Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Dual Tank Fuel System  

DOE Patents [OSTI]

A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

1999-11-16T23:59:59.000Z

2

Alternative Fuels Data Center: Filling CNG Fuel Tanks  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Filling CNG Fuel Tanks Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Filling CNG Fuel Tanks Unlike liquid fuel, which consistently holds about the same volume of fuel

3

Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Promulgation of Promulgation of Renewable Fuel Storage Tank Regulations to someone by E-mail Share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Facebook Tweet about Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Twitter Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Google Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Delicious Rank Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Digg Find More places to share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on AddThis.com... More in this section... Federal

4

Underground Storage Tanks: New Fuels and Compatibility  

Broader source: Energy.gov [DOE]

Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

5

The Fuel Tank Consider a cylindrical fuel tank of radius r and length L, that is  

E-Print Network [OSTI]

The Fuel Tank Question Consider a cylindrical fuel tank of radius r and length L, that is lying on its side. Suppose that fuel is being pumped into the tank at a rate q. At what rate is the fuel level rising? r L Solution Here is an end view of the tank. The shaded part of the circle is filled with fuel

Feldman, Joel

6

Molecular Fuel Tanks  

Science Journals Connector (OSTI)

...University of Florida. The Energy Efficiency and Renewable Energy (EERE) Web site of the U.S. Department of Energy (DOE) offers...Numbered Hypernotes Alternative fuel technologies. DOE's EERE Web site offers an introduction to alternative fuels. The DOE's...

Michael D. Ward

2003-05-16T23:59:59.000Z

7

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network [OSTI]

s Leaking Underground Fuel Tanks (LUFTs). Submitted to theCalifornias Underground Storage Tank Program. Submitted tos Leaking Underground Fuel Tanks by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

8

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

9

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Onboard Storage Tank Onboard Storage Tank Workshop to someone by E-mail Share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Facebook Tweet about Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Twitter Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Google Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Delicious Rank Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Digg Find More places to share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

10

The Boeing Company Project Fuel Tank Design Project Recap  

E-Print Network [OSTI]

The Boeing Company Project Fuel Tank Design Project Recap The Boeing Company came. Using solid baffles helps to separate the tank into separate and smaller sub tanks which helps to distribute and minimize the force of the slosh on the fuel tank. The problem in using solid baffles

Demirel, Melik C.

11

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Publications » Technology Bulletins Publications » Technology Bulletins Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory to someone by E-mail Share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Facebook Tweet about Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Twitter Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Google Bookmark Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Delicious Rank Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on Digg Find More places to share Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory on AddThis.com... Propane Tank Overfill Safety Advisory

12

Marine engine with water cooled fuel line from remote tank  

SciTech Connect (OSTI)

This patent describes a marine propulsion system. It comprises: a water cooled internal combustion engine, a remote fuel tank, a conduit connected between the fuel tank and the engine, the conduit having a first passage supplying fuel from the tank to the engine, the conduit having a second passage supplying cooling water from the engine towards the tank, the conduit having a third passage returning water from the second passage back to the engine.

Arms, J.F.

1990-07-10T23:59:59.000Z

13

FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS  

E-Print Network [OSTI]

FULL FUEL CYCLE ASSESSMENT TANK TO WHEELS EMISSIONS AND ENERGY CONSUMPTION Prepared For: California to Tank, Criteria Pollutants, Multi-media impacts, EMFAC #12;#12;vii Table of Contents Acknowledgements

14

Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

throughout the United States. There has been some concern over reported cases of fuel tanks on propane vehicles being overfilled, potentially resulting in emissions from pressure...

15

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,  

E-Print Network [OSTI]

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For be divided into two parts: · Well-to-Tank (WTT) Feedstock extraction, transport, storage, processing, distribution, transport, and storage · Tank-to-Wheels (TTW) Refueling, consumption and evaporation The full

16

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Onboard Storage Tank Workshop Onboard Storage Tank Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned about research and development (R&D) needs; regulations, codes and standards (RCS); and a path forward to enable the successful deployment of hydrogen storage tanks in early market fuel cell applications. The workshop also included initial follow up to the DOE and Department of Transportation (DOT) International Workshop on Compressed Natural Gas and Hydrogen Fuels held on December 10-11, 2009. Here you will find information about Workshop proceedings including all presentations. Agenda and Notes The following agenda and notes provide summary information about the workshop.

17

Underground Storage Tanks: New Fuels and Compatibility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

high octane fuels being considered as possible path forward Storing high octane ethanol blended fuels will require careful consideration of material compatibility issues...

18

EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge  

Broader source: Energy.gov (indexed) [DOE]

44: Melton Valley Storage Tanks Capacity Increase Project- Oak 44: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge, Tennessee, for liquid low-level radioactive waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 25, 1995 EA-1044: Finding of No Significant Impact Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee May 25, 1995 EA-1044: Final Environmental Assessment

19

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels  

SciTech Connect (OSTI)

Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

Gardiner, D.; Bardon, M.; Pucher, G.

2008-10-01T23:59:59.000Z

20

U.S. Fuel Ethanol Plant Production Capacity  

Gasoline and Diesel Fuel Update (EIA)

U.S. Fuel Ethanol Plant Production Capacity U.S. Fuel Ethanol Plant Production Capacity Release Date: May 20, 2013 | Next Release Date: May 2014 Previous Issues Year: 2013 2012 2011 Go Notice: Changes to Petroleum Supply Survey Forms for 2013 This is the third release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January 1, 2013. U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District Number of Plants 2013 Nameplate Capacity 2012 Nameplate Capacity (MMgal/year) (mb/d) (MMgal/year) (mb/d) PADD 1 4 360 23 316 21

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents [OSTI]

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

22

ME 4171 Environmentally Conscious Design & Manufacturing (Bras) Assignment Aircraft Fuel Tank Production Pollution Prevention  

E-Print Network [OSTI]

ME 4171 ­ Environmentally Conscious Design & Manufacturing (Bras) Assignment ­ Aircraft Fuel Tank Production Pollution Prevention A local company manufactures a wide variety of fabric fuel tanks for use mainly in the aircraft industry. The main reasons for using fabric in the construction of these tanks

23

Temperature Stratification in a Cryogenic Fuel Tank Matthew J. Daigle1  

E-Print Network [OSTI]

Temperature Stratification in a Cryogenic Fuel Tank Matthew J. Daigle1 and Vadim N. Smelyanskiy2 temperature stratification effects driven by natural convec- tion in a liquid hydrogen cryogenic fuel tank has liquid and ullage spaces. Temperature and ve- locity boundary layers at the tank walls are taken

Daigle, Matthew

24

Dynamic modeling and simulation of hydrogen supply capacity from a metal hydride tank  

Science Journals Connector (OSTI)

Abstract The current study presents a modeling of a LaNi5 metal hydride-based hydrogen storage tank to simulate and control the dynamic processes of hydrogen discharge from a metal hydride tank in various operating conditions. The metal hydride takes a partial volume in the tank and, therefore, hydrogen discharge through the exit of the tank was driven by two factors; one factor is compressibility of pressurized gaseous hydrogen in the tank, i.e. the pressure difference between the interior and the exit of the tank makes hydrogen released. The other factor is desorption of hydrogen from the metal hydride, which is subsequently released through the tank exit. The duration of a supposed full load supply is evaluated, which depends on the initial tank pressure, the circulation water temperature, and the metal hydride volume fraction in the tank. In the high pressure regime, the duration of full load supply is increased with increasing circulation water temperature while, in the low pressure regime where the initial amount of hydrogen absorbed in the metal hydride varies sensitively with the metal hydride temperature, the duration of full load supply is increased and then decreased with increasing circulation water temperature. PID control logic was implemented in the hydrogen supply system to simulate a representative scenario of hydrogen consumption demand for a fuel cell system. The demanded hydrogen consumption rate was controlled adequately by manipulating the discharge valve of the tank at a circulation water temperature not less than a certain limit, which is increased with an increase in the tank exit pressure.

Ju-Hyeong Cho; Sang-Seok Yu; Man-Young Kim; Sang-Gyu Kang; Young-Duk Lee; Kook-Young Ahn; Hyun-Jin Ji

2013-01-01T23:59:59.000Z

25

Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage  

E-Print Network [OSTI]

Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage "TriShield" tank technology (see Fig. 1) meets the percent weight, energy density, and specific energy reductions are possible with further optimization. Fig. 1 TriShieldTM Type IV Tank The 5,000 and 10,000 psi

26

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for  

E-Print Network [OSTI]

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

Berning, Torsten

27

Space Math http://spacemath.gsfc.nasa.gov A Simple Gauge in a Fuel Tank -I 37  

E-Print Network [OSTI]

Space Math http://spacemath.gsfc.nasa.gov A Simple Gauge in a Fuel Tank - I 37 This is a photo of the Space Shuttle main fuel tank just after being jettisoned at an altitude of 50 miles. The liquid hydrogen. Problem 1 ­ To two significant figures, what is the volume of the fuel tank in: A) Cubic meters? B) Cubic

Christian, Eric

28

E-Print Network 3.0 - amazon state fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

August 2005 Fuel Tank Capacity and Gas Pump Accuracy By Juana Williams Often when fuel prices rise... to the accuracy of gasoline pumps (retail motor-fuel dispensers)....

29

World nuclear capacity and fuel cycle requirements, November 1993  

SciTech Connect (OSTI)

This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

Not Available

1993-11-30T23:59:59.000Z

30

Design, fabrication and testing of a liquid hydrogen fuel tank for a long duration aircraft  

Science Journals Connector (OSTI)

Liquid hydrogen has distinct advantages as an aircraft fuel. These include a specific heat of combustion 2.8 times greater than gasoline or jet fuel and zero carbon emissions. It can be utilized by fuel cells turbine engines and internal combustion engines. The high heat of combustion is particularly important in the design of long endurance aircraft with liquid hydrogen enabling cruise endurance of several days. However the mass advantage of the liquid hydrogen fuel will result in a mass advantage for the fuel system only if the liquid hydrogen tank and insulation mass is a small fraction of the hydrogen mass. The challenge is producing a tank that meets the mass requirement while insulating the cryogenic liquid hydrogen well enough to prevent excessive heat leak and boil off. In this paper we report on the design fabrication and testing of a liquid hydrogen fuel tank for a prototype high altitude long endurance (HALE) demonstration aircraft. Design options on tank geometry tank wall material and insulation systems are discussed. The final design is an aluminum sphere insulated with spray on foam insulation (SOFI). Several steps and organizations were involved in the tank fabrication and test. The tank was cold shocked helium leak checked and proof pressure tested. The overall thermal performance was verified with a boil off test using liquid hydrogen.

Gary L. Mills; Brian Buchholtz; Al Olsen

2012-01-01T23:59:59.000Z

31

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank  

E-Print Network [OSTI]

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank to wheel" efficiencies would suggest. Hydrogen must be produced, stored, and transported to heat and leaking of hydrogen in the atmosphere. Additionally it takes power to produce hydrogen

Bowen, James D.

32

Catalytic pressurization of liquid hydrogen fuel tanks for unmanned aerial vehicles  

Science Journals Connector (OSTI)

As the use and applications of Unmanned Aerial Vehicles (UAV) expand the need for a lighter weight fuel allowing for longer duration flights has become the primary limiting factor in the advancement of these vehicles. To extend the operational envelope of UAV onboard condensed hydrogen storage for missions exceeding one week is necessary. Currently large spherical liquid hydrogen tanks that are pressurized with external helium tanks or electronic heating elements are utilized for this purpose. However the mass size and power consumption of the fuel storage tank and fuel pressurization system significantly limit the flight envelope of UAV. In an effort to alleviate these issues this paper investigates the technological feasibility of orthohydrogen-parahydrogen catalysis as a method of fuel pressurization. Typical pressurization requirements for takeoff cruise and landing are reviewed. Calculations of the catalyst system mass and response time are presented.

Jacob Leachman; Melissa Jean Street; Teira Graham

2012-01-01T23:59:59.000Z

33

Study on capacity optimization of PEM fuel cell and hydrogen mixing gas-engine compound generator  

Science Journals Connector (OSTI)

Development of a small-scale power source not dependent on commercial power may result in various effects. For example, it may eliminate the need for long distance power-transmission lines, and mean that the amount of green energy development is not restricted to the dynamic characteristics of a commercial power grid. Moreover, the distribution of the independent energy source can be optimized with regionality in mind. This paper examines the independent power supply system relating to hydrogen energy. Generally speaking, the power demand of a house tends to fluctuate considerably over the course of a day. Therefore, when introducing fuel cell cogeneration into an apartment house, etc., low-efficiency operations in a low-load region occur frequently in accordance with load fluctuation. Consequently, the hybrid cogeneration system (HCGS) that uses a solid polymer membrane-type fuel cell (PEM-FC) and a hydrogen mixture gas engine (NEG) together to improve power generation efficiency during partial load of fuel cell cogeneration is proposed. However, since facility costs increase, if the HCGS energy cost is not low compared with the conventional method, it is disadvantageous. Therefore, in this paper, HCGS is introduced into 10 household apartments in Tokyo, and the power generation efficiency, carbon dioxide emissions and optimal capacity of a boiler and heat storage tank are investigated through analysis. Moreover, the system characteristics change significantly based on the capacity of PEM-FC and NEG that compose HCGS. Therefore, in this study, the capacity of PEM-FC and that of NEG are investigated, as well as the power generation efficiency, carbon dioxide emissions and the optimal capacity of a boiler and heat storage tank. Analysis revealed that the annual average power generation efficiency when the capacity of PEM-FC and NEG is 5kW was 27.3%. Meanwhile, the annual average power generation efficiency of HCGS is 1.37 times that of the PEM-FC independent system, and 1.28 times that of the NEG independent system, respectively.

Shinya Obara; Itaru Tanno

2007-01-01T23:59:59.000Z

34

E-Print Network 3.0 - automotive fuel consumption Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 August 2005 Fuel Tank Capacity and Gas Pump...

35

E-Print Network 3.0 - ahwr fuel composition Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 August 2005 Fuel Tank Capacity and Gas Pump...

36

Laser Shearographic Testing of Foam Insulation on Cryogenic Fuel Tanks  

Science Journals Connector (OSTI)

The Centaur is a high-energy rocket used as a second stage to the Atlas launch vehicle. The Centaur is cryogenically fueled, using liquid hydrogen and liquid oxygen, and requires insulation to prevent fuel boi...

Douglas D. Burleigh; James E. Engel

1993-01-01T23:59:59.000Z

37

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

38

Surveillance Guide - ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks  

Broader source: Energy.gov (indexed) [DOE]

UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS 1.0 Objective The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities provide a basis for evaluating the effectiveness of the contractor's program for implementation of appropriate controls and compliance with DOE requirements. 2.0 References 1. DOE O 440.1A, Worker Protection Management For DOE Federal And Contractor Employees [http://www.explorer.doe.gov:1776/cgi-bin/w3vdkhgw?qryBGD07_rSj;doe- 1261] 1. 29CFR1910.1200, Subpart Z, Hazard Communication [Access http://www.osha-slc.gov/OshStd_data/1910_1200.html ] 2. 29CFR1910.106, Subpart H, Flammable And Combustible Liquids [Access at

39

Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle  

Science Journals Connector (OSTI)

Long endurance flight on the order of days is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However no such system of LH2 storage delivery and use is currently available for commercial UAVs. In this paper we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered student designed and constructed Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging pressurizing and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

2014-01-01T23:59:59.000Z

40

Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle  

SciTech Connect (OSTI)

Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

2014-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Regulation of Leaky Underground Fuel Tanks: An Anatomy of Regulatory Failure  

E-Print Network [OSTI]

any leaks. (b) Most storage tank owners have only vagueaddition, regulations for tanks installed prior to Januarypertaining to existing tanks are more appropriately termed

White, Christen Carlson

1995-01-01T23:59:59.000Z

42

Type I Tanks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

I Tanks I Tanks * 12 Type I tanks were built between 1951-53 * 750,000 gallon capacity; 75 feet in diameter by 24 ½ feet high * Partial secondary containment with leak detection * Contain approximately 10 percent of the waste volume * 7 Type I tanks have leaked waste into the tank annulus; the amount of waste stored in these tanks is kept below the known leak sites that have appeared over the decades of

43

Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)  

SciTech Connect (OSTI)

The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume.

Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B. [Oak Ridge National Lab., TN (United States); Griess, J.C. [Griess (J.C.), Knoxville, TN (United States)

1994-12-31T23:59:59.000Z

44

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect (OSTI)

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

45

Microsoft Word - BingQuestionTwoRnwbleFuelCapacity0830.doc  

Gasoline and Diesel Fuel Update (EIA)

Renewable Motor Fuel Production Renewable Motor Fuel Production Capacity Under H.R.4 September 2002 ii Contacts This report was prepared by the Office of Integrated Analysis and Forecasting of the Energy Information Administration. General questions concerning the report may be directed to Mary J. Hutzler (202/586-2222, mhutzler@eia.doe.gov), Director, Office of Integrated Analysis and Forecasting, or James Kendell (202/586-9646, james.kendell@eia.doe.gov), Director, Oil and Gas Division. Specific questions about the report may be directed to the following analysts: Ethanol Capacity Anthony Radich 202/586-0504 anthony.radich@eia.doe.gov Price Impacts Han-Lin Lee 202/586-4247 han-lin.lee@eia.doe.gov 1 Energy Information Administration/Renewable Motor Fuel Production Capacity

46

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

47

Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel  

SciTech Connect (OSTI)

The Energy Independence and Security Act (EISA) of 2007 was enacted by Congress to move the nation toward increased energy independence by increasing the production of renewable fuels to meet its transportation energy needs. The law establishes a new renewable fuel standard (RFS) that requires the nation to use 36 billion gallons annually (2.3 million barrels per day) of renewable fuel in its vehicles by 2022. Ethanol is the most widely used renewable fuel in the US, and its production has grown dramatically over the past decade. According to EISA and RFS, ethanol (produced from corn as well as cellulosic feedstocks) will make up the vast majority of the new renewable fuel requirements. However, ethanol use limited to E10 and E85 (in the case of flex fuel vehicles or FFVs) will not meet this target. Even if all of the E0 gasoline dispensers in the country were converted to E10, such sales would represent only about 15 billion gallons per year. If 15% ethanol, rather than 10% were used, the potential would be up to 22 billion gallons. The vast majority of ethanol used in the United States is blended with gasoline to create E10, that is, gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85, a gasoline blend with as much as 85% ethanol that can only be used in FFVs. Although DOE remains committed to expanding the E85 infrastructure, that market will not be able to absorb projected volumes of ethanol in the near term. Given this reality, DOE and others have begun assessing the viability of using intermediate ethanol blends as one way to transition to higher volumes of ethanol. In October of 2010, the EPA granted a partial waiver to the Clean Air Act allowing the use of fuel that contains up to 15% ethanol for the model year 2007 and newer light-duty motor vehicles. This waiver represents the first of a number of actions that are needed to move toward the commercialization of E15 gasoline blends. On January 2011, this waiver was expanded to include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a relatively short timeframe. Initially, these material studies included test fuels of Fuel C,

Kass, Michael D [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL; Pawel, Steven J [ORNL

2012-07-01T23:59:59.000Z

48

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

SciTech Connect (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

49

A robust approach to battery fuel gauging, part II: Real time capacity estimation  

Science Journals Connector (OSTI)

Abstract In this paper, the second of a series on battery fuel gauging, we present an approach for real time capacity estimation. In part I of this series, we presented a real time parameter estimation approach for various battery equivalent models. The proposed capacity estimation scheme has the following novel features: it employes total least squares (TLS) estimation in order to account for uncertainties in both model and the observations in capacity estimation. The TLS method can adaptively track changes in battery capacity. We propose a second approach to estimate battery capacity by exploiting reststates in the battery. This approach is devised to minimize the effect of hysteresis in capacity estimation. Finally, we propose a novel approach for optimally fusing capacity estimates obtained through different methods. Then, the proposed algorithm was validated using hardware-in-the-loop (HIL) data collected from commercially available Li-ion batteries. The proposed approach performs within 1% or better accuracy in terms of capacity estimation based on both simulated as well as HIL evaluations.

B. Balasingam; G.V. Avvari; B. Pattipati; K.R. Pattipati; Y. Bar-Shalom

2014-01-01T23:59:59.000Z

50

High Pressure Hydrogen Tank Manufacturing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane® bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

51

Considerations for increasing unit 1 spent fuel pool capacity at the Laguna Verde station  

SciTech Connect (OSTI)

To increase the spent fuel storage capacity at the Laguna Verde Station in a safe and economical manner and assure a continuous operation of the first Mexican Nuclear Plant, Comision Federal de Electricidad (CFE), the Nation's Utility, seeked alternatives considering the overall world situation, the safety and licensing aspects, as well as the economics and the extent of the nuclear program of Mexico. This paper describes the alternatives considered, their evaluation and how the decision taken by CFE in this field, provides the Laguna Verde Station with a maximum of 37 years storage capacity plus full core reserve.

Vera, A. (Comision Federal de Electricidad, Veracruz, Ver. (Mexico))

1992-01-01T23:59:59.000Z

52

Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone  

Science Journals Connector (OSTI)

Abstract The small fuel cell is being researched as an alternative power source to the Li-ion battery in mobile phone. In this paper, a direct hydrogen fuel cell system which powers a mobile phone without a supplementary battery is compactly integrated below 25ml volume at the backside of the phone. The system consists of a small (8ml) metal hydride hydrogen storage tank with 4L hydrogen storage or an energy density of ?640Wh/L, a thin air-breathing planar polymer electrolyte membrane fuel cell (PEMFC) stack (13.44cm2נ3mm for a volumetric power density of 335W/L), miniature pressure regulator, and a high efficiency DCDC voltage converting circuitry. The hydrogen storage tank is packed with the AB5 type metal hydride alloy. The eight-cell air-breathing planar stack (8ml) is very thin (3mm) due to a thin flexible printed circuit board current collectors as well as a unique riveting assembly and is capable of a robust performance of 2.68W (200mW/cm2). A miniature pressure regulator is compact with fluidic and electrical connections within 4ml. A miniature DCDC voltage converter operates at an overall efficiency of 90%. Consequently, the estimated energy density of a fully integrated fuel cell system is 205Wh/L (70.5Wh/kg).

Sung Han Kim; Craig M. Miesse; Hee Bum Lee; Ik Whang Chang; Yong Sheen Hwang; Jae Hyuk Jang; Suk Won Cha

2014-01-01T23:59:59.000Z

53

Lifecycle Verification of Polymeric Storage Tank Liners - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Barton Smith (Primary Contact) and Lawrence M. Anovitz Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831 Phone: (865) 574-2196 Email: smithdb@ornl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Start Date: June 2008 Projected End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Continue temperature cycling and permeation * measurements on tank liner polymers, and use permeation data to assess ability of tank liners to retain a steady-state hydrogen discharge rate that does not exceed 110% of the 75 normal cubic centimeters per minute (Ncc)/min permeation requirement of SAE International

54

High-Pressure Hydrogen Tank Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Tank Testing High-Pressure Hydrogen Tank Testing Many types of compressed hydrogen tanks have been certified worldwide and demonstrated in several prototype fuel cell...

55

Durability of Foam Insulation for LH2 Fuel Tanks of Future Subsonic Transports  

Science Journals Connector (OSTI)

The potential short-supply of petroleum-based fuels has led to activities by NASA to establish technical characteristics of air transportation systems that would use hydrogen-fueled aircraft. These activities ...

E. L. Sharpe; R. G. Helenbrook

1979-01-01T23:59:59.000Z

56

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank  

Broader source: Energy.gov [DOE]

Case study covering Compact Membrane Systems, Inc. and its membrane vapor processor that recovers fuel vapors from gasoline refueling.

57

Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030  

SciTech Connect (OSTI)

The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-10T23:59:59.000Z

58

Tank characterization report for single-shell tank 241-BY-104  

SciTech Connect (OSTI)

This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently contains an estimated 1,234 kL of noncomplexed waste. Of this total volume, 568 kL are estimated to be sludge and 666 kL are estimated to be saltcake. The Hanlon values are not used because they are inconsistent with waste surface level measurements, and they will not be updated until the tank level stabilizes and the new surface photos are taken. This report summarizes the collection and analysis of two rotary-mode core samples obtained in October and November 1995 and reported in the Final Report for Tank 241-BY-104, Rotary Mode Cores 116 and 117. Cores 116 and 117 were obtained from risers 5 and IIA, respectively. The sampling event was performed to satisfy the requirements listed in the following documents: Tank Safety Screening Data Quality Objective , Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objective Process, Data Quality Objective to Support Resolution of the Organic Fuel Rich Tank Safety Issue, Test Plan for Samples from Hanford Waste Tanks 241-BY-103, BY-104, BY-105, BY-106, BY-108, BY-110, YY-103, U-105, U-107, U-108, and U-109.

Benar, C.J.

1996-09-26T23:59:59.000Z

59

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank  

Broader source: Energy.gov (indexed) [DOE]

CMS to develop a membrane CMS to develop a membrane vapor processor that recovers fuel vapors from gasoline refueling with 99 percent efficiency. This membrane system enables gasoline stations to surpass environmental regulations while reducing fuel losses. Compact Membrane Systems, Inc. (CMS) was founded in 1993 in Wilmington, DE, with the acquisition of rights to certain DuPont polymer membrane patents. CMS focuses

60

Evaluation on the harm effects of accidental releases from cryo-compressed hydrogen tank for fuel cell cars  

Science Journals Connector (OSTI)

Abstract Cryogenic compressed hydrogen tank may open new possibilities for onboard storage due to its high energy density and acceptable thermal endurance. As promising hydrogen storage for commercial use, its hazards need comprehensive investigation. This paper studies the consequences of accidental hydrogen releases from cryo-compressed storage and evaluates the cold effects, thermal effects, and overpressure and missile effects. Two typical storage conditions for a fuel cell car are considered, including driving condition and quasi-venting condition after a long-term of parking. Results show that flash fire and vapor cloud explosion can be considered as the leading consequences. Without ignition, catastrophic rupture may be more dangerous than leakages but with ignition the results may vary for different release diameters. For leakages, quasi-venting condition may be more dangerous than driving condition. However, for catastrophic rupture, the results may be not uniformed but depend on whether and when the hydrogen is ignited. Moreover, the influences of wind velocity and atmospheric pressure are also investigated.

Zhiyong Li; Xiangmin Pan; Ke Sun; Jianxin Ma

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bonfire Tests of High Pressure Hydrogen Storage Tanks | Department...  

Broader source: Energy.gov (indexed) [DOE]

Bonfire Tests of High Pressure Hydrogen Storage Tanks Bonfire Tests of High Pressure Hydrogen Storage Tanks These slides were presented at the International Hydrogen Fuel and...

62

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities...

63

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities...

64

Tips For Residential Heating Oil Tank Owners  

E-Print Network [OSTI]

· · · · · · · · · · · · · · · · · · · · · · Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat homes. The tanks can either be aboveground tanks, normally located in basements or utility rooms

Maroncelli, Mark

65

DOE Vehicular Tank Workshop Sandia National Laboratories  

E-Print Network [OSTI]

DOE Vehicular Tank Workshop Sandia National Laboratories Livermore, CA April 29, 2010 Thursday the deployment of hydrogen storage tanks in early market fuel cell applications for vehicles Workshop Objectives at the first workshop in more detail, including Type 4 tank and PRD testing, tank service life and tracking

66

Assessment of the fuel magnetisation capacity to improve fuel economy and enhance performance in a four-stroke SI engine  

Science Journals Connector (OSTI)

In this paper, we investigate the effect of fuel magnetisation on the overall performance of a four-stroke Spark Ignition (SI) engine. To achieve this objective, we have designed a set of experiments using the Mitsubishi 1.5 L (4G15) SI engine. Each experiment is performed in two phases: with and without the fuel magnetisation. The collected data was analysed to assess the overall performance of the engine at several operating conditions. Our study shows that fuel magnetiser can enhance the overall performance of a typical SI engine. However, the enhancement greatly depends on the operating condition of the engine. Specifically, the best-observed performance enhancement in the tested engine owing to the usage of the fuel magnetiser was to reduce the Brake Specific Fuel Consumption (BSFC) by 9% increase the Brake Power (BP) by 9% and boost the brake thermal efficiency (?b) from 29% to 31%.

Raed Kafafy; Wajdi Bin Ali; Waleed Faris

2012-01-01T23:59:59.000Z

67

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

providers to install biofuel fueling facilities. Fueling facilities include storage tanks and fuel pumps dedicated to dispensing E85 and biodiesel blends of 20% (B20). TDOT...

68

Disposal of Hanford Site Tank Wastes  

Science Journals Connector (OSTI)

Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at ...

M. J. Kupfer

1994-01-01T23:59:59.000Z

69

DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used with all oil burner installations. The other possible failure mode had been attributed to fuel degradation and this became the main focus of the evaluation. The degradation of fuel usually occurs faster under higher temperature conditions. To preclude this as much as possible controls that provided for a post-purge of combustion airflow after burner shut down were selected. This provided a short period of time where the burner's combustion air blower continues to operate after the flame has gone out. This tends to cool the nozzle and in turn the fuel inside the small flow pathways inside the nozzle components. This study concludes that the use of low capacity nozzles is possible but only when the temperature and thermal mass environment of the combustion chamber result in a relatively ''cool'' condition. This was accomplished in one long-term experiment that essentially operated for a full heating season equivalent with no evidence of nozzle plugging or failure. The nozzle body surface temperature was kept at or below 150 F during the duration of the trial. On the other hand, a second system was studied that ended in a partial nozzle blockage and a system failure. In this ''hot environment'' system the nozzle body temperature reached 210 F. This occurred at close to a full heating season equivalent, yet it still would have resulted in a no-heat complaint by the homeowner.

MCDONALD,R.J.

2007-05-01T23:59:59.000Z

70

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

71

FUEL CARD POLICY Table of Contents  

E-Print Network [OSTI]

" for the purpose of purchasing gasoline, oil, and services for university vehicles. 2. The responsibility change allowed. l. Fuel tank capacity (liters). 4. MEDCO SAL's address: Medco Dora Station, Medmart the cardholder. b. To increase or decrease the monthly gas limits, a written request must be sent to MEDCO

Shihadeh, Alan

72

Organic tanks safety program FY96 waste aging studies  

SciTech Connect (OSTI)

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

1996-10-01T23:59:59.000Z

73

Alternative Fuels Data Center: CNG Vehicle Fueling Animation...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives CNG Vehicle Fueling Animation Text Version This is a text version of...

74

Alternative Fuels Data Center: CNG Vehicle Fueling Animation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives CNG Vehicle Fueling Animation Use this interactive animation to...

75

E-Print Network 3.0 - activity tank waste Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences and Ecology 4 Suffolk County Department of Health Services Summary: -Filled Tanks: Aboveground tanks with a nominal capacity of 1,100 gallons or less (predominantly...

76

E-Print Network 3.0 - anechoic water tank Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1, 2, and 3 including steam drums, water drums, firebox, and exhaust stack. All tanks including... Side of Surface Condenser < Fuel Oil Storage Tanks < Chilled Water...

77

Alternative Fuel and Advanced Technology Commercial Lawn Equipment...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

retailers offer a mower fuel tank exchange program and deliver replacement propane tanks directly to the customer. Local propane fueling stations may also have the ability to...

78

Tank characterization data report: Tank 241-C-112  

SciTech Connect (OSTI)

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-04-01T23:59:59.000Z

79

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuels include liquid non-petroleum based fuel that can be placed in motor vehicle fuel tanks and used to operate on-road vehicles, including all forms of fuel commonly or...

80

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel blends of at least 20% biodiesel fuel or that mix fuel from separate storage tanks and allow the user to select the percentage of renewable fuel. The maximum credit...

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Underground Storage Tank Regulations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

82

Working and Net Available Shell Storage Capacity as of September...  

Gasoline and Diesel Fuel Update (EIA)

capacity and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to...

83

Tank Closure  

Broader source: Energy.gov (indexed) [DOE]

Closure Closure Sherri Ross Waste Removal and Tank Closure Waste Disposition Project Programs Division Savannah River Operations Office Presentation to the DOE HLW Corporate Board 2  Overview and Status of SRS Tank Closure Program  Issues/Challenges  Communications  Schedule Performance  Ceasing Waste Removal  Compliance with SC Water Protection Standards  Questions? Topics 3 Overview of SRS Tank Closure Program  Two Tank Farms - F Area and H Area  Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act  Three agency Federal Facility Agreement (FFA)  DOE, SCDHEC, and EPA  51 Tanks  24 old style tanks (Types I, II and IV)  Do not have full secondary containment  FFA commitments to close by 2022  2 closed in 1997

84

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing  

E-Print Network [OSTI]

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel for integrated module including in-tank regulator · Developed high efficiency H2 fuel storage systems for DOE tank efficiency, the highest weight efficiency ever demonstrated, in partnership with Lawrence

85

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

SciTech Connect (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

86

Tank characterization data report: Tank 241-C-112  

SciTech Connect (OSTI)

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-09-01T23:59:59.000Z

87

Storage Tanks (Arkansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

88

In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant  

E-Print Network [OSTI]

wastewater treatment plant Fei Zhang a , Zheng Ge a , Julien Grimaud b , Jim Hurst b , Zhen He a: Microbial fuel cells Wastewater treatment Organic removal Aeration Activated sludge a b s t r a c of wastewater quality, and other operating conditions. Unlike prior lab stud- ies by others, the results

89

Alternative Fuels Data Center: Blender Pump Dispensers  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

dispensers? Blender pumps are fuel dispensers that draw fuel from two separate storage tanks and can dispense preprogrammed blends of those two fuels. Many conventional stations...

90

Hazards Induced by Breach of Liquid Rocket Fuel Tanks: Conditions and Risks of Cryogenic Liquid Hydrogen-Oxygen Mixture Explosions  

E-Print Network [OSTI]

We analyze the data of purposeful rupture experiments with LOx and LH2 tanks, the Hydrogen-Oxygen Vertical Impact (HOVI) tests that were performed to clarify the ignition mechanisms, the explosive power of cryogenic H2/Ox mixtures under different conditions, and to elucidate the puzzling source of the initial formation of flames near the intertank section during the Challenger disaster. We carry out a physics-based analysis of general explosions scenarios for cryogenic gaseous H2/Ox mixtures and determine their realizability conditions, using the well-established simplified models from the detonation and deflagration theory. We study the features of aerosol H2/Ox mixture combustion and show, in particular, that aerosols intensify the deflagration flames and can induce detonation for any ignition mechanism. We propose a cavitation-induced mechanism of self-ignition of cryogenic H2/Ox mixtures that may be realized when gaseous H2 and Ox flows are mixed with a liquid Ox turbulent stream, as occurred in all HOVI ...

Osipov, Viatcheslav; Hafiychuk, Halyna; Ponizovskaya-Devine, Ekaterina; Smelyanskiy, Vadim; Mathias, Donovan; Lawrence, Scott; Werkheiser, Mary

2010-01-01T23:59:59.000Z

91

Underground Storage Tank Regulations for the Certification of Persons Who  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

92

Underground Storage Tank Management (District of Columbia)  

Broader source: Energy.gov [DOE]

The installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

93

Bonfire Tests of High Pressure Hydrogen Storage Tanks  

Broader source: Energy.gov (indexed) [DOE]

Bonfire Tests of High Pressure Hydrogen Storage Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010Beijing, P.R. China September 27, 2010 Bonfire Tests of High...

94

Technical Assessment of Compressed Hydrogen Storage Tank Systems...  

Broader source: Energy.gov (indexed) [DOE]

metrics include the off-board Well-to-Tank (WTT) energy efficiency and greenhouse gas (GHG) emissions. Cost metrics include the refueling costs and combined fuel system...

95

18 - Tanks  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents various nomographs, which are based on the guidelines presented in American Petroleum Institute (API) Publication No. 2519, and used to estimate the average evaporation loss from internal floating-roof tanks. The loss determined from the charts can be used to evaluate the economies of seal conversion and to reconcile refinery, petrochemical plant, and storage terminal losses. The losses represent average standing losses only and they do not cover losses associated with the movement of product into or out of the tank. The nomographs can estimate evaporation loss for product true vapor pressures (TVP) ranging from 1.5 to 14 psia, the most commonly used seals for average and tight fit conditions, tank diameters ranging from 50-250 ft, welded and bolted designs, and both self-supporting and column-supported fixed roof designs. Typical values of the deck fitting loss factors presented as a function of tank diameters in the API Publication 2519 have been used in the preparation of these nomographs. In addition, for the calculations of the evaporation loss for the bolted deck design, a typical deck seam loss factor value of 0.2 has been assumed.

2005-01-01T23:59:59.000Z

96

Catch tank inhibitor addition 200-East and 200-West Areas  

SciTech Connect (OSTI)

Reported is the study of 11 catch tanks in the 200-East Area and the 7 catch tanks in the 200-West Area listed as active. The location, capacity, material of construction, annual total accumulation, annual rain intrusion, waste transfer rate, and access for chemical injection in these tanks are documented. The present and future utilization and isolation plans for the catch tanks are established.

Palit, A.N.

1996-06-21T23:59:59.000Z

97

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Safety, enforces rules concerning the placement of underground and aboveground storage tanks that contain alternative and renewable fuel. For the purpose of these regulations, an...

98

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

kitchen grease, or biofuel at any one time, excluding biofuel contained in vehicle fuel tanks. Other restrictions apply. For more information, see the Virginia Department of...

99

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

for the Program are met. Funds are also available for replacing on-board natural gas tanks on older school buses and for updating deteriorating natural gas fueling...

100

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

retrofitted with an auxiliary fuel tank to enable the use of biodiesel, waste vegetable oil, or straight vegetable oil. Eligible buses must pass inspection in accordance with the...

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Status Update: Ethanol Blender...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blender pumps are fuel dispensers that draw fuel from two separate bulk storage tanks and can dispense preprogrammed blends of those fuels into vehicles. Many stations...

102

Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Craig M. Jensen (Primary Contact) and Marina Chong University of Hawaii Department of Chemistry Honolulu, HI 96822 Phone: (808) 956-2769 Email: jensen@hawaii.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC36-05GO15063 Project Start Date: April 1, 2005 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives The objective of this project is to develop a new class of reversible materials that have the potential to meet the DOE kinetic and system gravimetric storage capacity targets. During the past year, our investigations have focused on the study of novel, high hydrogen capacity, borohydrides that can

103

Optimizing Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk  

E-Print Network [OSTI]

1 Optimizing Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk M. Rapik Saat hazardous materials transport risk by rail · Tank Car Design Optimization Model Tank car weight and capacity model Metrics to assess tank car performance Illustration of the optimization model

Barkan, Christopher P.L.

104

Feed tank transfer requirements  

SciTech Connect (OSTI)

This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

105

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

106

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Decals An individual may place alternative fuel (defined as liquefied petroleum gas or propane) into the fuel tank of a motor vehicle only if the vehicle has a valid alternative...

107

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel into a motor vehicle. Fuel purchasers must obtain a propane user license before propane is delivered into their storage tanks. (Reference South Dakota Statutes 10-47B-167...

108

FUEL CELLS RALLY  

Science Journals Connector (OSTI)

FUEL CELLS RALLY ... No, this car has composite tanks capable of storing 8 kg of hydrogen. ... It's General Motors' Sequel, a fuel-cell concept car unveiled earlier this month at the North American International Auto Show in Detroit. ...

ALEXANDER H. TULLO

2005-01-31T23:59:59.000Z

109

Optimized LNG Storage Tanks for Fleet-Size Refueling Stations with Local LNG Liquefiers  

Science Journals Connector (OSTI)

The capacity of a liquid natural gas (LNG) storage tank in a LNG fleet-size refueling station is determined in ... . These considerations drive the selection of the LNG storage tank size upwards. On the other han...

J. A. Barclay; A. J. Corless; E. H. Nelson

1998-01-01T23:59:59.000Z

110

Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1  

SciTech Connect (OSTI)

The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

Groth, B.D.

1995-01-11T23:59:59.000Z

111

Hydrogen Tank Testing R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

04.29.2010 | Presented by Joe Wong, P.Eng. 04.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing 1 POWERTECH - Hydrogen & CNG Services  Certification testing of individual high pressure components  Design Verification, Performance, End-of-Life testing of complete fuel systems  Design, construction, and operation of Hydrogen Fill Stations  Safety Studies  Standards Development 2 PRESENTATION  Discuss CNG Field Performance Data  Discuss Safety Testing of Type 4 Tanks  Current work to support Codes & Standards Development 3 Storage Tank Technologies 4 basic types of tank designs  Type 1 - all metal  Type 2 - metal liner with hoop wrapped composite  Type 3 - metal liner with fully wrapped composite  Type 4 - Plastic liner with

112

STATUS OF CHEMICAL CLEANING OF WASTE TANKS AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT - 9114  

SciTech Connect (OSTI)

Chemical Cleaning is currently in progress for Tanks 5 and 6 at the Savannah River Site. The Chemical Cleaning process is being utilized to remove the residual waste heel remaining after completion of Mechanical Sludge Removal. This work is required to prepare the tanks for closure. Tanks 5 and 6 are 1950s vintage carbon steel waste tanks that do not meet current containment standards. These tanks are 22.9 meters (75 feet) in diameter, 7.5 meters (24.5 feet) in height, and have a capacity of 2.84E+6 liters (750,000 gallons). Chemical Cleaning adds 8 wt % oxalic acid to the carbon steel tank to dissolve the remaining sludge heel. The resulting acidic waste solution is transferred to Tank 7 where it is pH adjusted to minimize corrosion of the carbon steel tank. The Chemical Cleaning flowsheet includes multiple strikes of acid in each tank. Acid is delivered by tanker truck and is added to the tanks through a hose assembly connected to a pipe penetration through the tank top. The flowsheet also includes spray washing with acid and water. This paper includes an overview of the configuration required for Chemical Cleaning, the planned flowsheet, and an overview of technical concerns associated with the process. In addition, the current status of the Chemical Cleaning process in Tanks 5 and 6, lessons learned from the execution of the process, and the path forward for completion of cleaning in Tanks 5 and 6 will also be discussed.

Thaxton, D; Geoff Clendenen, G; Willie Gordon, W; Samuel Fink, S; Michael Poirier, M

2008-12-31T23:59:59.000Z

113

Stress evaluation of the primary tank of a double-shell underground storage tank facility  

SciTech Connect (OSTI)

A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-01T23:59:59.000Z

114

AX Tank Farm tank removal study  

SciTech Connect (OSTI)

This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1998-10-14T23:59:59.000Z

115

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

116

HANFORD TANK CLEANUP UPDATE  

SciTech Connect (OSTI)

Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

BERRIOCHOA MV

2011-04-07T23:59:59.000Z

117

Apparatus and method for grounding compressed fuel fueling operator  

DOE Patents [OSTI]

A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

Cohen, Joseph Perry (Bethlehem, PA); Farese, David John (Riegelsville, PA); Xu, Jianguo (Wrightstown, PA)

2002-06-11T23:59:59.000Z

118

Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6  

Science Journals Connector (OSTI)

Abstract Here we present the development of an aluminium alloy based hydrogen storage tank, charged with Ti-doped sodium aluminium hexahydride Na3AlH6. This hydride has a theoretical hydrogen storage capacity of 3mass-% and can be operated at lower pressure compared to sodium alanate NaAlH4. The tank was made of aluminium alloy EN AW 6082 T6. The heat transfer was realised through an oil flow in a bayonet heat exchanger, manufactured by extrusion moulding from aluminium alloy EN AW 6060 T6. Na3AlH6 is prepared from 4mol-% TiCl3 doped sodium aluminium tetrahydride NaAlH4 by addition of two moles of sodium hydride NaH in ball milling process. The hydrogen storage tank was filled with 213g of doped Na3AlH6 in dehydrogenated state. Maximum of 3.6g (1.7mass-% of the hydride mass) of hydrogen was released from the hydride at approximately 450K and the same hydrogen mass was consumed at 2.5MPa hydrogenation pressure. 45 cycle tests (rehydrogenation and dehydrogenation) were carried out without any failure of the tank or its components. Operation of the tank under real conditions indicated the possibility for applications with stationary HT-PEM fuel cell systems.

R. Urbanczyk; K. Peinecke; M. Felderhoff; K. Hauschild; W. Kersten; S. Peil; D. Bathen

2014-01-01T23:59:59.000Z

119

Underground storage tank 291-D1U1: Closure plan  

SciTech Connect (OSTI)

The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

120

Tank characterization report: Tank 241-C-109  

SciTech Connect (OSTI)

Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

Simpson, B.C.; Borshiem, G.L.; Jensen, L.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Department of Energy Onboard Storage Tank Workshop Notes  

Broader source: Energy.gov (indexed) [DOE]

and standards (RCS), and a path forward to enable the deployment of hydrogen storage tanks in early market fuel cell applications. Background The objectives of the Workshop were...

122

E-Print Network 3.0 - assembly tank 241sy101 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pollution Prevention A local company manufactures a wide variety of fabric fuel tanks for use... mainly in the aircraft industry. The main reasons for using fabric in the...

123

Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques  

SciTech Connect (OSTI)

The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

Livingston, R. A. [Materials Science and Engineering Dept., U. of Maryland, College Park, MD (United States); Schweitzer, J. S. [Physics Dept., U. of Connecticut, Storrs (United States); Parsons, A. M. [Goddard Space Flight Center, Greenbelt (United States); Arens, E. E. [John F. Kennedy Space Center, FL (United States)

2014-02-18T23:59:59.000Z

124

Fuel Quality and Metering: Current Status and Future Needs |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Quality and Metering: Current Status and Future Needs Fuel Quality and Metering: Current Status and Future Needs These slides were presented at the Onboard Storage Tank...

125

Hydrogen fuel closer to reality because of storage advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon...

126

Hydrogen fuel closer to reality because of storage advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon How best to achieve the benchmark of 300 miles of travel without refueling? It may be to use the lightweight compound ammonia-borane to carry the hydrogen. With hydrogen accounting for almost 20 percent of its weight, this stable, non-flammable compound is one of the highest-capacity materials for storing hydrogen. In a car, the introduction of a chemical catalyst would release the hydrogen as needed, thus avoiding on-board storage of large quantities of flammable hydrogen gas. When the ammonia-borane fuel is depleted of hydrogen, it would be regenerated at a

127

Vitrification technology for Hanford Site tank waste  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Hanford Site has an inventory of 217,000 m{sup 3} of nuclear waste stored in 177 underground tanks. The DOE, the US Environmental Protection Agency, and the Washington State Department of Ecology have agreed that most of the Hanford Site tank waste will be immobilized by vitrification before final disposal. This will be accomplished by separating the tank waste into high- and low-level fractions. Capabilities for high-capacity vitrification are being assessed and developed for each waste fraction. This paper provides an overview of the program for selecting preferred high-level waste melter and feed processing technologies for use in Hanford Site tank waste processing.

Weber, E.T.; Calmus, R.B.; Wilson, C.N.

1995-04-01T23:59:59.000Z

128

Underground storage tank 511-D1U1 closure plan  

SciTech Connect (OSTI)

This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

129

Methanol: A Versatile Fuel for Immediate Use  

Science Journals Connector (OSTI)

...Specific fuel consumption-will certainly...necessitat-ing a larger fuel tank; but specific energy consumption (energy per...found that (i) fuel economy increased...Toyota (1900 cms engine, 85 brake horsepower...of knock and "Diesel operation...

T. B. Reed; R. M. Lerner

1973-12-28T23:59:59.000Z

130

Propane Fuel Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Propane Fuel Basics Propane Fuel Basics July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as...

131

Underground storage tank 253-D1U1 Closure Plan  

SciTech Connect (OSTI)

This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

132

Describing Current & Potential Markets for Alternative-Fuel Vehicles  

U.S. Energy Information Administration (EIA) Indexed Site

ways to fuel its fleet vehicles. Large commercial fleets tend to use their own fuel tanks located on a company site to fuel their vehicles. Fleets can also fuel at public...

133

Enhanced Tank Waste Strategy Update  

Broader source: Energy.gov (indexed) [DOE]

Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 cleanup of the Cold War environmental legacy Shirley J. Olinger Associate Principal Deputy for Corporate Operations EMAB Presentation June 23, 2011 EM Priorities: Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition "To-Go Life-Cycle Costs" ($185B - $218B as of the FY 2012 Request) Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and disposal 38% Excess facilities decontamination and decommissioning

134

Septic Tanks (Oklahoma)  

Broader source: Energy.gov [DOE]

A license from the Department of Environmental Quality is required for cleaning or pumping of septic tanks or holding tanks and disposing of sewage or septage. The rules for the license are...

135

Onboard Storage Tank Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

136

Tank 241-TX-105 tank characterization plan  

SciTech Connect (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

Carpenter, B.C.

1995-01-01T23:59:59.000Z

137

Tank 241-T-111 tank characterization plan  

SciTech Connect (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-111.

Homi, C.S.

1995-01-10T23:59:59.000Z

138

Hanford Single-Shell Tank Integrity Program  

Broader source: Energy.gov (indexed) [DOE]

Operations Contract Hanford Single Hanford Single- -Shell Shell Hanford Single Hanford Single Shell Shell Tank Integrity Tank Integrity Program Program Herbert S Berman Herbert S Berman Herbert S. Berman Herbert S. Berman July 29, 2009 July 29, 2009 1 Page 1 Tank Operations Contract Introduction * The Hanford site's principle historic mission was plutonium production for the manufacture of nuclear weapons. * Between 1944 and 1988, the site operated nine graphite- moderated light-water production reactors to irradiate moderated, light-water, production reactors to irradiate fuel and produce plutonium. * Four large chemical separations plants were run to extract plutonium from the fuel, and a variety of laboratories, support facilities, and related infrastructure to support production

139

Feed tank transfer requirements  

SciTech Connect (OSTI)

This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

140

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Underground Storage Tanks (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

142

Underground Storage Tanks (New Jersey) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

143

Development of High-Capacity Cathode Materials with Integrated...  

Broader source: Energy.gov (indexed) [DOE]

Development of High-Capacity Cathode Materials with Integrated Structures Development of High-Capacity Cathode Materials with Integrated Structures 2013 DOE Hydrogen and Fuel Cells...

144

Design and Evaluation of Novel High Capacity Cathode Materials...  

Broader source: Energy.gov (indexed) [DOE]

and Evaluation of Novel High Capacity Cathode Materials Design and Evaluation of Novel High Capacity Cathode Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

145

200-Area plateau inactive miscellaneous underground storage tanks locations  

SciTech Connect (OSTI)

Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years.

Brevick, C.H.

1997-12-01T23:59:59.000Z

146

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect (OSTI)

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

147

Tank Farms at the Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Farms at the Savannah River Site Tank Farms at the Savannah River Site Tank Farms at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set forth in Section 3116. A Waste Determination Basis (WD Basis) provides the analysis to document the Secretary's determination to manage the residuals as low-level radioactive waste. The Savannah River Site has several facilities managed under Section 3116. The F-Area Tank Farm (FTF) WD Basis covers 20 tanks remaining to be closed in the FTF and the H-Area Tank Farm (HTF) WD Basis will cover all 29 HTF

148

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

which provides grants of up to 2,500 to cover the cost of cleaning existing fuel tanks in preparation for storing biodiesel blends of at least 20% (B20) for use in public...

149

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Infrastructure and Fuel Incentives - SchagrinGAS SchagrinGAS provides propane tanks, pumps, and meters at no cost to customers on a case-by-case basis. SchagrinGAS offers a...

150

Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kevin L. Simmons (Primary Contact), Kenneth Johnson, and Kyle Alvine Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd Richland, WA 99352 Phone: (509) 375-3651 Email: Kevin.Simmons@pnnl.gov Norman Newhouse (Lincoln Composites, Inc.), Mike Veenstra (Ford Motor Company), Anand V. Rau (TORAY Carbon Fibers America) and Thomas Steinhausler (AOC, L.L.C.) DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams

151

,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

fuels is not available due to the potential" "environmental impact of storage tanks." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " WWithheld...

152

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

153

A constant-mass fuel delivery system for use in underwater autonomous vehicles  

E-Print Network [OSTI]

This thesis describes the design and assembly of two constant-mass fuel tanks to be used in autonomous underwater vehicles (AUVs). The fuel tanks are part of a power supply designed to increase AUV endurance without limiting ...

Saxton-Fox, Theresa Ann

2012-01-01T23:59:59.000Z

154

SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127  

SciTech Connect (OSTI)

Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

2012-01-25T23:59:59.000Z

155

Organic tanks safety program waste aging studies. Final report, Revision 1  

SciTech Connect (OSTI)

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive byproducts and contaminated process chemicals that are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of saltcakes, metal oxide sludges, and aqueous brine solutions. Tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes might be at risk for fuel-nitrate combustion accidents. This project started in fiscal year 1993 to provide information on the chemical fate of stored organic wastes. While historical records had identified the organic compounds originally purchased and potentially present in wastes, aging experiments were needed to identify the probable degradation products and evaluate the current hazard. The determination of the rates and pathways of degradation have facilitated prediction of how the hazard changes with time and altered storage conditions. Also, the work with aged simulated waste contributed to the development of analytical methods for characterizing actual wastes. Finally, the results for simulants provide a baseline for comparing and interpreting tank characterization data.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C. [and others

1998-09-01T23:59:59.000Z

156

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle (AFV) Decals to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Decals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Decals An individual may place alternative fuel into the fuel tank of a motor

157

Alternative Fuels Data Center: Natural Gas Fuel Safety  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas Fuel Natural Gas Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Fuel System & Cylinders Fuel Safety Traffic Accident Filling CNG Tanks Laws & Incentives Natural Gas Fuel Safety

158

Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jon Knudsen (Primary Contact), Don Baldwin Lincoln Composites 5117 N.W. 40 th Street Lincoln, NE 68524 Phone: (402) 470-5039 Email: jknudsen@lincolncomposites.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18062 Project Start Date: July 1, 2008 Project End Date: April 30, 2013 Fiscal Year (FY) 2012 Objectives The objective of this project is to design and develop the most effective bulk hauling and storage solution for hydrogen in terms of: Cost * Safety * Weight * Volumetric Efficiency * Technical Barriers This project addresses the following technical barriers

159

Miniature ceramic fuel cell  

DOE Patents [OSTI]

A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

1997-06-24T23:59:59.000Z

160

Compressed/Liquid Hydrogen Tanks  

Broader source: Energy.gov [DOE]

Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tank Waste Committee Page 2 Final Meeting Summary January 8, 2014 and integrity of the tanks with a focus on tank AY-102. In his presentation, Glyn noted the following points: *...

162

Hanford Tank Waste Residuals  

Broader source: Energy.gov (indexed) [DOE]

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

163

E-Print Network 3.0 - advanced ule fuel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 August 2005 Fuel Tank...

164

E-Print Network 3.0 - advanced fuel processing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 August 2005 Fuel Tank...

165

E-Print Network 3.0 - advanced fuel cycle--potential Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 August 2005 Fuel Tank...

166

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 2 Review of Responses to HAB Advice 271 Leaking Tanks and HAB Advice 273 Openness and Transparency Related to Tank Waste Treatment...

167

Reverberant Tank | Open Energy Information  

Open Energy Info (EERE)

Reverberant Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleReverberantTank&oldid596388" Category: Hydrodynamic Testing Facility Type...

168

Tank waste remediation system fiscal year 1998 multi-year work plan WBS 1.1  

SciTech Connect (OSTI)

The TWRS Project Mission is to manage and immobilize for disposal the Hanford Site radioactive tank waste and cesium (Cs)/strontium (Sr) capsules in a safe, environmentally sound, and cost-effective manner. The scope includes all activities needed to (1) resolve safety issues; (2) operate, maintain, and upgrade the tank farms and supporting infrastructure; (3) characterize, retrieve, pretreat, and immobilize the waste for disposal and tank farm closure; and (4) use waste minimization and evaporation to manage tank waste volumes to ensure that the tank capacities of existing DSTs are not exceeded. The TWRS Project is responsible for closure of assigned operable units and D&D of TWRS facilities.

Lenseigne, D.L., Westinghouse Hanford, Richland, WA

1997-09-15T23:59:59.000Z

169

Tank characterization reference guide  

SciTech Connect (OSTI)

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

170

Nebraska Company Expands to Meet Demand for Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE)

Hexagon Lincoln develops carbon fiber composite fuel tanks that help deliver hydrogen to fleets throughout the country. The company has more than doubled its workforce to accommodate growing demand for the tanks.

171

NREL: Vehicles and Fuels Research - Transportation and Hydrogen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

online animation that shows the variables of filling a fuel tank with compressed natural gas. NREL created an online tool to help drivers learn more about filling a tank with...

172

Multiple Vehicle Routing Problem with Fuel Constraints  

E-Print Network [OSTI]

In this paper, a Multiple Vehicle Routing Problem with Fuel Constraints (MVRPFC) is considered. This problem consists of a field of targets to be visited, and a collection of vehicles with fuel tanks that may visit the targets. Consideration...

Levy, David

2013-06-26T23:59:59.000Z

173

Landfill Gas Fueled HCCI Demonstration System  

E-Print Network [OSTI]

chemical- kinetic model of propane HCCI combustion, SAEof a four-cylinder 1.9 l propane- fueled homogeneous chargethe fuel line can use propane from a tank and NG from the

Blizman, Brandon J.; Makel, Darby B.; Mack, John Hunter; Dibble, Robert W.

2006-01-01T23:59:59.000Z

174

Idaho Nuclear Technology and Engineering Center Tank Farm Facility |  

Broader source: Energy.gov (indexed) [DOE]

Idaho Nuclear Technology and Engineering Center Tank Farm Facility Idaho Nuclear Technology and Engineering Center Tank Farm Facility Idaho Nuclear Technology and Engineering Center Tank Farm Facility The Secretary of Energy signed Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 basis of determination for the disposal of grouted residual waste in the tank systems at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF) on November 19, 2006. Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 authorizes the Secretary of Energy, in consultation with the Nuclear Regulatory Commission, to reclassify certain waste from reprocessing spent nuclear fuel from high-level waste to low-level waste if it meets the criteria set

175

Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information  

E-Print Network [OSTI]

Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

176

Fundamentals of Capacity Control  

Science Journals Connector (OSTI)

Whereas capacity planning determines in advance the capacities required to implement a production program, capacity control determines the actual capacities implemented shortly beforehand. The capacity control...

Prof. Dr.-Ing. habil. Hermann Ldding

2013-01-01T23:59:59.000Z

177

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Broader source: Energy.gov (indexed) [DOE]

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

178

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Broader source: Energy.gov (indexed) [DOE]

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

179

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

180

Underground Storage Tank Act (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

182

Soybean Oil as Diesel Fuel  

Science Journals Connector (OSTI)

Soybean Oil as Diesel Fuel ... TESTS are reported from Japan on the use of soybean oil as Diesel fuel in a 12-horsepower engine of 150-mm. ... This trouble was overcome by passing through some of the Diesel cooling water to heat the fuel tank and supply line. ...

C.H.S. TUPHOLME

1940-10-10T23:59:59.000Z

183

Retrieval of Ninth Single-Shell Tank Complete | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Retrieval of Ninth Single-Shell Tank Complete Retrieval of Ninth Single-Shell Tank Complete Retrieval of Ninth Single-Shell Tank Complete September 6, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 Rob Roxburgh, WRPS 509-376-5188 Richland - Washington River Protection Solutions (WRPS) has completed the retrieval of radioactive and chemical waste from single-shell tank (SST) C-104, an underground storage tank that once held 259,000 gallons of waste left over from nuclear weapons production at Hanford. WRPS is the tank operations contractor for the U.S. Department of Energy (DOE) Office of River Protection (ORP). Tank C-104 is a 530,000-gallon-capacity SST that once contained the second-highest waste volume of the 16 SSTs in Hanford's C Farm, including a significant amount of plutonium and uranium.

184

Fuel cell system for transportation applications  

DOE Patents [OSTI]

A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

Kumar, Romesh (Naperville, IL); Ahmed, Shabbir (Evanston, IL); Krumpelt, Michael (Naperville, IL); Myles, Kevin M. (Downers Grove, IL)

1993-01-01T23:59:59.000Z

185

Fuel cell system for transportation applications  

DOE Patents [OSTI]

A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1993-09-28T23:59:59.000Z

186

Nebraska Company Expands to Meet Demand for Hydrogen Fuel | Department...  

Broader source: Energy.gov (indexed) [DOE]

posted a blog about Hexagon Lincoln, a company that creates carbon fiber composite fuel tanks used to transport hydrogen across the country. Read Nebraska Company Expands to Meet...

187

Fuel Cell Technologies Office Newsletter: February 2014 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to Meet Demand for Gas Transport Hexagon Lincoln develops carbon fiber composite fuel tanks that help deliver hydrogen or natural gas to fleets throughout the country. The...

188

International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings  

Broader source: Energy.gov (indexed) [DOE]

experts presented information and data on testing and certification of storage tanks for compressed hydrogen, CNG, and HCNG fuels. 1 Specific objectives of the Forum were...

189

Ferrocyanide tank waste stability  

SciTech Connect (OSTI)

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

190

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013  

SciTech Connect (OSTI)

This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.

Kerry L. Nisson

2012-10-01T23:59:59.000Z

191

DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS  

SciTech Connect (OSTI)

Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

Mickalonis, J.; Vormelker, P.

2009-07-31T23:59:59.000Z

192

Energex Pellet Fuel Inc | Open Energy Information  

Open Energy Info (EERE)

Energex Pellet Fuel Inc Jump to: navigation, search Name: Energex Pellet Fuel Inc. Place: Mifflintown, Pennsylvania Zip: 17059 Product: Pellets producer with a capacity of 200,000...

193

Tank Waste Strategy Update  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

194

Chapter 18 - Tanks  

Science Journals Connector (OSTI)

Publisher Summary This chapter describes the tank's vapor formation rate. When sizing the vapor piping for a manifold expansion roof tank system, the rate of vapor formation must be known. While the rate of vapor formation can be computed by longhand methods, the calculation is tedious and takes much valuable time. The chapter also explains the hand-held calculator program that simplifies dike computations. Earthen dikes are widely used all over the world to contain flammable volumes of above-ground storage. They perform two vital functions: to prevent loss of fluid into the environment and to reduce the likelihood of fire spreading from one tank to another. Sizing dikes by conventional methods is a time-consuming, trial-and-error process. A complete assessment of the problem involves: applicable codes and regulations; land area available; topography of the area; soil characteristics; and the stipulated volume contained by dike and other dimensions of the dike section.

E.W. McAllister

2009-01-01T23:59:59.000Z

195

TANK SPACE OPTIONS REPORT  

SciTech Connect (OSTI)

Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

WILLIS WL; AHRENDT MR

2009-08-11T23:59:59.000Z

196

High-Pressure Hydrogen Tanks  

Broader source: Energy.gov [DOE]

Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

197

Hanford Waste Vitrification Plant capacity increase options  

SciTech Connect (OSTI)

Studies are being conducted by the Hanford Waste Vitrification Plant (HWVP) Project on ways to increase the waste processing capacity within the current Vitrification Building structural design. The Phase 1 study on remote systems concepts identification and extent of capacity increase was completed. The study concluded that the HWVP capacity could be increased to four times the current capacity with minor design adjustments to the fixed facility design, and the required design changes would not impact the current footprint of the vitrification building. A further increase in production capacity may be achievable but would require some technology development, verification testing, and a more systematic and extensive engineering evaluation. The primary changes included a single advance melter with a higher capacity, new evaporative feed tank, offgas quench collection tank, ejector venturi scrubbers, and additional inner canister closure station,a smear test station, a new close- coupled analytical facility, waste hold capacity of 400,000 gallon, the ability to concentrate out-of-plant HWVP feed to 90 g/L waste oxide concentration, and limited changes to the current base slab construction package.

Larson, D.E.

1996-04-01T23:59:59.000Z

198

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... 1 Single Shell Tank WMA-C Resource Conservation and Recovery ActComprehensive Environmental Response, Compensation and Liability Act...

199

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

200

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2006-2030) for Electricity Capacity and Generation by Fuel Tables (2006-2030) International Energy Outlook 2009 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2006-2030) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) International Energy Outlook 2008 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2005-2030) Formats Data Table Titles (1 to 12 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

202

EIA - Appendix H - Reference Case Projections for Electricity Capacity and  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel Tables (2007-2035) for Electricity Capacity and Generation by Fuel Tables (2007-2035) International Energy Outlook 2010 Reference Case Projections for Electricity Capacity and Generation by Fuel Tables (2007-2035) Formats Data Table Titles (1 to 18 complete) Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Appendix H. Reference Case Projections for Electricity Capacity and Generation by Fuel Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table H1 World Total Installed Generating Capacity by Region and Country Table H1. World Total Installed Generating Capacity by Region and Country. Need help, contact the National Energy Information Center at 202-586-8800.

203

CURRICULUM VITAE David W. Tank  

E-Print Network [OSTI]

CURRICULUM VITAE David W. Tank Personal Birthdate: June 3, 1953 Citizenship : U.S. Address: Dept Physical Society Biophysical Society #12;Research Publications 1. Tank, D.W., Wu, E.-S., and Webb, W, 207-212 (1982). 2. Webb, W.W., Barak, L.S., Tank, D.W. and Wu, E.-S., Molecular mobility on the cell

Tank, David

204

Soil load above Hanford waste storage tanks (2 volumes)  

SciTech Connect (OSTI)

This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.

Pianka, E.W. [Advent Engineering Services, Inc., San Ramon, CA (United States)

1995-01-25T23:59:59.000Z

205

Retrieval of Tenth Single-shell Tank Complete at Hanford's Office of River  

Broader source: Energy.gov (indexed) [DOE]

Retrieval of Tenth Single-shell Tank Complete at Hanford's Office Retrieval of Tenth Single-shell Tank Complete at Hanford's Office of River Protection Retrieval of Tenth Single-shell Tank Complete at Hanford's Office of River Protection December 27, 2012 - 12:00pm Addthis EM’s Office of River Protection has successfully removed waste from a tenth storage tank at the Hanford site. Located in C Farm, C-109 is one of 16 underground tanks ranging in capacity from 55,000 to 530,000 gallons. EM's Office of River Protection has successfully removed waste from a tenth storage tank at the Hanford site. Located in C Farm, C-109 is one of 16 underground tanks ranging in capacity from 55,000 to 530,000 gallons. Standing near a pipe providing access to the tank below, workers initiate a water soak aimed at loosening hard-to-remove-waste from the bottom of the underground tank known as C-109.

206

Tanks focus area. Annual report  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

207

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

ITSRR0707 A Low-Carbon Fuel Standard for California PartEnergy Commission. A Low Carbon Fuel Standard For CaliforniaPont, et al. (2007). Full Fuel Cycle Assessment Well To Tank

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

208

Tank farm nuclear criticality review  

SciTech Connect (OSTI)

The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site.

Bratzel, D.R., Westinghouse Hanford

1996-09-11T23:59:59.000Z

209

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

from diesel (or marine bunker fuel) to electricity, assumingports. Marine capacity will be competing with non-fuel goods

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

210

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

from diesel (or marine bunker fuel) to electricity, assumingports. Marine capacity will be competing with non-fuel goods

2007-01-01T23:59:59.000Z

211

From Fundamental Understanding to Predicting New Nanomaterials for High-Capacity Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Taner Yildirim 1,2 1 Department of Materials Science and Eng. University of Pennsylvania Philadelphia, PA 19104 2 National Institute of Standards and Technology, NCNR Gaithersburg, MD 20899 Phone: (301) 975-6228 Email: taner@seas.upenn.edu DOE Program Manager: Dr. Thiyaga P. Thiyagarajan Phone: (301) 903-9706 Email: P.Thiyagarajan@science.doe.gov Objectives Use neutron scattering methods along with first- * principles computation to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. Study the effect of scaffolding, nanosizing, doping of *

212

No loss fueling station for liquid natural gas vehicles  

SciTech Connect (OSTI)

This patent describes a no loss fueling station for delivery of liquid natural gas (LNG) to a use device such as a motor vehicle. It comprises: a pressure building tank holding a quantity of LNG and gas head; means for delivering LNG to the pressure building tank; means for selectively building the pressure in the pressure building tank; means for selectively reducing the pressure in the pressure building tank; means for controlling the pressure building and pressure reducing means to maintain a desired pressure in the pressure building tank without venting natural gas to the atmosphere; and means for delivering the LNG from the pressure building tank to the use device.

Cieslukowski, R.E.

1992-06-16T23:59:59.000Z

213

DOE Transmission Capacity Report | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

214

Tank Waste Corporate Board Meeting 07/29/09 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9/09 9/09 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board Meeting held on July 29th, 2009. Fuel Cycle Research and Development Program Retrieval and Repackaging of RH-TRU Waste - General Presentation Modular Hot Cell Technology Tank Waste System Integrated Project Team Gunite Tanks Waste Retrieval and Closure Operations at Oak Ridge Nattional Laboratory Integrated Facilities Disposition Program Oak Ridge National Laboratory TRU Waste Processing Center Tank Waste Processing Supernate Processing System Chemical Cleaning Program Review Enhanced Chemical Cleaning Hanford Single-Shell Tank Integrity Program Modeling the Performance of Engineered Systems for Closure and Near-Surface Disposal Nuclear Safety R&D in the Waste Processing Technology Development &

215

F-Tank Farm Performance Assessment, Rev 1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site. In accordance with NDAA Section 3116, certain waste from reprocessing of spent nuclear fuel is not high-level waste if the Secretary of Energy, in consultation with the NRC, determines that the criteria in NDAA Section 3116(a) are met. This Draft FTF 3116 Basis Document shows that those criteria are satisfied, to support a potential determination by the Secretary pursuant Section 3116. This Draft FTF 3116 Basis Document concerns the stabilized residuals in waste tanks and ancillary structures, those waste tanks, and the ancillary structures (including integral equipment) at the SRS FTF at the time of closure.

216

F-Tank Farm Performance Assessment, Rev 1 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 F-Tank Farm Performance Assessment, Rev 1 Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site. In accordance with NDAA Section 3116, certain waste from reprocessing of spent nuclear fuel is not high-level waste if the Secretary of Energy, in consultation with the NRC, determines that the criteria in NDAA Section 3116(a) are met. This Draft FTF 3116 Basis Document shows that those criteria are satisfied, to support a potential determination by the Secretary pursuant Section 3116. This Draft FTF 3116 Basis Document concerns the stabilized residuals in waste tanks and ancillary structures, those waste tanks, and the ancillary structures (including integral equipment) at the SRS FTF at the time of closure.

217

Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.  

SciTech Connect (OSTI)

On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

2010-03-03T23:59:59.000Z

218

Relationship Between Flowability And Tank Closure Grout Quality  

SciTech Connect (OSTI)

After completion of waste removal and chemical cleaning operations, Tanks 5-F and 6-F await final closure. The project will proceed with completing operational closure by stabilizing the tanks with grout. Savannah River Remediation's (SRR) experience with grouting Tanks 18-F and 19-F showed that slump-flow values were correlated with flow/spread inside these tanks. Less mounding was observed when using grouts with higher slump-flow. Therefore, SRNL was requested to evaluate the relationship between flowability and cured properties to determine whether the slump-flow maximum spread of Mix LP#8-16 could be increased from 28 inches to 30 inches without impacting the grout quality. A request was also made to evaluate increasing the drop height from 5 feet to 10 feet with the objective of enhancing the flow inside the tank by imparting more kinetic energy to the placement. Based on a review of the grout property data for Mix LP#8-16 collected from Tank 18-F and 19-F quality control samples, the upper limit for slump-flow measured per ASTM C 1611 can be increased from 28 to 30 inches without affecting grout quality. However, testing should be performed prior to increasing the drop height from 5 to 10 feet or observations should be made during initial filling operations to determine whether segregation occurs as a function of drop heights between 5 and 10 feet. Segregation will negatively impact grout quality. Additionally, increasing the delivery rate of grout into Tanks 5-F and 6-F by using a higher capacity concrete/grout pump will result in better grout spread/flow inside the tanks.

Langton, C. A.; Stefanko, D. B.; Hay, M. S.

2012-10-08T23:59:59.000Z

219

Capacity Markets for Electricity  

E-Print Network [OSTI]

ternative Approaches for Power Capacity Markets, Papers andprof id=pjoskow. Capacity Markets for Electricity [13]Utility Commission- Capacity Market Questions, available at

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

220

Savannah River Site - Tank 48 Transmittal Letter of SRS Tank...  

Office of Environmental Management (EM)

carried forward by WSRC as leading candidates for Tank 48 applications, Fluidized Bed Steam Reforming and Wet-Air Oxidation (WAO), are technically sound, are likely to prove...

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225  

SciTech Connect (OSTI)

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

Jolly, R

2009-01-06T23:59:59.000Z

222

Numerical Simulation of Single- and Dual-media Thermocline Tanks for Energy Storage in Concentrating Solar Power Plants  

Science Journals Connector (OSTI)

Abstract A single molten-salt thermocline tank is a low-cost alternative to conventional multiple-tank systems for concentrating solar power thermal energy storage. Thermocline tanks are typically composed of molten salt and a filler material that provides sensible heat capacity at reduced cost; such tanks are referred to as a dual-media thermocline (DMT). However, inclusion of quartzite rock filler introduces the potential for mechanical ratcheting of the tank wall during thermal cycling. To avoid this potential thermomechanical mode of failure, the tank can be operated solely with molten salt, as a single-medium thermocline (SMT) tank. In the absence of a filler material to suppress formation of tank-scale convection eddies, the SMT tank may exhibit undesirable internal fluid flows in the tank cross-section. The performance of DMT and SMT tanks is compared under cyclic operation, assuming adiabatic external wall boundary conditions. A computational fluid dynamics model is used to solve for the spatial temperature and velocity distributions within the tank. For the DMT tank, a two-temperature model is used to account for the non-thermal equilibrium between the molten salt and the filler material, and Forchheimer's extension of Darcy's Law is added to the porous-medium formulation of the laminar momentum equation. The governing equations are solved numerically using a finite volume approach. For adiabatic external boundaries, the SMT tank yields a percentage point increase in the first and second law efficiencies relative to the DMT tank. Future work is needed to compare the thermocline tank designs with respect to capital cost and storage performance under non-adiabatic wall boundaries.

C. Mira-Hernndez; S.M. Flueckiger; S.V. Garimella

2014-01-01T23:59:59.000Z

223

Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability  

SciTech Connect (OSTI)

This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

Sinor, J E [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

1994-05-01T23:59:59.000Z

224

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2014 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE May 7, 2014 Richland, WA Topics in this Meeting Summary Opening ......

225

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 9, 2011 FINAL MEETING SUMMARY HANFORD ADVISORY BOARD TANK WASTE COMMITTEE MEETING June 9, 2011 Richland, WA Topics in this Meeting Summary Welcome and Introductions...

226

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Waste Permit (Permit), introduced the discussion of Permit units that relate to tanks. Liz said the Permit was last available for review in 1994. There have been revisions...

227

HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT  

SciTech Connect (OSTI)

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

Jolly, R; Bruce Martin, B

2008-01-15T23:59:59.000Z

228

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

229

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

230

Tank closure reducing grout  

SciTech Connect (OSTI)

A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.

Caldwell, T.B.

1997-04-18T23:59:59.000Z

231

Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995  

SciTech Connect (OSTI)

This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement.

Haller, C.S.; Dove, T.H.

1994-11-01T23:59:59.000Z

232

A University of Alabama Fuel Cell Electronic Integration  

E-Print Network [OSTI]

the ability of hydrogen fuel cells to H2 tank Loads ­ Study the ability of hydrogen fuel cells to respondCAVT A University of Alabama Fuel Cell Electronic Integration y Research Center OBJECTIVE ­ Study to rapid load changes MOTIVATION Fuel cell ­ Automotive cycles include rapid load changes (passing

Carver, Jeffrey C.

233

Fuel Cell Buses in U.S. Transit Fleets: Current Status 2014  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and control subsystems. Power electronics, electric drive, and hydrogen storage tanks are excluded. d The status for power plant hours is for the fuel cell system only;...

234

Tank Farm Area Cleanup Decision-Making  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

235

Organic liner for thermoset composite tank  

DOE Patents [OSTI]

A cryogenic tank that is made leak-proof under cryogenic conditions by successive layers of epoxy lining the interior of the tank.

Garvey, Raymond E. (Knoxville, TN)

1991-01-01T23:59:59.000Z

236

Estimating Waste Inventory and Waste Tank Characterization |...  

Office of Environmental Management (EM)

Estimating Waste Inventory and Waste Tank Characterization Estimating Waste Inventory and Waste Tank Characterization Summary Notes from 28 May 2008 Generic Technical Issue...

237

TANK FARM RETRIEVAL LESSONS LEARNED AT THE HANFORD SITE  

SciTech Connect (OSTI)

One of the environmental remediation challenges facing the nation is the retrieval and permanent disposal of approximately 90 million gallons of radioactive waste stored in underground tanks at the U. S. Department of Energy (DOE) facilities. The Hanford Site is located in southeastern Washington State and stores roughly 60 percent of this waste. An estimated 53 million gallons of high-level, transuranic, and low-level radioactive waste is stored underground in 149 single-shell tanks (SSTs) and 28 newer double-shell tanks (DSTs) at the Hanford Site. These SSTs range in size from 55,000 gallons to 1,000,000 gallon capacity. Approximately 30 million gallons of this waste is stored in SSTs. The SSTs were constructed between 1943 and 1964 and all have exceeded the nominal 20-year design life. Sixty-seven SSTs are known or suspected to have leaked an estimated 1,000,000 gallons of waste to the surrounding soil. The risk of additional SST leakage has been greatly reduced by removing more than 3 million gallons of interstitial liquids and supernatant and transferring this waste to the DST system. Retrieval of SST saltcake and sludge waste is underway to further reduce risks and stage feed materials for the Hanford Site Waste Treatment Plant. Regulatory requirements for SST waste retrieval and tank farm closure are established in the Hanford Federal Facility Agreement and Consent Order (HFFACO), better known as the TriParty Agreement, or TPA. The HFFACO was signed by the DOE, the State of Washington Department of Ecology (Ecology), and U. S. Environmental Protection Agency (EPA) and requires retrieval of as much waste as technically possible, with waste residues not to exceed 360 fe in 530,000 gallon or larger tanks; 30 fe in 55,000 gallon or smaller tanks; or the limit of waste retrieval technology, whichever is less. If residual waste volume requirements cannot be achieved, then HFFACO Appendix H provisions can be invoked to request Ecology and EPA approval of an exception to the waste retrieval criteria for a specific tank. Tank waste retrieval has been conducted at the Hanford Site over the last few decades using a method referred to as Past Practice Hydraulic Sluicing. Past Practice Hydraulic Sluicing employs large volumes of DST supernatant and water to dislodge, dissolve, mobilize, and retrieve tank waste. Concern over the leak integrity of SSTs resulted in the need for tank waste retrieval methods capable of using smaller volumes of liquid in a more controlled manner.

DODD RA

2008-01-22T23:59:59.000Z

238

Independent Oversight Review, Hanford Tank Farms- November 2011  

Broader source: Energy.gov [DOE]

Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades

239

SLUDGE RETRIEVAL FROM HANFORD K WEST BASIN SETTLER TANKS  

SciTech Connect (OSTI)

In 2010, an innovative, remotely operated retrieval system was deployed to successfully retrieve over 99.7% of the radioactive sludge from ten submerged tanks in Hanford's K-West Basin. As part of K-West Basin cleanup, the accumulated sludge needed to be removed from the 0.5 meter diameter by 5 meter long settler tanks and transferred approximately 45 meters to an underwater container for sampling and waste treatment. The abrasive, dense, non-homogeneous sludge was the product of the washing process of corroded nuclear fuel. It consists of small (less than 600 micron) particles of uranium metal, uranium oxide, and various other constituents, potentially agglomerated or cohesive after 10 years of storage. The Settler Tank Retrieval System (STRS) was developed to access, mobilize and pump out the sludge from each tank using a standardized process of retrieval head insertion, periodic high pressure water spray, retraction, and continuous pumping of the sludge. Blind operations were guided by monitoring flow rate, radiation levels in the sludge stream, and solids concentration. The technology developed and employed in the STRS can potentially be adapted to similar problematic waste tanks or pipes that must be remotely accessed to achieve mobilization and retrieval of the sludge within.

ERPENBECK EG; LESHIKAR GA

2011-01-13T23:59:59.000Z

240

Supporting document for the Southeast Quadrant historical tank content estimate report for SY-tank farm  

SciTech Connect (OSTI)

Historical Tank Content Estimate of the Southeast Quadrant provides historical evaluations on a tank by tank basis of the radioactive mixed wastes stored in the underground double-shell tanks of the Hanford 200 East and West Areas. This report summarizes historical information such as waste history, temperature profiles, psychrometric data, tank integrity, inventory estimates and tank level history on a tank by tank basis. Tank Farm aerial photos and in-tank photos of each tank are provided. A brief description of instrumentation methods used for waste tank surveillance are included. Components of the data management effort, such as Waste Status and Transaction Record Summary, Tank Layer Model, Supernatant Mixing Model, Defined Waste Types, and Inventory Estimates which generate these tank content estimates, are also given in this report.

Brevick, C.H.; Gaddis, L.A.; Consort, S.D. [Westinghouse Hanford Co., Richland, WA (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cornell University's Online Aboveground Petroleum Tank Inspection Program  

E-Print Network [OSTI]

Cornell University's Online Aboveground Petroleum Tank Inspection Program How To's What is Cornell University's Online Aboveground Petroleum Tank Inspection Program? Cornell University's Online Aboveground Petroleum Tank Inspection Program enables assigned tank inspectors to record their monthly aboveground tank

Pawlowski, Wojtek

242

Tank Waste Corporate Board | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Corporate Board Tank Waste Corporate Board Tank Waste Corporate Board The Tank Waste Corporate Board is a chartered group of senior DOE, contractor, and laboratory managers and staff that meets approximately semi-annually to formulate and coordinate implementation of an effective and efficient national Tank Waste program. August 1, 2012 Tank Waste Corporate Board Meeting 08/01/12 The following documents are associated with the Tank Waste Corporate Board Meeting held on August 1st, 2012. November 18, 2010 Tank Waste Corporate Board Meeting 11/18/10 The following documents are associated with the Tank Waste Corporate Board Meeting held on November 18th, 2010. July 29, 2009 Tank Waste Corporate Board Meeting 07/29/09 The following documents are associated with the Tank Waste Corporate Board

243

DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program  

E-Print Network [OSTI]

DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program Dr. Neel Sirosh DIRECTOR and validate 5,000 psi storage tanks ­ Tank efficiency: 7.5 ­ 8.5 wt% · Validate 5,000 psi in-tank-pressure regulators ­ Total storage system efficiency: 5.7 wt% · Develop and validate 10,000 psi storage tanks ­ Tank

244

Monitoring Infrastructure Capacity Monitoring Infrastructure Capacity  

E-Print Network [OSTI]

Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban) task. Monitoring infrastructure capacity is at least as complex as monitoring urban land markets Levinson, D. (2000) Monitoring Infrastructure Capacity p. 165-181 in Land Market Monitoring for Smart Urban

Levinson, David M.

245

FEMA Think Tank Call Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FEMA Think Tank Call Meeting FEMA Think Tank Call Meeting Minimize Date: Wednesday, September 25, 2013 Time: 1:00 - 2:30 p.m. (Eastern Time) Location: Y-12 New Hope Center, 602 Scarboro Rd, Oak Ridge, TN 37830 Overview Description: The FEMA Think Tank is a mechanism to formally collect, discuss, evaluate, and develop innovative ideas in the emergency management community - state, local, and tribal governments, as well as members of the public, including the private sector, the disability community, and volunteer groups. It ensures whole community partners and federal employees are motivated and encouraged to innovate, actively solicit and discuss ideas, and oversee the implementation of promising ideas. The FEMA Think Tank is designed to act as a forum where good ideas are shared, discussed, and become innovative solutions. There are currently two components to the think tank. The first, an online component, can be accessed at any time at, http://fema.ideascale.com. The second component is a conference call that includes both a nationwide telephone audience and an audience at the FEMA Think Tank Call site. This second component is described in more detail at the following website: http://www.fema.gov/fema-think-tank.

246

Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank |  

Broader source: Energy.gov (indexed) [DOE]

Determines Double-Shell Tank Leaked Waste From Inner Tank Determines Double-Shell Tank Leaked Waste From Inner Tank Hanford Determines Double-Shell Tank Leaked Waste From Inner Tank October 22, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 John Britton, WRPS 509-376-5561 RICHLAND - The Department of Energy's Office of River Protection (ORP), working with its Hanford tank operations contractor Washington River Protection Solutions, has determined that there is a slow leak of chemical and radioactive waste into the annulus space in Tank AY-102, the approximately 30-inch area between the inner primary tank and the outer tank that serves as the secondary containment for these types of tanks. This is the first time a double-shell tank (DST) leak from the primary tank into the annulus has been identified. There is no indication of waste in

247

Modeling and analysis of ORNL horizontal storage tank mobilization and mixing  

SciTech Connect (OSTI)

The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m{sup 3} (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m{sup 3} (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents.

Mahoney, L.A.; Terrones, G.; Eyler, L.L.

1994-06-01T23:59:59.000Z

248

Monthly Tank Inspection Log Name of Campus  

E-Print Network [OSTI]

Monthly Tank Inspection Log Name of Campus Street Address of Campus City, State, and Zip Code of Campus 1 of 2 1. Facility PBS Registration Number 6. DISTRIBUTE TO : 2. Tank Number 3. Tank Registered(S) Satisfactory Repair or Adjustment Required Not Applicable Additional Comments Attached ABOVEGROUND STORAGE TANK

Rosen, Jay

249

Cornell University's Online Aboveground Petroleum Tank  

E-Print Network [OSTI]

Cornell University's Online Aboveground Petroleum Tank Inspection Program How To's Petroleum Bulk-material-storage/petroleum-bulk-storage/Documents/Inspect_GD.pdf What is Cornell University's Online Aboveground Petroleum Tank Inspection Program? Cornell University's Online Aboveground Petroleum Tank Inspection Program enables assigned tank inspectors to record

Pawlowski, Wojtek

250

Buffer Tank Design for Acceptable Control Performance  

E-Print Network [OSTI]

Buffer Tank Design for Acceptable Control Performance Audun Faanes and Sigurd Skogestad for the design of buffer tanks. We consider mainly the case where the objective of the buffer tank is to dampen- trol system. We consider separately design procedures for (I) mixing tanks to dampen quality

Skogestad, Sigurd

251

Refinery Capacity Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Report --- Full report in PDF (1 MB) XLS --- Refinery Capacity Data by individual refinery as of January 1, 2006 Tables 1 Number and Capacity of Operable Petroleum...

252

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

where K 0 is the cost of the fuel cell stack, fuel storagefuel cell stack, plumbing, inverter, fuel storage tank, and accessories), fuel cost,costs of about $700 per kW for the basic solid oxide fuel cell stack

2002-01-01T23:59:59.000Z

253

Standard guide for sampling radioactive tank waste  

E-Print Network [OSTI]

1.1 This guide addresses techniques used to obtain grab samples from tanks containing high-level radioactive waste created during the reprocessing of spent nuclear fuels. Guidance on selecting appropriate sampling devices for waste covered by the Resource Conservation and Recovery Act (RCRA) is also provided by the United States Environmental Protection Agency (EPA) (1). Vapor sampling of the head-space is not included in this guide because it does not significantly affect slurry retrieval, pipeline transport, plugging, or mixing. 1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

254

High-Pressure Hydrogen Tanks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 8 February 8 th , 2005 Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA Low Cost, High Efficiency, Low Cost, High Efficiency, High Pressure Hydrogen Storage High Pressure Hydrogen Storage This presentation does not contain any proprietary or confidential information. 70 MPa Composite Tanks Vent Line Ports Defueling Port (optional) Fill Port Filter Check Valve Vehicle Interface Bracket with Stone Shield In Tank Regulator with Solenoid Lock-off Pressure Relief Device Manual Valve Compressed Hydrogen Storage System In-Tank Regulator Pressure Sensor (not visible here) Pressure Relief Device (thermal) In Tank Gas Temperature Sensor Carbon Composite Shell (structural) Impact Resistant Outer Shell (damage resistant) Gas Outlet Solenoid Foam Dome (impact protection)

255

Enhanced Integrity LNG Storage Tanks  

Science Journals Connector (OSTI)

In recent years close attention has been given to increasing the integrity of LNG storage tanks. The M.W. Kellogg Company is a participant in four major LNG projects that incorporate enhanced integrity LNG storag...

W. S. Jacobs; S. E. Handman

1986-01-01T23:59:59.000Z

256

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 13, 2011 Report, which includes the use of in-tank RMF and small column ion exchange. SRNL's testing is being done on a 25 disc rotary system which would be similar to...

257

Light Duty Vehicle CNG Tanks  

Broader source: Energy.gov (indexed) [DOE]

Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

258

Tank Waste Committee Page 1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of a PA is to examine the final waste disposition at Hanford, such as waste in the tanks at C-Farm. Vince said the quest is to model waste movement over 10,000 years,...

259

DOE Vehicular Tank Workshop Agenda  

Broader source: Energy.gov (indexed) [DOE]

Vehicular Tank Workshop Sandia National Laboratories Livermore, CA April 29, 2010 Thursday April 29: (312) 878-0222, Access code: 621-488-137 https:www1.gotomeeting.comregister...

260

Investigating leaking underground storage tanks  

E-Print Network [OSTI]

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2009  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2009 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2009 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per LWO-LWE-2008-00423, HLW Tank Farm Inspection Plan for 2009, were completed. All Ultrasonic measurements (UT) performed in 2009 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 1, and WSRC-TR-2002-00061, Rev.4. UT inspections were performed on Tank 29 and the findings are documented in SRNL-STI-2009-00559, Tank Inspection NDE Results for Fiscal Year 2009, Waste Tank 29. Post chemical cleaning UT measurements were made in Tank 6 and the results are documented in SRNL-STI-2009-00560, Tank Inspection NDE Results Tank 6, Including Summary of Waste Removal Support Activities in Tanks 5 and 6. A total of 6669 photographs were made and 1276 visual and video inspections were performed during 2009. Twenty-Two new leaksites were identified in 2009. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.4. Fifteen leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. Five leaksites at Tank 6 were documented during tank wall/annulus cleaning activities. Two new leaksites were identified at Tank 19 during waste removal activities. Previously documented leaksites were reactivated at Tanks 5 and 12 during waste removal activities. Also, a very small amount of additional leakage from a previously identified leaksite at Tank 14 was observed.

West, B.; Waltz, R.

2010-06-21T23:59:59.000Z

262

Stabilization of in-tank residual wastes and external-tank soil contamination for the tank focus area, Hanford Tank Initiative: Applications to the AX tank farm  

SciTech Connect (OSTI)

This report investigates five technical areas for stabilization of decommissioned waste tanks and contaminated soils at the Hanford Site AX Farm. The investigations are part of a preliminary evacuation of end-state options for closure of the AX Tanks. The five technical areas investigated are: (1) emplacement of cementations grouts and/or other materials; (2) injection of chemicals into contaminated soils surrounding tanks (soil mixing); (3) emplacement of grout barriers under and around the tanks; (4) the explicit recognition that natural attenuation processes do occur; and (5) combined geochemical and hydrological modeling. Research topics are identified in support of key areas of technical uncertainty, in each of the five areas. Detailed cost-benefit analyses of the technologies are not provided. This investigation was conducted by Sandia National Laboratories, Albuquerque, New Mexico, during FY 1997 by tank Focus Area (EM-50) funding.

Becker, D.L.

1997-11-03T23:59:59.000Z

263

ROBOTIC TANK INSPECTION END EFFECTOR  

SciTech Connect (OSTI)

The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original intent of the contract, the focus remains on the RTIEE.

Rachel Landry

1999-10-01T23:59:59.000Z

264

Hanford Site C Tank Farm Meeting Summary - February 2009 | Department...  

Office of Environmental Management (EM)

February 2009 Hanford Site C Tank Farm Meeting Summary - February 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank...

265

Hanford Site C Tank Farm Meeting Summary - May 2011 | Department...  

Office of Environmental Management (EM)

1 Hanford Site C Tank Farm Meeting Summary - May 2011 Hanford Site C Tank Farm Meeting Summary More Documents & Publications Hanford Site C Tank Farm Meeting Summary - September...

266

-1 -RECOMMENDATIONS FROM THINK TANK CONVENORS December 7, 2011  

E-Print Network [OSTI]

- 1 - RECOMMENDATIONS FROM THINK TANK CONVENORS of our expert think tank 'Managing for Uncertainty: Pathogens and Disease Wildlife in Canada (COSEWIC), Australia's Invitational Scientists' Think Tank Managing

267

Independent Activity Report, Hanford Tank Farms - April 2013...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

tour the Hanford Tank Farms, observe video inspection of single shell and double shell tanks, and observe Tank Farm project and staff meetings. Independent Activity Report,...

268

Acoustic Method for Fish Counting and Fish Sizing in Tanks  

E-Print Network [OSTI]

Counting and Fish Sizing in Tanks W.A. Kuperman and Philippedistributed among its 97 tanks to maximize feed-conversionrequires inventory- ing tanks regularly. Currently, this is

Kuperman, William A.; Roux, Philippe

2004-01-01T23:59:59.000Z

269

Acoustic Method for Fish Counting and Fish Sizing in Tanks  

E-Print Network [OSTI]

measurements in an echoic tank. ICES Journal of Marineto fish counting in a tank. Journal of the Acousticaland materials of the cylindrical tanks for the experiments.

Roux, Philippe; Conti, Stphane; Demer, David; Maurer, Benjamin D.

2005-01-01T23:59:59.000Z

270

DOE Selects Washington River Protection Solutions, LLC for Tank...  

Energy Savers [EERE]

Plateau. The scope of the tank operations contract includes base operations of the tanks, analytical laboratory support, single-shell tank retrieval and closure, Waste...

271

Integrated heat exchanger design for a cryogenic storage tank  

SciTech Connect (OSTI)

Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

2014-01-29T23:59:59.000Z

272

Integrated heat exchanger design for a cryogenic storage tank  

Science Journals Connector (OSTI)

Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth from Earth or in space are envisioned for automobiles aircraft rockets and spacecraft. These advancements rely on practical ways of storage transfer and handling of liquid hydrogen. Focusing on storage an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125 000-liter capacity horizontal cylindrical tank with vacuum jacket and multilayer insulation and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening complete modularity pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach problem solving and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

2014-01-01T23:59:59.000Z

273

241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity  

SciTech Connect (OSTI)

This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

Barnes, Travis J.; Gunter, Jason R.

2013-08-26T23:59:59.000Z

274

241-AP Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect (OSTI)

This report provides the results of an extent of condition construction history review for the 241-AP tank farm. The construction history of the 241-AP tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AP tank farm, the sixth double-shell tank farm constructed, tank bottom flatness, refractory material quality, post-weld stress relieving, and primary tank bottom weld rejection were improved.

Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

2014-04-04T23:59:59.000Z

275

Evaluation of Tank 241-T-111 Level Data and In-Tank Video Inspection  

SciTech Connect (OSTI)

This document summarizes the status of tank T-111 as of January 1, 2014 and estimates a leak rate and post-1994 leak volume for the tank.

Schofield, John S. [Columbia Energy and Environmental Services (United States); Feero, Amie J. [Washington River Protection Solutions, LLC (United States)

2014-03-17T23:59:59.000Z

276

TANK48 CFD MODELING ANALYSIS  

SciTech Connect (OSTI)

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

Lee, S.

2011-05-17T23:59:59.000Z

277

In-tank recirculating arsenic treatment system  

DOE Patents [OSTI]

A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

2009-04-07T23:59:59.000Z

278

Tank Waste Disposal Program redefinition  

SciTech Connect (OSTI)

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

279

Hydrogen fuel closer to reality because of storage advances  

E-Print Network [OSTI]

extracted for use in hydrogen fuel cell batteries and then be recharged with hydrogen over and over- 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward as a "chemical storage tank" for hydrogen fuel. An ammonia borane system could allow hydrogen to be easily

280

CHEMICAL SLUDGE HEEL REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT 8183  

SciTech Connect (OSTI)

Chemical Sludge Removal (CSR) is the final waste removal activity planned for some of the oldest nuclear waste tanks located at the Savannah River Site (SRS) in Aiken, SC. In 2008, CSR will be used to empty two of these waste tanks in preparation for final closure. The two waste tanks chosen to undergo this process have previously leaked small amounts of nuclear waste from the primary tank into an underground secondary containment pan. CSR involves adding aqueous oxalic acid to the waste tank in order to dissolve the remaining sludge heel. The resultant acidic waste solution is then pumped to another waste tank where it will be neutralized and then stored awaiting further processing. The waste tanks to be cleaned have a storage capacity of 2.84E+06 liters (750,000 gallons) and a target sludge heel volume of 1.89E+04 liters (5,000 gallons) or less for the initiation of CSR. The purpose of this paper is to describe the CSR process and to discuss the most significant technical issues associated with the development of CSR.

Thaxton, D; Timothy Baughman, T

2008-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

U.S. Department of Energy Onboard Storage Tank Workshop Notes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Department of Energy U.S. Department of Energy Onboard Storage Tank Workshop Workshop Notes April 29, 2010 Sandia National Laboratories - Livermore, CA 2 Report from the Onboard Storage Tank Workshop Livermore, CA April 29 th , 2010 The Onboard Storage Tank Workshop was held on April 29 th , 2010, at Sandia National Laboratories (SNL) in Livermore, CA. The Workshop was co-hosted by SNL and the United States Department of Energy (DOE). The purpose of the Workshop was to identify key issues including research and development (R&D) needs, regulations, codes and standards (RCS), and a path forward to enable the deployment of hydrogen storage tanks in early market fuel cell applications. Background The objectives of the Workshop were to: * Provide initial follow up to the DOE and Department of Transportation (DOT)

282

Tank Waste Corporate Board Meeting 03/05/09 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Corporate Board Meeting 03/05/09 Tank Waste Corporate Board Meeting 03/05/09 Tank Waste Corporate Board Meeting 03/05/09 The following documents are associated with the Tank Waste Corporate Board Meeting held on March 5th, 2009. Overview of Integrated Waste Treatment Unit Desired PU Loading During Vitrification HLW System Integrated Project Team Waste Determination and Section 3116 of the 2005 National Defense Authorization Act - HQ Perspective Status of Art & Practice of Performance Assessment within the DOE Complex Experience from the Short Course on Introduction to Nuclear Chemistry and Fuel Cycle Separations and Future Educational Opportunities Role of Liquid Waste Pretreatment Technologies in Solving the DOE Clean-up Mission Performance Assessment Community of Practice Action Item Review and Status

283

Florida company looks to put algae in your gas tank | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Florida company looks to put algae in your gas tank Florida company looks to put algae in your gas tank Florida company looks to put algae in your gas tank January 5, 2010 - 4:02pm Addthis What will the project do? As a result of the stimulus funding, Algenol also has the potential to create hundreds of new jobs. You may never have thought about putting algae in your gas tank, but companies harnessing breakthrough technologies have discovered ways to transform algae into transportation fuels. Now that sounds green. Algenol Biofuels Inc., a Florida-based algae-to-ethanol company, has received a $25 million grant from the U.S. Department of Energy as part of the Recovery Act. The grant will aid Algenol in developing a pilot-scale integrated biorefinery in Freeport, Texas, to make ethanol from algae. As a result of the stimulus funding, Algenol also has the potential to

284

BC Transit Fuel Cell Bus Project: Evaluation Results Report  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

energy: 47 kWh Accessories Electrical Fuel storage Eight roof mounted, Dynetek, type 3 tanks; 5,000 psi rated; 56 kg hydrogen (useful) Range 5 337-381 km (210-237 miles) Bus...

285

Alternative Fuels Data Center: Dimethyl Ether (DME) as a Transportatio...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

similar to that of propane, in that both are required to be kept in pressurized storage tanks at ambient temperature. DME has several fuel properties that make it attractive for...

286

BC Transit Fuel Cell Bus Project Evaluation Results: Second Report  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

energy: 47 kWh Accessories Electrical Fuel storage Eight roof mounted, Dynetek, type 3 tanks; 5,000 psi rated; 56 kg hydrogen (useable) Range 7 337-381 km (210-237 miles) Bus...

287

A review of the microbiological degradation of fuel  

Science Journals Connector (OSTI)

Microbial contamination problems surfaced with the use of gas turbine engines in marine vessels (Genner and Hill, 1981). Seawater is pumped into an empty storage tank. As fuel is depleted, the seawater is pumped ...

J. A. Robbins; R. Levy

2005-01-01T23:59:59.000Z

288

Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary  

SciTech Connect (OSTI)

The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

Not Available

1994-02-01T23:59:59.000Z

289

Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper.

Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

1999-04-01T23:59:59.000Z

290

Tank 241-BY-103 Tank Characterization Plan. Revision 1  

SciTech Connect (OSTI)

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations and WHC 222-S Laboratory. The scope of this plan is to provide guidance for the sampling and analysis of samples for tank 241-BY-103.

Schreiber, R.D.

1995-02-27T23:59:59.000Z

291

Comparative safety analysis of LNG storage tanks  

SciTech Connect (OSTI)

LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

1982-07-01T23:59:59.000Z

292

High-Pressure Tube Trailers and Tanks  

Broader source: Energy.gov [DOE]

Presentation on High-Pressure Tube Trailers and Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

293

Technical requirements specification for tank waste retrieval  

SciTech Connect (OSTI)

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

294

Alternative Fuels in Trucking Volume 5, Number 4  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

N N atural gas costs less to pro- duce than gasoline and diesel fuel. However, it must be delivered to the market area and compressed or liquefied before being put into the vehicle fuel tank, steps that add significant cost. Whether the natural gas at the vehicle fuel tank retains a price advantage over gasoline or diesel fuel depends on many factors. A few of the most important are: * Distance from the wellhead to the market area * The gas volumes over which the costs of compression or liquefac- tion are spread * The numbers of vehicles being fueled at a given refueling site. Vehicles using natural gas also cost more than comparable gasoline and diesel vehicles because the fuel tanks are inherently more expensive, whether the gas is compressed (CNG) or liquefied (LNG). At this

295

MODELING ANALYSIS FOR GROUT HOPPER WASTE TANK  

SciTech Connect (OSTI)

The Saltstone facility at Savannah River Site (SRS) has a grout hopper tank to provide agitator stirring of the Saltstone feed materials. The tank has about 300 gallon capacity to provide a larger working volume for the grout nuclear waste slurry to be held in case of a process upset, and it is equipped with a mechanical agitator, which is intended to keep the grout in motion and agitated so that it won't start to set up. The primary objective of the work was to evaluate the flow performance for mechanical agitators to prevent vortex pull-through for an adequate stirring of the feed materials and to estimate an agitator speed which provides acceptable flow performance with a 45{sup o} pitched four-blade agitator. In addition, the power consumption required for the agitator operation was estimated. The modeling calculations were performed by taking two steps of the Computational Fluid Dynamics (CFD) modeling approach. As a first step, a simple single-stage agitator model with 45{sup o} pitched propeller blades was developed for the initial scoping analysis of the flow pattern behaviors for a range of different operating conditions. Based on the initial phase-1 results, the phase-2 model with a two-stage agitator was developed for the final performance evaluations. A series of sensitivity calculations for different designs of agitators and operating conditions have been performed to investigate the impact of key parameters on the grout hydraulic performance in a 300-gallon hopper tank. For the analysis, viscous shear was modeled by using the Bingham plastic approximation. Steady state analyses with a two-equation turbulence model were performed. All analyses were based on three-dimensional results. Recommended operational guidance was developed by using the basic concept that local shear rate profiles and flow patterns can be used as a measure of hydraulic performance and spatial stirring. Flow patterns were estimated by a Lagrangian integration technique along the flow paths from the material feed inlet.

Lee, S.

2012-01-04T23:59:59.000Z

296

Milagro Tank Temperature Study: w/ and w/o Tank Insulation  

E-Print Network [OSTI]

Milagro Tank Temperature Study: w/ and w/o Tank Insulation John A.J. Matthews and Bill Miller johnm/24 #12;Tank Temperature Study for Northern Auger · Auger North site (Colorado) is colder than Auger South. · Sept 2006: instrument Milargo outrigger tank to study freezing issues (Left photo) (Milagro experiment

297

Savannah River Site- Tank 48 Briefing on SRS Tank 48 Independent Technical Review  

Broader source: Energy.gov [DOE]

This presentation outlines the SRS Tank 48 ITR listing observations, conclusions, and TPB processing.

298

Tank 241-BY-104 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-104 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

299

Tank 241-BY-103 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank 241-BY-103 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-103 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-05T23:59:59.000Z

300

Tank 241-BY-108 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in ``Program Plan for the Resolution of Tank Vapor Issues`` (Osborne and Huckaby 1994). Tank 241-BY-108 was vapor sampled in accordance with ``Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution (Osborne et al., 1994).

Huckaby, J.L.

1995-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Tank 241-BY-105 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-105 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

302

Tank 241-BY-107 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

303

Tank 241-BY-107 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank 241-BY-107 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues{close_quotes}. Tank 241-BY-107 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution{close_quotes}.

Huckaby, J.L.

1995-05-05T23:59:59.000Z

304

Tank 241-BY-106 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

Tank 241-BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. The drivers and objectives of waste tank headspace sampling and analysis are discussed in {open_quotes}Program Plan for the Resolution of Tank Vapor Issues.{close_quotes} Tank 241-BY-106 was vapor sampled in accordance with {open_quotes}Data Quality Objectives for Generic In-Tank Health and Safety Issue Resolution.{close_quotes}

Huckaby, J.L.

1995-05-31T23:59:59.000Z

305

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on December 10-11, 2009. Here you'll find information about the workshop's focus, agenda and notes, and presentations. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Focus of the Workshop The workshop aimed to: Compare fuel properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

306

Hanford Communities Issue Briefing on Tank Farms  

Broader source: Energy.gov [DOE]

Department of Energy Office of River Protection representatives Stacy Charboneau (Deputy Manager) and Tom Fletcher (Tank Farms Assistant Manager) and Washington State Department of Ecology's Suzanne Dahl (Tank Waste Section Manager) discuss Hanford's complex tank waste retrieval mission with members of the community.

307

Onsite Wastewater Treatment Systems: Pump Tank  

E-Print Network [OSTI]

Pump tanks are concrete, fiberglass or polyethylene containers that collect wastewater to be dosed into the soil at intervals. This publication explains the design and maintenance of pump tanks, and it offers advice on what to do if a pump tank...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

308

Above Ground Storage Tank (AST) Inspection Form  

E-Print Network [OSTI]

Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name: ______________________ Tank No:_______________ Date:_____________ Inspection Parameter Result Comments/Corrective Actions 1. Is there leaking in the interstitial space (not DRY)? YES/NO/NA 2. Tank surface shows signs of leakage? YES/NO/NA 3

Pawlowski, Wojtek

309

EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review |  

Broader source: Energy.gov (indexed) [DOE]

Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Environmental Management Advisory Board EM Tank Waste Subcommittee Report for SRS / Hanford Tank Waste Review Report Number TWS #003 EMAB EM-TWS SRS / Hanford Tank Waste June 23, 2011 This is the second report of the Environmental Management Tank Waste Subcommittee (EMTWS) of the Environmental Management Advisory Board (EMAB). The first report was submitted and accepted by the Assistant Secretary for Environmental Management (EM-1) in September 2010. The EM-TWS responded to three charges from EM-1 regarding the Waste Treatment and Immobilization Plant at Hanford (WTP) under construction in Richland, Washington. EM's responses were timely, and efforts have been

310

Savannah River Site - Tank 48 Briefing on SRS Tank 48 Independent Technical Review  

Broader source: Energy.gov (indexed) [DOE]

Tank 48 Tank 48 Independent Technical Review August 2006 2 SRS Tank 48 ITR SRS Tank 48 ITR Key ITR Observation Two distinct problems: Removing tetraphenylborate (TPB) waste and then cleaning the tank sufficiently to support return to service Processing contents to eliminate TPB hazard August 2006 3 SRS Tank 48 ITR SRS Tank 48 ITR Overarching ITR Conclusions 1. TPB Processing is on the right track - DOE/WSRC have selected the most promising candidates - Fluidized Bed Steam Reforming (FBSR) is the most technically attractive and mature of the candidate processes August 2006 4 SRS Tank 48 ITR SRS Tank 48 ITR Overarching Conclusions (continued) 2. Heel removal and tank cleanout will be a very challenging task. Compounding issues: - Physical difficulties in cleanout (access, congestion, etc.)

311

ORISE: Capacity Building  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

312

ISO New England Forward Capacity Market (Rhode Island) | Department of  

Broader source: Energy.gov (indexed) [DOE]

ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) ISO New England Forward Capacity Market (Rhode Island) < Back Eligibility Developer Industrial State/Provincial Govt Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Generating Facility Rate-Making Under the Forward Capacity Market (FCM), ISO New England projects the capacity needs of the region's power system three years in advance and then holds an annual auction to purchase the power resources that will satisfy those future regional requirements. Resources that clear in the auction are obligated to provide power or curtail demand when called upon by the ISO. The Forward Capacity Market was developed by ISO New England, the six New

313

Fuel-related accidents occur across the country at the rate of more than one per  

E-Print Network [OSTI]

Fuel-related accidents occur across the country at the rate of more than one per week. Fuel exhaustion, fuel starvation, or the failure to switch tanks at the correct time caused 120 accidents in 2002, these and other problems can be avoided with proper fueling procedures. RESPONSIBILITY STARTS WITH THE AIRPORT

Minnesota, University of

314

Mobility with Hydrogen Fuel Cells Becomes Reality! 2Daimler AG / 09.02.2012  

E-Print Network [OSTI]

Bio-Mass Natural Gas Crude Oil Conventional fuels sulphur-free, free of aromatic compounds fuels system & stack Electric engine H2 tank system Infrastructure Hydrogen costs Reliable refueling technology Synthetic fuels (GTL) sulphur-free, free of aromatic compounds Natural Gas (CNG) 1. Gen. Bio-Fuels (Ethanol

California at Davis, University of

315

Capacity expansion analysis in a chemical plant using linear programming  

Science Journals Connector (OSTI)

An analysis of the fuel additive production process of a US mid-western chemical manufacturer is described. Material balance constraints for each potential bottleneck of the manufacturing process are included as part of a linear programming model. Several capacity expansion scenarios are evaluated. The optimal way of modifying and expanding manufacturing capacity to meet forecast demand is determined.

Kenneth H. Myers; Reuven R. Levary

1996-01-01T23:59:59.000Z

316

Proceedings of the 2nd Annual Tank Integrity Workshop  

SciTech Connect (OSTI)

The production of nuclear weapons in the United States to help defeat the Axis Powers in World War II and to maintain national security during the Cold War required the construction of a vast nuclear facility complex in the 1940's and 1950's. These facilities housed nuclear reactors needed for the production of plutonium and chemical plants required to separate the plutonium from fission products and to convert plutonium compounds to pure plutonium metal needed for weapons. The chemical separation processes created ''high-level waste'' that was eventually stored in metal tanks at each site. These wastes and other nuclear wastes still reside at sites throughout the United States. At the Savannah River Site, a facility (the Defense Waste Processing Facility) has been constructed to vitrify stored high-level waste that will be transferred to the national high-level waste repository. The liquid wastes at the Idaho National Engineering and Environmental Laboratory have largely been stabilized as a mixture of oxide particles (calcines) but liquid wastes remain to be treated and the calcined waste will probably require further processing into a final, stable form. The Hanford Site is now in the initial stages of waste treatment facility design and has a large number of single-shell tanks, many of which are known to be leaking into the subsurface. The Oak Ridge Site, which did not produce ''high-level waste'' as defined by DOE, continues to rely upon tank storage for nuclear wastes although most of its older liquid wastes have been successfully stabilized. The site at West Valley, near Buffalo, NY, marks the location of the nation's only commercial fuel reprocessing facility. As a result of an agreement with the state of New York, the DOE assumed a major role in the stabilization of the high-level waste stored at this site and its eventual closure. A feature common to many of these sites is that they must continue to rely upon large underground tanks to store dangerously radioactive wastes and, in many cases, these tanks are at or have already exceeded their design lives. The DOE Tanks Focus Area (TFA) was created in 1996 to help develop new technologies to, in part, measure the integrity of these tanks so that their continued safe use could be assured.

M.C. Edelson; R. Bruce Thompson

2001-11-13T23:59:59.000Z

317

A Comparison of Immersive HMD, Fish Tank VR and Fish Tank with Haptics Displays for Volume Visualization  

E-Print Network [OSTI]

A Comparison of Immersive HMD, Fish Tank VR and Fish Tank with Haptics Displays for Volume: (1) head-mounted display (HMD); (2) fish tank VR (fish tank); and (3) fish tank VR augmented its structure. Fish tank and haptic participants saw the entire volume on-screen and rotated

Healey, Christopher G.

318

Pressure Build?Up in LNG and LH2 Vehicular Cryogenic Storage Tanks  

Science Journals Connector (OSTI)

The use of LNG and LH2 as fuels in heavy duty vehicles is increasing steadily because cryogenic liquids provides superior volumetric and gravimetric energy densities compared to other means of on?board storage. Although several sizes and types of tanks exist a typical vehicular storage tank has a volume of ?400 liters (?100 gallons). The pressure in the ullage space of a tank freshly filled is usually ?0.25 MPa but may vary during use from ?0.25 MPa (?20 psig) to ?0.92 MPa (?120 psig). Cryogenic vehicular tanks are typically dual?walled stainless steel vessels with vacuum and superinsulation isolation between the inner and outer vessel walls. The heat leaks into such tanks are measured as a percentage boil?off per day. For a storage tank of vehicular size range the boil?off may be ? 1 % day depending upon the cryogen and the quality of the tank. The corresponding heat leak into the cryogenic liquid vaporizes a certain amount of liquid that in turn increases the pressure in the tank which in turn significantly influences the properties of the cryogens. We have used a novel approach to calculate the increase in pressure of LNG and LH2 in a closed cryogenic vessel with a fixed heat leak as a function of time using real equations of state for the properties of the cryogens. The method and results for the time it takes for a freshly filled tank to increase in pressure from the filling pressure of ?0.25 MPa to a venting pressure of ?1.73 MPa are presented.

J. A. Barclay; A. M. Rowe; M. A. Barclay

2004-01-01T23:59:59.000Z

319

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

on technical and cost issues for hydrogen and fuel cellvehicle component costs (for fuel cells and hydrogenfuel cell durability, vehicle range and hydrogen station capacity and costs.

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

320

Transition from Consultation to Monitoring-NRC's Increasingly Focused Review of Factors Important to F-Area Tank Farm Facility Performance - 13153  

SciTech Connect (OSTI)

In consultation with the NRC, DOE issued a waste determination for the F-Area Tank Farm (FTF) facility in March 2012. The FTF consists of 22 underground tanks, each 2.8 to 4.9 million liters in capacity, used to store liquid high-level waste generated as a result of spent fuel reprocessing. The waste determination concluded stabilized waste residuals and associated tanks and auxiliary components at the time of closure are not high-level and can be disposed of as LLW. Prior to issuance of the final waste determination, during the consultation phase, NRC staff reviewed and provided comments on DOE's revision 0 and revision 1 FTF PAs that supported the waste determination and produced a technical evaluation report documenting the results of its multi-year review in October 2011. Following issuance of the waste determination, NRC began to monitor DOE disposal actions to assess compliance with the performance objectives in 10 CFR Part 61, Subpart C. To facilitate its monitoring responsibilities, NRC developed a plan to monitor DOE disposal actions. NRC staff was challenged in developing a focused monitoring plan to ensure limited resources are spent in the most cost-effective manner practical. To address this challenge, NRC prioritized monitoring areas and factors in terms of risk significance and timing. This prioritization was informed by NRC staff's review of DOE's PA documentation, independent probabilistic modeling conducted by NRC staff, and NRC-sponsored research conducted by the Center for Nuclear Waste Regulatory Analyses in San Antonio, TX. (authors)

Barr, Cynthia; Grossman, Christopher; Alexander, George; Parks, Leah; Fuhrmann, Mark; Shaffner, James; McKenney, Christepher [U.S. NRC, Rockville, MD (United States)] [U.S. NRC, Rockville, MD (United States); Pabalan, Roberto; Pickett, David [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, TX (United States)] [Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute, San Antonio, TX (United States); Dinwiddie, Cynthia [Southwest Research Institute, San Antonio, TX (United States)] [Southwest Research Institute, San Antonio, TX (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Technical assessment of compressed hydrogen storage tank systems for automotive applications.  

SciTech Connect (OSTI)

The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX, LLC)

2011-02-09T23:59:59.000Z

322

Plants in Your Gas Tank: From Photosynthesis to Ethanol  

K-12 Energy Lesson Plans and Activities Web site (EERE)

With ethanol becoming more prevalent in the media and in gas tanks, it is important for students to know from where it comes. This module uses a series of activities to show how energy and mass are converted from one form to another. It focuses on the conversion of light energy into chemical energy via photosynthesis. It then goes on to show how the chemical energy in plant sugars can be fermented to produce ethanol. Finally, the reasons for using ethanol as a fuel are discussed.

323

Sensitivity analysis of potential events affecting the double-shell tank system and fallback actions  

SciTech Connect (OSTI)

Sensitivity analyses were performed for fall-back positions (i.e., management actions) to accommodate potential off-normal and programmatic change events overlaid on the waste volume projections and their uncertainties. These sensitivity analyses allowed determining and ranking tank system high-risk parameters and fall- back positions that will accommodate the respective impacts. This quantification of tank system impacts shows periods where tank capacity is sensitive to certain variables that must be carefully managed and/or evaluated. Identifying these sensitive variables and quantifying their impact will allow decision makers to prepare fall-back positions and focus available resources on the highest impact parameters where technical data are needed to reduce waste projection uncertainties. For noncomplexed waste, the period of capacity vulnerability occurs during the years of single-shell tank (SST) retrieval (after approximately 2009) due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate and 200-East SST solids transfer volume. For complexed waste, the period of capacity vulnerability occurs during the period after approximately 2005 due to the sensitivity to several variables. Ranked by importance these variables include the pretreatment rate. 200-East SST solids transfer volume. complexed waste reduction factor using evaporation, and 200-west saltwell liquid porosity.

Knutson, B.J.

1996-09-27T23:59:59.000Z

324

Life Extension of Aging High-Level Waste Tanks  

SciTech Connect (OSTI)

The Double Shell Tanks (DSTs) play a critical role in the Hanford High-Level Waste Treatment Complex, and therefore activities are underway to protect and better understand these tanks. The DST Life Extension Program is focused on both tank life extension and on evaluation of tank integrity. Tank life extension activities focus on understanding tank failure modes and have produced key chemistry and operations controls to minimize tank corrosion and extend useful tank life. Tank integrity program activities have developed and applied key technologies to evaluate the condition of the tank structure and predict useful tank life. Program results to date indicate that DST useful life can be extended well beyond the original design life and allow the existing tanks to fill a critical function within the Hanford High-Level Waste Treatment Complex. In addition the tank life may now be more reliably predicted, facilitating improved planning for the use and possible future replacement of these tanks.

Bryson, D.; Callahan, V.; Ostrom, M.; Bryan, W.; Berman, H.

2002-02-26T23:59:59.000Z

325

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010...

326

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Dakota Incentives and Laws Dakota Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biofuels Infrastructure Grants Expired: 04/30/2013 Through the Biofuels Blender Pump Program, the North Dakota Department of Commerce offers cost-share grants of up to $5,000 per fueling pump, up to $20,000 per retail location, to motor fuel retailers who install qualified biofuel blender pumps and associated equipment. Qualified retailers are also eligible for grants of up to $14,000 at each retail location for tanks and piping installed at the same time the blender pump is installed. A qualified ethanol retail blender pump must:

327

241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity  

SciTech Connect (OSTI)

This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

2013-07-30T23:59:59.000Z

328

Chemical composition of Hanford Tank SY-102  

SciTech Connect (OSTI)

The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposal in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.

Birnbaum, E.; Agnew, S.; Jarvinen, G.; Yarbro, S.

1993-12-01T23:59:59.000Z

329

High Pressure Hydrogen Tank Manufacturing  

Broader source: Energy.gov [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011.

330

TASK TECHNICAL AND QUALITY ASSURANCE PLAN FOR THE CHARACTERIZATION AND LEACHING OF A THERMOWELL AND CONDUCTIVITY PROBE PIPE SAMPLE FROM TANK 48H  

SciTech Connect (OSTI)

A key component for the accelerated implementation and operation of the Salt Waste Processing Facility (SWPF) is the recovery of Tank 48H. Tank 48H is a type IIIA tank with a maximum capacity of 1.3 million gallons. The material on the Tank 48H internal tank surfaces is estimated to have a total volume of approximately 115 gallons consisting of mostly water soluble solids with approximately 20 wt% insoluble solids (33 Kg TPB). This film is assumed to be readily removable. The material on the internal equipment/surfaces of Tank 48H is presumed to be easily removed by slurry pump operation. For Tank 49H, the slurry pumps were operated almost continuously for approximately 6 months after which time the tank was inspected and the film was found to be removed. The major components of the Tank 49H film were soluble solids--Na{sub 3}H(CO){sub 2}, Al(OH){sub 3}, NaTPB, NaNO{sub 3} and NaNO{sub 2}. Although the Tank 48H film is expected to be primarily soluble solids, it may not behave the same as the Tank 49H film. Depending on when the Recycle material or inhibited water can be added to Tank 48H, the tank may not be allowed to agitate for this same amount of time. The tank will be filled above 150 inches and agitated at least once during the Aggregation process. If the material cannot be removed after completion of these batches, the material may be removed with additional fill and agitation operations. There is a risk that this will not remove the material from the internal surfaces. As a risk mitigation activity, properties of the film and the ease of removing the film from the tank will be evaluated prior to initiating Aggregation. This task will investigate the dissolution of Tank 48H solid deposits in inhibited water and DWPF recycle. To this end, tank personnel plan to cut and remove a thermowell pipe from Tank 48H and submit the cut pieces to SRNL for both characterization and leaching behavior. A plan for the removal, packaging and transport of the thermowell pipe has been issued. This task plan outlines the proposed method of analysis and testing to estimate (1) the thickness of the solid deposit, (2) chemical composition of the deposits and (3) the leaching behavior of the solid deposits in inhibited water (IW) and in Tank 48H aggregate solution.

Fondeur, F

2005-11-02T23:59:59.000Z

331

Liquid heat capacity lasers  

DOE Patents [OSTI]

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

332

Need for tighter controls over fuel purchased by the Postal Service  

SciTech Connect (OSTI)

The US Postal Service uses nearly 90 million gallons of gasoline and diesel fuel each year. In fiscal year 1980, the cost of this fuel was expected to be $100 million, and the cost will increase as fuel prices continue to rise. This GAO study finds that the Service needs to change the way it controls fuel. To reduce the susceptibility to fraud, abuse, and waste in the procurement and use of fuel, GAO recommends that the Postmaster General vigorously enforce procedures for verifying fuel deliveries, including maintaining verification records for independent audit; initiate a program to test the quality of fuel received; insure that guidelines for bulk-tank security are followed at all facilities; insure that all fuel dispensed from bulk fuel tanks is accounted for; require drivers to obtain receipts from commercial service stations or record fuel and oil purchases on documents controlled by the Postal Service; and obtain better data on the use of fuel by vehicle drivers.

Staats, E.B.

1980-07-31T23:59:59.000Z

333

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

334

Nanofluid heat capacities  

Science Journals Connector (OSTI)

Significant increases in the heat capacity of heat transfer fluids are needed not only to reduce the costs of liquid heating and cooling processes but also to bring clean energy producing technologies like concentrating solar power (CSP) to price parity with conventional energy generation. It has been postulated that nanofluids could have higher heat capacities than conventional fluids. In this work nano- and micron-sized particles were added to five base fluids (poly-? olefin mineral oil ethylene glycol a mixture of water and ethylene glycol and calcium nitrate tetrahydrate) and the resulting heat capacities were measured and compared with those of the neat base fluids and the weighted average of the heat capacities of the components. The particles used were inert metals and metal oxides that did not undergo any phase transitions over the temperature range studied. In the nanofluids studied here we found no increase in heat capacity upon the addition of the particles larger than the experimental error.

Anne K. Starace; Judith C. Gomez; Jun Wang; Sulolit Pradhan; Greg C. Glatzmaier

2011-01-01T23:59:59.000Z

335

O J J B U J J O J U I  

Gasoline and Diesel Fuel Update (EIA)

Energy Sources Supplied to Building, 1983 ... 81 17. Fuel Oil Tanks and Total Tank Capacity, 1983 ... 83 18. Changes in Usage of...

336

Nuclear fuel cycle information workshop  

SciTech Connect (OSTI)

This overview of the nuclear fuel cycle is divided into three parts. First, is a brief discussion of the basic principles of how nuclear reactors work; second, is a look at the major types of nuclear reactors being used and world-wide nuclear capacity; and third, is an overview of the nuclear fuel cycle and the present industrial capability in the US.

Not Available

1983-01-01T23:59:59.000Z

337

Tank characterization report for single-shell tank 241-U-110  

SciTech Connect (OSTI)

This tank characterization report for Tank 241-U-110 was initially released as WHC-EP-0643. This document is now being released as WHC- SD-WM-ER-551 in order to accommodate internet publishing.

Brown, T.M., Westinghouse Hanford

1996-05-23T23:59:59.000Z

338

Optimal Tank Farm Operation Sebastian Terrazas-Moreno  

E-Print Network [OSTI]

Optimal Tank Farm Operation Sebastian Terrazas-Moreno Ignacio E. Grossmann John M. Wassick EWOIn collaboration with The Dow Chemical Company #12;A tank farm is a set of storage tanks that hold finished product until it is shipped Each tank can only hold one Loading of product takes place only from storage tanks

Grossmann, Ignacio E.

339

DEPARTMENf OF NUCLEAR PHYSICS TANK OPENING REPORT NO 62  

E-Print Network [OSTI]

DEPARTMENf OF NUCLEAR PHYSICS TANK OPENING REPORT NO 62 This report covers three tank openings; 2 history. We were plagued throughout these tank openings by poor beam transmission and spent most of our have, were manufactured and installed. The first tank opening2 May t.o 6 May 1988. This tank opening

Chen, Ying

340

High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6/2010 6/2010 www.cleanvehicle.org 1 High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues DOE Vehicular Tank Workshop April 29, 2010 Douglas Horne, PE The Facts  High pressure Type 4 gaseous fuel tanks are now designed under standards that specify finite lifetimes of 15, 20 and 25 years based on specific design and testing (the HGV2 standard under development had a life as short as 10 years as an option)  It is unique within the transportation industry to have a critical device (the fuel tank) with a designated life that may be shorter than the vehicle itself  Although vehicle owners are told up front of the limited life fuel storage cylinders some tend to forget after 15 years  A parallel concern is the requirement for these fuel tanks

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FY 1996 Tank waste analysis plan  

SciTech Connect (OSTI)

This Tank Waste Analysis Plan (TWAP) describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project to plan, schedule, obtain, and document characterization information on Hanford waste tanks. This information is required to meet several commitments of Programmatic End-Users and the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement. This TWAP applies to the activities scheduled to be completed in fiscal year 1996.

Homi, C.S.

1996-09-18T23:59:59.000Z

342

ANNUAL RADIOACTIVE WASTE TANK INSPECTION PROGRAM 2010  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations and vitrification processes are contained in large underground carbon steel tanks. Inspections made during 2010 to evaluate these vessels and other waste handling facilities along with evaluations based on data from previous inspections are the subject of this report. The 2010 inspection program revealed that the structural integrity and waste confinement capability of the Savannah River Site waste tanks were maintained. All inspections scheduled per SRR-LWE-2009-00138, HLW Tank Farm Inspection Plan for 2010, were completed. Ultrasonic measurements (UT) performed in 2010 met the requirements of C-ESG-00006, In-Service Inspection Program for High Level Waste Tanks, Rev. 3, and WSRC-TR-2002-00061, Rev.6. UT inspections were performed on Tanks 30, 31 and 32 and the findings are documented in SRNL-STI-2010-00533, Tank Inspection NDE Results for Fiscal Year 2010, Waste Tanks 30, 31 and 32. A total of 5824 photographs were made and 1087 visual and video inspections were performed during 2010. Ten new leaksites at Tank 5 were identified in 2010. The locations of these leaksites are documented in C-ESR-G-00003, SRS High Level Waste Tank Leaksite Information, Rev.5. Ten leaksites at Tank 5 were documented during tank wall/annulus cleaning activities. None of these new leaksites resulted in a release to the environment. The leaksites were documented during wall cleaning activities and the waste nodules associated with the leaksites were washed away. Previously documented leaksites were reactivated at Tank 12 during waste removal activities.

West, B.; Waltz, R.

2011-06-23T23:59:59.000Z

343

Tank 241-C-107 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

344

Tank 241-TY-103 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-TY-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

345

Tank 241-T-107 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-T-107. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

346

Tank 241-C-105 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-105. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

347

Tank 241-C-102 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-102. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

348

Tank 241-C-106 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-106. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

349

Tank 241-B-103 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-B-103. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

350

Tank 241-BX-104 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-BX-104. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

351

Tank 241-C-109 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-109. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

352

Tank 241-C-111 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-111. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

353

Tank 241-C-110 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-C-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedure that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

354

Tank 241-BY-110 vapor sampling and analysis tank characterization report. Revision 1  

SciTech Connect (OSTI)

This report presents the details of the Hanford waste tank characterization study for tank 241-BY-110. The drivers and objectives of the headspace vapor sampling and analysis were in accordance with procedures that were presented in other reports. The vapor and headspace gas samples were collected and analyzed to determine the potential risks to the tank farm workers due to fugitive emissions from the tank.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

355

High-Pressure Tube Trailers and Tanks  

Broader source: Energy.gov (indexed) [DOE]

bending stress: continuous fiber vessels and vessels made of replicants Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize...

356

Liquid Fuels Market Module  

U.S. Energy Information Administration (EIA) Indexed Site

Liquid Fuels Market Module Liquid Fuels Market Module This page inTenTionally lefT blank 145 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil (both domestic and imported), petroleum product imports, unfinished oil imports, other refinery inputs (including alcohols, ethers, esters, corn, biomass, and coal), natural gas plant liquids production, and refinery processing gain. In addition, the LFMM projects capacity expansion and fuel consumption at domestic refineries. The LFMM contains a linear programming (LP) representation of U.S. petroleum refining

357

Renewable Fuels Module This  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Module Fuels Module This page inTenTionally lefT blank 175 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve

358

Alternative Fuels at AC Transit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Fuels at AC Transit Alternative Fuels at AC Transit Speaker(s): Jaimie Levin Date: November 1, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Eve Edelson Mr. Levin will discuss AC Transit's range of environmental technology initiatives, including: zero emission fuel cell transit buses; state-of-the-art, high-capacity, hydrogen fueling stations; solar energy systems; and stationary solid oxide fuel cell power generators. AC Transit has the largest fleet of fuel cell buses in the United States, featuring fuel cell systems with more than 10,000 hours of continuous operation without any failures or power degradation. Their fuel cell fleet has logged more than 400,000 miles of service and carried in excess of one million passengers. Come hear what AC Transit has learned, where they're headed,

359

Supporting document for the historical tank content estimate for A-Tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on A-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H.

1996-06-28T23:59:59.000Z

360

Supporting document for the historical tank content estimate for the S-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on S-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

Brevick, C.H., Fluor Daniel Hanford

1997-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Supporting document for the historical tank content estimate for C-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on C-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H.

1996-06-28T23:59:59.000Z

362

Supporting document for the historical tank content estimate for AY-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on AY-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford, Fluor Daniel Hanford

1997-03-12T23:59:59.000Z

363

Supporting document for the historical tank content estimate for the SX-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on SX-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

Brevick, C.H., Fluor Daniel Hanford

1997-02-25T23:59:59.000Z

364

Supporting document for the historical tank content estimate for B-Tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on B-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H.

1996-06-28T23:59:59.000Z

365

Supporting document for the historical tank content estimate of U-tank fram  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on U-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southwest Quadrant of the Hanford 200 West Area.

Brevick, C.H., Fluor Daniel Hanford

1997-02-26T23:59:59.000Z

366

Supporting document for the historical tank content estimate for AP-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on AP-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-06T23:59:59.000Z

367

Supporting document for the historical tank content estimate for AW-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on AW-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

Brevick, C.H., Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-06T23:59:59.000Z

368

Supporting document for the historical tank content estimate for BY-Tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on BY-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H.

1996-06-28T23:59:59.000Z

369

Supporting document for the historical tank content estimate for AX-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on AX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H., Westinghouse Hanford

1996-06-28T23:59:59.000Z

370

Supporting document for the historical tank content estimate for BX-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on BX-Tank Farm, such as historical waste transfer and level data, tank physical information,temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the northeast quadrant of the Hanford 200 East Area.

Brevick, C.H.

1996-06-28T23:59:59.000Z

371

Supporting document for the historical tank content estimate for AN-tank farm  

SciTech Connect (OSTI)

This Supporting Document provides historical in-depth characterization information on AN-Tank Farm, such as historical waste transfer and level data, tank physical information, temperature plots, liquid observation well plots, chemical analyte and radionuclide inventories for the Historical Tank Content Estimate Report for the Southeast Quadrant of the Hanford 200 Areas.

Brevick, C.H.; Stroup, J.L.; Funk, J.W., Fluor Daniel Hanford

1997-03-06T23:59:59.000Z

372

Supporting document for the historical tank content estimate for S tank farm  

SciTech Connect (OSTI)

This document provides historical evaluations of the radioactive mixed wastes stored in the Hanford Site 200 West Area underground single-shell tanks (SSTs). A Historical Tank Content Estimate has been developed by reviewing the process histories, waste transfer data, and available physical and chemical characterization data from various Department of Energy (DOE) and Department of Defense (DOD) contractors. The historical data will supplement information gathered from in-tank core sampling activities that are currently underway. A tank history review that is accompanied by current characterization data creates a complete and reliable inventory estimate. Additionally, historical review of the tanks may reveal anomalies or unusual contents that are critical to characterization and post characterization activities. Complete and accurate tank waste characterizations are critical first steps for DOE and Westinghouse Hanford Company safety programs, waste pretreatment, and waste retrieval activities. The scope of this document is limited to all the SSTs in the S Tank Farm of the southwest quadrant of the 200 West Area. Nine appendices compile data on: tank level histories; temperature graphs; surface level graphs; drywell graphs; riser configuration and tank cross section; sampling data; tank photographs; unknown tank transfers; and tank layering comparison. 113 refs.

Brevick, C.H.; Gaddis, L.A.; Walsh, A.C.

1994-06-01T23:59:59.000Z

373

Tank 241-C-101 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank C-101 headspace gas and vapor samples were collected and analyzed to help determine the potential risks of fugitive emissions to tank farm workers. Gas and vapor samples from the Tank C-101 headspace were collected on July 7, 1994 using the in situ sampling (ISS) method, and again on September 1, 1994 using the more robust vapor sampling system (VSS). Gas and vapor concentrations in Tank C-101 are influenced by its connections to other tanks and its ventilation pathways. At issue is whether the organic vapors in Tank C-101 are from the waste in that tank, or from Tanks C-102 or C-103. Tank C-103 is on the Organic Watch List; the other two are not. Air from the Tank C-101 headspace was withdrawn via a 7.9-m long heated sampling probe mounted in riser 8, and transferred via heated tubing to the VSS sampling manifold. The tank headspace temperature was determined to be 34.0 C, and all heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 39 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks provided by the laboratories.

Huckaby, J.L.

1995-05-31T23:59:59.000Z

374

Math 315 Exam #3 Solutions in Brief 1. (20 points) Two tanks contain 10 liters of water each. Initially tank  

E-Print Network [OSTI]

Math 315 Exam #3 Solutions in Brief 1. (20 points) Two tanks contain 10 liters of water each. Initially tank 1 contains no salt and tank 2 contains 246 grams of salt. Water con- taining 50 grams of salt per liter is added to tank 1 at the rate 2 liters/minute. Water containing no salt is added to tank 2

375

Transportation Fuel Basics - Propane | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Propane Propane Transportation Fuel Basics - Propane July 30, 2013 - 4:31pm Addthis Photo of a man standing next to a propane fuel pump with a tank in the background. Propane, also known as liquefied petroleum gas (LPG or LP-gas), or autogas in Europe, is a high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles. Propane is a three-carbon alkane gas (C3H8). Stored under pressure inside a tank, propane turns into a colorless, odorless liquid. As pressure is released, the liquid propane vaporizes and turns into gas that is used for combustion. An odorant, ethyl mercaptan, is added for leak detection. Propane has a high octane rating and excellent properties for spark-ignited internal combustion engines. It is nontoxic and presents no threat to soil,

376

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

377

Panama Canal capacity analysis  

SciTech Connect (OSTI)

Predicting the transit capacities of the various Panama Canal alternatives required analyzing data on present Canal operations, adapting and extending an existing computer simulation model, performing simulation runs for each of the alternatives, and using the simulation model outputs to develop capacity estimates. These activities are summarized in this paper. A more complete account may be found in the project final report (TAMS 1993). Some of the material in this paper also appeared in a previously published paper (Rosselli, Bronzini, and Weekly 1994).

Bronzini, M.S. [Oak Ridge National Lab., Knoxville, TN (United States). Center for Transportation Analysis

1995-04-27T23:59:59.000Z

378

Hanford Site C Tank Farm Meeting Summary - September 2010 | Department...  

Office of Environmental Management (EM)

10 Hanford Site C Tank Farm Meeting Summary - September 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

379

Hanford Site C Tank Farm Meeting Summary - September 2009 | Department...  

Office of Environmental Management (EM)

09 Hanford Site C Tank Farm Meeting Summary - September 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

380

Hanford Site C Tank Farm Meeting Summary - January 2011 | Department...  

Office of Environmental Management (EM)

January 2011 Hanford Site C Tank Farm Meeting Summary - January 2011 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hanford Site C Tank Farm Meeting Summary - May 2009 | Department...  

Office of Environmental Management (EM)

Hanford Site C Tank Farm Meeting Summary - May 2009 Hanford Site C Tank Farm Meeting Summary - May 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance...

382

Hanford Site C Tank Farm Meeting Summary - July 2010 | Department...  

Office of Environmental Management (EM)

July 2010 Hanford Site C Tank Farm Meeting Summary - July 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

383

Independent Oversight Activity Report, Hanford Tank Farms - March...  

Broader source: Energy.gov (indexed) [DOE]

Tank Farms - March 10-12, 2014 Independent Oversight Activity Report, Hanford Tank Farms - March 10-12, 2014 March 10-12, 2014 Hanford Tank Farm Operations HIAR-HANFORD-2014-03-10...

384

Hanford Site C Tank Farm Meeting Summary - May 2010 | Department...  

Office of Environmental Management (EM)

0 Hanford Site C Tank Farm Meeting Summary - May 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm Meeting...

385

Hanford Site C Tank Farm Meeting Summary - October 2009 | Department...  

Office of Environmental Management (EM)

October 2009 Hanford Site C Tank Farm Meeting Summary - October 2009 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

386

Hanford Site C Tank Farm Meeting Summary - January 2010 | Department...  

Office of Environmental Management (EM)

January 2010 Hanford Site C Tank Farm Meeting Summary - January 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Hanford Site C Tank Farm...

387

Hydrogen Tank Testing R&D | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Tank Testing R&D Hydrogen Tank Testing R&D These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. hydrogentanktestingostw.pdf More Documents...

388

HH22 Reformer, Fuel Cell Power Plant,Reformer, Fuel Cell Power Plant, & Vehicle Refueling System& Vehicle Refueling System  

E-Print Network [OSTI]

sufficient hydrogen demand develops. #12;4 Relevant DOE Program Objectives Reduce dependence on foreign oil Promote use of diverse, domestic energy resources ­ Natural gas reformation Develop and demonstrate on test fill tank, CNG/H2 ICE vehicles and H2 Fuel Cell vehicles. Fuel dispensing integrated with City

389

Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems- A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions  

Broader source: Energy.gov [DOE]

A complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis that examines the use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

390

High Pressure Hydrogen Tank Manufacturing  

Broader source: Energy.gov (indexed) [DOE]

Cycles Fuel Lines * 10,000 psi nominal working pressure * O-ring face seal connections * CNC bent to CAD data * 316 Stainless Steel (Other materials available) * Welded end form or...

391

Double-Shell Tank Visual Inspection Changes Resulting from the Tank 241-AY-102 Primary Tank Leak  

SciTech Connect (OSTI)

As part of the Double-Shell Tank (DST) Integrity Program, remote visual inspections are utilized to perform qualitative in-service inspections of the DSTs in order to provide a general overview of the condition of the tanks. During routine visual inspections of tank 241-AY-102 (AY-102) in August 2012, anomalies were identified on the annulus floor which resulted in further evaluations. In October 2012, Washington River Protection Solutions, LLC determined that the primary tank of AY-102 was leaking. Following identification of the tank AY-102 probable leak cause, evaluations considered the adequacy of the existing annulus inspection frequency with respect to the circumstances of the tank AY-102 1eak and the advancing age of the DST structures. The evaluations concluded that the interval between annulus inspections should be shortened for all DSTs, and each annulus inspection should cover > 95 percent of annulus floor area, and the portion of the primary tank (i.e., dome, sidewall, lower knuckle, and insulating refractory) that is visible from the annulus inspection risers. In March 2013, enhanced visual inspections were performed for the six oldest tanks: 241-AY-101, 241-AZ-101,241-AZ-102, 241-SY-101, 241-SY-102, and 241-SY-103, and no evidence of leakage from the primary tank were observed. Prior to October 2012, the approach for conducting visual examinations of DSTs was to perform a video examination of each tank's interior and annulus regions approximately every five years (not to exceed seven years between inspections). Also, the annulus inspection only covered about 42 percent of the annulus floor.

Girardot, Crystal L. [Washington River Protection Solutions, Richland, WA (United States); Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States); Johnson, Jeremy M. [USDOE Office of River Protection, Richland, WA (United States); Engeman, Jason K. [Washington River Protection Solutions, Richland, WA (United States)

2013-11-14T23:59:59.000Z

392

Fuel Tank Manufacturing, Testing, Field Performance, and Certification  

Broader source: Energy.gov [DOE]

Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA.

393

Alternative Fuels Data Center: Propane Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Exemption Exemption to someone by E-mail Share Alternative Fuels Data Center: Propane Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Propane Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Google Bookmark Alternative Fuels Data Center: Propane Tax Exemption on Delicious Rank Alternative Fuels Data Center: Propane Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Propane Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Propane Tax Exemption Liquefied petroleum gas (propane) is exempt from the state fuel excise tax when sold from a licensed propane vendor to a licensed propane user or a propane vehicle owner if it is delivered into a bulk storage tank that can

394

Fuel Cycle Research and Development Program  

Broader source: Energy.gov (indexed) [DOE]

Development Program Presentation to Office of Environmental Management Tank Waste Corporate Board James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission Changes from the Former Advanced Fuel Cycle Initiative The Science-Based Approach Key Collaborators Budget History Program Elements Summary July 29, 2009 Fuel Cycle Research and Development DM 195665 3 Fuel Cycle R&D Mission The mission of Fuel Cycle Research and Development is to develop options to current fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while reducing proliferation risks by conducting

395

Capacity computations of right-turn-on-red using the Highway Capacity Manual  

SciTech Connect (OSTI)

Right-turn-on-red (RTOR) is a traffic control strategy at signalized intersections that allows vehicles to turn right during red phases provided they do not impede the vehicles and pedestrians in green phases. RTOR is primarily a delay and energy conservation measure. Several studies that examined the impact of RTOR on vehicular delays have shown the potential of reducing fuel consumption by about 5 percent on urban streets. The reduction of delay and fuel consumption is related to extra capacity because RTOR allows vehicles to pass through an intersection in red phases. The extra capacity can be significant if an exclusive right-turn lane is provided. The 1985 {ital Highway Capacity Manual} (HCM) provides a powerful technique for evaluating how well an intersection will operate. This technique, however, is less successful in dealing with intersections where RTOR movement is permitted because it requires the analyst to supply RTOR volumes. This situation has led to a need for a formula to compute RTOR capacity. This paper proposes a method to calculate this capacity.

Luh, J.Z. (Langan Engineering Associates, NJ (US)); Lu, Y.J. (Concordia Univ., Loyola Campus, Montreal, PQ (Canada))

1990-04-01T23:59:59.000Z

396

Tanks Focus Area annual report FY2000  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

None

2000-12-01T23:59:59.000Z

397

Phase Chemistry of Tank Sludge Residual Components  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has millions of gallons of high level nuclear waste stored in underground tanks at Hanford, Washington and Savannah River, South Carolina. These tanks will eventually be emptied and decommissioned. This will leave a residue of sludge adhering to the interior tank surfaces that may contaminate nearby groundwaters with radionuclides and RCRA metals. Performance assessment (PA) calculations must be carried out prior to closing the tanks. This requires developing radionuclide release models from the sludges so that the PA calculations can be based on credible source terms. These efforts continued to be hindered by uncertainties regarding the actual nature of the tank contents and the distribution of radionuclides among the various phases. In particular, it is of vital importance to know what radionuclides are associated with solid sludge components. Experimentation on actual tank sludges can be difficult, dangerous and prohibitively expensive. The research funded under this grant for the past three years was intended to provide a cost-effective method for developing the needed radionuclide release models using non-radioactive artificial sludges. Insights gained from this work will also have more immediate applications in understanding the processes responsible for heel development in the tanks and in developing effective technologies for removing wastes from the tanks.

J.L. Krumhansl

2002-04-02T23:59:59.000Z

398

Application of infrared imaging in ferrocyanide tanks  

SciTech Connect (OSTI)

This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues.

Morris, K.L.; Mailhot, R.B. Jr.; McLaren, J.M.; Morris, K.L.

1994-09-28T23:59:59.000Z

399

Annual radioactive waste tank inspection program: 1995  

SciTech Connect (OSTI)

Aqueous radioactive wastes from Savannah River Site (SRS) separations processes are contained in large underground carbon steel tanks. Inspections made during 1995 to evaluate these vessels and evaluations based on data accrued by inspections performed since the tanks were constructed are the subject of this report

McNatt, F.G. Sr.

1996-04-01T23:59:59.000Z

400

Utah Underground Storage Tank Installation Permit | Open Energy...  

Open Energy Info (EERE)

Underground Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type...

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Independent Oversight Review, Hanford Site Tank Farms - February...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- February 2014 Independent Oversight Review, Hanford Site Tank Farms - February 2014 February 2014 Review of the Hanford Tank Farms Safety Management Program Implementation for...

402

Hanford Site C Tank Farm Meeting Summary - March 2010 | Department...  

Office of Environmental Management (EM)

March 2010 Hanford Site C Tank Farm Meeting Summary - March 2010 Meeting Summary for Development of the Hanford Site C Tank Farm Performance Assessment Meeting Summary for...

403

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which includes disposition of the SSTs, ancillary equipment, and soils. The SST (149 tanks) and DST (28 tanks) systems contain both hazardous and radioactive waste (mixed...

404

Tank Closure and Waste Management Environmental Impact Statement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington" and "Environmental Impact Statement for the...

405

Progress Continues Toward Closure of Two Underground Waste Tanks...  

Office of Environmental Management (EM)

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site...

406

Pump targets hydrogen risk in nuclear waste tank  

Science Journals Connector (OSTI)

Pump targets hydrogen risk in nuclear waste tank ... Researchers believe that thermal and radiolytic breakdown of organic compounds in the tank's wastes produces the hydrogen. ...

DEBORAH ILLMAN

1993-07-12T23:59:59.000Z

407

Technical Assessment of Compressed Hydrogen Storage Tank Systems...  

Broader source: Energy.gov (indexed) [DOE]

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive...

408

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...  

Broader source: Energy.gov (indexed) [DOE]

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for...

409

Haynes Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Haynes Tow Tank Haynes Tow Tank Jump to: navigation, search Basic Specifications Facility Name Haynes Tow Tank Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Tow Tank Length(m) 45.7 Beam(m) 3.7 Depth(m) 3.0 Water Type Freshwater Cost(per day) $150/hour (excluding labor) Special Physical Features The tank includes a 7.6m by 3.7m by 1.5m deep sediment pit. Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 1.8 Length of Effective Tow(m) 24.4 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description National Instruments LabView Number of channels 40 Cameras Yes Number of Color Cameras 6 Description of Camera Types 3 video; 3 digital

410

Hydrogen peroxide sensing with microstructured optical fibres : fuel, wine & babies.  

E-Print Network [OSTI]

??The capacity to measure the concentration of hydrogen peroxide in solution is critical for many disparate application areas, including wine quality sensing, aviation fuel monitoring (more)

Schartner, Erik Peter

2012-01-01T23:59:59.000Z

411

E-Print Network 3.0 - aboveground storage tanks Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: aboveground storage tanks...

412

Capacity and Energy Payments to Small Power Producers and Cogenerators  

Broader source: Energy.gov (indexed) [DOE]

Capacity and Energy Payments to Small Power Producers and Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Green Power Purchasing Renewables Portfolio Standards and Goals Docket No. 4822 was enacted by the Georgia Public Service Commission in accordance with The Public Utility Regulatory Policies Act of 1978 (PURPA)

413

Hanford immobilized low-activity tank waste performance assessment  

SciTech Connect (OSTI)

The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.

Mann, F.M.

1998-03-26T23:59:59.000Z

414

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage  

E-Print Network [OSTI]

. Hydrogen Storage #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 200 #12 square inch (psi) 7.5 wt % and 8.5 wt% Type IV composite hydrogen storage tanks of specified sizes for DOE Future Truck and Nevada hydrogen bus programs · Demonstrate 10,000 psi storage tanks Approach

415

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

416

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

417

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

418

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

419

Dual capacity reciprocating compressor  

DOE Patents [OSTI]

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

420

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir  

E-Print Network [OSTI]

with hydrogen economy scenario. 4. Research Approach and Results Survey of fuel cell water ASU lab fuel cell Capacity (kW) 5 ­ 150 5 ­ 250 5 50 ­ 1100 100 ­ 2000 100 ­ 250 PEM Fuel cell Oxygen (From air) Hydrogen Implications of Using water from Fuel Cells in a Hydrogen Economy · Hydrogen as an energy and water carrier

Keller, Arturo A.

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Smart Onboard Inspection of High Pressure Gas Fuel Cylinders  

SciTech Connect (OSTI)

The use of natural gas as an alternative fuel in automotive applications is not widespread primarily because of the high cost and durability of the composite storage tanks. Tanks manufactured using carbon fiber are desirable in weight critical passenger vehicles because of the low density of carbon fiber. The high strength of carbon fiber also translates to a weight reduction because thinner wall designs are possible to withstand the internal pressure loads. However, carbon fiber composites are prone to impact damage that over the life of the storage tank may lead to an unsafe condition for the vehicle operator. A technique that potentially may be a reliable indication of developing hazardous conditions in composite fuel tanks is imbedded fiber optics. The applicability of this technique to onboard inspection is discussed and results from preliminary lab testing indicate that fiber optic sensors can reliably detect impact damage.

Beshears, D.L.; Starbuck, J.M.

1999-09-27T23:59:59.000Z

422

Power production of hydroelectric stations calculated for providing fuel to power systems with a large share of hydroelectric stations  

Science Journals Connector (OSTI)

1. With the existing capacity of fuel depots at thermal power stations in the Siberian power pool, the following...

A. Sh. Reznikovskii; M. I. Rubinshtein

1997-03-01T23:59:59.000Z

423

Savannah River Tank Waste Residuals  

Broader source: Energy.gov (indexed) [DOE]

Savannah Savannah River Savannah River Tank Waste Residuals HLW Corporate Board November 6, 2008 1 November 6, 2008 Presentation By Sherri R. Ross Department of Energy Savannah River Operations Office The Issue * How clean is clean? * Ultimate Challenge - Justify highly radioactive radionuclides have been removed to the maximum extent practical? 2 removed to the maximum extent practical? - Building compelling regulatory documentation that will withstand intense scrutiny §3116 Requirements 1. Does not require disposal in deep geological repository 2. Highly radioactive radionuclides removed to the maximum extent practical 3. Meet the performance objectives in 10 CFR Part 3 3. Meet the performance objectives in 10 CFR Part 61, Subpart C 4. Waste disposed pursuant to a State-approved closure plan or permit Note: If it is anticipated that Class C disposal limits will be exceeded, additional

424

Fuel | OpenEI  

Open Energy Info (EERE)

Fuel Fuel Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 103, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Energy Generation Fuel Westchester Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Northeast Power Coordinating Council / NYC-Westchester- Reference Case (xls, 118.8 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

425

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Broader source: Energy.gov (indexed) [DOE]

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

426

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Broader source: Energy.gov (indexed) [DOE]

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

427

Capacity of steganographic channels  

Science Journals Connector (OSTI)

An information-theoretic approach is used to determine the amount of information that may be safely transferred over a steganographic channel with a passive adversary. A steganographic channel, or stego-channel is a pair consisting of the channel transition ... Keywords: information spectrum, information theory, steganalysis, steganographic capacity, steganography, stego-channel

Jeremiah J. Harmsen; William A. Pearlman

2005-08-01T23:59:59.000Z

428

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications  

SciTech Connect (OSTI)

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

2011-10-05T23:59:59.000Z

429

TANK MIXING STUDY WITH FLOW RECIRCULATION  

SciTech Connect (OSTI)

The primary objective of this work is to quantify the mixing time when two miscible fluids are mixed by one recirculation pump and to evaluate adequacy of 2.5 hours of pump recirculation to be considered well mixed in SRS tanks, JT-71/72. The work scope described here consists of two modeling analyses. They are the steady state flow pattern analysis during pump recirculation operation of the tank liquid and transient species transport calculations based on the initial steady state flow patterns. The modeling calculations for the mixing time are performed by using the 99% homogeneity criterion for the entire domain of the tank contents.

Lee, S.

2014-06-25T23:59:59.000Z

430

Spent Fuel Storage Operational Experience With Increased Crud Activities  

SciTech Connect (OSTI)

A significant part of the electricity production in Hungary is provided by 4 units of VVER 440 nuclear reactors at the Paks Nuclear Power Plant. Interim dry storage of the spent fuel assemblies that are generated during the operation of the reactors is provided in a Modular Vault Dry Storage (MVDS) facility that is located in the immediate vicinity of the Paks Nuclear Power Plant. The storage capacity of the MVDS is being continuously extended in accordance with spent the fuel production rate from the four reactors. An accident occurred at unit 2 of the Paks Nuclear Power Plant in 2003, when thirty irradiated fuel assemblies were damaged during a cleaning process. The fuel assemblies were not inside the reactor at the time of the accident, but in a separate tank within the adjacent fuel decay pool. As a result of this accident, contamination from the badly damaged fuel assemblies spread to the decay pool water and also became deposited onto the surface of (hermetic) spent fuel assemblies within the decay pool. Therefore, it was necessary to review the design basis of the MVDS and assess the effects of taking the surface contaminated spent fuel assemblies into dry storage. The contaminated hermetic assemblies were transferred from the unit 2 pool to the interim storage facility in the period between 2005 and 2007. Continuous inspection and measurement was carried out during the transfer of these fuel assemblies. On the basis of the design assessments and measurement of the results during the fuel transfer, it was shown that radiological activity values increased due to the consequences of the accident but that these levels did not compromise the release and radiation dose limits for the storage facility. The aim of this paper is to show the effect on the operation of the MVDS interim storage facility as a result of the increased activity values due to the accident that occurred in 2003, as well as to describe the measurements that were taken, and their results and experience gained. In summary: On the basis of the design assessments and measurement of the results during the fuel transfer operations, it was shown that radiological activity values increased due to the consequences of the 2003 accident but that these levels did not compromise the release and dose limits for the fuel storage facility. In the environment there was no measurable radioactivity as a result of the operation of the Paks ISFSI. The exposure of the surrounding population was calculated on measured releases and meteorological data. The calculations show negligible doses until 2004. Due to the increased surface contamination on the spent fuel assemblies the dose rate increased almost 5 times compared to the least annual value, but still less then 0.01 percent of the allowed dose restriction. (authors)

Barnabas, I. [Public Agency for Radioactive Waste, Management (PURAM) (Hungary); Eigner, T. [Paks NPP (Hungary); Gresits, I. [Technical University of Budapest (Hungary); Ordagh, M. [SOM System Llc, (Hungary)

2008-07-01T23:59:59.000Z

431

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

432

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

433

Tank 241-BY-104 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank BY-104 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-104 using the vapor sampling system (VSS) on June 24, 1994 by WHC Sampling and Mobile Laboratories. Air from the tank BY-104 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

434

CHEN 3650 -Lab 6 -Interacting Tanks Part A Computer Exercise  

E-Print Network [OSTI]

CHEN 3650 - Lab 6 - Interacting Tanks Part A ­ Computer Exercise This laboratory exercise units. Consider the train of tanks as depicted in Fig. 1. You may have seen similar tanks before, the area of tank 3 is also zero. Therefore, you may wish to start your simulation at steady state. Part B

Ashurst, W. Robert

435

CHEN 3650 SP14 -Lab 2 Two Tanks in Series  

E-Print Network [OSTI]

CHEN 3650 SP14 - Lab 2 Two Tanks in Series Part A ­ Computer Exercise This laboratory exercise is related to the classical system consisting of two tanks in series. That is, the output of one tank is the input to another tank. Usually, this problem is encountered in a process control class

Ashurst, W. Robert

436

Global Intermodal Tank Container Management for the Chemical Industry  

E-Print Network [OSTI]

Global Intermodal Tank Container Management for the Chemical Industry Alan L. Erera, Juan C on asset management problems faced by tank container operators, and formulates an operational tank modes: pipeline, bulk tankers, parcel tankers, tank containers, or drums. Pipeline and bulk tankers

Erera, Alan

437

August 2012 Who Are Our Dirt Tanks Named After?  

E-Print Network [OSTI]

August 2012 Who Are Our Dirt Tanks Named After? Jornada Experimental Range Maxwell Tank In 2001 as coordinator and pilot. Maxwell Tank was named in her honor in 2002. Although Maxwell enjoys the notoriety of having a dirt tank named after her, she has yet to see her namesake. F. N. Ares F.W. Engholm K

438

THINK TANK Online Data Privacy Policy Personal Information  

E-Print Network [OSTI]

THINK TANK Online Data Privacy Policy Personal Information The THINK TANK at the University and Guidelines Security When users submit personally identifiable information via the THINK TANK Web Site, the information is protected both online and off-line. All personally identifiable information the THINK TANK

Ziurys, Lucy M.

439

Alternative Fuels Data Center: Biodiesel Storage Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Storage Biodiesel Storage Regulations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Storage Regulations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Storage Regulations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Storage Regulations on Google Bookmark Alternative Fuels Data Center: Biodiesel Storage Regulations on Delicious Rank Alternative Fuels Data Center: Biodiesel Storage Regulations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Storage Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Storage Regulations Underground storage tank regulations apply to all biodiesel blends with the exception of 100% biodiesel (B100). An owner changing the use of an

440

Capacity Value of Solar Power  

SciTech Connect (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NREL: Hydrogen and Fuel Cells Research - Fuel Cell and Hydrogen Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation Previous Next Pause/Resume Animated Map Correlates Fuel Cell Usage for Backup Power with Grid Outages Snapshot graphic of a U.S. map that shows the location and operational status of backup power fuel cells systems as well as the location of grid outages. Learn how NREL developed the time-lapse geographical visualization map or view the animation, which covers January 2010 to August 2013. Learning Demonstration Validates Hydrogen Fuel Cell Vehicles and Infrastructure in a Real-World Setting Two icons depict a fuel cell car (left) and hydrogen infrastructure (right). The cars icon is a drawing of a car with a water droplet at the gas tank. The infrastructure icon is a drawing of a hydrogen fueling nozzle. NREL analyzed seven years of real-world validation data, validated key DOE

442

Overview of U.S. Hydrogen and Fuel Cell Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

United States Hydrogen and Fuel United States Hydrogen and Fuel Cell Activities U.S. Department of Energy Dr. Sunita Satyapal Fuel Cell Technologies Program CNG and Hydrogen Lessons Learned Workshop December 10, 2009 2 Workshop Objectives * To coordinate lessons learned from compressed natural gas and hydrogen vehicles * Collect feedback from demonstration activities and real world applications in the United States and internationally * Identify additional RD&D to ensure safe use of onboard and bulk storage hydrogen and compressed natural gas tanks * Enhance domestic and international codes and standards harmonization * Identify potential future collaborations, workshops, education and communication strategies 3 Hydrogen and Fuel Cells - Where are we today? Fuel Cells for Transportation

443

Tank characterization report for single-shell tank 241-BY-110  

SciTech Connect (OSTI)

This characterization report summarizes information on the historical uses, current status, and sampling and analysis results of waste stored in tank 241-BY-110.

Schreiber, R.D.

1996-09-16T23:59:59.000Z

444

Buckling of oil storage tanks in SPPL tank farm during the 1979 Imperial Valley earthquake  

SciTech Connect (OSTI)

An oil storage tank that suffered damage during the 1979 Imperial Valley earthquake is studied using a laboratory model. The tank is unanchored and includes a floating roof. The tank is subjected to a single horizontal axis base excitation. Buckling is studied under both harmonic and simulated earthquake base motion. The model buckling results are in reasonable agreement with the field observations. It was also found that the floating roof has no effect on the buckling behavior. Comparison with the API design provisions shows that the empirical model used as the basis of the code for both tip-over and bucking have little resemblance to the actual tank behavior.

Shih, C.F.; Babcock, C.D.

1987-05-01T23:59:59.000Z

445

Buckling of oil storage tanks in sppl tank farm during the 1979 Imperial Valley earthquake  

SciTech Connect (OSTI)

An oil storage tank that suffered damage during the 1979 Imperial Valley earthquake is studied using a laboratory model. The tank is unanchored and includes a floating roof. The tank is subjected to a single horizontal axis base excitation. Buckling is studied under both harmonic and simulated earthquake base motion. The model buckling results are in reasonable agreement with the field observations. It was also found that the floating roof has no effect on the buckling behavior. Comparison with the API design provisions shows that the empirical model used for both tip-over and buckling have little resemblance to the actual tank behavior

Shih, C.F.; Babcock, C.D.

1984-06-01T23:59:59.000Z

446

EM Tank Waste Subcommittee Report for SRS and Hanford Tank Waste...  

Office of Environmental Management (EM)

liability. EM estimates that retrieval and processing of waste contained within these tanks will be completed between the years 2050 and 2062. A number of strategies are being...

447

Savannah River Site- Tank 48 Transmittal Letter of SRS Tank 48 Review  

Broader source: Energy.gov [DOE]

This letter reviews the Path Forward for Savannah River Site Tank 48 and outlines best judgement on all issues and recommendations on how to procede.

448

Ship Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Towing Tank Towing Tank Jump to: navigation, search Basic Specifications Facility Name Ship Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 100.0 Beam(m) 3.0 Depth(m) 3.0 Cost(per day) Contact POC Special Physical Features Towed 3DPIV; contactless motion tracking; free surface measurement mapping Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 75.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Maximum Wave Height(m) at Wave Period(s) 2.0 Maximum Wave Length(m) 6 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Fully programmable using LabView for regular or irregular waves

449

Ohmsett Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Ohmsett Tow Tank Ohmsett Tow Tank Jump to: navigation, search Basic Specifications Facility Name Ohmsett Tow Tank Overseeing Organization Ohmsett Hydrodynamic Testing Facility Type Tow Tank Length(m) 203.0 Beam(m) 19.8 Depth(m) 2.4 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3.4 Length of Effective Tow(m) 155.0 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.9 Maximum Wave Height(m) at Wave Period(s) 4.1 Maximum Wave Length(m) 18 Wave Period Range(s) 4.1 Current Velocity Range(m/s) 3.4 Programmable Wavemaking Yes Wavemaking Description Programmable frequency Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Wave dampening at downstream end Channel/Tunnel/Flume

450

MHL Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name MHL Tow Tank Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 109.7 Beam(m) 6.7 Depth(m) 3.7 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 6.7 Length of Effective Tow(m) 103.6 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular and irregular wave spectrum Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Concrete beach Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None

451

Stennis Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Stennis Tow Tank Stennis Tow Tank Jump to: navigation, search Basic Specifications Facility Name Stennis Tow Tank Overseeing Organization United States Geological Survey, HIF Hydrodynamic Testing Facility Type Tow Tank Length(m) 137.2 Beam(m) 3.7 Depth(m) 3.7 Cost(per day) $1200(+ setup charges) Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 4.6 Length of Effective Tow(m) 114.3 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Fully automated data collection/carriage control computer system for mechanical current meters only. Number of channels 4 Cameras None Available Sensors Acceleration, Velocity Data Generation Capability

452

Penn Reverberant Tank | Open Energy Information  

Open Energy Info (EERE)

Penn Reverberant Tank Penn Reverberant Tank Jump to: navigation, search Basic Specifications Facility Name Penn Reverberant Tank Overseeing Organization Pennsylvania State University Hydrodynamics Hydrodynamic Testing Facility Type Reverberant Tank Length(m) 7.9 Beam(m) 5.3 Depth(m) 5.5 Water Type Freshwater Cost(per day) Contact POC Special Physical Features Structurally isolated hydrodynamic acoustics testing. Lined with an absorber on four sides and bottom with three 0.5x0.5 meter underwater viewing ports. Mechanical oscillation of a small-scale test unit-simulation of oscillating flow for wave or tidal excitation. Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities

453

Alden Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Alden Tow Tank Overseeing Organization Alden Research Laboratory, Inc Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 1.2 Depth(m) 1.2 Water Type Freshwater Cost(per day) Depends on study Towing Capabilities Towing Capabilities Yes Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities Yes Wind Velocity Range(m/s) Designed as needed for study objectives Other Characteristics Point measurement capability Control and Data Acquisition Description Differential pressure transducers, acoustic profiling, propeller meters, load cells, computer data acquisition systems. Number of channels Designed as needed

454

Small Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Towing Tank Towing Tank Jump to: navigation, search Basic Specifications Facility Name Small Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 3.7 Beam(m) 0.6 Depth(m) 0.8 Cost(per day) Contact POC Special Physical Features Flows up to 5 gallons per minute Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.03 Length of Effective Tow(m) 3.0 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras None Available Sensors Acoustics, Thermal, Turbulence, Velocity Data Generation Capability Real-Time Yes Test Services Test Services Yes On-Site fabrication capability/equipment Machine shop, carpenter shop, welding shop, instrumentation and electronics shop

455

Maine Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Tow Tank Tow Tank Jump to: navigation, search Basic Specifications Facility Name Maine Tow Tank Overseeing Organization University of Maine Hydrodynamics Hydrodynamic Testing Facility Type Tow Tank Length(m) 30.5 Beam(m) 2.4 Depth(m) 1.2 Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 3 Length of Effective Tow(m) 27.4 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.0 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Simulated beach is framed with PVC/mesh. Has a 4:9 slope. Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition

456

Lakefront Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Lakefront Tow Tank Lakefront Tow Tank Jump to: navigation, search Basic Specifications Facility Name Lakefront Tow Tank Overseeing Organization University of New Orleans Hydrodynamic Testing Facility Type Tow Tank Length(m) 36.6 Beam(m) 4.9 Depth(m) 1.8 Cost(per day) $1200 Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 2.7 Length of Effective Tow(m) 25.9 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Length(m) 22 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular random and transient waves Spectra include ISSC, JONSWAP, Bretschneider, Pierson-Moskowitz and custom user-defined. Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Aluminum segmented arch

457

Davidson Laboratory Tow Tank | Open Energy Information  

Open Energy Info (EERE)

Laboratory Tow Tank Laboratory Tow Tank Jump to: navigation, search Basic Specifications Facility Name Davidson Laboratory Tow Tank Overseeing Organization Stevens Institute of Technology Hydrodynamic Testing Facility Type Tow Tank Length(m) 97.5 Beam(m) 4.9 Depth(m) 2.0 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 18.3 Length of Effective Tow(m) 30.5 Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.5 Maximum Wave Height(m) at Wave Period(s) 4.0 Maximum Wave Length(m) 15.2 Wave Period Range(s) 4.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Menu driven selection of standard spectra or user specified Wave Direction Uni-Directional Simulated Beach Yes

458

The Hanford Story: Tank Waste Cleanup  

Broader source: Energy.gov [DOE]

This fourth chapter of The Hanford Story explains how the DOE Office of River Protection will use the Waste Treatment Plant to treat the 56 million gallons of radioactive waste in the Tank Farms.

459

Ice Towing Tank | Open Energy Information  

Open Energy Info (EERE)

Ice Towing Tank Ice Towing Tank Jump to: navigation, search Basic Specifications Facility Name Ice Towing Tank Overseeing Organization University of Iowa Hydrodynamic Testing Facility Type Tow Tank Length(m) 21.2 Beam(m) 5.0 Depth(m) 1.3 Cost(per day) Contact POC Special Physical Features Specialized for cold regions research, room temperature can be decreased to -10°F Towing Capabilities Towing Capabilities Yes Maximum Velocity(m/s) 0.5 Length of Effective Tow(m) 15.0 Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume None Wind Capabilities Wind Capabilities None Control and Data Acquisition Cameras Yes Description of Camera Types Underwater Available Sensors Acoustics, Thermal, Turbulence, Velocity Data Generation Capability

460

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

462

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

463

Vapor characterization of Tank 241-C-103  

SciTech Connect (OSTI)

The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

1994-06-01T23:59:59.000Z

464

Double shell tank waste analysis plan  

SciTech Connect (OSTI)

Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

Mulkey, C.H.; Jones, J.M.

1994-12-15T23:59:59.000Z

465

Chemical Stabilization of Hanford Tank Residual Waste  

SciTech Connect (OSTI)

Three different chemical treatment methods were tested for their ability to stabilize residual waste from Hanford tank C-202 for reducing contaminant release (Tc, Cr, and U in particular). The three treatment methods tested were lime addition [Ca(OH)2], an in-situ Ceramicrete waste form based on chemically bonded phosphate ceramics, and a ferrous iron/goethite treatment. These approaches rely on formation of insoluble forms of the contaminants of concern (lime addition and ceramicrete) and chemical reduction followed by co-precipitation (ferrous iron/goethite incorporation treatment). The results have demonstrated that release of the three most significant mobile contaminants of concern from tank residual wastes can be dramatically reduced after treatment compared to contact with simulated grout porewater without treatment. For uranium, all three treatments methods reduced the leachable uranium concentrations by well over three orders of magnitude. In the case of uranium and technetium, released concentrations were well below their respective MCLs for the wastes tested. For tank C-202 residual waste, chromium release concentrations were above the MCL but were considerably reduced relative to untreated tank waste. This innovative approach has the potential to revolutionize Hanfords tank retrieval process, by allowing larger volumes of residual waste to be left in tanks while providing an acceptably low level of risk with respect to contaminant release that is protective of the environment and human health. Such an approach could enable DOE to realize significant cost savings through streamlined retrieval and closure operations.

Cantrell, Kirk J.; Um, Wooyong; Williams, Benjamin D.; Bowden, Mark E.; Gartman, Brandy N.; Lukens, Wayne W.; Buck, Edgar C.; Mausolf, Edward J.

2014-03-01T23:59:59.000Z

466

RECENT PROGRESS IN DOE WASTE TANK CLOSURE  

SciTech Connect (OSTI)

The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

Langton, C

2008-02-01T23:59:59.000Z

467

Fuel option for gas turbine  

SciTech Connect (OSTI)

Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

1995-12-31T23:59:59.000Z

468

Tank farms criticality safety manual  

SciTech Connect (OSTI)

This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

FORT, L.A.

2003-03-27T23:59:59.000Z

469

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

470

Los Alamos improves biomass-to-fuel process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass-to-fuel Process Improved Biomass-to-fuel Process Improved Los Alamos improves biomass-to-fuel process Los Alamos scientists and collaborators published an article in the scientific journal Nature Chemistry this week that could offer a big step on the path to renewable energy. April 26, 2013 Los Alamos research better converts energy from fields into fuel tanks. Los Alamos research better converts energy from fields into fuel tanks. Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email This work describes a completely new approach, an alternative route to convert this class of molecules to hydrocarbons that uses much less energy and has a very high degree of conversion to provide pure products. LOS ALAMOS, N.M., April 26, 2013-One of the more promising roads to energy independence leads away from crude oil and into the forests and

471

Summary report for 1990 inservice inspection (ISI) of SRS 100-L reactor tank  

SciTech Connect (OSTI)

The integrity of the SRS reactor tanks is a key factor affecting their suitability for continued service since, unlike the external piping system and components, the tanks are virtually irreplaceable. Cracking in various areas of the process water piping systems has occurred beginning in about 1960 as a result of several degradation mechanisms, chiefly intergranular stress corrosion cracking (IGSCC) and chloride-induced transgranular cracking. The primary objective of this inspection was to determine if the accessible welds and selected portions of base metal in the L Reactor tank wall contain any indications of IGSCC. This inspection included areas in and beyond the weld HAZ, extending out as far as two to three inches from the centerline of the welds, plus selected areas of base metal at the intersection of the main tank vertical and mid-girth welds. No evidence of such degradation was found in any of the areas examined. Further, additional inspections were conducted of areas that had been damaged and repaired during original fabrication, and on a sample of areas containing linear indications observed during the 1986 visual inspection of the tank. No evidence of IGSCC or other service induced degradation was detected in these areas, either. The inspection was initially planned to cover a minimum of 60% of the accessible welds, plus repair areas and a sample of the indications from the 1986 visual inspection. Direction was received from DOE while the inspection was in progress to expand the scope to cover 100% of the accessible weld areas, and the plan was adjusted accordingly. Initial setup of the tank, which prior to inspection contained Mark 60B target assemblies and nearly a full charge of Mark 22 fuel assemblies, began on October 15, 1990. The inspection was completed on April 12, 1991.

Morrison, J.M.; Loibl, M.W.

1991-07-12T23:59:59.000Z

472

Missouri Renewable Fuel Standard Brochure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

The Missouri Renewable Fuel Standard The Missouri Renewable Fuel Standard requires ethanol in most gasoline beginning January 1, 2008. ARE YOU READY? TEN THINGS MISSOURI TANK OWNERS AND OPERATORS NEED TO KNOW ABOUT ETHANOL 1. Ethanol is a type of alcohol made usually from corn in Missouri and other states. 2. E10 is a blend of 10% ethanol and 90% unleaded gasoline. E85 is a blend of 75% to 85% fuel ethanol and 25% to 15% unleaded gasoline. Blends between E10 and E85 are not allowed to be sold at retail. 3. Any vehicle or small engine should run fine on E10, but only specially designed vehicles can use E85. 4. You are not required to label your dispensers disclosing the ethanol content if you are selling E10. However, you are required to label your dispensers if you are selling E85.

473

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

474

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

475

STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY  

SciTech Connect (OSTI)

Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt and sludge processing life cycle, thereby reducing the Defense Waste Processing Facility (DWPF) mission by 7 years. Additionally at the Hanford site, problematic waste streams, such as high boehmite and phosphate wastes, could be treated prior to receipt by WTP and thus dramatically improve the capacity of the facility to process HLW. Treatment of boehmite by continuous sludge leaching (CSL) before receipt by WTP will dramatically reduce the process cycle time for the WTP pretreatment facility, while treatment of phosphate will significantly reduce the number of HLW borosilicate glass canisters produced at the WTP. These and other promising technologies will be discussed.

Aaron, G.; Wilmarth, B.

2011-09-19T23:59:59.000Z

476

Supporting document for the historical tank content estimate for SY-tank farm  

SciTech Connect (OSTI)

The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, radiological, and chemical composition of mixed wastes stored in underground double-shell tanks and the physical condition of these tanks. The double-shell tanks are located on the United States Department of Energy`s Hanford Site, approximately 25 miles northwest or Richland, Washington. The document will be used to assist in characterizing the waste in the tanks in conjunction with the current program of sampling and analyzing the tank wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank`s inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities. This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present. Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

Brevick, C.H.

1997-08-12T23:59:59.000Z

477

Tank 241-BY-110 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank BY-110 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-110 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-110 using the vapor sampling system (VSS) on November 11, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-110 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 12B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

478

Tank 241-BY-108 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank BY-108 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-108 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-108 using the vapor sampling system (VSS) on october 27, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 25.7 C. Air from the Tank BY-108 headspace was withdrawn via a 7.9 m-long heated sampling probe mounted in riser 1, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 50 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, and Pacific Northwest Laboratories. The 40 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 14 trip blanks and 2 field blanks that accompanied the samples.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

479

Tank 241-BY-105 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank BY-105 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-105 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-105 using the vapor sampling system (VSS) on July 7, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 26 C. Air from the Tank BY-105 headspace was withdrawn via a heated sampling probe mounted in riser 10A, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

480

Tank 241-BY-106 vapor sampling and analysis tank characterization report  

SciTech Connect (OSTI)

Tank BY-106 headspace gas and vapor samples were collected and analyzed to help determine the potential risks to tank farm workers due to fugitive emissions from the tank. Tank BY-106 is on the Ferrocyanide Watch List. Samples were collected from Tank BY-106 using the vapor sampling system (VSS) on July 8, 1994 by WHC Sampling and Mobile Laboratories. The tank headspace temperature was determined to be 27 C. Air from the Tank BY-106 headspace was withdrawn via a heated sampling probe mounted in riser 10B, and transferred via heated tubing to the VSS sampling manifold. All heated zones of the VSS were maintained at approximately 65 C. Sampling media were prepared and analyzed by WHC, Oak Ridge National Laboratories, Pacific Northwest Laboratories, and Oregon Graduate Institute of Science and Technology through a contract with Sandia National Laboratories. The 46 tank air samples and 2 ambient air control samples collected are listed in Table X-1 by analytical laboratory. Table X-1 also lists the 10 trip blanks provided by the laboratories.

Huckaby, J.L.

1995-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "fuel tank capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Tank 241-C-106 in-tank imaging system operational test report  

SciTech Connect (OSTI)

This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106.

Pedersen, L.T.

1998-07-07T23:59:59.000Z

482

E-Print Network 3.0 - automated tank calibrations Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Reviewed 809) Summary: Safe Operating Procedure (Reviewed 809) UNDERGROUND STORAGE TANKS - AUTOMATIC TANK GAUGING... tank gauging (ATG) system requirements for Underground...

483

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network [OSTI]

Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

484

E-Print Network 3.0 - ax tank farm Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In collaboration with The Dow Chemical Company 12;A tank farm is a set of storage tanks that hold finished product... product Dedicated Tanks Without available storage ......

485

Evaluation of TANK water heater simulation model as embedded in HWSim  

E-Print Network [OSTI]

this scheme for operating TANK with HWSim is successful.LBNL # Evaluation of TANK water heater simulation model asCalifornia. Evaluation of TANK water heater simulation model

Lutz, Jim

2012-01-01T23:59:59.000Z

486

E-Print Network 3.0 - alcohol tank installed Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND ENVIRONMENTAL SCIENCES Summary: inspection. Risers should be installed on all new tanks and can even be retrofitted for existing tanks. All... that the septic tank needs...

487

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network [OSTI]

Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

488

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network [OSTI]

Survey of Electric Storage Tank Water Heater Efficiency andSurvey of Electric Storage Tank Water Heater Efficiency andby electric resistance storage tank water heaters (geysers),

Johnson, Alissa

2013-01-01T23:59:59.000Z

489

Tank Waste Corporate Board Meeting 08/01/12 | Department of Energy  

Office of Environmental Management (EM)

80112 Tank Waste Corporate Board Meeting 080112 The following documents are associated with the Tank Waste Corporate Board Meeting held on August 1st, 2012. Tank Waste...

490

Microsoft Word - Tank Waste Report 9-30-05.doc  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Tank Waste Retrieval Accelerated Tank Waste Retrieval Activities at the Hanford Site DOE/IG-0706 October 2005 REPORT ON THE ACCELERATED TANK WASTE RETRIEVAL ACTIVITIES AT THE HANFORD SITE TABLE OF CONTENTS Tank Waste Retrieval Details of Finding 1 Recommendations and Comments 4 Appendices Objective, Scope, and Methodology 6 Prior Reports 7 Management Comments 8 Tank Waste Retrieval Page 1 Details of Finding Tank Waste The Department will not meet Tri-Party Agreement (Agreement) Retrieval Activities milestones for the retrieval of waste from the single-shell tanks located at the C-Tank Farm within schedule and cost. Based on the current C-Tank Farm retrieval schedule and the amount of waste retrieved to date, the Department will not accomplish its

491

Independent Activity Report, Hanford Tank Farms - April 2013 | Department  

Broader source: Energy.gov (indexed) [DOE]

Tank Farms - April 2013 Tank Farms - April 2013 Independent Activity Report, Hanford Tank Farms - April 2013 April 2013 Operational Awareness at the Hanford Tank Farms [HIAR-HANFORD-2013-04-15] The Office of Health, Safety and Security (HSS) Office of Safety and Emergency Management Evaluations (HS-45) Site Lead conducted an operational awareness visit to the Office of River Protection (ORP) to tour the Hanford Tank Farms, observe video inspection of single shell and double shell tanks, and observe Tank Farm project and staff meetings. Independent Activity Report, Hanford Tank Farms - April 2013 More Documents & Publications Independent Oversight Activity Report, Office of River Protection - May 2013 Independent Oversight Activity Report, Hanford Tank Farms - June 2013 Independent Activity Report, Office of River Protection Waste Treatment

492

Savings Project: Insulate Your Water Heater Tank | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Savings Project: Insulate Your Water Heater Tank Addthis Project Level medium Energy Savings $20-$45 annually Time to Complete 1.5 hours Overall Cost $30 Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Insulate your hot water tank to save energy and money. | Photo courtesy of iStockphoto.com/glennebo Just like insulating your walls or roof, insulating your hot water tank is an easy and inexpensive way to improve energy efficiency and save you money each month. If your water tank is new, it is likely already insulated. If you have an older hot water tank, check to see if it has insulation with an R-value of at least 24. If not, consider insulating your water tank, which

493

Independent Oversight Review, Hanford Tank Farms - November 2011 |  

Broader source: Energy.gov (indexed) [DOE]

Review, Hanford Tank Farms - November 2011 Review, Hanford Tank Farms - November 2011 Independent Oversight Review, Hanford Tank Farms - November 2011 November 2011 Review of Hanford Tank Farms Safety Basis Amendment for Double-Shell Tank Ventilation System Upgrades The U.S. Department of Energy (DOE) Office of Enforcement and Oversight, within the Office of Health, Safety and Security (HSS), conducted an independent oversight review of the draft amendment to the Hanford Tank Farms safety basis for upgrading the double-shell tank (DST) primary tank ventilation (PTV) systems to safety-significant designation. The Tank Farms are Hazard Category 2 DOE nuclear facilities. The review was performed during the period July 25 - August 12, 2011 by the HSS Office of Enforcement and Oversight's Office of Safety and Emergency Management

494

System for removing liquid waste from a tank  

DOE Patents [OSTI]

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid there through. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank. 2 figures.

Meneely, T.K.; Sherbine, C.A.

1994-04-26T23:59:59.000Z

495

System for removing liquid waste from a tank  

DOE Patents [OSTI]

A tank especially suited for nuclear applications is disclosed. The tank comprises a tank shell for protectively surrounding the liquid contained therein; an inlet positioned on the tank for passing a liquid into the tank; a sump positioned in an interior portion of the tank for forming a reservoir of the liquid; a sloped incline for resting the tank thereon and for creating a natural flow of the liquid toward the sump; a pump disposed adjacent the tank for pumping the liquid; and a pipe attached to the pump and extending into the sump for passing the liquid therethrough. The pump pumps the liquid in the sump through the pipe and into the pump for discharging the liquid out of the tank.

Meneely, Timothy K. (Penn Hills, PA); Sherbine, Catherine A. (N. Versailles Township, Allegheny County, PA)

1994-01-01T23:59:59.000Z

496

Fuel Cell Technologies Office: HT Combinatorial Screening of Novel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HT Combinatorial HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Video (Text Alternative) to someone by E-mail Share Fuel Cell Technologies Office: HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Video (Text Alternative) on Facebook Tweet about Fuel Cell Technologies Office: HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Video (Text Alternative) on Twitter Bookmark Fuel Cell Technologies Office: HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Video (Text Alternative) on Google Bookmark Fuel Cell Technologies Office: HT Combinatorial Screening of Novel Materials for High Capacity Hydrogen Storage Video (Text Alternative) on Delicious Rank Fuel Cell Technologies Office: HT Combinatorial Screening of

497

Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 167 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources: biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind [1]. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the

498

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

499

<