National Library of Energy BETA

Sample records for fuel systems code

  1. Stationary and Portable Fuel Cell Systems Codes and Standards Citations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Portable Fuel Cell Systems Codes and Standards Citations Stationary and Portable Fuel Cell Systems Codes and Standards Citations This document lists codes and standards typically used for U.S. stationary and portable fuel cell systems. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (293.25 KB) More Documents & Publications Hydrogen Vehicle and Infrastructure Codes and Standards Citations National Template: Stationary & Portable Fuel

  2. Stationary and Portable Fuel Cell Systems Codes and Standards...

    Broader source: Energy.gov (indexed) [DOE]

    and portable fuel cell systems. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (293.25 KB) More Documents & Publications Hydrogen Vehicle and ...

  3. Code System for Spent Fuel Heating Analysis.

    Energy Science and Technology Software Center (OSTI)

    1999-05-24

    Version 00 SFHA calculates steady-state fuel rod temperatures for hexagon and square-fuel bundles. The code is used to perform sensitivity studies and confirmatory analyses of results submitted by applicants for spent fuel storage licenses. All three modes of heat transfer are considered; radiation, convection, and conduction. Each is modeled separately. SFHA benchmark calculations were made with test data to validate the use of a simple one-dimensional heat transfer model for estimating fuel rod temperatures. Benchmarkmore » results show that SFHA is capable of calculating spent fuel rod temperatures for square and hexagonal fuel bundles under various environments for the consolidated or unconsolidated condition. The program is menu-driven and executes automatically after all required information is entered.« less

  4. SPEAR fuel reliability code system. General description. [PWR; BWR

    SciTech Connect (OSTI)

    Christensen, R.

    1980-03-01

    A general description is presented for the SPEAR fuel reliability code system. Included is a discussion of the methodology employed and the structure of the code system, as well as discussion of the major components: the data preparation routines, the mechanistic fuel performance model, the mechanistic cladding failure model, and the statistical failure model.

  5. Code System for Reactor Physics and Fuel Cycle Simulation.

    Energy Science and Technology Software Center (OSTI)

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterativemore » processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.« less

  6. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    This document lists codes and standards typically used for U.S. stationary and portable fuel cell systems.

  7. Code System to Calculate Fuel Rod Thermal Performance.

    Energy Science and Technology Software Center (OSTI)

    2000-11-27

    Version: 00 GT2R2 is Revision 2 of GAPCON-THERMAL-2 and is used to calculate the thermal behavior of a nuclear fuel rod during normal steady-state operation. The program was developed as a tool for estimating fuel-cladding gap conductances and fuel-stored energy. Models used include power history, fission gas generation and release, fuel relocation and densification, and fuel-cladding gap conductance. The gas release and relocation models can be used to make either best-estimate or conservative predictions. Themore » code is used by the United States Nuclear Regulatory Commission for audit calculations of nuclear fuel thermal performance computer codes.« less

  8. Model of U3Si2 Fuel System using BISON Fuel Code

    SciTech Connect (OSTI)

    K. E. Metzger; T. W. Knight; R. L. Williamson

    2014-04-01

    This research considers the proposed advanced fuel system: U3Si2 combined with an advanced cladding. U3Si2 has a number of advantageous thermophysical properties, which motivate its use as an accident tolerant fuel. This preliminary model evaluates the behavior of U3Si2 using available thermophysical data to predict the cladding-fuel pellet temperature and stress using the fuel performance code: BISON. The preliminary results obtained from the U3Si2 fuel model describe the mechanism of Pellet-Clad Mechanical Interaction for this system while more extensive testing including creep testing of U3Si2 is planned for improved understanding of thermophysical properties for predicting fuel performance.

  9. Stationary and Portable Fuel Cell Systems Codes and Standards Citations (Brochure), NREL (National Renewable Energy Laboratory)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Stationary and Portable Fuel Cell Systems Codes and Standards Citations This document lists codes and standards typically used for Stationary and Portable Fuel Cell Systems projects. To determine which codes and standards apply to a specific project, you need to identify the codes and standards currently in effect within the

  10. SPEAR-BETA fuel performance code system. Volume 1. General description. Final report. [BWR; PWR

    SciTech Connect (OSTI)

    Christensen, R.

    1982-04-01

    This document provides a general description of the SPEAR-BETA fuel reliability code system. Included is a discussion of the methodology employed and the structure of the code system, as well as discussion of the major components: the data preparation routines, the mechanistic fuel performance model, the mechanistic cladding failure model, and the statistical failure model.

  11. Code System to Calculate Radiation Dose Rates Relative to Spent Fuel Shipping Casks.

    Energy Science and Technology Software Center (OSTI)

    1993-05-20

    Version 00 QBF calculates and plots in a short running time, three dimensional radiation dose rate distributions in the form of contour maps on specified planes resulting from cylindrical sources loaded into vehicles or ships. Shielding effects by steel walls and shielding material layers are taken into account in addition to the shadow effect among casks. This code system identifies the critical points on which to focus when designing the radiation shielding structure and wheremore » each of the spent fuel shipping casks should be stored. The code GRAPH reads the output data file of QBF and plots it using the HGX graphics library. QBF unifies the functions of the SMART and MANYCASK codes included in CCC-482.« less

  12. Multidimensional Fuel Performance Code: BISON

    Energy Science and Technology Software Center (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficientlymore » solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less

  13. Multidimensional Fuel Performance Code: BISON

    SciTech Connect (OSTI)

    2014-09-03

    BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phase field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.

  14. 2-D Time-Dependent Fuel Element, Thermal Analysis Code System.

    Energy Science and Technology Software Center (OSTI)

    2001-09-24

    Version 00 WREM-TOODEE2 is a two dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR). TOODEE2 calculations are carried out in a two-dimensional mesh region defined in slab or cylindrical geometry by orthogonal grid lines. Coordinates which form order pairs are labeled x-y in slab geometry, and those in cylindrical geometry are labeled r-z for the axisymmetric casemore » and r-theta for the polar case. Conduction and radiation are the only heat transfer mechanisms assumed within the boundaries of the mesh region. Convective and boiling heat transfer mechanisms are assumed at the boundaries. The program numerically solves the two-dimensional, time-dependent, heat conduction equation within the mesh region. KEYWORDS: FUEL MANAGEMENT; HEAT TRANSFER; LOCA; PWR« less

  15. Transmutation Fuel Performance Code Conceptual Design

    SciTech Connect (OSTI)

    Gregory K. Miller; Pavel G. Medvedev

    2007-03-01

    One of the objectives of the Global Nuclear Energy Partnership (GNEP) is to facilitate the licensing and operation of Advanced Recycle Reactors (ARRs) for transmutation of the transuranic elements (TRU) present in spent fuel. A fuel performance code will be an essential element in the licensing process ensuring that behavior of the transmutation fuel elements in the reactor is understood and predictable. Even more important in the near term, a fuel performance code will assist substantially in the fuels research and development, design, irradiation testing and interpretation of the post-irradiation examination results.

  16. Alternative Fuels Data Center: Codes and Standards Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Codes and Standards Basics to someone by E-mail Share Alternative Fuels Data Center: Codes and Standards Basics on Facebook Tweet about Alternative Fuels Data Center: Codes and Standards Basics on Twitter Bookmark Alternative Fuels Data Center: Codes and Standards Basics on Google Bookmark Alternative Fuels Data Center: Codes and Standards Basics on Delicious Rank Alternative Fuels Data Center: Codes and Standards Basics on Digg Find More places to share Alternative Fuels Data Center: Codes and

  17. Verification of the BISON fuel performance code

    SciTech Connect (OSTI)

    D. M. Perez; R. J. Gardner; J. D. Hales; S. R. Novascone; G. Pastore; B. W. Spencer; R. L. Williamson

    2014-09-01

    BISON is a modern finite element-based nuclear fuel performance code that has been under development at Idaho National Labo- ratory (USA) since 2009. The code is applicable to both steady and transient fuel behavior and is used to analyze 1D spherical, 2D axisymmetric, or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods and other well known fuel performance codes. Results from several assessment cases are reported, with emphasis on fuel centerline temperatures at various stages of fuel life, fission gas release, and clad deformation during pellet clad mechanical interaction (PCMI). BISON comparisons to fuel centerline temperature measurements are very good at beginning of life and reasonable at high burnup. Although limited to date, fission gas release comparisons are very good. Comparisons of rod diameter following significant power ramping are also good and demonstrate BISONs unique ability to model discrete pellet behavior and accurately predict clad ridging from PCMI.

  18. Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Codes, Standards, and Safety to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Google Bookmark Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Delicious Rank Alternative Fuels Data Center: Biodiesel Codes, Standards, and Safety on Digg Find

  19. Alternative Fuels Data Center: Codes and Standards Resources

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center: Codes and Standards Resources to someone by E-mail Share Alternative Fuels Data Center: Codes and Standards Resources on Facebook Tweet about Alternative Fuels Data Center: Codes and Standards Resources on Twitter Bookmark Alternative Fuels Data Center: Codes and Standards Resources on Google Bookmark Alternative Fuels Data Center: Codes and Standards Resources on Delicious Rank Alternative Fuels Data

  20. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  1. Spent fuel pool analysis using TRACE code

    SciTech Connect (OSTI)

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J. F.; Martorell, S.

    2012-07-01

    The storage requirements of Spent Fuel Pools have been analyzed with the purpose to increase their rack capacities. In the past, the thermal limits have been mainly evaluated with conservative codes developed for this purpose, although some works can be found in which a best estimate code is used. The use of best estimate codes is interesting as they provide more realistic calculations and they have the capability of analyzing a wide range of transients that could affect the Spent Fuel Pool. Two of the most representative thermal-hydraulic codes are RELAP-5 and TRAC. Nowadays, TRACE code is being developed to make use of the more favorable characteristics of RELAP-5 and TRAC codes. Among the components coded in TRACE that can be used to construct the model, it is interesting to use the VESSEL component, which has the capacity of reproducing three dimensional phenomena. In this work, a thermal-hydraulic model of the Maine Yankee spent fuel pool using the TRACE code is developed. Such model has been used to perform a licensing calculation and the results obtained have been compared with experimental measurements made at the pool, showing a good agreement between the calculations predicted by TRACE and the experimental data. (authors)

  2. Alternative Fuels Data Center: E85 Codes and Standards

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Codes and Standards to someone by E-mail Share Alternative Fuels Data Center: E85 Codes and Standards on Facebook Tweet about Alternative Fuels Data Center: E85 Codes and Standards on Twitter Bookmark Alternative Fuels Data Center: E85 Codes and Standards on Google Bookmark Alternative Fuels Data Center: E85 Codes and Standards on Delicious Rank Alternative Fuels Data Center: E85 Codes and Standards on Digg Find More places to share Alternative Fuels Data Center: E85 Codes and Standards on

  3. Alternative Fuels and Advanced Vehicles Data Center - Codes and...

    Open Energy Info (EERE)

    Codes and Standards Resources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards Resources...

  4. SPEAR-BETA fuel-performance code system: fission-gas-release module. Final report. [PWR; BWR

    SciTech Connect (OSTI)

    Christensen, R.

    1983-03-01

    The original SPEAR-BETA general description manual covers both mechanistic and statistical models for fuel reliability, but only mechanistic modeling of fission gas release. This addendum covers the SPEAR-BETA statistical model for fission gas release.

  5. Early User Experience with BISON Fuel Performance Code

    SciTech Connect (OSTI)

    D. M. Perez

    2012-08-01

    Three Fuel Modeling Exercise II (FUMEX II) LWR fuel irradiation experiments were simulated and analyzed using the fuel performance code BISON to demonstrate code utility for modeling of the LWR fuel performance. Comparisons were made against the BISON results and the experimental data for the three assessment cases. The assessment cases reported within this report include IFA-597.3 Rod 8, Riso AN3 and Riso AN4.

  6. Fuel washout detection system

    DOE Patents [OSTI]

    Colburn, Richard P.

    1985-01-01

    A system for detecting grossly failed reactor fuel by detection of particulate matter as accumulated on a filter.

  7. TEMP: a computer code to calculate fuel pin temperatures during a transient. [LMFBR

    SciTech Connect (OSTI)

    Bard, F E; Christensen, B Y; Gneiting, B C

    1980-04-01

    The computer code TEMP calculates fuel pin temperatures during a transient. It was developed to accommodate temperature calculations in any system of axi-symmetric concentric cylinders. When used to calculate fuel pin temperatures, the code will handle a fuel pin as simple as a solid cylinder or as complex as a central void surrounded by fuel that is broken into three regions by two circumferential cracks. Any fuel situation between these two extremes can be analyzed along with additional cladding, heat sink, coolant or capsule regions surrounding the fuel. The one-region version of the code accurately calculates the solution to two problems having closed-form solutions. The code uses an implicit method, an explicit method and a Crank-Nicolson (implicit-explicit) method.

  8. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  9. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  10. An evaluation of the nuclear fuel performance code BISON

    SciTech Connect (OSTI)

    Perez, D. M.; Williamson, R. L.; Novascone, S. R.; Larson, T. K.; Hales, J. D.; Spencer, B. W.; Pastore, G.

    2013-07-01

    BISON is a modern finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. The code is applicable to both steady and transient fuel behavior and is used to analyze either 2D axisymmetric or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods and other well known fuel performance codes. Results from several assessment cases are reported, with emphasis on fuel centerline temperatures at various stages of fuel life, fission gas release, and clad deformation during pellet clad mechanical interaction (PCMI). BISON comparisons to fuel centerline temperature measurements are very good at beginning of life and reasonable at high burnup. Although limited to date, fission gas release comparisons are very good. Comparisons of rod diameter following significant power ramping are also good and demonstrate BISON's unique ability to model discrete pellet behavior and accurately predict clad ridging from PCMI. (authors)

  11. Fuel injector system

    DOE Patents [OSTI]

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  12. Dual Tank Fuel System

    SciTech Connect (OSTI)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  13. Vehicle fuel system

    DOE Patents [OSTI]

    Risse, John T.; Taggart, James C.

    1976-01-01

    A vehicle fuel system comprising a plurality of tanks, each tank having a feed and a return conduit extending into a lower portion thereof, the several feed conduits joined to form one supply conduit feeding fuel to a supply pump and using means, unused fuel being returned via a return conduit which branches off to the several return conduits.

  14. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, themore » capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.« less

  15. The Modeling of Advanced BWR Fuel Designs with the NRC Fuel Depletion Codes PARCS/PATHS

    SciTech Connect (OSTI)

    Ward, Andrew; Downar, Thomas J.; Xu, Y.; March-Leuba, Jose A; Thurston, Carl; Hudson, Nathanael H.; Ireland, A.; Wysocki, A.

    2015-04-22

    The PATHS (PARCS Advanced Thermal Hydraulic Solver) code was developed at the University of Michigan in support of U.S. Nuclear Regulatory Commission research to solve the steady-state, two-phase, thermal-hydraulic equations for a boiling water reactor (BWR) and to provide thermal-hydraulic feedback for BWR depletion calculations with the neutronics code PARCS (Purdue Advanced Reactor Core Simulator). The simplified solution methodology, including a three-equation drift flux formulation and an optimized iteration scheme, yields very fast run times in comparison to conventional thermal-hydraulic systems codes used in the industry, while still retaining sufficient accuracy for applications such as BWR depletion calculations. Lastly, the capability to model advanced BWR fuel designs with part-length fuel rods and heterogeneous axial channel flow geometry has been implemented in PATHS, and the code has been validated against previously benchmarked advanced core simulators as well as BWR plant and experimental data. We describe the modifications to the codes and the results of the validation in this paper.

  16. Overview of the BISON Multidimensional Fuel Performance Code

    SciTech Connect (OSTI)

    R. L. Williamson; J. D. Hales; S. R. Novascone; B. W. Spencer; D. M. Perez; G. Pastore; R. C. Martineau

    2013-10-01

    BISON is a modern multidimensional multiphysics finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. A brief background is provided on the codes computational framework (MOOSE), governing equations, and material and behavioral models. Ongoing code verification and validation work is outlined, and comparative results are provided for select validation cases. Recent applications are discussed, including specific description of two applications where 3D treatment is important. A summary of future code development and validation activities is given. Numerous references to published work are provided where interested readers can find more complete information.

  17. Predictive Bias and Sensitivity in NRC Fuel Performance Codes

    SciTech Connect (OSTI)

    Geelhood, Kenneth J.; Luscher, Walter G.; Senor, David J.; Cunningham, Mitchel E.; Lanning, Donald D.; Adkins, Harold E.

    2009-10-01

    The latest versions of the fuel performance codes, FRAPCON-3 and FRAPTRAN were examined to determine if the codes are intrinsically conservative. Each individual model and type of code prediction was examined and compared to the data that was used to develop the model. In addition, a brief literature search was performed to determine if more recent data have become available since the original model development for model comparison.

  18. Reactor System Transient Code.

    Energy Science and Technology Software Center (OSTI)

    1999-07-14

    RELAP3B describes the behavior of water-cooled nuclear reactors during postulated accidents or power transients, such as large reactivity excursions, coolant losses or pump failures. The program calculates flows, mass and energy inventories, pressures, temperatures, and steam qualities along with variables associated with reactor power, reactor heat transfer, or control systems. Its versatility allows one to describe simple hydraulic systems as well as complex reactor systems.

  19. ETR/ITER systems code

    SciTech Connect (OSTI)

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  20. Fuel control system

    SciTech Connect (OSTI)

    Detweiler, C.A.

    1980-12-30

    A fuel control system for a turbocharged engine having fuel delivered to the carburetor under the control of a vacuum operated device which is under the further control of a device sensing pressures upstream and downstream of the turbo charger compressor and delivering a vacuum signal to the fuel control device in proportion to the manifold pressure even though the latter pressure may be a positive pressure.

  1. Advanced Pellet Cladding Interaction Modeling Using the US DOE CASL Fuel Performance Code: Peregrine

    SciTech Connect (OSTI)

    Jason Hales; Various

    2014-06-01

    The US DOEs Consortium for Advanced Simulation of LWRs (CASL) program has undertaken an effort to enhance and develop modeling and simulation tools for a virtual reactor application, including high fidelity neutronics, fluid flow/thermal hydraulics, and fuel and material behavior. The fuel performance analysis efforts aim to provide 3-dimensional capabilities for single and multiple rods to assess safety margins and the impact of plant operation and fuel rod design on the fuel thermomechanical- chemical behavior, including Pellet-Cladding Interaction (PCI) failures and CRUD-Induced Localized Corrosion (CILC) failures in PWRs. [1-3] The CASL fuel performance code, Peregrine, is an engineering scale code that is built upon the MOOSE/ELK/FOX computational FEM framework, which is also common to the fuel modeling framework, BISON [4,5]. Peregrine uses both 2-D and 3-D geometric fuel rod representations and contains a materials properties and fuel behavior model library for the UO2 and Zircaloy system common to PWR fuel derived from both open literature sources and the FALCON code [6]. The primary purpose of Peregrine is to accurately calculate the thermal, mechanical, and chemical processes active throughout a single fuel rod during operation in a reactor, for both steady state and off-normal conditions.

  2. Secondary fuel delivery system

    DOE Patents [OSTI]

    Parker, David M.; Cai, Weidong; Garan, Daniel W.; Harris, Arthur J.

    2010-02-23

    A secondary fuel delivery system for delivering a secondary stream of fuel and/or diluent to a secondary combustion zone located in the transition piece of a combustion engine, downstream of the engine primary combustion region is disclosed. The system includes a manifold formed integral to, and surrounding a portion of, the transition piece, a manifold inlet port, and a collection of injection nozzles. A flowsleeve augments fuel/diluent flow velocity and improves the system cooling effectiveness. Passive cooling elements, including effusion cooling holes located within the transition boundary and thermal-stress-dissipating gaps that resist thermal stress accumulation, provide supplemental heat dissipation in key areas. The system delivers a secondary fuel/diluent mixture to a secondary combustion zone located along the length of the transition piece, while reducing the impact of elevated vibration levels found within the transition piece and avoiding the heat dissipation difficulties often associated with traditional vibration reduction methods.

  3. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 3, Validation assessments

    SciTech Connect (OSTI)

    Lombardo, N.J.; Cuta, J.M.; Michener, T.E.; Rector, D.R.; Wheeler, C.L.

    1986-12-01

    This report presents the results of the COBRA-SFS (Spent Fuel Storage) computer code validation effort. COBRA-SFS, while refined and specialized for spent fuel storage system analyses, is a lumped-volume thermal-hydraulic analysis computer code that predicts temperature and velocity distributions in a wide variety of systems. Through comparisons of code predictions with spent fuel storage system test data, the code's mathematical, physical, and mechanistic models are assessed, and empirical relations defined. The six test cases used to validate the code and code models include single-assembly and multiassembly storage systems under a variety of fill media and system orientations and include unconsolidated and consolidated spent fuel. In its entirety, the test matrix investigates the contributions of convection, conduction, and radiation heat transfer in spent fuel storage systems. To demonstrate the code's performance for a wide variety of storage systems and conditions, comparisons of code predictions with data are made for 14 runs from the experimental data base. The cases selected exercise the important code models and code logic pathways and are representative of the types of simulations required for spent fuel storage system design and licensing safety analyses. For each test, a test description, a summary of the COBRA-SFS computational model, assumptions, and correlations employed are presented. For the cases selected, axial and radial temperature profile comparisons of code predictions with test data are provided, and conclusions drawn concerning the code models and the ability to predict the data and data trends. Comparisons of code predictions with test data demonstrate the ability of COBRA-SFS to successfully predict temperature distributions in unconsolidated or consolidated single and multiassembly spent fuel storage systems.

  4. COBRA-SFS: A thermal-hydraulic analysis code for spent fuel storage and transportation casks

    SciTech Connect (OSTI)

    Michener, T.E.; Rector, D.R.; Cuta, J.M.; Dodge, R.E.; Enderlin, C.W.

    1995-09-01

    COBRA-SFS is a general thermal-hydraulic analysis computer code for prediction of material temperatures and fluid conditions in a wide variety of systems. The code has been validated for analysis of spent fuel storage systems, as part of the Commercial Spent Fuel Management Program of the US Department of Energy. The code solves finite volume equations representing the conservation equations for mass, moment, and energy for an incompressible single-phase heat transfer fluid. The fluid solution is coupled to a finite volume solution of the conduction equation in the solid structure of the system. This document presents a complete description of Cycle 2 of COBRA-SFS, and consists of three main parts. Part 1 describes the conservation equations, constitutive models, and solution methods used in the code. Part 2 presents the User Manual, with guidance on code applications, and complete input instructions. This part also includes a detailed description of the auxiliary code RADGEN, used to generate grey body view factors required as input for radiative heat transfer modeling in the code. Part 3 describes the code structure, platform dependent coding, and program hierarchy. Installation instructions are also given for the various platform versions of the code that are available.

  5. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  6. Software Design Document for the AMP Nuclear Fuel Performance Code

    SciTech Connect (OSTI)

    Philip, Bobby; Clarno, Kevin T; Cochran, Bill

    2010-03-01

    The purpose of this document is to describe the design of the AMP nuclear fuel performance code. It provides an overview of the decomposition into separable components, an overview of what those components will do, and the strategic basis for the design. The primary components of a computational physics code include a user interface, physics packages, material properties, mathematics solvers, and computational infrastructure. Some capability from established off-the-shelf (OTS) packages will be leveraged in the development of AMP, but the primary physics components will be entirely new. The material properties required by these physics operators include many highly non-linear properties, which will be replicated from FRAPCON and LIFE where applicable, as well as some computationally-intensive operations, such as gap conductance, which depends upon the plenum pressure. Because there is extensive capability in off-the-shelf leadership class computational solvers, AMP will leverage the Trilinos, PETSc, and SUNDIALS packages. The computational infrastructure includes a build system, mesh database, and other building blocks of a computational physics package. The user interface will be developed through a collaborative effort with the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Capability Transfer program element as much as possible and will be discussed in detail in a future document.

  7. Fuel cell system combustor

    DOE Patents [OSTI]

    Pettit, William Henry

    2001-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

  8. Stationary Fuel Cell Application Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C. W.; Rivkin, C. H.

    2010-09-01

    This report provides an overview of codes and standards related to stationary fuel cell applications and identifies gaps and resolutions associated with relative codes and standards.

  9. Fuel cell system

    DOE Patents [OSTI]

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  10. Diesel engine fuel systems

    SciTech Connect (OSTI)

    1994-12-31

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  11. Diesel engine fuel systems

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The film shows the basic structure of diesel systems, including the parts and operation of injectors and fuel pumps. It discusses Bosch, General Motors, and Excello Equipment. This title has been declared obsolete for use within the sponsoring agency, but may have content value for educational use.

  12. NREL: Hydrogen and Fuel Cells Research - Safety, Codes, and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Codes, and Standards Photo of person working with scientific equipment in a laboratory setting. NREL researcher works on sensor testing apparatus in the Safety Sensor Testing Laboratory. Photo by Dennis Schroeder, NREL NREL's hydrogen safety, codes, and standards projects focus on ensuring safe operation, handling, and use of hydrogen and hydrogen systems through safety sensors and codes and standards for buildings and equipment. Safety Sensors To facilitate hydrogen safety, NREL is

  13. Assessment of MARMOT. A Mesoscale Fuel Performance Code

    SciTech Connect (OSTI)

    Tonks, M. R.; Schwen, D.; Zhang, Y.; Chakraborty, P.; Bai, X.; Fromm, B.; Yu, J.; Teague, M. C.; Andersson, D. A.

    2015-04-01

    MARMOT is the mesoscale fuel performance code under development as part of the US DOE Nuclear Energy Advanced Modeling and Simulation Program. In this report, we provide a high level summary of MARMOT, its capabilities, and its current state of validation. The purpose of MARMOT is to predict the coevolution of microstructure and material properties of nuclear fuel and cladding. It accomplished this using the phase field method coupled to solid mechanics and heat conduction. MARMOT is based on the Multiphysics Object-Oriented Simulation Environment (MOOSE), and much of its basic capability in the areas of the phase field method, mechanics, and heat conduction come directly from MOOSE modules. However, additional capability specific to fuel and cladding is available in MARMOT. While some validation of MARMOT has been completed in the areas of fission gas behavior and grain growth, much more validation needs to be conducted. However, new mesoscale data needs to be obtained in order to complete this validation.

  14. LPG fuel shutoff system

    SciTech Connect (OSTI)

    Watanabe, T.; Miyata, K.

    1988-01-26

    An LPG fuel shutoff system for use with a vehicle having an LPG fuel engine and having a solenoid valve to supply and shut off LPG fuel is described including: a relay having a relay contact which is closed when an electric current is fed to a coil of the relay; a pressure switch having a first position and a second position and adapted to be in the first position when engine oil pressure rises above a predetermined level; and an oil lamp adapted to light when the engine oil pressure is below the predetermined level, and wherein a solenoid coil of the solenoid valve is connected at one side to a battery through an ignition switch and a fuel switch. The solenoid coil also is connected, at another side of the solenoid coil, in series to the relay contact and the pressure switch in the second position respectively, the coil of the relay is connected to the solenoid valve side of the ignition switch through a starting switch, the oil lamp is connected between the ignition switch and the pressure switch.

  15. Bio Fuel Systems BFS | Open Energy Information

    Open Energy Info (EERE)

    Fuel Systems BFS Jump to: navigation, search Name: Bio Fuel Systems (BFS) Place: Alicante, Spain Sector: Biomass Product: Bio Fuel Systems focuses on the development of biofuel...

  16. Fuel Cell Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells » Fuel Cell Systems Fuel Cell Systems The design of fuel cell systems is complex, and can vary significantly depending upon fuel cell type and application. However, several basic components are found in many fuel cell systems: Fuel cell stack Fuel processor Power conditioners Air compressors Humidifiers Fuel Cell Stack The fuel cell stack is the heart of a fuel cell power system. It generates electricity in the form of direct current (DC) from electro-chemical reactions that take place in

  17. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 2, User's manual

    SciTech Connect (OSTI)

    Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

    1986-11-01

    COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code.

  18. Fuel cell system with interconnect

    DOE Patents [OSTI]

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  19. Tandem Mirror Reactor Systems Code (Version I)

    SciTech Connect (OSTI)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.; Barrett, R.J.; Gorker, G.E.; Spampinaton, P.T.; Bulmer, R.H.; Dorn, D.W.; Perkins, L.J.; Ghose, S.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost.

  20. Greasecar Vegetable Fuel Systems | Open Energy Information

    Open Energy Info (EERE)

    Greasecar Vegetable Fuel Systems Jump to: navigation, search Name: Greasecar Vegetable Fuel Systems Place: Florence, Massachusetts Zip: 1062 Product: Manufacturer of vegetable fuel...

  1. Fuel cell gas management system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur

    2000-01-11

    A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  2. Fuel Pumping System And Method

    DOE Patents [OSTI]

    Shafer, Scott F.; Wang, Lifeng

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  3. Fuel pumping system and method

    DOE Patents [OSTI]

    Shafer, Scott F.; Wang, Lifeng ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  4. Modeling Constituent Redistribution in U-Pu-Zr Metallic Fuel Using the Advanced Fuel Performance Code BISON

    SciTech Connect (OSTI)

    Douglas Porter; Steve Hayes; Various

    2014-06-01

    The Advanced Fuels Campaign (AFC) metallic fuels currently being tested have higher zirconium and plutonium concentrations than those tested in the past in EBR reactors. Current metal fuel performance codes have limitations and deficiencies in predicting AFC fuel performance, particularly in the modeling of constituent distribution. No fully validated code exists due to sparse data and unknown modeling parameters. Our primary objective is to develop an initial analysis tool by incorporating state-of-the-art knowledge, constitutive models and properties of AFC metal fuels into the MOOSE/BISON (1) framework in order to analyze AFC metallic fuel tests.

  5. Ambient pressure fuel cell system

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  6. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect (OSTI)

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M.

    2013-07-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  7. Automated fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  8. Automated fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, David W.; Brown, William F.; Steffen, Jim M.

    1985-01-01

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

  9. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  10. Monte Carlo Nucleon Meson Transport Code System.

    Energy Science and Technology Software Center (OSTI)

    2000-11-17

    Version 00 NMTC/JAERI97 is an upgraded version of the code system NMTC/JAERI, which was developed in 1982 at JAERI and is based on the CCC-161/NMTC code system. NMTC/JAERI97 simulates high energy nuclear reactions and nucleon-meson transport processes.

  11. NREL: Energy Systems Integration Facility - Fuel Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Distribution Buses The Energy Systems Integration Facility's integrated fuel distribution buses provide natural gas, hydrogen, and diesel for fueling applications. Standard, ...

  12. A Coupling Methodology for Mesoscale-informed Nuclear Fuel Performance Codes

    SciTech Connect (OSTI)

    Michael Tonks; Derek Gaston; Cody Permann; Paul Millett; Glen Hansen; Dieter Wolf

    2010-10-01

    This study proposes an approach for capturing the effect of microstructural evolution on reactor fuel performance by coupling a mesoscale irradiated microstructure model with a finite element fuel performance code. To achieve this, the macroscale system is solved in a parallel, fully coupled, fully-implicit manner using the preconditioned Jacobian-free Newton Krylov (JFNK) method. Within the JFNK solution algorithm, microstructure-influenced material parameters are calculated by the mesoscale model and passed back to the macroscale calculation. Due to the stochastic nature of the mesoscale model, a dynamic fitting technique is implemented to smooth roughness in the calculated material parameters. The proposed methodology is demonstrated on a simple model of a reactor fuel pellet. In the model, INLs BISON fuel performance code calculates the steady-state temperature profile in a fuel pellet and the microstructure-influenced thermal conductivity is determined with a phase field model of irradiated microstructures. This simple multiscale model demonstrates good nonlinear convergence and near ideal parallel scalability. By capturing the formation of large mesoscale voids in the pellet interior, the multiscale model predicted the irradiation-induced reduction in the thermal conductivity commonly observed in reactors.

  13. NREL: Hydrogen and Fuel Cells Research - Fuel Cell System Contaminants...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Contaminants Material Screening Data NREL designed this interactive material selector tool to help fuel cell developers and material suppliers explore the results of fuel ...

  14. Fuel Quality Issues in Stationary Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    This report, prepared by Argonne National Laboratory, looks at impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells.

  15. NUCLEAR REACTOR FUEL SYSTEMS

    DOE Patents [OSTI]

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  16. Reactor Fuel Isotopics and Code Validation for Nuclear Applications

    SciTech Connect (OSTI)

    Francis, Matthew W.; Weber, Charles F.; Pigni, Marco T.; Gauld, Ian C.

    2015-02-01

    Experimentally measured isotopic concentrations of well characterized spent nuclear fuel (SNF) samples have been collected and analyzed by previous researchers. These sets of experimental data have been used extensively to validate the accuracy of depletion code predictions for given sets of burnups, initial enrichments, and varying power histories for different reactor types. The purpose of this report is to present the diversity of data in a concise manner and summarize the current accuracy of depletion modeling. All calculations performed for this report were done using the Oak Ridge Isotope GENeration (ORIGEN) code, an internationally used irradiation and decay code solver within the SCALE comprehensive modeling and simulation code. The diversity of data given in this report includes key actinides, stable fission products, and radioactive fission products. In general, when using the current ENDF/B-VII.0 nuclear data libraries in SCALE, the major actinides are predicted to within 5% of the measured values. Large improvements were seen for several of the curium isotopes when using improved cross section data found in evaluated nuclear data file ENDF/B-VII.0 as compared to ENDF/B-V-based results. The impact of the flux spectrum on the plutonium isotope concentrations as a function of burnup was also shown. The general accuracy noted for the actinide samples for reactor types with burnups greater than 5,000 MWd/MTU was not observed for the low-burnup Hanford B samples. More work is needed in understanding these large discrepancies. The stable neodymium and samarium isotopes were predicted to within a few percent of the measured values. Large improvements were seen in prediction for a few of the samarium isotopes when using the ENDF/B-VII.0 libraries compared to results obtained with ENDF/B-V libraries. Very accurate predictions were obtained for 133Cs and 153Eu. However, the predicted values for the stable ruthenium and rhodium isotopes varied

  17. BWR Core Heat Transfer Code System.

    Energy Science and Technology Software Center (OSTI)

    1999-04-27

    Version 00 MOXY is used for the thermal analysis of a planar section of a boiling water reactor (BWR) fuel element during a loss-of-coolant accident (LOCA). The code emplyoys models that describe heat transfer by conduction, convection, and thermal radiation, and heat generation by metal-water reaction and fission product decay. Models are included for considering fuel-rod swelling and rupture, energy transport across the fuel-to-cladding gap, and the thermal response of the canister. MOXY requires thatmore » time-dependent data during the blowdown process for the power normalized to the steady-state power, for the heat-transfer coefficient, and for the fluid temperature be provided as input. Internal models provide these parameters during the heatup and emergency cooling phases.« less

  18. National Template: Stationary & Portable Fuel Cell Systems (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for stationary and portable fuel cell systems.

  19. Compliant fuel cell system

    DOE Patents [OSTI]

    Bourgeois, Richard Scott; Gudlavalleti, Sauri

    2009-12-15

    A fuel cell assembly comprising at least one metallic component, at least one ceramic component and a structure disposed between the metallic component and the ceramic component. The structure is configured to have a lower stiffness compared to at least one of the metallic component and the ceramic component, to accommodate a difference in strain between the metallic component and the ceramic component of the fuel cell assembly.

  20. Fuel cell system configurations

    DOE Patents [OSTI]

    Kothmann, Richard E.; Cyphers, Joseph A.

    1981-01-01

    Fuel cell stack configurations having elongated polygonal cross-sectional shapes and gaskets at the peripheral faces to which flow manifolds are sealingly affixed. Process channels convey a fuel and an oxidant through longer channels, and a cooling fluid is conveyed through relatively shorter cooling passages. The polygonal structure preferably includes at least two right angles, and the faces of the stack are arranged in opposite parallel pairs.

  1. Codes and Standards Requirements for Deployment of Emerging Fuel Cell Technologies

    SciTech Connect (OSTI)

    Burgess, R.; Buttner, W.; Riykin, C.

    2011-12-01

    The objective of this NREL report is to provide information on codes and standards (of two emerging hydrogen power fuel cell technology markets; forklift trucks and backup power units), that would ease the implementation of emerging fuel cell technologies. This information should help project developers, project engineers, code officials and other interested parties in developing and reviewing permit applications for regulatory compliance.

  2. Thermal Reactor Code System for Reactor Design and Analysis.

    Energy Science and Technology Software Center (OSTI)

    2003-04-21

    Version: 00 SRAC95 is a general purpose neutronics code system applicable to core analyses of various types of reactors, including cell calculation with burn up, core calculation for any type of thermal reactor; where core burn up calculation and fuel management were done by an auxiliary code. Since the publication of JAERI-1302 for the revised SRAC in 1986, a number of additions and modifications were made for nuclear data libraries and programs. In this version,more » many new functions and data are implemented to support nuclear design studies of advanced reactors. SRAC95 can be used for burnup credit analysis within the ORIGEN2 and SWAT (CCC-714) code system.« less

  3. Validation of the BISON 3D Fuel Performance Code: Temperature Comparisons for Concentrically and Eccentrically Located Fuel Pellets

    SciTech Connect (OSTI)

    J. D. Hales; D. M. Perez; R. L. Williamson; S. R. Novascone; B. W. Spencer

    2013-03-01

    BISON is a modern finite-element based nuclear fuel performance code that has been under development at the Idaho National Laboratory (USA) since 2009. The code is applicable to both steady and transient fuel behaviour and is used to analyse either 2D axisymmetric or 3D geometries. BISON has been applied to a variety of fuel forms including LWR fuel rods, TRISO-coated fuel particles, and metallic fuel in both rod and plate geometries. Code validation is currently in progress, principally by comparison to instrumented LWR fuel rods. Halden IFA experiments constitute a large percentage of the current BISON validation base. The validation emphasis here is centreline temperatures at the beginning of fuel life, with comparisons made to seven rods from the IFA-431 and 432 assemblies. The principal focus is IFA-431 Rod 4, which included concentric and eccentrically located fuel pellets. This experiment provides an opportunity to explore 3D thermomechanical behaviour and assess the 3D simulation capabilities of BISON. Analysis results agree with experimental results showing lower fuel centreline temperatures for eccentric fuel with the peak temperature shifted from the centreline. The comparison confirms with modern 3D analysis tools that the measured temperature difference between concentric and eccentric pellets is not an artefact and provides a quantitative explanation for the difference.

  4. TRANS4: a computer code calculation of solid fuel penetration of a concrete barrier. [LMFBR; GCFR

    SciTech Connect (OSTI)

    Ono, C. M.; Kumar, R.; Fink, J. K.

    1980-07-01

    The computer code, TRANS4, models the melting and penetration of a solid barrier by a solid disc of fuel following a core disruptive accident. This computer code has been used to model fuel debris penetration of basalt, limestone concrete, basaltic concrete, and magnetite concrete. Sensitivity studies were performed to assess the importance of various properties on the rate of penetration. Comparisons were made with results from the GROWS II code.

  5. Advanced Fuel Cell Systems | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Systems Jump to: navigation, search Name: Advanced Fuel Cell Systems Place: Amherst, New York Zip: 14228 Product: Collaboration of three companies (ATSI Engineering,...

  6. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Gas Turbines - Fact Sheet, May 2014 | Department of Energy Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 GE Global Research developed and tested new fuel-flexible gas turbine nozzle technology concepts that will enable end users to efficiently generate power and heat from industrial off-gases and gasified industrial,

  7. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Goettler, Richard; Liu, Zhien

    2015-08-11

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  8. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Liu, Zhien; Goettler, Richard

    2015-09-29

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  9. Fuel cell system with interconnect

    SciTech Connect (OSTI)

    Goettler, Richard; Liu, Zhien

    2015-03-10

    The present invention includes a fuel cell system having a plurality of adjacent electrochemical cells formed of an anode layer, a cathode layer spaced apart from the anode layer, and an electrolyte layer disposed between the anode layer and the cathode layer. The fuel cell system also includes at least one interconnect, the interconnect being structured to conduct free electrons between adjacent electrochemical cells. Each interconnect includes a primary conductor embedded within the electrolyte layer and structured to conduct the free electrons.

  10. Thermal Hydraulic Computer Code System.

    Energy Science and Technology Software Center (OSTI)

    1999-07-16

    Version 00 RELAP5 was developed to describe the behavior of a light water reactor (LWR) subjected to postulated transients such as loss of coolant from large or small pipe breaks, pump failures, etc. RELAP5 calculates fluid conditions such as velocities, pressures, densities, qualities, temperatures; thermal conditions such as surface temperatures, temperature distributions, heat fluxes; pump conditions; trip conditions; reactor power and reactivity from point reactor kinetics; and control system variables. In addition to reactor applications,more » the program can be applied to transient analysis of other thermal‑hydraulic systems with water as the fluid. This package contains RELAP5/MOD1/029 for CDC computers and RELAP5/MOD1/025 for VAX or IBM mainframe computers.« less

  11. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  12. Water reactive hydrogen fuel cell power system

    SciTech Connect (OSTI)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Sensor system for fuel transport vehicle

    DOE Patents [OSTI]

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  14. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  15. Fact Sheet: Codes and Standards for Energy Storage System Performance...

    Office of Environmental Management (EM)

    Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) The ...

  16. Building Codes and Regulations for Solar Water Heating Systems...

    Office of Environmental Management (EM)

    Building Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems June 24, 2012 - 1:50pm Addthis Photo Credit:...

  17. Scientists call for antibody 'bar code' system to follow Human...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists call for antibody 'bar code' system to follow Human Genome Project Alumni Link: ... Scientists call for antibody 'bar code' system to follow Human Genome Project Researchers ...

  18. The Basis Code Development System

    Energy Science and Technology Software Center (OSTI)

    1994-03-15

    BASIS9.4 is a system for developing interactive computer programs in Fortran, with some support for C and C++ as well. Using BASIS9.4 you can create a program that has a sophisticated programming language as its user interface so that the user can set, calculate with, and plot, all the major variables in the program. The program author writes only the scientific part of the program; BASIS9.4 supplies an environment in which to exercise that scientificmore » programming which includes an interactive language, an interpreter, graphics, terminal logs, error recovery, macros, saving and retrieving variables, formatted I/O, and online documentation.« less

  19. Radiological Safety Analysis Code System.

    Energy Science and Technology Software Center (OSTI)

    2009-12-22

    Version 03 RSAC-6.2 can be used to model complex accidents and radiological consequences to individuals from the release of radionuclides to the atmosphere. A user can generate a fission product inventory; decay and ingrow the inventory during transport through processes, facilities, and the environment; model the downwind dispersion of the activity; and calculate doses to downwind individuals. Doses are calculated through the inhalation, immersion, ground surface and ingestion pathways. New to RSAC-6.2 are the abilitiesmore » to calculate inhalation from release to a room, inhalation from resuspension of activities, and a new model for dry deposition. Doses can now be calculated as close as 10 meters from the release point. RSAC-6.2 has been subjected to extensive independent verification and validation for use in performing safety-related dose calculations to support safety analysis reports. WinRP 2.0, a windows based overlay to RSAC-6.2, assists users in creating and running RSAC-6.2 input files. RSAC-6, Rev. 6.2 (03/11/02) corrects an earlier issue with RSAC-6, compiled with F77L-EM/32 Fortran 77 Version 5.10, which would not allow the executable to run with XP or VISTA Windows operating systems. Because this version is still in use at some facilities, it is being released through RSICC in addition to the new RSAC 7 (CCC-761).« less

  20. Alternative Fuels Data Center: Transportation System Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation System Efficiency to someone by E-mail Share Alternative Fuels Data Center: Transportation System Efficiency on Facebook Tweet about Alternative Fuels Data Center: Transportation System Efficiency on Twitter Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Google Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Delicious Rank Alternative Fuels Data Center: Transportation System Efficiency on Digg Find More places to share

  1. Fuel Systems Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    company with divisions focusing on bringing cleaner-burning gaseous fuel (such as propane and natural gas) technology to various types of vehicles. References: Fuel Systems...

  2. Spent fuel management fee methodology and computer code user's manual.

    SciTech Connect (OSTI)

    Engel, R.L.; White, M.K.

    1982-01-01

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

  3. Effect of separation efficiency on repository loading values in fuel cycle scenario analysis codes

    SciTech Connect (OSTI)

    Radel, T.E.; Wilson, P.P.H.; Grady, R.M.; Bauer, T.H.

    2007-07-01

    Fuel cycle scenario analysis codes are valuable tools for investigating the effects of various decisions on the performance of the nuclear fuel cycle as a whole. Until recently, repository metrics in such codes were based on mass and were independent of the isotopic composition of the waste. A methodology has been developed for determining peak repository loading for an arbitrary set of isotopics based on the heat load restrictions and current geometry specifications for the Yucca Mountain repository. This model was implemented in the VISION fuel cycle scenario analysis code and is used here to study the effects of separation efficiencies on repository loading for various AFCI fuel cycle scenarios. Improved separations efficiencies are shown to have continuing technical benefit in fuel cycles that recycle Am and Cm, but a substantial benefit can be achieved with modest separation efficiencies. (authors)

  4. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...

    Energy Savers [EERE]

    Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in ...

  5. Process simulation of a PEM fuel cell system

    SciTech Connect (OSTI)

    Ledjeff-Hey, K.; Roes, J.; Formanski, V.; Gieshoff, J.; Vogel, B.

    1996-01-01

    The thermodynamic performance of a PEM fuel cell system for producing electrical power from natural gas is investigated by considering the flows of energy and energy through the various steps of the whole system. The flows of energy are evaluated using a computer code for energy and energy analyses. The fuel cell system is designed to produce a hydrogen volumetric flow of nearly 5.0 m{sup 3} {sub NTP}/h, provided to the fuel cell at an absolute pressure of 2.9 bar. The fuel cell itself is working with an efficiency of about 60 % at an operating temperature of 65 - 75{degrees} C with an air ratio of four and provides a maximum electric power of 9 kW. Taking into consideration only the produced electric power as useful output of the fuel cell system a total efficiency of 42.2 % is calculated using the simulation results.

  6. Energy Storage System Guide for Compliance with Safety Codes...

    Office of Environmental Management (EM)

    Guide for Compliance with Safety Codes and Standards 2016 Energy Storage System Guide for Compliance with Safety Codes and Standards 2016 Under the Energy Storage Safety Strategic ...

  7. Assessment of PCMI Simulation Using the Multidimensional Multiphysics BISON Fuel Performance Code

    SciTech Connect (OSTI)

    Stephen R. Novascone; Jason D. Hales; Benjamin W. Spencer; Richard L. Williamson

    2012-09-01

    Since 2008, the Idaho National Laboratory (INL) has been developing a next-generation nuclear fuel performance code called BISON. BISON is built using INL’s Multiphysics Object-Oriented Simulation Environment, or MOOSE. MOOSE is a massively parallel, finite element-based framework to solve systems of coupled non-linear partial differential equations using the Jacobian-FreeNewton Krylov (JFNK) method. MOOSE supports the use of complex two- and three-dimensional meshes and uses implicit time integration, which is important for the widely varied time scales in nuclear fuel simulation. MOOSE’s object-oriented architecture minimizes the programming required to add new physics models. BISON has been applied to various nuclear fuel problems to assess the accuracy of its 2D and 3D capabilities. The benchmark results used in this assessment range from simulation results from other fuel performance codes to measurements from well-known and documented reactor experiments. An example of a well-documented experiment used in this assessment is the Third Risø Fission Gas Project, referred to as “Bump Test GE7”, which was performed on rod ZX115. This experiment was chosen because it allows for an evaluation of several aspects of the code, including fully coupled thermo-mechanics, contact, and several nonlinear material models. Bump Test GE7 consists of a base-irradiation period of a full-length rod in the Quad-Cities-1 BWR for nearly 7 years to a burnup of 4.17% FIMA. The base irradiation test is followed by a “bump test” of a sub-section of the original rod. The bump test takes place in the test reactor DR3 at Risø in a water-cooled HP1 rig under BWR conditions where the power level is increased by about 50% over base irradiation levels in the span of several hours. During base irradiation, the axial power profile is flat. During the bump test, the axial power profile changes so that the bottom half of the rod is at approximately 50% higher power than at the base

  8. High Energy Particle Transport Code System.

    Energy Science and Technology Software Center (OSTI)

    2003-12-17

    Version 00 NMTC/JAM is an upgraded version of the code CCC-694/NMTC-JAERI97, which was developed in 1982 at JAERI and is based on the CCC-161/NMTC code system. NMTC/JAM simulates high energy nuclear reactions and nuclear meson transport processes. The applicable energy range of NMTC/JAM was extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code Jet-Aa Microscopic (JAM) for the intra-nuclear cascade part. For the evaporation andmore » fission process, a new model, GEM, can be used to describe the light nucleus production from the excited residual nucleus. According to the extension of the applicable energy, the nucleon-nucleus non-elastic, elastic and differential elastic cross section data were upgraded. In addition, the particle transport in a magnetic field was implemented for beam transport calculations. Some new tally functions were added, and the format of input and output of data is more user friendly. These new calculation functions and utilities provide a tool to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than with the previous model. It implements an intranuclear cascade model taking account of the in-medium nuclear effects and the preequilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the

  9. Internal Dosimetry Code System Using Biokinetics Models

    Energy Science and Technology Software Center (OSTI)

    2003-11-12

    Version 00 InDose is an internal dosimetry code to calculate dose estimations using biokinetic models (presented in ICRP-56 to ICRP71) as well as older ones. The code uses the ICRP-66 respiratory tract model and the ICRP-30 gastrointestinal tract model as well as the new and old biokinetic models. The code was written in such a way that the user can change any parameters of any one of the models without recompiling the code. All parametersmore » are given in well annotated parameters files that the user may change. As default, these files contain the values listed in ICRP publications. The full InDose code was planned to have three parts: 1) the main part includes the uptake and systemic models and is used to calculate the activities in the body tissues and excretion as a function of time for a given intake. 2) An optimization module for automatic estimation of the intake for a specific exposure case. 3) A module to calculate the dose due to the estimated intake. Currently, the code is able to perform only it`s main task (part 1) while the other two have to be done externally using other tools. In the future, developers would like to add these modules in order to provide a complete solution. The code was tested extensively to verify accuracy of its results. The verification procedure was divided into three parts: 1) verification of the implementation of each model, 2) verification of the integrity of the whole code, and 3) usability test. The first two parts consisted of comparing results obtained with InDose to published results for the same cases. For example ICRP-78 monitoring data. The last part consisted of participating in the 3rd EIE-IDA and assessing some of the scenarios provided in this exercise. These tests where presented in a few publications. Good agreement was found between the results of InDose and published data.« less

  10. Analog system for computing sparse codes

    DOE Patents [OSTI]

    Rozell, Christopher John; Johnson, Don Herrick; Baraniuk, Richard Gordon; Olshausen, Bruno A.; Ortman, Robert Lowell

    2010-08-24

    A parallel dynamical system for computing sparse representations of data, i.e., where the data can be fully represented in terms of a small number of non-zero code elements, and for reconstructing compressively sensed images. The system is based on the principles of thresholding and local competition that solves a family of sparse approximation problems corresponding to various sparsity metrics. The system utilizes Locally Competitive Algorithms (LCAs), nodes in a population continually compete with neighboring units using (usually one-way) lateral inhibition to calculate coefficients representing an input in an over complete dictionary.

  11. Application of the DART Code for the Assessment of Advanced Fuel Behavior

    SciTech Connect (OSTI)

    Rest, J.; Totev, T.

    2007-07-01

    The Dispersion Analysis Research Tool (DART) code is a dispersion fuel analysis code that contains mechanistically-based fuel and reaction-product swelling models, a one dimensional heat transfer analysis, and mechanical deformation models. DART has been used to simulate the irradiation behavior of uranium oxide, uranium silicide, and uranium molybdenum aluminum dispersion fuels, as well as their monolithic counterparts. The thermal-mechanical DART code has been validated against RERTR tests performed in the ATR for irradiation data on interaction thickness, fuel, matrix, and reaction product volume fractions, and plate thickness changes. The DART fission gas behavior model has been validated against UO{sub 2} fission gas release data as well as measured fission gas-bubble size distributions. Here DART is utilized to analyze various aspects of the observed bubble growth in U-Mo/Al interaction product. (authors)

  12. Compressed gas fuel storage system

    DOE Patents [OSTI]

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  13. Fuel cell manifold sealing system

    DOE Patents [OSTI]

    Grevstad, Paul E.; Johnson, Carl K.; Mientek, Anthony P.

    1980-01-01

    A manifold-to-stack seal and sealing method for fuel cell stacks. This seal system solves the problem of maintaining a low leak rate manifold seal as the fuel cell stack undergoes compressive creep. The seal system eliminates the problem of the manifold-to-stack seal sliding against the rough stack surface as the stack becomes shorter because of cell creep, which relative motion destroys the seal. The seal system described herein utilizes a polymer seal frame firmly clamped between the manifold and the stack such that the seal frame moves with the stack. Thus, as the stack creeps, the seal frame creeps with it, and there is no sliding at the rough, tough to seal, stack-to-seal frame interface. Here the sliding is on a smooth easy to seal location between the seal frame and the manifold.

  14. DANDE: a linked code system for core neutronics/depletion analysis

    SciTech Connect (OSTI)

    LaBauve, R.J.; England, T.R.; George, D.C.; MacFarlane, R.E.; Wilson, W.B.

    1985-06-01

    This report describes DANDE - a modular neutronics, depletion code system for reactor analysis. It consists of nuclear data processing, core physics, and fuel depletion modules, and allows one to use diffusion and transport methods interchangeably in core neutronics calculations. This latter capability is especially important in the design of small modular cores. Additional unique features include the capability of updating the nuclear data file during a calculation; a detailed treatment of depletion, burnable poisons as well as fuel; and the ability to make geometric changes such as control rod repositioning and fuel relocation in the course of a calculation. The detailed treatment of reactor fuel burnup, fission-product creation and decay, as well as inventories of higher-order actinides is a necessity when predicting the behavior of reactor fuel under increased burn conditions. The operation of the code system is made clear in this report by following a sample problem.

  15. Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Equipment Options for E85 Fueling Systems to someone by E-mail Share Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems on Facebook Tweet about Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems on Twitter Bookmark Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems on Google Bookmark Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems on Delicious Rank Alternative Fuels Data Center: Equipment Options for E85

  16. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    SciTech Connect (OSTI)

    R. L. Williamson

    2011-08-01

    A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete and smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  17. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    SciTech Connect (OSTI)

    R. L. Williamson; D. A. Knoll

    2009-09-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importance of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.

  18. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAFETY, CODES AND STANDARDS SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use

  19. Sensitivity Analysis of FEAST-Metal Fuel Performance Code: Initial Results

    SciTech Connect (OSTI)

    Edelmann, Paul Guy; Williams, Brian J.; Unal, Cetin; Yacout, Abdellatif

    2012-06-27

    This memo documents the completion of the LANL milestone, M3FT-12LA0202041, describing methodologies and initial results using FEAST-Metal. The FEAST-Metal code calculations for this work are being conducted at LANL in support of on-going activities related to sensitivity analysis of fuel performance codes. The objective is to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. This report summarizes our preliminary results for the sensitivity analysis using 6 calibration datasets for metallic fuel developed at ANL for EBR-II experiments. Sensitivity ranking methodology was deployed to narrow down the selected parameters for the current study. There are approximately 84 calibration parameters in the FEAST-Metal code, of which 32 were ultimately used in Phase II of this study. Preliminary results of this sensitivity analysis led to the following ranking of FEAST models for future calibration and improvements: fuel conductivity, fission gas transport/release, fuel creep, and precipitation kinetics. More validation data is needed to validate calibrated parameter distributions for future uncertainty quantification studies with FEAST-Metal. Results of this study also served to point out some code deficiencies and possible errors, and these are being investigated in order to determine root causes and to improve upon the existing code models.

  20. Fuel-cell engine stream conditioning system

    DOE Patents [OSTI]

    DuBose, Ronald Arthur

    2002-01-01

    A stream conditioning system for a fuel cell gas management system or fuel cell engine. The stream conditioning system manages species potential in at least one fuel cell reactant stream. A species transfer device is located in the path of at least one reactant stream of a fuel cell's inlet or outlet, which transfer device conditions that stream to improve the efficiency of the fuel cell. The species transfer device incorporates an exchange media and a sorbent. The fuel cell gas management system can include a cathode loop with the stream conditioning system transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell related to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

  1. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Office of Environmental Management (EM)

    Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems ...

  2. Hydrogen-Fueled Vehicle Safety Systems Animation | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen-Fueled Vehicle Safety Systems Animation Hydrogen-Fueled Vehicle Safety Systems Animation This animation demonstrates the multiple safety systems in hydrogen-fueled ...

  3. Fuel quality issues in stationary fuel cell systems.

    SciTech Connect (OSTI)

    Papadias, D.; Ahmed, S.; Kumar, R.

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  4. Fuel cell system and method

    DOE Patents [OSTI]

    Maru, Hansraj C.; Farooque, Mohammad

    1984-01-01

    A fuel cell system comprising a fuel cell including first and second electrolyte-communicative passage means, a third electrolyte-isolated passage means in thermal communication with a heat generating surface of the cell, independent first, second and third input manifolds for the first, second and third passage means, the first input manifold being adapted to be connected to a first supply for a first process gas and one of the second and third input manifold means being adapted to be connected to a second supply for a second process gas, and means for conveying a portion of the gas passing out of the passage means fed by the one input manifold means to the other of the second and third input manifold means.

  5. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, George; Meyers, Steven J.; Lee, Arthur

    1996-01-01

    A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

  6. hydrogen-fueled transportation systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... materials to store hydrogen onboard vehicles, leading to more reliable, economic hydrogen-fuel-cell vehicles. "Hydrogen, as a transportation fuel, has great potential to ...

  7. Inertial fusion energy power reactor fuel recovery system

    SciTech Connect (OSTI)

    Gentile, C. A.; Kozub, T.; Langish, S. W.; Ciebiera, L. P.; Nobile, A.; Wermer, J.; Sessions, K.

    2008-07-15

    A conceptual design is proposed to support the recovery of un-expended fuel, ash, and associated post-detonation products resident in plasma exhaust from a {approx}2 GWIFE direct drive power reactor. The design includes systems for the safe and efficient collection, processing, and purification of plasma exhaust fuel components. The system has been conceptually designed and sized such that tritium bred within blankets, lining the reactor target chamber, can also be collected, processed, and introduced into the fuel cycle. The system will nominally be sized to process {approx}2 kg of tritium per day and is designed to link directly to the target chamber vacuum pumping system. An effort to model the fuel recovery system (FRS) using the Aspen Plus engineering code has commenced. The system design supports processing effluent gases from the reactor directly from the exhaust of the vacuum pumping system or in batch mode, via a buffer vessel in the Receiving and Analysis System. Emphasis is on nuclear safety, reliability, and redundancy as to maximize availability. The primary goal of the fuel recovery system design is to economically recycle components of direct drive IFE fuel. The FRS design is presented as a facility sub-system in the context of supporting the larger goal of producing safe and economical IFE power. (authors)

  8. Intergovernmental Stationary Fuel Cell System Demonstration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intergovernmental Stationary Fuel Cell System Demonstration Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. PDF icon 7bplugpwr.pdf More ...

  9. Fuel-Flexible Microturbine and Gasifier System

    SciTech Connect (OSTI)

    2009-12-01

    This factsheet describes a project that will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  10. Application of the BISON Fuel Performance Code to the FUMEX-III Coordinated Research Project

    SciTech Connect (OSTI)

    R. L. Williamson; S. R. Novascone

    2012-04-01

    INL recently participated in FUMEX-III, an International Atomic Energy Agency sponsored fuel modeling Coordinated Research Project. A main purpose of FUMEX-III is to compare code predictions to reliable experimental data. During the same time period, the INL initiated development of a new multidimensional (2D and 3D) multiphysics nuclear fuel performance code called BISON. Interactions with international fuel modeling researchers via FUMEX-III played a significant and important role in the BISON evolution, particularly influencing the selection of material and behavioral models which are now included in the code. BISON's ability to model integral fuel rod behavior did not mature until 2011, thus the only FUMEX-III case considered was the Riso3-GE7 experiment, which includes measurements of rod outer diameter following pellet clad mechanical interaction (PCMI) resulting from a power ramp late in fuel life. BISON comparisons to the Riso3-GE7 final rod diameter measurements are quite reasonable. The INL is very interested in participation in the next Fuel Modeling Coordinated Research Project and would like to see the project initiated as soon as possible.

  11. A mono-dimensional nuclear fuel performance analysis code, PUMA, development from a coupled approach

    SciTech Connect (OSTI)

    Cheon, J. S.; Lee, B. O.; Lee, C. B.; Yacout, A. M.

    2013-07-01

    Multidimensional-multi-physical phenomena in nuclear fuels are treated as a set of mono-dimensional-coupled problems which encompass heat, displacement, fuel constituent redistribution, and fission gas release. Rather than uncoupling these coupled equations as in conventional fuel performance analysis codes, efforts are put into to obtain fully coupled solutions by relying on the recent advances of numerical analysis. Through this approach, a new SFR metal fuel performance analysis code, called PUMA (Performance of Uranium Metal fuel rod Analysis code) is under development. Although coupling between temperature and fuel constituent was made easily, the coupling between the mechanical equilibrium equation and a set of stiff kinetics equations for fission gas release is accomplished by introducing one-level Newton scheme through backward differentiation formula. Displacement equations from 1D finite element formulation of the mechanical equilibrium equation are solved simultaneously with stress equation, creep equation, swelling equation, and FGR equations. Calculations was made successfully such that the swelling and the hydrostatic pressure are interrelated each other. (authors)

  12. Microchannel High-Temperature Recuperator for Fuel Cell Systems...

    Energy Savers [EERE]

    Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell ...

  13. Development of Reversible Fuel Cell Systems at Proton Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reversible Fuel Cell Systems at Proton Energy Everett Anderson NRELDOE Reversible Fuel Cell Workshop 19 April 2011 Development of Reversible Fuel Cell Systems at Proton Energy ...

  14. Code System to Calculate Stress-Strains from Transient Pressures.

    Energy Science and Technology Software Center (OSTI)

    2000-04-28

    Version 00 The SPIRT (Stress-strains from Pressures Instigated by Reactor Transients) program was developed to predict the pressure generated by the rapid dispersal of molten UO2 from power-reactor-type fuel rods into the coolant water. This rapid dispersal of molten fuel results from very high-power excursions initiated by the rapid insertion of reactivity. SPIRT was used in the safety analyses of the ATR and ETR. The program can analyze the response of one-dimensional plane, cylindrical, andmore » spherical geometric configurations to pressure-generating heat sources with free-surface or fixed-surface boundary conditions. SPIRT can calculate the response of systems to the dispersal of hot fuel particles as a function of the following variables: enthalpy of fuel at time of dispersal, rate at which fuel is dispersed, size of dispersed fuel droplets, dispersal density of fuel (grams of fuel dispersed per cc of water), quality of water at time of fuel dispersal, enthalpy of water at time of fuel dispersal, system pressure at time of fuel dispersal, and the size and constituency of the medium enveloping the dispersed fuel. By holding all but one of the listed variables constant, and varying that one, the program computes the relative effect of that variable upon the response of systems to the dispersal of hot fuel. SPIRT exists as two releases one, written for UO2 fuel is called SPIRTU; the second, for uranium-aluminide fuel is identified as SPIRTA.« less

  15. Fuel cell stack monitoring and system control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-02-17

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.

  16. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1993-09-28

    A propulsion system is described for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell and receives hydrogen-containing fuel from the fuel tank and uses water and air for partially oxidizing and reforming the fuel in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor. 3 figures.

  17. Fuel cell system for transportation applications

    DOE Patents [OSTI]

    Kumar, Romesh; Ahmed, Shabbir; Krumpelt, Michael; Myles, Kevin M.

    1993-01-01

    A propulsion system for a vehicle having pairs of front and rear wheels and a fuel tank. An electrically driven motor having an output shaft operatively connected to at least one of said pair of wheels is connected to a fuel cell having a positive electrode and a negative electrode separated by an electrolyte for producing dc power to operate the motor. A partial oxidation reformer is connected both to the fuel tank and to the fuel cell receives hydrogen-containing fuel from the fuel tank and water and air and for partially oxidizing and reforming the fuel with water and air in the presence of an oxidizing catalyst and a reforming catalyst to produce a hydrogen-containing gas. The hydrogen-containing gas is sent from the partial oxidation reformer to the fuel cell negative electrode while air is transported to the fuel cell positive electrode to produce dc power for operating the electric motor.

  18. Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code

    SciTech Connect (OSTI)

    Blaise Collin

    2013-09-01

    The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.

  19. Development of HELIOS/CAPP code system for the analysis of block type VHTR cores

    SciTech Connect (OSTI)

    Lee, H. C.; Han, T. Y.; Jo, C. K.; Noh, J. M.

    2012-07-01

    In this paper, the HELIOS/CAPP code system developed for the analysis of block type VHTR cores is presented and verified against several VHTR core configurations. Verification results shows that HELIOS code predicts less negative MTC and RTC than McCARD code does and thus HELIOS code overestimates the multiplication factors at the states with high moderator and reflector temperature especially when the B{sub 4}C BP is loaded. In the depletion calculation for the VHTR single cell fuel element, the error of HELIOS code increases as burnup does. It is ascribed to the fact that HELIOS code treats some fission product nuclides with large resonances as non-resonant nuclides. In the 2-D core depletion calculation, a relatively large reactivity error is observed in the case with BP loading while the reactivity error in the case without BP loading is less than 300 pcm. (authors)

  20. Hybrid two fuel system nozzle with a bypass connecting the two fuel systems

    DOE Patents [OSTI]

    Varatharajan, Balachandar; Ziminsky, Willy Steve; Yilmaz, Ertan; Lacy, Benjamin; Zuo, Baifang; York, William David

    2012-05-29

    A hybrid fuel combustion nozzle for use with natural gas, syngas, or other types of fuels. The hybrid fuel combustion nozzle may include a natural gas system with a number of swozzle vanes and a syngas system with a number of co-annular fuel tubes.

  1. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by ...

  2. Systems for the Intermodal Routing of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Peterson, Steven K; Liu, Cheng

    2015-01-01

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable system for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of

  3. Fuel Cycle System Analysis Handbook

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty

  4. Assessment of fuel cell propulsion systems

    SciTech Connect (OSTI)

    Altseimer, J.H.; Frank, J.A.; Nochumson, D.H.; Thayer, G.R.; Rahm, A.M.; Williamson, K.D. Jr.; Hardie, R.W.; Jackson, S.V.

    1983-11-01

    This report assesses the applicability of fuel cells to a wide variety of transportation vehicles and compares them with competing propulsion systems. The assessments include economic evaluations (initial capital cost and levelized-life-cycle costs) and noneconomic evaluations (vehicle performance, power plant size, environmental effects, safety, convenience and reliability). The report also recommends research and development areas to support the development of fuel cell systems. The study indicates that fork-lift trucks are an excellent application for fuel cells. Fuel cell use in urban delivery vans and city buses is promising because it would reduce air pollution. Fuel-cell-powered automobiles, pickup trucks, and intercity buses only look promising over the long term. Based on economic criteria, the use of fuel cells for small marine craft does not appear feasible. Because of economic uncertainties, further study is needed to assess the application of fuel cell systems to freight locomotives and large marine craft.

  5. Modeling and Analysis of UN TRISO Fuel for LWR Application Using the PARFUME Code

    SciTech Connect (OSTI)

    Blaise Collin

    2014-08-01

    The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.

  6. Alternative Fuel Systems Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Slinfold, United Kingdom Zip: RH13 7SZ Product: Supplier and installer of LPG conversions. Also develops Alkaline Fuel Cell systems. Coordinates: 51.069,...

  7. Building Codes and Regulations for Solar Water Heating Systems | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Codes and Regulations for Solar Water Heating Systems Building Codes and Regulations for Solar Water Heating Systems Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision covenants, as well as any special regulations pertaining to the site. You will probably need a building permit to install a solar energy system onto an existing building. Not every

  8. FRAPCON-2: A Computer Code for the Calculation of Steady State Thermal-Mechanical Behavior of Oxide Fuel Rods

    SciTech Connect (OSTI)

    Berna, G. A; Bohn, M. P.; Rausch, W. N.; Williford, R. E.; Lanning, D. D.

    1981-01-01

    FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light Mater reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and tai lure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e} fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code Is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version 2.

  9. Recent Updates to NRC Fuel Performance Codes and Plans for Future Improvements

    SciTech Connect (OSTI)

    Geelhood, Kenneth J.

    2011-12-31

    FRAPCON-3.4a and FRAPTRAN 1.4 are the most recent versions of the U.S. Nuclear Regulatory Commission (NRC) steady-state and transient fuel performance codes, respectively. These codes have been assessed against separate effects data and integral assessment data and have been determined to provide a best estimate calculation of fuel performance. Recent updates included in FRAPCON-3.4a include updated material properties models, models for new fuel and cladding types, cladding finite element analysis capability, and capability to perform uncertainty analyses and calculate upper tolerance limits for important outputs. Recent updates included in FRAPTRAN 1.4 include: material properties models that are consistent with FRAPCON-3.4a, cladding failure models that are applicable for loss-of coolant-accident and reactivity initiated accident modeling, and updated heat transfer models. This paper briefly describes these code updates and data assessments, highlighting the particularly important improvements and data assessments. This paper also discusses areas of improvements that will be addressed in upcoming code versions.

  10. Dry Transfer Systems for Used Nuclear Fuel

    SciTech Connect (OSTI)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  11. Gas-phase propane fuel delivery system

    SciTech Connect (OSTI)

    Clements, J.

    1991-04-30

    This patent describes a gas-phase fuel delivery system for delivering a vapor phase fuel independent of exterior temperatures. It comprises:a storage tank for storing a volume of fuel; a regulator in fluid communication with the tank for receiving fuel from the tank and for outputting the fuel in a vapor phase; a pressure sensor in fluid communication with the tank for monitoring pressure within the tank, the pressure sensor being operative to generate a pump enable signal when the pressure within the tank is less than a predetermined threshold; a pump in fluid communication with the tank.

  12. Nuclear modules of ITER tokamak systems code

    SciTech Connect (OSTI)

    Gohar, Y.; Baker, C.; Brooks, J.; Finn, P.; Hassanein, A.; Willms, S.; Barr, W.; Bushigin, A.; Kalyanam, K.M.; Haines, J.

    1987-10-01

    Nuclear modules were developed to model various reactor components in the ITER systems code. Several design options and cost algorithms are included for each component. The first wall, blanket and shield modules calculate the beryllium zone thickness, the disruptions results, the nuclear responses in different components including the toroidal field coils. Tungsten shield/water coolant/steel structure and steel shield/water coolant are the shield options for the inboard and outboard sections of the reactor. Lithium nitrate dissolved in the water coolant with a variable beryllium zone thickness in the outboard section of the reactor provides the tritium breeding capability. The reactor vault module defines the thickness of the reactor wall and the roof based on the dose equivalent during operation including skyshine contribution. The impurity control module provides the design parameters for the divertor including plate design, heat load, erosion rate, tritium permeation through the plate material to the coolant, plasma contamination by sputtered impurities, and plate lifetime. Several materials: Be, C, V, Mo, and W can be used for the divertor plate to cover a range of plasma edge temperatures. The tritium module calculates tritium and deuterium flow rates for the reactor plant. The tritium inventory in the fuelers, neutral beams, vacuum pumps, impurity control, first wall, and blanket is calculated. Tritium requirements are provided for different operating conditions. The nuclear models are summarized in this paper including the different design options and key analyses of each module. 39 refs., 3 tabs.

  13. Analysis of fission gas release in LWR fuel using the BISON code

    SciTech Connect (OSTI)

    G. Pastore; J.D. Hales; S.R. Novascone; D.M. Perez; B.W. Spencer; R.L. Williamson

    2013-09-01

    Recent advances in the development of the finite-element based, multidimensional fuel performance code BISON of Idaho National Laboratory are presented. Specifically, the development, implementation and testing of a new model for the analysis of fission gas behavior in LWR-UO2 fuel during irradiation are summarized. While retaining a physics-based description of the relevant mechanisms, the model is characterized by a level of complexity suitable for application to engineering-scale nuclear fuel analysis and consistent with the uncertainties pertaining to some parameters. The treatment includes the fundamental features of fission gas behavior, among which are gas diffusion and precipitation in fuel grains, growth and coalescence of gas bubbles at grain faces, grain growth and grain boundary sweeping effects, thermal, athermal, and transient gas release. The BISON code incorporating the new model is applied to the simulation of irradiation experiments from the OECD/NEA International Fuel Performance Experiments database, also included in the IAEA coordinated research projects FUMEX-II and FUMEX-III. The comparison of the results with the available experimental data at moderate burn-up is presented, pointing out an encouraging predictive accuracy, without any fitting applied to the model parameters.

  14. Integrated Fuel-Coolant Interaction (IFCI 6.0) code. User`s manual

    SciTech Connect (OSTI)

    Davis, F.J.; Young, M.F.

    1994-04-01

    The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User`s Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks.

  15. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect (OSTI)

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  16. Scientists call for antibody 'bar code' system to follow Human...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists call for antibody 'bar code' system to follow Human Genome Project Researchers ... on the scale of the now-completed Human Genome Project. (Image: Public Domain, ...

  17. Building Codes and Regulations for Solar Water Heating Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Photo Credit: iStockphoto Photo Credit: iStockphoto Before installing a solar water heating system, you should investigate local building codes, zoning ordinances, and subdivision...

  18. Fuel cell stack monitoring and system control

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2005-01-25

    A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.

  19. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    SciTech Connect (OSTI)

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  20. MELCOR Accident Consequence Code System (MACCS)

    SciTech Connect (OSTI)

    Chanin, D.I. ); Sprung, J.L.; Ritchie, L.T.; Jow, Hong-Nian )

    1990-02-01

    This report describes the MACCS computer code. The purpose of this code is to simulate the impact of severe accidents at nuclear power plants on the surrounding environment. MACCS has been developed for the US Nuclear Regulatory Commission to replace the previous CRAC2 code, and it incorporates many improvements in modeling flexibility in comparison to CRAC2. The principal phenomena considered in MACCS are atmospheric transport, mitigative actions based on dose projection, dose accumulation by a number of pathways including food and water ingestion, early and latent health effects, and economic costs. The MACCS code can be used for a variety of applications. These include (1) probabilistic risk assessment (PRA) of nuclear power plants and other nuclear facilities, (2) sensitivity studies to gain a better understanding of the parameters important to PRA, and (3) cost-benefit analysis. This report is composed of three volumes. This document, Volume 1, the Users's Guide, describes the input data requirements of the MACCS code and provides directions for its use as illustrated by three sample problems.

  1. LPG fuel supply system. [Patent for automotive

    SciTech Connect (OSTI)

    Pierson, W.V.

    1982-09-07

    A fuel supply system for an internal combustion engine operated on gaseous fuels, for example, liquid petroleum gas (Lpg). The system includes a housing having a chamber for vaporizing liquid gas, including means for heating the vaporizing chamber. Also included in the housing is a mixing chamber for mixing the vaporized gas with incoming air for delivery to the intake manifold of an internal combustion engine through a standard carburetor. The fuel supply system includes means for mounting the system on the carburetor, including means for supporting an air filter circumjacent the mixing chamber.

  2. A brief overview of Chinese Design Code on Fossil-Fueled Power Plants

    SciTech Connect (OSTI)

    Xu Zhongqing; He Yehong

    1996-10-01

    The Chinese Design Code on Fossil Fueled Power Plants (DL 5000-94) was issued in April 1994 by the Ministry of Electric Power Industry, P.R. China, and the English version has been drafted and will be formally published in the near future. Based on the 1984 version and the nation`s current policies, the 1994 version was formed to meet the challenges of the nation`s speedy development of electric power construction. In general, the code is primarily a directive document guiding the planning and engineering of China`s large- and medium-sized fossil-fueled power plants. The preparation of the 1984 version and the revision of it to the 1994 version were all carried out by the East China Electric Power Design Institute under the direction of Electric Power Planning and Engineering Institute. For small-sized power plants with unit rating of 25 MW and below, there is another national design code titled Code for Design of Small Sized Power Plants (GB 50049-94) issued in November 1994 jointly by the China`s National Technology Supervision Administration and the Ministry of Construction.

  3. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA

  4. Fuel System Compatibility Issues for Prometheus-1

    SciTech Connect (OSTI)

    DC Noe; KB Gibbard; MH Krohn

    2006-01-20

    Compatibility issues for the Prometheus-1 fuel system have been reviewed based upon the selection of UO{sub 2} as the reference fuel material. In particular, the potential for limiting effects due to fuel- or fission product-component (cladding, liner, spring, etc) chemical interactions and clad-liner interactions have been evaluated. For UO{sub 2}-based fuels, fuel-component interactions are not expected to significantly limit performance. However, based upon the selection of component materials, there is a potential for degradation due to fission products. In particular, a chemical liner may be necessary for niobium, tantalum, zirconium, or silicon carbide-based systems. Multiple choices exist for the configuration of a chemical liner within the cladding; there is no clear solution that eliminates all concerns over the mechanical performance of a clad/liner system. A series of tests to evaluate the performance of candidate materials in contact with real and simulated fission products is outlined.

  5. Fuel cell system with coolant flow reversal

    DOE Patents [OSTI]

    Kothmann, Richard E. (Pittsburgh, PA)

    1986-01-01

    Method and apparatus for cooling electrochemical fuel cell system components. Periodic reversal of the direction of flow of cooling fluid through a fuel cell stack provides greater uniformity and cell operational temperatures. Flow direction through a recirculating coolant fluid circuit is reversed through a two position valve, without requiring modulation of the pumping component.

  6. Identification coding schemes for modulated reflectance systems

    DOE Patents [OSTI]

    Coates, Don M.; Briles, Scott D.; Neagley, Daniel L.; Platts, David; Clark, David D.

    2006-08-22

    An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.

  7. SAFE: A computer code for the steady-state and transient thermal analysis of LMR fuel elements

    SciTech Connect (OSTI)

    Hayes, S.L.

    1993-12-01

    SAFE is a computer code developed for both the steady-state and transient thermal analysis of single LMR fuel elements. The code employs a two-dimensional control-volume based finite difference methodology with fully implicit time marching to calculate the temperatures throughout a fuel element and its associated coolant channel for both the steady-state and transient events. The code makes no structural calculations or predictions whatsoever. It does, however, accept as input structural parameters within the fuel such as the distributions of porosity and fuel composition, as well as heat generation, to allow a thermal analysis to be performed on a user-specified fuel structure. The code was developed with ease of use in mind. An interactive input file generator and material property correlations internal to the code are available to expedite analyses using SAFE. This report serves as a complete design description of the code as well as a user`s manual. A sample calculation made with SAFE is included to highlight some of the code`s features. Complete input and output files for the sample problem are provided.

  8. Fuel Cell Systems Annual Progress Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRANSPORTATION FUEL CELL POWER SYSTEMS TRANSPORTATION FUEL CELL POWER SYSTEMS A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and Computer Systems Management, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this

  9. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    SciTech Connect (OSTI)

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes.

  10. Modeling of polymer electrolyte fuel cell systems

    SciTech Connect (OSTI)

    Kumar, R.; Ahluwalia, R.; Geyer, H.K.; Krumpelt, M.

    1993-09-01

    Propulsion systems based on the polymer electrolyte fuel cell (PEFC) are being developed. This paper reports an analysis undertaken to design improved PEFC systems. A reference system design with some variants were set up for a methanol-fueled PEFC propulsion system. Efficiency improves from 38.4 to 44.1% as cell current density goes from 0.75 to 0.45 A/cm{sup 2}, while fuel cell efficiency increases from 52.6 to 60.0%; to get a net power output of 80 kWe, the active fuel cell area must increase from 18.8 to 27.3 m{sup 2}. Three parametric studies were conducted on the off-design performance of the reference system.

  11. Fuel cell power system for utility vehicle

    SciTech Connect (OSTI)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  12. Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes

    SciTech Connect (OSTI)

    Baratta, A.J.

    1997-07-01

    To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts and engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.

  13. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, ...

  14. Kettering University Center for Fuel Cell Systems Powertrain...

    Open Energy Info (EERE)

    Kettering University Center for Fuel Cell Systems Powertrain Integration Jump to: navigation, search Name: Kettering University - Center for Fuel Cell Systems & Powertrain...

  15. Microfluidic fuel cell systems with embedded materials and structures...

    Office of Scientific and Technical Information (OSTI)

    Microfluidic fuel cell systems with embedded materials and structures and method thereof Citation Details In-Document Search Title: Microfluidic fuel cell systems with embedded ...

  16. Quantum Fuel Systems Technologies Worldwide Inc Quantum Technologies...

    Open Energy Info (EERE)

    Fuel Systems Technologies Worldwide Inc Quantum Technologies Jump to: navigation, search Name: Quantum Fuel Systems Technologies Worldwide Inc (Quantum Technologies) Place: Irvine,...

  17. Golden Fuel Systems formerly Greasel Conversions Inc | Open Energy...

    Open Energy Info (EERE)

    Fuel Systems formerly Greasel Conversions Inc Jump to: navigation, search Name: Golden Fuel Systems (formerly Greasel Conversions Inc) Place: Drury, Montana Zip: 65638 Sector:...

  18. DOE Technical Targets for Fuel Cell System Humidifiers and Air...

    Energy Savers [EERE]

    ... DOE Hydrogen and Fuel Cells Program Record 15015, "Fuel Cell System Cost-2015." Technical Targets: Cathode Humidification System and Humidifier Membrane for 80-kWe Transportation ...

  19. Water Outlet Control Mechanism for Fuel Cell System Operation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Water Outlet Control Mechanism for Fuel Cell System Operation in Variable Gravity Environments Self-Regulating Water Separation System for Fuel ...

  20. Fact Sheet Available: Codes and Standards for Energy Storage System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Safety (June 2014) | Department of Energy Fact Sheet Available: Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet Available: Codes and Standards for Energy Storage System Performance and Safety (June 2014) June 25, 2014 - 12:10pm Addthis The U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability Energy Storage Systems Program, with the support of Pacific Northwest National Laboratory (PNNL) and Sandia

  1. PROJECT PROFILE: Accelerating Systems Integration Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (SuNLaMP) | Department of Energy Accelerating Systems Integration Codes and Standards (SuNLaMP) PROJECT PROFILE: Accelerating Systems Integration Codes and Standards (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: National Renewable Energy Laboratory, Golden, CO SunShot Award Amount: $3,000,000 This project focuses on accelerating the revision process of the IEEE 1547 series and UL 1741 standards and testing procedures. Collectively, these standards are

  2. Coal slurry fuel supply and purge system

    DOE Patents [OSTI]

    McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  3. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, Mark Alexander; Grot, Stephen Andreas

    1998-01-01

    Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

  4. PEM fuel cell monitoring system

    DOE Patents [OSTI]

    Meltser, M.A.; Grot, S.A.

    1998-06-09

    Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

  5. Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives

    Broader source: Energy.gov [DOE]

    A bench-top engine testing system was used to fast screen the efficiency of fuel additives or fuel blends on NOx reduction

  6. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost – 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Program record 14014 from the U.S. Department of Energy's Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014.

  7. Pedestal Fueling Simulations with a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect (OSTI)

    D.P. Stotler, C.S. Chang, S.H. Ku, J. Lang and G.Y. Park

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  8. Upgraded HFIR Fuel Element Welding System

    SciTech Connect (OSTI)

    Sease, John D

    2010-02-01

    The welding of aluminum-clad fuel plates into aluminum alloy 6061 side plate tubing is a unique design feature of the High Flux Isotope Reactor (HFIR) fuel assemblies as 101 full-penetration circumferential gas metal arc welds (GMAW) are required in the fabrication of each assembly. In a HFIR fuel assembly, 540 aluminum-clad fuel plates are assembled into two nested annular fuel elements 610 mm (24-inches) long. The welding process for the HFIR fuel elements was developed in the early 1960 s and about 450 HFIR fuel assemblies have been successfully welded using the GMAW process qualified in the 1960 s. In recent years because of the degradation of the electronic and mechanical components in the old HFIR welding system, reportable defects in plate attachment or adapter welds have been present in almost all completed fuel assemblies. In October 2008, a contract was awarded to AMET, Inc., of Rexburg, Idaho, to replace the old welding equipment with standard commercially available welding components to the maximum extent possible while maintaining the qualified HFIR welding process. The upgraded HFIR welding system represents a major improvement in the welding system used in welding HFIR fuel elements for the previous 40 years. In this upgrade, the new inner GMAW torch is a significant advancement over the original inner GMAW torch previously used. The innovative breakthrough in the new inner welding torch design is the way the direction of the cast in the 0.762 mm (0.030-inch) diameter aluminum weld wire is changed so that the weld wire emerging from the contact tip is straight in the plane perpendicular to the welding direction without creating any significant drag resistance in the feeding of the weld wire.

  9. Combustor nozzle for a fuel-flexible combustion system

    DOE Patents [OSTI]

    Haynes, Joel Meier; Mosbacher, David Matthew; Janssen, Jonathan Sebastian; Iyer, Venkatraman Ananthakrishnan

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  10. Carbonate fuel cell system with thermally integrated gasification

    DOE Patents [OSTI]

    Steinfeld, G.; Meyers, S.J.; Lee, A.

    1996-09-10

    A fuel cell system is described which employs a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell. 2 figs.

  11. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Office of Environmental Management (EM)

    DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost - 2014 Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program ...

  12. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System...

    Broader source: Energy.gov (indexed) [DOE]

    Program record 14014 from the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014. DOE Hydrogen and Fuel Cells...

  13. Fuel Retrieval System Design Verification Report

    SciTech Connect (OSTI)

    GROTH, B.D.

    2000-04-11

    The Fuel Retrieval Subproject was established as part of the Spent Nuclear Fuel Project (SNF Project) to retrieve and repackage the SNF located in the K Basins. The Fuel Retrieval System (FRS) construction work is complete in the KW Basin, and start-up testing is underway. Design modifications and construction planning are also underway for the KE Basin. An independent review of the design verification process as applied to the K Basin projects was initiated in support of preparation for the SNF Project operational readiness review (ORR). A Design Verification Status Questionnaire, Table 1, is included which addresses Corrective Action SNF-EG-MA-EG-20000060, Item No.9 (Miller 2000).

  14. Fuel Retrieval System (FRS) Design Verification

    SciTech Connect (OSTI)

    YANOCHKO, R.M.

    2000-01-27

    This document was prepared as part of an independent review to explain design verification activities already completed, and to define the remaining design verification actions for the Fuel Retrieval System. The Fuel Retrieval Subproject was established as part of the Spent Nuclear Fuel Project (SNF Project) to retrieve and repackage the SNF located in the K Basins. The Fuel Retrieval System (FRS) construction work is complete in the KW Basin, and start-up testing is underway Design modifications and construction planning are also underway for the KE Basin. An independent review of the design verification process as applied to the K Basin projects was initiated in support of preparation for the SNF Project operational readiness review (ORR).

  15. Horizontal modular dry irradiated fuel storage system

    DOE Patents [OSTI]

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  16. Laser Surveillance System for Spent Fuel

    SciTech Connect (OSTI)

    Fiarman, S.; Zucker, M. S.; Bieber, Jr., A. M.

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools (SFSP's) will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a full size laser system operating in air and have used an array of 6 zircaloy BWR tubes to simulate an assembly. The reflective signal from the zircaloy rods is a strong function of position of the assembly, but in all cases is easily discernable from the reference scan of the background with no assembly. A design for a SFSP laser surveillance system incorporating laser ranging is discussed. 10 figures.

  17. Fuel Flexible Turbine System (FFTS) Program

    SciTech Connect (OSTI)

    2012-12-31

    In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was

  18. Water injected fuel cell system compressor

    DOE Patents [OSTI]

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  19. Laser surveillance system for spent fuel

    SciTech Connect (OSTI)

    Fiarman, S; Zucker, M S; Bieber, Jr, A M

    1980-01-01

    A laser surveillance system installed at spent fuel storage pools will provide the safeguard inspector with specific knowledge of spent fuel movement that cannot be obtained with current surveillance systems. The laser system will allow for the division of the pool's spent fuel inventory into two populations - those assemblies which have been moved and those which haven't - which is essential for maximizing the efficiency and effectiveness of the inspection effort. We have designed, constructed, and tested a laser system and have used it with a simulated BWR assembly. The reflected signal from the zircaloy rods depends on the position of the assembly, but in all cases is easily discernable from the reference scan of background with no assembly.

  20. Evaulation of power-reactor fuel-rod-analysis capabilities. Phase 1 topical report. Volume 2. Code evaluation. [PWR; BWR

    SciTech Connect (OSTI)

    Coleman, D.R.

    1983-09-01

    FRAPCON-2 (V1M4) was applied to generate fuel performance predictions for 60 rods of a recently evaluated power reactor data sample. Rod design, operational, and performance data was obtained from the RPRI Fuel Performance Data Base. The data was systematically processed to generate code input parameters. FRAPCON was initially applied for scoping studies to identify the best estimate mechanical response and fission gas release modeling options. Based on final scoping results, the balance of rods were analyzed with FRACAS-2 mechanics and FASTGRASS gas release models. Comparisons between measured and calculated fuel and cladding deformation, fission gas release, internal pressure, and gas composition are presented and interpreted relative to code error magnitudes, distributions, and trends versus rod design and operating parameters. The results indicate the FRAPCON-2 has best estimate capability for analysis of moderate duty fuel rod performance, provided that rod fabrication parameters are well characterized, and the fuel is dimensionally stable.

  1. Fuel cell stack compressive loading system

    DOE Patents [OSTI]

    Fahle, Ronald W.; Reiser, Carl A.

    1982-01-01

    A fuel cell module comprising a stack of fuel cells with reactant gas manifolds sealed against the external surfaces of the stack includes a constraint system for providing a compressive load on the stack wherein the constraint system maintains the stack at a constant height (after thermal expansion) and allows the compressive load to decrease with time as a result of the creep characteristics of the stack. Relative motion between the manifold sealing edges and the stack surface is virtually eliminated by this constraint system; however it can only be used with a stack having considerable resiliency and appropriate thermal expansion and creep characteristics.

  2. Fuel Cell/Gas Turbine System Performance Studies

    Office of Scientific and Technical Information (OSTI)

    ... Table 6. Advantages of Fuel CellGas Turbine Technologies System has lower capital costs ... power generation. Additionally, the capital and life costs of the fuel cellgas ...

  3. Combustor nozzle for a fuel-flexible combustion system (Patent...

    Office of Scientific and Technical Information (OSTI)

    The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber ...

  4. Automotive and MHE Fuel Cell System Cost Analysis

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar, Automotive and MHE Fuel Cell System Cost Analysis, held April 16, 2013.

  5. US Energy Initiatives Corp formerly Hybrid Fuel Systems Inc ...

    Open Energy Info (EERE)

    Fuel Systems Inc) Place: Tampa, Florida Zip: 33637 Product: Holds patented natural gasdiesel dual fuel technology. References: US Energy Initiatives Corp (formerly Hybrid...

  6. NEUTRONIC REACTOR FUEL ELEMENT AND CORE SYSTEM

    DOE Patents [OSTI]

    Moore, W.T.

    1958-09-01

    This patent relates to neutronic reactors and in particular to an improved fuel element and a novel reactor core system for facilitating removal of contaminating fission products, as they are fermed, from association with the flssionable fuel, so as to mitigate the interferent effects of such fission products during reactor operation. The fuel elements are comprised of tubular members impervious to fluid and contatning on their interior surfaces a thin layer of fissionable material providing a central void. The core structure is comprised of a plurality of the tubular fuel elements arranged in parallel and a closed manifold connected to their ends. In the reactor the core structure is dispersed in a water moderator and coolant within a pressure vessel, and a means connected to said manifuld is provided for withdrawing and disposing of mobile fission product contamination from the interior of the feel tubes and manifold.

  7. System and method for injecting fuel

    DOE Patents [OSTI]

    Uhm, Jong Ho; Johnson, Thomas Edward

    2012-12-04

    According to various embodiments, a system includes a staggered multi-nozzle assembly. The staggered multi-nozzle assembly includes a first fuel nozzle having a first axis and a first flow path extending to a first downstream end portion, wherein the first fuel nozzle has a first non-circular perimeter at the first downstream end portion. The staggered multi-nozzle assembly also includes a second fuel nozzle having a second axis and a second flow path extending to a second downstream end portion, wherein the first and second downstream end portions are axially offset from one another relative to the first and second axes. The staggered multi-nozzle assembly further includes a cap member disposed circumferentially about at least the first and second fuel nozzles to assemble the staggered multi-nozzle assembly.

  8. Fuel system for an internal combustion engine

    SciTech Connect (OSTI)

    Davison, M.J.; Mardell, J.E.; Mowbray, D.F.; Seilly, A.H.

    1982-10-26

    A fuel system for an internal combustion engine includes a pump/injector having an actuating winding to which power is supplied by a first electronic means. A first control signal is supplied by a second electronic means to energize the winding and a second control signal is supplied by a third electronic means to de-energize the winding. The third electronic means calculates the time at which the winding should be de-energized to allow the piston in the pump to draw in the required volume of fuel, the second electronic means causing delivery of fuel when the required volume of fuel has been drawn into the pumping chamber of the pump.

  9. Fuel cell system with combustor-heated reformer

    DOE Patents [OSTI]

    Pettit, William Henry

    2000-01-01

    A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

  10. Code System to Model Aqueous Geochemical Equilibria.

    Energy Science and Technology Software Center (OSTI)

    2001-08-23

    Version: 00 MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution ofsolid phases. MINTEQ can accept a finite massmore » for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and each compositionally and structurally distinct solid forms a separate phase.« less

  11. Fuel Quality Issues in Stationary Fuel Cell Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Issues in Stationary Fuel Cell Systems ANL/CSE/FCT/FQ-2011-11 Chemical Sciences and Engineering Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Offce of Scientifc and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 reports@adonis.osti.gov

  12. Dual mode fuel injection system and fuel injector for same

    DOE Patents [OSTI]

    Lawrence, Keith E.; Tian, Ye

    2005-09-20

    A fuel injection system has the ability to produce two different spray patterns depending on the positioning of a needle control valve member. Positioning of the needle control valve member determines which of the two needle control chambers are placed in a low pressure condition. First and second needle valve members have closing hydraulic surfaces exposed to fluid pressure in the two needle control chambers. The injector preferably includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by the first and second needle valve members.

  13. A Combinatorial Geometry Code System with Model Testing Routines.

    Energy Science and Technology Software Center (OSTI)

    1982-10-08

    GIFT, Geometric Information For Targets code system, is used to mathematically describe the geometry of a three-dimensional vehicle such as a tank, truck, or helicopter. The geometric data generated is merged in vulnerability computer codes with the energy effects data of a selected @munition to simulate the probabilities of malfunction or destruction of components when it is attacked by the selected munition. GIFT options include those which graphically display the vehicle, those which check themore » correctness of the geometry data, those which compute physical characteristics of the vehicle, and those which generate the geometry data used by vulnerability codes.« less

  14. Fuel Cell Systems Annual Progress Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Progress Report Fuel Cell Systems Annual Progress Report Fuel Cells 12.pdf (5.91 MB) More Documents & Publications Fuel Cells For Transportation - 2001 Annual Progress Report Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cells for Transportation - Research and Development: Program Abstracts

  15. Code System for Seismic Probabilistic Risk Assessment.

    Energy Science and Technology Software Center (OSTI)

    2001-03-27

    Version 00 SEISIM1 calculates the probabilities of seismically induced failures for components and systems and propagates these calculations to determine the probability of accident sequences and the resulting total risk, which is quantified as an expected value of radiation release and exposure from a given nuclear power plant. SEISIM1 was developed as a fundamental tool for the systems analysis portion of the NRC's Seismic Safety Margins Research Program (SSMRP). The SSMRP provides a complete, self-containedmore » methodology to assess and quantify the risk to nuclear power plants from seismic events and seismically induced failures.« less

  16. Fossil fuel combined cycle power system

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  17. Small Fuel Cell Systems with Hydrogen Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Systems with Hydrogen Storage Small Fuel Cell Systems with Hydrogen Storage Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. mfg2011_iii_stetson.pdf (882.27 KB) More Documents & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Hydrogen and Fuel Cell Technologies Overview

  18. Intergovernmental Stationary Fuel Cell System Demonstration | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Intergovernmental Stationary Fuel Cell System Demonstration Intergovernmental Stationary Fuel Cell System Demonstration Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 7b_plugpwr.pdf (23.35 KB) More Documents & Publications State of the States: Fuel Cells in America 2011 State of the States: Fuel Cells in America 2012 State of the States: Fuel Cells in America 2010

  19. Code System for Three-Dimensional Hydraulic Reactor Core Analysis.

    Energy Science and Technology Software Center (OSTI)

    2001-03-05

    Version 00 SCORE-EVET was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code contains a one-dimensional steady state solution scheme to initialize the flow field,more » steady state and transient fuel rod conduction models, and comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocity and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions, such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage. The basic volume-averaged transient three-dimensional equations for flow in porous media are solved in their general form with constitutive relationships and boundary conditions tailored to define the porous medium as a matrix of fuel rods. By retaining generality in the form of the conservation equations, a wide range of fluid flow problem configurations, from computational regions representing a single fuel rod subchannel to multichannels, or even regions without a fuel rod, can be modeled without restrictive assumptions. The completeness of the conservation equations has allowed SCORE-EVET to be used, with modification to the constitutive relationships, to calculate three-dimensional laminar boundary layer development, flow fields in large bodies of water, and, with the addition of a turbulence model, turbulent flow in pipe expansions and tees.« less

  20. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  1. Fuel cell using a hydrogen generation system

    DOE Patents [OSTI]

    Dentinger, Paul M.; Crowell, Jeffrey A. W.

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  2. Top Event Matrix Analysis Code System.

    Energy Science and Technology Software Center (OSTI)

    2000-06-19

    Version 00 TEMAC is designed to permit the user to easily estimate risk and to perform sensitivity and uncertainty analyses with a Boolean expression such as produced by the SETS computer program. SETS produces a mathematical representation of a fault tree used to model system unavailability. In the terminology of the TEMAC program, such a mathematical representation is referred to as a top event. The analysis of risk involves the estimation of the magnitude ofmore » risk, the sensitivity of risk estimates to base event probabilities and initiating event frequencies, and the quantification of the uncertainty in the risk estimates.« less

  3. Combination of Diesel fuel system architectures and Ceria-based fuel-borne

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications | Department of Energy of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications Combination of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement and simplification of the Diesel Particulate Filter System in serial applications 2003 DEER

  4. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

    2010-12-31

    The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

  5. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    SciTech Connect (OSTI)

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  6. Hydrogen Event Containment Response Code System.

    Energy Science and Technology Software Center (OSTI)

    1999-11-23

    Version: 00 Distribution is restricted to the United States Only. HECTR1.5 (Hydrogen Event-Containment Transient Response) is a lumped-volume containment analysis program that is most useful for performing parametric studies. Its main purpose is to analyze nuclear reactor accidents involving the transport and combustion of hydrogen, but HECTR can also function as an experiment analysis tool and can solve a limited set of other containment problems. Six gases; steam, nitrogen, oxygen, hydrogen, carbon monoxide, and carbonmore » dioxide are modified along with sumps containing liquid water. HECTR can model virtually all the containment systems of importance in ice condenser, large dry and Mark III containments. A postprocessor, ACHILES1.5, is included. It processes the time-dependent variable output (compartment pressures, flow junction velocities, surface temperatures, etc.) produced by HECTR. ACHILES can produce tables and graphs of these data.« less

  7. Multi-stage fuel cell system method and apparatus

    DOE Patents [OSTI]

    George, Thomas J.; Smith, William C.

    2000-01-01

    A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

  8. Single module pressurized fuel cell turbine generator system

    DOE Patents [OSTI]

    George, Raymond A.; Veyo, Stephen E.; Dederer, Jeffrey T.

    2001-01-01

    A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

  9. Nuclear reactor fuel rod attachment system

    DOE Patents [OSTI]

    Not Available

    1980-09-17

    A reusable system is described for removably attaching a nuclear reactor fuel rod to a support member. A locking cap is secured to the fuel rod and a locking strip is fastened to the support member. The locking cap has two opposing fingers shaped to form a socket having a body portion. The locking strip has an extension shaped to rigidly attach to the socket's body portion. The locking cap's fingers are resiliently deflectable. For attachment, the locking cap is longitudinally pushed onto the locking strip causing the extension to temporarily deflect open the fingers to engage the socket's body portion. For removal, the process is reversed.

  10. Solid Oxide Fuel Cell Systems PVL Line

    SciTech Connect (OSTI)

    Susan Shearer - Stark State College; Gregory Rush - Rolls-Royce Fuel Cell Systems

    2012-05-01

    In July 2010, Stark State College (SSC), received Grant DE-EE0003229 from the U.S. Department of Energy (DOE), Golden Field Office, for the development of the electrical and control systems, and mechanical commissioning of a unique 20kW scale high-pressure, high temperature, natural gas fueled Stack Block Test System (SBTS). SSC worked closely with subcontractor, Rolls-Royce Fuel Cell Systems (US) Inc. (RRFCS) over a 13 month period to successfully complete the project activities. This system will be utilized by RRFCS for pre-commercial technology development and training of SSC student interns. In the longer term, when RRFCS is producing commercial products, SSC will utilize the equipment for workforce training. In addition to DOE Hydrogen, Fuel Cells, and Infrastructure Technologies program funding, RRFCS internal funds, funds from the state of Ohio, and funding from the DOE Solid State Energy Conversion Alliance (SECA) program have been utilized to design, develop and commission this equipment. Construction of the SBTS (mechanical components) was performed under a Grant from the State of Ohio through Ohio's Third Frontier program (Grant TECH 08-053). This Ohio program supported development of a system that uses natural gas as a fuel. Funding was provided under the Department of Energy (DOE) Solid-state Energy Conversion Alliance (SECA) program for modifications required to test on coal synthesis gas. The subject DOE program provided funding for the electrical build, control system development and mechanical commissioning. Performance testing, which includes electrical commissioning, was subsequently performed under the DOE SECA program. Rolls-Royce Fuel Cell Systems is developing a megawatt-scale solid oxide fuel cell (SOFC) stationary power generation system. This system, based on RRFCS proprietary technology, is fueled with natural gas, and operates at elevated pressure. A critical success factor for development of the full scale system is the capability to

  11. Dual nozzle single pump fuel injection system

    SciTech Connect (OSTI)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is supplied by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.

  12. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  13. Alternative Fuels Data Center: Status Update: E85 Dispenser System

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Certified (June 2010) E85 Dispenser System Certified (June 2010) to someone by E-mail Share Alternative Fuels Data Center: Status Update: E85 Dispenser System Certified (June 2010) on Facebook Tweet about Alternative Fuels Data Center: Status Update: E85 Dispenser System Certified (June 2010) on Twitter Bookmark Alternative Fuels Data Center: Status Update: E85 Dispenser System Certified (June 2010) on Google Bookmark Alternative Fuels Data Center: Status Update: E85 Dispenser System

  14. Dynamics analyses of space power systems using the salt code

    SciTech Connect (OSTI)

    Geyer, H.K.; Bhattacharyya, S.K.; Hanan, N.A.; Livingston, J.M.; Westinghouse Electric Corp., Pittsburgh, PA )

    1989-01-01

    The dynamic behavior of large space power systems has been identified as a significant technical issue. To date several analyses of reactor kinetics have been reported in the literature, but there have been few (if any) studies of the dynamic response of the entire space power system. The problem is complex and required analytical methods are not generally available. Furthermore, given the conceptual state of current MMW space power systems designs, dynamic models of components are not generally available. We have used the SALT code to perform preliminary analyses of the startup and shutdown transients of several proposed MMW system designs. In this paper we will provide a description of the code methodology and present results of the analyses performed for the NERVA derivative reactor (NDR) system. 3 refs., 3 figs.

  15. Fuel-Induced System Responses The Role Unconventional Fuels May Play in

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy fact sheet provides an overview of the Next Generation Manufacturing Processes project to develop a unique, fuel-flexible catalytic combustor capable of enabling ultra-low emission, lean premixed combustion of a wide range of gaseous opportunity fuels. Fact sheet - Enabling Clean Consumption of Low Btu and Reactive Fuels in Gas Turbines (1006.92 KB) More Documents & Publications Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas

  16. Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Find More Like This Return to Search Hydrogen Storage and Supply for Vehicular Fuel Systems Lawrence Livermore National Laboratory Contact LLNL About This Technology Publications: PDF Document Publication Cryotank for storage of hydrogen as a vehicle fuel by J. Raymond Smith - Accelerating Innovation Webinar Presentation (11,941 KB) Technology Marketing Summary Various alternative-fuel systems have been proposed for passenger vehicles and

  17. Rolls Royce Fuel Cell Systems Ltd RRFCS | Open Energy Information

    Open Energy Info (EERE)

    Rolls Royce Fuel Cell Systems Ltd RRFCS Jump to: navigation, search Name: Rolls-Royce Fuel Cell Systems Ltd (RRFCS) Place: Leicestershire, England, United Kingdom Zip: LE11 3GR...

  18. Fuel Cell System Challenges Utilizing Natural Gas and Methanol

    Broader source: Energy.gov (indexed) [DOE]

    Smarter Solutions for a Clean Energy Future Fuel Cell System Challenges Utilizing Natural Gas ... fuel processing hardware and system integration March 19, 2014 2 NASDAQ:BLDP TSX:BLD ...

  19. Solid Oxide Fuel Cell and Power System Development at PNNL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development at PNNL System Development at PNNL Larry Chick Energy Materials ...

  20. Code System To Analyze Radiological Impact From Radwaste Transportation.

    Energy Science and Technology Software Center (OSTI)

    1988-05-01

    Version 00 RADSHIP-2 is a computer code system used to analyze the environmental impact of radwaste transportation in Taiwan. The specific transport scheme including the land transport by truck and sea transport by ship or barge were considered in the analysis for normal transport and transport accident conditions. The code combines meteorological, population, health physics, transportation, packaging and material factors and has the capability to obtain the results of the expected annual population radiation exposure,more » the expected number of annual latent cancer fatalities and the annual probability of a given number of early fatalities.« less

  1. Multispecies Diffusion Capability For The AMP Nuclear Fuel Performance Code (LANL Milestone M31MS060301 Final Report)

    SciTech Connect (OSTI)

    Dilts, Gary A.

    2012-03-29

    This work addresses only diffusion. The contact solver in AMP was not sufficiently developed this year to attempt treatment of species contact. A cylindrical tensor diffusion coefficient model was added to the AMP code, with the KHHS model [1] implemented into the AMP material library as a specific example. A cylindrical tensor diffusion operator manufactured solution verification example was coded. Before meeting the full text of the milestone task, it remains to: (1) code and run a cylindrical tensor diffusion solver manufactured solution (2) code and run the validation example of [1] (3) document results. These are dependent on developing new capabilities for the AMP code requiring close collaboration with the AMP team at ORNL. The model implemented provides a good intermediate first step toward a general multi-species solver. The multi-species capability of the AMP nuclear fuel code [2] is intended to allow the modeling of radiation-driven redistribution of various elements through solid metal nuclear reactor fuels. The initial model AMP provides for U-Pu-Zr fuels is based on the analysis of the Integral Fast Reactor (IFR) fuel development program experiment X419 post-irradiation data described in [1], referred to here as the KHHS model. This model may be specific to that experiment, but it was thought to provide a good start for the AMP code, because it (1) is formulated at the engineering scale, (2) decouples the species from each other, (3) predetermines the phase boundaries so that reference to a phase diagram is not needed, and (4) one of the authors (Hayes) was the NEAMS Fuels IPSC manager for FY11. The KHHS model is formulated for radial fluxes as little axial redistribution is seen experimentally. As U-Pu-Zr fuel is irradiated, the constituents migrate to form three annular regions. The center region is Zr-enriched and U-depleted, the middle region is Zr-depleted and U-enriched, and the outer region is Zr-enriched and U-depleted. The Pu concentration

  2. Using an automated code management system to improve configuration control practices

    SciTech Connect (OSTI)

    Meyer, S.

    1997-11-01

    This report contains viewgraphs on using an automated code management system to improve configuration control practice.

  3. Evaluating Future Standards and Codes with a Focus on High Penetration Photovoltaic (HPPV) System Deployment (Poster)

    SciTech Connect (OSTI)

    Coddington, M.; Kroposki, B.; Basso, T.; Lynn, K.

    2010-12-01

    Poster displaying solutions for evaluating future standards and codes for high penetration photovoltaic (HPPV) systems.

  4. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; Hu, Jianwei; Ilas, Germina; Haverlock, T. J.; Romano, Catherine E.

    2016-01-01

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via highmore » performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.« less

  5. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation

    SciTech Connect (OSTI)

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; Hu, Jianwei; Ilas, Germina; Haverlock, T. J.; Romano, Catherine E.

    2016-01-01

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via high performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.

  6. Monte-Carlo Continuous Energy Burnup Code System.

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    Version 00 MCB is a Monte Carlo Continuous Energy Burnup Code for a general-purpose use to calculate a nuclide density time evolution with burnup or decay. It includes eigenvalue calculations of critical and subcritical systems as well as neutron transport calculations in fixed source mode or k-code mode to obtain reaction rates and energy deposition that are necessary for burnup calculations. The MCB-1C patch file and data packages as distributed by the NEADB are verymore » well organized and are being made available through RSICC as received. The RSICC package includes the MCB-1C patch and MCB data libraries. Installation of MCB requires MCNP4C source code and utility programs, which are not included in this MCB distribution. They were provided with the now obsolete CCC-700/MCNP-4C package.« less

  7. Impact of Biodiesel on Fuel System Component Durability

    SciTech Connect (OSTI)

    Terry, B.

    2005-09-01

    A study of the effects of biodiesel blends on fuel system components and the physical characteristics of elastomer materials.

  8. Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Additivies for Improved Performance of Diesel Aftertreatment Systems Fuel Additivies for Improved Performance of Diesel Aftertreatment Systems 2002 DEER Conference Presentation: Ethyl 2002_deer_human.pdf (167.51 KB) More Documents & Publications Impact of Fuel-Borne Catalysts on Diesel Aftertreatment Diesel Particulate Filter: A Success for Faurecia Exhaust Systems Combination of Diesel fuel system architectures and Ceria-based fuel-borne catalysts for improvement

  9. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Steve Magee; Richard Gehman

    2005-07-12

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  10. Regenerative fuel cell systems R and D

    SciTech Connect (OSTI)

    Mitlitsky, F.; Myers, B.; Weisberg, A.H.

    1998-08-01

    Regenerative fuel cell (RFC) systems produce power and electrolytically regenerate their reactants using stacks of electrochemical cells. Energy storage systems with extremely high specific energy (> 400 Wh/kg) have been designed that use lightweight pressure vessels to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Progress is reported on the development, integration, and operation of rechargeable energy storage systems with such high specific energy. Lightweight pressure vessels that enable high specific energies have been designed with performance factors (burst pressure/internal volume/tank weight) > 50 km (2.0 million inches), and a vessel with performance factor of 40 km (1.6 million inches) was fabricated. New generations of both advanced and industry-supplied hydrogen tankage are under development. A primary fuel cell test rig with a single cell (46 cm{sup 2} active area) has been modified and operated reversibly as a URFC (for up to 2010 cycles on a single cell). This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the hydrogen side of the cell). Recent modifications also enable anode feed electrolysis (water is fed from the oxygen side of the cell). Hydrogen/halogen URFCs, capable of higher round-trip efficiency than hydrogen/oxygen URFCs, have been considered, and will be significantly heavier. Progress is reported on higher performance hydrogen/oxygen URFC operation with reduced catalyst loading.

  11. Fuel Cells and Renewable Portfolio Standards | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards Education Market Transformation Systems Analysis Information Resources Financial Opportunities News Events

  12. Fuel Cell Technologies Office: Plans, Implementation, and Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Codes & Standards Education Systems Analysis Plans,...

  13. Cogeneration system selection using the Navy's CELCAP code

    SciTech Connect (OSTI)

    Lee, T.Y.R.

    1988-08-01

    The performance of a cogeneration system is easily affected by several factors; number and type of engines used in the system, the manner in which the system is operated, and the electric and thermal load profile that the system has to supply. Other factors which the energy analyst must also consider are the electric utility rate structure, the price of fuel used in the cogeneration system, and the working habits of the people at the site. The evaluation of cogeneration energy systems for the purpose of selecting a configuration with the best performance requires a great amount of effort. A computer program to analyze a cogeneration system would greatly reduce the effort needed to evaluate cogeneration systems. Realizing the need for such a tool, the Naval Civil Engineering Laboratory developed such a cogeneration analysis computer program, Civil Engineering Laboratory Cogeneration Analysis Program (CELCAP), for the purpose of evaluating the performance of cogeneration systems on a life-cycle operating cost basis.

  14. Flexible fuel cell gas manifold system

    DOE Patents [OSTI]

    Cramer, Michael; Shah, Jagdish; Hayes, Richard P.; Kelley, Dana A.

    2005-05-03

    A fuel cell stack manifold system in which a flexible manifold body includes a pan having a central area, sidewall extending outward from the periphery of the central area, and at least one compound fold comprising a central area fold connecting adjacent portions of the central area and extending between opposite sides of the central area, and a sidewall fold connecting adjacent portions of the sidewall. The manifold system further includes a rail assembly for attachment to the manifold body and adapted to receive pins by which dielectric insulators are joined to the manifold assembly.

  15. Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen-Fueled Vehicle Safety Systems Animation (Text Version) Hydrogen fueled vehicles have multiple safety systems that detect and prevent the accidental release of hydrogen. There are sensors that detect leaks, a computer that monitors fuel flow, and an excess flow shut-off valve. Hydrogen tanks also have a pressure release device, much like those on natural gas water heaters in our homes. If a leak is

  16. Nuclear reactor fuel rod attachment system

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA)

    1982-01-01

    A reusable system for removably attaching a nuclear reactor fuel rod (12) to a support member (14). A locking cap (22) is secured to the fuel rod (12) and a locking strip (24) is fastened to the support member (14). The locking cap (22) has two opposing fingers (24a and 24b) shaped to form a socket having a body portion (26). The locking strip has an extension (36) shaped to rigidly attach to the socket's body portion (26). The locking cap's fingers are resiliently deflectable. For attachment, the locking cap (22) is longitudinally pushed onto the locking strip (24) causing the extension (36) to temporarily deflect open the fingers (24a and 24b) to engage the socket's body portion (26). For removal, the process is reversed.

  17. Fuel handling system for a nuclear reactor

    DOE Patents [OSTI]

    Saiveau, James G.; Kann, William J.; Burelbach, James P.

    1986-01-01

    A pool type nuclear fission reactor has a core, with a plurality of core elements and a redan which confines coolant as a hot pool at a first end of the core separated from a cold pool at a second end of the core by the redan. A fuel handling system for use with such reactors comprises a core element storage basket located outside of the redan in the cold pool. An access passage is formed in the redan with a gate for opening and closing the passage to maintain the temperature differential between the hot pool and the cold pool. A mechanism is provided for opening and closing the gate. A lifting arm is also provided for manipulating the fuel core elements through the access passage between the storage basket and the core when the redan gate is open.

  18. Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends

    SciTech Connect (OSTI)

    Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

    2012-03-01

    The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

  19. Three-wheel air turbocompressor for PEM fuel cell systems

    DOE Patents [OSTI]

    Rehg, Tim; Gee, Mark; Emerson, Terence P.; Ferrall, Joe; Sokolov, Pavel

    2003-08-19

    A fuel cell system comprises a compressor and a fuel processor downstream of the compressor. A fuel cell stack is in communication with the fuel processor and compressor. A combustor is downstream of the fuel cell stack. First and second turbines are downstream of the fuel processor and in parallel flow communication with one another. A distribution valve is in communication with the first and second turbines. The first and second turbines are mechanically engaged to the compressor. A bypass valve is intermediate the compressor and the second turbine, with the bypass valve enabling a compressed gas from the compressor to bypass the fuel processor.

  20. Fuel cell systems program plan, Fiscal year 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    Goal of the fuel cell program is to increase energy efficiency and economic effectiveness through development and commercialization of fuel cell systems which operate on fossil fuels in multiple end use sectors. DOE is participating with the private sector in sponsoring development of molten carbonate fuel cells and solid oxide fuel cells for application in the utility, commercial, and industrial sectors. Commercialization of phosphoric acid fuel cells is well underway. Besides the introduction, this document is divided into: goal/objectives, program strategy, technology description, technical status, program description/implementation, coordinated fuel cell activities, and international activities.

  1. Pneumatic direct cylinder fuel injection system

    SciTech Connect (OSTI)

    Reinke, P.E.

    1988-09-20

    This patent describes a pneumatic direct cylinder fuel injection system for use in an internal combustion engine of the type having an engine block means with an air induction means for supplying induction air to cylinders in the engine block means, with each cylinder having a piston reciprocable therein so as to define a combustion chamber which includes a stratified charge chamber as a portion thereof, the system including a plurality of pneumatic injectors, with the pneumatic injector being supported by the engine block means in position to discharge an air/fuel mixture into an associate stratified charge chamber, each of the pneumatic injectors including a body means terminating at one end thereof in a nozzle body, a bore means through the body means and the nozzle body, a valve seat encircling the bore means at the outboard free end of the nozzle body, the opposite end of the bore means being connectable to a source of air at a predetermined pressure, a poppet valve operatively positioned in the bore means. The poppet value includes a head movable between an open position and closed position relative to the valve seat and a stem extending from the head and defining with the bore means an air passage, control means operatively associated with the poppet valve to normally maintain the poppet valve in the closed position and being operative to permit movement of the poppet valve to the open position and, an electromagnetic fuel injector operatively positioned in the body means for injecting pressurized fuel into the air passage upstream of the head of the poppet valve in terms of the direction of air flow through the air passage during a compression stroke of the piston in the associate cylinder, the arrangement being such that when the compression pressure reaches a predetermined pressure the poppet valve will be moved to the valve closed position.

  2. FRAPCON-2: a computer code for the calculation of steady state thermal-mechanical behavior of oxide fuel rods. Technical report

    SciTech Connect (OSTI)

    Berna, G.A.; Bohn, M.P.; Rausch, W.N.; Williford, R.E.; Lanning, D.D.

    1981-01-01

    FRAPCON-2 is a FORTRAN IV computer code that calculates the steady state response of light water reactor fuel rods during long-term burnup. The code calculates the temperature, pressure, deformation, and failure histories of a fuel rod as functions of time-dependent fuel rod power and coolant boundary conditions. The phenomena modeled by the code include: (a) heat conduction through the fuel and cladding, (b) cladding elastic and plastic deformation, (c) fuel-cladding mechanical interaction, (d) fission gas release, (e) fuel rod internal gas pressure, (f) heat transfer between fuel and cladding, (g) cladding oxidation, and (h) heat transfer from cladding to coolant. The code contains necessary material properties, water properties, and heat transfer correlations. FRAPCON-2 is programmed for use on the CDC Cyber 175 and 176 computers. The FRAPCON-2 code is designed to generate initial conditions for transient fuel rod analysis by either the FRAP-T6 computer code or the thermal-hydraulic code, RELAP4/MOD7 Version2.

  3. Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technicians should regularly inspect and replace the fuel filter, which removes any oil or ... Many garages provide reminder stickers for oil changes that list the date and mileage when ...

  4. Photovoltaic power systems and the National Electrical Code: Suggested practices

    SciTech Connect (OSTI)

    Wiles, J.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  5. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect (OSTI)

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J.

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  6. Fuel Processor Enabled NOx Adsorber Aftertreatment System for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions ...

  7. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement An ...

  8. Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements EAS ...

  9. Systems Approach to New Transportation Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Approach to New Transportation Fuels Systems Approach to New Transportation Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_brinkman.pdf (512.22 KB) More Documents & Publications Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report The Non-Petroleum Based Fuel Initiative - NPBF Vehicle Technologies Office: 2010 Fuel

  10. DOE Technical Targets for Fuel Cell Systems for Transportation Applications

    Broader source: Energy.gov [DOE]

    These tables list the U.S. Department of Energy (DOE) technical targets for integrated polymer electrolyte membrane (PEM) fuel cell power systems and fuel cell stacks operating on direct hydrogen for transportation applications.

  11. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H. (Honeove Falls, NY)

    2002-01-01

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  12. Controlled air injection for a fuel cell system

    DOE Patents [OSTI]

    Fronk, Matthew H.

    2003-06-10

    A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

  13. Fuel-Flexible Microturbine and Gasifier System for Combined Heat...

    Broader source: Energy.gov (indexed) [DOE]

    The most common fuel used in microturbines is currently natural gas. However, a combination ... Integration of a syngas-fueled microturbine with a CHP system and a gasifer is only one ...

  14. FRAP-T6: a computer code for the transient analysis of oxide fuel rods. [PWR; BWR

    SciTech Connect (OSTI)

    Siefken, L.J.; Shah, V.N.; Berna, G.A.; Hohorst, J.K.

    1983-06-01

    FRAP-T6 is a computer code which is being developed to calculate the transient behavior of a light water reactor fuel rod. This report is an addendum to the FRAP-T6/MODO user's manual which provides the additional user information needed to use FRAP-T6/MOD1. This includes model changes, improvements, and additions, coding changes and improvements, change in input and control language, and example problem solutions to aid the user. This information is designed to supplement the FRAP-T6/MODO user's manual.

  15. Health Physics Code System for Evaluating Accidents Involving Radioactive Materials.

    Energy Science and Technology Software Center (OSTI)

    2014-10-01

    Version 03 The HOTSPOT Health Physics codes were created to provide Health Physics personnel with a fast, field-portable calculational tool for evaluating accidents involving radioactive materials. HOTSPOT codes provide a first-order approximation of the radiation effects associated with the atmospheric release of radioactive materials. The developer's website is: http://www.llnl.gov/nhi/hotspot/. Four general programs, PLUME, EXPLOSION, FIRE, and RESUSPENSION, calculate a downwind assessment following the release of radioactive material resulting from a continuous or puff release, explosivemore » release, fuel fire, or an area contamination event. Additional programs deal specifically with the release of plutonium, uranium, and tritium to expedite an initial assessment of accidents involving nuclear weapons. The FIDLER program can calibrate radiation survey instruments for ground survey measurements and initial screening of personnel for possible plutonium uptake in the lung. The HOTSPOT codes are fast, portable, easy to use, and fully documented in electronic help files. HOTSPOT supports color high resolution monitors and printers for concentration plots and contours. The codes have been extensively used by the DOS community since 1985. Tables and graphical output can be directed to the computer screen, printer, or a disk file. The graphical output consists of dose and ground contamination as a function of plume centerline downwind distance, and radiation dose and ground contamination contours. Users have the option of displaying scenario text on the plots. HOTSPOT 3.0.1 fixes three significant Windows 7 issues: � Executable installed properly under "Program Files/HotSpot 3.0". Installation package now smaller: removed dependency on older Windows DLL files which previously needed to \\ � Forms now properly scale based on DPI instead of font for users who change their screen resolution to something other than 100%. This is a more common feature in Windows 7

  16. The low-temperature partial oxidation reforming of fuels for transportation fuel cell systems

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.

    1996-12-31

    Argonne`s partial-oxidation reformer (APOR) is a compact, lightweight, rapid-start, and dynamically responsive device to convert liquid fuels to H{sub 2} for use in automotive fuel cells. An APOR catalyst for methanol has been developed and tested; catalysts for other fuels are being evaluated. Simple in design, operation, and control, the APOR can help develop efficient fuel cell propulsion systems.

  17. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  18. DPF-"Hydrated EGR" Fuel Saver System

    Office of Energy Efficiency and Renewable Energy (EERE)

    GreenPower muffler uses hydrated exhaust gas recirculation to reduce NOx and improve fuel efficiency

  19. Code System to Calculate Reactor Coolant System Leak Rate.

    Energy Science and Technology Software Center (OSTI)

    1999-10-19

    Version 00 RCSLK9 was developed to analyze the leak tightness of the primary coolant system for any pressurized water reactor (PWR). From given system conditions, water levels in tanks, and certain system design parameters, RCSLK9 calculates the loss of water from the reactor coolant system (RCS) and the increase of water in the leakage collection system during an arbitrary time interval. The program determines the system leak rates and displays or prints a report ofmore » the results. During the initial application to a specific reactor, RCSLK9 creates a file of system parameters and saves it for future use.« less

  20. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    SciTech Connect (OSTI)

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; Heidet, F.; Stauff, N.; Zhang, G.; Todosow, Michael; Worrall, Andrew; Gehin, Jess C.; Kim, T. K.; Taiwo, T. A.

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 105 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.

  1. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; Heidet, F.; Stauff, N.; Zhang, G.; Todosow, Michael; Worrall, Andrew; Gehin, Jess C.; Kim, T. K.; et al

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 105 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavymore » or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less

  2. Solid oxide fuel cell power system development

    SciTech Connect (OSTI)

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  3. Nexus: a modular workflow management system for quantum simulation codes

    SciTech Connect (OSTI)

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  4. Nexus: a modular workflow management system for quantum simulation codes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantummore » chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.« less

  5. Code System for Fluid-Structure Interaction Analysis.

    Energy Science and Technology Software Center (OSTI)

    2001-05-30

    Version 00 PELE-IC is a two-dimensional semi-implicit Eulerian hydrodynamics program for the solution of incompressible flow coupled to flexible structures. The code was developed to calculate fluid-structure interactions and bubble dynamics of a pressure-suppression system following a loss-of-coolant accident (LOCA). The fluid, structure, and coupling algorithms have been verified by calculation of benchmark problems and air and steam blowdown experiments. The code is written for both plane and cylindrical coordinates. The coupling algorithm is generalmore » enough to handle a wide variety of structural shapes. The concepts of void fractions and interface orientation are used to track the movement of free surfaces, allowing great versatility in following fluid-gas interfaces both for bubble definition and water surface motion without the use of marker particles.« less

  6. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Broader source: Energy.gov [DOE]

    This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems.

  7. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect (OSTI)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  8. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOE Patents [OSTI]

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  9. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing

  10. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    SciTech Connect (OSTI)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  11. Code System for Static and Dynamic Piping System Analysis.

    Energy Science and Technology Software Center (OSTI)

    2000-07-07

    EPIPE is used for design or design evaluation of complex large piping systems. The piping systems can be viewed as a network of straight pipe elements (or tangents) and curved elements (pipe bends) interconnected at joints (or nodes) with intermediate supports and anchors. The system may be subject to static loads such as thermal, dead weight, internal pressure, or dynamic loads such as earthquake motions and flow-induced vibrations, or any combination of these.

  12. The low-temperature partial-oxidation reforming of fuels for transportation fuel cell systems

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.

    1996-12-31

    Passenger cars powered by fuel cell propulsion systems with high efficiency offer superior fuel economy, very low to zero pollutant emissions, and the option to operate on alternative and/or renewable fuels. Although the fuel cell operates on hydrogen, a liquid fuel such as methanol or gasoline is more attractive for automotive use because of the convenience in handling and vehicle refueling. Such a liquid fuel must be dynamically converted (reformed) to hydrogen on board the vehicle in real time to meet fluctuating power demands. This paper describes the low-temperature Argonne partial-oxidation reformer (APOR) developed for this application. The APOR is a rapid-start, compact, lightweight, catalytic device that is efficient and dynamically responsive. The reformer is easily controlled by varying the feed rates of the fuel, water, and air to satisfy the rapidly changing system power demands during the vehicle`s driving cycle.

  13. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  14. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G.

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  15. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation: Functional modules F1-F8

    SciTech Connect (OSTI)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This volume consists of the section of the manual dealing with eight of the functional modules in the code. Those are: BONAMI - resonance self-shielding by the Bondarenko method; NITAWL-II - SCALE system module for performing resonance shielding and working library production; XSDRNPM - a one-dimensional discrete-ordinates code for transport analysis; XSDOSE - a module for calculating fluxes and dose rates at points outside a shield; KENO IV/S - an improved monte carlo criticality program; COUPLE; ORIGEN-S - SCALE system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms; ICE.

  16. Small Fuel Cell Systems with Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ned T. Stetson, Ph.D. Team Lead, Hydrogen Storage Fuel Cell Technologies Program U.S. Dept. of ... - A Potential Timeline 4 As the cost of fuel cells comes down (through ...

  17. Materials for High Pressure Fuel Injection Systems

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  18. Method for operating a combustor in a fuel cell system

    DOE Patents [OSTI]

    Clingerman, Bruce J.; Mowery, Kenneth D.

    2002-01-01

    In one aspect, the invention provides a method of operating a combustor to heat a fuel processor to a desired temperature in a fuel cell system, wherein the fuel processor generates hydrogen (H.sub.2) from a hydrocarbon for reaction within a fuel cell to generate electricity. More particularly, the invention provides a method and select system design features which cooperate to provide a start up mode of operation and a smooth transition from start-up of the combustor and fuel processor to a running mode.

  19. The Application Programming Interface for the PVMEXEC Program and Associated Code Coupling System

    SciTech Connect (OSTI)

    Walter L. Weaver III

    2005-03-01

    This report describes the Application Programming Interface for the PVMEXEC program and the code coupling systems that it implements. The information in the report is intended for programmers wanting to add a new code into the coupling system.

  20. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  1. Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels

    SciTech Connect (OSTI)

    Turgut Gur

    2010-04-30

    This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2

  2. DOE Technical Targets for Fuel Cell Systems for Stationary (Combined...

    Energy Savers [EERE]

    Stationary (Combined Heat and Power) Applications DOE Technical Targets for Fuel Cell ... is running. g Battelle preliminary 2015 cost assessment of stationary CHP systems, ...

  3. DOE Technical Targets for Fuel Cell Systems for Portable Power...

    Energy Savers [EERE]

    Portable Power and Auxiliary Power Applications DOE Technical Targets for Fuel Cell Systems ... specific energy and energy density. d Cost includes material and labor costs ...

  4. Quality Guidelines for Energy System Studies: Fuel Pricing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Fuel Prices for Selected Feedstocks in NETL Studies Quality Guidelines for Energy System Studies November 2012 Disclaimer This report was prepared as an account of work...

  5. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    SciTech Connect (OSTI)

    2010-02-01

    This factsheet describes a research project whose goal is to build an efficient, microchannel-based waste heat recuperator for a high-temperature fuel cell system.

  6. Fuel Cell Power Model for CHHP System Economics and Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Power Model for CHHP System Economics and Performance Analysis Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewablehydrogenworksho...

  7. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel ...

  8. Stationary Fuel Cell System Composite Data Products: Data through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Fuel Cell System Composite Data Products Data through Quarter 4 of 2014 Genevieve Saur, Jennifer Kurtz, Chris Ainscough, Sam Sprik, Matt Post April 2015 NREL...

  9. Control apparatus and method for efficiently heating a fuel processor in a fuel cell system

    DOE Patents [OSTI]

    Doan, Tien M.; Clingerman, Bruce J.

    2003-08-05

    A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

  10. Method for operating a combustor in a fuel cell system

    DOE Patents [OSTI]

    Chalfant, Robert W.; Clingerman, Bruce J.

    2002-01-01

    A method of operating a combustor to heat a fuel processor in a fuel cell system, in which the fuel processor generates a hydrogen-rich stream a portion of which is consumed in a fuel cell stack and a portion of which is discharged from the fuel cell stack and supplied to the combustor, and wherein first and second streams are supplied to the combustor, the first stream being a hydrocarbon fuel stream and the second stream consisting of said hydrogen-rich stream, the method comprising the steps of monitoring the temperature of the fuel processor; regulating the quantity of the first stream to the combustor according to the temperature of the fuel processor; and comparing said quantity of said first stream to a predetermined value or range of predetermined values.

  11. SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS

    SciTech Connect (OSTI)

    King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

    2003-11-21

    Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

  12. Predicting fissile content of spent nuclear fuel assemblies with the passive neutron Albedo reactivity technique and Monte Carlo code emulation

    SciTech Connect (OSTI)

    Conlin, Jeremy Lloyd; Tobin, Stephen J

    2010-10-13

    There is a great need in the safeguards community to be able to nondestructively quantify the mass of plutonium of a spent nuclear fuel assembly. As part of the Next Generation of Safeguards Initiative, we are investigating several techniques, or detector systems, which, when integrated, will be capable of quantifying the plutonium mass of a spent fuel assembly without dismantling the assembly. This paper reports on the simulation of one of these techniques, the Passive Neutron Albedo Reactivity with Fission Chambers (PNAR-FC) system. The response of this system over a wide range of spent fuel assemblies with different burnup, initial enrichment, and cooling time characteristics is shown. A Monte Carlo method of using these modeled results to estimate the fissile content of a spent fuel assembly has been developed. A few numerical simulations of using this method are shown. Finally, additional developments still needed and being worked on are discussed.

  13. APPLICATION OF CERAMICS TO HIGH PRESSURE FUEL SYSTEMS

    SciTech Connect (OSTI)

    Mandler, Jr., William F.

    2000-08-20

    Diesel fuel systems are facing increased demands as engines with reduced emissions are developed. Injection pressures have increased to provide finer atomization of fuel for more efficient combustion, Figure 1. This increases the mechanical loads on the system and requires tighter clearances between plungers and bores to prevent leakage. At the same time, fuel lubricity has decreased as a byproduct of reducing the sulfur levels in fuel. Contamination of fuel by water and debris is an ever-present problem. For oil-lubricated fuel system components, increased soot loading in the oil results in increased wear rates. Additionally, engine manufacturers are lengthening warranty periods for engines and systems. This combination of factors requires the development of new materials to counteract the harsher tribological environment.

  14. Bench-Top Engine System for Fast Screening of Alternative Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives Bench-Top Engine System for Fast Screening of Alternative Fuels and Fuel Additives A bench-top ...

  15. Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, 2014 | Department of Energy Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell Energy, Inc., in collaboration with Pacific Northwest National Laboratory, the Oregon State University Materials Institute, the Microproducts Breakthrough Institute, and the Oregon Nanoscience and Materials Institute, developed an efficient, microchannel-based waste heat recuperator

  16. The Fuel Accident Condition Simulator (FACS) furnace system for high temperature performance testing of VHTR fuel

    SciTech Connect (OSTI)

    Paul A. Demkowicz; David V. Laug; Dawn M. Scates; Edward L. Reber; Lyle G. Roybal; John B. Walter; Jason M. Harp; Robert N. Morris

    2012-10-01

    The AGR-1 irradiation of TRISO-coated particle fuel specimens was recently completed and represents the most successful such irradiation in US history, reaching peak burnups of greater than 19% FIMA with zero failures out of 300,000 particles. An extensive post-irradiation examination (PIE) campaign will be conducted on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature safety testing. A new furnace system has been designed, built, and tested to perform high temperature accident tests. The Fuel Accident Condition Simulator furnace system is designed to heat fuel specimens at temperatures up to 2000 degrees C in helium while monitoring the release of volatile fission metals (e.g. Cs, Ag, Sr, and Eu), iodine, and fission gases (Kr, Xe). Fission gases released from the fuel to the sweep gas are monitored in real time using dual cryogenic traps fitted with high purity germanium detectors. Condensable fission products are collected on a plate attached to a water-cooled cold finger that can be exchanged periodically without interrupting the test. Analysis of fission products on the condensation plates involves dry gamma counting followed by chemical analysis of selected isotopes. This paper will describe design and operational details of the Fuel Accident Condition Simulator furnace system and the associated fission gas monitoring system, as well as preliminary system calibration results.

  17. Towards Fuel-Efficient DPF Systems: Understanding the Soot Oxidation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process | Department of Energy Towards Fuel-Efficient DPF Systems: Understanding the Soot Oxidation Process Towards Fuel-Efficient DPF Systems: Understanding the Soot Oxidation Process 2005_deer_yezerets.pdf (1.75 MB) More Documents & Publications Burning Modes and Oxidation Rates of Soot: Relevance to Diesel Particulate Traps Soot Nanostructure: Definition, Quantification, and Implications DPF Performance with Biodiesel Blends

  18. Charged and neutral particle transport methods and applications: The CALOR code system

    SciTech Connect (OSTI)

    Gabriel, T.A.; Charlton, L.A.

    1997-04-01

    The CALOR code system, which is a complete radiation transport code system, is described with emphasis on the high-energy (> 20 MeV) nuclear collision models. Codes similar to CALOR are also briefly discussed. A current application using CALOR which deals with the development of the National Spallation Neutron Source is also given.

  19. Code System for Evaluation of Control Room Habitability.

    Energy Science and Technology Software Center (OSTI)

    2002-04-11

    Version: 01 HABIT 1.1 is a suite of computer codes designed for evaluating control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. EXTRAN 1.2, CHEM, TACT5, FPFP_2, and CONHAB are included in the system. HABIT was used in the verification and validation of RADTRAD, which NRC now uses to assess radiation exposure, typically in the control room, as well as site boundary doses, and to estimate dose attenuationmore » due to modification of a facility or accident sequence. RADTRAD does not assess chemical exposure, so HABIT is retained in the RSICC collection for this purpose. RADTRAD is available from Alion Science http://radtrad.com/.« less

  20. Hybrid Compton camera/coded aperture imaging system

    DOE Patents [OSTI]

    Mihailescu, Lucian (Livermore, CA); Vetter, Kai M. (Alameda, CA)

    2012-04-10

    A system in one embodiment includes an array of radiation detectors; and an array of imagers positioned behind the array of detectors relative to an expected trajectory of incoming radiation. A method in another embodiment includes detecting incoming radiation with an array of radiation detectors; detecting the incoming radiation with an array of imagers positioned behind the array of detectors relative to a trajectory of the incoming radiation; and performing at least one of Compton imaging using at least the imagers and coded aperture imaging using at least the imagers. A method in yet another embodiment includes detecting incoming radiation with an array of imagers positioned behind an array of detectors relative to a trajectory of the incoming radiation; and performing Compton imaging using at least the imagers.

  1. Multiple fuel supply system for an internal combustion engine

    DOE Patents [OSTI]

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  2. Valve for fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, David W.

    1985-01-01

    A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

  3. Valve for fuel pin loading system

    DOE Patents [OSTI]

    Christiansen, D.W.

    1984-01-01

    A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

  4. Assessing the Predictive Capability of the LIFEIV Nuclear Fuel Performance Code using Sequential Calibration

    SciTech Connect (OSTI)

    Stull, Christopher J.; Williams, Brian J.; Unal, Cetin

    2012-07-05

    This report considers the problem of calibrating a numerical model to data from an experimental campaign (or series of experimental tests). The issue is that when an experimental campaign is proposed, only the input parameters associated with each experiment are known (i.e. outputs are not known because the experiments have yet to be conducted). Faced with such a situation, it would be beneficial from the standpoint of resource management to carefully consider the sequence in which the experiments are conducted. In this way, the resources available for experimental tests may be allocated in a way that best 'informs' the calibration of the numerical model. To address this concern, the authors propose decomposing the input design space of the experimental campaign into its principal components. Subsequently, the utility (to be explained) of each experimental test to the principal components of the input design space is used to formulate the sequence in which the experimental tests will be used for model calibration purposes. The results reported herein build on those presented and discussed in [1,2] wherein Verification & Validation and Uncertainty Quantification (VU) capabilities were applied to the nuclear fuel performance code LIFEIV. In addition to the raw results from the sequential calibration studies derived from the above, a description of the data within the context of the Predictive Maturity Index (PMI) will also be provided. The PMI [3,4] is a metric initiated and developed at Los Alamos National Laboratory to quantitatively describe the ability of a numerical model to make predictions in the absence of experimental data, where it is noted that 'predictions in the absence of experimental data' is not synonymous with extrapolation. This simply reflects the fact that resources do not exist such that each and every execution of the numerical model can be compared against experimental data. If such resources existed, the justification for numerical models

  5. System for fuel rod removal from a reactor module

    DOE Patents [OSTI]

    Matchett, Richard L.; Roof, David R.; Kikta, Thomas J.; Wilczynski, Rosemarie; Nilsen, Roy J.; Bacvinskas, William S.; Fodor, George

    1990-01-01

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system.

  6. System for fuel rod removal from a reactor module

    DOE Patents [OSTI]

    Matchett, R.L.; Fodor, G.; Kikta, T.J.; Bacvinsicas, W.S.; Roof, D.R.; Nilsen, R.J.; Wilczynski, R.

    1988-07-28

    A robotic system for remote underwater withdrawal of the fuel rods from fuel modules of a light water breeder reactor includes a collet/grapple assembly for gripping and removing fuel rods in each module, which is positioned by use of a winch and a radial support means attached to a vertical support tube which is mounted over the fuel module. A programmable logic controller in conjunction with a microcomputer, provides control for the accurate positioning and pulling force of the rod grapple assembly. Closed circuit television cameras are provided which aid in operator interface with the robotic system. 7 figs.

  7. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    SciTech Connect (OSTI)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  8. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  9. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  10. Fuel-Induced System Responses The Role Unconventional Fuels May...

    Broader source: Energy.gov (indexed) [DOE]

    Biodiesel's Enabling Characteristics in Attaining Low Temperature Diesel Combustion System-Response Issues Imposed by Biodiesel in a Medium-Duty Diesel Engine New Diesel Emissions ...

  11. Low Temperature Catalyst for Fuel Injection System | Department...

    Broader source: Energy.gov (indexed) [DOE]

    A low temperature oxidation catalyst applied to a DOC and DPF combined with a unique fuel injection system remove soot from a diesel exhaust system. deer08holroyd.pdf (242.72 KB) ...

  12. Design of gasifiers to optimize fuel cell systems

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  13. Comparison of GAPCON-THERMAL-3 and FRAPCON-2 fuel-performance codes to in-reactor measurement of elastic cladding deformation. [PWR; BWR

    SciTech Connect (OSTI)

    Lanning, D.D.; Rausch, W.N.; Williford, R.E.

    1981-01-01

    A revision of the GAPCON-3 computer code became part of the NRC-sponsored FRAPCON-2 code. This paper presents a comparison of both codes to in-reactor data from IFA-508, a 3-rod test rig in the Halden Reactor, Norway, which features simultaneous measurements of fuel temperature, power, axial elongation, and diametral strain. The modeling revisions included putting all regions of the fuel in contact with cladding at all time, but assigning non-linear, spatially dependent, anisotropic elastic moduli to the fuel on an incremental load step basis. The moduli are functions of the local available void within the cladding. These concepts bring demonstrable improvement to the code predictions.

  14. Garbage to hydrocarbon fuel conversion system

    SciTech Connect (OSTI)

    Gould, W.A.

    1986-07-15

    A garbage to hydrocarbon fuel conversion system is described which consists of: (a) a source of combustible garbage; (b) means for pulverizing the garbage; (c) a furnace to burn the garbage; (d) means for transporting the pulverized garbage to the furnace which comprises a motor operated worm feed automatic stoker; (e) a steam generating coil inside the furnace which supplies live steam to power a turbine which in turn powers an alternating current generator; and a condenser which returns remaining the steam to a liquid state for re-circulation through the steam generating coils; (f) means for collecting incompletely combusted waste gases from the furnace; precipitating out dust and light oil for re-combustion in the furnace; and, extracting hydrocarbon gas; where in the means for precipitating out dust and light oil for re-combustion in the furnace comprise a cottrell precipitator wherein oil from an external source is mixed with fine dust received from the exhaust port, wherein an electrostatic charge helps to precipitate the dust; a dust and light oil mixer which provides a homogeneous mixture; and, an oil burner mounted to the furnace whose heat output is supplied to the furnace to add energy thereto; and (g) means for burning trapped heavy gases and removing waste ash from the furnace for disposal.

  15. A natural-gas fuel processor for a residential fuel cell system.

    SciTech Connect (OSTI)

    Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.; Japan Institute of Energy

    2009-03-01

    A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor--namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor--were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing {approx} 48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

  16. NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation System Component Validation NREL's hydrogen system component validation studies focus on improving the reliability of compressors and other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric vehicles and material handling equipment. NREL's technology validation team is collaborating with industry to test and validate the commercial readiness of hydrogen system

  17. Time-Dependent, Parallel Neutral Particle Transport Code System.

    Energy Science and Technology Software Center (OSTI)

    2009-09-10

    Version 00 PARTISN (PARallel, TIme-Dependent SN) is the evolutionary successor to CCC-547/DANTSYS. The PARTISN code package is a modular computer program package designed to solve the time-independent or dependent multigroup discrete ordinates form of the Boltzmann transport equation in several different geometries. The modular construction of the package separates the input processing, the transport equation solving, and the post processing (or edit) functions into distinct code modules: the Input Module, the Solver Module, and themore » Edit Module, respectively. PARTISN is the evolutionary successor to the DANTSYSTM code system package. The Input and Edit Modules in PARTISN are very similar to those in DANTSYS. However, unlike DANTSYS, the Solver Module in PARTISN contains one, two, and three-dimensional solvers in a single module. In addition to the diamond-differencing method, the Solver Module also has Adaptive Weighted Diamond-Differencing (AWDD), Linear Discontinuous (LD), and Exponential Discontinuous (ED) spatial differencing methods. The spatial mesh may consist of either a standard orthogonal mesh or a block adaptive orthogonal mesh. The Solver Module may be run in parallel for two and three dimensional problems. One can now run 1-D problems in parallel using Energy Domain Decomposition (triggered by Block 5 input keyword npeg>0). EDD can also be used in 2-D/3-D with or without our standard Spatial Domain Decomposition. Both the static (fixed source or eigenvalue) and time-dependent forms of the transport equation are solved in forward or adjoint mode. In addition, PARTISN now has a probabilistic mode for Probability of Initiation (static) and Probability of Survival (dynamic) calculations. Vacuum, reflective, periodic, white, or inhomogeneous boundary conditions are solved. General anisotropic scattering and inhomogeneous sources are permitted. PARTISN solves the transport equation on orthogonal (single level or block-structured AMR) grids in 1-D

  18. Mixed Mode Fuel Injector And Injection System

    DOE Patents [OSTI]

    Stewart, Chris Lee; Tian, Ye; Wang, Lifeng; Shafer, Scott F.

    2005-12-27

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

  19. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2003-06-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward evaluation of the viscosity impacts of lubricity additives, completion of both experimental systems and a summary of the plan for completion of the project objectives.

  20. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  1. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    SciTech Connect (OSTI)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  2. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    SciTech Connect (OSTI)

    Nelson, Douglas

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  3. Rapid scanning system for fuel drawers

    DOE Patents [OSTI]

    Caldwell, John T.; Fehlau, Paul E.; France, Stephen W.

    1981-01-01

    A nondestructive method for uniqely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  4. Rapid scanning system for fuel drawers

    DOE Patents [OSTI]

    Caldwell, J.T.; Fehlau, P.E.; France, S.W.

    A nondestructive method for uniquely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  5. Multiparticle Monte Carlo Code System for Shielding and Criticality Use.

    Energy Science and Technology Software Center (OSTI)

    2015-06-01

    Version 00 COG is a modern, full-featured Monte Carlo radiation transport code that provides accurate answers to complex shielding, criticality, and activation problems.COG was written to be state-of-the-art and free of physics approximations and compromises found in earlier codes. COG is fully 3-D, uses point-wise cross sections and exact angular scattering, and allows a full range of biasing options to speed up solutions for deep penetration problems. Additionally, a criticality option is available for computingmore » Keff for assemblies of fissile materials. ENDL or ENDFB cross section libraries may be used. COG home page: http://cog.llnl.gov. Cross section libraries are included in the package. COG can use either the LLNL ENDL-90 cross section set or the ENDFB/VI set. Analytic surfaces are used to describe geometric boundaries. Parts (volumes) are described by a method of Constructive Solid Geometry. Surface types include surfaces of up to fourth order, and pseudo-surfaces such as boxes, finite cylinders, and figures of revolution. Repeated assemblies need be defined only once. Parts are visualized in cross-section and perspective picture views. A lattice feature simplifies the specification of regular arrays of parts. Parallel processing under MPI is supported for multi-CPU systems. Source and random-walk biasing techniques may be selected to improve solution statistics. These include source angular biasing, importance weighting, particle splitting and Russian roulette, pathlength stretching, point detectors, scattered direction biasing, and forced collisions. Criticality – For a fissioning system, COG will compute Keff by transporting batches of neutrons through the system. Activation – COG can compute gamma-ray doses due to neutron-activated materials, starting with just a neutron source. Coupled Problems – COG can solve coupled problems involving neutrons, photons, and electrons. COG 11.1 is an updated version of COG11.1 BETA 2 (RSICC C00777MNYCP02

  6. DOE Fuel Cell Technologies Office Record 14014: Fuel Cell System Cost - 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14014 Date: September 25, 2014 Title: Fuel Cell System Cost - 2014 Update to: Record 14012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: October 6, 2014 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on next-generation laboratory technology 1 and operating on direct hydrogen is projected to be $55/kW net when manufactured at a volume of 500,000 units/year. The expected cost of automotive PEM fuel cell

  7. Prototype demonstration of radiation therapy planning code system

    SciTech Connect (OSTI)

    Little, R.C.; Adams, K.J.; Estes, G.P.; Hughes, L.S. III; Waters, L.S.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). Radiation therapy planning is the process by which a radiation oncologist plans a treatment protocol for a patient preparing to undergo radiation therapy. The objective is to develop a protocol that delivers sufficient radiation dose to the entire tumor volume, while minimizing dose to healthy tissue. Radiation therapy planning, as currently practiced in the field, suffers from inaccuracies made in modeling patient anatomy and radiation transport. This project investigated the ability to automatically model patient-specific, three-dimensional (3-D) geometries in advanced Los Alamos radiation transport codes (such as MCNP), and to efficiently generate accurate radiation dose profiles in these geometries via sophisticated physics modeling. Modem scientific visualization techniques were utilized. The long-term goal is that such a system could be used by a non-expert in a distributed computing environment to help plan the treatment protocol for any candidate radiation source. The improved accuracy offered by such a system promises increased efficacy and reduced costs for this important aspect of health care.

  8. Code System for Analysis of Potential Radiological Impacts.

    Energy Science and Technology Software Center (OSTI)

    1999-02-02

    Version: 00 IMPACTS-BRC2.1 is a generic radiological assessment code that allows calculation of potential impacts to maximum individuals, waste disposal workers, and the general population resulting from exemption of very low-level radioactive wastes from regulatory control. The code allows calculations to be made of human exposure to the waste by many pathways and exposure scenarios.

  9. Code System for Analysis of Piping Reliability Including Seismic Events.

    Energy Science and Technology Software Center (OSTI)

    1999-04-26

    Version 00 PC-PRAISE is a probabilistic fracture mechanics computer code developed for IBM or IBM compatible personal computers to estimate probabilities of leaks and breaks in nuclear power plant cooling piping. It iwas adapted from LLNL's PRAISE computer code.

  10. Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-01-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

  11. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  12. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2004-04-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, we have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Our strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, we have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. Our activities have covered three areas: examination of the impact of lubricity additives on the viscosity of DME, development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. The first two of these areas have resulted in valuable information about the limitations of lubricity and viscosity additives that are presently available in terms of their impact on the viscosity of DME and on wear rates on injector hardware. The third area, that of development of an injector durability test stand, has not resulted in a functioning experiment. Some information is provided in this report to identify the remaining tasks that need to be performed to make the injector stand operational. The key observations from the work are that when blended at 25 wt.% in either diesel fuel or Biodiesel fuel, DME requires more than 5 wt

  13. Modular Code and Data System for Fast Reactor Neutronics Analyses

    Energy Science and Technology Software Center (OSTI)

    2008-06-30

    Version 00. The European Reactor ANalysis Optimized calculation System, ERANOS, has been developed and validated with the aim of providing a suitable basis for reliable neutronic calculations of current as well as advanced fast reactor cores. It consists of data libraries, deterministic codes and calculation procedures which have been developed within the European Collaboration on Fast Reactors over the past 20 years or so, in order to answer the needs of both industrial and R&Dmore » organisations. The whole system counts roughly 250 functions and 3000 subroutines totalling 450000 lines of FORTRAN-77 and ESOPE instructions. ERANOS is written using the ALOS software which requires only standard FORTRAN compilers and includes advanced programming features. A modular structure was adopted for easier evolution and incorporation of new functionalities. Blocks of data (SETs) can be created or used by the modules themselves or by the user via the LU control language. Programming, and dynamic memory allocation, are performed by means of the ESOPE language. External temporary storage and permanent storage capabilities are provided by the GEMAT and ARCHIVE functions, respectively. ESOPE, LU, GEMAT and ARCHIVE are all part of the ALOS software. This modular structure allows different modules to be linked together in procedures corresponding to recommended calculation routes ranging from fast-running and moderately-accurate 'routine' procedures to slow-running but highly-accurate 'reference' procedures. The main contents of the ERANOS-2.0 package are: nuclear data libraries (multigroup cross-sections from the JEF-2.2 evaluated nuclear data file, and other specific data files), a cell and lattice code (ECCO), reactor flux solvers (diffusion, Sn transport, nodal variational transport), a burn-up module, various processing modules (material and neutron balance, breeding gains,...), tools related to perturbation theory and sensitivity analysis, core follow-up modules (connected

  14. System for loading executable code into volatile memory in a downhole tool

    DOE Patents [OSTI]

    Hall, David R.; Bartholomew, David B.; Johnson, Monte L.

    2007-09-25

    A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.

  15. Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Control | Department of Energy Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control Fuel Processor Enabled NOx Adsorber Aftertreatment System for Diesel Engine Emissions Control 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Catalytica Energy Systems 2004_deer_catalytica.pdf (331 KB) More Documents & Publications Transient Dynamometer Testing of a Single-Leg NOX Adsorber Combined with a Fuel Processor for Enhanced NOx

  16. Inter-comparison of Computer Codes for TRISO-based Fuel Micro-Modeling and Performance Assessment

    SciTech Connect (OSTI)

    Brian Boer; Chang Keun Jo; Wen Wu; Abderrafi M. Ougouag; Donald McEachren; Francesco Venneri

    2010-10-01

    The Next Generation Nuclear Plant (NGNP), the Deep Burn Pebble Bed Reactor (DB-PBR) and the Deep Burn Prismatic Block Reactor (DB-PMR) are all based on fuels that use TRISO particles as their fundamental constituent. The TRISO particle properties include very high durability in radiation environments, hence the designs reliance on the TRISO to form the principal barrier to radioactive materials release. This durability forms the basis for the selection of this fuel type for applications such as Deep Bun (DB), which require exposures up to four times those expected for light water reactors. It follows that the study and prediction of the durability of TRISO particles must be carried as part of the safety and overall performance characterization of all the designs mentioned above. Such evaluations have been carried out independently by the performers of the DB project using independently developed codes. These codes, PASTA, PISA and COPA, incorporate models for stress analysis on the various layers of the TRISO particle (and of the intervening matrix material for some of them), model for fission products release and migration then accumulation within the SiC layer of the TRISO particle, just next to the layer, models for free oxygen and CO formation and migration to the same location, models for temperature field modeling within the various layers of the TRISO particle and models for the prediction of failure rates. All these models may be either internal to the code or external. This large number of models and the possibility of different constitutive data and model formulations and the possibility of a variety of solution techniques makes it highly unlikely that the model would give identical results in the modeling of identical situations. The purpose of this paper is to present the results of an inter-comparison between the codes and to identify areas of agreement and areas that need reconciliation. The inter-comparison has been carried out by the cooperating

  17. Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Newark, Delaware) - JCAP Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Mon, Mar 7, 2016 11:30am 11:30 Tue, Mar 8, 2016 12:30pm 12:30 University of Delaware Newark, Delaware Frances Houle, "Solar Fuels Systems Research in the Joint Center for Artificial Photosynthesis" March 6 80th Annual Conference of the DPG & DPG Spring Meeting

  18. SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER

    SciTech Connect (OSTI)

    Dennis Witmer

    2003-12-01

    New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell

  19. Novel Fuel Cells for Coal Based Systems

    SciTech Connect (OSTI)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  20. Code System for Supercritical Water Cooled Reactor LOCA Analysis.

    Energy Science and Technology Software Center (OSTI)

    1999-10-13

    Version 00 The new SCRELA code was developed to analyze the LOCA of the supercritical water cooled reactor. Since the currently available LWR codes for LOCA analysis could not analyze the significant differences in reactor characteristics between the supercritical-water cooled reactor and the current LWR, the first objective of this code development was to analyze the uniqueness of this reactor. The behavior of the supercritical water in the blowdown phase and the reflood phase ismore » modeled.« less

  1. Fuel cell with electrolyte feed system

    DOE Patents [OSTI]

    Feigenbaum, Haim (Highland Park, NJ)

    1984-01-01

    A fuel cell having a pair of electrodes at the sites of electrochemical reactions of hydrogen and oxygen and a phosphoric acid electrolyte provided with an electrolyte supporting structure in the form of a laminated matrix assembly disposed between the electrodes. The matrix assembly is formed of a central layer disposed between two outer layers, each being permeable to the flow of the electrolyte. The central layer is provided with relatively large pores while the outer layers are provided with relatively small pores. An external reservoir supplies electrolyte via a feed means to the central layer to compensate for changes in electrolyte volume in the matrix assembly during the operation of fuel cell.

  2. Code System for the Analysis of Material Test Reactor (MTR) Cores.

    Energy Science and Technology Software Center (OSTI)

    1995-03-24

    Version 00 The RETRAC code uses a set of coupled neutron point-kinetics equations and thermal-hydraulic conservation laws to simulate nuclear reactor core behavior under transient or accident conditions. The reactor core is represented by a single equivalent unit cell composed of three regions: fuel, clad, and moderator (coolant).

  3. Formulation, Implementation and Validation of a Two-Fluid model in a Fuel Cell CFD Code

    SciTech Connect (OSTI)

    Kunal Jain, Vernon Cole, Sanjiv Kumar and N. Vaidya

    2008-11-01

    Water management is one of the main challenges in PEM Fuel Cells. While water is essential for membrane electrical conductivity, excess liquid water leads to ooding of catalyst layers. Despite the fact that accurate prediction of two-phase transport is key for optimal water management, understanding of the two-phase transport in fuel cells is relatively poor. Wang et. al. [1], [2] have studied the two-phase transport in the channel and diffusion layer separately using a multiphase mixture model. The model fails to accurately predict saturation values for high humidity inlet streams. Nguyen et. al. [3] developed a two-dimensional, two-phase, isothermal, isobaric, steady state model of the catalyst and gas diffusion layers. The model neglects any liquid in the channel. Djilali et. al. [4] developed a three-dimensional two-phase multicomponent model. The model is an improvement over previous models, but neglects drag between the liquid and the gas phases in the channel. In this work, we present a comprehensive two- fluid model relevant to fuel cells. Models for two-phase transport through Channel, Gas Diffusion Layer (GDL) and Channel-GDL interface, are discussed. In the channel, the gas and liquid pressures are assumed to be same. The surface tension effects in the channel are incorporated using the continuum surface force (CSF) model. The force at the surface is expressed as a volumetric body force and added as a source to the momentum equation. In the GDL, the gas and liquid are assumed to be at different pressures. The difference in the pressures (capillary pressure) is calculated using an empirical correlations. At the Channel-GDL interface, the wall adhesion affects need to be taken into account. SIMPLE-type methods recast the continuity equation into a pressure-correction equation, the solution of which then provides corrections for velocities and pressures. However, in the two-fluid model, the presence of two phasic continuity equations gives more freedom and

  4. Full fuel-cycle comparison of forklift propulsion systems.

    SciTech Connect (OSTI)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  5. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: ...

  6. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost ...

  7. Impact of Codes on Potential PVC Duct System Solution

    Broader source: Energy.gov [DOE]

    This presentation was given at the Summer 2012 DOE Building America meeting on July 26, 2012, and addressed the question "Do codes and standards get in the way of high performance?"

  8. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOE Patents [OSTI]

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  9. Solid Oxide Fuel Cell Systems for APU Functions and Beyond |...

    Broader source: Energy.gov (indexed) [DOE]

    of FreedomCAR and Vehicle Technologies (OFCVT). deer07grieve.pdf (105.13 KB) More Documents & Publications Solid Oxide Fuel Cell System (SOFC) Technology R&D Needs ...

  10. Integrating fuel cell power systems into building physical plants

    SciTech Connect (OSTI)

    Carson, J.

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  11. Webinar: Automotive and MHE Fuel Cell System Cost Analysis |...

    Broader source: Energy.gov (indexed) [DOE]

    ... The-what we did this year was look at 10 and 25 kilowatt PEM fuel cell systems for material handling applications, and that's what I'll be talking about today. Next slide ...

  12. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOE Patents [OSTI]

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  13. Current Approaches to Safety, Codes and Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards » Current Approaches to Safety, Codes and Standards Current Approaches to Safety, Codes and Standards Current approaches to hydrogen and fuel cells safety, codes and standards are based on existing practices, guidelines, and codes and standards developed as a result of hydrogen's use in the chemical and aerospace industries. While some codes and standards for hydrogen and hydrogen-related systems are already available, in many cases they do not fully address the

  14. DOE Safety, Codes, and Standards Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety, Codes & Standards » DOE Safety, Codes, and Standards Activities DOE Safety, Codes, and Standards Activities DOE's safety R&D activities are aimed at developing sensors to detect hydrogen leaks in hydrogen and fuel cell systems. DOE's codes and standards activities are focused on coordinating and accelerating the efforts of major standards and model code development organizations and regulatory agencies so the required standards, codes, and regulations for hydrogen technologies

  15. Engine control system having fuel-based adjustment

    DOE Patents [OSTI]

    Willi, Martin L.; Fiveland, Scott B.; Montgomery, David T.; Gong, Weidong

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  16. NREL: Hydrogen and Fuel Cells Research - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Analysis Graphic showing a map and chart. Hydrogen infrastructure simulation models focus on the spatial and temporal deployment of vehicles and fueling infrastructure to provide insights into investment decisions and policy support options. Image of a generic bar graph. H2FAST: Hydrogen Financial Analysis Scenario Tool Delivers in-depth financial analysis for hydrogen fueling stations. NREL's hydrogen systems analysis activities provide direction, insight, and support for the

  17. Complex System Method to Assess Commercial Vehicle Fuel Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Complex System Method to Assess Commercial Vehicle Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle with advanced, future options. p-08_kasab.pdf (273.12 KB) More Documents & Publications Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies A High Temperature Direct

  18. Fuel Cell Systems for Portable, Backup, and UPS Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Federal Agency Purchasing Managers Federal Agency Purchasing Managers Fuel Cell Systems for Portable, Backup and UPS Fuel Cell Systems for Portable, Backup and UPS Applications Applications Eric Simpkins, USFCC President Eric Simpkins, USFCC President Vice President, IdaTech, LLC Vice President, IdaTech, LLC Washington, DC Washington, DC April 26, 2007 April 26, 2007 Definitions Introduction What's Available & How Used Typical Operation & Maintenance Time: Order to Site Installation

  19. Code System for Use with Human System Interface Design Review Guidelines.

    Energy Science and Technology Software Center (OSTI)

    2000-05-12

    Version 00 The Human System Interface Design Review Guideline (HSI-DRG) software application supports evaluations conducted using the process described in NUREG-0700 Rev.1 Volume 1. The code supports the design review process by facilitating the selection, evaluation, and analysis of human factors engineering (HFE) guidelines.

  20. RBMK coupled neutronics/thermal-hydraulics analyses by two independent code systems

    SciTech Connect (OSTI)

    Parisi, C.; D'Auria, F.; Malofeev, V.; Ivanov, B.; Ivanov, K.

    2006-07-01

    This paper presents the coupled neutronics/thermal-hydraulics activities carried out in the framework of the part B of the TACIS project R2.03/97, 'Software development for accident analysis of RBMK reactors in Russia'. Two independent code systems were assembled, one from the Russian side and the other from the Western side, for studying RBMK core transients. The Russian code system relies on the use of code UNK for neutron data libraries generation and the three-dimensional neutron kinetics thermal-hydraulics coupled codes BARS-KORSAR for plant transient analyses. The Western code system is instead based on the lattice physics code HELIOS and on the RELAP5-3D C code. Several activities were performed for testing code system's capabilities: the neutron data libraries were calculated and verified by precise Monte Carlo calculations, the coupled codes' steady state results were compared with plant detectors' data, and calculations of several transients were compared. Finally, both code systems proved to have all the capabilities for addressing reliable safety analyses of RBMK reactors. (authors)

  1. Solid fuel combustion system for gas turbine engine

    DOE Patents [OSTI]

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  2. Fuel cell and system for supplying electrolyte thereto

    DOE Patents [OSTI]

    Adlhart, Otto J.; Feigenbaum, Haim

    1984-01-01

    An electrolyte distribution and supply system for use with a fuel cell having means for drawing electrolyte therein is formed by a set of containers of electrolyte joined to respective fuel cells in a stack of such cells. The electrolyte is separately stored so as to provide for electrical isolation between electrolytes of the individual cells of the stack. Individual storage compartments are coupled by capillary tubes to the respective fuel cells. Hydrostatic pressure is maintained individually for each of the fuel cells by separately elevating each compartment of the storing means to a specific height above the corresponding fuel cell which is to be fed from that compartment of the storing means. The individual compartments are filled with electrolyte by allowing the compartments to overflow thereby maintaining the requisite depth of electrolyte in each of the storage compartments.

  3. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Control modules -- Volume 1, Revision 4

    SciTech Connect (OSTI)

    Landers, N.F.; Petrie, L.M.; Knight, J.R.

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. This manual is divided into three volumes: Volume 1--for the control module documentation, Volume 2--for the functional module documentation, and Volume 3 for the documentation of the data libraries and subroutine libraries.

  4. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation. Miscellaneous -- Volume 3, Revision 4

    SciTech Connect (OSTI)

    Petrie, L.M.; Jordon, W.C.; Edwards, A.L. |

    1995-04-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice; (2) automate the data processing and coupling between modules, and (3) provide accurate and reliable results. System developments has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.2 of the system. This manual is divided into three volumes: Volume 1--for the control module documentation, Volume 2--for the functional module documentation, and Volume 3--for the data libraries and subroutine libraries.

  5. Direct methanol fuel cell and system

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    2004-10-26

    A fuel cell having an anode and a cathode and a polymer electrolyte membrane located between anode and cathode gas diffusion backings uses a methanol vapor fuel supply. A permeable polymer electrolyte membrane having a permeability effective to sustain a carbon dioxide flux equivalent to at least 10 mA/cm.sup.2 provides for removal of carbon dioxide produced at the anode by reaction of methanol with water. Another aspect of the present invention includes a superabsorpent polymer material placed in proximity to the anode gas diffusion backing to hold liquid methanol or liquid methanol solution without wetting the anode gas diffusion backing so that methanol vapor from the liquid methanol or liquid methanol-water solution is supplied to the membrane.

  6. Systems impacts of spent fuel disassembly alternatives

    SciTech Connect (OSTI)

    Not Available

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  7. Fuel cycle analysis of once-through nuclear systems.

    SciTech Connect (OSTI)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  8. SCALE: A modular code system for performing Standardized Computer Analyses for Licensing Evaluation. Volume 1, Part 2: Control modules S1--H1; Revision 5

    SciTech Connect (OSTI)

    1997-03-01

    SCALE--a modular code system for Standardized Computer Analyses Licensing Evaluation--has been developed by Oak Ridge National Laboratory at the request of the US Nuclear Regulatory Commission. The SCALE system utilizes well-established computer codes and methods within standard analysis sequences that (1) allow an input format designed for the occasional user and/or novice, (2) automated the data processing and coupling between modules, and (3) provide accurate and reliable results. System development has been directed at problem-dependent cross-section processing and analysis of criticality safety, shielding, heat transfer, and depletion/decay problems. Since the initial release of SCALE in 1980, the code system has been heavily used for evaluation of nuclear fuel facility and package designs. This revision documents Version 4.3 of the system.

  9. Integral reactor system and method for fuel cells

    DOE Patents [OSTI]

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  10. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  11. Staged venting of fuel cell system during rapid shutdown

    DOE Patents [OSTI]

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  12. Staged venting of fuel cell system during rapid shutdown

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-09-14

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  13. ARCADIA{sup R} - A New Generation of Coupled Neutronics / Core Thermal- Hydraulics Code System at AREVA NP

    SciTech Connect (OSTI)

    Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas; Thareau, Sebastien

    2007-07-01

    Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code system ARCADIA{sup R} and concludes on customer benefits. ARCADIA{sup R} is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA{sup R} system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)

  14. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  15. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    SciTech Connect (OSTI)

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high‐fidelity models that served as the basis for the reduced order models used for internal state estimation. The high‐fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high‐fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  16. Solid oxide fuel cell steam reforming power system

    DOE Patents [OSTI]

    Chick, Lawrence A.; Sprenkle, Vincent L.; Powell, Michael R.; Meinhardt, Kerry D.; Whyatt, Greg A.

    2013-03-12

    The present invention is a Solid Oxide Fuel Cell Reforming Power System that utilizes adiabatic reforming of reformate within this system. By utilizing adiabatic reforming of reformate within the system the system operates at a significantly higher efficiency than other Solid Oxide Reforming Power Systems that exist in the prior art. This is because energy is not lost while materials are cooled and reheated, instead the device operates at a higher temperature. This allows efficiencies higher than 65%.

  17. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    SciTech Connect (OSTI)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy – UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  18. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Waste Heat Recovery Systems for Fuel-Fired Furnaces Install Waste Heat Recovery Systems for Fuel-Fired Furnaces This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems. PROCESS HEATING TIP SHEET #8 Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (September 2005) (280.81 KB) More Documents & Publications Load Preheating Using Flue Gases from a Fuel-Fired Heating System Using

  19. Description of Transmutation Library for Fuel Cycle System Analyses

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

    2010-08-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo

  20. Combustion system for hybrid solar fossil fuel receiver

    DOE Patents [OSTI]

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  1. Expert system for surveillance and diagnosis of breach fuel elements

    DOE Patents [OSTI]

    Gross, K.C.

    1988-01-21

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.

  2. Expert system for surveillance and diagnosis of breach fuel elements

    DOE Patents [OSTI]

    Gross, Kenny C.

    1989-01-01

    An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.

  3. Computer Code System to Assess Skin Dose from Skin Contamination

    Energy Science and Technology Software Center (OSTI)

    2011-07-10

    Version 00 VARSKIN 4 code is designed to operate in both Windows? and MacIntosh? environments and is expected to be significantly easier to learn and use than its predecessors. PC and MAC users will unzip different executable files, but the functionality is identical. Five different predefined source configurations are available in VARSKIN 4 to allow simulations of point, disk, cylinder, sphere, and slab sources.

  4. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    SciTech Connect (OSTI)

    Mao, Chien-Pei; Short, John; Klemm, Jim; Abbott, Royce; Overman, Nick; Pack, Spencer; Winebrenner, Audra

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  5. DOE Technical Targets for Fuel Cell Systems and Stacks for Transportat...

    Broader source: Energy.gov (indexed) [DOE]

    integrated polymer electrolyte membrane (PEM) fuel cell power systems and fuel cell stacks operating on direct hydrogen for transportation applications. These targets have been ...

  6. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation of Direct H 2 PEM Fuel Cell Systems for Transportation ... Jason Marcinkoski of DOE's Office of Energy Efficiency and Renewable Energy (EERE) Fuel ...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle Retrofit Emissions Inspection Process The California Department of Health and Safety may adopt a process by which state designated referees inspect vehicles that present prohibitive inspection circumstances, such as vehicles equipped with alternative fuel retrofit systems. (Reference California Health and Safety Code 44014

  8. An Electromotive Force Measurement System for Alloy Fuels

    SciTech Connect (OSTI)

    Changhu Xing; Colby Jensen; Heng Ban; Robert Mariani; J. Rory Kennedy

    2010-11-01

    The development of advanced nuclear fuels requires a better understanding of the transmutation and micro-structural evolution of the materials. Alloy fuels have the advantage of high thermal conductivity and improved characteristics in fuel-cladding chemical reaction. However, information on thermodynamic and thermophysical properties is limited. The objective of this project is to design and build an experimental system to measure the thermodynamic properties of solid materials from which the understanding of their phase change can be determined. The apparatus was used to measure the electromotive force (EMF) of several materials in order to calibrate and test the system. The EMF of chromel was measured from 100C to 800C and compared with theoretical values. Additionally, the EMF measurement of Ni-Fe alloy was performed and compared with the Ni-Fe phase diagram. The prototype system is to be modified eventually and used in a radioactive hot-cell in the future.

  9. Flex Fuel Vehicle Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ft_13_yilmaz.pdf (1.31 MB) More Documents & Publications Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

  10. The next generation of oxy-fuel boiler systems

    SciTech Connect (OSTI)

    Ochs, Thomas L.; Gross, Alex; Patrick, Brian; Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  11. A portable power system using PEM fuel cells

    SciTech Connect (OSTI)

    Long, E.

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  12. Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report

    SciTech Connect (OSTI)

    1996-01-01

    This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

  13. NUHOMS modular spent-fuel storage system: Performance testing

    SciTech Connect (OSTI)

    Strope, L.A.; McKinnon, M.A. ); Dyksterhouse, D.J.; McLean, J.C. )

    1990-09-01

    This report documents the results of a heat transfer and shielding performance evaluation of the NUTECH HOrizontal MOdular Storage (NUHOMS{reg sign}) System utilized by the Carolina Power and Light Co. (CP L) in an Independent Spent Fuel Storage Installation (ISFSI) licensed by the US Nuclear Regulatory Commission (NRC). The ISFSI is located at CP L's H. B. Robinson Nuclear Plant (HBR) near Hartsville, South Carolina. The demonstration included testing of three modules, first with electric heaters and then with spent fuel. The results indicated that the system was conservatively designed, with all heat transfer and shielding design criteria easily met. 5 refs., 45 figs., 9 tabs.

  14. System for controlling the operating temperature of a fuel cell

    DOE Patents [OSTI]

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  15. Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report

    SciTech Connect (OSTI)

    Petrecky, James; Ashley, Christopher

    2014-07-21

    Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

  16. Fuel Cell System for Transportation -- 2005 Cost Estimate

    SciTech Connect (OSTI)

    Wheeler, D.

    2006-10-01

    Independent review report of the methodology used by TIAX to estimate the cost of producing PEM fuel cells using 2005 cell stack technology. The U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies Program Manager asked the National Renewable Energy Laboratory (NREL) to commission an independent review of the 2005 TIAX cost analysis for fuel cell production. The NREL Systems Integrator is responsible for conducting independent reviews of progress toward meeting the DOE Hydrogen Program (the Program) technical targets. An important technical target of the Program is the proton exchange membrane (PEM) fuel cell cost in terms of dollars per kilowatt ($/kW). The Program's Multi-Year Program Research, Development, and Demonstration Plan established $125/kW as the 2005 technical target. Over the last several years, the Program has contracted with TIAX, LLC (TIAX) to produce estimates of the high volume cost of PEM fuel cell production for transportation use. Since no manufacturer is yet producing PEM fuel cells in the quantities needed for an initial hydrogen-based transportation economy, these estimates are necessary for DOE to gauge progress toward meeting its targets. For a PEM fuel cell system configuration developed by Argonne National Laboratory, TIAX estimated the total cost to be $108/kW, based on assumptions of 500,000 units per year produced with 2005 cell stack technology, vertical integration of cell stack manufacturing, and balance-of-plant (BOP) components purchased from a supplier network. Furthermore, TIAX conducted a Monte Carlo analysis by varying ten key parameters over a wide range of values and estimated with 98% certainty that the mean PEM fuel cell system cost would be below DOE's 2005 target of $125/kW. NREL commissioned DJW TECHNOLOGY, LLC to form an Independent Review Team (the Team) of industry fuel cell experts and to evaluate the cost estimation process and the results reported by TIAX. The results of this

  17. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    SciTech Connect (OSTI)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  18. Code System to Calculate Waste-Isolation Flow and Transport.

    Energy Science and Technology Software Center (OSTI)

    2001-01-26

    Version 00 Distribution is restricted to the United States Only. SWIFT2 (Sandia Waste Isolation Flow and Transport) is a fully transient, three-dimensional code that solves the coupled equations for transport in geologic media. The processes considered are fluid flow, heat transport, brine migration, and radionuclide-chain transport. Flow, heat and brine transport are coupled via fluid density, fluid viscosity, and porosity. Together they provide the velocity field on which the radionuclide transport depends. Both porous andmore » fractured media are considered. SWIFT2 was developed for use in the analysis of deep geologic nuclear waste-disposal facilities. However, it may be used in other areas such as waste injection into saline aquifers and heat storage in aquifers. Both dual-porosity and discrete-fracture conceptualizations may be considered for the fractured zones. A variable density is included throughout, and a variety of options are available to facilitate the various uses of the code.« less

  19. Full Fuel-Cycle Comparison of Forklift Propulsion Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Full Fuel-Cycle Comparison of Forklift Propulsion Systems Full Fuel-Cycle Comparison of Forklift Propulsion Systems This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Developed for the U.S. Department of Energy by Argonne National Laboratory. Full Fuel-Cycle Comparison of Forklift Propulsion Systems (2.02 MB) More Documents

  20. DOE Technical Targets for Fuel Cell Backup Power Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Backup Power Systems DOE Technical Targets for Fuel Cell Backup Power Systems This table lists the U.S. Department of Energy (DOE) technical targets for fuel cell backup power systems. More information about targets can be found in the Fuel Cells section of the Fuel Cell Technologies Office's Multi-Year Research, Development, and Demonstration Plan. Technical Targets: Fuel Cell Backup Power Systems (1-10kWe) Operating on Direct Hydrogen Characteristic Units 2015 Statusa 2020 Targets

  1. Control assembly for controlling a fuel cell system during shutdown and restart

    DOE Patents [OSTI]

    Venkataraman, Ramki; Berntsen, George; Carlson, Glenn L.; Farooque, Mohammad; Beachy, Dan; Peterhans, Stefan; Bischoff, Manfred

    2010-06-15

    A fuel cell system and method in which the fuel cell system receives and an input oxidant gas and an input fuel gas, and in which a fuel processing assembly is provided and is adapted to at least humidify the input fuel gas which is to be supplied to the anode of the fuel cell of the system whose cathode receives the oxidant input gas via an anode oxidizing assembly which is adapted to couple the output of the anode of the fuel cell to the inlet of the cathode of the fuel cell during normal operation, shutdown and restart of the fuel cell system, and in which a control assembly is further provided and is adapted to respond to shutdown of the fuel cell system during which input fuel gas and input oxidant gas cease to be received by the fuel cell system, the control assembly being further adapted to, when the fuel cell system is shut down: control the fuel cell system so as to enable a purging gas to be able to flow through the fuel processing assembly to remove humidified fuel gas from the processing assembly and to enable a purging gas to be able to flow through the anode of the fuel cell.

  2. Hydrogen Safety, Codes and Standards Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Approaches to Safety, Codes & Standards » Hydrogen Safety, Codes and Standards Challenges Hydrogen Safety, Codes and Standards Challenges From a safety, codes and standards perspective, the fundamental challenges to the commercialization of hydrogen technologies are the lack of safety information on hydrogen components and systems used in a hydrogen fuel infrastructure, and the limited availability of appropriate codes and standards to ensure uniformity and facilitate deployment.

  3. Hydrogen Vehicle and Infrastructure Codes and Standards Citations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle and Infrastructure Codes and Standards Citations Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (318.31 KB) More Documents & Publications Stationary and Portable Fuel Cell Systems Codes and Standards Citations National Template: Hydrogen Vehicle and Infrastructure

  4. Regulations, Guidelines and Codes and Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Approaches to Safety, Codes & Standards » Regulations, Guidelines and Codes and Standards Regulations, Guidelines and Codes and Standards Many regulations, guidelines, and codes and standards have already been established through years of hydrogen use in industrial and aerospace applications. In addition, systems and organizations are already in place to establish codes and standards that facilitate hydrogen and fuel cell commercialization. Standards Development Organizations

  5. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  6. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the

  7. Inventory of Safety-Related Codes and Standards for Energy Storage Systems and Related Experiences with System Approval and Acceptance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PNNL-23618 Inventory of Safety-related Codes and Standards for Energy Storage Systems with some Experiences related to Approval and Acceptance DR Conover September 2014 Prepared for the U.S. Department of Energy Energy Storage Program under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 i ii Summary Purpose The purpose of this document is to identify laws; rules; model codes; and codes, standards, regulations (CSR) specifications related to safety

  8. High temperature fuel/emitter system for advanced thermionic fuel elements

    SciTech Connect (OSTI)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-10

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B and W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock and Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B and W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  9. Deterministic Local Sensitivity Analysis of Augmented Systems - II: Applications to the QUENCH-04 Experiment Using the RELAP5/MOD3.2 Code System

    SciTech Connect (OSTI)

    Ionescu-Bujor, Mihaela; Jin Xuezhou; Cacuci, Dan G.

    2005-09-15

    The adjoint sensitivity analysis procedure for augmented systems for application to the RELAP5/MOD3.2 code system is illustrated. Specifically, the adjoint sensitivity model corresponding to the heat structure models in RELAP5/MOD3.2 is derived and subsequently augmented to the two-fluid adjoint sensitivity model (ASM-REL/TF). The end product, called ASM-REL/TFH, comprises the complete adjoint sensitivity model for the coupled fluid dynamics/heat structure packages of the large-scale simulation code RELAP5/MOD3.2. The ASM-REL/TFH model is validated by computing sensitivities to the initial conditions for various time-dependent temperatures in the test bundle of the Quench-04 reactor safety experiment. This experiment simulates the reflooding with water of uncovered, degraded fuel rods, clad with material (Zircaloy-4) that has the same composition and size as that used in typical pressurized water reactors. The most important response for the Quench-04 experiment is the time evolution of the cladding temperature of heated fuel rods. The ASM-REL/TFH model is subsequently used to perform an illustrative sensitivity analysis of this and other time-dependent temperatures within the bundle. The results computed by using the augmented adjoint sensitivity system, ASM-REL/TFH, highlight the reliability, efficiency, and usefulness of the adjoint sensitivity analysis procedure for computing time-dependent sensitivities.

  10. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  11. Diesel fuel burner for diesel emissions control system

    DOE Patents [OSTI]

    Webb, Cynthia C.; Mathis, Jeffrey A.

    2006-04-25

    A burner for use in the emissions system of a lean burn internal combustion engine. The burner has a special burner head that enhances atomization of the burner fuel. Its combustion chamber is designed to be submersed in the engine exhaust line so that engine exhaust flows over the outer surface of the combustion chamber, thereby providing efficient heat transfer.

  12. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the ... Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  13. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 1: Inventory, Release, and Transport Modules

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Miley, Terri B.; Engel, David W.; Nichols, William E.; Gerhardstein, Lawrence H.; Strenge, Dennis L.; Lopresti, Charles A.; Wurstner, Signe K.

    2004-09-12

    This document contains detailed user instructions for the transport codes for Rev. 1 of the System Assessment Capability.

  14. A User's Manual for MASH V1.5 - A Monte Carlo Adjoint Shielding Code System

    SciTech Connect (OSTI)

    C. O. Slater; J. M. Barnes; J. O. Johnson; J.D. Drischler

    1998-10-01

    The Monte Carlo ~djoint ~ielding Code System, MASH, calculates neutron and gamma- ray environments and radiation protection factors for armored military vehicles, structures, trenches, and other shielding configurations by coupling a forward discrete ordinates air- over-ground transport calculation with an adjoint Monte Carlo treatment of the shielding geometry. Efficiency and optimum use of computer time are emphasized. The code system includes the GRTUNCL and DORT codes for air-over-ground transport calculations, the MORSE code with the GIFT5 combinatorial geometry package for adjoint shielding calculations, and several peripheral codes that perform the required data preparations, transformations, and coupling functions. The current version, MASH v 1.5, is the successor to the original MASH v 1.0 code system initially developed at Oak Ridge National Laboratory (ORNL). The discrete ordinates calculation determines the fluence on a coupling surface surrounding the shielding geometry due to an external neutron/gamma-ray source. The Monte Carlo calculation determines the effectiveness of the fluence at that surface in causing a response in a detector within the shielding geometry, i.e., the "dose importance" of the coupling surface fluence. A coupling code folds the fluence together with the dose importance, giving the desired dose response. The coupling code can determine the dose response as a function of the shielding geometry orientation relative to the source, distance from the source, and energy response of the detector. This user's manual includes a short description of each code, the input required to execute the code along with some helpful input data notes, and a representative sample problem.

  15. Preliminary Design Report Shippingport Spent Fuel Drying and Inerting System

    SciTech Connect (OSTI)

    JEPPSON, D.W.

    2000-05-18

    A process description and system flow sheets have been prepared to support the design/build package for the Shippingport Spent Fuel Canister drying and inerting process skid. A process flow diagram was prepared to show the general steps to dry and inert the Shippingport fuel loaded into SSFCs for transport and dry storage. Flow sheets have been prepared to show the flows and conditions for the various steps of the drying and inerting process. Calculations and data supporting the development of the flow sheets are included.

  16. Methods, systems, and devices for deep desulfurization of fuel gases

    DOE Patents [OSTI]

    Li, Liyu; King, David L.; Liu, Jun; Huo, Qisheng

    2012-04-17

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  17. System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

    2010-09-01

    This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a

  18. Magnetic Resonance Image Phantom Code System to Calibrate in vivo Measurement Systems.

    Energy Science and Technology Software Center (OSTI)

    1997-07-17

    Version 00 MRIPP provides relative calibration factors for the in vivo measurement of internally deposited photon emitting radionuclides within the human body. The code includes a database of human anthropometric structures (phantoms) that were constructed from whole body Magnetic Resonance Images. The database contains a large variety of human images with varying anatomical structure. Correction factors are obtained using Monte Carlo transport of photons through the voxel geometry of the phantom. Correction factors provided bymore » MRIPP allow users of in vivo measurement systems (e.g., whole body counters) to calibrate these systems with simple sources and obtain subject specific calibrations. Note that the capability to format MRI data for use with this system is not included; therefore, one must use the phantom data included in this package. MRIPP provides a simple interface to perform Monte Carlo simulation of photon transport through the human body. MRIPP also provides anthropometric information (e.g., height, weight, etc.) for individuals used to generate the phantom database. A modified Voxel version of the Los Alamos National Laboratory MCNP4A code is used for the Monte Carlo simulation. The Voxel version Fortran patch to MCNP4 and MCNP4A (Monte Carlo N-Particle transport simulation) and the MCNP executable are included in this distribution, but the MCNP Fortran source is not included. It was distributed by RSICC as CCC-200 but is now obsoleted by the current release MCNP4B.« less

  19. Study on Nuclear Fuel Cycle System using Coated-particle Fuel and Hybrid Micro-capsule Separation Method

    SciTech Connect (OSTI)

    Wakabayashi, Toshio; Mimura, Hitoshi

    2007-07-01

    A new concept of nuclear fuel cycle system for the fast reactors was proposed. The concept is mainly composed of a reprocessing and separation system based on hybrid micro-capsules containing extractant, a remote fuel fabrication system for carbide coated particle fuels and a gas-cooled fast reactor. The gas-cooled fast reactor system features a fast-neutron-spectrum helium-cooled reactor and closed fuel cycle to be able to have sustainable energy resources in future. The feasibility study of the concept has been performed from the viewpoints core performance, radioactive waste reduction, separation technology, fabrication technology, etc. It was shown that the new concept of nuclear fuel cycle system including the gas-cooled fast reactor is very attractive to the future energy supply system in this study. (authors)

  20. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million

  1. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  2. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  3. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    2013-08-30

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  4. The synchronous active neutron detection system for spent fuel assay

    SciTech Connect (OSTI)

    Pickrell, M.M.; Kendall, P.K.

    1994-10-01

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed {open_quotes}lock-in{close_quotes} amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound.

  5. Code System to Model LWR Meltdown Accident Response.

    Energy Science and Technology Software Center (OSTI)

    2001-04-25

    MARCH2 describes the response of water cooled reactors to severe accidents, including consideration of the primary coolant system as well as the containment.

  6. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect (OSTI)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    not have the diluent requirements of Prototype-1 and was demonstrated at targeted gas turbine conditions. The TVC combustor, Prototype-2, premixes the syngas with air for low emission performance. The combustor was designed for operation with syngas and no additional diluents. The combustor was successfully operated at targeted gas turbine conditions. Another goal of the program was to advance the status of development tools for syngas systems. In Task 3 a syngas flame evaluation facility was developed. Fundamental data on syngas flame speeds and flame strain were obtained at pressure for a wide range of syngas fuels with preheated air. Several promising reduced order kinetic mechanisms were compared with the results from the evaluation facility. The mechanism with the best agreement was selected for application to syngas combustor modeling studies in Task 6. Prototype-1 was modeled using an advanced LES combustion code. The tools and combustor technology development culminate in a full-scale demonstration of the most promising technology in Task 8. The combustor was operated at engine conditions and evaluated against the various engine performance requirements.

  7. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  8. SCALE: A modular code system for performing standardized computer analyses for licensing evaluation

    SciTech Connect (OSTI)

    1997-03-01

    This Manual represents Revision 5 of the user documentation for the modular code system referred to as SCALE. The history of the SCALE code system dates back to 1969 when the current Computational Physics and Engineering Division at Oak Ridge National Laboratory (ORNL) began providing the transportation package certification staff at the U.S. Atomic Energy Commission with computational support in the use of the new KENO code for performing criticality safety assessments with the statistical Monte Carlo method. From 1969 to 1976 the certification staff relied on the ORNL staff to assist them in the correct use of codes and data for criticality, shielding, and heat transfer analyses of transportation packages. However, the certification staff learned that, with only occasional use of the codes, it was difficult to become proficient in performing the calculations often needed for an independent safety review. Thus, shortly after the move of the certification staff to the U.S. Nuclear Regulatory Commission (NRC), the NRC staff proposed the development of an easy-to-use analysis system that provided the technical capabilities of the individual modules with which they were familiar. With this proposal, the concept of the Standardized Computer Analyses for Licensing Evaluation (SCALE) code system was born. This manual covers an array of modules written for the SCALE package, consisting of drivers, system libraries, cross section and materials properties libraries, input/output routines, storage modules, and help files.

  9. Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System

    SciTech Connect (OSTI)

    Melendez, M.; Theis, K.; Johnson, C.

    2007-08-01

    Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

  10. Back-Up/ Peak Shaving Fuel Cell System

    SciTech Connect (OSTI)

    Staudt, Rhonda L.

    2008-05-28

    This Final Report covers the work executed by Plug Power from 8/11/03 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Powers share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated. The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Powers GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use An advanced electrical energy storage system A modular, scalable power conditioning system tailored to market requirements A scaled-down, cost-reduced balance of plant (BOP) Network Equipment Building Standards (NEBS), UL and CE

  11. Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant

    SciTech Connect (OSTI)

    Doucet, M.; Durant Terrasson, L.; Mouton, J.

    2006-07-01

    Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recently updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on theoretical

  12. Code System for the Radioactive Liquid Tank Failure Study.

    Energy Science and Technology Software Center (OSTI)

    2000-01-03

    Version 01 RATAF calculates the consequences of radioactive liquid tank failures. In each of the processing systems considered, RATAF can calculate the tank isotopic concentrations in either the collector tank or the evaporator bottoms tank.

  13. Fuel-cell-propelled submarine-tanker-system study

    SciTech Connect (OSTI)

    Court, K E; Kumm, W H; O'Callaghan, J E

    1982-06-01

    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars.

  14. PRESSURIZED SOLID OXIDE FUEL CELL/GAS TURBINE POWER SYSTEM

    SciTech Connect (OSTI)

    W.L. Lundberg; G.A. Israelson; R.R. Moritz; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

    2000-02-01

    Power systems based on the simplest direct integration of a pressurized solid oxide fuel cell (SOFC) generator and a gas turbine (GT) are capable of converting natural gas fuel energy to electric power with efficiencies of approximately 60% (net AC/LHV), and more complex SOFC and gas turbine arrangements can be devised for achieving even higher efficiencies. The results of a project are discussed that focused on the development of a conceptual design for a pressurized SOFC/GT power system that was intended to generate 20 MWe with at least 70% efficiency. The power system operates baseloaded in a distributed-generation application. To achieve high efficiency, the system integrates an intercooled, recuperated, reheated gas turbine with two SOFC generator stages--one operating at high pressure, and generating power, as well as providing all heat needed by the high-pressure turbine, while the second SOFC generator operates at a lower pressure, generates power, and provides all heat for the low-pressure reheat turbine. The system cycle is described, major system components are sized, the system installed-cost is estimated, and the physical arrangement of system components is discussed. Estimates of system power output, efficiency, and emissions at the design point are also presented, and the system cost of electricity estimate is developed.

  15. Code System to Calculate Integrated Reliability and Risk Analysis.

    Energy Science and Technology Software Center (OSTI)

    2002-02-18

    Version 04 IRRAS Version 4.16, the latest in a series (2.0, 2.5, 4.0, 4.15), is a program developed for the purpose of performing those functions necessary to create and analyze a complete Probabilistic Risk Assessment (PRA). This program includes functions to allow the user to create event trees and fault trees, to define accident sequences and basic event failure data, to solve system and accident sequence fault trees, to quantify cut sets, and to performmore » uncertainty analysis on the results. Also included in this program are features to allow the analyst to generate reports and displays that can be used to document the results of an analysis. Since this software is a very detailed technical tool, the user of this program should be familiar with PRA concepts and the methods used to perform these analyses. IRRAS Version 4.16 is the latest in the stand-alone IRRAS series (2.0, 2.5, 4.0, 4.15). Be sure to review the PSR-405/ SAPHIRE 7.06 package which was released in January 2000 and includes three programs: the Integrated Reliability and Risk Analysis System (IRRAS), the System Analysis and Risk Assessment (SARA) system, the Models And Results Database (MAR-D) system, and the Fault tree, Event tree and P&ID (FEP) editors.« less

  16. DOE Technical Targets for Fuel Cell Systems for Stationary (Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power) Applications | Department of Energy Stationary (Combined Heat and Power) Applications DOE Technical Targets for Fuel Cell Systems for Stationary (Combined Heat and Power) Applications These tables list the U.S. Department of Energy (DOE) technical targets for stationary fuel cell applications. These targets have been developed with input from developers of stationary fuel cell power systems. More information about targets can be found in the Fuel Cells section of the Fuel Cell

  17. Fuel Cell/Turbine Ultra High Efficiency Power System

    SciTech Connect (OSTI)

    Hossein, Ghezel-Ayagh

    2001-11-06

    FuelCell Energy, INC. (FCE) is currently involved in the design of ultra high efficiency power plants under a cooperative agreement (DE-FC26-00NT40) managed by the National Energy Technology Laboratory (NETL) as part of the DOE's Vision 21 program. Under this project, FCE is developing a fuel cell/turbine hybrid system that integrates the atmospheric pressure Direct FuelCell{reg_sign} (DFC{reg_sign}) with an unfired Brayton cycle utilizing indirect heat recovery from the power plant. Features of the DFC/T{trademark} system include: high efficiency, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, no pressurization of the fuel cell, independent operating pressure of the fuel cell and turbine, and potential cost competitiveness with existing combined cycle power plants at much smaller sizes. Objectives of the Vision 21 Program include developing power plants that will generate electricity with net efficiencies approaching 75 percent (with natural gas), while producing sulfur and nitrogen oxide emissions of less than 0.01 lb/million BTU. These goals are significant improvements over conventional power plants, which are 35-60 percent efficient and produce emissions of 0.07 to 0.3 lb/million BTU of sulfur and nitrogen oxides. The nitrogen oxide and sulfur emissions from the DFC/T system are anticipated to be better than the Vision 21 goals due to the non-combustion features of the DFC/T power plant. The expected high efficiency of the DFC/T will also result in a 40-50 percent reduction in carbon dioxide emissions compared to conventional power plants. To date, the R&D efforts have resulted in significant progress including proof-of-concept tests of a sub-scale power plant built around a state-of-the-art DFC stack integrated with a modified Capstone Model 330 Microturbine. The objectives of this effort are to investigate the integration aspects of the fuel cell and turbine and to obtain design information and operational data that will

  18. Performance Spec. for Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shipping Port Spent Fuel Canisters

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-03-14

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders.

  19. Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

    1982-12-01

    An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

  20. HDW Fuel Cell Systems GmbH HFCS | Open Energy Information

    Open Energy Info (EERE)

    HDW Fuel Cell Systems GmbH HFCS Jump to: navigation, search Name: HDW Fuel Cell Systems GmbH (HFCS) Place: Kiel, Schleswig-Holstein, Germany Zip: D-24143 Product: HDW develops...

  1. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  2. Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and ... Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and ...

  3. Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System

    Broader source: Energy.gov [DOE]

    U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help...

  4. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  5. Code System to Calculate Transient 2-Dimensional 2-Phase Flow.

    Energy Science and Technology Software Center (OSTI)

    1999-10-18

    Version: 00 SOLA-DF is a numerical solution algorithm for gas-liquid mixture dynamics in two space dimensions and time. The two-phase system is described by a set of mixture equations plus a relation describing the relative flow of one phase with respect to the other. The algorithm contains models to represent the interphase exchange rates of mass, momentum, and energy for water-steam mixtures.

  6. SECA Coal-Based Systems - FuelCell Energy, Inc.

    SciTech Connect (OSTI)

    Ayagh, Hossein

    2014-01-31

    The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ≥25 kW SOFC stack tower incorporating multiple stack building

  7. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters- Fact Sheet 2014

    Broader source: Energy.gov [DOE]

    Fact sheet summarizing a project to develop and demonstrate a full-scale fuel handling and combustion system

  8. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications: 2007 Update | Department of Energy Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update (3.19

  9. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application

    Broader source: Energy.gov [DOE]

    This presentation reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems.

  10. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems analysis program uses a consistent set of models and data for transparent analytical evaluations. The following fact sheets provide an overview and individual summaries of the models and tools used for systems analysis of hydrogen and fuel cells. View the Overview Fact Sheet and

  11. Fuel salt and container material studies for MOSART transforming system

    SciTech Connect (OSTI)

    Ignatiev, V.; Feynberg, O.; Merzlyakov, A.; Surenkov, A.; Zagnitko, A.; Afonichkin, V.; Bovet, A.; Khokhlov, V.; Subbotin, V.; Gordeev, M.; Panov, A.; Toropov, A.

    2013-07-01

    A study is under progress to examine the feasibility of single stream Molten Salt Actinide Recycling and Transmuting system without and with Th support (MOSART) fuelled with different compositions of actinide tri-fluorides (AnF{sub 3}) from used LWR fuel. New fast-spectrum design options with homogeneous core and fuel salts with high enough solubility for AnF{sub 3} are being examined because of new goals. The flexibility of single fluid MOSART concept with Th support is underlined, particularly, possibility of its operation in self-sustainable mode (Conversion Ratio: CR=1) using different loadings and make up. The paper summarizes the most current status of fuel salt and container material data for the MOSART concept received within ISTC-3749 and ROSATOM-MARS projects. Key physical and chemical properties of various fluoride fuel salts are reported. The issues like salt purification, the electroreduction of U(IV) to U(III) in LiF-ThF{sub 4} and the electroreduction of Yb(III) to Yb(II) in LiF-NaF are detailed.

  12. Firm eyes savings from tires-to-fuel system

    SciTech Connect (OSTI)

    Barber, J.

    1983-01-31

    A $600,000 pyrolysis system to convert tire scraps into methane will eliminate a tire retreading company's landfill and boiler fuel costs and achieve a five-year payback. The process also yields steel belts, fibers, and carbon black byproducts that can be sold for additional revenue. Heat from the hot exhaust gases will be recycled to the combustion chamber. A 10% federal energy tax credit and a 10% investment tax credit lowered the capital costs for $480,000. (DCK)

  13. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications: Conceptual vehicle design report pure fuel cell powertrain vehicle

    SciTech Connect (OSTI)

    Oei, D.; Kinnelly, A.; Sims, R.; Sulek, M.; Wernette, D.

    1997-02-01

    In partial fulfillment of the Department of Energy (DOE) Contract No. DE-AC02-94CE50389, {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell for Transportation Applications{close_quotes}, this preliminary report addresses the conceptual design and packaging of a fuel cell-only powered vehicle. Three classes of vehicles are considered in this design and packaging exercise, the Aspire representing the small vehicle class, the Taurus or Aluminum Intensive Vehicle (AIV) Sable representing the mid-size vehicle and the E-150 Econoline representing the van-size class. A fuel cell system spreadsheet model and Ford`s Corporate Vehicle Simulation Program (CVSP) were utilized to determine the size and the weight of the fuel cell required to power a particular size vehicle. The fuel cell power system must meet the required performance criteria for each vehicle. In this vehicle design and packaging exercise, the following assumptions were made: fuel cell power system density of 0.33 kW/kg and 0.33 kg/liter, platinum catalyst loading less than or equal to 0.25 mg/cm{sup 2} total and hydrogen tanks containing gaseous hydrogen under 340 atm (5000 psia) pressure. The fuel cell power system includes gas conditioning, thermal management, humidity control, and blowers or compressors, where appropriate. This conceptual design of a fuel cell-only powered vehicle will help in the determination of the propulsion system requirements for a vehicle powered by a PEMFC engine in lieu of the internal combustion (IC) engine. Only basic performance level requirements are considered for the three classes of vehicles in this report. Each vehicle will contain one or more hydrogen storage tanks and hydrogen fuel for 560 km (350 mi) driving range. Under these circumstances, the packaging of a fuel cell-only powered vehicle is increasingly difficult as the vehicle size diminishes.

  14. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  15. Best Estimate Code System to Calculate Thermal & Hydraulic Phenomena in a Nuclear Reactor or Related System.

    Energy Science and Technology Software Center (OSTI)

    1999-05-19

    Version 00 RELAP4/MOD7/101 performs best estimate analyses of nuclear reactors or related systems undergoing a transient. Transient thermal-hydraulic, two-phase phenomena are calculated from formulations of one-dimensional, homogeneous, equilibrium conservation equations for water mass, momentum, and energy. Heat structures are modeled using a transient one-dimensional heat conduction solution that is coupled to the fluid through heat transfer relations. Various explicit models are used to calculate nonhomogeneous, nonequilibrium behavior including a phase separation model, a vertical slipmore » model, and a nonequilibrium model. Other models are used to represent critical flow, reactor kinetics, pressurized water reactor reflood behavior, nuclear fuel rod swelling and blockage, and components such as pumps, valves, and accumulators.« less

  16. Reliability and availability requirements analysis for DEMO: fuel cycle system

    SciTech Connect (OSTI)

    Pinna, T.; Borgognoni, F.

    2015-03-15

    The Demonstration Power Plant (DEMO) will be a fusion reactor prototype designed to demonstrate the capability to produce electrical power in a commercially acceptable way. Two of the key elements of the engineering development of the DEMO reactor are the definitions of reliability and availability requirements (or targets). The availability target for a hypothesized Fuel Cycle has been analysed as a test case. The analysis has been done on the basis of the experience gained in operating existing tokamak fusion reactors and developing the ITER design. Plant Breakdown Structure (PBS) and Functional Breakdown Structure (FBS) related to the DEMO Fuel Cycle and correlations between PBS and FBS have been identified. At first, a set of availability targets has been allocated to the various systems on the basis of their operating, protection and safety functions. 75% and 85% of availability has been allocated to the operating functions of fuelling system and tritium plant respectively. 99% of availability has been allocated to the overall systems in executing their safety functions. The chances of the systems to achieve the allocated targets have then been investigated through a Failure Mode and Effect Analysis and Reliability Block Diagram analysis. The following results have been obtained: 1) the target of 75% for the operations of the fuelling system looks reasonable, while the target of 85% for the operations of the whole tritium plant should be reduced to 80%, even though all the tritium plant systems can individually reach quite high availability targets, over 90% - 95%; 2) all the DEMO Fuel Cycle systems can reach the target of 99% in accomplishing their safety functions. (authors)

  17. Verification and implications of the multiple pin treatment in the SASSYS-1 LMR systems analysis code

    SciTech Connect (OSTI)

    Dunn, F.E.

    1994-03-01

    As part of a program to obtain realistic, as opposed to excessively conservative, analysis of reactor transients, a multiple pin treatment for the analysis of intra-subassembly thermal hydraulics has been included in the SASSYS-1 liquid metal reactor systems analysis code. This new treatment has made possible a whole new level of verification for the code. The code can now predict the steady-state and transient responses of individual thermocouples within instrumented subassemlies in a reactor, rather than just predicting average temperatures for a subassembly. Very good agreement has been achieved between code predictions and the experimental measurements of steady-state and transient temperatures and flow rates in the Shutdown Heat Removal Tests in the EBR-II Reactor. Detailed multiple pin calculations for blanket subassemblies in the EBR-II reactor demonstrate that the actual steady-state and transient peak temperatures in these subassemblies are significantly lower than those that would be calculated by simpler models.

  18. DOE Technical Targets for Fuel Cell System Humidifiers and Air Compression

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy System Humidifiers and Air Compression Systems DOE Technical Targets for Fuel Cell System Humidifiers and Air Compression Systems These tables list the U.S. Department of Energy (DOE) technical targets for transportation fuel cell system humidifiers and air compression systems. These targets have been developed with input from the U.S. DRIVE Partnership, which includes automotive and energy companies, and specifically the Fuel Cell Technical Team. The guideline

  19. Fuel injection and mixing systems and methods of using the same

    DOE Patents [OSTI]

    Mao, Chien-Pei; Short, John

    2010-08-03

    A fuel injection and mixing system is provided. The system includes an injector body having a fuel inlet and a fuel outlet, and defines a fuel flow path between the inlet and outlet. The fuel flow path may include a generally helical flow passage having an inlet end portion disposed proximate the fuel inlet of the injector body. The flow path also may include an expansion chamber downstream from and in fluid communication with the helical flow passage, as well as a fuel delivery device in fluid communication with the expansion chamber for delivering fuel. Heating means is also provided in thermal communication with the injector body. The heating means may be adapted and configured for maintaining the injector body at a predetermined temperature to heat fuel traversing the flow path. A method of preheating and delivering fuel is also provided.

  20. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle and Infrastructure Codes and Standards Chart Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas. Vehicle Safety: Vehicle Fuel Systems: Vehicle Containers: Vehicle Fuel System Components: Dispensing Component Standards: Dispensing Operations:

  1. Code System to Calculate Brief Adversary Threat Loss Estimate.

    Energy Science and Technology Software Center (OSTI)

    1999-11-23

    Version 00 PC-BATLE is an analytical stochastic model designed to simulate combat engagements between a security force at a nuclear facility and an adversary force attempting to steal nuclear materials or to cause the release of radiological materials through an act of sabotage. The engagement is modeled as a modified continuous-time Markov process in which the state of the process at any time is the number of guards and adversaries currently in the system. Casualtiesmore » to guards and adversaries are determined automatically by the model based on combatant characteristics and site parameters. Combatant characteristics which are specified as input data include force size, type of weapon used, posture, percent of time delaying (an attempt to prolong the engagement), proficiency, defense or assault tactic, and degradation in firing due to an individual's posture. Site parameters include range of the engagement, exposure to the combatants, and degradation in firing due to target illumination. Reinforcements to either or both forces can be specified by the user and will automatically be included at the appropriate time. Output consists of data on engagement duration, combatant survival, and win probabilities.« less

  2. Cover and startup gas supply system for solid oxide fuel cell generator

    DOE Patents [OSTI]

    Singh, P.; George, R.A.

    1999-07-27

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

  3. Cover and startup gas supply system for solid oxide fuel cell generator

    DOE Patents [OSTI]

    Singh, Prabhakar; George, Raymond A.

    1999-01-01

    A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

  4. GCtool for fuel cell systems design and analysis : user documentation.

    SciTech Connect (OSTI)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle (NGV) Weight Exemption NGVs may exceed the federal maximum gross vehicle weight limit by an amount equal to the difference of the weight of the natural gas tank and fueling system and the weight of a comparable diesel tank and fueling system. The NGV must not exceed a maximum gross vehicle weight of 82,000 pounds. (Reference Public Law 114-94, 2015, and 23 U.S. Code 127(s)

  6. Automatic inspection system for nuclear fuel pellets or rods

    DOE Patents [OSTI]

    Miller, Jr., William H.; Sease, John D.; Hamel, William R.; Bradley, Ronnie A.

    1978-01-01

    An automatic inspection system is provided for determining surface defects on cylindrical objects such as nuclear fuel pellets or rods. The active element of the system is a compound ring having a plurality of pneumatic jet units directed into a central bore. These jet units are connected to provide multiple circuits, each circuit being provided with a pressure sensor. The outputs of the sensors are fed to a comparator circuit whereby a signal is generated when the difference of pressure between pneumatic circuits, caused by a defect, exceeds a pre-set amount. This signal may be used to divert the piece being inspected into a "reject" storage bin or the like.

  7. Full Fuel-Cycle Comparison of Forklift Propulsion Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also

  8. Engine control system having fuel-based timing

    DOE Patents [OSTI]

    Willi, Martin L.; Fiveland, Scott B.; Montgomery, David T.; Gong, Weidong

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  9. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in collaboration with the University of California-Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel

  10. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    SciTech Connect (OSTI)

    2010-01-01

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  11. NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010

    ScienceCinema (OSTI)

    None

    2013-05-29

    We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

  12. Application of coupled codes for safety analysis and licensing issues

    SciTech Connect (OSTI)

    Langenbuch, S.; Velkov, K.

    2006-07-01

    An overview is given on the development and the advantages of coupled codes which integrate 3D neutron kinetics into thermal-hydraulic system codes. The work performed within GRS by coupling the thermal-hydraulic system code ATHLET and the 3D neutronics code QUABOX/CUBBOX is described as an example. The application of the coupled codes as best-estimate simulation tools for safety analysis is discussed. Some examples from German licensing practices are given which demonstrate how the improved analytical methods of coupled codes have contributed to solve licensing issues related to optimized and more economical use of fuel. (authors)

  13. Cost projections for planar solid oxide fuel cell systems

    SciTech Connect (OSTI)

    Krist, K.; Wright, J.D.; Romero, C.; Chen, Tan Ping

    1996-12-31

    The Gas Research Institute (GRI) is funding fundamental research on solid oxide fuel cells (SOFCs) that operate at reduced temperature. As part of this effort, we have carried out engineering analysis to determine what areas of research can have the greatest effect on the commercialization of SOFCs. Previous papers have evaluated the markets for SOFCs and the amount which a customer will be willing to pay for fuel cell systems or stacks in these markets, the contribution of materials costs to the total stack cost, and the benefits and design requirements associated with reduced temperature operation. In this paper, we describe the cost of fabricating SOFC stacks by different methods. The complete analysis is available in report form.

  14. Plate-Based Fuel Processing System Final Report

    SciTech Connect (OSTI)

    Carlos Faz; Helen Liu; Jacques Nicole; David Yee

    2005-12-22

    On-board reforming of liquid fuels into hydrogen is an enabling technology that could accelerate consumer usage of fuel cell powered vehicles. The technology would leverage the convenience of the existing gasoline fueling infrastructure while taking advantage of the fuel cell efficiency and low emissions. Commercial acceptance of on-board reforming faces several obstacles that include: (1) startup time, (2) transient response, and (3) system complexity (size, weight and cost). These obstacles are being addressed in a variety of projects through development, integration and optimization of existing fuel processing system designs. In this project, CESI investigated steam reforming (SR), water-gas-shift (WGS) and preferential oxidation (PrOx) catalysts while developing plate reactor designs and hardware where the catalytic function is integrated into a primary surface heat exchanger. The plate reactor approach has several advantages. The separation of the reforming and combustion streams permits the reforming reaction to be conducted at a higher pressure than the combustion reaction, thereby avoiding costly gas compression for combustion. The separation of the two streams also prevents the dilution of the reformate stream by the combustion air. The advantages of the plate reactor are not limited to steam reforming applications. In a WGS or PrOx reaction, the non-catalytic side of the plate would act as a heat exchanger to remove the heat generated by the exothermic WGS or PrOx reactions. This would maintain the catalyst under nearly isothermal conditions whereby the catalyst would operate at its optimal temperature. Furthermore, the plate design approach results in a low pressure drop, rapid transient capable and attrition-resistant reactor. These qualities are valued in any application, be it on-board or stationary fuel processing, since they reduce parasitic losses, increase over-all system efficiency and help perpetuate catalyst durability. In this program, CESI

  15. National Template: Stationary & Portable Fuel Cell Systems (Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) US DRIVE Hydrogen Codes and Standards Technical Team Roadmap CODES & STANDARDS FOR THE HYDROGEN ECONOMY...

  16. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capable of automatic, safe, reliable, efficient, and low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. ...

  17. Fuels Performance Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D and analysis in advanced petroleum-based and non-petroleum-based transportation fuels done by NREL's Fuels Performance Group.

  18. Microchannel High-Temperature Recuperator for Fuel Cell Systems

    Broader source: Energy.gov [DOE]

    Fuel cells are electrochemical devices that produce electricity without combustion. Due to their high efficiency and minimal emissions, fuel cells are an attractive option for distributed power...

  19. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel cells can efficiently produce electricity from a number of domestic fuels, including bio-gas, natural gas, propane, methanol, diesel, and hydrogen. Compared with traditional ...

  20. Nanocrystalline cerium oxide materials for solid fuel cell systems

    SciTech Connect (OSTI)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.