Dunaliella salina functionally-tolerant, unicellular, green alga Dunaliella salina. Unlike other carbonic anhydrases, Dca remains active over a very. salina in activity and salt tolerance. Hence, this expression system offers a means of pursuing detailed

  20. Effects of fuel type and equivalence ratios on the flickering of triple flames

    SciTech Connect (OSTI)

    Sahu, K.B.; Kundu, A.; Ganguly, R.; Datta, A. [Department of Power Engineering, Jadavpur University, Salt Lake Campus, Kolkata 700098 (India)

    2009-02-15T23:59:59.000Z

    An experimental study has been conducted in axisymmetric, co-flowing triple flames with different equivalence ratios of the inner and outer reactant streams (2<{phi}{sub in}<3 and 0{<=}{phi}{sub out}<0.7). Different fuel combinations, like propane/propane, propane/methane or methane/methane in the inner and outer streams respectively, have been used in the experiments. The structures of the triple flames have been compared for the different fuel combinations and equivalence ratios. The conditions under which triple flames exhibit oscillation have been identified. During the oscillation, the non-premixed flame and the outer lean premixed flame flicker strongly, while the inner rich premixed flame remains more or less stable. The flickering frequency has been evaluated through image processing and fast Fourier transform (FFT) of the average pixel intensity of the image frames. It is observed that, for all the fuel combinations, the frequency decreases with the increase in the outer equivalence ratio, while it is relatively invariant with the change in the inner equivalence ratio. However, an increase in the inner equivalence ratio affects the structure of the flame by increasing the heights of the inner premixed flame and non-premixed flame and also enlarges the yellow soot-laden zone at the tip of the inner flame. A scaling analysis of the oscillating flames has been performed based on the measured parameters, which show a variation of Strouhal number (St) with Richardson number (Ri) as St {proportional_to} Ri{sup 0.5}. The fuel type is found to have no influence on this correlation. (author)

  1. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    emissions from fossil-fuel combustion R. J. Andres 1 , T. A.resolution fossil fuel combustion CO 2 emission fluxes forCO 2 emissions from fuel combustion, 2010 edition, OECD/IEA,

  2. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    from the combustion of residual fuel oil and distillate fuelfrom oil and gas systems except from fuel combustion (IPCC,SEDS from combustion of residual fuel oil from international

  3. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    Pont, et al. (2007). Full Fuel Cycle Assessment Well To TankJ. Pont, et al. (2007). Full Fuel Cycle Assessment Well Toand L. Waterland. 2007. Full Fuel Cycle Assessment Well To

  4. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Pont, et al. (2007). Full Fuel Cycle Assessment Well To TankJ. Pont, et al. (2007). Full Fuel Cycle Assessment Well ToM. Chan, et al. (2007). Full Fuel Cycle Assessment Tank To

  5. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    and L. Waterland. 2007. Full Fuel Cycle Assessment Well ToM. Chan, et al. (2007). Full Fuel Cycle Assessment Tank ToJ. Pont, et al. (2007). Full Fuel Cycle Assessment Well To

  6. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    the production and use of fuel ethanol in Brazil. Sao Paulo,and mandates, ethanol tariffs, vehicle and fuel testingthe decision over which fuel and ethanol they should buy and

  7. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    the production and use of fuel ethanol in Brazil. Sao Paulo,and mandates, ethanol tariffs, vehicle and fuel testingthe decision over which fuel and ethanol they should buy and

  8. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    dioxide emissions from fossil-fuel combustion R. J. Andresdioxide emis- sions from fossil-fuel use in North America,S. : High resolution fossil fuel combustion CO 2 emission

  9. Identification of pore type and origin in a Lower Cretaceous carbonate reservoir using NMR T2 relaxation times 

    E-Print Network [OSTI]

    Lodola, Domenico Domenico

    2004-09-30T23:59:59.000Z

    Determining the distribution of porosity and permeability is one of the main challenges in carbonate petroleum reservoir characterization and requires a thorough understanding of pore type and origin, as well as their ...

  10. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  11. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Klass, D.L. 1998. Biomass for renewable energy, fuels, andLakes Regional Biomass Energy Program & Renewable Fuelsto accrue to renewable diesel fuels from biomass, whether as

  12. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Klass, D.L. 1998. Biomass for renewable energy, fuels, andLakes Regional Biomass Energy Program & Renewable Fuelsto accrue to renewable diesel fuels from biomass, whether as

  13. Use of ``rock-typing`` to characterize carbonate reservoir heterogeneity. Final report

    SciTech Connect (OSTI)

    Ikwuakor, K.C.

    1994-03-01T23:59:59.000Z

    The objective of the project was to apply techniques of ``rock-typing`` and quantitative formation evaluation to borehole measurements in order to identify reservoir and non-reservoir rock-types and their properties within the ``C`` zone of the Ordovician Red River carbonates in the northeast Montana and northwest North Dakota areas of the Williston Basin. Rock-typing discriminates rock units according to their pore-size distribution. Formation evaluation estimates porosities and pore fluid saturation. Rock-types were discriminated using crossplots involving three rock-typing criteria: (1) linear relationship between bulk density and porosity, (2) linear relationship between acoustic interval transit-time and porosity, and (3) linear relationship between acoustic interval transit-time and bulk density. Each rock-type was quantitatively characterized by the slopes and intercepts established for different crossplots involving the above variables, as well as porosities and fluid saturations associated with the rock-types. All the existing production was confirmed through quantitative formation evaluation. Highly porous dolomites and anhydritic dolomites contribute most of the production, and constitute the best reservoir rock-types. The results of this study can be applied in field development and in-fill drilling. Potential targets would be areas of porosity pinchouts and those areas where highly porous zones are downdip from non-porous and tight dolomites. Such areas are abundant. In order to model reservoirs for enhanced oil recovery (EOR) operations, a more localized (e.g. field scale) study, expanded to involve other rock-typing criteria, is necessary.

  14. Contribution of Ocean, Fossil Fuel, Land Biosphere and Biomass Burning Carbon1 Fluxes to Seasonal and Interannual Variability in Atmospheric CO22

    E-Print Network [OSTI]

    Mahowald, Natalie

    1 Contribution of Ocean, Fossil Fuel, Land Biosphere and Biomass Burning Carbon1 Fluxes to Seasonal et al., 1989].18 Anthropogenic fossil fuel combustion and cement manufacture drive most of the recent by deforestation, discussed below) over the last 50 years. The fossil fuel plus4 cement input, in contrast

  15. High-temperature Chemical Compatibility of As-fabricated TRIGA Fuel and Type 304 Stainless Steel Cladding

    SciTech Connect (OSTI)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Eric Woolstenhulme; Kurt Terrani; Glenn A. Moore

    2012-09-01T23:59:59.000Z

    Chemical interaction between TRIGA fuel and Type-304 stainless steel cladding at relatively high temperatures is of interest from the point of view of understanding fuel behavior during different TRIGA reactor transient scenarios. Since TRIGA fuel comes into close contact with the cladding during irradiation, there is an opportunity for interdiffusion between the U in the fuel and the Fe in the cladding to form an interaction zone that contains U-Fe phases. Based on the equilibrium U-Fe phase diagram, a eutectic can develop at a composition between the U6Fe and UFe2 phases. This eutectic composition can become a liquid at around 725°C. From the standpoint of safe operation of TRIGA fuel, it is of interest to develop better understanding of how a phase with this composition may develop in irradiated TRIGA fuel at relatively high temperatures. One technique for investigating the development of a eutectic phase at the fuel/cladding interface is to perform out-of-pile diffusion-couple experiments at relatively high temperatures. This information is most relevant for lightly irradiated fuel that just starts to touch the cladding due to fuel swelling. Similar testing using fuel irradiated to different fission densities should be tested in a similar fashion to generate data more relevant to more heavily irradiated fuel. This report describes the results for TRIGA fuel/Type-304 stainless steel diffusion couples that were annealed for one hour at 730 and 800°C. Scanning electron microscopy with energy- and wavelength-dispersive spectroscopy was employed to characterize the fuel/cladding interface for each diffusion couple to look for evidence of any chemical interaction. Overall, negligible fuel/cladding interaction was observed for each diffusion couple.

  16. Molten carbonate fuel cell product development test. Final report, September 30, 1992--March 31, 1997

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    This report summarizes the work performed for manufacturing and demonstrating the performance of its 250-kW molten carbonate fuel cell (MCFC) stack in an integrated system at the Naval Air Station Miramar (NAS Miramar) located in San Diego, California. The stack constructed for the demonstration test at the NAS Miramar consisted of 250 cells. It was manufactured using M-C Power`s patented Internally Manifolded Heat Exchanger (IMHEX{reg_sign}) stack design. The demonstration test at NAS Miramar was designed to operate the 250-kW MCFC stack in a cogeneration mode. This test represented the first attempt to thermally integrate an MCFC stack in a cogeneration system. The test was started on January 10, 1997, and voluntarily terminated on May 12, 1997, after 2,350 hours of operation at temperatures above 1,100 F and at a pressure of three atmospheres. It produced 160 MWh of d.c. power and 346,000 lbs of 110 psig steam for export during 1,566 hours of on-load operations. The test demonstrated a d.c. power output of 206 kW. Most of the balance of the plant (BOP) equipment operated satisfactorily. However, the off-the-shelf automotive turbocharger used for supplying air to the plant failed on numerous occasions and the hot gas blower developed seal leakage problems which impacted continuous plant operations. Overall the demonstration test at NAS Miramar was successful in demonstrating many critical features of the IMHEX technology. Lessons learned from this test will be very useful for improving designs and operations for future MCFC power plants.

  17. Electronic Durability of Flexible Transparent Films from Type-Specific Single-Wall Carbon Nanotubes

    SciTech Connect (OSTI)

    Harris, J; Iyer, S; Bernhardt, A; Huh, JY; Hudson, S; Fagan, J; Hobbie, E.

    2011-12-11T23:59:59.000Z

    The coupling between mechanical flexibility and electronic performance is evaluated for thin films of metallic and semiconducting single-wall carbon nanotubes (SWCNTs) deposited on compliant supports. Percolated networks of type-purified SWCNTs are assembled as thin conducting coatings on elastic polymer substrates, and the sheet resistance is measured as a function of compression and cyclic strain through impedance spectroscopy. The wrinkling topography, microstructure and transparency of the films are independently characterized using optical microscopy, electron microscopy, and optical absorption spectroscopy. Thin films made from metallic SWCNTs show better durability as flexible transparent conductive coatings, which we attribute to a combination of superior mechanical performance and higher interfacial conductivity.

  18. Solar-induced chemical vapor deposition of diamond-type carbon films

    DOE Patents [OSTI]

    Pitts, J.R.; Tracy, C.E.; King, D.E.; Stanley, J.T.

    1994-09-13T23:59:59.000Z

    An improved chemical vapor deposition method for depositing transparent continuous coatings of sp[sup 3]-bonded diamond-type carbon films, comprises: (a) providing a volatile hydrocarbon gas/H[sub 2] reactant mixture in a cold wall vacuum/chemical vapor deposition chamber containing a suitable substrate for said films, at pressure of about 1 to 50 Torr; and (b) directing a concentrated solar flux of from about 40 to about 60 watts/cm[sup 2] through said reactant mixture to produce substrate temperatures of about 750 C to about 950 C to activate deposition of the film on said substrate. 11 figs.

  19. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01T23:59:59.000Z

    the carbon intensity of biofuels. London: E4tech, ECCM,85 Mathews, John A. 2007. Biofuels: What a Biopact betweenPolicy Should Distinguish Biofuels by Differential Global

  20. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    renewables Integrated coal gasification combined cycle withmethane reforming or coal gasification are well established,central plant) Coal Coal gasification with Carbon Capture

  1. Synthesis of Highly Porous Catalytic Layers for Polymer Electrolyte Fuel Cell Based on Carbon Aerogels

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Aerogels J. Mariea , S. Berthon-Fabrya , P. Acharda , M. Chatenetb , E. Chainetb , R. Pirardc , N. Cornetd and characterized carbon aerogels which exhibit high surface area, high porous volume and adjustable pore carbon aerogels with 2 different Nafion loadings. Finally, we characterized the structure

  2. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX reg sign ) molten carbonate fuel cell

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  3. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    fuel combustion are attributable to natural gas consumption.Combustion in 2004 (million metric tonne (Mt) of CO 2 ) Fuel Motor Gasoline Natural Gascombustion in 2004. California relies heavily on imported natural gas.

  4. A Micro-Computer-Based Fuel Optimization System Utilizing In-Situ Measurement of Carbon Monoxide

    E-Print Network [OSTI]

    DeVivo, D. G.

    1980-01-01T23:59:59.000Z

    A microcomputer-based control system utilizing a distributed intelligence architecture has been developed to control combustion in hydrocarbon fuel-fired boilers and heaters to significantly reduce fuel usage. The system incorporates a unique flue...

  5. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    biofuel-based compliance strategy with no significant advancesthese low-GHG biofuel blends. Significant advances in fuel

  6. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    biofuel-based compliance strategy with no significant advancesthese low-GHG biofuel blends. Significant advances in fuel

  7. Assessment of Technologies for Compliance with the Low Carbon Fuel Standard

    E-Print Network [OSTI]

    Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

    2009-01-01T23:59:59.000Z

    fuels (e.g. , compressed natural gas, oil derived from tar20% by volume), compressed natural gas, electricity, and

  8. Carbon capture technology: future fossil fuel use and mitigating climate change

    E-Print Network [OSTI]

    sources for countries heavily reliant on imported fuels4 . Why CCS is not just a synonym for `clean coal

  9. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    Thermal Unit Thermally Enhanced Oil Recovery Total fuel useduse of thermally enhanced oil recovery process (TEOR). TEOR

  10. Influence of solid fuel on the carbon-monoxide and nitrogen-oxide emissions on sintering

    SciTech Connect (OSTI)

    M.F. Vitushchenko; N.L. Tatarkin; A.I. Kuznetsov; A.E. Vilkov [AO Mittal Steel Temirtau, Temirtau (Kazakhstan)

    2007-07-01T23:59:59.000Z

    Laboratory and industrial research now underway at the sintering plant of AO Mittal Steel Temirtau is focusing on the preparation of fuel of optimal granulometric composition, the replacement of coke fines, and the adaptation of fuel-input technology so as to reduce fuel consumption and toxic emissions without loss of sinter quality.

  11. EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised FindingDepartment ofStatement |Statement |of EnergyDepartment ofCounty,

  12. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy ScoreEnergy 9: May 4,3: June

  13. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    M. , T. Howes, et al. (2004). Biofuels For Transport. Paris,the carbon intensity of biofuels. London: E4tech, ECCM,Markets for Green Biofuels. In Transportation Sustainability

  14. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    M. , T. Howes, et al. (2004). Biofuels For Transport. Paris,the carbon intensity of biofuels. London: E4tech, ECCM,Markets for Green Biofuels. In Transportation Sustainability

  15. alternative-fuel vehicle types: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and efficiency can be observed depending on the size of compressors. Typically, a larger compressor results in higher fuel cell power density at the cost of fuel cell efficiency...

  16. 1990 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  17. ,"U.S. Residual Fuel Oil Prices by Sales Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected

  18. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (Dover, MA); Mitchell, William L. (Belmont, MA); Bentley, Jeffrey M. (Westford, MA); Thijssen, Johannes H. J. (Cambridge, MA)

    2001-01-01T23:59:59.000Z

    A hydrocarbon fuel reformer (200) is disclosed suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. The reformer (200) comprises first and second tubes (208,218). The first tube (208) includes a first catalyst (214) and receives a first mixture of steam and a first fuel. The second tube (218) is annularly disposed about the first tube (208) and receives a second mixture of an oxygen-containing gas and a second fuel. In one embodiment, a third tube (224) is annularly disposed about the second tube (218) and receives a first reaction reformate from the first tube (208) and a second reaction reformate from the second tube (218). A catalyst reforming zone (260) annularly disposed about the third tube (224) may be provided to subject reformate constituents to a shift reaction. In another embodiment, a fractionator is provided to distill first and second fuels from a fuel supply source.

  19. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    CDC 2005). Heavy oil resources require additional energyin California Low-quality oil resources produce fuels withthan high-quality oil resources. The differences between

  20. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    CDC 2005). Heavy oil resources require additional energyin California Low-quality oil resources produce fuels withthan high-quality oil resources. The differences between

  1. Assessment of Technologies for Compliance with the Low Carbon Fuel Standard

    E-Print Network [OSTI]

    Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

    2009-01-01T23:59:59.000Z

    of U.S. croplands for biofuels increases greenhouse gasesthe indirect Effects of Biofuels Production. Renewable FuelsTyner, W. E. ; Birur, D. K. Biofuels for all? Understanding

  2. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    Prepared by Booz-Allen & Hamilton. January. California AirRail Fuel In 1991 Booz-Allen & Hamilton developed a 1987

  3. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    from the use of natural gas in transportation. V. Hydrogenas a transportation fuel in compressed natural gas vehiclesand transportation, the cost of electricity from natural gas

  4. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    from the use of natural gas in transportation. V. Hydrogenas a transportation fuel in compressed natural gas vehiclesand transportation, the cost of electricity from natural gas

  5. Table 2. 2011 State energy-related carbon dioxide emisssions by fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO) Highlights1,943,742Coalbed2011 State

  6. The Challenge of Achieving Californias Low Carbon Fuel Standard

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S.6, 2014 Independent Statistics

  7. Table 2. 2011 State energy-related carbon dioxide emissions by fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1 U.S. Department of Energy Energy Information32. Average Price2011 State

  8. Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen EnergyCallawayCapara Energia S ACarbon Clear JumpSources

  9. Alternative Fuels Data Center: Austin Lays Plans for Carbon-Neutral City

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimental VehicleNaturalPropaneAtlanta

  10. A systematic study of carbon-oxygen white dwarf mergers: mass combinations for Type Ia supernovae

    E-Print Network [OSTI]

    Sato, Yushi; Tanikawa, Ataru; Nomoto, Ken'ichi; Maeda, Keiichi; Hachisu, Izumi

    2015-01-01T23:59:59.000Z

    Mergers of two carbon-oxygen (CO) white dwarfs (WDs) have been considered as progenitors of Type Ia supernovae (SNe Ia). Based on smoothed particle hydrodynamics (SPH) simulations, previous studies claimed that mergers of CO WDs lead to an SN Ia explosion either in the dynamical merger phase or stationary rotating merger remnant phase. However, the mass range of CO WDs that lead to an SN Ia has not been clearly identified yet. In the present work, we perform systematic SPH merger simulations for the WD masses ranging from $0.5~M_{\\odot}$ to $1.1~M_{\\odot}$ with higher resolutions than the previous systematic surveys and examine whether or not carbon burning occurs dynamically or quiescently in each phase. We further study the possibility of SN Ia explosion and estimate the mass range of CO WDs that lead to an SN Ia. We found that when the both WDs are massive, i.e., in the mass range of $0.9~M_{\\odot} {\\le} M_{1,2} {\\le} 1.1~M_{\\odot}$, they can explode as an SN Ia in the merger phase. On the other hand, when...

  11. Table 5.14. U.S. Vehicle Fuel Consumption by Vehicle Type, 1994

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle Fuel Consumption by

  12. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in RepresentativeDepartment of Energy ScoreEnergy 9: MayDepartment

  13. Irradiation Performance of U-Mo Alloy Based ‘Monolithic’ Plate-Type Fuel – Design Selection

    SciTech Connect (OSTI)

    A. B. Robinson; G. S. Chang; D. D. Keiser, Jr.; D. M. Wachs; D. L. Porter

    2009-08-01T23:59:59.000Z

    A down-selection process has been applied to the U-Mo fuel alloy based monolithic plate fuel design, supported by irradiation testing of small fuel plates containing various design parameters. The irradiation testing provided data on fuel performance issues such as swelling, fuel-cladding interaction (interdiffusion), blister formation at elevated temperatures, and fuel/cladding bond quality and effectiveness. U-10Mo (wt%) was selected as the fuel alloy of choice, accepting a somewhat lower uranium density for the benefits of phase stability. U-7Mo could be used, with a barrier, where the trade-off for uranium density is critical to nuclear performance. A zirconium foil barrier between fuel and cladding was chosen to provide a predictable, well-bonded, fuel-cladding interface, allowing little or no fuel-cladding interaction. The fuel plate testing conducted to inform this selection was based on the use of U-10Mo foils fabricated by hot co-rolling with a Zr foil. The foils were subsequently bonded to Al-6061 cladding by hot isostatic pressing or friction stir bonding.

  14. Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity

    E-Print Network [OSTI]

    Synthesis of energy technology medium-term projections Alternative fuels for transport and low on the costs of a range of `alternative' energy sources for electricity generation and transport markets;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections

  15. Thin graphite bipolar plate with associated gaskets and carbon cloth flow-field for use in an ionomer membrane fuel cell

    DOE Patents [OSTI]

    Marchetti, George A. (Western Springs, IL)

    2003-01-03T23:59:59.000Z

    The present invention comprises a thin graphite plate with associated gaskets and pieces of carbon cloth that comprise a flow-field. The plate, gaskets and flow-field comprise a "plate and gasket assembly" for use in an ionomer membrane fuel cell, fuel cell stack or battery.

  16. Optimal Design of a Fossil Fuel-Based Hydrogen Infrastructure with Carbon Capture and Sequestration: Case Study in Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ni, Jason; Johnson, Joshua; Lin, Zhenhong; Ogden, Joan M

    2005-01-01T23:59:59.000Z

    Infrastructure with Carbon Capture and Sequestration: CaseINFRASTRUCTURE WITH CARBON CAPTURE AND SEQUESTRATION: CASEhydrogen production with carbon capture and sequestration,

  17. Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013 Lease20 5537,954.6

  18. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833333

  19. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833333

  20. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833333

  1. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833333

  2. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488333331996

  3. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January

  4. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January January

  5. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January January

  6. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January January

  7. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 January

  8. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation Results

  9. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation Results61.7

  10. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation

  11. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation57.1 62.0

  12. Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation57.1

  13. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation57.156.9

  14. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 Estimation57.156.962.7

  15. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181

  16. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.3 61.4 66.0 65.3

  17. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.3 61.4 66.0 65.345.2

  18. Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDFThousand7. ConsumptionNov-14 Dec-142009

  19. Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has|Issues inU32,422.9

  20. Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S.Feet) DecadeDecadeFeet)

  1. ,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to End Users, Total Refiner Sales Volumes"for

  2. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    fuel in compressed natural gas vehicles or reformed toare over 125,000 natural gas vehicles in the United Statesthat peak natural gas demand for vehicles should not pose a

  3. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    fuel in compressed natural gas vehicles or reformed toare over 125,000 natural gas vehicles in the United Statesthat peak natural gas demand for vehicles should not pose a

  4. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    that biofuels constitute 2.5% of total road transport fuelstransport sector, while avoiding unintended negative impacts associated with biofuels,transport fuel certificates under the RTFO, and under which different biofuels

  5. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    that biofuels constitute 2.5% of total road transport fuelstransport sector, while avoiding unintended negative impacts associated with biofuels,transport fuel certificates under the RTFO, and under which different biofuels

  6. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    for production of Fischer Tropsch liquids and power viahigher value is for Fischer-Tropsch liquids. See Section 4.cellulosic ethanol and Fischer-Tropsch diesel fuel from wood

  7. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01T23:59:59.000Z

    the case of oil and extraction, consumption of natural gasGas, Crude Oil and Distillates NGLs consumption in CALEBOil and Gas Extraction (Mcf) Re-pressuring Lease Fuel Consumption

  8. An assessment of carbon sources for the production of synthetic fuels from nuclear hydrogen

    E-Print Network [OSTI]

    Leung, MinWah

    2007-01-01T23:59:59.000Z

    In the transportation sector, the current dependence on petroleum to satisfy large transportation fuel demand in the US is unsustainable. Oil resources are finite, and causing heavy US reliance on oil imports. Therefore, ...

  9. Apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOE Patents [OSTI]

    Clawson, Lawrence G. (7 Rocky Brook Rd., Dover, MA 02030); Mitchell, William L. (111 Oakley Rd., Belmont, MA 02178); Bentley, Jeffrey M. (20 Landmark Rd., Westford, MA 01886); Thijssen, Johannes H. J. (1 Richdale Ave.#2, Cambridge, MA 02140)

    2002-01-01T23:59:59.000Z

    Hydrocarbon fuel reformer 100 suitable for producing synthesis hydrogen gas from reactions with hydrocarbons fuels, oxygen, and steam. A first tube 108 has a first tube inlet 110 and a first tube outlet 112. The first tube inlet 110 is adapted for receiving a first mixture including an oxygen-containing gas and a first fuel. A partially oxidized first reaction reformate is directed out of the first tube 108 into a mixing zone 114. A second tube 116 is annularly disposed about the first tube 108 and has a second tube inlet 118 and a second tube outlet 120. The second tube inlet 118 is adapted for receiving a second mixture including steam and a second fuel. A steam reformed second reaction reformate is directed out of the second tube 116 and into the mixing zone 114. From the mixing zone 114, the first and second reaction reformates may be directed into a catalytic reforming zone 144 containing a reforming catalyst 147.

  10. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    and Greenhouse Gases of NExBTL. Heidelberg, IFEU - InstituteR. Linnaila, et al. (2005). NExBTL - Biodiesel fuel of therenewable diesel, such as the NexBTL process, are in active

  11. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    and Greenhouse Gases of NExBTL. Heidelberg, IFEU - InstituteR. Linnaila, et al. (2005). NExBTL - Biodiesel fuel of therenewable diesel, such as the NexBTL process, are in active

  12. Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency

    E-Print Network [OSTI]

    Baumann, Philip Douglas

    1974-01-01T23:59:59.000Z

    CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

  13. A dependence of carbon impurity transport coefficients on fuel ions in hydrogen and helium plasmas of Large Helical Device

    SciTech Connect (OSTI)

    Nozato, H.; Morita, S.; Goto, M.; Takase, Y.; Ejiri, A.; Amano, T.; Tanaka, K.; Inagaki, S. [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8563 (Japan); National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Goshikien 1-1706, Nisshin, Aichi 470-0105 (Japan); National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2006-09-15T23:59:59.000Z

    Impurity transport of carbon has been studied using a new method combined carbon pellet injection with high-spatial resolution bremsstrahlung measurement on the Large Helical Device [A. Iiyoshi et al., Fusion Technol. 17, 169 (1990)]. The carbon pellets are injected into a steady phase in neutral beam heated discharges with a standard configuration of R{sub ax}=3.6 m. The particle transport coefficients (diffusion coefficient D and convective velocity V) are inferred using a diffusive/convective model. The results are compared between hydrogen and helium plasmas. As a result, it is found that the analyzed D has a constant radial profile with almost closed values of 0.2 m{sup 2}/s in both plasmas. On the other hand, the inward V is required only at the plasma outer region ({rho}>0.6) where the electron density gradient exits, and the inward V in helium plasmas (-0.4 m/s at {rho}=0.8 and n{sub e}{approx}4.0x10{sup 19} m{sup -3}) is nearly half as much as that in hydrogen plasmas (-0.7 m/s). This difference of the inward V between hydrogen and helium plasmas suggests a dependence on the charge state of fuel ions predicted from neoclassical theory.

  14. Identification of pore type and origin in a Lower Cretaceous carbonate reservoir using NMR T2 relaxation times

    E-Print Network [OSTI]

    Lodola, Domenico Domenico

    2004-09-30T23:59:59.000Z

    . Conventional studies of carbonate reservoirs require interpretation and analysis of cores to understand porosity. This study investigates the use of NMR logs in the determination of pore type and origin. This study is based on the analysis of both thin section...

  15. Stirling engine sensitivity to fuel characteristics

    SciTech Connect (OSTI)

    Evers, L.W.; Fleming, R.D.

    1984-08-01T23:59:59.000Z

    A Stirling engine was tested to determine the influence of fuel properties on various aspects of engine performance. In order to evaluate the sensitivity of the various operating parameters to the influence of fuel, three different distillation ranges of fuel were selected. Generally, the results indicated that the Stirling engine efficiency was not sensitive to the type of fuel. The emissions, though low, were influenced by the fuel type. The carbon monoxide emissions were lowest for gasoline. Gasoline also produced the lowest hydrocarbon emissions, while diesel fuel produced the greatest.

  16. Preface: Forum on small molecules related to carbon-containing fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fujita, Etsuko; Goldman, Alan S.

    2015-06-01T23:59:59.000Z

    For millennia, human transportation was fueled largely through the consumption of biomass (by humans or domestic animals) and to a lesser extent by wind. The 19th century saw a major shift to coal-fueled transportation, with trains and ships powered by steam engines. A second major shift in the fueling of transportation occurred in the 20th century, this time to petroleum. This transition was not driven by the cost or ease of obtaining energy from oil wells vs. coal mines – indeed, the cost of petroleum has always been higher than coal on a per-unit-energy basis – but rather by themore »tremendous technical advantages of powering engines with liquids, specifically liquid hydrocarbons.« less

  17. Climate policy and dependence on traded carbon

    E-Print Network [OSTI]

    Andrew, Robbie M; Davis, Steven J; Peters, Glen P

    2013-01-01T23:59:59.000Z

    of carbon imported as oil and gas increased between 1997 andincreasingly rely on coal, oil and gas extracted and burnedby fuel type (coal, oil, gas). As an index of import

  18. Solar fuels : integration of molecular catalysts with p-type semiconductor photocathode

    E-Print Network [OSTI]

    Kumar, Bhupendra

    2012-01-01T23:59:59.000Z

    transportation fuels (via Fischer-Tropsch synthesis). p-typebe fed into the Fischer-Tropsch process to make syntheticformation by the Fischer-Tröpsch process) the Re complex

  19. Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors

    SciTech Connect (OSTI)

    Riecke, George T. (Ballston Spa, NY); Stotts, Robert E. (Newark, NY)

    1992-01-01T23:59:59.000Z

    The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

  20. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    Recovery TF Total fuel used TWh Terra-watt hours UNFCCC United Nations Framework Convention on Climate Repair BTS Bureau of Transportation Statistics Btu British thermal unit CalCARS California Conventional IPP Independent Power Producer Kbbl Thousand barrels kLBS Thousand pounds of Steam kst Thousand

  1. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    P. Willhite (1998). Enhanced Oil Recovery. Richardson, TX,2 to be used for enhanced oil recovery. This type of systemDeep Offshore Enhanced Oil Recovery Thermal CO 2 Flood Extra

  2. Fuel cell components and systems having carbon-containing electrically-conductive hollow fibers

    DOE Patents [OSTI]

    Langry, Kevin C.; Farmer, Joseph C.

    2014-07-08T23:59:59.000Z

    According to one embodiment, a system includes a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst coupled to the hollow fiber, an anode extending along at least part of a length of the structure, and a cathode extending along at least part of the length of the structure, the cathode being on an opposite side of the hollow fiber as the anode. In another embodiment, a method includes acquiring a structure having an ionically-conductive, electrically-resistive electrolyte/separator layer covering an inner or outer surface of a carbon-containing electrically-conductive hollow fiber and a catalyst along one side thereof, adding an anode that extends along at least part of a length of the structure, and adding a cathode that extends along at least part of the length of the structure on an opposite side as the anode.

  3. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Dr. Ralph E. White

    2000-09-30T23:59:59.000Z

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Microencapsulation of the NiO cathode has been adopted as a surface modification technique to increase the stability of NiO cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. A simple first principles model was developed to understand the influence of exchange current density and conductivity of the electrode material on the polarization of MCFC cathodes. The model predictions suggest that cobalt can be used to improve the corrosion resistance of NiO cathode without affecting its performance. Cobalt was deposited on NiO cathode by electroless deposition. The morphology and thermal oxidation behavior of Co coated NiO was studied using scanning electron microscopy and thermal gravimetric analysis respectively. The electrochemical performance of cobalt encapsulated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. The electrochemical oxidation behavior of cobalt-coated electrodes is similar to that of the bare NiO cathode. Dissolution of nickel into the molten carbonate melt was less in case of cobalt encapsulated nickel cathodes. Co coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, cobalt coated nickel shows similar polarization characteristics as nickel oxide. A similar surface modification technique has been used to improve the performance of the SS 304 current collectors used in MCFC cells. SS 304 was encapsulated with nanostructured layers of NiCo and NiMo by electroless deposition. The corrosion behavior of bare and surface modified SS 304 in molten carbonate under cathode gas atmosphere was investigated with cyclic voltammetry, open circuit potential studies, Tafel polarization, impedance analysis and atomic absorption spectroscopy. This study confirms that the presence of surface modification leads to the formation of complex scales with better barrier properties and electronic conductivity.

  4. Criticality Analysis for Proposed Maximum Fuel Loading in a Standardized SNF Canister with Type 1a Baskets

    SciTech Connect (OSTI)

    Chad Pope; Larry L. Taylor; Soon Sam Kim

    2007-02-01T23:59:59.000Z

    This document represents a summary version of the criticality analysis done to support loading SNF in a Type 1a basket/standard canister combination. Specifically, this engineering design file (EDF) captures the information pertinent to the intact condition of four fuel types with different fissile loads and their calculated reactivities. These fuels are then degraded into various configurations inside a canister without the presence of significant moderation. The important aspect of this study is the portrayal of the fuel degradation and its effect on the reactivity of a single canister given the supposition there will be continued moderation exclusion from the canister. Subsequent analyses also investigate the most reactive ‘dry’ canister in a nine canister array inside a hypothetical transport cask, both dry and partial to complete flooding inside the transport cask. The analyses also includes a comparison of the most reactive configuration to other benchmarked fuels using a software package called TSUNAMI, which is part of the SCALE 5.0 suite of software.

  5. A Micro-Computer-Based Fuel Optimization System Utilizing In-Situ Measurement of Carbon Monoxide 

    E-Print Network [OSTI]

    DeVivo, D. G.

    1980-01-01T23:59:59.000Z

    efficiency, safety and cost-effectiveness. With this control approach, the existing analog boiler controls remain intact and continue to function. No costly retrofit of computer compatible controllers and actuators is required and full analog backup.... The control output to the boiler control interface, such as a pUlse-to pneumatic converter linked to an air bias station that adjusts the air:fuel ratio, is calculated based on the time domain response of the boiler. The control algorithm recognizes...

  6. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    SciTech Connect (OSTI)

    Steven Markovich

    2010-06-30T23:59:59.000Z

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  7. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

    2002-09-01T23:59:59.000Z

    This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode and the complete fuel cell. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. This approach can be used to model porous electrodes as it represents the real system much better than the conventional agglomerate model. Using the homogeneous model the polarization characteristics of the MCFC cathode and fuel cell were studied under different operating conditions. Both the cathode and the full cell model give good fits to the experimental data.

  8. EFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA Jianbang Liu1,2

    E-Print Network [OSTI]

    ABSTRACT Rise and delay times of mixtures of methane, propane, n-butane, iso-butane and iso- octane mixed performance of various fuels including methane, propane, iso-butane, n-butane and iso-octane mixed with air with air ignited by transient plasma discharge were investigated and compared with spark discharge ignition

  9. Table 16. U.S. No. 2 Diesel Fuel Prices by Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 71.1 77.5 78.8 79.6 75.7 66.7 a Includes low-sulfur diesel fuel only. b All end-user sales not included in the other end-user categories shown,...

  10. Solar fuels : integration of molecular catalysts with p-type semiconductor photocathode

    E-Print Network [OSTI]

    Kumar, Bhupendra

    2012-01-01T23:59:59.000Z

    of p-type Silicon in acetonitrile with tetraethyl ammoniumCO 2 saturated solution of acetonitrile and kinetic limitedRe-catalyst in 0.1 M TBAH in acetonitrile at different scan

  11. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    SciTech Connect (OSTI)

    J.G. Groppo; T.L. Robl

    2005-09-30T23:59:59.000Z

    Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a marketable lightweight aggregate and recover a high-grade fuel product. Spiral concentration provided acceptable grade lightweight aggregate with yields of only 10 to 20%. Incorporating a sieve bend into the process to recover coarse, porous ash particles from the outside race of the spirals increased aggregate yield to as high as 75%, however, the carbon content of the aggregate also increased. An opening size of 28 mesh on the sieve bend appeared to be sufficient. Lightweight concrete blocks (28 to 32 lbs) were produced from bottom ash and results show that acceptable strength could be attained with a cement/concrete ratio as low as 1/4. A mobile Proof-of-Concept (POC) field unit was designed and fabricated to meet the processing objectives of the project. The POC plant consisted of two trailer-mounted modules and was completely self sufficient with respect to power and water requirements. The POC unit was hauled to Coleman Station and operated at a feed rate of 2 tph. Results showed that the spirals operated similarly to previous pilot-scale operations and a 500 lb composite sample of coarse carbon was collected with a grade of 51.7% C or 7279 Btu/lb. Flotation results compared favorably with release analysis and 500 lbs of composite froth product was collected with a grade of 35% C or 4925 Btu/lb. The froth product was dewatered to 39% moisture with vacuum filtration. Pan pelletization and briquetting were evaluated as a means of minimizing handling concerns. Rotary pan pelletization produced uniform pellets with a compressive strength of 4 lbf without the use of any binder. Briquettes were produced by blending the coarse and fine carbon products at a ratio of 1:10, which is the proportion that the two products would be produced in a commercial operation. Using 3% lime as a binder produced the most desirable briquettes with respect to strength, attrition and drop testing. Additionally, the POC carbon products compared favorably with commercial activated carbon when used for removal of mercury from simulated flue gas. A business model was generated to summarize anti

  12. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13T23:59:59.000Z

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  13. Novel Dual-Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fuel Power Plants

    SciTech Connect (OSTI)

    C. Brinker; George Xomeritakis; C.-Y. Tsai; Ying-Bing Jiang

    2009-04-30T23:59:59.000Z

    CO{sub 2} captured from coal-fired power plants represents three-quarters of the total cost of an entire carbon sequestration process. Conventional amine absorption or cryogenic separation requires high capital investment and is very energy intensive. Our novel membrane process is energy efficient with great potential for economical CO{sub 2} capture. Three classes of microporous sol-gel derived silica-based membranes were developed for selective CO{sub 2} removal under simulated flue gas conditions (SFG), e.g. feed of 10% vol. CO{sub 22} in N{sub 2}, 1 atm total pressure, T = 50-60 C, RH>50%, SO2>10 ppm. A novel class of amine-functional microporous silica membranes was prepared using an amine-derivatized alkoxysilane precursor, exhibiting enhanced (>70) CO{sub 2}:N{sub 2} selectivity in the presence of H{sub 2}O vapor, but its CO{sub 2} permeance was lagging (<1 MPU). Pure siliceous membranes showed higher CO{sub 2} permeance (1.5-2 MPU) but subsequent densification occurred under prolonged SFG conditions. We incorporated NiO in the microporous network up to a loading of Ni:Si = 0.2 to retard densification and achieved CO2 permeance of 0.5 MPU and CO{sub 2}:N{sub 2} selectivity of 50 after 163 h exposure to SFG conditions. However, CO{sub 2} permeance should reach greater than 2.0 MPU in order to achieve the cost of electricity (COE) goal set by DOE. We introduced the atomic layer deposition (ALD), a molecular deposition technique that substantially reduces membrane thickness with intent to improve permeance and selectivity. The deposition technique also allows the incorporation of Ni or Ag cations by proper selection of metallorganic precursors. In addition, preliminary economic analysis provides a sensitivity study on the performance and cost of the proposed membranes for CO{sub 2} capture. Significant progress has been made toward the practical applications for CO{sub 2} capture. (1 MPU = 1.0 cm{sup 3}(STP){center_dot}cm-2{center_dot}min-1{center_dot}atm-1)

  14. Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHallNotSeventy yearsCoordination

  15. Rock Physics of Geologic Carbon Sequestration/Storage Type of Report: Final Scientific/Technical

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Foundenhancer activity than FINAL Report/ProductProtein

  16. Flashback Characteristics of Syngas-Type Fuels Under Steady and Pulsating Conditions

    SciTech Connect (OSTI)

    Tim Lieuwen

    2007-09-30T23:59:59.000Z

    The objective of this project was to improve understanding and modeling of flashback, a significant issue in low emissions combustors containing high levels of hydrogen. Experimental studies were performed over a range of fuel compositions, flow velocities, reactant temperatures, and combustor pressures to study the factors leading to flashback. In addition, high speed imaging of the flashback phenomenon was obtained. One of the key conclusions of this study was that there existed multiple mechanisms which lead to flashback, each with different underlying parametric dependencies. Specifically, two mechanisms of 'flashback' were noted: rapid flashback into the premixer, presumably through the boundary layer, and movement of the static flame position upstream along the centerbody. The former and latter mechanisms were observed at high and low hydrogen concentrations. In the latter mechanism, flame temperature ratio, not flame speed, appeared to be the key parameter describing flashback tendencies. We suggested that this was due to an alteration of the vortex breakdown location by the adverse pressure gradient upstream of the flame, similar to the mechanism proposed by Sattelmayer and co-workers [1]. As such, a key conclusion here was that classical flashback scalings derived from, e.g., Bunsen flames, were not relevant for some parameter regimes found in swirling flames. In addition, it was found that in certain situations, pure H2 flames could not be stabilized, i.e., the flame would either flashback or blowout at ignition. This result could have significant implications on the development of future high hydrogen turbine systems.

  17. Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air-Cathode Catalyst in Microbial Fuel Cells

    E-Print Network [OSTI]

    Use of Pyrolyzed Iron Ethylenediaminetetraacetic Acid Modified Activated Carbon as Air of Environment, Tsinghua University, Beijing 100084, P. R. China Department of Civil and Environmental States *S Supporting Information ABSTRACT: Activated carbon (AC) is a cost-effective catalyst

  18. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance

    E-Print Network [OSTI]

    Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction 16802, United States *S Supporting Information ABSTRACT: Commercially available activated carbon (AC) powders made from different precursor materials (coal, peat, coconut shell, hardwood, and phenolic resin

  19. Particles of spilled oil-absorbing carbon in contact with water

    DOE Patents [OSTI]

    Muradov, Nazim (Melbourne, FL)

    2011-03-29T23:59:59.000Z

    Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.

  20. OPTIMIZATION OF THE CATHODE LONG TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Anand Durairajan; Bala Haran; Branko N. Popov; Ralph E. White

    2000-05-01T23:59:59.000Z

    The cathode materials for molten carbonate fuel cells (MCFCs) must have low dissolution rate, high structural strength and good electrical conductivity. Currently available cathodes are made of lithiated NiO which have acceptable structural strength and conductivity. However a study carried out by Orfeld et al. and Shores et al. indicated that the nickel cathodes dissolved, then precipitated and reformed as dendrites across the electrolyte matrix. This results in a decrease in cell utilization and eventually leads to shorting of the cell. The solubility of NiO was found to depend upon the acidity/basicity of the melt (basicity is directly proportional to log P{sub CO2}), carbonate composition, H{sub 2}O partial pressure and temperature. Urushibata et al. found that the dissolution of the cathode is a primary life limiting constraint of MCFCs, particularly in pressurized operation. With currently available NiO cathodes, the goal of 40,000 hours for the lifetime of MCFC appears achievable with cell operation at atmospheric pressure. However, the cell life at 10 atm and higher cell pressures is in the range between 5,000 to 10,000 hours. The overall objective of this research is to develop a superior cathode for MCFC's with improved catalytic ability, enhanced corrosion resistance with low ohmic losses, improved electronic conductivity. We also plan to understand the corrosion processes occurring at the cathode/molten carbonate interface. The following cathode materials will be subjected to detailed electrochemical, performance, structural and corrosion studies. (i) Passivated NiO alloys using chemical treatment with yttrium ion implantation and anodic yttrium molybdate treatment; (ii) Novel composite materials based on NiO and nanosized Ce, Yt, Mo; (iii) Co doped LiNiO{sub 2} LiNiO{sub 2} doped with 10 to 20% Co (LiCo{sub 0.2}NiO{sub 2}) and NiO cathodes; and (iv) CoO as a replacement for NiO. Passivation treatments will inhibit corrosion and increase the stability of the cathode at high temperatures. Deposition of refractory metals (Mo, W, Li{sub 2}NiCrO{sub 4}) will impart stability to the cathode at high temperatures. Further it will also increase the electrocatalytic activity and corrosion resistance of the cathode. Doping with Co will decrease the alloy dissolution and increase the cycle life of the cathode. In the reporting period the oxidation behavior of Ni and Co in Li + Na carbonate eutectic was investigated under oxidizing environment using cyclic voltammetry, electrochemical impedance spectroscopy and potentiodynamic technique. The open circuit potential was monitored as a function of time in order to evaluate the material's reactivity in the melt.

  1. House Committee on Natural Resources The Future of Fossil Fuels: Geological and Terrestrial Sequestration of Carbon Dioxide

    E-Print Network [OSTI]

    and Terrestrial Sequestration of Carbon Dioxide Howard Herzog Principal Research Engineer Massachusetts Institute to the Technical Group of the Carbon Sequestration Leadership Forum (see www.cslforum.org). Just two weeks ago, thank you for the opportunity to appear before you today to discuss Carbon Dioxide (CO2) geological

  2. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31T23:59:59.000Z

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  3. The use of U/sub 3/Si/sub 2/ dispersed in aluminum in plate-type fuel elements for research and test reactors

    SciTech Connect (OSTI)

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01T23:59:59.000Z

    A high-density fuel based on U/sub 3/Si/sub 2/ dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U/sub 3/Si/sub 2/ fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U/sub 3/Si/sub 2/ particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U/sub 3/Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U/sub 3/Si/sub 2/-aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m/sup 3/ is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs.

  4. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    hen it comes to energy security and climate change concerns,petroleum—usually for energy security reasons but also tomore concerned with energy security than with cli- mate

  5. Motivating carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motivating carbon dioxide Motivating carbon dioxide Released: April 17, 2013 Scientists show what it takes to get the potential fuel feedstock to a reactive spot on a model...

  6. The p-Process in the Carbon Deflagration Model for Type Ia Supernovae and Chronology of the Solar System Formation

    SciTech Connect (OSTI)

    Kusakabe, Motohiko [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Iwamoto, Nobuyuki [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nomoto, Ken'ichi [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2006-07-12T23:59:59.000Z

    We study nucleosynthesis of p-nuclei in the carbon deflagration model for Type Ia supernovae (SNe Ia) by assuming that seed nuclei are produced by the s-process in accreting layers on a carbon-oxygen white dwarf during mass accretion from a binary companion. We find that about 50 % of the p-nuclides are synthesized in proportion to the solar abundance and that p-isotopes of Mo and Ru which are significantly underproduced in Type II supernovae (SNe II) are produced up to a level close to other p-nuclei. Comparing the yields of iron and p-nuclei in SNe Ia we find that SNe Ia can contribute to the galactic evolution of the p-nuclei. Next, we consider nucleochronology of the solar system formation by using four radioactive nuclides and apply the result of the p-process nucleosynthesis to simple galactic chemical evolution models. We find that when assumed three phases of interstellar medium are mixed by the interdiffusion with the timescale of about 40 Myr 53Mn/55Mn value in the early solar system is consistent with a meteoritic value. In addition, we put constraints to a scenario that SNe Ia induce the core collapse of the molecular cloud, which leads to the formation of the solar system.

  7. Design and development of a DC-DC converter for a fuel cell inverter system 

    E-Print Network [OSTI]

    Gopinath, Rajesh

    2001-01-01T23:59:59.000Z

    Carbonate Fuel Cell (MCFC) c) Solid Oxide Fuel Cell (SOFC) d) Proton Exchange Membrane Fuel Cell (PEMFC) Table I: Types of Fuel Cells and Comparison PAFC ELECTROLYTE Phosphoric Acid MCFC Molten Carbonate Salt SOFC Ceramic PEMFC Polymer OPERATING.../Air 40-50% COi/0, /Air 50-60% 0, /Air 45-55% Oi/Air 40-50% Fuel cells are typically grouped mto three sections as shown m Figure 1: 1. Fuel Processor HRAV~O &Aim IO tl 'c operate at higher temperatures (up to 1000'C for solid oxide fuel...

  8. Implementing Performance-Based Sustainability Requirements for the Low Carbon Fuel Standard – Key Design Elements and Policy Considerations

    E-Print Network [OSTI]

    Yeh, Sonia; Sumner, Daniel A.; Kaffka, Stephen R.; Ogden, J; Jenkins, Bryan M.

    2009-01-01T23:59:59.000Z

    W. Wilhelm. 2008. Sustainable Biofuels Redux. Science 322 (Dileep K. Birur. 2008. Biofuels for all? Understanding theof carbon labels for biofuels in the UK. London, UK: Home

  9. Hydrocarbon reforming for hydrogen fuel cells: a study of carbon formation on autothermal reforming catalysts. Final report

    SciTech Connect (OSTI)

    McCarty, J.G.; Sheridan, D.M.; Wise, H.; Wood, B.J.

    1981-12-01T23:59:59.000Z

    The mechanism of carbon formation on nickel autothermal steam reforming catalysts has been studied by temperature-programming, thermogravimetric and electron microscopic techniques. Temperature-programmed surface reaction (TPSR) studies of carbon deposited on nickel reforming catalysts by the decomposition of C/sub 2/H/sub 4/ and C/sub 2/H/sub 2/ exhibit seven forms of carbon that are distinguished by their characteristic reactivity with H/sub 2/ and 3.0-vol % H/sub 2/O/He. The relative population of the different carbon states depends primarily on the temperature during deposition. C/sub 2/H/sub 2/ exposure populates the same carbon states as C/sub 2/H/sub 4/ exposure but at approximately 100/sup 0/K lower deposition temperature. Similar carbon states were found on all nickel catalysts studies including Ni/..gamma..-Al/sub 2/O/sub 3/ and Ni/MgO-Al/sub 2/O/sub 3/ leading to the conclusion that the support has little effect on carbon deposit formation and reactivity. The reactivity of the carbon states is not altered by exposure to steam in C/sub 2/H/sub 4/-H/sub 2/O mixtures, but the amount of carbon deposited decreases to zero as H/sub 2/O/C increases past a critical ratio.

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Labeling Requirement Biodiesel fuel retailers may not advertise or offer for sale fuel labeled as pure biodiesel unless the fuel contains no other type of petroleum product, is...

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

  12. National Fuel Cell Research Center

    E-Print Network [OSTI]

    Mease, Kenneth D.

    the optimal conditions to operate a molten carbonate fuel cell, can be used to garner fundamental insightNational Fuel Cell Research Center www.nfcrc.uci.edu MOLTEN CARBONATE FUEL CELLS STEADY STATE MODELING OF MOLTEN CARBONATE FUEL CELLS FOR SYSTEM PERFORMANCE ANALYSES OVERVIEW Development of steady

  13. Catalytic autothermal reforming increases fuel cell flexibility

    SciTech Connect (OSTI)

    Flytzani-Stephanopoulos, M.; Voecks, G.E.

    1981-12-01T23:59:59.000Z

    Experimental results are presented for the autothermal reforming (ATR) of n-hexane, n-tetradecane, benzene and benzene solutions of naphthalene. The tests were run at atmospheric pressure and at moderately high reactant preheat temperatures in the 800-900 K range. Carbon formation lines were determined for paraffinic and aromatic liquids. Profiles were determined for axial bed temperature and composition. Space velocity efforts were assessed, and the locations and types of carbon were recorded. Significant reactive differences between hydrocarbons were identified. Carbon formation characteristics were hydrocarbon specific. The differing behavior of paraffinic and aromatic fuels with respect to their carbon formation may be important in explaining the narrow range of carbon-free operating conditions found in the ATR of number two fuel oil.

  14. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Toolsearch keywordsclear search showFUELS

  15. Method of fabricating electrode catalyst layers with directionally oriented carbon support for proton exchange membrane fuel cell

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL)

    2012-03-20T23:59:59.000Z

    A membrane electrode assembly (MEA) of the invention comprises an anode and a cathode and a proton conductive membrane therebetween, the anode and the cathode each comprising a patterned sheet of longitudinally aligned transition metal-containing carbon nanotubes, wherein the carbon nanotubes are in contact with and are aligned generally perpendicular to the membrane, wherein a catalytically active transition metal is incorporated throughout the nanotubes.

  16. Effect of in-pile degradation of the meat thermal conductivity on the maximum temperature of the plate-type U-Mo dispersion fuels

    SciTech Connect (OSTI)

    Pavel G. Medvedev

    2009-11-01T23:59:59.000Z

    Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20oC temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermal conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.

  17. Filamentous carbon particles for cleaning oil spills and method of production

    DOE Patents [OSTI]

    Muradov, Nazim

    2010-04-06T23:59:59.000Z

    A compact hydrogen generator is coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. The hydrogen generator can be conveniently integrated with high temperature fuel cells to produce an efficient and self-contained source of electrical power.

  18. Carbon monoxide sensor and method of use thereof

    DOE Patents [OSTI]

    McDaniel; Anthony H. (Livermore, CA), Medlin; J. Will (Boulder, CO), Bastasz; Robert J. (Livermore, CA)

    2007-09-04T23:59:59.000Z

    Carbon monoxide sensors suitable for use in hydrogen feed streams and methods of use thereof are disclosed. The sensors are palladium metal/insulator/semiconductor (Pd-MIS) sensors which may possess a gate metal layer having uniform, Type 1, or non-uniform, Type 2, film morphology. Type 1 sensors display an increased sensor response in the presence of carbon monoxide while Type 2 sensors display a decreased response to carbon monoxide. The methods and sensors disclosed herein are particularly suitable for use in proton exchange membrane fuel cells (PEMFCs).

  19. MEMBERS ONLY | Join | Renew | Shop | About | Contact Us | Home ASME.ORG > News & Public Policy > Press Releases > Research Begun on New Fuel Cell Type

    E-Print Network [OSTI]

    SEARCH ASME: MEMBERS ONLY | Join | Renew | Shop | About | Contact Us | Home ASME.ORG > News Type NEW YORK, June 25, 2004 - In the June 2004 issue of Mechanical Engineering, a publication of ASME the potential to generate 2.3 megawatts of electricity, or enough energy to power 1,500 homes. One of the fuel

  20. Development of a coal-fueled Internal Manifold Heat Exchanger (IMHEX{reg_sign}) molten carbonate fuel cell. Volumes 1--6, Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The design of a CGMCFC electric generation plant that will provide a cost of eletricity (COE) which is lower than that of current electric generation technologies and which is competitive with other long-range electric generating systems is presented. This effort is based upon the Internal Manifold Heat Exchanger (IMHEX) technology as developed by the Institute of Gas Technology (IGT). The project was executed by selecting economic and performance objectives for alternative plant arrangements while considering process constraints identified during IMHEX fuel cell development activities at ICT. The four major subsystems of a coal-based MCFC power plant are coal gasification, gas purification, fuel cell power generation and the bottoming cycle. The design and method of operation of each subsystem can be varied, and, depending upon design choices, can have major impact on both the design of other subsystems and the resulting cost of electricity. The challenge of this project was to select, from a range of design parameters, those operating conditions that result in a preferred plant design. Computer modelling was thus used to perform sensitivity analyses of as many system variables as program resources and schedules would permit. In any systems analysis, it is imperative that the evaluation methodology be verifiable and comparable. The TAG Class I develops comparable (if imprecise) data on performance and costs for the alternative cases being studied. It identifies, from a range of options, those which merit more exacting scrutiny to be undertaken at the second level, TAG class II analysis.

  1. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOE Patents [OSTI]

    Muradov, Nazim Z. (Melbourne, FL)

    2011-08-23T23:59:59.000Z

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  2. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    E-Print Network [OSTI]

    Hsiao, E Y; Contreras, C; Höflich, P; Sand, D; Marion, G H; Phillips, M M; Stritzinger, M; González-Gaitán, S; Mason, R E; Folatelli, G; Parent, E; Gall, C; Amanullah, R; Anupama, G C; Arcavi, I; Banerjee, D P K; Beletsky, Y; Blanc, G A; Bloom, J S; Brown, P J; Campillay, A; Cao, Y; De Cia, A; Diamond, T; Freedman, W L; Gonzalez, C; Goobar, A; Holmbo, S; Howell, D A; Johansson, J; Kasliwal, M M; Kirshner, R P; Krisciunas, K; Kulkarni, S R; Maguire, K; Milne, P A; Morrell, N; Nugent, P E; Ofek, E O; Osip, D; Palunas, P; Perley, D A; Persson, S E; Piro, A L; Rabus, M; Roth, M; Schiefelbein, J M; Srivastav, S; Sullivan, M; Suntzeff, N B; Surace, J; Wo?nia, P R; Yaron, O

    2015-01-01T23:59:59.000Z

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I {\\lambda}1.0693 {\\mu}m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely-cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with {\\Delta}m15(B) = 1.79 $\\pm$ 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categ...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Reduction Requirements Recognizing the impact of carbon-emitting fuels on climate change and to foster economic growth in the state by spurring technological innovation,...

  4. Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metalorganic framework (Fe-BTT) discovered via high-throughput methods

    E-Print Network [OSTI]

    Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal­organic framework/or volumetric capacities that approach the U.S. Department of Energy targets2 for mobile hydrogen storage storage capacity of 1.1 wt% and 8.4 g LÀ1 at 100 bar and 298 K. Powder neutron diffraction experiments

  5. Top-down estimate of a large source of atmospheric carbon monoxide associated with fuel combustion in Asia

    E-Print Network [OSTI]

    Palmer, Paul

    categories used to represent biomass-burning sources in North America/Europe, Asia, Africa, Latin America-fuel and- biofuel combustion sources in North America, Europe, Asia (including Indonesia and the Middle

  6. Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes

    SciTech Connect (OSTI)

    Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

    1982-01-01T23:59:59.000Z

    This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

  7. Fuel Cell Handbook, Fifth Edition

    SciTech Connect (OSTI)

    Energy and Environmental Solutions

    2000-10-31T23:59:59.000Z

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  8. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  9. Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2013-05-06T23:59:59.000Z

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  10. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  11. Implementing Performance-Based Sustainability Requirements for the Low Carbon Fuel Standard – Key Design Elements and Policy Considerations

    E-Print Network [OSTI]

    Yeh, Sonia; Sumner, Daniel A.; Kaffka, Stephen R.; Ogden, J; Jenkins, Bryan M.

    2009-01-01T23:59:59.000Z

    qualification of “renewable biomass” by limiting the type ofparty. Defines “renewable biomass” to exclude biofuels notEISA definition of renewable biomass. ” Further, the RFS2

  12. Fuel Cell Handbook, Fourth Edition

    SciTech Connect (OSTI)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01T23:59:59.000Z

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  13. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Plevin, RJ; Hochman, G; Zilberman, DD

    2015-01-01T23:59:59.000Z

    carbon policies on the renewable fuels standard: economicreport: 2009 update. REN21 Renewable Energy Policy Networktransportation fuels: Comparing renewable fuel mandates and

  14. Method of fabricating electrode catalyst layers with directionally oriented carbon support for proton exchange membrane fuel cell

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Willow brook, IL)

    2010-07-20T23:59:59.000Z

    A method of making a membrane electrode assembly (MEA) having an anode and a cathode and a proton conductive membrane there between. A bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated in the nanotubes forms at least one portion of the MEA and is in contact with the membrane. A combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into a first reaction zone maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is transmitted to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes. The nanotubes are in contact with a portion of the MEA at production or being positioned in contact thereafter. Methods of forming a PEMFC are also disclosed.

  15. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Dr. Ralph E. White

    2001-03-31T23:59:59.000Z

    SS 304 was encapsulated with thin layers of Co-Ni by an electroless deposition process. The corrosion behavior of SS304 and Co-Ni-SS304 was investigated in molten carbonate under cathode gas atmosphere with electrochemical and surface characterization tools. Surface modification of SS304 reduced the dissolution of chromium and nickel into the molten carbonate melt. Composition of the corrosion scale formed in case of Co-Ni-SS304 is different from SS304 and shows the presence of Co and Ni oxides while the latter shows the presence of lithium ferrite. Polarization resistance for oxygen reduction reaction and conductivity of corrosion values for the corrosion scales were obtained using impedance analysis and current-potential plots. The results indicated lower polarization resistance for oxygen reduction reaction in the case of Co-Ni-SS304 when compared to SS304. Also, the conductivity of the corrosion scales was considerably higher in case of Co-Ni-SS304 than the SS304. This study shows that modifying the current collector surface with Co-Ni coatings leads to the formation of oxide scales with improved barrier properties and electronic conductivity.

  16. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18T23:59:59.000Z

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

  17. Development and validation of capabilities to measure thermal properties of layered monolithic U-Mo alloy plate-type fuel

    SciTech Connect (OSTI)

    Burkes, Douglas; Casella, Andrew M.; Buck, Edgar C.; Casella, Amanda J.; Edwards, Matthew K.; MacFarlan, Paul J.; Pool, Karl N.; Smith, Frances N.; Steen, Franciska H.

    2014-07-19T23:59:59.000Z

    The uranium-molybdenum (U-Mo) alloy in a monolithic form has been proposed as one fuel design capable of converting some of the world’s highest power research reactors from the use of high enriched uranium (HEU) to low enriched uranium (LEU). One aspect of the fuel development and qualification process is to demonstrate appropriate understanding of thermal conductivity behavior of the fuel system as a function of temperature and expected irradiation conditions. The purpose of this paper is to verify and validate the functionality of equipment methods installed in hot cells for eventual measurements on irradiated uranium-molybdenum (U-Mo) monolithic fuel specimens, procedures to operate the equipment, and models to extract the desired thermal properties. The results presented here demonstrate the adequacy of the equipment, procedures and models that have been developed for this purpose based on measurements conducted on surrogate depleted uranium-molybdenum (DU-Mo) alloy samples containing a zirconium diffusion barrier and clad in aluminum alloy 6061 (AA6061). The results are in excellent agreement with thermal property data reported in the literature for similar U-Mo alloys as a function of temperature.

  18. Purification and Processing of Graphitic Carbons

    E-Print Network [OSTI]

    Worsley, Kimberly Anne

    2010-01-01T23:59:59.000Z

    Oxidation of Petroleum Asphaltenes. Liq. Fuels Tech. 1985,fibers, 2, petroleum asphaltenes, 4 carbon xerogels, 5

  19. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    en.wikipedia.org/wiki/Carbon_capture_and_storage 5. Johnsonrole of bio-energy with carbon capture and storage (BECCS).liquids (CTL) plants with carbon capture and sequestration.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversion Registration When a motor vehicle is modified to use a different fuel type or more than one type of fuel, the vehicle's registered owner must notify the county treasurer...

  1. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    SciTech Connect (OSTI)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland

    2013-04-01T23:59:59.000Z

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  2. Fuel cell systems for personal and portable power applications

    SciTech Connect (OSTI)

    Fateen, S. A. (Shaheerah A.)

    2001-01-01T23:59:59.000Z

    Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

  3. Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO 2

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    dioxide emissions from fossil fuel consumption and cementannual variations in fossil fuel emissions, J. Geophys.2008 Contribution of ocean, fossil fuel, land biosphere, and

  4. Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase

    E-Print Network [OSTI]

    Carbon Sequestration to Mitigate Climate Change Human activities, especially the burning of fossil-caused CO2 emissions and to remove CO2 from the atmosphere. 2.0 What is carbon sequestration? The term "carbon sequestration" is used to describe both natural and deliberate CARBON,INGIGATONSPERYEAR 1.5 Fossil

  5. Development of a New Flame Speed Vessel to Measure the Effect of Steam Dilution on Laminar Flame Speeds of Syngas Fuel Blends at Elevated Pressures and Temperatures

    E-Print Network [OSTI]

    Krejci, Michael

    2012-07-16T23:59:59.000Z

    Synthetic gas, syngas, is a popular alternative fuel for the gas turbine industry, but the composition of syngas can contain different types and amounts of contaminants, such as carbon dioxide, methane, moisture, and nitrogen, depending...

  6. Biodiesel Fuel

    E-Print Network [OSTI]

    unknown authors

    publication 442-880 There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel. ASTM standard for biodiesel (ASTM D6751) Biodiesel fuel, hereafter referred to as simply biodiesel,

  7. Hydrogen sulfide and carbon dioxide removal from dry fuel gas streams using an ionic liquid as a physical solvent

    SciTech Connect (OSTI)

    Yannick J. Heintz; Laurent Sehabiague; Badie I. Morsi; Kenneth L. Jones; David R. Luebke; Henry W. Pennline [United States Department of Energy (U.S. DOE), Pittsburgh, PA (United States). National Energy Technology Laboratory

    2009-09-15T23:59:59.000Z

    The mole fraction solubilities (x{asterisk}) and volumetric liquid-side mass-transfer coefficients (kLa) for H{sub 2}S and CO{sub 2} in the ionic liquid, TEGO IL K5, (a quaternary ammonium polyether) were measured under different pressures (up to 30 bar) and temperatures (up to 500 K) in a 4 L ZipperClave agitated reactor. CO{sub 2} and N{sub 2}, as single gases, and a H{sub 2}S/N{sub 2} gaseous mixture were used in the experiments. The solubilities of H{sub 2}S and CO{sub 2} were found to increase with pressure and decrease with temperature within the experimental conditions used. The H{sub 2}S solubilities in the ionic liquid (IL) were greater than those of CO{sub 2} within the temperature range investigated (300-500 K) up to a H{sub 2}S partial pressure of 2.33 bar. Hence, the IL can be effectively used to capture both H{sub 2}S and CO{sub 2} from dry fuel gas stream within the temperature range from 300 to 500 K under a total pressure up to 30 bar. The presence of H{sub 2}S in the H{sub 2}S/N{sub 2} mixture created mass-transfer resistance, which decreased k{sub L}{alpha} values for N{sub 2}. The k{sub L}{alpha} and x{asterisk} values of CO{sub 2} were found to be greater than those of N{sub 2} in the IL, which highlight the stronger selectivity of this physical solvent toward CO{sub 2} than toward N{sub 2}. In addition, within the temperature range from 300 to 500 K, the solubility and k{sub L}{alpha} of H{sub 2}S in the IL were greater than those of CO{sub 2}, suggesting that not only can H{sub 2}S be more easily captured from dry fuel gas streams but also a shorter absorber can be employed for H{sub 2}S capture than that for CO{sub 2}. 56 refs., 8 figs., 4 tabs.

  8. Development of an Innovative High-Thermal Conductivity UO2 Ceramic Composites Fuel Pellets with Carbon Nano-Tubes Using Spark Plasma Sintering

    SciTech Connect (OSTI)

    Subhash, Ghatu; Wu, Kuang-Hsi; Tulenko, James

    2014-03-10T23:59:59.000Z

    Uranium dioxide (UO2) is the most common fuel material in commercial nuclear power reactors. Despite its numerous advantages such as high melting point, good high-temperature stability, good chemical compatibility with cladding and coolant, and resistance to radiation, it suffers from low thermal conductivity that can result in large temperature gradients within the UO2 fuel pellet, causing it to crack and release fission gases. Thermal swelling of the pellets also limits the lifetime of UO2 fuel in the reactor. To mitigate these problems, we propose to develop novel UO2 fuel with uniformly distributed carbon nanotubes (CNTs) that can provide high-conductivity thermal pathways and can eliminate fuel cracking and fission gas release due to high temperatures. CNTs have been investigated extensively for the past decade to explore their unique physical properties and many potential applications. CNTs have high thermal conductivity (6600 W/mK for an individual single- walled CNT and >3000 W/mK for an individual multi-walled CNT) and high temperature stability up to 2800°C in vacuum and about 750°C in air. These properties make them attractive candidates in preparing nano-composites with new functional properties. The objective of the proposed research is to develop high thermal conductivity of UO2–CNT composites without affecting the neutronic property of UO2 significantly. The concept of this goal is to utilize a rapid sintering method (5–15 min) called spark plasma sintering (SPS) in which a mixture of CNTs and UO2 powder are used to make composites with different volume fractions of CNTs. Incorporation of these nanoscale materials plays a fundamentally critical role in controlling the performance and stability of UO2 fuel. We will use a novel in situ growth process to grow CNTs on UO2 particles for rapid sintering and develop UO2-CNT composites. This method is expected to provide a uniform distribution of CNTs at various volume fractions so that a high thermally conductive UO2-CNT composite is obtained with a minimal volume fraction of CNTs. The mixtures are sintered in the SPS facility at a range of temperatures, pressures, and time durations so as to identify the optimal processing conditions to obtain the desired microstructure of sintered UO2-CNT pellets. The second objective of the proposed work is to identify the optimal volume fraction of CNTs in the microstructure of the composites that provides the desired high thermal conductivity yet retaining the mechanical strength required for efficient function as a reactor fuel. We will systematically study the resulting microstructure (grain size, porosity, distribution of CNTs, etc.) obtained at various SPS processing conditions using optical microscopy, scanning electron microscopy (SEM), and transmission electron microscope (TEM). We will conduct indentation hardness measurements and uniaxial strength measurements as a function of volume fraction of CNTs to determine the mechanical strength and compare them to the properties of UO2. The fracture surfaces will be studied to determine the fracture characteristics that may relate to the observed cracking during service. Finally, we will perform thermal conductivity measurements on all the composites up to 1000° C. This study will relate the microstructure, mechanical properties, and thermal properties at various volume fractions of CNTs. The overall intent is to identify optimal processing conditions that will provide a well-consolidated compact with optimal microstructure and thermo-mechanical properties. The deliverables include: (1) fully characterized UO2-CNT composite with optimal CNT volume fraction and high thermal conductivity and (2) processing conditions for production of UO2-CNT composite pellets using SPS method.

  9. Cumulative Carbon and Just Allocation of the Global Carbon Commons

    E-Print Network [OSTI]

    Pierrehumbert, Raymond

    Cumulative Carbon and Just Allocation of the Global Carbon Commons R.T. Pierrehumbert1 on climate can be characterized by a single statistic, called Cumulative Carbon. This is the aggregate amount of carbon emitted in the form of carbon dioxide by activities such as fossil fuel burning and deforestation

  10. atmospheric carbon emissions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxide (N2O) 13 Paris-Sud XI, Universit de 13 Atmospheric Lifetime of Fossil Fuel Carbon Dioxide Geosciences Websites Summary: Atmospheric Lifetime of Fossil Fuel Carbon...

  11. Carbon Fiber Pilot Plant and Research Facilities

    Broader source: Energy.gov (indexed) [DOE]

    for the U.S. Department of Energy Presentationname Carbon Fiber Facilities Materials Carbon Fiber Research Facility Type Production Fiber Types Tow Size Tensioning Line...

  12. Fuel rail

    SciTech Connect (OSTI)

    Haigh, M.; Herbert, J.D.; O'Leary, J.J.

    1988-09-20T23:59:59.000Z

    This patent describes a fuel rail for a V-configuration automotive type internal combustion engine having a throttle body superimposed over an intake manifold. The throttle body has an air plenum above an induction channel aligned with a throttle bore passage in the manifold for flow or air to the engine cylinders. The rail includes a spacer body mounted sealingly between the throttle body and the manifold of the engine and having air induction passages therethrough to connect the throttle body channels and the manifold, the spacer body having at least on longitudinal bore defining a fuel passage extending through the spacer body, and a fuel injector receiving cups projecting from and communicating with the fuel passage. The spacer body consists of a number of separated spacer members, and rail member means through which the fuel passage runs joining the spacer members together.

  13. Fuel cell apparatus and method thereof

    DOE Patents [OSTI]

    Cooper, John F.; Krueger, Roger; Cherepy, Nerine

    2004-11-09T23:59:59.000Z

    Highly efficient carbon fuels, exemplary embodiments of a high temperature, molten electrolyte electrochemical cell are capable of directly converting ash-free carbon fuel to electrical energy. Ash-free, turbostratic carbon particles perform at high efficiencies in certain direct carbon conversion cells.

  14. Preparation of highly loaded Pt/carbon xerogel catalysts for Proton Exchange Membrane fuel cells by the Strong Electrostatic Adsorption method

    E-Print Network [OSTI]

    Regalbuto, John R.

    and composition, such as carbon xerogels and aerogels, constitute an interesting alternative to carbon blacks [4, the samples were filtered, dried and reduced. In order to increase the Pt weight percentage, up to three

  15. Nearby Supernova Factory Observations of SN 2006D: On Sporadic Carbon Signatures in Early Type Ia Supernova Spectra

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    with low volume-?lling factor. Subject headings: supernovae:general — supernovae: individual (SN 2006D)Introduction Type Ia supernovae (SNe Ia) make valuable

  16. Liquid fuel reformer development: Autothermal reforming of Diesel fuel

    SciTech Connect (OSTI)

    Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

    2000-07-24T23:59:59.000Z

    Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

  17. Direct hydrocarbon fuel cells

    DOE Patents [OSTI]

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04T23:59:59.000Z

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  18. Miniature ceramic fuel cell

    DOE Patents [OSTI]

    Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

    1997-06-24T23:59:59.000Z

    A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

  19. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    Riley, W.J.

    2008-01-01T23:59:59.000Z

    of radiocarbon and fossil fuel-derived CO2 in surface air2004), Estimates of annual fossil-fuel CO 2 emitted for eachindependent budgeting of fossil fuel CO2 over Europe by (

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    a motor vehicle fuel. LNG is defined as pipeline-quality natural gas treated to remove water, hydrogen sulfide, carbon dioxide, and other components that will freeze and condense...

  1. The Australian terrestrial carbon budget

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    emissions from fossil-fuel com- bustion, Biogeosciences, 9,re- gional and national fossil-fuel CO 2 emissions, Carbontimes more carbon in fossil fuels than it emitted by burning

  2. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06T23:59:59.000Z

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  3. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  4. Prospects for Enhancing Carbon Sequestration and Reclamation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prospects for Enhancing Carbon Sequestration and Reclamation of Degraded Lands with Fossil-fuel Combustion By-products. Prospects for Enhancing Carbon Sequestration and Reclamation...

  5. Putting the pressure on carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on carbon dioxide Released: March 26, 2014 Improving the chances for fuel recovery and carbon sequestration Artwork from this research graces the cover of Environmental Science...

  6. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  7. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01T23:59:59.000Z

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  8. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    and potential solutions to reduce energy-related CO 2 emissions: energy conservation; improving energy efficiency; carbon capture and sequestration (CCS)

  9. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01T23:59:59.000Z

    of Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuelof Biodiesel Chemistry, Carbon Footprint and Regional Fuel

  10. Real-World Carbon Dioxide Impacts of Traffic Congestion

    E-Print Network [OSTI]

    Barth, Matthew; Boriboonsomsin, Kanok

    2010-01-01T23:59:59.000Z

    biodiesel) and synthetic fuels (coupled with carbon capture and storage). Center for Environmental Research and Technology,

  11. FUEL CELL TECHNOLOGIES PROGRAM Technologies

    E-Print Network [OSTI]

    resources including fossil fuels, such as coal (preferentially with carbon sequestration), natural gas, solar, geothermal, nuclear, coal with carbon sequestration, and natural gas. This diversity of sources gas with carbon sequestration are preferred. Gasification Gasification is a process in which coal

  12. UNDP-Low Carbon Portal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpType B:7-15:WebJump to: navigation,Carbon

  13. New Magellanic Cloud R Coronae Borealis and DY Per type stars from the EROS-2 database: the connection between RCBs, DYPers and ordinary carbon stars

    E-Print Network [OSTI]

    Tisserand, P; Marquette, J B; Afonso, C; Albert, J N; Andersen, J; Ansari, R; Aubourg, E; Bareyre, P; Beaulieu, J P; Charlot, X; Coutures, C; Ferlet, R; Fouqué, P; Glicenstein, J F; Goldman, B; Gould, A; Gros, M; De Kat, J; Lesquoy, E; Loup, C; Magneville, C; Maurice, E; Maury, A; Milsztajn, A; Moniez, M; Palanque-Delabrouille, Nathalie; Perdereau, O; Rich, J; Schwemling, P; Spiro, M; Vidal-Madjar, A

    2009-01-01T23:59:59.000Z

    R Coronae Borealis stars (RCB) are a rare type of evolved carbon-rich supergiant stars that are increasingly thought to result from the merger of two white dwarfs, called the Double degenerate scenario. This scenario is also studied as a source, at higher mass, of type Ia Supernovae (SnIa) explosions. Therefore a better understanding of RCBs composition would help to constrain simulations of such events. We searched for and studied RCB stars in the EROS Magellanic Clouds database. We also extended our research to DY Per type stars (DYPers) that are expected to be cooler RCBs (T~3500 K) and much more numerous than their hotter counterparts. The light curves of ~70 millions stars have been analysed to search for the main signature of RCBs and DYPers: a large drop in luminosity. Follow-up optical spectroscopy was used to confirm each photometric candidate found. We have discovered and confirmed 6 new Magellanic Cloud RCB stars and 7 new DYPers, but also listed new candidates: 3 RCBs and 14 DYPers. We estimated a...

  14. Award Types

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust AugustInstruments on theAward Types Types of

  15. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, James L. (Scottsdale, AZ)

    1987-07-07T23:59:59.000Z

    A continuous thermochemical indirect liquefaction process to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C.sub.7 -C.sub.17 paraffinic hydrocarbons having cetane indices of 50+.

  16. Process of producing liquid hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Kuester, J.L.

    1987-07-07T23:59:59.000Z

    A continuous thermochemical indirect liquefaction process is described to convert various biomass materials into diesel-type transportation fuels which fuels are compatible with current engine designs and distribution systems comprising feeding said biomass into a circulating solid fluidized bed gasification system to produce a synthesis gas containing olefins, hydrogen and carbon monoxide and thereafter introducing the synthesis gas into a catalytic liquefaction system to convert the synthesis gas into liquid hydrocarbon fuel consisting essentially of C[sub 7]-C[sub 17] paraffinic hydrocarbons having cetane indices of 50+. 1 fig.

  17. China's Energy and Carbon Emissions Outlook to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2011-01-01T23:59:59.000Z

    AIS Figure 64 Electricity Generation by Fuel, CIS and AISlow-carbon electricity generation through fuel switching and55 Figure 64 Electricity Generation by Fuel, CIS and AIS

  18. A Carbon-Supported Copper Complex of 3,5-Diamino-1,2,4-triazole as a Cathode Catalyst for Alkaline Fuel Cell Applications

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    Fuel Cell Applications Fikile R. Brushett, Matthew S. Thorum, Nicholas S. Lioutas, Matthew S. Naughton-tri/C) is investigated as a cathode material using an alkaline microfluidic H2/O2 fuel cell. The absolute Cu be realized by optimizing catalyst and electrode preparation procedures. Fuel cell-based systems hold promise

  19. High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells

    E-Print Network [OSTI]

    Zhao, Tianshou

    -oxidation in anion-exchange membrane direct ethanol fuel cells Shuiyun Shen, T. S. Zhao,* Jianbo Xu and Yinshi Li-exchange membrane direct ethanol fuel cells (AEM DEFCs). We demonstrate that the use of the ternary PdIrNi catalyst for the ethanol oxidation reaction (EOR) in anion-exchange membrane direct ethanol fuel cells (AEM DEFCs) offers

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and must include space for the following fuel types: gasoline, diesel, propane, electricity, natural gas, methanolM85, ethanolE85, biodiesel, and other. For more...

  1. Unconventional fuel: Tire derived fuel

    SciTech Connect (OSTI)

    Hope, M.W. [Waste Recovery, Inc., Portland, OR (United States)

    1995-09-01T23:59:59.000Z

    Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

  2. Subtask 2.6 - Assessment of Alternative Fuels on CO2 Production

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Darren Naasz

    2009-06-16T23:59:59.000Z

    Many coal-based electric generating units use alternative fuels, and this effort assessed the impact of alternative fuels on CO{sub 2} production and other emissions and also assessed the potential impact of changes in emission regulations under the Clean Air Act (CAA) for facilities utilizing alternative fuels that may be categorized as wastes. Information was assembled from publicly available U.S. Department of Energy Energy Information Administration databases that included alternative fuel use for 2004 and 2005. Alternative fuel types were categorized along with information on usage by coal-based electric, number of facilities utilizing each fuel type, and the heating value of solid, liquid, and gaseous alternative fuels. The sulfur dioxide, nitrogen oxide, and carbon dioxide emissions associated with alternative fuels and primary fuels were also evaluated. Carbon dioxide emissions are also associated with the transport of all fuels. A calculation of carbon dioxide emissions associated with the transport of biomass-based fuels that are typically accessed on a regional basis was made. A review of CAA emission regulations for coal-based electric generating facilities from Section 112 (1) and Section 129 (2) for solid waste incinerators was performed with consideration for a potential regulatory change from Section 112 (1) regulation to Section 129 (2). Increased emission controls would be expected to be required if coal-based electric generating facilities using alternative fuels would be recategorized under CAA Section 129 (2) for solid waste incinerators, and if this change were made, it is anticipated that coal-fired electric generating facilities might reduce the use of alternative fuels. Conclusions included information on the use profile for alternative fuels and the impacts to emissions as well as the impact of potential application of emission regulations for solid waste incinerators to electric generating facilities using alternative fuels.

  3. Organic fuel cells and fuel cell conducting sheets

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

    2007-10-16T23:59:59.000Z

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  4. CORROSION-RESISTANT COATING FOR CARBONATE

    E-Print Network [OSTI]

    CORROSION-RESISTANT COATING FOR CARBONATE FUEL CELL COMPONENTS Prepared For: California Energy ANALYSIS REPORT (FAR) CORROSION RESISTANT COATING FOR CARBONATE FUEL CELL COMPONENTS EISG AWARDEE Chemat://www.energy.ca.gov/research/index.html. #12;Page 1 Corrosion Resistant Coating for Carbonate Fuel Cell Components EISG Grant # 00-05 Awardee

  5. A Study of Fast Reactor Fuel Transmutation in a Candidate Dispersion Fuel Design

    SciTech Connect (OSTI)

    Mark DeHart; Hongbin Zhang; Eric Shaber; Matthew Jesse

    2010-11-01T23:59:59.000Z

    Dispersion fuels represent a significant departure from typical ceramic fuels to address swelling and radiation damage in high burnup fuel. Such fuels use a manufacturing process in which fuel particles are encapsulated within a non-fuel matrix. Dispersion fuels have been studied since 1997 as part of an international effort to develop and test very high density fuel types for the Reduced Enrichment for Research and Test Reactors (RERTR) program.[1] The Idaho National Laboratory is performing research in the development of an innovative dispersion fuel concept that will meet the challenges of transuranic (TRU) transmutation by providing an integral fission gas plenum within the fuel itself, to eliminate the swelling that accompanies the irradiation of TRU. In this process, a metal TRU vector produced in a separations process is atomized into solid microspheres. The dispersion fuel process overcoats the microspheres with a mixture of resin and hollow carbon microspheres to create a TRUC. The foam may then be heated and mixed with a metal power (e.g., Zr, Ti, or Si) and resin to form a matrix metal carbide, that may be compacted and extruded into fuel elements. In this paper, we perform reactor physics calculations for a core loaded with the conceptual fuel design. We will assume a “typical” TRU vector and a reference matrix density. We will employ a fuel and core design based on the Advanced Burner Test Reactor (ABTR) design.[2] Using the CSAS6 and TRITON modules of the SCALE system [3] for preliminary scoping studies, we will demonstrate the feasibility of reactor operations. This paper will describe the results of these analyses.

  6. apex nuclear fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ... Kazimi, Mujid S. 19 Nuclear Waste Imaging and Spent Fuel Verification by...

  7. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01T23:59:59.000Z

    Higman C, Van der Burgt M. Gasification. Gulf Professionalkinetic analysis of coal char gasification reactions at highcoal pyrolysis and char gasification. Energ Fuel. 2007; 21:

  8. Fort Saint Vrain HTGR (Th/U carbide) Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect (OSTI)

    Taylor, Larry Lorin

    2001-01-01T23:59:59.000Z

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into eight characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments and total fuel mass govern the selection of the representative or candidate fuel within that group. For the HTGR group, the Fort Saint Vrain (FSV) reactor fuel has been chosen for the evaluation of viability for waste co-disposal. The FSV reactor was operated by Public Service of Colorado as a licensed power reactor. The FSV fuel employs a U/Th carbide matrix in individually pyrolytic carbon-coated particles. These individual particles are in turn coated with silicon carbide (SiC) and contained within fuel compacts, that are in turn embedded in graphite blocks that comprised the structural core of the reactor.

  9. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  10. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

    1993-06-14T23:59:59.000Z

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  11. Commercialization of fuel-cells

    SciTech Connect (OSTI)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O'Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01T23:59:59.000Z

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  12. Catalytic autothermal reforming increases fuel cell flexibility

    SciTech Connect (OSTI)

    Flytzani-Stephanopoulos, M.; Voecks, G.E.

    1981-12-01T23:59:59.000Z

    To give a better understanding of autothermal reforming (ATR), a process which offers an advantageous alternative to steam reforming for H/sub 2/ production for fuel cells because of the wider range of fuels which can be converted, the conversion of individual fuel components was studied. Attempts have been made to characterize the chemical reactions of light and heavy paraffins and aromatics in ATR. Results of studies to determine the effects of operating parameters on the carbon-forming tendency of each hydrocarbon type are reported. The catalyst used for the ATR process was three-layers of supported nickel catalysts, Norton NC-100 spheres in the top zone, cylindrical G-56B tablets in the bottom one, and either ICI 46-I or ICI 46-4 Raschig rings in the middle zone. A summary of the experimental studies of the ATR of n-hexane, n-tetradecane, benzene, and benzene solutions of naphthalene is presented. (BLM)

  13. Minimally refined biomass fuel

    DOE Patents [OSTI]

    Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

    1984-01-01T23:59:59.000Z

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  14. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen is increasingly becoming a fuel for clean, reliable power and is helping reduce the nation's overall carbon footprint. In fact, U.S. shipments of fuel cells'...

  15. CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite

    E-Print Network [OSTI]

    Rollins, Andrew M.

    materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

  16. Changing fuel specifications

    SciTech Connect (OSTI)

    Hatt, R.

    1995-08-01T23:59:59.000Z

    This paper will describe the goals, methods, and results of a program designed to expand fuel specifications. The ability to expand fuel specs can provide many advantages to a power company. These would include increased fuel flexibility, better performance and lower fuel cost. The expansion of transportation modes also may enhance the scenario. Although brief, this paper should provide a good understanding of the types of problems that can be encountered, and the cooperative effort necessary to resolve them.

  17. European Fuel Cells R&D Review. Final report, Purchase Order No. 062014

    SciTech Connect (OSTI)

    Michael, P.D.; Maguire, J. [Energy Technology Support Unit, Harwell (United Kingdom)

    1994-09-01T23:59:59.000Z

    Aim of the Review is to present a statement on the status of fuel cell development in Europe, addressing the research, development and demonstration (RD&D) and commercialization activities being undertaken, identifying key European organizations active in development and commercialization of fuel cells and detailing their future plans. This document describes the RD&D activities in Europe on alkaline, phosphoric acid, polymer electrolyte, direct methanol, solid oxide, and molten carbonate fuel cell types. It describes the European Commission`s activities, its role in the European development of fuel cells, and its interaction with the national programs. It then presents a country-by-country breakdown. For each country, an overview is given, presented by fuel cell type. Scandinavian countries are covered in less detail. American organizations active in Europe, either in supplying fuel cell components, or in collaboration, are identified. Applications include transportation and cogeneration.

  18. Climate policy and dependence on traded carbon

    E-Print Network [OSTI]

    Andrew, Robbie M; Davis, Steven J; Peters, Glen P

    2013-01-01T23:59:59.000Z

    imported products or fossil fuels are more exposed to energytrade in carbon (as fossil fuels and also embodied inWithin this, trade in fossil fuels was larger (10.8 GtCO 2

  19. 1986 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    none,

    1986-10-01T23:59:59.000Z

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  20. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well...

  1. Fuel injector system

    DOE Patents [OSTI]

    Hsu, Bertrand D. (Erie, PA); Leonard, Gary L. (Schenctady, NY)

    1988-01-01T23:59:59.000Z

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  2. Future climate trends from a first-difference atmospheric carbon dioxide regression model involving emissions scenarios for business as usual and for peak fossil fuel

    E-Print Network [OSTI]

    Leggett, L M W

    2014-01-01T23:59:59.000Z

    This paper investigates the implications of the future continuation of the demonstrated past (1960-2012) strong correlation between first-difference atmospheric CO2 and global surface temperature. It does this, for the period from the present to 2050, for a comprehensive range of future global fossil fuel energy use scenarios. The results show that even for a business-as-usual (the mid-level IPCC) fossil fuel use estimate, global surface temperature will rise at a slower rate than for the recent period 1960-2000. Concerning peak fossil fuel, for the most common scenario the currently observed (1998-2013)temperature plateau will turn into a decrease. The observed trend to date for temperature is compared with that for global climate disasters: these peaked in 2005 and are notably decreasing. The temperature and disaster results taken together are consistent with either a reduced business-as-usual fossil fuel use scenario into the future, or a peak fossil fuel scenario, but not with the standard business-as-usu...

  3. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08T23:59:59.000Z

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  4. 7, 405428, 2007 SCIAMACHY carbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    with an increasing energy demand and inherent fuel consump- tion such as China. Carbon monoxide (CO) contributesACPD 7, 405­428, 2007 SCIAMACHY carbon monoxide M. Buchwitz et al. Title Page Abstract Introduction Discussions Three years of global carbon monoxide from SCIAMACHY: comparison with MOPITT and first results

  5. Formation of Carbon Dwarfs

    E-Print Network [OSTI]

    Charles L. Steinhardt; Dimitar D. Sasselov

    2012-01-27T23:59:59.000Z

    We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

  6. Carbon abundances of early B-type stars in the solar vicinity. Non-LTE line-formation for C II/III/IV and self-consistent atmospheric parameters

    E-Print Network [OSTI]

    M. F. Nieva; N. Przybilla

    2007-11-23T23:59:59.000Z

    Precise determinations of the chemical composition in early B-type stars consitute fundamental observational constraints on stellar and galactochemical evolution. Carbon is one of the most abundant metals in the Universe but analyses in early-type stars show inconclusive results, like large discrepancies between analyses of different lines in C II, a failure to establish the C II/III ionization balance and the derivation of systematically lower abundances than from other objects. We present a comprehensive and robust C II/III/IV model for non-LTE line-formation calculations based on carefully selected atomic data. The model is calibrated with high-S/N spectra of six apparently slow-rotating early B-type dwarfs and giants, which cover a wide parameter range and are randomly distributed in the solar neighbourhood. A self-consistent quantitative spectrum analysis is performed using an extensive iteration scheme to determine stellar atmospheric parameters and to select the appropriate atomic data used for the derivation of chemical abundances. We establish the carbon ionization balance for all sample stars based on a unique set of input atomic data, achieving consistency for all modelled lines. Highly accurate atmospheric parameters and a homogeneous carbon abundance with reduced systematic errors are derived. This results in a present-day stellar carbon abundance in the solar neighbourhood, which is in good agreement with recent determinations of the solar value and with the gas-phase abundance of the Orion H II region. The homogeneous present-day carbon abundance also conforms with predictions of chemical-evolution models for the Galaxy. The present approach allows us to constrain the effects of systematic errors on fundamental parameters and abundances. (abridged)

  7. Experimental investigation of single carbon compounds under hydrothermal conditions

    E-Print Network [OSTI]

    Rhoads, James

    reactant during the abiotic synthesis of reduced carbon compounds via Fischer­Tropsch-type processes

  8. Global Carbon Emissions in the Coming Decades: The Case of China

    E-Print Network [OSTI]

    Levine, Mark D.

    2008-01-01T23:59:59.000Z

    CO2 IEA estimate LBNL estimate ORNL estimate Sources: IEA, Carbon Emissions from Fossil Fuel Combustion

  9. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad [Argonne National Laboratory (ANL); Rousseau, Mr. Aymeric [Argonne National Laboratory (ANL); Wang, Mr. Michael [Argonne National Laboratory (ANL); Ruth, Mr. Mark [National Renewable Energy Laboratory (NREL); Andress, Mr. David [David Andress & Associates, Inc.; Ward, Jacob [U.S. Department of Energy; Joseck, Fred [U.S. Department of Energy; Nguyen, Tien [U.S. Department of Energy; Das, Sujit [ORNL

    2013-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  10. Seventh Edition Fuel Cell Handbook

    SciTech Connect (OSTI)

    NETL

    2004-11-01T23:59:59.000Z

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  11. Compositions and methods for treating nuclear fuel

    DOE Patents [OSTI]

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13T23:59:59.000Z

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  12. Compositions and methods for treating nuclear fuel

    DOE Patents [OSTI]

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2014-01-28T23:59:59.000Z

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  13. FUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and

    E-Print Network [OSTI]

    . Many odorants can also contaminate fuel cells. Hydrogen burns very quickly. Under optimal combustionFUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and Standards Hydrogen and fuel cell technologies, nuclear, natural gas, and coal with carbon sequestration. Fuel cells provide a highly efficient means

  14. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    SciTech Connect (OSTI)

    Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

    2008-05-01T23:59:59.000Z

    Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were observed. The southward fluxes over the Pacific Ocean were maintained in a relatively coherent flow within the marine boundary layer, while the eastward fluxes were more vertically dispersed. Our results indicate that state and continental scale atmospheric inversions need to consider areas where concentration measurements are sparse (e.g., over the ocean to the south and west of California), transport within and across the marine boundary layer, and terrestrial boundary layer dynamics. Measurements of {Delta}{sub g} can be very useful in constraining these estimates.

  15. Carbon Fiber Technology Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirst Report to the PrimePilot Plant andCarbon

  16. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acids—a fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acids—overriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASU’s approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  17. THE 3R ANTHRACITE CLEAN COAL TECHNOLOGY Economical Conversion of Browncoal to Anthracite Type Clean Coal by Low Temperature Carbonization Pre-Treatment Process

    E-Print Network [OSTI]

    Edward Someus

    The pre ven tive pre-treat ment of low grade solid fu els is safer, faster, better, and less costly vs. the “end-of-the-pipe ” post treat ment so lu tions. The “3R ” (Re cy cle-Re duce-Re use) in te grated en vi ron-ment con trol tech nol ogy pro vides pre ven tive pre-treat ment of low grade solid fu els, such as brown coal and con tam i nated solid fu els to achieve high grade cleansed fu els with an thra cite and coke com-pa ra ble qual ity. The goal of the 3R tech nol ogy is to pro vide cost ef fi cient and en vi ron men tally sus-tain able so lu tions by pre ven tive pre-treat ment means for ex tended op er a tions of the solid fuel com-bus tion power plants with ca pac ity up to 300 MWe power ca pac i ties. The 3R An thra cite Clean Coal end prod uct and tech nol ogy may ad van ta geously be in te grated to the oxyfuel – oxy-fir ing, Fos ter Wheeler an thra cite arc-fired util ity type boiler and Heat Pipe Re former tech nol o gies in com bi na tion with CO2 cap ture and stor age pro grams. The 3R tech nol ogy is pat ented orig i nal so lu tion. Ad van tages. Feedstock flex i bil ity: ap pli ca tion of pre-treated multi fu els from wider fuel se lec tion and avail abil ity. Im proved burn ing ef fi ciency. Tech nol ogy flex i bil ity: ef fi cient and ad van ta geous inter-link to proven boiler tech nol o gies, such as oxyfuel and arc-fired boil ers. Near zero pol lut ants for haz ard ous-air-pol lut ants: pre ven tive sep a ra tion of halo gens and heavy met als into small vol ume streams prior uti li za tion of cleansed fu els. ?97 % or ganic sul phur re moval achieved by the 3R ther-

  18. A Guidebook for Low-Carbon Development at the Local Level

    E-Print Network [OSTI]

    Zhou, Nan

    2012-01-01T23:59:59.000Z

    primarily from energy consumption of fossil fuels, as wellCarbon tax or fossil-fuel energy consumption tax Carbonprimarily from energy consumption of fossil fuels, as well

  19. Microbial fuel cell with improved anode

    DOE Patents [OSTI]

    Borole, Abhijeet P.

    2010-04-13T23:59:59.000Z

    The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.

  20. Technology Commercialization Showcase 2008 Hydrogen, Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    : Multiple fuel feedstocks, usable waste heat, and cheap catalysts · Cons: Slow start-up, poor transient Carbonate Fuel Cell (MCFC) · Pros: Multiple fuel feedstocks and usable waste heat · Cons: Slow start

  1. Neutronic fuel element fabrication

    DOE Patents [OSTI]

    Korton, George (Cincinnati, OH)

    2004-02-24T23:59:59.000Z

    This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

  2. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    on any vehicle type or engine configuration. How the specific fuel and emissions control systems work together determines compliance with EPA emissions standards for a...

  3. Regional patterns of radiocarbon and fossil fuel-derived CO 2 in surface air across North America

    E-Print Network [OSTI]

    Hsueh, Diana Y; Krakauer, Nir Y; Randerson, James T; Xu, Xiaomei; Trumbore, Susan E; Southon, John R

    2007-01-01T23:59:59.000Z

    dioxide emissions from fossil fuel consumption and cementindependent budgeting of fossil fuel CO 2 over Europe by COregional, and national fossil fuel CO 2 emissions, Carbon

  4. Fuel cell electric power production

    SciTech Connect (OSTI)

    Hwang, H.-S.; Heck, R. M.; Yarrington, R. M.

    1985-06-11T23:59:59.000Z

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  5. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

    1985-01-01T23:59:59.000Z

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  6. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  7. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24T23:59:59.000Z

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  8. Thermal breeder fuel enrichment zoning

    DOE Patents [OSTI]

    Capossela, Harry J. (Schenectady, NY); Dwyer, Joseph R. (Albany, NY); Luce, Robert G. (Schenectady, NY); McCoy, Daniel F. (Latham, NY); Merriman, Floyd C. (Rotterdam, NY)

    1992-01-01T23:59:59.000Z

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  9. Arbor Fuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftware and hardware or doAquilaGest oFuel

  10. Review problems on photosynthesis, carbon cycle. Julie Wright, HAS222d/253e 2007 1) Photosynthesis resembles the hydrogen fuel cell we studied in the lab. The following reactions

    E-Print Network [OSTI]

    does hydrogen combustion differ from sugar/alcohol/biofuels combustion ecologically? 2) Why is carbon

  11. Fuel cell arrangement

    DOE Patents [OSTI]

    Isenberg, A.O.

    1987-05-12T23:59:59.000Z

    A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

  12. Lithium in LMC carbon stars

    E-Print Network [OSTI]

    D. Hatzidimitriou; D. H. Morgan; R. D. Cannon; B. F. W. Croke

    2003-04-16T23:59:59.000Z

    Nineteen carbon stars that show lithium enrichment in their atmospheres have been discovered among a sample of 674 carbon stars in the Large Magellanic Cloud. Six of the Li-rich carbon stars are of J-type, i.e. with strong 13C isotopic features. No super-Li-rich carbon stars were found. The incidence of lithium enrichment among carbon stars in the LMC is much rarer than in the Galaxy, and about five times more frequent among J-type than among N-type carbon stars. The bolometric magnitudes of the Li-rich carbon stars range between -3.3 and -5.7. Existing models of Li-enrichment via the hot bottom burning process fail to account for all of the observed properties of the Li-enriched stars studied here.

  13. Sandia National Laboratories: low-carbon energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    low-carbon energy Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network On February 26, 2015, in Center for Infrastructure Research and Innovation (CIRI), Energy,...

  14. ARM - Carbon Dioxide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to heargovInstrumentstdma Comments? WeairgovInstrumentswsiCampaignCarbon

  15. Sandia Energy - Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCapture Home Carbon Capture The

  16. Sandia Energy - Carbon Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's Sequim BayCapture Home Carbon

  17. Carbon Capture FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l a r8.05CarBen Version 3 Prototype:carbon

  18. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C l aNanocomposites, and DevicesCarbonProgram

  19. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMissionMetal-OrganicCarbon Bearing

  20. Transportation Fuel Market Stood at 2,332.57 MTOE in 2013 and...

    Open Energy Info (EERE)

    transportation fuel market has been segmented on the basis of fuel type into gasoline, diesel, aviation turbine fuel, and others. More than 90% of the global transportation fuel...

  1. Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics

    SciTech Connect (OSTI)

    Mueller, C. J.; Cannella, W. J.; Bruno, T. J.; Bunting, B.; Dettman, H. D.; Franz, J. A.; Huber, M. L.; Natarajan, M.; Pitz, W. J.; Ratcliff, M. A.; Wright, K.

    2012-06-21T23:59:59.000Z

    In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur No.2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found.

  2. On carbon footprints and growing energy use

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2012-01-01T23:59:59.000Z

    as overall energy use grows and fossil fuels remain the mainmarketed energy supply comes from carbon-rich fossil fueland fossil fuels as they are used today makes energy

  3. Toward alternative transportation fuels

    SciTech Connect (OSTI)

    Sperling, D. (Univ. of California, Davis (USA))

    1990-01-01T23:59:59.000Z

    At some time in the future the U.S. will make a transition to alternative fuels for transportation. The motivation for this change is the decline in urban air quality and the destruction of the ozone layer. Also, there is a need for energy independence. The lack of consensus on social priorities makes it difficult to compare benefits of different fuels. Fuel suppliers and automobile manufacturers would like to settle on a single alternative fuel. The factors of energy self-sufficiency, economic efficiency, varying anti-pollution needs in different locales, and global warming indicate a need for multiple fuels. It is proposed that instead of a Federal command-and-control type of social regulation for alternative fuels for vehicles, the government should take an incentive-based approach. The main features of this market-oriented proposal would be averaging automobile emission standards, banking automobile emissions reductions, and trading automobile emission rights. Regulation of the fuel industry would allow for variations in the nature and magnitude of the pollution problems in different regions. Different fuels or fuel mixture would need to be supplied for each area. The California Clean Air Resources Board recently adopted a fuel-neutral, market-oriented regulatory program for reducing emissions. This program will show if incentive-based strategies can be extended to the nation as a whole.

  4. ARM - Measurement - Organic Carbon Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowband upwelling irradiance ARMgovMeasurementsOrganic Carbon

  5. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08T23:59:59.000Z

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  6. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  7. EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in...

    Office of Environmental Management (EM)

    2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for...

  8. CARBON DIOXIDE FIXATION.

    SciTech Connect (OSTI)

    FUJITA,E.

    2000-01-12T23:59:59.000Z

    Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

  9. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  10. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1999-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  11. Capacitor with a composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1999-04-27T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  12. Method for fabricating composite carbon foam

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    2001-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  13. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances »Contact-InformationFuels DOE would

  14. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof Energy ForrestalPrinceton PlasmaEnergyFuel Cell

  15. Conversion of raw carbonaceous fuels

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    2007-08-07T23:59:59.000Z

    Three configurations for an electrochemical cell are utilized to generate electric power from the reaction of oxygen or air with porous plates or particulates of carbon, arranged such that waste heat from the electrochemical cells is allowed to flow upwards through a storage chamber or port containing raw carbonaceous fuel. These configurations allow combining the separate processes of devolatilization, pyrolysis and electrochemical conversion of carbon to electric power into a single unit process, fed with raw fuel and exhausting high BTU gases, electric power, and substantially pure CO.sub.2 during operation.

  16. Catalytic membranes for fuel cells

    DOE Patents [OSTI]

    Liu, Di-Jia (Naperville, IL); Yang, Junbing (Bolingbrook, IL); Wang, Xiaoping (Naperville, IL)

    2011-04-19T23:59:59.000Z

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  17. Synthetic carbonaceous fuels and feedstocks

    DOE Patents [OSTI]

    Steinberg, Meyer (Huntington Station, NY)

    1980-01-01T23:59:59.000Z

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  18. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    E-Print Network [OSTI]

    Jansson, Christer G

    2010-01-01T23:59:59.000Z

    carbon dioxide (CO 2 ) from fossil fuels, and hence mitigate climate change, include energy savings, development of renewable biofuels, and carbon capture and storage (

  19. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on...

  20. Carbon Storage Monitoring, Verification and Accounting Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014 Building AmericaEnergy Carbon Fiber Technology Facility