Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Information handbook on independent spent fuel storage installations  

SciTech Connect

In this information handbook, the staff of the U.S. Nuclear Regulatory Commission describes (1) background information regarding the licensing and history of independent spent fuel storage installations (ISFSIs), (2) a discussion of the licensing process, (3) a description of all currently approved or certified models of dry cask storage systems (DCSSs), and (4) a description of sites currently storing spent fuel in an ISFSI. Storage of spent fuel at ISFSIs must be in accordance with the provisions of 10 CFR Part 72. The staff has provided this handbook for information purposes only. The accuracy of any information herein is not guaranteed. For verification or for more details, the reader should refer to the respective docket files for each DCSS and ISFSI site. The information in this handbook is current as of September 1, 1996.

Raddatz, M.G.; Waters, M.D.

1996-12-01T23:59:59.000Z

2

Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)  

SciTech Connect

This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA) of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with the IAEA. If these requirements are understood at the earliest stages of facility design, it will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards, and will help the IAEA implement nuclear safeguards worldwide, especially in countries building their first nuclear facilities. It is also hoped that this guidance document will promote discussion between the IAEA, State Regulator/SSAC, Project Design Team, and Facility Owner/Operator at an early stage to ensure that new ISFSIs will be effectively and efficiently safeguarded. This is intended to be a living document, since the international nuclear safeguards requirements may be subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and facility operators for greater efficiency and cost effectiveness. As these improvements are made, it is recommended that the subject guidance document be updated and revised accordingly.

Trond Bjornard; Philip C. Durst

2012-05-01T23:59:59.000Z

3

Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation  

SciTech Connect

This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct and scattered radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

Hall, Gregory Graham; Newkirk, Jay Ronald; Borst, Frederick Jon

2002-02-01T23:59:59.000Z

4

Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation  

SciTech Connect

This report presents the results of the 2002 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct and scattered radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

Jay R. Newkirk; Frederick J. Borst; Gregory G. Hall

2003-02-01T23:59:59.000Z

5

Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation (2003)  

SciTech Connect

This report presents the results of the 2003 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

J. R. Newkirk; F. J. Borst, CHP

2004-02-01T23:59:59.000Z

6

Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation (2005)  

SciTech Connect

This report presents the results of the 2003 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

J. R. Newkirk; F. J. Borst

2001-02-01T23:59:59.000Z

7

Alternative Fuels Data Center: Installation of Alternative Fuel Components  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Installation of Installation of Alternative Fuel Components in Vehicles to someone by E-mail Share Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Facebook Tweet about Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Twitter Bookmark Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Google Bookmark Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Delicious Rank Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on Digg Find More places to share Alternative Fuels Data Center: Installation of Alternative Fuel Components in Vehicles on AddThis.com... More in this section... Federal

8

Utah Underground Storage Tank Installation Permit | Open Energy...  

Open Energy Info (EERE)

Underground Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type...

9

Nuclear Fuels Storage & Transportation Planning Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Storage & Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut Yankee (http://www.connyankee.com/html/fuel_storage.html). Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel

10

Spent-fuel-storage alternatives  

SciTech Connect

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

11

Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Promulgation of Promulgation of Renewable Fuel Storage Tank Regulations to someone by E-mail Share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Facebook Tweet about Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Twitter Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Google Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Delicious Rank Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Digg Find More places to share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on AddThis.com... More in this section... Federal

12

Alternative Fuels Data Center: Installing New E85 Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Installing New E85 Installing New E85 Equipment to someone by E-mail Share Alternative Fuels Data Center: Installing New E85 Equipment on Facebook Tweet about Alternative Fuels Data Center: Installing New E85 Equipment on Twitter Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Google Bookmark Alternative Fuels Data Center: Installing New E85 Equipment on Delicious Rank Alternative Fuels Data Center: Installing New E85 Equipment on Digg Find More places to share Alternative Fuels Data Center: Installing New E85 Equipment on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options Equipment Installation Codes, Standards, & Safety Vehicles Laws & Incentives

13

Alternative Fuels Data Center: Biodiesel Fuel Storage Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Storage Biodiesel Fuel Storage Grants to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Storage Grants on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Storage Grants on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Storage Grants on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Storage Grants on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Storage Grants on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Storage Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Storage Grants The Alabama Biodiesel Incentive Program, administered by the Alabama Department of Economic and Community Affairs (ADECA) Energy Division,

14

Underground Storage Tanks: New Fuels and Compatibility  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

15

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

16

DOE-DOD Emergency Backup Power Fuel Cell Installations  

Fuel Cell Technologies Publication and Product Library (EERE)

Ths fact sheet describes a collaboration between the departments of Energy and Defense to install and operate 18 fuel cell backup power systems across the United States.

17

Design and installation manual for thermal energy storage  

SciTech Connect

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-tank systems, domestic water heating with air- and liquid-based space heating systems, and stand alone domestics hot water systems. Several appendices present common problems with storage systems and their solutions, heat transfer fluid properties, economic insulation thickness, heat exchanger sizing, and sample specifications for heat exchangers, wooden rock bins, steel tanks, concrete tanks, and fiberglass-reinforced plastic tanks.

Cole, R L; Nield, K J; Rohde, R R; Wolosewicz, R M

1980-01-01T23:59:59.000Z

18

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

19

Activities Related to Storage of Spent Nuclear Fuel | Department...  

Office of Environmental Management (EM)

Activities Related to Storage of Spent Nuclear Fuel Activities Related to Storage of Spent Nuclear Fuel Activities Related to Storage of Spent Nuclear Fuel More Documents &...

20

Nuclear Fuel Storage and Transportation Planning Project Overview...  

Office of Environmental Management (EM)

Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project...

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Biodiesel Storage Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Storage Biodiesel Storage Regulations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Storage Regulations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Storage Regulations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Storage Regulations on Google Bookmark Alternative Fuels Data Center: Biodiesel Storage Regulations on Delicious Rank Alternative Fuels Data Center: Biodiesel Storage Regulations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Storage Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Storage Regulations Underground storage tank regulations apply to all biodiesel blends with the exception of 100% biodiesel (B100). An owner changing the use of an

22

Fuel cells and electrochemical energy storage  

Science Journals Connector (OSTI)

Fuel cells and electrochemical energy storage ... Fuel cells and electrochemical energy storage : types of fuel cells, batteries for electrical energy storage, major batteries presently being investigated, and a summary of present major materials problems in the sodium-sulfur and lithium-alloy metal sulfide battery. ...

Anthony F. Sammells

1983-01-01T23:59:59.000Z

23

Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences  

SciTech Connect

The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

Bailey, W.J.

1990-02-01T23:59:59.000Z

24

Planning a Commercial Fuel Cell Installation  

E-Print Network (OSTI)

the alkaline and molten carbonate cells as they may have special ap~lications since their operating characteristics are noticeably different from the phosphoric acid cells. Next, the Los Alamos study concludes that the phosphoric acid fuel cell matches...

Bowden, J. R.; May, G. W.

25

Spent fuel storage system for LMFBR fuel experiments  

SciTech Connect

Fuel that had been irradiated in the Argonne National Laboratory Experimental Breeder Reactor II (EBR-II) at Idaho Falls, Idaho, and examined at the Hanford Engineering Development Laboratory at Richland, Washington, was placed in long term retrievable storage utilizing a system designed at Hanford. The Spent Fuel Storage Cask system was designed for transport and storage of a large quantity of spent fuel at the Hanford 200 Area transuranic (TRU) asphalt storage pad. The entire system is designed for long term retrievable storage to allow future reprocessing of the fuel. The system was designed to meet the criticality, shielding, and thermal requirements for a maximum fuel load of four kilograms fissile. The Spent Fuel Storage Cask was built to transport and store the fuel from EBR-II on the TRU asphalt storage pad.

Seay, J.M.; Gruber, W.J.

1983-01-01T23:59:59.000Z

26

Regenerative Fuel Cells for Energy Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regenerative Fuel Cells for Energy Storage Regenerative Fuel Cells for Energy Storage Presentation by Corky Mittelsteadt, Giner Electrochemical Systems, at the NREL Reversible Fuel...

27

Hydrogen Storage Requirements for Fuel Cell Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

28

Nuclear Fuels Storage and Transportation Planning Project (NFST...  

Office of Environmental Management (EM)

Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Presentation made by...

29

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

30

Hydrogen fuel closer to reality because of storage advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon...

31

Transportation Services Fueling Operation Transportation Services has installed a software system that will facilitate fueling of  

E-Print Network (OSTI)

Transportation Services Fueling Operation Transportation Services has installed a software system into this system. All University vehicles that wish to fuel at UH M noa Transportation Services will be required the application below and submit your application to Transportation Services before attempting to fuel your

32

Hydrogen storage and integrated fuel cell assembly  

DOE Patents (OSTI)

Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

Gross, Karl J. (Fremont, CA)

2010-08-24T23:59:59.000Z

33

Spent fuel storage requirements 1993--2040  

SciTech Connect

Historical inventories of spent fuel are combined with U.S. Department of Energy (DOE) projections of future discharges from commercial nuclear reactors in the United States to provide estimates of spent fuel storage requirements through the year 2040. The needs are estimated for storage capacity beyond that presently available in the reactor storage pools. These estimates incorporate the maximum capacities within current and planned in-pool storage facilities and any planned transshipments of spent fuel to other reactors or facilities. Existing and future dry storage facilities are also discussed. The nuclear utilities provide historical data through December 1992 on the end of reactor life are based on the DOE/Energy Information Administration (EIA) estimates of future nuclear capacity, generation, and spent fuel discharges.

Not Available

1994-09-01T23:59:59.000Z

34

Dry Storage of Research Reactor Spent Nuclear Fuel - 13321  

SciTech Connect

Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)

Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)] [Moore Nuclear Energy, LLC (United States)

2013-07-01T23:59:59.000Z

35

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Onboard Storage Tank Workshop to someone by E-mail Share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Facebook Tweet about Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Twitter Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Google Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Delicious Rank Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Digg Find More places to share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

36

Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version)  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage (Text Storage (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage (Text Alternative Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

37

Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Retail and Biodiesel Retail and Storage Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Retail and Storage Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Retail and Storage Requirements

38

Small Fuel Cell Systems with Hydrogen Storage | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Fuel Cell Systems with Hydrogen Storage Small Fuel Cell Systems with Hydrogen Storage Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington,...

39

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

providers to install biofuel fueling facilities. Fueling facilities include storage tanks and fuel pumps dedicated to dispensing E85 and biodiesel blends of 20% (B20). TDOT...

40

Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel from Decommissioned Nuclear Power Reactor Sites December 2008 U.S. Department of Energy Office of Civilian Radioactive Waste Management Washington, D.C. Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel The picture on the cover is the Connecticut Yankee Independent Spent Fuel Storage Installation site in Haddam, Connecticut, with 43 dry storage NRC-licensed dual-purpose (storage and transport) casks. ii Report to Congress on the Demonstration of the Interim Storage of Spent Nuclear Fuel EXECUTIVE SUMMARY The House Appropriations Committee Print that accompanied the Consolidated Appropriations Act, 2008, requests that the U.S. Department of Energy (the Department):

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Departments of Energy, Defense Partner to Install Fuel Cell Backup Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departments of Energy, Defense Partner to Install Fuel Cell Backup Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations July 19, 2011 - 4:56pm Addthis The U.S. Department of Energy (DOE) today announced that as part of an interagency partnership with the U.S. Department of Defense (DOD) to strengthen American energy security and develop new clean energy technologies, DOD will be installing and operating 18 fuel cell backup power systems at eight military installations across the country. The Departments will test how the fuel cells perform in real world operations, identify any technical improvements manufacturers could make to enhance performance, and highlight the benefits of fuel cells for emergency backup

42

Departments of Energy, Defense Partner to Install Fuel Cell Backup Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy, Defense Partner to Install Fuel Cell Backup Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations July 19, 2011 - 11:46am Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today announced that as part of an interagency partnership with the U.S. Department of Defense (DOD) to strengthen American energy security and develop new clean energy technologies, DOD will be installing and operating 18 fuel cell backup power systems at eight military installations across the country. The Departments will test how the fuel cells perform in real world operations, identify any technical improvements manufacturers could make to enhance performance, and highlight the benefits of fuel cells for emergency backup

43

Departments of Energy, Defense Partner to Install Fuel Cell Backup Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departments of Energy, Defense Partner to Install Fuel Cell Backup Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations July 19, 2011 - 4:56pm Addthis The U.S. Department of Energy (DOE) today announced that as part of an interagency partnership with the U.S. Department of Defense (DOD) to strengthen American energy security and develop new clean energy technologies, DOD will be installing and operating 18 fuel cell backup power systems at eight military installations across the country. The Departments will test how the fuel cells perform in real world operations, identify any technical improvements manufacturers could make to enhance performance, and highlight the benefits of fuel cells for emergency backup

44

President Reagan Calls for a National Spent Fuel Storage Facility...  

National Nuclear Security Administration (NNSA)

Spent Fuel Storage Facility Washington, DC The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of...

45

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5037: Hydrogen Storage Materials - 2004 vs. 2006 DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials - 2004 vs. 2006 This program record from the Department...

46

NREL: Vehicles and Fuels Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map NREL's Energy Storage Project is leading the charge on battery thermal management, modeling, and systems solutions to enhance the performance of fuel cell, hybrid electric, and electric vehicles (FCVs, HEVs, and EVs) for a cleaner, more secure transportation future. NREL's experts work closely with the U.S. Department of Energy (DOE), industry, and automotive manufacturers to improve energy storage devices, such as battery modules and ultracapacitors, by enhancing their thermal performance and life-cycle cost. Activities also involve modeling and simulation to evaluate technical targets and energy storage parameters, and investigating combinations of energy storage systems to increase vehicle efficiency. Much of this research is conducted at our state-of-the-art energy storage

47

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE hydrogen storage activity focuses primarily on the applied research and development (R&D) of low-pressure, materials-based technologies to allow for a driving range of more than 300 miles (500 km) while meeting packaging, cost, safety, and performance requirements to be competitive with current vehicles. While automakers have recently demonstrated progress with some prototype vehicles traveling more than 300 miles on a single fill, this driving range must be achievable across different vehicle models and without compromising space, performance, or cost. In addition, hydrogen storage will be needed for both other niche vehicular applications and off-board uses such as for stationary power generation and for hydrogen delivery and refueling infrastructure.

48

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Modeling and Analysis Hydrogen Storage Systems Modeling and Analysis Several different approaches are being pursued to develop on-board hydrogen storage systems for light-duty vehicle applications. The different approaches have different characteristics, such as: the thermal energy and temperature of charge and discharge kinetics of the physical and chemical process steps involved requirements for the materials and energy interfaces between the storage system and the fuel supply system on one hand, and the fuel user on the other Other storage system design and operating parameters influence the projected system costs as well. Argonne researchers are developing thermodynamic, kinetic, and engineering models of the various hydrogen storage systems to understand the characteristics of storage systems based on these approaches and to evaluate their potential to meet the DOE targets for on-board applications. The DOE targets for 2015 include a system gravimetric capacity of 1.8 kWh/kg (5.5 wt%) and a system volumetric capacity of 1.3 kWh/L (40 g/L). We then use these models to identify significant component and performance issues, and evaluate alternative system configurations and design and operating parameters.

49

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

50

NREL: Hydrogen and Fuel Cells Research - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

L. Simpson. (2010) Contact: Thomas Gennett 303-384-6628 Printable Version Hydrogen & Fuel Cells Research Home Projects Fuel Cells Hydrogen Production & Delivery Hydrogen Storage...

51

Departments of Energy, Defense Partner to Install Fuel Cell Backup Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departments of Energy, Defense Partner to Install Fuel Cell Backup Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations Departments of Energy, Defense Partner to Install Fuel Cell Backup Power Units at Eight Military Installations July 19, 2011 - 11:46am Addthis Washington, D.C. - The U.S. Department of Energy (DOE) today announced that as part of an interagency partnership with the U.S. Department of Defense (DOD) to strengthen American energy security and develop new clean energy technologies, DOD will be installing and operating 18 fuel cell backup power systems at eight military installations across the country. The Departments will test how the fuel cells perform in real world operations, identify any technical improvements manufacturers could make to enhance

52

Optimization study on sample pretreatment of spent fuel storage rack  

Science Journals Connector (OSTI)

In order to evaluate radionuclide inventories as an essential item for the permanent disposal of spent fuel storage racks, chemical conditions for a sample pretreatment of a spent fuel storage rack were studied. ...

Hong-Joo Ahn; Myung-Ho Lee; Se-Chul Sohn…

2010-08-01T23:59:59.000Z

53

INSTALLATION CERTIFICATE CF-6R-MECH-08 Ice Storage Air Conditioning (ISAC) Units (Page 1 of 2)  

E-Print Network (OSTI)

cooling with the compressor). Yes No #12;INSTALLATION CERTIFICATE CF-6R-MECH-08 Ice Storage AirINSTALLATION CERTIFICATE CF-6R-MECH-08 Ice Storage Air Conditioning (ISAC) Units (Page 1 of 2) Site Address: Enforcement Agency: Permit Number: 2008 Residential Compliance Forms August 2009 Ice Storage Air

54

Planning and Installation Guide: North Carolina Compressed Natural Gas Fueling Stations  

E-Print Network (OSTI)

1 Planning and Installation Guide: North Carolina Compressed Natural Gas Fueling Stations Introduction Are you considering installing a compressed natural gas (CNG) fueling station for your fleet of important items to consider when planning for a CNG station. Natural gas infrastructure, which is commonly

55

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies » Nuclear Fuels Storage & Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents September 30, 2013 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. February 22, 2013 Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies

56

Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow Cells for Energy Flow Cells for Energy Storage Workshop to someone by E-mail Share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Facebook Tweet about Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Twitter Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Google Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Delicious Rank Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Digg Find More places to share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings

57

U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), September 2003  

Energy.gov (U.S. Department of Energy (DOE))

Chart of Database of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC)

58

Application of Hydrogen Storage Technologies for Use in Fueling  

E-Print Network (OSTI)

Application of Hydrogen Storage Technologies for Use in Fueling Fuel Cell Electric Vehicles This report describes the design, commissioning, and operation of a mobile hydrogen delivery and storage of Hydrogen Storage Technologies Prepared for the U.S. Department of Energy Office of Electricity Delivery

59

Hydrogen fuel closer to reality because of storage advances  

E-Print Network (OSTI)

extracted for use in hydrogen fuel cell batteries and then be recharged with hydrogen over and over- 1 - Hydrogen fuel closer to reality because of storage advances March 21, 2012 Drive toward as a "chemical storage tank" for hydrogen fuel. An ammonia borane system could allow hydrogen to be easily

60

Hydrogen Production and Storage for Fuel Cells: Current Status  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Hydrogen Production and Storage for Fuel Cells, February 2, 2011.

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Cryotank for storage of hydrogen as a vehicle fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

more energy per pound than any other fuel 3 Lawrence Livermore National Laboratory Hydrogen at low temperature and high pressure reduces weight, volume and cost of storage...

62

Webinar: Material Characterization of Storage Vessels for Fuel Cell Forklifts  

Energy.gov (U.S. Department of Energy (DOE))

Video recording of the webinar titled, Material Characterization of Storage Vessels for Fuel Cell Forklifts, originally presented on August 14, 2012.

63

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cells Program Record Record : 5037 Date: May 22, 2006 Title: Hydrogen Storage Materials - 2004 vs 2006 Originator: Sunita Satyapal Approved by: JoAnn Milliken...

64

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in Nuclear Fuel Storage Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

65

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Investment in Nuclear Fuel Storage Announces New Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

66

Review of Used Nuclear Fuel Storage and Transportation Technical Gap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analyses Analyses Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analyses The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The Storage and Transportation activities within the UFDC are being developed to address issues regarding the extended storage of UNF and its subsequent

67

Safeguards Guidance for Independent Spent Fuel Storage Installations...  

National Nuclear Security Administration (NNSA)

GmbH: Imager 5006 (3DLR) User Manual, Version 1.0.5, (English), Wangen im Allgaeu, Germany, ca. 2011. 18. Durst, P. C.: Personal Communication with Marius Stein of Canberra...

68

Alkaline regenerative fuel cell systems for energy storage  

SciTech Connect

This paper presents the results of a preliminary design study of a Regenerative Fuel Cell Energy Storage system for application to future low-earth orbit space missions. This high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. 11 refs.

Schubert, F.H.; Reid, M.A.; Martin, R.E.

1981-01-01T23:59:59.000Z

69

Testing of the CANDU Spent Fuel Storage Basket Package  

SciTech Connect

The paper described the results of testing for a CANDU Spent Fuel Storage Basket Package Prototype intended to be used for transport and storage of the CANDU spent fuel bundles within NPP CANDU Cernavoda, Romania. The results obtained proved that the objectives of those tests were achieved

Vieru, G.

2002-02-28T23:59:59.000Z

70

Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FUEL CELL TECHNOLOGIES PROGRAM FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 mi between fills. This is a challenging goal because hydrogen has physical characteristics that make it difficult to store in large quantities without taking up a significant amount of space. Where and How Will Hydrogen be Stored? Hydrogen storage will be required

71

Hydrogen fuel closer to reality because of storage advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon How best to achieve the benchmark of 300 miles of travel without refueling? It may be to use the lightweight compound ammonia-borane to carry the hydrogen. With hydrogen accounting for almost 20 percent of its weight, this stable, non-flammable compound is one of the highest-capacity materials for storing hydrogen. In a car, the introduction of a chemical catalyst would release the hydrogen as needed, thus avoiding on-board storage of large quantities of flammable hydrogen gas. When the ammonia-borane fuel is depleted of hydrogen, it would be regenerated at a

72

Departments of Energy, Defense Partner to Install Fuel Cell Backup...  

Energy Savers (EERE)

such as catalysts and membranes at several companies including 3M, Dupont, Gore, Johnson Matthey, and BASF. This research has helped reduce the costs of fuel cells by up to...

73

Corrosion assessment of dry fuel storage containers  

SciTech Connect

The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

Graves, C.E.

1994-09-01T23:59:59.000Z

74

Achieving increased spent fuel storage capacity at the High Flux Isotope Reactor (HFIR)  

SciTech Connect

The HFIR facility was originally designed to store approximately 25 spent cores, sufficient to allow for operational contingencies and for cooling prior to off-site shipment for reprocessing. The original capacity has now been increased to 60 positions, of which 53 are currently filled (September 1994). Additional spent cores are produced at a rate of about 10 or 11 per year. Continued HFIR operation, therefore, depends on a significant near-term expansion of the pool storage capacity, as well as on a future capability of reprocessing or other storage alternatives once the practical capacity of the pool is reached. To store the much larger inventory of spent fuel that may remain on-site under various future scenarios, the pool capacity is being increased in a phased manner through installation of a new multi-tier spent fuel rack design for higher density storage. A total of 143 positions was used for this paper as the maximum practical pool capacity without impacting operations; however, greater ultimate capacities were addressed in the supporting analyses and approval documents. This paper addresses issues related to the pool storage expansion including (1) seismic effects on the three-tier storage arrays, (2) thermal performance of the new arrays, (3) spent fuel cladding corrosion concerns related to the longer period of pool storage, and (4) impacts of increased spent fuel inventory on the pool water quality, water treatment systems, and LLLW volume.

Cook, D.H.; Chang, S.J.; Dabs, R.D.; Freels, J.D.; Morgan, K.A.; Rothrock, R.B. [Oak Ridge National Lab., TN (United States); Griess, J.C. [Griess (J.C.), Knoxville, TN (United States)

1994-12-31T23:59:59.000Z

75

Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004  

Energy.gov (U.S. Department of Energy (DOE))

Development of a database, in Excel format, listing CHP installations incorporating thermal energy storage or turbine inlet cooling.

76

Review of Used Nuclear Fuel Storage and Transportation Technical Gap  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis Analysis Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis While both wet and dry storage have been shown to be safe options for storing used nuclear fuel (UNF), the focus of the program is on dry storage of commercial UNF at reactor or centralized locations. This report focuses on the knowledge gaps concerning extended storage identified in numerous domestic and international investigations and provides the Used Fuel Disposition Campaign"s (UFDC) gap description, any alternate gap descriptions, the rankings by the various organizations, evaluation of the priority assignment, and UFDC-recommended action based on the comparison. Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis More Documents & Publications

77

The united kingdom's changing requirements for spent fuel storage  

SciTech Connect

The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK.

Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N. [National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, Cheshire WA3 6AE (United Kingdom)

2013-07-01T23:59:59.000Z

78

Dry storage of spent nuclear fuel in UAE – Economic aspect  

Science Journals Connector (OSTI)

Abstract Cost analysis of dry storage of spent nuclear fuel (SNF) discharged from Barakah nuclear power plants in the UAE was performed using three variables: average fuel discharge rate (FD), discount rate (d), and cooling time in a spent fuel pool (Tcool). The costs of dry storage as an interim spent fuel storage option in the UAE were estimated and compared between the following two scenarios: Scenario 1 is ‘accelerated transfer of spent fuel to dry storage’ that SNF will be transferred to dry storage facilities as soon as spent fuel has been sufficiently cooled down in a pool for the dry storage; Scenario 2 is defined as ‘maximum use of spent fuel pool’ that SNF will be stored in a pool as long as possible till the amount of stored SNF in the pool reaches the capacity of the pools and, then, to be moved to dry storage. A sensitivity analysis on the costs was performed and multiple regression analysis was applied to the resulting net present values (NPVs) for Scenarios 1 and 2 and ?NPV that is difference in the net present values between the two scenarios. The results showed that \\{NPVs\\} and ?NPV could be approximately expressed by single equations with the three variables. Among the three variables, the discount rate had the largest effect on the \\{NPVs\\} of the dry storage costs. However, ?NPV was turned out to be equally sensitive to the discount rate and cooling period. Over the ranges of the variables, the additional cost for accelerated fuel transfer (Scenario 1) ranged from 86.4 to 212.9 million $. Calculated using the maximum difference (212.9 M$) between the two scenarios, the accelerated fuel transfer to dry storage could incur the additional electricity rate 8.0 × 10?5 USD/kWh, which is not considered to be significant, compared to the overall electricity generation cost.

Sara Al Saadi; Yongsun Yi

2015-01-01T23:59:59.000Z

79

Underground Storage Tanks: New Fuels and Compatibility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

high octane fuels being considered as possible path forward Storing high octane ethanol blended fuels will require careful consideration of material compatibility issues...

80

Interim Storage of Hanford Spent Fuel & Associated Sludge  

SciTech Connect

The Hanford site is currently dealing with a number of types of Spent Nuclear Fuel. The route to interim dry storage for the various fuel types branches along two different paths. Fuel types such as metallic N reactor fuel and Shippingport Core 2 Blanket assemblies are being placed in approximately 4 m long canisters which are then stored in tubes below grade in a new canister storage building. Other fuels such as TRIGA{trademark} and Light Water Reactor fuel will be relocated and stored in stand-alone casks on a concrete pad. Varying degrees of sophistication are being applied with respect to the drying and/or evacuation of the fuel interim storage canisters depending on the reactivity of the fuel, the degree of damaged fuel and the previous storage environment. The characterization of sludge from the Hanford K Basins is nearly complete and canisters are being designed to store the sludge (including uranium particles from fuel element cleaning) on an interim basis.

MAKENAS, B.J.

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel cell systems for first lunar outpost -- Reactant storage options  

SciTech Connect

A Lunar Surface Power Working Group was formed to review candidate systems for providing power to the First Lunar Outpost habitat. The working group met for five days in the fall of 1992 and concluded that the most attractive candidate included a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases. Most of the volume (97%) and weight (64%) are taken up by the reactants and their storage tanks. The large volume is difficult to accommodate, and therefore, the working group explored ways of reducing the volume. An alternative approach to providing separate high pressure storage tanks is to use two of the descent stage propellant storage tanks, which would have to be wrapped with graphite fibers to increase their pressure capability. This saves 90% of the volume required for storage of fuel cell reactants. Another approach is to use the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids, but this requires a gas liquefaction system, increases the solar array by 40%, and increases the heat rejection rate by 170% compared with storage of reactants as high pressure gases. For a high power system (>20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

Nelson, P.A. [Argonne National Lab., IL (United States). Chemical Technology Div.

1995-06-01T23:59:59.000Z

82

Analysis of Fuel Cell Vehicle Hybridization and Implications for Energy Storage Devices: June 2004  

SciTech Connect

This paper addresses the impact of fuel efficiency characteristics on vehicle system efficiency, fuel economy from downsizing different fuel cells, as well as the energy storage system.

Zolot, M.; Markel, T.; Pesaran, A.

2007-01-01T23:59:59.000Z

83

Fossil Fuels and Carbon Capture and Storage  

Science Journals Connector (OSTI)

Reducing CO2...emissions, including those from the energy sector, ­presents a major challenge to the world at large. Fossil fuels provide two-thirds of the world’s electricity, with coal, in particular, the fuel ...

Keith Burnard; Sean McCoy

2012-01-01T23:59:59.000Z

84

Analysis of dose consequences arising from the release of spent nuclear fuel from dry storage casks.  

SciTech Connect

The resulting dose consequences from releases of spent nuclear fuel (SNF) residing in a dry storage casks are examined parametrically. The dose consequences are characterized by developing dose versus distance curves using simplified bounding assumptions. The dispersion calculations are performed using the MELCOR Accident Consequence Code System (MACCS2) code. Constant weather and generic system parameters were chosen to ensure that the results in this report are comparable with each other and to determine the relative impact on dose of each variable. Actual analyses of site releases would need to accommodate local weather and geographic data. These calculations assume a range of fuel burnups, release fractions (RFs), three exposure scenarios (2 hrs and evacuate, 2 hrs and shelter, and 24 hrs exposure), two meteorological conditions (D-4 and F-2), and three release heights (ground level - 1 meter (m), 10 m, and 100 m). This information was developed to support a policy paper being developed by U.S. Nuclear Regulatory Commission (NRC) staff on an independent spent fuel storage installation (ISFSI) and monitored retrievable storage installation (MRS) security rulemaking.

Durbin, Samuel G.; Morrow, Charles W.

2013-01-01T23:59:59.000Z

85

Fuel Storage Facility Final Safety Analysis Report. Revision 1  

SciTech Connect

The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

Linderoth, C.E.

1984-03-01T23:59:59.000Z

86

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Workshop Onboard Storage Tank Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned about research and development (R&D) needs; regulations, codes and standards (RCS); and a path forward to enable the successful deployment of hydrogen storage tanks in early market fuel cell applications. The workshop also included initial follow up to the DOE and Department of Transportation (DOT) International Workshop on Compressed Natural Gas and Hydrogen Fuels held on December 10-11, 2009. Here you will find information about Workshop proceedings including all presentations. Agenda and Notes The following agenda and notes provide summary information about the workshop.

87

President Reagan Calls for a National Spent Fuel Storage Facility |  

National Nuclear Security Administration (NNSA)

Reagan Calls for a National Spent Fuel Storage Facility | Reagan Calls for a National Spent Fuel Storage Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Reagan Calls for a National Spent ... President Reagan Calls for a National Spent Fuel Storage Facility October 08, 1981

88

Fuel Cell Technologies Office: Storage Systems Analysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Systems Analysis Working Group Storage Systems Analysis Working Group The Storage Systems Analysis Working Group, launched in March 2005, provides a forum to facilitate research and communication of hydrogen storage-related analysis activities among researchers actively engaged in hydrogen storage systems analyses. The working group includes members from DOE, the national laboratories, industry, and academia. Description Technical Targets Meetings Contacts Description Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in transportation, stationary, and portable power applications. One of the most challenging technical barriers known is how to efficiently store hydrogen on-board a vehicle to meet customer expectations of a driving range greater than 300 miles-as well as performance, safety, and cost-without impacting passenger or cargo space. The Department of Energy's hydrogen storage activity is coordinated through the "National Hydrogen Storage Project," with multiple university, industry, and federal laboratory partners focused on research and development of on-board vehicular hydrogen storage technologies. This research also has components applicable to off-board storage of hydrogen for refueling infrastructure and the off-board regeneration of chemical hydrogen carriers applicable to hydrogen delivery.

89

Hydrogen Storage Needs for Early Motive Fuel Cell Markets  

SciTech Connect

The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

2012-11-01T23:59:59.000Z

90

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications  

SciTech Connect

Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

2012-04-16T23:59:59.000Z

91

Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel, LP-gas and  

E-Print Network (OSTI)

112 Farm Fuel Safety Accidents in the handling, use and storage of gasoline, gasohol, diesel fuel and by keeping fuel storage facilities in top condition. Flammable Liquids and Gases Gasoline, diesel fuel, LP flammability and safety precautions. Do not keep gasoline inside the home or transport it in the trunks

92

Zircaloy cladding: Tough Containment for Spent Fuel Storage  

SciTech Connect

The present work leads us to strongly believe that if the cladding temperature is held below 425/sup 0/C then the cladding provides a significant barrier against radionuclide migration for over 1000 years. Unless some alternative benefit is identified, we feel that steps should be taken to preserve the integrity of the Zircaloy cladding - Tough Containment for Spent Fuel Storage.

Einziger, R.E.; Bosi, D.M.; Miller, A.K.

1981-01-01T23:59:59.000Z

93

Spent Fuel Storage Operational Experience With Increased Crud Activities  

SciTech Connect

A significant part of the electricity production in Hungary is provided by 4 units of VVER 440 nuclear reactors at the Paks Nuclear Power Plant. Interim dry storage of the spent fuel assemblies that are generated during the operation of the reactors is provided in a Modular Vault Dry Storage (MVDS) facility that is located in the immediate vicinity of the Paks Nuclear Power Plant. The storage capacity of the MVDS is being continuously extended in accordance with spent the fuel production rate from the four reactors. An accident occurred at unit 2 of the Paks Nuclear Power Plant in 2003, when thirty irradiated fuel assemblies were damaged during a cleaning process. The fuel assemblies were not inside the reactor at the time of the accident, but in a separate tank within the adjacent fuel decay pool. As a result of this accident, contamination from the badly damaged fuel assemblies spread to the decay pool water and also became deposited onto the surface of (hermetic) spent fuel assemblies within the decay pool. Therefore, it was necessary to review the design basis of the MVDS and assess the effects of taking the surface contaminated spent fuel assemblies into dry storage. The contaminated hermetic assemblies were transferred from the unit 2 pool to the interim storage facility in the period between 2005 and 2007. Continuous inspection and measurement was carried out during the transfer of these fuel assemblies. On the basis of the design assessments and measurement of the results during the fuel transfer, it was shown that radiological activity values increased due to the consequences of the accident but that these levels did not compromise the release and radiation dose limits for the storage facility. The aim of this paper is to show the effect on the operation of the MVDS interim storage facility as a result of the increased activity values due to the accident that occurred in 2003, as well as to describe the measurements that were taken, and their results and experience gained. In summary: On the basis of the design assessments and measurement of the results during the fuel transfer operations, it was shown that radiological activity values increased due to the consequences of the 2003 accident but that these levels did not compromise the release and dose limits for the fuel storage facility. In the environment there was no measurable radioactivity as a result of the operation of the Paks ISFSI. The exposure of the surrounding population was calculated on measured releases and meteorological data. The calculations show negligible doses until 2004. Due to the increased surface contamination on the spent fuel assemblies the dose rate increased almost 5 times compared to the least annual value, but still less then 0.01 percent of the allowed dose restriction. (authors)

Barnabas, I. [Public Agency for Radioactive Waste, Management (PURAM) (Hungary); Eigner, T. [Paks NPP (Hungary); Gresits, I. [Technical University of Budapest (Hungary); Ordagh, M. [SOM System Llc, (Hungary)

2008-07-01T23:59:59.000Z

94

Hydrogen Storage Needs for Early Motive Fuel Cell Markets  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Needs for Storage Needs for Early Motive Fuel Cell Markets J. Kurtz, C. Ainscough, L. Simpson, and M. Caton Technical Report NREL/TP-5600-52783 November 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Hydrogen Storage Needs for Early Motive Fuel Cell Markets J. Kurtz, C. Ainscough, L. Simpson, and M. Caton Prepared under Task No. H272.4410 Technical Report NREL/TP-5600-52783 November 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

95

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuels Storage Fuels Storage and Transportation Planning Project (NFST) Program Status Jeff Williams Project Director National Transportation Stakeholders Forum Buffalo, New York May 2013 2  "With the appropriate authorizations from Congress, the Administration currently plans to implement a program over the next 10 years that:  Sites, designs and licenses, constructs and begins operations of a pilot interim storage facility by 2021 with an initial focus on accepting used nuclear fuel from shut-down reactor sites;  Advances toward the siting and licensing of a larger interim storage facility to be available by 2025 that will have sufficient capacity to provide flexibility in the waste management system and allows for acceptance of enough used

96

Burnup credit in the storage of LWR fuel - conceptual considerations  

SciTech Connect

As a natural outgrowth of improved nodal calculation methods and the accessibility of detailed fuel assembly operating data from core monitoring systems, taking credit for burnup in the storage of light water reactor fuel represents a logical alternative to reracking for storing higher enriched fuel. The paper summarizes a number of array reactivity calculations that indicate: (1) taking credit for burnup leads to significantly lower array k/sub eff's/; (2) axial exposure distribution effects on array reactivity increase with exposure and are more significant in BWR than PWR fuel; (3) BWR fuel void history effects on array reactivity can be significant; and (4) an array of all fresh 3.83 wt% enriched PWR fuel is equivalent in array reactivity to a checkerboard array of 20 GWd/tonne U and fresh fuel enriched to 5.1 wt%. One approach to minimizing operator error in the handling of assemblies would be to first select and store exposed fuel in a checkerboard arrangement throughout the array. These cells could then be capped with a lockout device to preclude removal with the grappling machine. Once these assemblies were in place, all other assemblies could be safely stored in any other available cell.

Brown, O.C.; Wimpy, P.D.

1987-01-01T23:59:59.000Z

97

Crude oil and finished fuel storage stability: an annotated review  

SciTech Connect

The Bartlesville Energy Technology Center (BETC) of the Deopartment of Energy (DOE) and the US Army Fuels and Lubricants Research laboratory (AFLRL) at Southwest Research Institute (SwRI) have been working together on a support effort for the Strategic Petroleum Reserve Office (SPRO) of DOE. One task within this effort was a detailed literature survey of previous experiences in long-term storage of crude oil and finished fuels with an emphasis on underground storage. Based on the discussion presented in this review, in the limited number of cases reported, the refinability of crude oil was not significantly affected by prolonged storage. It was found that most crudes will deposit a sludge during storage which may interfere with withdrawal pumping. This sludge is probably composed of wax, sediment, water, and possibly asphaltenes. Emulsions of the water-oil interface have been reported after prolonged storage which have been attributed to action of centrifugal pumps used to remove accumulated seepage water. It is possible that these emulsions resulted from biological activity, such as the anaerobic activity reported, but no hydrogen sulfide production was observed.

Brinkman, D.W.; Bowden, J.N.; Giles, H.N.

1980-02-01T23:59:59.000Z

98

Fail-safe storage rack for irradiated fuel rod assemblies  

DOE Patents (OSTI)

A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

Lewis, D.R.

1993-03-23T23:59:59.000Z

99

Fail-safe storage rack for irradiated fuel rod assemblies  

DOE Patents (OSTI)

A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

Lewis, Donald R. (Pocatello, ID)

1993-01-01T23:59:59.000Z

100

Micro/Nano Materials for Energy Storage, Fuel Cells and Sensors  

E-Print Network (OSTI)

energy including hydrogen storage material, fuel cells such as biofuel cells, proton exchange membrane15 Micro/Nano Materials for Energy Storage, Fuel Cells and Sensors Speaker: Prof. Dr. Li-Xian Sun fuel cells, direct methanol fuel cells, clean combustion of coal, etc.; 3) Bio/chemical sensors based

Nakamura, Iku

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization  

SciTech Connect

Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

2011-03-28T23:59:59.000Z

102

Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud  

SciTech Connect

Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

Hazelton, R.F.

1987-09-01T23:59:59.000Z

103

Fire hazard analysis for the fuel supply shutdown storage buildings  

SciTech Connect

The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

REMAIZE, J.A.

2000-09-27T23:59:59.000Z

104

Gap Analysis to Support Extended Storage of Used Nuclear Fuel | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gap Analysis to Support Extended Storage of Used Nuclear Fuel Gap Analysis to Support Extended Storage of Used Nuclear Fuel Gap Analysis to Support Extended Storage of Used Nuclear Fuel The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The Storage and Transportation staff within the UFDC are responsible for addressing issues regarding the

105

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

106

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

107

DOE Hydrogen and Fuel Cells Program Record 5037: Hydrogen Storage Materials- 2004 vs. 2006  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about hydrogen storage materials (2004 vs. 2006).

108

Intelligent Power Management of a Hybrid Fuel Cell/Energy Storage Distributed Generator  

Science Journals Connector (OSTI)

This book chapter addresses the intelligent power management of a hybrid ( fuel cell/energy storage( distributed generator connected to a power grid. It presents...

Amin Hajizadeh; Ali Feliachi; Masoud Aliakbar Golkar

2012-01-01T23:59:59.000Z

109

Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Video recording and text version of the webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies," originally presented on August 19, 2014.

110

US DOE Hydrogen and Fuel Cell Technology - Composites in H2 Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Hydrogen and Fuel Cell Technology - Composites in H 2 Storage & Delivery Fiber Reinforced Polymer Composite Manufacturing Workshop Washington, DC January 13, 2014 Scott...

111

Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System  

SciTech Connect

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

Brooks, Kriston P.; Makhmalbaf, Atefe

2014-10-31T23:59:59.000Z

112

Research on Spent Fuel Storage and Transportation in CRIEPI (Part 2 Concrete Cask Storage)  

SciTech Connect

Concrete cask storage has been implemented in the world. At a later stage of storage period, the containment of the canister may deteriorate due to stress corrosion cracking phenomena in a salty air environment. High resistant stainless steels against SCC have been tested as compared with normal stainless steel. Taking account of the limited time-length of environment with certain level of humidity and temperature range, the high resistant stainless steels will survive from SCC damage. In addition, the adhesion of salt from salty environment on the canister surface will be further limited with respect to the canister temperature and angle of the canister surface against the salty air flow in the concrete cask. Optional countermeasure against SCC with respect to salty air environment has been studied. Devices consisting of various water trays to trap salty particles from the salty air were designed to be attached at the air inlet for natural cooling of the cask storage building. Efficiency for trapping salty particles was evaluated. Inspection of canister surface was carried out using an optical camera inserted from the air outlet through the annulus of a concrete cask that has stored real spent fuel for more than 15 years. The camera image revealed no gross degradation on the surface of the canister. Seismic response of a full-scale concrete cask with simulated spent fuel assemblies has been demonstrated. The cask did not tip over, but laterally moved by the earthquake motion. Stress generated on the surface of the spent fuel assemblies during the earthquake motion were within the elastic region.

Koji Shirai; Jyunichi Tani; Taku Arai; Masumi Watatu; Hirofumi Takeda; Toshiari Saegusa; Philip L. Winston

2008-10-01T23:59:59.000Z

113

High-level waste canister storage final design, installation, and testing. Topical report  

SciTech Connect

This report is a description of the West Valley Demonstration Project`s radioactive waste storage facility, the Chemical Process Cell (CPC). This facility is currently being used to temporarily store vitrified waste in stainless steel canisters. These canisters are stacked two-high in a seismically designed rack system within the cell. Approximately 300 canisters will be produced during the Project`s vitrification campaign which began in June 1996. Following the completion of waste vitrification and solidification, these canisters will be transferred via rail or truck to a federal repository (when available) for permanent storage. All operations in the CPC are conducted remotely using various handling systems and equipment. Areas adjacent to or surrounding the cell provide capabilities for viewing, ventilation, and equipment/component access.

Connors, B.J.; Meigs, R.A.; Pezzimenti, D.M.; Vlad, P.M.

1998-04-01T23:59:59.000Z

114

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

115

ALARA Analysis for Shippingport Pressurized Water Reactor Core 2 Fuel Storage in the Canister Storage Building (CSB)  

E-Print Network (OSTI)

The addition of Shippingport Pressurized Water Reactor (PWR) Core 2 Blanket Fuel Assembly storage in the Canister Storage Building (CSB) will increase the total cumulative CSB personnel exposure from receipt and handling activities. The loaded Shippingport Spent Fuel Canisters (SSFCs) used for the Shippingport fuel have a higher external dose rate. Assuming an MCO handling rate of 170 per year (K East and K West concurrent operation), 24-hr CSB operation, and nominal SSFC loading, all work crew personnel will have a cumulative annual exposure of less than the 1,000 mrem limit.

Lewis, M E

2000-01-01T23:59:59.000Z

116

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage  

E-Print Network (OSTI)

. Hydrogen Storage #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 200 #12 square inch (psi) 7.5 wt % and 8.5 wt% Type IV composite hydrogen storage tanks of specified sizes for DOE Future Truck and Nevada hydrogen bus programs · Demonstrate 10,000 psi storage tanks Approach

117

Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042  

SciTech Connect

The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup fuel storage and transportation. This paper discusses the staff's preliminary considerations on the safety implication of fuel reconfiguration with respect to nuclear safety (subcriticality control), radiation shielding, containment, the performance of the thermal functions of the packages, and the retrievability of the contents from regulatory perspective. (authors)

Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle [U.S. Nuclear Regulatory Commission - NRC, Washington, DC 20555-0001 (United States)] [U.S. Nuclear Regulatory Commission - NRC, Washington, DC 20555-0001 (United States); Wagner, John C. [Oak Ridge National Laboratory (United States)] [Oak Ridge National Laboratory (United States)

2013-07-01T23:59:59.000Z

118

Utilization of a finite element model to verify spent nuclear fuel storage rack welds  

SciTech Connect

Elastic and plastic finite element analyses were performed for the inner tie block assembly of a 25 port fuel rack designed for installation at the Idaho National Engineering and Environmental Laboratory (INEEL) Idaho Chemical Processing Plant (ICPP). The model was specifically developed to verify the adequacy of certain welds joining components of the fuel storage rack assembly. The work scope for this task was limited to an investigation of the stress levels in the inner tie welds when the rack was subjected to seismic loads. Structural acceptance criteria used for the elastic calculations performed were as defined by the rack`s designer. Structural acceptance criteria used for the plastic calculations performed as part of this effort were as defined in Subsection NF and Appendix F of Section III of the ASME Boiler and Pressure Vessel Code. The results confirm that the welds joining the inner tie block to the surrounding rack structure meet the acceptance criteria. The analysis results verified that the inner tie block welds should be capable of transferring the expected seismic load without structural failure.

Nitzel, M.E.

1998-07-01T23:59:59.000Z

119

Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel  

SciTech Connect

This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States [CIS]). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

Schneider, K.J.; Mitchell, S.J.

1992-04-01T23:59:59.000Z

120

Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel  

SciTech Connect

This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States (CIS)). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

Schneider, K.J.; Mitchell, S.J.

1992-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

COBRA-SFS thermal analysis of a sealed storage cask for the Monitored Retrievable Storage of spent fuel  

SciTech Connect

The COBRA-SFS (Spent Fuel Storage) computer code was used to predict temperature distributions in a concrete Sealed Storage Cask (SSC). This cask was designed for the Department of Energy in the Monitored Retrievable Storage (MRS) program for storage of spent fuel from commercial power operations. Analytical results were obtained for nominal operation of the SSC with spent fuel from 36 PWR fuel assemblies consolidated in 12 cylindrical canisters. Each canister generates 1650 W of thermal power. A parametric study was performed to assess the effects on cask thermal performance of thermal conductivity of the concrete, the fin material, and the amount of radial reinforcing steel bars (rebar). Seven different cases were modeled. The results of the COBRA-SFS analysis of the current cask design predict that the peak fuel cladding temperature in the SSC will not exceed the 37/sup 0/C design limit for the maximum spent fuel load of 19.8 kW and a maximum expected ambient temperature of 37.8/sup 0/C (100/sup 0/F). The results of the parametric analyses illustrate the importance of material selection and design optimization with regard to the SSC thermal performance.

Rector, D.R.; Wheeler, C.L.

1986-01-01T23:59:59.000Z

122

Behavior of Spent Nuclear Fuel in Water Pool Storage  

Office of Scientific and Technical Information (OSTI)

Behavior of Spent Nuclear Behavior of Spent Nuclear Fuel in Water Pool Storage A. 0; Johnson, jr. , I ..: . Prepared Cor the Energy Research and Development Administration under Contract EY-76-C-06-1830 ---- Pat t i ~ < N ~ ~ r ~ t b w t ~ - ! I , ~ I ~ ~ ~ I . I I ~ ) ~ I I ~ ~ N O T I C E T€& - was prepad pnpn4. m w n t of w k spon-d by the Unitd S t . & ) C a u n m ~ (*WU ij*. M t e d $tam w the Wqy R e s e w & a d Ohrsropmcnt ~dmhirmlion, nor m y d thair ewhew,,nq Pny @fw a n t r ~ ~ t 0 ~ 1 , s ~ k m r i t r i l t t q r , ~ , m r tWf ernpfQw, r(tLltm any wartany, s x p r e s or kWld,= w w aAql -9 . o r r w p a m l ~ ~ t y for e~ o r uodruincvr of any infomutim, 9 F p d + d - , or repratants that -would nat 1 d - e privately owned rfghas. ,i PAQFIC NORTHWEST UBORATORY operated b ;"' SArnLLE ' fw the E M R m RESEARCH AND DEVELOPMENT ADMINISTRAT1QN Wk.Cwfraa rv-76c-ts-is38

123

Refinishing contamination floors in Spent Nuclear Fuels storage basins  

SciTech Connect

The floors of the K Basins at the Hanford Site are refinished to make decontamination easier if spills occur as the spent nuclear fuel (SNF) is being unloaded from the basins for shipment to dry storage. Without removing the contaminated existing coating, the basin floors are to be coated with an epoxy coating material selected on the basis of the results of field tests of several paint products. The floor refinishing activities must be reviewed by a management review board to ensure that work can be performed in a controlled manner. Major documents prepared for management board review include a report on maintaining radiation exposure as low as reasonably achievable, a waste management plan, and reports on hazard classification and unreviewed safety questions. To protect personnel working in the radiation zone, Operational Health Physics prescribed the required minimum protective methods and devices in the radiological work permit. Also, industrial hygiene safety must be analyzed to establish respirator requirements for persons working in the basins. The procedure and requirements for the refinishing work are detailed in a work package approved by all safety engineers. After the refinishing work is completed, waste materials generated from the refinishing work must be disposed of according to the waste management plan.

Huang, F.F.; Moore, F.W.

1997-07-11T23:59:59.000Z

124

Making the case for direct hydrogen storage in fuel cell vehicles  

SciTech Connect

Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

1997-12-31T23:59:59.000Z

125

Hydrogen Storage and Supply for Vehicular Fuel Systems - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

126

Spent-fuel dry-storage testing at E-MAD (March 1978-March 1982)  

SciTech Connect

From March 1978 through March 1982, spent fuel dry storage tests were conducted at the Engine Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site to confirm that commercial reactor spent fuel could be encapsulated and passively stored in one or more interim dry storage cell concepts. These tests were: electrically heated drywell, isolated and adjacent drywell, concrete silo, fuel assembly internal temperature measurement, and air-cooled vault. This document presents the test data and results as well as results from supporting test operations (spent fuel calorimetry and canister gas sampling).

Unterzuber, R.; Milnes, R.D.; Marinkovich, B.A.; Kubancsek, G.M.

1982-09-01T23:59:59.000Z

127

Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066  

SciTech Connect

The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took over fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site facilities to allow the fuel to be reprocessed or conditioned for long term storage. - Sludge Retrieval: In excess of 300 m{sup 3} of sludge has accumulated in the pond over many years and is made up of debris arising from fuel and metallic corrosion, wind blown debris and bio-organic materials. The Sludge Retrieval Project has provided the equipment necessary to retrieve the sludge, including skip washer and tipper machines for clearing sludge from the pond skips, equipment for clearing sludge from the pond floor and bays, along with an 'in pond' corral for interim storage of retrieved sludge. Two further projects are providing new plant processing routes, which will initially store and eventually passivate the sludge. - Metal Fuel Retrieval: Metal Fuel from early Windscale Pile operations and various other sources is stored within the pond; the fuel varies considerably in both form and condition. A retrieval project is planned which will provide fuel handling, conditioning, sentencing and export equipment required to remove the metal fuel from the pond for export to on site facilities for interim storage and disposal. - Solid Waste Retrieval: A final retrieval project will provide methods for handling, retrieval, packaging and export of the remaining solid Intermediate Level Waste within the pond. This includes residual metal fuel pieces, fuel cladding (Magnox, aluminium and zircaloy), isotope cartridges, reactor furniture, and miscellaneous activated and contaminated items. Each of the waste streams requires conditioning to allow it to be and disposed of via one of the site treatment plants. - Pond Dewatering and Dismantling: Delivery of the above projects will allow operations to progressively remove the radiological inventory, thereby reducing the hazard/risk posed by the plant. This will then allow subsequent dewatering of the pond and dismantling of the structure. (authors)

Carlisle, Derek; Adamson, Kate [Sellafield Ltd, Sellafield, Cumbria (United Kingdom)

2012-07-01T23:59:59.000Z

128

Fuel Cell Technologies Overview: 2012 Flow Cells for Energy Storage Workshop  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Sunita Satyapal and Dimitrios Papageorgopoulos, U.S. Department of Energy Fuel Cell Technologies Program, at the Flow Cells for Energy Storage Workshop held March 7-8, 2012, in Washington, DC.

129

Determination of the fuel effect of a pumped-storage station  

Science Journals Connector (OSTI)

The fuel effect of pumped-storage stations in real power systems varies in wide limits depending on the ... · yr when their share in the power system is of the order of 6–7%...

A. N. Zeiliger; V. S. Sharygin; V. N. Ivanchenkov

1981-02-01T23:59:59.000Z

130

Categorization of failed and damaged spent LWR (light-water reactor) fuel currently in storage  

SciTech Connect

The results of a study that was jointly sponsored by the US Department of Energy and the Electric Power Research Institute are described in this report. The purpose of the study was to (1) estimate the number of failed fuel assemblies and damaged fuel assemblies (i.e., ones that have sustained mechanical or chemical damage but with fuel rod cladding that is not breached) in storage, (2) categorize those fuel assemblies, and (3) prepare this report as an authoritative, illustrated source of information on such fuel. Among the more than 45,975 spent light-water reactor fuel assemblies currently in storage in the United States, it appears that there are nearly 5000 failed or damaged fuel assemblies. 78 refs., 23 figs., 19 tabs.

Bailey, W.J.

1987-11-01T23:59:59.000Z

131

Hydrogen Storage and Supply for Vehicular Fuel Systems  

Various alternative-fuel systems have been proposed for passenger vehicles and light-duty trucks to reduce the worldwide reliance on fossils fuels and thus mitigate their polluting effects.  Replacing gasoline and other refined hydrocarbon fuels continues to present research and implementation challenges for the automotive industry. During the last decade, hydrogen fuel technology has emerged as the prime alternative that will finally drive automotive fuel systems into the new millennium....

2012-05-11T23:59:59.000Z

132

E-Print Network 3.0 - acr-1000 fuel design Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

University of Missouri-Columbia Collection: Environmental Sciences and Ecology 93 www.praxair.com H2 Storage and Summary: Design, Develop, Install & Operate H2 Fueling Station...

133

Shielding calculation techniques used in the design of fuel storage systems  

SciTech Connect

To augment the existing at-reactor fuel storage capacity, many utilities are implementing modular dry storage systems. This paper addresses the shielding design and analysis of one such storage system. Particular attention will be given to comparing various computer and hand calculation techniques. The Nutech horizontal modular storage (NUHOMS) system consists of a dry canister (a stainless steel canister containing seven pressurized water reactor fuel assemblies), a horizontal storage module (a concrete storage module), an on-site transfer cask, a trailer and cask skid, and a hydraulic ram. The shielding analyses utilized hand calculations of direct and scattered radiation, the QADMOD (three-dimensional point kernal computer program and the ANISN (one-dimensional) and DOT-IV (two-dimensional) transport theory computer programs. Each calculational technique has its advantages and disadvantages.

Wang, S.S.; Massey, J.V.

1985-11-01T23:59:59.000Z

134

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment," " 1985-2010 (Megawatts)" "Year","Coal",,,,"Petroleum and Natural Gas",,,,"Total 1" ,,,"Flue Gas","Total 2",,,"Flue Gas","Total 2",,,"Flue Gas","Total 2" ,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization",,"Particulate","Cooling","Desulfurization" ,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)",,"Collectors","Towers","(Scrubbers)"

135

Realization of the German Concept for Interim Storage of Spent Nuclear Fuel - Current Situation and Prospects  

SciTech Connect

The German government has determined a phase out of nuclear power. With respect to the management of spent fuel it was decided to terminate transports to reprocessing plants by 2005 and to set up interim storage facilities on power plant sites. This paper gives an overview of the German concept for spent fuel management focused on the new on-site interim storage concept and the applied interim storage facilities. Since the end of the year 1998, the utilities have applied for permission of on-site interim storage in 13 storage facilities and 5 storage areas; one application for the interim storage facility Stade was withdrawn due to the planned final shut down of Stade nuclear power plant in autumn 2003. In 2001 and 2002, 3 on-site storage areas and 2 on-site storage facilities for spent fuel were licensed by the Federal Office for Radiation Protection (BfS). A main task in 2002 and 2003 has been the examination of the safety and security of the planned interim storage facilities and the verification of the licensing prerequisites. In the aftermath of September 11, 2001, BfS has also examined the attack with a big passenger airplane. Up to now, these aircraft crash analyses have been performed for three on-site interim storage facilities; the fundamental results will be presented. It is the objective of BfS to conclude the licensing procedures for the applied on-site interim storage facilities in 2003. With an assumed construction period for the storage buildings of about two years, the on-site interim storage facilities could then be available in the year 2005.

Thomauske, B. R.

2003-02-25T23:59:59.000Z

136

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

of Diaphragm Hydrogen Compressor Costs (Industry) Capacity (Hydrogen Fueling Systems A nalysis” The report examines reformer, storage and compressor costsHydrogen Equipment Storage System Compressor Dispenser Delivery and Installation Cost

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

137

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

of Diaphragm Hydrogen Compressor Costs (Industry) Capacity (Hydrogen Fueling Systems A nalysis” The report examines reformer, storage and compressor costsHydrogen Equipment Storage System Compressor Dispenser Delivery and Installation Cost

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

138

Hydrogen Storage by Boron?Nitrogen Heterocycles: A Simple Route for Spent Fuel Regeneration  

Science Journals Connector (OSTI)

We describe a new hydrogen storage platform based on well-defined BN heterocyle materials. Specifically, we demonstrate that regeneration of the spent fuel back to the charged fuel can be accomplished using molecular H2 and H?/H+ sources. Crystallographic ...

Patrick G. Campbell; Lev N. Zakharov; Daniel J. Grant; David A. Dixon; Shih-Yuan Liu

2010-02-19T23:59:59.000Z

139

Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes  

SciTech Connect

The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

Harmon, K.M.; Johnson, A.B. Jr.

1984-04-01T23:59:59.000Z

140

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Petroleum Product Storage  

E-Print Network (OSTI)

This publication focuses on safe storage of gasoline, diesel, kerosene and liquid heating fuels. It includes information about storage tank location, tank design and installation, tank monitoring, and tank closure....

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electricity Storage and the Hydrogen-Chlorine Fuel Cell.  

E-Print Network (OSTI)

?? Electricity storage is an essential component of the transforming energy marketplace. Its absence at any significant scale requires that electricity producers sit ready to… (more)

Rugolo, Jason Steven

2011-01-01T23:59:59.000Z

142

Dry Storage Demonstration for High-Burnup Spent Nuclear Fuel-Feasibility Study  

SciTech Connect

Initially, casks for dry storage of spent fuel were licensed for assembly-average burnup of about 35 GWd/MTU. Over the last two decades, the discharge burnup of fuel has increased steadily and now exceeds 45 GWd/MTU. With spent fuel burnups approaching the licensing limits (peak rod burnup of 62 GWd/MTU for pressurized water reactor fuel) and some lead test assemblies being burned beyond this limit, a need for a confirmatory dry storage demonstration program was first identified after the publication in May 1999 of the U.S. Nuclear Regulatory Commissions (NRC) Interim Staff Guidance 11 (ISG-11). With the publication in July 2002 of the second revision of ISG-11, the desirability for such a program further increased to obtain confirmatory data about the potential changes in cladding mechanical properties induced by dry storage, which would have implications to the transportation, handling, and disposal of high-burnup spent fuel. While dry storage licenses have kept pace with reactor discharge burnups, transportation licenses have not and are considered on a case by case basis. Therefore, this feasibility study was performed to examine the options available for conducting a confirmatory experimental program supporting the dry storage, transportation, and disposal of spent nuclear fuel with burnups well in excess of 45 GWd/MTU.

McKinnon, Mikal A. (BATTELLE (PACIFIC NW LAB)); Cunningham, Mitchel E. (BATTELLE (PACIFIC NW LAB))

2003-09-09T23:59:59.000Z

143

Safety Aspects of Wet Storage of Spent Nuclear Fuel, OAS-L-13-11  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety Aspects of Wet Storage of Safety Aspects of Wet Storage of Spent Nuclear Fuel OAS-L-13-11 July 2013 Department of Energy Washington, DC 20585 July 10, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Daniel M. Weeber Assistant Inspector General for Audits and Administration Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Safety Aspects of Wet Storage of Spent Nuclear Fuel" BACKGROUND The Department of Energy (Department) is responsible for managing and storing spent nuclear fuel (SNF) generated by weapons and research programs and recovered through nonproliferation programs. The SNF consists of irradiated reactor fuel and cut up assemblies containing uranium, thorium and/or plutonium. The Department stores 34 metric tons of heavy metal SNF primarily

144

Impact of the Fuel Molecular Structure on the Oxidation Process of Real Diesel fuels According to Storage Conditions and Biodiesel Content  

Energy.gov (U.S. Department of Energy (DOE))

Hydrocarbon profilers can provide a clear understanding of complex interactions between fuel chemistry, storage conditions, and quantity of biodiesel over time.

145

A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI  

SciTech Connect

(OAK/B204) A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

Hiroshi Takahashi; Upendra Rohatgi; T.J. Downar

2000-08-04T23:59:59.000Z

146

COBRA-SFS (Spent-Fuel Storage) thermal-hydraulic analyses of the CASTOR-1C and REA 2023 BWR storage casks containing consolidated spent fuel  

SciTech Connect

Consolidation of spent nuclear fuel rods is being considered as one option for more efficient and compact storage of reactor spent fuel assemblies. In this concept, rods from two disassembled spent fuel assemblies will be consolidated in a space originally intended to store a single unconsolidated assembly. The thermal performance of consolidated fuel rods in dry storage, especially in multiassembly storage systems, is one of the major issues that must be addressed prior to implementation. In this study, Pacific Northwest Laboratory researchers performed thermal-hydraulic analyses for both the REA 2023 cask and the CASTOR-1C cask containing either unconsolidated or consolidated BWR spent fuel assemblies. The objective was to determine the effect of consolidating spent fuel assemblies on the temperature distributions within both types of casks. Two major conclusions resulted from this study. First, a lumping technique (combining rods and flow channels), which reduces the number of computational nodes required to model complex multiassembly geometries, could be used for both unconsolidated and consolidated rods with negligible effect on prediction accuracies. Second, with a relatively high thermal conductivity backfill gas (e.g., helium), the predicted peak fuel rod temperature in a canister of consolidated rods generating the same amount of heat as an unconsolidated assembly is essentially the same as the peak temperature in the unconsolidated assembly. In contrast, with a relatively low thermal conductivity backfill gas (e.g., nitrogen), the opposite is true and the predicted peak temperature in a consolidated canister is significantly higher than in an unconsolidated assembly. Therefore, when rods are consolidated, selection of the backfill gas is important in maintaining peak rod temperatures below allowable values for rods with relatively high decay heat generation rates.

Rector, D.R.; Cuta, J.M.; Lombardo, N.J.

1986-12-01T23:59:59.000Z

147

Safety of interim storage solutions of used nuclear fuel during extended term  

SciTech Connect

In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

Shelton, C.; Bader, S.; Issard, H.; Arslan, M. [AREVA, 7135 Minstrel Way, Suite 300 Columbia, MD 21045 (United States)

2013-07-01T23:59:59.000Z

148

Measurement of Atmospheric Sea Salt Concentration in the Dry Storage Facility of the Spent Nuclear Fuel  

SciTech Connect

Spent nuclear fuel coming from a Japanese nuclear power plant is stored in the interim storage facility before reprocessing. There are two types of the storage methods which are wet and dry type. In Japan, it is anticipated that the dry storage facility will increase compared with the wet type facility. The dry interim storage facility using the metal cask has been operated in Japan. In another dry storage technology, there is a concrete overpack. Especially in USA, a lot of concrete overpacks are used for the dry interim storage. In Japan, for the concrete cask, the codes of the Japan Society of Mechanical Engineers and the governmental technical guidelines are prepared for the realization of the interim storage as well as the code for the metal cask. But the interim storage using the concrete overpack has not been in progress because the evaluation on the stress corrosion cracking (SCC) of the canister is not sufficient. Japanese interim storage facilities would be constructed near the seashore. The metal casks and concrete overpacks are stored in the storage building in Japan. On the other hand, in USA they are stored outside. It is necessary to remove the decay heat of the spent nuclear fuel in the cask from the storage building. Generally, the heat is removed by natural cooling in the dry storage facility. Air including the sea salt particles goes into the dry storage facility. Concerning the concrete overpack, air goes into the cask body and cools the canister. Air goes along the canister surface and is in contact with the surface directly. In this case, the sea salt in the air attaches to the surface and then there is the concern about the occurrence of the SCC. For the concrete overpack, the canister including the spent fuel is sealed by the welding. The loss of sealability caused by the SCC has to be avoided. To evaluate the SCC for the canister, it is necessary to make clear the amount of the sea salt particles coming into the storage building and the concentration on the canister. In present, the evaluation on that point is not sufficient. In this study, the concentration of the sea salt particles in the air and on the surface of the storage facility are measured inside and outside of the building. For the measurement, two sites of the dry storage facility using the metal cask are chosen. This data is applicable for the evaluation on the SCC of the canister to realize the interim storage using the concrete overpack. (authors)

Masumi Wataru; Hisashi Kato; Satoshi Kudo; Naoko Oshima; Koji Wada [Central Research Institute of Electric Power Industry - CRIEPI (Japan); Hirofumi Narutaki [Electric Power Engineering Systems Co. Ltd. (Japan)

2006-07-01T23:59:59.000Z

149

High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

6/2010 6/2010 www.cleanvehicle.org 1 High Pressure Fuel Storage Cylinders Periodic Inspection and End of Life Issues DOE Vehicular Tank Workshop April 29, 2010 Douglas Horne, PE The Facts  High pressure Type 4 gaseous fuel tanks are now designed under standards that specify finite lifetimes of 15, 20 and 25 years based on specific design and testing (the HGV2 standard under development had a life as short as 10 years as an option)  It is unique within the transportation industry to have a critical device (the fuel tank) with a designated life that may be shorter than the vehicle itself  Although vehicle owners are told up front of the limited life fuel storage cylinders some tend to forget after 15 years  A parallel concern is the requirement for these fuel tanks

150

Uncertainty analysis of criticality safety for the plate type fuel assembly storage rack  

Science Journals Connector (OSTI)

To evaluate the criticality safety of the fresh and the spent fuel storage racks in an open pool type research reactor designed by KAERI, the upper subcriticality limit (USL) analysis was carried out. First, the bias and its uncertainty of MCNP code system with ENDF/B-VII library were evaluated using the calculation results of the 183 benchmark experiments. The criticality calculations for the fuel storage rack are carried out under a normal state, an increased water temperature, a fuel assembly drop, and an eccentric insertion which can affect the criticality. Considering biases and uncertainties for the MCNP code system, abnormal conditions, and the manufacturing tolerance of the cell tube thickness, the USL value that can guarantee sufficient subcriticality is determined. It was found that the criticality of the fresh and the spent fuel storage racks currently designed satisfy the USL condition. Additionally, it was concluded that the pitch size of a fresh fuel storage rack can be reduced for efficient space availability, and even under a worst case in which the fresh storage rack is surrounded by a lower water density and the smallest pitch size satisfies the USL conditions.

Tae Young Han; Chang Je Park; Byung Chul Lee; Jae Man Noh

2013-01-01T23:59:59.000Z

151

The feasibility of a unitised regenerative fuel cell with a reversible carbon-based hydrogen storage electrode.  

E-Print Network (OSTI)

??This thesis seeks to experimentally demonstrate the possibility of reversible storage of hydrogen directly into a carbon-based electrode of a PEM unitised regenerative fuel cell.… (more)

Jazaeri, M

2013-01-01T23:59:59.000Z

152

Mechanisms of synfuel degradation. 3. Interactive effects in nitrogen compound induced storage instability in shale derived diesel fuel  

SciTech Connect

Deterioration in fuel quality upon storage has been a continuing problem in the utilization of middle distillate fuels. For diesel fuels, instability is usually defined by the formation of insoluble sediments and gums and by the accumulation of hydroperoxides. Gravimetric accelerated storage stability tests conducted with model compounds as dopants in otherwise stable distillate fuels have demonstrated that oxidative condensation reactions of polar heterocycles are deleterious to stability. In particular, nitrogen containing aromatics (pyrroles, pyridines, indoles, etc.) appear to be very harmful.

Cooney, J.V.; Beal, E.J.; Beaver, B.D.

1986-01-01T23:59:59.000Z

153

Removal plan for Shippingport pressurized water reactor core 2 blanket fuel assemblies form T plant to the canister storage building  

SciTech Connect

This document presents the current strategy and path forward for removal of the Shippingport Pressurized Water Reactor Core 2 blanket fuel assemblies from their existing storage configuration (wet storage within the T Plant canyon) and transport to the Canister Storage Building (designed and managed by the Spent Nuclear Fuel. Division). The removal plan identifies all processes, equipment, facility interfaces, and documentation (safety, permitting, procedures, etc.) required to facilitate the PWR Core 2 assembly removal (from T Plant), transport (to the Canister storage Building), and storage to the Canister Storage Building. The plan also provides schedules, associated milestones, and cost estimates for all handling activities.

Lata

1996-09-26T23:59:59.000Z

154

Examination of Zircaloy-clad spent fuel after extended pool storage  

SciTech Connect

This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed.

Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

1981-09-01T23:59:59.000Z

155

Nanomaterials for Energy Storage: Batteries and Fuel Cells  

Science Journals Connector (OSTI)

Batteries and fuel cells are important power sources today (Berger, 1997; Georgano, 1996; Ondrey, et al., 1999) and will continue to be used in a wide variety of consumer, industrial and military applications in ...

2003-01-01T23:59:59.000Z

156

Multidimensional shielding analysis of the JASPER in-vessel fuel storage experiments  

SciTech Connect

The In-Vessel Fuel Storage (IVFS) experiments analyzed in this report were conducted at the Oak Ridge National Laboratory`s Tower Shielding Reactor (TSR) as part of the Japanese-American Shielding Program for Experimental Research (JASPER). These IVFS experiments were designed to study source multiplication and three-dimensional effects related to in-vessel storage of spent fuel elements in liquid metal reactor (LMR) systems. The present report describes the 2-D and 3-D models, analyses, and calculated results corresponding to a limited subset of those IVFS experiments in which the US LMR program has a particular interest.

Bucholz, J.A.

1993-03-01T23:59:59.000Z

157

Radiolysis Model Sensitivity Analysis for a Used Fuel Storage Canister  

SciTech Connect

This report fulfills the M3 milestone (M3FT-13PN0810027) to report on a radiolysis computer model analysis that estimates the generation of radiolytic products for a storage canister. The analysis considers radiolysis outside storage canister walls and within the canister fill gas over a possible 300-year lifetime. Previous work relied on estimates based directly on a water radiolysis G-value. This work also includes that effect with the addition of coupled kinetics for 111 reactions for 40 gas species to account for radiolytic-induced chemistry, which includes water recombination and reactions with air.

Wittman, Richard S.

2013-09-20T23:59:59.000Z

158

SPENT NUCLEAR FUEL STORAGE BASIN WATER CHEMISTRY: ELECTROCHEMICAL EVALUATION OF ALUMINUM CORROSION  

SciTech Connect

The factors affecting the optimal water chemistry of the Savannah River Site spent fuel storage basin must be determines in order to optimize facility efficiency, minimize fuel corrosion, and reduce overall environmental impact from long term spent nuclear fuel storage at the Savannah River Site. The Savannah River National Laboratory is using statistically designed experiments to study the effects of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, and Cl{sup -} concentrations on alloys commonly used not only as fuel cladding, but also as rack construction materials The results of cyclic polarization pitting and corrosion experiments on samples of Al 6061 and 1100 alloys will be used to construct a predictive model of the basin corrosion and its dependence on the species in the basin. The basin chemistry model and corrosion will be discussed in terms of optimized water chemistry envelope and minimization of cladding corrosion.

Hathcock, D

2007-10-30T23:59:59.000Z

159

A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation  

SciTech Connect

This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

2012-08-01T23:59:59.000Z

160

Applying x-ray digital imaging to the verification of cadmium in fuel-storage components  

SciTech Connect

The High Flux Isotope Reactor utilizes large underwater fuel-storage arrays to stage irradiated fuel before it is shipped from the facility. Cadmium is required as a thermal neutron absorber in these fuel-storage arrays to produce an acceptable margin of nuclear subcriticality during both normal and off-normal operating conditions. Due to incomplete documentation from the time of their fabrication, the presence of cadmium within two stainless-steel parts of fuel-storage arrays must be experimentally verified before they are reused in new fuel-storage arrays. A cadmium-verification program has been developed in association with the Waste Examination and Assay Facility located at the Oak Ridge national Laboratory to nondestructively examine these older shroud assemblies. The program includes the following elements (1) x-ray analog imaging, (2) x-ray digital imaging, (3) prompt-gamma-ray spectroscopy measurements, and (4) neutron-transmission measurements. X-ray digital imaging utilizes an analog-to-digital convertor to record attenuated x-ray intensities observed on a fluorescent detector by a video camera. These x-ray intensities are utilized in expressions for cadmium thickness based upon x-ray attenuation theory.

Dabbs, R.D.; Cook, D.H.

1997-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Hydrogen Storage Experiments for an Undergraduate Laboratory Course—Clean Energy: Hydrogen/Fuel Cells  

Science Journals Connector (OSTI)

Hydrogen Storage Experiments for an Undergraduate Laboratory Course—Clean Energy: Hydrogen/Fuel Cells ... Global interest in both renewable energies and reduction in emission levels has placed increasing attention on hydrogen-based fuel cells that avoid harm to the environment by releasing only water as a byproduct. ... First-Year Undergraduate/General; Green Chemistry; Laboratory Instruction; Environmental Chemistry; Hands-On Learning/Manipulatives; Applications of Chemistry; Electrolytic/Galvanic Cells/Potentials ...

Alla Bailey; Lisa Andrews; Ameya Khot; Lea Rubin; Jun Young; Thomas D. Allston; Gerald A. Takacs

2014-12-09T23:59:59.000Z

162

Webinar: Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department will present a webinar titled "Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies" on Tuesday, August 19, from 12:00 to 1:00 p.m. Eastern Daylight Time (EDT). The webinar will feature representatives from the National Renewable Energy Laboratory presenting a unique opportunity for the integration of multiple sectors including transportation, industrial, heating fuel, and electric sectors on hydrogen.

163

International auspices for the storage of spent nuclear fuel as a nonproliferation measure  

SciTech Connect

The maintenance of spent nuclear fuel from power reactors will pose problems regardless of how or when the debate over reprocessing is resolved. At present, many reactor sites contain significant buildups of spent fuel stored in holding pools, and no measure short of shutting down reactors with no remaining storage capacity will alleviate the need for away-from-reactor storage. Although the federal government has committed itself to dealing with the spent fuel problem, no solution has been reached, largely because of a debate over differing projections of storage capacity requirements. Proliferation of weapons grade nuclear material in many nations presents another pressing issue. If nations with small nuclear programs are forced to deal with their own spent fuel accumulations, they will either have to reprocess it indigenously or contract to have it reprocessed in a foreign reprocessing plant. In either case, these nations may eventually possess sufficient resources to assemble a nuclear weapon. The problem of spent fuel management demands real global solutions, and further delay in solving the problem of spent nuclear fuel accumulation, both nationally and globally, can benefit only a small class of elected officials in the short term and may inflict substantial costs on the American public, and possibly the world. (JMT)

O'Brien, J.N.

1981-10-01T23:59:59.000Z

164

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for  

E-Print Network (OSTI)

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

Berning, Torsten

165

DOE funds projects on hydrogen storage, fuel cell manufacturing  

Science Journals Connector (OSTI)

Three hydrogen and fuel cell projects in Colorado, California, and New Jersey are to receive funding from the US Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE). The projects are among the recently announced FY 2012 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 3 awards.

2013-01-01T23:59:59.000Z

166

Guidance: Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246: Federal Fleet Program, Federal Energy Management Program, U.S. Department of Energy, March 2011  

SciTech Connect

On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

Not Available

2011-03-01T23:59:59.000Z

167

Spent Nuclear Fuel (SNF) Project Acceptance Criteria for Light Water Reactor Spent Fuel Storage System [OCRWM PER REV2  

SciTech Connect

As part of the decommissioning of the 324 Building Radiochemical Engineering Cells there is a need to remove commercial Light Water Reactor (LWR) spent nuclear fuel (SNF) presently stored in these hot cells. To enable fuel removal from the hot cells, the commercial LWR SNF will be packaged and shipped to the 200 Area Interim Storage Area (ISA) in a manner that satisfies site requirements for SNF interim storage. This document identifies the criteria that the 324 Building Radiochemical Engineering Cell Clean-out Project must satisfy for acceptance of the LWR SNF by the SNF Project at the 200 Area ISA. In addition to the acceptance criteria identified herein, acceptance is contingent on adherence to applicable Project Hanford Management Contract requirements and procedures in place at the time of work execution.

JOHNSON, D.M.

2000-12-20T23:59:59.000Z

168

Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage  

E-Print Network (OSTI)

Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage "TriShield" tank technology (see Fig. 1) meets the percent weight, energy density, and specific energy reductions are possible with further optimization. Fig. 1 TriShieldTM Type IV Tank The 5,000 and 10,000 psi

169

Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495  

SciTech Connect

Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine)] [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine); Schmieman, Eric [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)] [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)

2013-07-01T23:59:59.000Z

170

Assessment of the Fingerprinting Method for Spent Fuel Verification in MACSTOR KN-400 CANDU Dry Storage  

E-Print Network (OSTI)

The Korea Hydro and Nuclear Power has built a new modular type of dry storage facility, known as MACSTOR KN-400 at Wolsong reactor site. The building has the capacity to store up to 24000 CANDU spent fuel bundles in a 4 rows by 10 columns...

Gowthahalli Chandregowda, Nandan

2012-10-19T23:59:59.000Z

171

An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells  

SciTech Connect

Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.

Liu, Hua Kun, E-mail: hua@uow.edu.au

2013-12-15T23:59:59.000Z

172

Three-dimensional Computational Fluid Dynamics (CFD) modeling of dry spent nuclear fuel storage canisters  

SciTech Connect

One of the interim storage configurations being considered for aluminum-clad foreign research reactor fuel, such as the Material and Testing Reactor (MTR) design, is in a dry storage facility. To support design studies of storage options, a computational and experimental program was conducted at the Savannah River Site (SRS). The objective was to develop computational fluid dynamics (CFD) models which would be benchmarked using data obtained from a full scale heat transfer experiment conducted in the SRS Experimental Thermal Fluids Laboratory. The current work documents the CFD approach and presents comparison of results with experimental data. CFDS-FLOW3D (version 3.3) CFD code has been used to model the 3-dimensional convective velocity and temperature distributions within a single dry storage canister of MTR fuel elements. For the present analysis, the Boussinesq approximation was used for the consideration of buoyancy-driven natural convection. Comparison of the CFD code can be used to predict reasonably accurate flow and thermal behavior of a typical foreign research reactor fuel stored in a dry storage facility.

Lee, S.Y.

1997-06-01T23:59:59.000Z

173

US Department of Energy Storage of Spent Fuel and High Level Waste  

SciTech Connect

ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

Sandra M Birk

2010-10-01T23:59:59.000Z

174

Surveillance Guide - ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS 1.0 Objective The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities provide a basis for evaluating the effectiveness of the contractor's program for implementation of appropriate controls and compliance with DOE requirements. 2.0 References 1. DOE O 440.1A, Worker Protection Management For DOE Federal And Contractor Employees [http://www.explorer.doe.gov:1776/cgi-bin/w3vdkhgw?qryBGD07_rSj;doe- 1261] 1. 29CFR1910.1200, Subpart Z, Hazard Communication [Access http://www.osha-slc.gov/OshStd_data/1910_1200.html ] 2. 29CFR1910.106, Subpart H, Flammable And Combustible Liquids [Access at

175

Estimates of Zircaloy integrity during dry storage of spent nuclear fuel: Final report  

SciTech Connect

The analytical and experimental work described in this report is intended to predict the integrity of light-water reactor (LWR) fuel rods when the fuel rods are stored dry. The analytical portion considered all failure mechanisms that could be expected to operate under dry storage conditions, including creep rupture, external oxidation stress-corrosion cracking (SCC), fatigue, and clad splitting by UO/sub 2/ oxidation. Existing physically based models were used to predict the probability that LWR fuel rod cladding will fail in 100 years, as a function of the temperature at which the rods are stored. In the experimental portion, SCC tests were conducted on irradiated Zircaloy cladding to determine characteristics under conditions relevant to dry storage. ''Precracked'' and ''smooth'' (with only small naturally occurring flaws) specimens of irradiated cladding were subjected to ''split ring'' tests at initial stresses on the order of the yield stress in a variety of atmospheres containing iodine or cesium/cadmium. Most precracked specimens failed by SCC, and about one-third of smooth specimens irradiated to fluence above 2.5 /times/ 10/sup 24/ n/m/sup 2/ also failed. However, the stresses present in these tests were much higher than those expected in stored fuel cladding; therefore, the experimental results do not necessarily indicate likely SCC problems in dry-storage fuel. 68 refs., 54 figs., 35 tabs.

Miller, A.K.; Brooks, M.; Cheung, T.Y.; Tasooji, A.; Wood, J.C.; Kelm, J.R.; Surette, B.A.; Frost, C.R.

1989-05-01T23:59:59.000Z

176

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

177

Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning  

SciTech Connect

GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

None

2010-09-13T23:59:59.000Z

178

The Effect of Weld Residual Stress on Life of Used Nuclear Fuel Dry Storage Canisters  

SciTech Connect

With the elimination of Yucca Mountain as the long-term storage facility for spent nuclear fuel in the United States, a number of other storage options are being explored. Currently, used fuel is stored in dry-storage cask systems constructed of steel and concrete. It is likely that used fuel will continue to be stored at existing open-air storage sites for up to 100 years. This raises the possibility that the storage casks will be exposed to a salt-containing environment for the duration of their time in interim storage. Austenitic stainless steels, which are used to construct the canisters, are susceptible to stress corrosion cracking (SCC) in chloride-containing environments if a continuous aqueous film can be maintained on the surface and the material is under stress. Because steel sensitization in the canister welds is typically avoided by avoiding post-weld heat treatments, high residual stresses are present in the welds. While the environment history will play a key role in establishing the chemical conditions for cracking, weld residual stresses will have a strong influence on both crack initiation and propagation. It is often assumed for modeling purposes that weld residual stresses are tensile, high and constant through the weld. However, due to the strong dependence of crack growth rate on stress, this assumption may be overly conservative. In particular, the residual stresses become negative (compressive) at certain points in the weld. The ultimate goal of this research project is to develop a probabilistic model with quantified uncertainties for SCC failure in the dry storage casks. In this paper, the results of a study of the residual stresses, and their postulated effects on SCC behavior, in actual canister welds are presented. Progress on the development of the model is reported.

Ronald G. Ballinger; Sara E. Ferry; Bradley P. Black; Sebastien P. Teysseyre

2013-08-01T23:59:59.000Z

179

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

State-of-the-Art Hydrogen Storage in Solids,” Presentationfor High Density Hydrogen storageFuel Cell Seminar,for On-Board Vehicular Hydrogen Storage,” U.S. Department of

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

180

Fueling up with Hydrogen: New Approaches to Hydrogen Storage (433rd Brookhaven Lecture)  

SciTech Connect

Hydrogen, the most abundant element in the universe, burns excellently and cleanly, with only pure water as a byproduct. NASA has used hydrogen as fuel for years in the space program. So, why not use hydrogen to fuel cars? The bottleneck of developing hydrogen-fueled vehicles has been identified: the greatest problem is storage. The conventional storage method, compressed hydrogen gas, requires a large tank volume, and the possibility of a tank rupture poses a significant safety risk. Another method, low temperature liquid storage, is expensive and impractical for most automotive applications. An alternative is to store the hydrogen in the solid state. In his talk, Jason Graetz will describe the new approaches to hydrogen storage being studied by his group at BNL. These include using kinetically stabilized hydrides, bialkali alanates and reversible metal-organic hydrides. The researchers are also using novel synthesis approaches, state-of-the-art characterization and first principles modeling, all providing a better fundamental understanding of these interesting and useful new materials.

Graetz, Jason (Energy Sciences and Technology Dept) [Energy Sciences and Technology Dept

2008-02-20T23:59:59.000Z

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution  

SciTech Connect

Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

2014-03-01T23:59:59.000Z

182

Predictions of dry storage behavior of zircaloy clad spent fuel rods using deformation and fracture map analyses  

SciTech Connect

Predictions of the maximum initial allowable temperature required to achieve a 40-year life in dry storage are made for Zircaloy clad spent fuel. Maximum initial dry storage temperatures of 420/sup 0/C for 1 year fuel cladding subjected to a constant stress of 70 MPa are predicted. The technique utilized in this work is based on the deformation and fracture map methodology. Maps are presented for temperatures between 50 and 850/sup 0/C stresses between 5 and 500 MPa. These maps are combined with a life fraction rule to predict the time to rupture of Zircaloy clad spent Light Water Reactor (LWR) fuel subjected to various storage conditions.

Tarn, J.C.L.; Madsen, N.H.; Chin, B.A.

1986-03-01T23:59:59.000Z

183

Analysis of H2 storage needs for early market non-motive fuel cell applications.  

SciTech Connect

Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

2012-03-01T23:59:59.000Z

184

US Air Force installation restoration program: Remedial investigation of former herbicide storage site at Johnston Island, Pacific Ocean  

SciTech Connect

This report represents a synthesis and reformatting of six primary documents and other related materials on soils, ocean sediments, air, and biota investigations conducted at Johnston Island (JI), Pacific Ocean, to characterize contamination resulting from storage of 1.37 million gallons of Herbicide Orange (HO) from 1972 through 1977. The individual study components comprise the Remedial Investigation (RI) of the former HO storage site at JI. This report describes the procedures, results, and conclusions of the sampling and analysis programs conducted at JI. Samples of site soils, ocean sediments, airborne particulates, dust, sweepings, and aquatic organisms were collected and analyzed for HO-derived 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), and 2,3,7,8- tetrachlorodibenzo-p-dioxin (TCDD). Environmental media other than soils at the storage facility itself were found to be free of contamination or to contain very low contaminant concentrations. No contamination was found in ocean sediments, indicating possible dispersion of contaminants due to erosion. A few of the biological specimens collected were found to contain TCDD levels below the guidelines of 25 to 50 parts per trillion established by the US Food and Drug Administration; TCDD in all other biota samples was nondetectable. Analysis of samples of airborne particulates and of soils, dust, and sweepings from high-use and residential areas outside the boundaries of the former storage site indicated that there is little or no concern of adverse impacts from airborne transport and deposition of TCDD.

Not Available

1988-09-01T23:59:59.000Z

185

DOE Hydrogen and Fuel Cells Program Record 9014: Hydrogen Storage Materials: 2007 … 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

RCB (12/02/09) RCB (12/02/09) 1 DOE Hydrogen and Fuel Cells Program Record Record #: 9014 Date: December 02, 2009 Title: Hydrogen Storage Materials: 2007 - 2009 Originator: Robert C. Bowman, Ned T. Stetson Approved by: Sunita Satyapal Date: December 02, 2009 Item: This record summarizes the status of hydrogen (H 2 ) storage capacities that were determined for materials investigated between 2007 and 2009 within the Hydrogen Storage sub-program. Figure 1 shows the current status of materials development in terms of their gravimetric (in wt.%) capacities for just the materials themselves as a function of H 2 release or uptake temperature. The system targets for weight and temperatures as recently revised [1] for the 2015 and ultimate metrics are the areas enclosed by dashed lines in Figure 1. The arrow within the "windows"

186

Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications  

SciTech Connect

Hydrogen Fuel Cells offer the vital solution to the world's socio-political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells, storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure, the surface of the diamond is cleaned of unwanted molecules. Due to fluorine's electro negativity, the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then, the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor, or Prompt Gamma Neutron Activation Analysis, the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable, resistant structure, such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re-use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.

Leal, David A.; Leal-Quiros, E. [Mechanical Engineering, Polytechnic University of Puerto Rico (Puerto Rico); Velez, Angel; Prelas, Mark A.; Gosh, Tushar [University of Missouri-Columbia, Nuclear Science and Engineering Institute (United States)

2006-12-04T23:59:59.000Z

187

The used nuclear fuel problem - can reprocessing and consolidated storage be complementary?  

SciTech Connect

This paper describes our CISF (Consolidated Interim Storage Facilities) and Reprocessing Facility concepts and show how they can be combined with a geologic repository to provide a comprehensive system for dealing with spent fuels in the USA. The performance of the CISF was logistically analyzed under six operational scenarios. A 3-stage plan has been developed to establish the CISF. Stage 1: the construction at the CISF site of only a rail receipt interface and storage pad large enough for the number of casks that will be received. The construction of the CISF Canister Handling Facility, the Storage Cask Fabrication Facility, the Cask Maintenance Facility and supporting infrastructure are performed during stage 2. The construction and placement into operation of a water-filled pool repackaging facility is completed for Stage 3. By using this staged approach, the capital cost of the CISF is spread over a number of years. It also allows more time for a final decision on the geologic repository to be made. A recycling facility will be built, this facility will used the NUEX recycling process that is based on the aqueous-based PUREX solvent extraction process, using a solvent of tri-N-butyl phosphate in a kerosene diluent. It is capable of processing spent fuels at a rate of 5 MT per day, at burn-ups up to 50 GWD per ton of spent fuels and a minimum of 5 years out-of-reactor cooling.

Phillips, C.; Thomas, I. [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA 99354 (United States)

2013-07-01T23:59:59.000Z

188

Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications  

Science Journals Connector (OSTI)

Hydrogen Fuel Cells offer the vital solution to the world’s socio?political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure the surface of the diamond is cleaned of unwanted molecules. Due to fluorine’s electro negativity the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor or Prompt Gamma Neutron Activation Analysis the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable resistant structure such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re?use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.

David A. Leal; Angel Velez; Mark A. Prelas; Tushar Gosh; E. Leal?Quiros

2006-01-01T23:59:59.000Z

189

Carbon Capture and Storage From Fossil Fuels and Biomass – Costs and Potential Role in Stabilizing the Atmosphere  

Science Journals Connector (OSTI)

The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2...emissions from biomass conversion processes can also be captured. If that is done...

Christian Azar; Kristian Lindgren; Eric Larson; Kenneth Möllersten

2006-01-01T23:59:59.000Z

190

DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On January 25, 2006, the U.S. Department of Energy, together with the FreedomCAR & Fuel Partnership, held a workshop to review and discuss ongoing hydrogen storage and delivery analysis efforts...

191

Critical analysis of plume containment modeling in a thin heterogeneous unconfined aquifer: application to a bulk fuel storage terminal  

E-Print Network (OSTI)

The reported hydrocarbon contamination and subsequent consultant work at a bulk fuel storage terminal has instigated the need to critically analyze modeling techniques in thin, heterogeneous, unconfined aquifers. This study provides an aquifer...

Mejia, Karl Edward

1997-01-01T23:59:59.000Z

192

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems – Projected Performance and Cost Parameters  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage systems.

193

The combined system for fuel supply of fuel cells on the basis of the aluminum-water hydrogen generator and the metal hybride hydrogen storage  

Science Journals Connector (OSTI)

The system for fuel supply of a hydrogen-air fuel cell on the basis of the aluminum-water hydrogen generator and hydride-forming alloy as an intermediate gas storage has been developed. For a series of...4.5 ? x ...

I. V. Yanilkin; Ye. I. Shkol’nikov; S. N. Klyamkin; M. S. Vlaskin…

2010-12-01T23:59:59.000Z

194

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

195

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

196

Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility  

SciTech Connect

As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to overpressure--external to T Plant, was included for completeness but is not within the scope of the hazards evaluation. Container failures external to T Plant will be addressed as part of the transportation analysis. This document describes the HazOp analysis performed for the activities associated with the storage of SNF sludge in the T Plant.

SCHULTZ, M.V.

2000-08-22T23:59:59.000Z

197

Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage  

Science Journals Connector (OSTI)

The oxy-fuel process is one of three carbon capture technologies which supply CO2 ready for sequestration – the others being post-combustion capture and IGCC with carbon capture. As yet no technology has emerged as a clear winner in the race to commercial deployment. The oxy-fuel process relies on recycled flue gas as the main heat carrier through the boiler and results in significantly different flue gas compositions. Sulphur has been shown in the study to have impacts in the furnace, during ash collection, CO2 compression and transport as well as storage, with many options for its removal or impact control. In particular, the effect of sulphur containing species can pose a risk for corrosion throughout the plant and transport pipelines. This paper presents a technical review of all laboratory and pilot work to identify impacts of sulphur impurities from throughout the oxy-fuel process, from combustion, gas cleaning, compression to sequestration with removal and remedial options. An economic assessment of the optimum removal is not considered. Recent oxy-fuel pilot trials performed in support of the Callide Oxy-fuel Project and other pilot scale data are interpreted and combined with thermodynamic simulations to develop a greater fundamental understanding of the changes incurred by recycling the flue gas. The simulations include a sensitivity analysis of process variables and comparisons between air fired and oxy-fuel fired conditions - such as combustion products, SO3 conversion and limestone addition.

Rohan Stanger; Terry Wall

2011-01-01T23:59:59.000Z

198

Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect

The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

Johnson, D.J.; Brehm, J.R.

1994-01-01T23:59:59.000Z

199

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

200

Integrated System for Retrieval, Transportation and Consolidated Storage of Used Nuclear Fuel in the US - 13312  

SciTech Connect

The current inventory of used nuclear fuel assemblies (UNFAs) from commercial reactor operations in the United States totals approximately 65,000 metric tons or approximately 232,000 UNFAs primarily stored at the 104 operational reactors in the US and a small number of decommissioned reactors. This inventory is growing at a rate of roughly 2,000 to 2,400 metric tons each year, (Approx. 7,000 UNFAs) as a result of ongoing commercial reactor operations. Assuming an average of 10 metric tons per storage/transportation casks, this inventory of commercial UNFAs represents about 6,500 casks with an additional of about 220 casks every year. In January 2010, the Blue Ribbon Commission (BRC) [1] was directed to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new plan. The BRC issued their final recommendations in January 2012. One of the main recommendations is for the United States to proceed promptly to develop one or more consolidated storage facilities (CSF) as part of an integrated, comprehensive plan for safely managing the back end of the nuclear fuel cycle. Based on its extensive experience in storage and transportation cask design, analysis, licensing, fabrication, and operations including transportation logistics, Transnuclear, Inc. (TN), an AREVA Subsidiary within the Logistics Business Unit, is engineering an integrated system that will address the complete process of commercial UNFA management. The system will deal with UNFAs in their current storage mode in various configurations, the preparation including handling and additional packaging where required and transportation of UNFAs to a CSF site, and subsequent storage, operation and maintenance at the CSF with eventual transportation to a future repository or recycling site. It is essential to proceed by steps to ensure that the system will be the most efficient and serve at best its purpose by defining: the problem to be resolved, the criteria to evaluate the solutions, and the alternative solutions. The complexity of the project is increasing with time (more fuel assemblies, new storage systems, deteriorating logistics infrastructure at some sites, etc.) but with the uncertainty on the final disposal path, flexibility and simplicity will be critical. (authors)

Bracey, William; Bondre, Jayant; Shelton, Catherine [Transnuclear, Inc., 7135 Minstrel Way Suite 300, Columbia MD 21045 (United States)] [Transnuclear, Inc., 7135 Minstrel Way Suite 300, Columbia MD 21045 (United States); Edmonds, Robert [AREVA Federal Services, 7207 IBM Drive, Charlotte NC 28262 (United States)] [AREVA Federal Services, 7207 IBM Drive, Charlotte NC 28262 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.3 Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen Storage technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated October 2014. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

202

Evaluation of Effect of Fuel Assembly Loading Patterns on Thermal and Shielding Performance of a Spent Fuel Storage/Transportation Cask  

SciTech Connect

The licensing of spent fuel storage casks is generally based on conservative analyses that assume a storage system being uniformly loaded with design basis fuel. The design basis fuel typically assumes a maximum assembly enrichment, maximum burn up, and minimum cooling time. These conditions set the maximum decay heat loads and radioactive source terms for the design. Recognizing that reactor spent fuel pools hold spent fuel with an array of initial enrichments, burners, and cooling times, this study was performed to evaluate the effect of load pattern on peak cladding temperature and cask surface dose rate. Based on the analysis, the authors concluded that load patterns could be used to reduce peak cladding temperatures in a cask without adversely impacting the surface dose rates.

Cuta, Judith M.; Jenquin, Urban P.; McKinnon, Mikal A.

2001-11-20T23:59:59.000Z

203

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems … Projected Performance and Cost Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 9017 Date: July 02, 2010 Title: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters Originators: Robert C. Bowman and Ned Stetson Approved by: Sunita Satyapal Date: August 10, 2010 This record summarizes the current technical assessments of hydrogen (H 2 ) storage system capacities and projected manufacturing costs for the scenario of high-volume production (i.e., 500,000 units/year) for various types of "on-board" vehicular storage systems. These analyses were performed within the Hydrogen Storage sub-program of the DOE Fuel Cell Technologies (FCT) program of the Office of Energy Efficiency and Renewable Energy. Item: It is important to note that all system capacities are "net useable capacities" able to be delivered to the

204

Behaviour investigation of hematite nanorods synthesised by hydrothermal method use in hydrogen fuel storage  

Science Journals Connector (OSTI)

For the first time, hematite nanorods were successfully synthesised using iron nitrate precursors in the presence of cation SO4?2. This is also the first time that an investigation into hematite nanorods behaviour for hydrogen fuel storage has been carried out. Microspheres constructed with ?-FeOOH nanorods were synthesised via a novel hydrothermal method using a mixture of Fe(NO3)3 · 4H2O and Na2SO4 as the initial material. The ?-FeOOH was transformed into hematite (?-Fe2O3) nanorods through an annealing process at 600°C for 2 h. The influence of different anions on the formation of hematite ?-Fe2O3 nanorods was investigated. Experimental results proved that the addition of Na2SO4 solution controlled the morphology of ?-Fe2O3. Its structure and morphology were investigated using XRD, SEM and Raman techniques. The kinetic curve of hydrogen generation of some hematite morphology samples was examined by redox cycle and the hydrogen fuel was formed by oxidation with water vapour. Although the nanorod morphology of hematite samples was damaged during redox cycles, the samples demonstrated high activity for hydrogen generation in comparison with precipitation and sol gel samples. The ratio of H2/Fe of nanorod samples for two redox cycles was 1.91% and 1.76%, respectively. Thus, hematite nanorods are a promising material for storage of hydrogen fuel.

Van Dinh Son Tho; Luu Thi Lan Anh; Nguyen Ngoc Trung; Pham Van Thang; Nguyen Duc Hieu; Pham Phi Hung; Vo Thach Son; Tran Thanh Thai

2011-01-01T23:59:59.000Z

205

DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect

This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-06-04T23:59:59.000Z

206

Systems Modeling of Chemical Hydride Hydrogen Storage Materials for Fuel Cell Applications  

SciTech Connect

A fixed bed reactor was designed, modeled and simulated for hydrogen storage on-board the vehicle for PEM fuel cell applications. Ammonia Borane (AB) was selected by DOE's Hydrogen Storage Engineering Center of Excellence (HSECoE) as the initial chemical hydride of study because of its high hydrogen storage capacity (up to {approx}16% by weight for the release of {approx}2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions. The design evaluated consisted of a tank with 8 thermally isolated sections in which H2 flows freely between sections to provide ballast. Heating elements are used to initiate reactions in each section when pressure drops below a specified level in the tank. Reactor models in Excel and COMSOL were developed to demonstrate the proof-of-concept, which was then used to develop systems models in Matlab/Simulink. Experiments and drive cycle simulations showed that the storage system meets thirteen 2010 DOE targets in entirety and the remaining four at greater than 60% of the target.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; Holladay, Jamelyn D.

2011-10-05T23:59:59.000Z

207

Independent regulatory examination of radiation situation in the areas of spent nuclear fuel and radioactive wastes storage in the Russian far east  

Science Journals Connector (OSTI)

......submarines performing reception and storage of spent nuclear fuel (SNF...as well as for temporary storage and reloading of SNF after...seaweeds, bottom sediments, seawater, sea fish, mushrooms, local...for LRW treatment, the LRW storage facility, SRW storage facility......

N. K. Shandala; S. M. Kiselev; A. I. Lucyanec; A. V. Titov; V. A. Seregin; D. V. Isaev; S. V. Akhromeev

2011-07-01T23:59:59.000Z

208

Efficient storage of hydrogen fuel into leaky cages of clathrate hydrate  

Science Journals Connector (OSTI)

We demonstrate an alternative principle to efficiently store molecular hydrogen fuel into clathrate hydrate medium. Hydrogen-free hydrate powders quickly absorb the hydrogen gas at moderate pressure appropriate for industrial applications. The absorption kinetics was observed in situ by nuclear magnetic resonance(NMR)spectroscopy in a pressurized tube. The diffusion of hydrogen through the solid hydrate medium was directly measured by pulsed field gradient NMR. At temperatures down to 250 K the stored hydrogen is still mobile so that the hydrate storage should work well even in cold environments.

Takuo Okuchi; Igor L. Moudrakovski; John. A. Ripmeester

2007-01-01T23:59:59.000Z

209

Container for reprocessing and permanent storage of spent nuclear fuel assemblies  

DOE Patents (OSTI)

A single canister process container is described for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining its integrity at a temperature necessary to oxidize the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container. 10 figs.

Forsberg, C.W.

1992-03-24T23:59:59.000Z

210

Spent Fuel and Waste Management Activities for Cleanout of the 105 F Fuel Storage Basin at Hanford  

SciTech Connect

Clean-out of the F Reactor fuel storage basin (FSB) by the Environmental Restoration Contractor (ERC) is an element of the FSB decontamination and decommissioning and is required to complete interim safe storage (ISS) of the F Reactor. Following reactor shutdown and in preparation for a deactivation layaway action in 1970, the water level in the F Reactor FSB was reduced to approximately 0.6 m (2 ft) over the floor. Basin components and other miscellaneous items were left or placed in the FSB. The item placement was performed with a sense of finality, and no attempt was made to place the items in an orderly manner. The F Reactor FSB was then filled to grade level with 6 m (20 ft) of local surface material (essentially a fine sand). The reactor FSB backfill cleanout involves the potential removal of spent nuclear fuel (SNF) that may have been left in the basin unintentionally. Based on previous cleanout of four water-filled FSBs with similar designs (i.e., the B, C, D, and DR FSBs in the 1980s), it was estimated that up to five SNF elements could be discovered in the F Reactor FSB (1). In reality, a total of 10 SNF elements have been found in the first 25% of the F Reactor FSB excavation. This paper discusses the technical and programmatic challenges of performing this decommissioning effort with some of the controls needed for SNF management. The paper also highlights how many various technologies were married into a complete package to address the issue at hand and show how no one tool could be used to complete the job; but by combining the use of multiple tools, progress is being made.

Morton, M. R.; Rodovsky, T. J.; Day, R. S.

2002-02-25T23:59:59.000Z

211

Fuel Cycle Technologies Near Term Planning for Storage and Transportation of Used Nuclear Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Section 180(c) of the Nuclear of Section 180(c) of the Nuclear Waste Policy Act, as amended National Transportation Stakeholder's Forum Buffalo, NY May 15, 2013 Section 180(c) Mandate "The Secretary shall provide technical assistance and funds to States for training for public safety officials of appropriate units of local government and Indian tribes through whose jurisdiction the Secretary plans to transport spent nuclear fuel or high-level radioactive waste [to an NWPA-authorized facility]. * The training shall cover procedures for safe routine transportation of these materials and procedures for dealing with emergency response situations. * Covers all modes of transport 2 Section 180(c) - Background  DOE nearly implemented Section 180(c) in the mid-

212

DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel  

SciTech Connect

A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

1995-11-30T23:59:59.000Z

213

Spent Nuclear Fuel (SNF) Storage Project Fuel Basket Handling Grapple Design Development Test Report  

SciTech Connect

Acceptance testing of the SNF Fuel Basket Lift Grapple was accomplished to verify the design adequacy. This report shows the results affirming the design. The test was successful in demonstrating the adequacy of the grapple assembly's inconel actuator shaft and engagement balls for in loads excess of design basis loads (3200 pounds), 3X design basis loads (9600 pounds), and 5X design basis loads (16,000 pounds). The test data showed that no appreciable yielding for the inconel actuator shaft and engagement balls at loads in excess of 5X Design Basis loads. The test data also showed the grapple assembly and components to be fully functional after loads in excess of 5X Design Basis were applied and maintained for over 10 minutes. Following testing, each actuator shaft (Item 7) was liquid penetrant inspected per ASME Section 111, Division 1 1989 and accepted per requirements of NF-5350. This examination was performed to insure that no cracking had occurred. The test indicated that no cracking had occurred. The examination reports are included as Appendix C to this document. From this test, it is concluded that the design configuration meets or exceeds the requirements specified in ANSI N 14 6 for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More.

CHENAULT, D.M.

2000-01-06T23:59:59.000Z

214

Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars  

Science Journals Connector (OSTI)

In this paper, we review the current technology for the storage of hydrogen on board a fuel cell-propelled vehicle. Having outlined the technical specifications necessary to match the performance of hydrocarbon. fue1, we first outline the inherent difficulties with gas pressure and liquid hydrogen storage. We then outline the history of transition metal hydride storage, leading to the development of metal hydride batteries. A viable system, however, must involve lighter elements and be vacuum-tight. The first new system to get serious consideration is titanium-activated sodium alanate, followed by the lithium amide and borohydride systems that potentially overcome several of the disadvantages of alanates. Borohydrides can alternatively produce hydrogen by reaction with water in the presence of a catalyst but the product would have to be recycled via a chemical plant. Finally various possible ways of making magnesium hydride decompose and reform more readily are discussed. The alternative to lighter hydrides is the development of physisorption of molecular hydrogen on high surface area materials such as carbons, metal oxide frameworks, zeolites. Here the problem is that the surface binding energy is too low to work at anything above liquid nitrogen temperature. Recent investigations of the interaction mechanism are discussed which show that systems with stronger interactions will inevitably require a surface interaction that increases the molecular hydrogen–hydrogen distance.

D.K. Ross

2006-01-01T23:59:59.000Z

215

Spent nuclear fuel project - criteria document spent nuclear fuel final safety analysis report  

SciTech Connect

The criteria document provides the criteria and planning guidance for developing the Spent Nuclear Fuel (SNF) Final Safety Analysis Report (FSAR). This FSAR will support the US Department of Energy, Richland Operations Office decision to authorize the procurement, installation, installation acceptance testing, startup, and operation of the SNF Project facilities (K Basins, Cold Vacuum Drying Facility, and Canister Storage Building).

MORGAN, R.G.

1999-02-23T23:59:59.000Z

216

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents (OSTI)

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

217

FATE Unified Modeling Method for Spent Nuclear Fuel and Sludge Processing, Shipping and Storage - 13405  

SciTech Connect

A unified modeling method applicable to the processing, shipping, and storage of spent nuclear fuel and sludge has been incrementally developed, validated, and applied over a period of about 15 years at the US DOE Hanford site. The software, FATE{sup TM}, provides a consistent framework for a wide dynamic range of common DOE and commercial fuel and waste applications. It has been used during the design phase, for safety and licensing calculations, and offers a graded approach to complex modeling problems encountered at DOE facilities and abroad (e.g., Sellafield). FATE has also been used for commercial power plant evaluations including reactor building fire modeling for fire PRA, evaluation of hydrogen release, transport, and flammability for post-Fukushima vulnerability assessment, and drying of commercial oxide fuel. FATE comprises an integrated set of models for fluid flow, aerosol and contamination release, transport, and deposition, thermal response including chemical reactions, and evaluation of fire and explosion hazards. It is one of few software tools that combine both source term and thermal-hydraulic capability. Practical examples are described below, with consideration of appropriate model complexity and validation. (authors)

Plys, Martin; Burelbach, James; Lee, Sung Jin; Apthorpe, Robert [Fauske and Associates, LLC, 16W070 83rd St., Burr Ridge, IL, 60527 (United States)] [Fauske and Associates, LLC, 16W070 83rd St., Burr Ridge, IL, 60527 (United States)

2013-07-01T23:59:59.000Z

218

Low-temperature rupture behavior of Zircaloy-clad pressurized water reactor spent fuel rods under dry storage conditions  

SciTech Connect

Creep rupture studies on five well-characterized Zircaloy-clad pressurized water reactor spent fuel rods, which were pressurized to a hoop stress of about145 MPa, were conducted for up to 2101 h at 323/sup 0/C. The conditions were chosen for limited annealing of in-reactor irradiation hardening. No cladding breaches occurred, although significant hydride agglomeration and reorientation took place in rods that cooled under stress. Observations are interpreted in terms of a conservatively modified Larson-Miller curve to provide a lower bound on permissible maximum dry-storage temperatures, assuming creep rupture as the life-limiting mechanism. If hydride reorientation can be ruled out during dry storage, 305/sup 0/C is a conservative lower bound, based on the creep-rupture mechanism, for the maximum storage temperature of rods with irradiation-hardened cladding to ensure a 100-yr cladding lifetime in an inert atmosphere. An oxidizing atmosphere reduced the lower bound on the maximum permissible storage temperature by about5/sup 0/C. While this lower bound is based on whole-rod data, other types of data on spent fuel behavior in dry storage might support a higher limit. This isothermal temperature limit does not take credit for the decreasing rod temperature during dry storage. High-temperature tests based on creep rupture as the limiting mechanism indicate that storage at temperatures between 400 and 440/sup 0/C may be feasible for rods that are annealed.

Einsiger, R.E.; Kohli, R.

1984-10-01T23:59:59.000Z

219

Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel  

SciTech Connect

The Energy Independence and Security Act (EISA) of 2007 was enacted by Congress to move the nation toward increased energy independence by increasing the production of renewable fuels to meet its transportation energy needs. The law establishes a new renewable fuel standard (RFS) that requires the nation to use 36 billion gallons annually (2.3 million barrels per day) of renewable fuel in its vehicles by 2022. Ethanol is the most widely used renewable fuel in the US, and its production has grown dramatically over the past decade. According to EISA and RFS, ethanol (produced from corn as well as cellulosic feedstocks) will make up the vast majority of the new renewable fuel requirements. However, ethanol use limited to E10 and E85 (in the case of flex fuel vehicles or FFVs) will not meet this target. Even if all of the E0 gasoline dispensers in the country were converted to E10, such sales would represent only about 15 billion gallons per year. If 15% ethanol, rather than 10% were used, the potential would be up to 22 billion gallons. The vast majority of ethanol used in the United States is blended with gasoline to create E10, that is, gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85, a gasoline blend with as much as 85% ethanol that can only be used in FFVs. Although DOE remains committed to expanding the E85 infrastructure, that market will not be able to absorb projected volumes of ethanol in the near term. Given this reality, DOE and others have begun assessing the viability of using intermediate ethanol blends as one way to transition to higher volumes of ethanol. In October of 2010, the EPA granted a partial waiver to the Clean Air Act allowing the use of fuel that contains up to 15% ethanol for the model year 2007 and newer light-duty motor vehicles. This waiver represents the first of a number of actions that are needed to move toward the commercialization of E15 gasoline blends. On January 2011, this waiver was expanded to include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a relatively short timeframe. Initially, these material studies included test fuels of Fuel C,

Kass, Michael D [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL; Pawel, Steven J [ORNL

2012-07-01T23:59:59.000Z

220

A Photovoltaic-Hydrogen-Fuel Cell Energy System: Preliminary Operational Results  

Science Journals Connector (OSTI)

We report preliminary operational results for a photovoltaic (PV) energy system which uses hydrogen as the storage medium and a fuel cell as the regeneration technology. The system installed at the Humboldt St...

P. A. Lehman; C. E. Chamberlin

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Review of storage stability characteristics of hydrocarbon fuels, 1952-1982  

SciTech Connect

This discussion and data compilation relating to the storage stability of hydrocarbon liquids is divided into four principal sections: 1) background narrative, 2) references, 3) summary table, and 4) data tables. The Background narrative section provides a general discussion of various types of storage stability tests arranged by type of sample involved. This generic review will provide an introduction for those new in the field or cited in this section to aid in further investigation. The second section is the References, consisting of an alphabetical listing of the literature cited along with an abstract for each entry. This section should provide additional details for anyone needing to use the data provided in the tables. Since many of the publications are difficult, if not impossible, to obtain today, these abstracts may have to suffice in place of the actual report. The third section, or Summary Table, serves as a multientry index for the approximately 230 tables of raw data to follow. Information has been grouped according to the type of material involved, such as gasoline, diesel, jet fuel, coal liquid, etc. In addition, any compounds added are described along with the conditions under which the test was run. This should provide easy identification of data tables relevant to a particular investigation. References to original publications are provided so that more detail can be pursued. The final section is made up entirely of Data Tables. These tables have all been retypeset for easier reading and rapid scanning. Formats have been changed from those in the original articles where it seemed it would help in understanding the data without access to the entire publication. This compilation is as complete as practical, and represents a broad spectrum of stability data. In combination, these four sections should provide a ready reference source of data for those involved in the study of the storage stability of hydrocarbon liquids. 143 references, 231 tables.

Goetzinger, J.W.; Thompson, C.J.; Brinkman, D.W.

1983-10-01T23:59:59.000Z

222

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

223

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Installation of Alternative Fuel Components in Vehicles A propane or compressed natural gas (CNG) carburetion system installer who collects an installation service fee must hold an...

224

Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses  

SciTech Connect

This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

1986-12-01T23:59:59.000Z

225

Initial measurements of BN-350 spent fuel in dry storage casks using the dual slab verification detonator  

SciTech Connect

The Dual Slab Verification Detector (DSVD) has been developed, built, and characterized by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of 3He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. By performing DSVD measurements at several different locations around the outer surface of the DUC, a signature 'fingerprint' can be established for each DUC based on the neutron flux emanating from inside the dry storage cask. The neutron fingerprint for each individual DUC will be dependent upon the spatial distribution of nuclear material within the cask, thus making it sensitive to the removal of a certain amount of material from the cask. An initial set of DSVD measurements have been performed on the first set of dry storage casks that have been loaded with canisters of spent fuel and moved onto the dry storage pad to both establish an initial fingerprint for these casks as well as to quantify systematic uncertainties associated with these measurements. The results from these measurements will be presented and compared with the expected results that were determined based on MCNPX simulations of the dry storage facility. The ability to safeguard spent nuclear fuel is strongly dependent on the technical capabilities of establishing and maintaining continuity of knowledge (COK) of the spent fuel as it is released from the reactor core and either reprocessed or packaged and stored at a storage facility. While the maintenance of COK is often done using continuous containment and surveillance (C/S) on the spent fuel, it is important that the measurement capabilities exist to re-establish the COK in the event of a significant gap in the continuous CIS by performing measurements that independently confirm the presence and content of Plutonium (Pu) in the spent fuel. The types of non-destructive assay (NDA) measurements that can be performed on the spent fuel are strongly dependent on the type of spent fuel that is being safeguarded as well as the location in which the spent fuel is being stored. The BN-350 Spent Fuel Disposition Project was initiated to improve the safeguards and security of the spent nuclear fuel from the BN-350 fast-breeder reactor and was developed cooperatively to meet the requirements of the International Atomic Energy Agency (IAEA) as well as the terms of the 1993 CTR and MPC&A Implementing Agreements. The unique characteristics of fuel from the BN-350 fast-breeder reactor have allowed for the development of an integrated safeguards measurement program to inventory, monitor, and if necessary, re-verify Pu content of the spent fuel throughout the lifetime of the project. This approach includes the development of a safeguards measurement program to establish and maintain the COK on the spent fuel during the repackaging and eventual relocation of the spent-fuel assemblies to a long-term storage site. As part of the safeguards measurement program, the Pu content of every spent-fuel assembly from the BN-350 reactor was directly measured and characterized while the spent-fuel assemblies were being stored in the spent-fuel pond at the BN-350 facility using the Spent Fuel Coincidence Counter (SFCC). Upon completion of the initial inventory of the Pu content of the individual spent-fuel assemblies, the assemblies were repackaged into welded steel canisters that were filled with inert argon gas and held either four or six individual spent-fuel assemblies depending on the type of assembly that was being packaged. This repackaging of the spent-fuel assemblies was performed in order to improve the stability of the spent-fuel assemblies for long-term storage and increase the proliferation resistance of the spent fuel. To maintain the capability of verifying the presence of the spent-fuel assemblies inside the welded steel canisters, measurements were performed on the canis

Santi, Peter Angelo [Los Alamos National Laboratory; Browne, Michael C [Los Alamos National Laboratory; Freeman, Corey R [Los Alamos National Laboratory; Parker, Robert F [Los Alamos National Laboratory; Williams, Richard B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

226

COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 2, User's manual  

SciTech Connect

COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations; however, the transient capability has not yet been validated. This volume contains the input instructions for COBRA-SFS and an auxiliary radiation exchange factor code, RADX-1. It is intended to aid the user in becoming familiar with the capabilities and modeling conventions of the code.

Rector, D.R.; Cuta, J.M.; Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.

1986-11-01T23:59:59.000Z

227

COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 1, Mathematical models and solution method  

SciTech Connect

COBRA-SFS (Spent Fuel Storage) is a general thermal-hydraulic analysis computer code used to predict temperatures and velocities in a wide variety of systems. The code was refined and specialized for spent fuel storage system analyses for the US Department of Energy's Commercial Spent Fuel Management Program. The finite-volume equations governing mass, momentum, and energy conservation are written for an incompressible, single-phase fluid. The flow equations model a wide range of conditions including natural circulation. The energy equations include the effects of solid and fluid conduction, natural convection, and thermal radiation. The COBRA-SFS code is structured to perform both steady-state and transient calculations: however, the transient capability has not yet been validated. This volume describes the finite-volume equations and the method used to solve these equations. It is directed toward the user who is interested in gaining a more complete understanding of these methods.

Rector, D.R.; Wheeler, C.L.; Lombardo, N.J.

1986-11-01T23:59:59.000Z

228

Spent fuel test-climax: a test of geologic storage of high-level waste in granite  

SciTech Connect

A test of retrievable geologic storage of spent fuel assemblies from an operating commercial nuclear reactor is underway at the Nevada Test Site (NTS) of the US Department of Energy. This generic test is located 420 m below the surface in the Climax granitic stock. Eleven canisters of spent fuel approximately 2.5 years out of reactor core (about 1.6 kW/canister thermal output) were emplaced in a storage drift along with 6 electrical simulator canisters. Two adjacent drifts contain electrical heaters, which are operated to simulate within the test array the thermal field of a large repository. Fuel was loaded during April to May 1980 and initial results of the test will be presented.

Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

1981-01-01T23:59:59.000Z

229

Results from NNWSI [Nevada Nuclear Waste Storage Investigations] Series 2 bare fuel dissolution tests  

SciTech Connect

The dissolution and radionuclide release behavior of spent fuel in groundwater is being studied by the Nevada Nuclear Waste Storage Investigations (NNWSI) Project. Two bare spent fuel specimens plus the empty cladding hulls were tested in NNWSI J-13 well water in unsealed fused silica vessels under ambient hot cell air conditions (25{degree}C) in the currently reported tests. One of the specimens was prepared from a rod irradiated in the H. B. Robinson Unit 2 reactor and the other from a rod irradiated in the Turkey Point Unit 3 reactor. Results indicate that most radionuclides of interest fall into three groups for release modeling. The first group principally includes the actinides (U, Np, Pu, Am, and Cm), all of which reached solubility-limited concentrations that were orders of magnitude below those necessary to meet the NRC 10 CFR 60.113 release limits for any realistic water flux predicted for the Yucca Mountain repository site. The second group is nuclides of soluble elements such as Cs, Tc, and I, for which release rates do not appear to be solubility-limited and may depend on the dissolution rate of fuel. In later test cycles, {sup 137}Cs, {sup 90}Sr, {sup 99}Tc, and {sup 129}I were continuously released at rates between about 5 {times} 10{sup {minus}5} and 1 {times} 10{sup {minus}4} of inventory per year. The third group is radionuclides that may be transported in the vapor phase, of which {sup 14}C is of primary concern. Detailed test results are presented and discussed. 17 refs., 15 figs., 21 tabs.

Wilson, C.N.

1990-09-01T23:59:59.000Z

230

Magnet Girder Assembly and Installation  

ScienceCinema (OSTI)

It takes teamwork to assemble and install magnet girders for the storage ring of the National Synchrotron Light Source II. NSLS-II is now under construction at Brookhaven Lab.

None

2013-07-17T23:59:59.000Z

231

Effects of outside storage on the energy potential of hardwood particulate fuels: part 1. Moisture content and temperature  

SciTech Connect

Widespread use of woody materials for industrial fuels has generated interest and concern about the energy value of fuels stored outdoors. This paper reports on the effect of storage for periods up to 1 year on the temperature and moisture content (MC) of wood particulate fuels in cone-shaped piles according to the type of fuel and height of pile. Three fuels - hardwood whole-tree chips, bark, and sawdust - were stored in piles 10, 15, and 20 feet high. The experimental piles were built during the late summer of 1978 at the Union Camp woodyard in Ford, Virginia. Internal pile temperatures rose rapidly during the first weeks to highs of 45 degrees C for whole-tree chips and 73 degrees C for bark and sawdust. In the bark and chip piles these temperatures fluctuated seasonally. The interior temperature of the sawdust pile was insensitive to ambient temperature changes and declined slowly throughout the remainder of the study. Within the first 60 to 120 days of storage, the surfaces of all piles became saturated with moisture. The interior zones of the bark and sawdust piles remained at or slightly above the original MC while the corresponding regions of the chip pile exhibited some drying. After 1 year's time, the weighted average MCs of chips, bark, and sawdust increased by 84, 108, and 191 percent, respectively, over the original MCs. To minimize increases of MC in stored woody fuels, storage time should be kept to less than 60 days, chips should be preferred to bark and sawdust, and piles should be built as high as possible consistent with available space and storage procedures which limit the potential for spontaneous combustion.

White, M.S.; Curtis, M.L.; Sarles, R.L.; Green, D.W.

1983-06-01T23:59:59.000Z

232

DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year. The current projected performance and cost of these systems are presented in Table 1 against the DOE Hydrogen Storage System targets. These analyses were performed in support of the Hydrogen Storage

233

Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone  

Science Journals Connector (OSTI)

Abstract The small fuel cell is being researched as an alternative power source to the Li-ion battery in mobile phone. In this paper, a direct hydrogen fuel cell system which powers a mobile phone without a supplementary battery is compactly integrated below 25 ml volume at the backside of the phone. The system consists of a small (8 ml) metal hydride hydrogen storage tank with 4 L hydrogen storage or an energy density of ?640 W h/L, a thin air-breathing planar polymer electrolyte membrane fuel cell (PEMFC) stack (13.44 cm2 × 3 mm for a volumetric power density of 335 W/L), miniature pressure regulator, and a high efficiency DC–DC voltage converting circuitry. The hydrogen storage tank is packed with the AB5 type metal hydride alloy. The eight-cell air-breathing planar stack (8 ml) is very thin (3 mm) due to a thin flexible printed circuit board current collectors as well as a unique riveting assembly and is capable of a robust performance of 2.68 W (200 mW/cm2). A miniature pressure regulator is compact with fluidic and electrical connections within 4 ml. A miniature DC–DC voltage converter operates at an overall efficiency of 90%. Consequently, the estimated energy density of a fully integrated fuel cell system is 205 W h/L (70.5 W h/kg).

Sung Han Kim; Craig M. Miesse; Hee Bum Lee; Ik Whang Chang; Yong Sheen Hwang; Jae Hyuk Jang; Suk Won Cha

2014-01-01T23:59:59.000Z

234

Underground Storage Tanks (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

235

REGIONAL BINNING FOR CONTINUED STORAGE OF SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTES  

SciTech Connect

In the Continued Storage Analysis Report (CSAR) (Reference 1), DOE decided to analyze the environmental consequences of continuing to store the commercial spent nuclear fuel (SNF) at 72 commercial nuclear power sites and DOE-owned spent nuclear fuel and high-level waste at five Department of Energy sites by region rather than by individual site. This analysis assumes that three commercial facilities pairs--Salem and Hope Creek, Fitzpatrick and Nine-Mile Point, and Dresden and Moms--share common storage due to their proximity to each other. The five regions selected for this analysis are shown on Figure 1. Regions 1, 2, and 3 are the same as those used by the Nuclear Regulatory Commission in their regulatory oversight of commercial power reactors. NRC Region 4 was subdivided into two regions to more appropriately define the two different climates that exist in NRC Region 4. A single hypothetical site in each region was assumed to store all the SNF and HLW in that region. Such a site does not exist and has no geographic location but is a mathematical construct for analytical purposes. To ensure that the calculated results for the regional analyses reflect appropriate inventory, facility and material degradation, and radionuclide transport, the waste inventories, engineered barriers, and environmental conditions for the hypothetical sites were developed from data for each of the existing sites within the given region. Weighting criteria to account for the amount and types of SNF and HLW at each site were used in the development of the environmental data for the regional site, such that the results of the analyses for the hypothetical site were representative of the sum of the results of each actual site if they had been modeled independently. This report defines the actual site data used in development of this hypothetical site, shows how the individual site data was weighted to develop the regional site, and provides the weighted data used in the CSAR analysis. It is divided into Part 1 that defines time-dependent releases from each regional site, Part 2 that defines transport conditions through the groundwater, and Part 3 that defines transport through surface water and populations using the surface waters for drinking.

W. Lee Poe, Jr

1998-10-01T23:59:59.000Z

236

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

237

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

238

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report - Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Printable Version 2006 Annual Progress Report IV. Storage This section of the 2006 Progress Report for the DOE Hydrogen Program focuses on storage. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Storage Sub-Program Overview, Sunita Satyapal, Storage Team Lead, DOE Hydrogen Program (PDF 298 KB) A. Metal Hydrides High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides, Dan Mosher, United Technologies Research Center (PDF 763 KB) Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods, David Lesch, UOP LLC (PDF 780 KB) Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity, Dan Mosher, United Technologies Research Center (PDF 678 KB)

239

System Level Analysis of Hydrogen Storage Options - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Rajesh K. Ahluwalia (Primary Contact), T. Q. Hua, J-K Peng, Hee Seok Roh, and Romesh Kumar Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-5979 Email: walia@anl.gov DOE Manager HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov Start Date: October 1, 2004 Projected End Date: September 30, 2014 Objective The overall objective of this effort is to support DOE with independent system level analyses of various H 2 storage approaches, to help to assess and down-select options, and to determine the feasibility of meeting DOE targets. Fiscal Year (FY) 2012 Objectives Model various developmental hydrogen storage systems. * Provide results to Hydrogen Storage Engineering Center *

240

Hydrogen Storage Cost Analysis, Preliminary Results - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Phone: (703) 778-7114 E-mail: bjames@sainc.com DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005253 Project Start Date: September 30, 2012 Project End Date: September 29, 2016 Fiscal Year (FY) 2012 Objectives Develop cost models of carbon fiber hydrogen storage * pressure vessels. Explore the sensitivity of pressure vessel cost to design * parameters including hydrogen storage quantity, storage

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program  

SciTech Connect

This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type ‘B’ shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

S. G. Johnson; K. L. Lively

2010-05-01T23:59:59.000Z

242

Critical Experiments Supporting Close Proximity Water Storage of Power Reactor Fuel  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialists’ Workshop on Basic Research Needs for Nuclear Waste Management / Fuel

Gary S. Hoovler; M. Neil Baldwin; Ray L. Eng; Fred G. Welfare

243

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report - Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Printable Version 2005 Annual Progress Report VI. Storage This section of the 2005 Progress Report for the DOE Hydrogen Program focuses on storage. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Storage Sub-program Overview, Sunita Satyapal, Department of Energy (PDF 244 KB) A. Metal Hydrides Catalytically Enhanced Hydrogen Storage Systems, Craig M. Jensen, University of Hawaii (PDF 441 KB) High Density Hydrogen Storage System Demonstration using NaAlH4 Based Complex Compound Hydrides, Donald L. Anton, United Technologies Research Center (PDF 633 KB) Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods, David A. Lesch, UOP LLC (PDF 308 KB)

244

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

245

The performance of a grid-tied microgrid with hydrogen storage and a hydrogen fuel cell stack  

Science Journals Connector (OSTI)

Abstract In a heat-power system, the use of distributed energy generation and storage not only improves system’s efficiency and reliability but also reduce the emission. This paper is focused on the comprehensive performance evaluation of a grid-tied microgrid, which consists of a PV system, a hydrogen fuel cell stack, a PEM electrolyzer, and a hydrogen tank. Electricity and heat are generated in this system, to meet the local electric and heat demands. The surplus electricity can be stored as hydrogen, which is supplied to the fuel cell stack to generate heat and power as needed. The performance of the microgrid is comprehensively evaluated and is compared with another microgrid without a fuel cell stack. As a result, the emission and the service quality in the first system are higher than those in the second one. But they both have the same overall performance.

Linfeng Zhang; Jing Xiang

2014-01-01T23:59:59.000Z

246

Low-temperature rupture behavior of Zircaloy clad pressurized water reactor spent fuel rods under dry storage conditions  

SciTech Connect

Creep rupture studies on five well-characterized Zircaloy clad pressurized water reactor spent fuel rods, which were pressurized to a hoop stress of approximately 145 MPa, were conducted for up to 2101 h at 323/sup 0/C. The conditions were chosen for limited annealing of in-reactor irradiation-hardening. No cladding breaches occurred, although significant hydride agglomeration and reorientation took place in rods that cooled under stress. Observations are interpreted in terms of a conservatively modified Larson-Miller curve to provide a lower bound on permissible maximum dry-storage temperatures, assuming creep rupture as the life-limiting mechanism. If hydride reorientation can be ruled out during dry storage, 305/sup 0/C is a conservative lower bound, based on the creep rupture mechanism, for the maximum storage temperature of rods with irradiation hardened cladding to ensure a 100-year cladding lifetime in an inert atmosphere. An oxidizing atmosphere reduces the lower bound on the maximum permissible storage temperature by approx. 5/sup 0/C. While high-temperature tests based on creep rupture as the limiting mechanism indicate that storage at temperatures between 400/sup 0/C and 440/sup 0/C may be feasible for rods which are annealed, tests to study rod performance in the 305/sup 0/ to 400/sup 0/C temperature range have not been conducted. 37 references, 10 figures, 7 tables.

Einziger, R.E.; Kohli, R.

1983-01-01T23:59:59.000Z

247

Criteria and Conditions for Authorizing Withdrawal, Diversion, and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Criteria and Conditions for Authorizing Withdrawal, Diversion, and Criteria and Conditions for Authorizing Withdrawal, Diversion, and Storage of Water (Iowa) Criteria and Conditions for Authorizing Withdrawal, Diversion, and Storage of Water (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Iowa Program Type Environmental Regulations

248

Nuclear Industry Input to the Development of Concepts for the Consolidated Storage of Used Nuclear Fuel - 13411  

SciTech Connect

EnergySolutions and its team partners, NAC International, Exelon Nuclear Partners, Talisman International, TerranearPMC, Booz Allen Hamilton and Sargent and Lundy, have carried out a study to develop concepts for a Consolidated Storage Facility (CSF) for the USA's stocks of commercial Used Nuclear Fuel (UNF), and the packaging and transport provisions required to move the UNF to the CSF. The UNF is currently stored at all 65 operating nuclear reactor sites in the US, and at 10 shutdown sites. The study was funded by the US Department of Energy and followed the recommendations of the Blue Ribbon Commission on America's Nuclear Future (BRC), one of which was that the US should make prompt efforts to develop one or more consolidated storage facilities for commercial UNF. The study showed that viable schemes can be devised to move all UNF and store it at a CSF, but that a range of schemes is required to accommodate the present widely varying UNF storage arrangements. Although most UNF that is currently stored at operating reactor sites is in water-filled pools, a significant amount is now dry stored in concrete casks. At the shutdown sites, the UNF is dry stored at all but two of the ten sites. Various types of UNF dry storage configurations are used at the operating sites and shutdown sites that include vertical storage casks that are also licensed for transportation, vertical casks that are licensed for storage only, and horizontally orientated storage modules. The shutdown sites have limited to nonexistent UNF handling infrastructure and several no longer have railroad connections, complicating UNF handling and transport off the site. However four methods were identified that will satisfactorily retrieve the UNF canisters within the storage casks and transport them to the CSF. The study showed that all of the issues associated with the transportation and storage of UNF from all sites in the US can be accommodated by adopting a staged approach to the construction of the CSF. Stage 1 requires only a cask storage pad and railroad interface to be constructed, and the CSF can then receive the UNF that is in transportable storage casks. Stage 2 adds a canister handling facility, a storage cask fabrication facility and an expanded storage pad, and enables the receipt of all canistered UNF from both operating and shutdown sites. Stage 3 provides a repackaging facility with a water-filled pool that provides flexibility for a range of repackaging scenarios. This includes receiving and repackaging 'bare' UNF into suitable canisters that can be placed into interim storage at the CSF, and enables UNF that is being received, or already in storage onsite, to be repackaged into canisters that are suitable for disposal at a geologic repository. The study used the 'Total System Model' (TSM) to analyze a range of CSF capacities and operating scenarios with differing parameters covering UNF pickup orders, one or more CSF sites, CSF start dates, CSF receipt rates and geologic repository start dates. The TSM was originally developed to model movement of UNF to the Yucca Mountain repository and was modified for this study to enable the CSF to become the 'gateway' to a future geologic repository. The TSM analysis enabled costs to be estimated for each scenario and showed how these are influenced by each of the parameters. This information will provide essential underpinning for a future Conceptual Design preparation. (authors)

Phillips, Chris; Thomas, Ivan; McNiven, Steven [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States)] [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States); Lanthrum, Gary [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)] [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)

2013-07-01T23:59:59.000Z

249

Instrumented, Shielded Test Canister System for Evaluation of Spent Nuclear Fuel in Dry Storage  

SciTech Connect

This document describes the development of an instrumented, shielded test canister system to store and monitor aluminum-based spent nuclear duel under dry storage conditions.

Sindelar, R.L.

1999-10-21T23:59:59.000Z

250

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network (OSTI)

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

251

Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jon Knudsen (Primary Contact), Don Baldwin Lincoln Composites 5117 N.W. 40 th Street Lincoln, NE 68524 Phone: (402) 470-5039 Email: jknudsen@lincolncomposites.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18062 Project Start Date: July 1, 2008 Project End Date: April 30, 2013 Fiscal Year (FY) 2012 Objectives The objective of this project is to design and develop the most effective bulk hauling and storage solution for hydrogen in terms of: Cost * Safety * Weight * Volumetric Efficiency * Technical Barriers This project addresses the following technical barriers

252

Hydrogen Storage by Novel CBN Heterocycle Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Shih-Yuan Liu University of Oregon Department of Chemistry 1253 University of Oregon Eugene, OR 97403-1253 Phone: (541) 346-5573 Email: lsy@uoregon.edu DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18143 Project Start Date: September 1, 2008 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives The objective of this project is to develop novel boron- nitrogen heterocycles as liquid-phase hydrogen storage materials with storage capacities and thermodynamic properties that have the potential to lead to rechargeable systems capable of meeting DOE targets. We seek to:

253

Novel Molecular Materials for Hydrogen Storage Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Maddury Somayazulu (Primary Contact), Timothy Strobel, Robert Potter, Raja Chellappa, Viktor Struzhkin, Russell J Hemley Geophysical Laboratory Carnegie Institution of Washington 5251 Broad Branch Rd NW Washington, D.C. 20015 Phone: (202) 478-8911 Email: zulu@gl.ciw.edu DOE Program Manager: Dr. P. Thiyagarajan Phone: (301) 903-9706 Email: P.Thiyagarajan@science.doe.gov Objectives Discover, identify and characterize novel hydrogen-rich * compounds that can be used for hydrogen storage or as agents for rehydrogenation of hydrogen storage materials at high pressures. Investigate high pressure routes to rehydrogenating * ammonia borane and polymeric complexes of ammonia borane. Investigate interaction of hydrogen with metallo-organic *

254

Underground Storage Tanks (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

255

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kansas Incentives and Laws Kansas Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Biofuel Blending Equipment Tax Incentives Expired: 01/01/2012 A Storage and Blending Equipment Credit is available for the purchase, construction, or installation of qualified equipment used for storing and blending petroleum-based fuel with biodiesel, ethanol, or other biofuel. The equipment must be installed at a fuel terminal, refinery, or biofuel production facility. The tax credit is equal to 10% of the qualified investment for the first $10,000,000 invested, and 5% of the investment in excess of $10,000,000. The credit may be taken in 10 equal annual

256

Theory of Hydrogen Storage in Complex Hydrides - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

53 53 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Christopher Wolverton Department of Materials Science & Engineering, Northwestern University 2220 Campus Drive, Room 2036 Evanston, IL 60208-3108 Phone: (734) 678-6319 Email: c-wolverton@northwestern.edu Vidvuds Ozolins Department of Materials Science & Engineering, University of California, Los Angeles DOE Program Officer: James Davenport Program Manager Theoretical Condensed Matter Physics Office of Basic Energy Sciences Email: James.Davenport@science.doe.gov Phone: (301) 903-0035 Objectives Using first-principles methods, determine the atomic- level processes that are rate limiting in hydrogen storage

257

Computational studies of hydrogen interactions with storage materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Chris G. Van de Walle (Primary Contact), Lars Ismer, Anindya Roy, and Anderson Janotti Materials Department, University of California Santa Barbara, CA 93106-5050 Phone: (805) 893-7144 Email: vandewalle@mrl.ucsb.edu DOE Program Officer: James Davenport Phone: (301) 903-0035 Email: James.Davenport@science.doe.gov Objectives Building on our accumulated knowledge of hydrogen interactions with semiconductors and insulators we have been conducting computational studies with the goal of developing new insights for hydrogen interactions with hydrogen storage materials. Using state-of-the-art density functional calculations, our research addresses the energetics

258

Record of Decision for a Dry Storage Container System for the Management of Navel Spent Nuclear Fuel, January 7, 1997  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Federal Register / Vol. 62, No. 5 / Wednesday, January 8, 1997 / Notices Department of the Navy Record of Decision for a Dry Storage Container System for the Management of Naval Spent Nuclear Fuel SUMMARY: Pursuant to section 102(2) of the National Environmental Policy Act (NEPA) of 1969; the Council on Environmental Quality regulations implementing NEPA procedures, 40 CFR Parts 1500-1508; and Chief of Naval Operations Environmental and Natural Resources Program Manual, OPNAV Instruction 5090.1B; the Department of the Navy announces its decision to implement the preferred alternative (dual-purpose canisters) identified in the final Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel (EIS) dated November 1996. The Department of

259

PEM fuel cell and energy storage unit configuration for vehicle applications.  

E-Print Network (OSTI)

??In the current “future” automobile market; fuel cells have shown to be an alternative to the classic power sources like internal combustion engines. But in… (more)

Thota, Kalpana.

2007-01-01T23:59:59.000Z

260

Cleaning residual NaK in the fast flux test facility fuel storage cooling system  

SciTech Connect

The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the scrubber through the stack and due to the temperature of the gas, the hydrogen auto ignited when it mixed with the oxygen in the air. There was no damage to equipment, no injuries, and no significant release of hazardous material. Even though the FSF Cooling System is the only system at FFTF that contains residual NaK, there are lessons to be learned from this event that can be applied to future residual sodium removal activities. The lessons learned are: - Before cleaning equipment containing residual alkali metal the volume of alkali metal in the equipment should be minimized to the extent practical. As much as possible, reconfirm the amount and location of the alkali metal immediately prior to cleaning, especially if additional evolutions have been performed or significant time has passed. This is especially true for small diameter pipe (<20.3 centimeters diameter) that is being cleaned in place since gas flow is more likely to move the alkali metal. Potential confirmation methods could include visual inspection (difficult in all-metal systems), nondestructive examination (e.g., ultrasonic measurements) and repeating previous evolutions used to drain the system. Also, expect to find alkali metal in places it would not reasonably be expected to be. - Staff with an intimate knowledge of the plant equipment and the bulk alkali metal draining activities is critical to being able to confirm the amount and locations of the alkali metal residuals and to safely clean the residuals. - Minimize the potential for movement of alkali metal during cleaning or limit the distance and locations into which alkali metal can move. - Recognize that when working with alkali metal reactions, occasional pops and bangs are to be anticipated. - Pre-plan emergency responses to unplanned events to assure responses planned for an operating reactor are appropriate for the deactivation phase.

Burke, T.M.; Church, W.R. [Fluor Hanford, PO Box 1000, Richland, Washington, 99352 (United States); Hodgson, K.M. [Fluor Government Group, PO Box 1050, Richland, Washington, 99352 (United States)

2008-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Installation for a nuclear power station with staggered swimming pools  

SciTech Connect

In an installation for a nuclear power station comprising a ''reactor building'' with a first swimming pool for handling of fuel units and a fuel building with a second swimming pool for the transfer, storage and deactivation of the units, the second swimming pool is located at a lower level than that of the first and is connected to the first by an intermediate auxiliary chamber filled with water and located under the first swimming pool. The auxiliary chamber is connected by a vertical pipeline to the first swimming pool and by a horizontal connecting pipeline to the second swimming pool. Each of the pipelines is provided with a shut-off valve, with interlocking means which prevents the simultaneous opening of the two valves. There is negligible dead space around a conveyor basket for fuel units when it is in the vertical or horizontal pipelines.

Gigou, R.

1982-12-28T23:59:59.000Z

262

HFIR spent fuel management alternatives  

SciTech Connect

The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

1992-10-15T23:59:59.000Z

263

HFIR spent fuel management alternatives  

SciTech Connect

The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems` Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere.

Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

1992-10-15T23:59:59.000Z

264

Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage  

SciTech Connect

This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed.

Peacock, H.B. Jr.

1999-10-21T23:59:59.000Z

265

High-pressure storage of hydrogen fuel: ammonia borane and its related compounds  

Science Journals Connector (OSTI)

As a promising candidate material for hydrogen storage, ammonia borane (NH3BH3) has attracted significant interest in recent years due to its remarkably high hydrogen content. Subjecting this material to high pre...

Yu Lin; Wendy L. Mao

2014-09-01T23:59:59.000Z

266

Webinar: Hydrogen Storage Materials Database Demonstration |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Materials Database Demonstration Webinar: Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen...

267

SYSTEMS MODELING OF AMMONIA BORANE BEAD REACTOR FOR OFF-BOARD REGENERABLE HYDROGEN STORAGE IN PEM FUEL CELL APPLICATIONS  

SciTech Connect

Out of the materials available for chemical hydrogen storage in PEM fuel cell applications, ammonia borane (AB, NH3BH3) has a high hydrogen storage capacity (upto 19.6% by weight for the release of three hydrogen molecules). Therefore, AB was chosen in our chemical hydride simulation studies. A model for the AB bead reactor system was developed to study the system performance and determine the energy, mass and volume requirements for off-board regenerable hydrogen storage. The system includes hot and cold augers, ballast tank and reactor, product tank, H2 burner and a radiator. One dimensional models based on conservation of mass, species and energy were used to predict important state variables such as reactant and product concentrations, temperatures of various components, flow rates, along with pressure in the reactor system. Control signals to various components are governed by a control system which is modeled as an independent subsystem. Various subsystem components in the models were coded as C language S-functions and implemented in Matlab/Simulink environment. Preliminary system simulation results for a start-up case and for a transient drive cycle indicate accurate trends in the reactor system dynamics.

Brooks, Kriston P.; Devarakonda, Maruthi N.; Rassat, Scot D.; King, Dale A.; Herling, Darrell R.

2010-06-01T23:59:59.000Z

268

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

construction, and installation costs. Eligible property includes pumps, storage tanks, and related equipment used exclusively for distributing, dispensing, and storing...

269

Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage  

Science Journals Connector (OSTI)

......a controllable storage facility for cooling...transferred for long-term storage. The storage...adequately handle waste radiation characteristics...type reactors at long-term storage. | Radiotoxicity...of radioactive waste (radwaste) determines......

B. R. Bergelson; A. S. Gerasimov; G. V. Tikhomirov

2005-12-20T23:59:59.000Z

270

Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

271

Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations  

SciTech Connect

The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

KLEM, M.J.

2000-05-11T23:59:59.000Z

272

Energy Storage in Clathrate Hydrogen Material - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Carolyn A. Koh (Primary Contact), Amadeu K. Sum, R. Gary Grim, Matthew R. Walsh, Prasad B. Kerkar Center for Hydrate Research Colorado School of Mines 1600 Illinois Street Golden, CO 80401 Phone: (303) 273-3237 Email: ckoh@mines.edu DOE Program Officer: Bonnie Gersten Phone: (303) 903-0002 Email: Bonnie.Gersten@science.doe.gov Objectives The current project aims to probe key questions surrounding the metastability of hydrates relating to synthesis, structure, and composition. The questions on metastability are crucial in all energy applications of clathrate hydrates including energy storage, energy transportation, and energy recovery. Specifically, this project

273

Lightweight Metal Hydrides for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Ji-Cheng Zhao (Primary Contact), Xuenian Chen, Sheldon G. Shore The Ohio State University, Department of Materials Science and Engineering, 286 Watts Hall, 2041 College Road Columbus, OH 43210 Phone: (614) 292-9462 Email: zhao.199@osu.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC3605GO15062 Project Start Date: January 1, 2005 Project End Date: August 31, 2011 (No-cost extension to December 31, 2012) Fiscal Year (FY) 2012 Objectives Develop a high-capacity lightweight hydride for * reversible vehicular hydrogen storage, capable of meeting or exceeding the 2010 DOE FreedomCAR

274

Application of zircaloy deformation and fracture maps to predicting dry spent fuel storage conditions  

SciTech Connect

The research reported details the development of theoretical deformation and fracture maps for Zircaloy at temperatures between 50 and 850/sup 0/C and for stresses between 5 and 500 MPa. The maps predict behavior which is in agreement with a large number of experimental observations reported in the literature. Transformations in deformation and fracture mechanisms, creep rate magnitudes, and times to fracture are predicted from the maps. Results are reported for grain sizes of 5 ..mu..m. The deformation and fracture maps are altered for irradiation effects based upon high stress-high temperature, short time, postirradiation data. Maximum allowable temperature limits to achieve 40 years dry storage are calculated as a function of time spent in wet pool storage using a decaying cask temperature function and a life fraction rule. 122 references, 15 figures, 4 tables.

Chin, G.A.; Madsen, N.H.; Khan, M.A.

1983-08-01T23:59:59.000Z

275

Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage  

SciTech Connect

It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

1984-01-01T23:59:59.000Z

276

DoD Energy Innovation on Military Installations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

LPG Other Test Bed Focus 4 Smart Secure Installation Energy Management * Microgrids * Energy Storage * Ancillary Service Markets Efficient Integrated Buildings * Design,...

277

A FRAMEWORK TO DEVELOP FLAW ACCEPTANCE CRITERIA FOR STRUCTURAL INTEGRITY ASSESSMENT OF MULTIPURPOSE CANISTERS FOR EXTENDED STORAGE OF USED NUCLEAR FUEL  

SciTech Connect

A multipurpose canister (MPC) made of austenitic stainless steel is loaded with used nuclear fuel assemblies and is part of the transfer cask system to move the fuel from the spent fuel pool to prepare for storage, and is part of the storage cask system for on-site dry storage. This weld-sealed canister is also expected to be part of the transportation package following storage. The canister may be subject to service-induced degradation especially if exposed to aggressive environments during possible very long-term storage period if the permanent repository is yet to be identified and readied. Stress corrosion cracking may be initiated on the canister surface in the welds or in the heat affected zone because the construction of MPC does not require heat treatment for stress relief. An acceptance criteria methodology is being developed for flaw disposition should the crack-like defects be detected by periodic Inservice Inspection. The external loading cases include thermal accident scenarios and cask drop conditions with the contribution from the welding residual stresses. The determination of acceptable flaw size is based on the procedure to evaluate flaw stability provided by American Petroleum Institute (API) 579 Fitness-for-Service (Second Edition). The material mechanical and fracture properties for base and weld metals and the stress analysis results are obtained from the open literature such as NUREG-1864. Subcritical crack growth from stress corrosion cracking (SCC), and its impact on inspection intervals and acceptance criteria, is not addressed.

Lam, P.; Sindelar, R.; Duncan, A.; Adams, T.

2014-04-07T23:59:59.000Z

278

Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks  

E-Print Network (OSTI)

1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff <0.95 or Keff <0.98 or Keff < 1.0 depending on the design specification for the service...

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

279

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Tax Credit An income tax credit is available to eligible taxpayers who construct or purchase and install qualified alternative fueling infrastructure. The...

280

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

deadline. Fueling equipment for natural gas, liquefied petroleum gas (propane), electricity, E85, or diesel fuel blends containing a minimum of 20% biodiesel installed between...

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Hydrogen storage gets new hope  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

282

Underground Gas Storage Reservoirs (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Reservoirs (West Virginia) Gas Storage Reservoirs (West Virginia) Underground Gas Storage Reservoirs (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider West Virginia Department of Commerce Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas

283

Underground Storage Tank Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

284

Standard guide for establishing surveillance test program for boron-based neutron absorbing material systems for use in nuclear spent fuel storage racks  

E-Print Network (OSTI)

1.1 This guide provides guidance for establishing a surveillance test program to monitor the performance of boron-based neutron absorbing material systems (absorbers) necessary to maintain sub-criticality in nuclear spent fuel storage racks in a pool environment. The practices presented in this guide, when implemented, will provide a comprehensive surveillance test program to verify the presence of sufficient neutron absorbing material within the storage racks. The performance of a surveillance test program provides added assurance of the safe and effective operation of a high-density storage facility for nuclear spent fuel. 1.2 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

285

Experimental Investigation of Burnup Credit for Safe Transport, Storage, and Disposal of Spent Nuclear Fuel  

SciTech Connect

This report describes criticality benchmark experiments containing rhodium that were conducted as part of a Department of Energy Nuclear Energy Research Initiative project. Rhodium is an important fission product absorber. A capability to perform critical experiments with low-enriched uranium fuel was established as part of the project. Ten critical experiments, some containing rhodium and others without, were conducted. The experiments were performed in such a way that the effects of the rhodium could be accurately isolated. The use of the experimental results to test neutronics codes is demonstrated by example for two Monte Carlo codes. These comparisons indicate that the codes predict the behavior of the rhodium in the critical systems within the experimental uncertainties. The results from this project, coupled with the results of follow-on experiments that investigate other fission products, can be used to quantify and reduce the conservatism of spent nuclear fuel safety analyses while still providing the necessary level of safety.

Harms, Gary A.; Helmick, Paul H.; Ford, John T.; Walker, Sharon A.; Berry, Donald T.; Pickard, Paul S.

2004-04-01T23:59:59.000Z

286

U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen Storage/Delivery Logistics  

NLE Websites -- All DOE Office Websites (Extended Search)

US Army Corps US Army Corps of Engineers ® Engineer Research and Development Center U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen Facility Locations and Hydrogen Storage/Delivery Logistics Nicholas M. Josefik 217-373-4436 N-josefik@cecer.army.mil www.dodfuelcell.com Franklin H. Holcomb Project Leader, Fuel Cell Team 27 OCT 08 Distributed Generation H 2 Generation & Storage Material Handling H2 Vehicles 2 US Army Corps of Engineers ® Engineer Research and Development Center Presentation Outline * DoD Energy Use * Federal Facilities Goals and Requirements * Federal Vehicles and Fuel Goals * Opportunities & Conclusions 3 US Army Corps of Engineers ® Engineer Research and Development Center Where Does the Energy Go? * Tactical and Combat Vehicles (Jets,

287

Efficient chemical regeneration of LiBH4NH3 spent fuel for hydrogen storage  

Science Journals Connector (OSTI)

Abstract The absence of an efficient method for the regeneration of ammine metal borohydrides (M(BH4)nxNH3, AMBs) from their dehydrogenated products has hindered their potential application as hydrogen storage materials. In this paper, we demonstrate a high-yield chemical regeneration of LiBH4NH3 based on a three step process (digestion (H+ addition), reduction (H? addition), and ammonia complexation) at ambient temperature. Our results demonstrated that Li–B–N polymer was digested by methanol to form LiB(OCH3)4, which can be converted into LiBH4 by using LiAlH4 in the reduction process. The generation of LiBH4NH3 in ammonia complexion step was achieved by exposing the obtained LiBH4 in an ammonia atmosphere.

Yingbin Tan; Xiaowei Chen; Guanglin Xia; Xuebin Yu

2014-01-01T23:59:59.000Z

288

Reactivity during bench-scale combustion of biomass fuels for carbon capture and storage applications  

Science Journals Connector (OSTI)

Abstract Reactivities of four biomass samples were investigated in four combustion atmospheres using non-isothermal thermogravimetric analysis (TGA) under two heating rates. The chosen combustion atmospheres reflect carbon capture and storage (CCS) applications and include O 2 and CO 2 -enrichment. Application of the Coats–Redfern method assessed changes in reactivity. Reactivity varied due to heating rate: the reactivity of char oxidation was lower at higher heating rates while devolatilisation reactions were less affected. In general, and particularly at the higher heating rate, increasing [ O 2 ] increased combustion reactivity. A lesser effect was observed when substituting N 2 for CO 2 as the comburent; in unenriched conditions this tended to reduce char oxidation reactivity while in O 2 -enriched conditions the reactivity marginally increased. Combustion in a typical, dry oxyfuel environment (30% O 2 , 70% CO 2 ) was more reactive than in air in TGA experiments. These biomass results should interest researchers seeking to understand phenomena occurring in larger scale CCS-relevant experiments.

S. Pickard; S.S. Daood; M. Pourkashanian; W. Nimmo

2014-01-01T23:59:59.000Z

289

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuel blends of at least 20% biodiesel fuel or that mix fuel from separate storage tanks and allow the user to select the percentage of renewable fuel. The maximum credit...

290

Thermal Modeling Studies for Active Storage Modules in the Calvert Cliffs ISFSI  

SciTech Connect

Temperature measurements obtained for two storage modules in the Calvert Cliffs Nuclear Power Station’s Independent Spent Fuel Storage Installation (ISFSI) as part of the Used Fuel Disposition Campaign of the Department of Energy (DOE) were used to perform validation and sensitivity studies on detailed computational fluid dynamics (CFD) models of the concrete storage modules, including the dry storage canister within the modules. The storage modules in the Calvert Cliffs Nuclear Power Station’s ISFSI are a site-specific version of the standard NUHOMS® HSM. The two modules inspected each contained a 24P DSC loaded with 24 CE 14x14 spent fuel assemblies. The thermal analysis was performed using the STAR-CCM+ package, and the models developed for the specific ISFSI modules yielded temperature predictions in actual storage conditions for the concrete structure, the DSC and its contents, including preliminary estimates of fuel cladding temperatures for the used nuclear fuel. The results of this work demonstrate that existing CFD modeling tools can be used to obtain reasonable and accurate detailed representations of spent fuel storage systems with realistic decay heat loadings when the model omits specific conservatisms and bounding assumptions normally used in design-basis and safety-basis calculations. This paper presents sensitivity studies on modeling detail (for the storage module and the DSC), boundary conditions, and decay heat load, to evaluate the effect of the modeling approach on predicted temperatures and temperature distributions. Because nearly all degradation mechanisms for materials and structures comprising dry storage and transportation systems are dependent on temperature, accurate characterization of local temperatures and temperature gradients that the various components of these systems will experience over the entire storage period has been identified as a primary requirement for evaluation of very long term storage of used nuclear fuel.

Adkins, Harold E.; Fort, James A.; Suffield, Sarah R.; Cuta, Judith M.; Collins, Brian A.

2013-06-14T23:59:59.000Z

291

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

292

Developer Installed Treatment Plants  

E-Print Network (OSTI)

-installed treatment plants. These treatment plants are more commonly known as package wastewater treatment plants. 1

unknown authors

2008-01-01T23:59:59.000Z

293

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina...

294

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

The vehicle power source includes the engine or motor and associated wiring, fuel lines, engine coolant system, fuel storage containers, and other components. (Reference...

295

Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.  

SciTech Connect

The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the sodium coolant. The cladding temperature requirement is maintained below the creep temperature limit to avoid any damage before core installation. The thermal analysis shows that a helium gas-filled cask can accommodate ABR-1000 fresh minor actinide-bearing fuel with 700-W decay heat. The above analysis results revealed the overall requirement for minor actinide-bearing metal fuel handling. The information is thought to be helpful in the design of the ABR-1000 and future sodium-cooled-reactor fuel-handling system.

Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

2009-03-01T23:59:59.000Z

296

Joint Meeting on Hydrogen Delivery Modeling and Analysis FreedomCAR and Fuels Partnership Hydrogen Delivery, Storage and  

E-Print Network (OSTI)

Kelly and Matt Hooks 8:35 LH2 Pumps, Evaporators, and LH2 Storage: Forecourt and Terminals: Matt Hooks:55 Onboard Storage System Analysis for Chemical Hydrides: Rajesh Ahluwalia (ANL) 2:50 Summary of On-Board Storage Models and Analysis: Steve Lasher (TIAX LLC) 3:45 Break 4:00 Well to Pump and Well Through Tank H2

297

Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing  

SciTech Connect

Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

D.R. Jackson; G.R. Kiebel

1999-08-24T23:59:59.000Z

298

Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports  

SciTech Connect

A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

Not Available

1993-11-01T23:59:59.000Z

299

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

300

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Rhode Island Stormwater Design and Installation Standards Manual (Rhode  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island Stormwater Design and Installation Standards Manual Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Rhode Island Program Type Environmental Regulations

302

Collection and Usage of Reliability Data for Risk Analysis of LNG Storage Tanks  

Science Journals Connector (OSTI)

Because of their inflammable contents LNG storage facilities are considered as installations with...

Dr.Ing. O. Klingmüller

1986-01-01T23:59:59.000Z

303

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

304

Telecommunications Frontier Client Installation  

E-Print Network (OSTI)

Telecommunications Frontier Client Installation 1. Fax the completed form to 979.847.1111. 2 Signature Date Telecommunications Office Use Only Service Due Date: Installation Cost: Billed To: Print Form

305

Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly under  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assembly Shaker Test for Determining Loads on a PWR Assembly Assembly Shaker Test for Determining Loads on a PWR Assembly under Surrogate Normal Conditions of Truck Transport R0.1 Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly under Surrogate Normal Conditions of Truck Transport R0.1 The United States current approach of long-term storage at its nuclear power plants and independent spent fuel storage installation, and deferred transportation of used nuclear fuel (UNF), along with the trend of nuclear power plants using reactor fuel for a longer time, creates questions concerning the ability of this aged, high-burnup fuel to withstand stresses and strains seen during normal conditions of transport from its current location to a future consolidated storage facility or permanent repository. UNFD R&D conducted testing employing surrogate instrumented

306

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

307

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Energy.gov (U.S. Department of Energy (DOE))

 The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

308

Sandia National Laboratories: Molten-Salt Storage System  

NLE Websites -- All DOE Office Websites (Extended Search)

is collaborating with Sandia National Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's...

309

Sandia National Laboratories: Batteries & Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

310

Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kevin Drost (Primary Contact), Goran Jovanovic, Vinod Narayanan, Brian Paul School of Mechanical, Industrial and Manufacturing Engineering Rogers Hall Oregon State University (OSU) Corvallis, OR 97331 Phone: (541) 713-1344 Email: Kevin.Drost@oregonstate.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19005 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Use microchannel processing techniques to: Demonstrate reduction in size and weight of hydrogen * storage systems. Improve charge/and discharge rates of hydrogen storage *

311

Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report P. Pfeifer (Primary Contact), C. Wexler, P. Yu, G. Suppes, F. Hawthorne, S. Jalisatgi, M. Lee, D. Robertson University of Missouri 223 Physics Building Columbia, MO 65211 Phone: (573) 882-2335 Email: pfeiferp@missouri.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FG36-08GO18142 Subcontractors: Midwest Research Institute, Kansas City, MO Project Start Date: September 1, 2008 Project End Date: November 30, 2013 Fiscal Year (FY) 2012 Objectives Fabricate high-surface-area, multiply surface- * functionalized carbon ("substituted materials") for reversible hydrogen storage with superior storage

312

Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Bart van Hassel (Primary Contact), Jose Miguel Pasini, Andi Limarga, John Holowczak, Igor Fedchenia, John Khalil, Reddy Karra, Ron Brown, Randy McGee United Technologies Research Center (UTRC) 411 Silver Lane East Hartford, CT 06108 Phone: (860) 610-7701 Email: vanhasba@utrc.utc.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19006 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Collaborate closely with the Hydrogen Storage * Engineering Center of Excellence (HSECoE) partners to advance materials-based hydrogen storage system

313

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

314

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy storage curriculum including vehicle configurations, advanced combustion, fuel cells, power electronics, controls, alternative fuels and vehicle fuel efficiency to prepare...

315

Synthetic Design of New Metal-Organic Framework Materials for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Pingyun Feng (Primary Contact), Qipu Lin, Xiang Zhao Department of Chemistry University of California Riverside, CA 92521 Phone: (951) 827-2042 Email: pingyun.feng@ucr.edu DOE Program Officer: Dr. Michael Sennett Phone: (301) 903-6051 Email: Michael.Sennett@science.doe.gov Objectives Design and * synthesize new metal-organic framework materials using lightweight chemical elements to help improve gravimetric hydrogen storage capacity. Develop new synthetic strategies to generate novel * active binding sites on metal ions and ligands to enhance solid-gas interactions for increased uptake near ambient conditions.

316

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

317

Rules and Regulations for Underground Storage Facilities Used for Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rules and Regulations for Underground Storage Facilities Used for Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to underground storage facilities for petroleum and

318

Incorporating stakeholders' perspectives into models of new technology diffusion: The case of fuel-cell vehicles  

E-Print Network (OSTI)

include on-board hydrogen storage and fuel cell durability.drive Hydrogen production Hydrogen storage Hydrogen fuelingnecessary are on-board hydrogen storage and fuel cells. The

Collantes, Gustavo O

2007-01-01T23:59:59.000Z

319

Alternative Fuels Data Center: Blender Pump Dispensers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

dispensers? Blender pumps are fuel dispensers that draw fuel from two separate storage tanks and can dispense preprogrammed blends of those two fuels. Many conventional stations...

320

Fuel Cell Experience & Opportunities: U.S. Postal Service  

Energy.gov (U.S. Department of Energy (DOE))

Overview of fuel cell experience and opportunities in installation, vechicle components, and vehicle programs

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Installation and Acceptance Stage  

Directives, Delegations, and Requirements

This chapter addresses activities required to install the software, data bases, or data that comprise the software product onto the hardware platform at sites of operation.

1997-05-21T23:59:59.000Z

322

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Funding The Ethanol Infrastructure Incentive Program provides funding to offset the cost of installing ethanol blender pumps at retail fueling stations throughout the state....

323

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

owners to install electric vehicle supply equipment (EVSE) as well as liquefied petroleum gas (propane), compressed natural gas, and liquefied natural gas fueling...

324

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

improve fuel efficiency. Eligible projects include installation of idle reduction or aerodynamic technology and diesel vehicle replacement. Funding is not available for this...

325

Fuel Cell Financing Options  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Financing Fuel Cell Installations, August 30, 2011.

326

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

The Alternative Fuels Technician Certification Act (Act) regulates the training, testing, and certification of technicians who install, modify, repair, or renovate equipment...

327

Estimating SCR installation costs  

SciTech Connect

The EUCG surveyed 72 separate US installations of selective catalytic reduction (SCR) systems at coal-fired units totalling 41 GW of capacity to identify the systems' major cost drivers. The results, summarized in this article, provide excellent first-order estimates and guidance for utilities considering installing the downstream emissions-control technology. 4 figs., 1 tab.

Marano, M.; Sharp, G. [American Electric Power (United States)

2006-01-15T23:59:59.000Z

328

Solar installer's training program  

SciTech Connect

Instructions are given for the installation of solar domestic water heating systems, space heating systems, and pool heating systems. The basic procedures for installing any solar heating system are presented with reference to solar domestic hot water systems, and the space and pool systems are taught on that basis. (LEW)

Schmidt, W.J.; Philbin, J.

1981-01-01T23:59:59.000Z

329

Technical Assessment: Cryo-Compressed Hydrogen Storage  

E-Print Network (OSTI)

Technical Assessment: Cryo-Compressed Hydrogen Storage for Vehicular Applications October 30, 2006 .....................................................................................................................................................................8 APPENDIX A: Review of Cryo-Compressed Hydrogen Storage Systems ......................................................................................18 APPENDIX C: Presentation to the FreedomCAR & Fuel Hydrogen Storage Technical Team

330

LWR spent fuel reduction by the removal of U and the compact storage of Pu with FP for long-term nuclear sustainability  

SciTech Connect

Fast breeder reactors (FBR) nuclear fuel cycle is needed for long-term nuclear sustainability while preventing global warming and maximum utilizing the limited uranium (U) resources. The 'Framework for Nuclear Energy Policy' by the Japanese government on October 2005 stated that commercial FBR deployment will start around 2050 under its suitable conditions by the successive replacement of light water reactors (LWR) to FBR. Even after Fukushima Daiichi Nuclear Power Plant accident which made Japanese tendency slow down the nuclear power generation activities, Japan should have various options for energy resources including nuclear, and also consider the delay of FBR deployment and increase of LWR spent fuel (LWR-SF) storage amounts. As plutonium (Pu) for FBR deployment will be supplied from LWR-SF reprocessing and Japan will not possess surplus Pu, the authors have developed the flexible fuel cycle initiative (FFCI) for the transition from LWR to FBR. The FFCI system is based on the possibility to stored recycled materials (U, Pu)temporarily for a suitable period according to the FBR deployment rate to control the Pu demand/supply balance. This FFCI system is also effective after the Fukushima accident for the reduction of LWR-SF and future LWR-to-FBR transition. (authors)

Fukasawa, T.; Hoshino, K. [Hitachi-GE Nuclear Energy, Ltd, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan); Takano, M. [Japan Atomic Energy Agency, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan); Sato, S. [Hokkaido University, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan); Shimazu, Y. [Fukui University, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan)

2013-07-01T23:59:59.000Z

331

NREL: Continuum Magazine - Hydrogen: A Promising Fuel and Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen: A Promising Fuel and Energy Storage Solution Issue 4 Print Version Share this resource Hydrogen: A Promising Fuel and Energy Storage Solution Electrolysis-generated...

332

Department of Energy Awards Nearly $7 Million to Advance Fuel...  

Energy Savers (EERE)

Million to Advance Fuel Cell and Hydrogen Storage Systems Research Department of Energy Awards Nearly 7 Million to Advance Fuel Cell and Hydrogen Storage Systems Research August...

333

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

334

Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion  

E-Print Network (OSTI)

include on-board hydrogen storage and fuel cell durability.drive Hydrogen production Hydrogen storage Hydrogen fuelingnecessary are on-board hydrogen storage and fuel cells. The

Collantes, Gustavo O

2005-01-01T23:59:59.000Z

335

FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS’ PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION  

E-Print Network (OSTI)

include on-board hydrogen storage and fuel cell durability.drive Hydrogen production Hydrogen storage Hydrogen fuelingnecessary are on-board hydrogen storage and fuel cells. The

Collantes, Gustavo

2005-01-01T23:59:59.000Z

336

Electric Storage in California's Commercial Buildings  

E-Print Network (OSTI)

Distributed photovoltaic generation and energy storageenergy management in buildings and microgrids with e.g. installed Photovoltaic (energy storage, TS – thermal storage, FB – Flow Battery, AC – Absorption Chiller, ST – solar thermal system, PV – photovoltaic.

Stadler, Michael

2014-01-01T23:59:59.000Z

337

Hydrogen storage enhanced in Li-doped carbon replica of zeolites: A possible route to achieve fuel cell demand  

Science Journals Connector (OSTI)

We first report the atomistic grand canonical Monte Carlo simulations of the synthesis of two realistic ordered microporous carbon replica in two siliceous forms of faujasite zeolite (cubic Y-FAU and hexagonal EMT). Atomistic simulations of hydrogen adsorption isotherms in these two carbon structures and their Li-doped composites were carried out to determine their storage capacities at 77 and 298 K. We found that these new forms of carbon solids and their Li-doped versions show very attractive hydrogen storage capacities at 77 and 298 K respectively. However for a filling pressure of 300 bars and at room temperature bare carbons do not show advantageous performances compared to a classical gas cylinder despite of their crystalline micropore network. In comparison Li-doped nanostructures provide reversible gravimetric and volumetric hydrogen storage capacities twice larger ( 3.75 ? wt ? % and 33.7 ? kg / m 3 ). The extreme lattice stiffness of their skeleton will prevent them from collapsing under large external applied pressure an interesting skill compared to bundle of carbon nanotubes and metal organic frameworks (MOFs). These new ordered composites are thus very promising materials for hydrogen storage issues by contrast with MOFs.

Thomas Roussel; Christophe Bichara; Keith E. Gubbins; Roland J.-M. Pellenq

2009-01-01T23:59:59.000Z

338

US Spent (Used) Fuel Status, Management and Likely Directions- 12522  

SciTech Connect

As of 2010, the US has accumulated 65,200 MTU (42,300 MTU of PWR's; 23,000 MTU of BWR's) of spent (irradiated or used) fuel from 104 operating commercial nuclear power plants situated at 65 sites in 31 States and from previously shutdown commercial nuclear power plants. Further, the Department of Energy (DOE) has responsibility for an additional 2458 MTU of DOE-owned defense and non defense spent fuel from naval nuclear power reactors, various non-commercial test reactors and reactor demonstrations. The US has no centralized large spent fuel storage facility for either commercial spent fuel or DOE-owned spent fuel. The 65,200 MTU of US spent fuel is being safely stored by US utilities at numerous reactor sites in (wet) pools or (dry) metal or concrete casks. As of November 2010, the US had 63 'independent spent fuel storage installations' (or ISFSI's) licensed by the US Nuclear Regulatory Commission located at 57 sites in 33 states. Over 1400 casks loaded with spent fuel for dry storage are at these licensed ISFSI's; 47 sites are located at commercial reactor sites and 10 are located 'away' from a reactor (AFR's) site. DOE's small fraction of a 2458 MTU spent fuel inventory, which is not commercial spent fuel, is with the exception of 2 MTU, being stored at 4 sites in 4 States. The decades old US policy of a 'once through' fuel cycle with no recycle of spent fuel was set into a state of 'mass confusion or disruption' when the new US President Obama's administration started in early 2010 stopping the only US geologic disposal repository at the Yucca Mountain site in the State of Nevada from being developed and licensed. The practical result is that US nuclear power plant operators will have to continue to be responsible for managing and storing their own spent fuel for an indefinite period of time at many different sites in order to continue to generate electricity because there is no current US government plan, schedule or policy for taking possession of accumulated spent fuel from the utilities. There are technical solutions for continuing the safe storage of spent fuel for 100 years or more and these solutions will be implemented by the US utilities that need to keep their nuclear power plants operating while the unknown political events are played out to establish future US policy decisions that can remain in place long enough regarding accumulated spent fuel inventories to implement any new US spent fuel centralized storage or disposition policy by the US government. (author)

Jardine, Leslie J. [L. J. Jardine Services, Consultant, Dublin CA, 94568 (United States)

2012-07-01T23:59:59.000Z

339

Fuel Cell Technologies Office: Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis...

340

Report to Congress on Plan for Interim Storage of Spent Nuclear...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from...

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

HVAC Installed Performance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HVAC Installed Performance HVAC Installed Performance ESI, Tim Hanes Context * The building envelope has historically been the focus in residential homes. * The largest consumer of energy in residential homes is typically the HVAC system. * Testing the performance of the HVAC system has not been pursued to its full potential. Technical Approach * Currently very little performance testing is being done to the HVAC system. * The only way to know if a HVAC system is operating correctly is to measure the Btu/h. * This should be done at the equipment and at the the system. Recommended Guidance * Training of HVAC technicians, installers, and salespeople is a must. * If only the technician is trained than implementing the change will not happen. * Public awareness of proper installation and its

342

HVAC Installed Performance  

Energy.gov (U.S. Department of Energy (DOE))

This presentation was given at the Summer 2012 DOE Building America meeting on July 25, 2012, and addressed the question HVAC proper installation energy savings: over-promising or under-delivering?"

343

Alternative Fuels Data Center: State Agency Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Electric State Agency Electric Vehicle Supply Equipment (EVSE) Installation to someone by E-mail Share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Facebook Tweet about Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Twitter Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Google Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Delicious Rank Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Digg Find More places to share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on

344

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on AddThis.com...

345

Alternative Fuels Data Center: State Agency Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Electric State Agency Electric Vehicle Supply Equipment (EVSE) Installation to someone by E-mail Share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Facebook Tweet about Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Twitter Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Google Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Delicious Rank Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Digg Find More places to share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on

346

Fuel Cell Technologies Office Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Hydrogen Storage Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage Hydrogen Storage technical plan section of...

347

Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Craig Jensen 1 (Primary Contact), Daniel Brayton 1 , and Scott Jorgensen 2 1 Hawaii Hydrogen Carriers, LLC 531 Cooke Street Honolulu, HI 96813 Phone: (808) 339-1333 Email: hhcllc@hotmail.com 2 General Motors Technical Center DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005020 Project Start Date: July 1, 2011 Project End Date: June 30, 2013 *Congressionally directed project Fiscal Year (FY) 2012 Objectives The objective of this project is to optimize a hydrogen storage media based on a liquid organic carrier (LOC) for hydrogen and design a commercially viable hydrogen

348

From Fundamental Understanding to Predicting New Nanomaterials for High-Capacity Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Taner Yildirim 1,2 1 Department of Materials Science and Eng. University of Pennsylvania Philadelphia, PA 19104 2 National Institute of Standards and Technology, NCNR Gaithersburg, MD 20899 Phone: (301) 975-6228 Email: taner@seas.upenn.edu DOE Program Manager: Dr. Thiyaga P. Thiyagarajan Phone: (301) 903-9706 Email: P.Thiyagarajan@science.doe.gov Objectives Use neutron scattering methods along with first- * principles computation to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. Study the effect of scaffolding, nanosizing, doping of *

349

Design and Synthesis of Chemically and Electronically Tunable Nanoporous Organic Polymers for Use in Hydrogen Storage Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hani M. El-Kaderi (Primary Contact), Mohammad G. Rabbani, Thomas E. Reich, Karl T. Jackson, Refaie M. Kassab Virginia Commonwealth University Department of Chemistry 1001 West Main St Richmond, VA 23284-2006 Phone: (804) 828-7505 Email: helkaderi@vcu.edu DOE Program Officer: Michael Sennett Phone: (301) 903-6051 Email: Michael.Sennett@science.doe.go Objectives Design and synthesis of new classes of low density * nanoporous organic polymers that are linked by strong covalent bonds and composed of chemically and electronically tunable building blocks. Use gas sorption experiments to investigate porosity and * determine hydrogen storage at variable temperature and

350

Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Joseph W. Reiter (Primary Contact), Alexander Raymond, Channing C. Ahn (Caltech), Bret Naylor, Otto Polanco, Rajeshuni Ramesham, and Erik Lopez Jet Propulsion Laboratory (JPL) 4800 Oak Grove Drive, Mail Stop 79-24 Pasadena, CA 91109-8099 Phone: (818) 354-4224; Email: Joseph.W.Reiter@jpl.nasa.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractor: California Institute of Technology, Pasadena, CA Project Start Date: February, 2009 Project End Date: September, 2014 Fiscal Year (FY) 2012 Objectives Identify state-of-art concepts and designs for * cryosorbent-based hydrogen storage systems

351

Carbon Capture and Storage  

Science Journals Connector (OSTI)

The main object of the carbon capture and storage (CCS) technologies is the...2...emissions produced in the combustion of fossil fuels such as coal, oil, or natural gas. CCS involves first the capture of the emit...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

352

Joint Meeting on Hydrogen Delivery Modeling and Analysis FreedomCAR and Fuels Partnership Hydrogen Delivery, Storage and  

E-Print Network (OSTI)

. ­ The current capital costs for the hydrogen pipelines in the model are based on 1.1X the price of steel natural that the refueling station default compressor capital costs are based on a 300 psi inlet pressure.) 2. CurrentJoint Meeting on Hydrogen Delivery Modeling and Analysis FreedomCAR and Fuels Partnership Hydrogen

353

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

here. The interest in hydrogen and fuel cell technologies atof new and improved hydrogen and fuel cell technologies.policy drivers for hydrogen and fuel cells include the

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

354

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

D ISSERTATION Solar Energy Storage through the Homogeneousthe development of solar energy storage via liquid fuels isis an attractive solar energy storage solution. The great

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

355

E-Print Network 3.0 - abnormal storage material Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage 3%; Liquid and Gas Storage 4%) Current... state storage materials: ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and...

356

Hydrogen Storage Options: Technologies and Comparisons for Light-Duty Vehicle Applications  

E-Print Network (OSTI)

Stetson, N. , Solid Hydrogen Storage Systems for PortableA Review of On-Board Hydrogen Storage Alternatives for FuelA. , Materials for Hydrogen Storage, Materials Today,

Burke, Andrew; Gardnier, Monterey

2005-01-01T23:59:59.000Z

357

Fluid Phase Chemical Hydrogen Storage Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Benjamin L. Davis (Primary Contact), Tessui Nakagawa, Biswajit Paik, and Troy A. Semelsberger Materials Physics and Applications, Materials Chemistry Los Alamos National Laboratory (LANL), MS J514 P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 500-2463 Email: bldavis@lanl.gov DOE Manager Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@hq.doe.gov Partner Tom Baker, University of Ottawa, Ontario, Canada Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop fluid, pumpable ammonia-borane (AB)-based fuels with high-H 2 content. Technical Barriers

358

Radioactive Waste Management: Study of Spent Fuel Dissolution Rates in Geological Storage Using Dosimetry Modeling and Experimental Verification  

SciTech Connect

This research will provide improved predictions into the mechanisms and effects of radiolysis on spent nuclear fuel dissolution in a geological respository through accurate dosimetry modeling of the dose to water, mechanistic chemistry modeling of the resulting radiolytic reactions and confirmatory experimental measurements. This work will combine effort by the Nuclear Science and Engineering Institute (NSEI) and the Missouri University Research Reactor (MURR) at the University of Missouri-Columbia, and the expertise and facilities at the Pacific Northwest National Laboratory (PNNL).

Brady Hansen; William Miller

2011-10-28T23:59:59.000Z

359

E-Print Network 3.0 - air conditioning installations Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Las Vegas, Nevada, to develop, design, procure, install, and operate an on-site hydrogen generation Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel...

360

Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report  

E-Print Network (OSTI)

as a fuel in solid oxide fuel cells,” J. Power Sources 118:in Electricity in Solid Oxide Fuel Cells,” Proceedings ofthe 6th European Solid Oxide Fuel Cell Forum, Lucerne,

Lipman, Tim; Shah, Nihar

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The utility of energy storage to improve the economics of wind–diesel power plants in Canada  

Science Journals Connector (OSTI)

Wind energy systems have been considered for Canada's remote communities in order to reduce their costs and dependence on diesel fuel to generate electricity. Given the high capital costs, low-penetration wind–diesel systems have been typically found not to be economic. High-penetration wind–diesel systems have the benefit of increased economies of scale, and displacing significant amounts of diesel fuel, but have the disadvantage of not being able to capture all of the electricity that is generated when the wind turbines operate at rated capacity. Two representative models of typical remote Canadian communities were created using HOMER, an NREL micro-power simulator to model how a generic energy storage system could help improve the economics of a high-penetration wind–diesel system. Key variables that affect the optimum system are average annual wind speed, cost of diesel fuel, installed cost of storage and a storage systems overall efficiency. At an avoided cost of diesel fuel of 0.30 $Cdn/kWh and current installed costs, wind generators are suitable in remote Canadian communities only when an average annual wind speed of at least 6.0 m/s is present. Wind energy storage systems become viable to consider when average annual wind speeds approach 7.0 m/s, if the installed cost of the storage system is less than 1000 $Cdn/kW and it is capable of achieving at least a 75% overall energy conversion efficiency. In such cases, energy storage system can enable an additional 50% of electricity from wind turbines to be delivered.

Timothy M. Weis; Adrian Ilinca

2008-01-01T23:59:59.000Z

362

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2012 (EIA)

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

363

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Safety, enforces rules concerning the placement of underground and aboveground storage tanks that contain alternative and renewable fuel. For the purpose of these regulations, an...

364

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biogas Production Sales Tax Exemption Biogas production systems, including sales and storage systems, that create a transportation fuel or renewable natural gas, are exempt from...

365

Interim report spent nuclear fuel retrieval system fuel handling development testing  

SciTech Connect

Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

1997-06-01T23:59:59.000Z

366

Bonfire Tests of High Pressure Hydrogen Storage Tanks | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bonfire Tests of High Pressure Hydrogen Storage Tanks Bonfire Tests of High Pressure Hydrogen Storage Tanks These slides were presented at the International Hydrogen Fuel and...

367

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

368

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

369

Hydrogen Storage Materials Requirements to Meet the 2017 On Board...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal H 2 Storage Fuel Cell Vehicle Wheels Management BoP Engineered Heat Transfer BoP What is Needed Materials Designs Component of the Hydrogen Storage...

370

US DRIVE Hydrogen Storage Technical Team Roadmap | Department...  

Energy Savers (EERE)

& Publications A Brief Overview of Hydrogen Storage Issues and Needs DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems - Projected Performance...

371

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuel into a motor vehicle. Fuel purchasers must obtain a propane user license before propane is delivered into their storage tanks. (Reference South Dakota Statutes 10-47B-167...

372

Ammonia-Borane: a Promising Material for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Larry G. Sneddon (Primary Contact), Martin Bluhm, Dan Himmelberger, William Ewing, Laif Alden, Emily Berkeley, Chang Won Yoon and Allegra Marchione University of Pennsylvania Department of Chemistry 231 S. 34 th Street Philadelphia, PA 19104-6323 Phone: (215) 898-8632 Email: lsneddon@sas.upenn.edu DOE Program Officer: Larry Rahn Phone: (301) 903-2508 Email: Larry.Rahn@science.doe.gov Subcontractors: R. Tom Baker, Richard Burchell, Felix Gaertner, Hassan Kalviri, Morgane Le Fur, Larena Menant, Giovanni Rachiero Matthew Rankin, Johannes Thomas,

373

Hydrogen Storage in Metal-Organic Frameworks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jeffrey Long (Primary Contact), Martin Head-Gordon Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 95720 Phone: (510) 642-0860 Email: jrlong@berkeley.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractors: * National Institute of Standards and Technology, Gaithersburg, MD (Craig Brown) * General Motors Corporation, Warren, MI (Anne Dailly) Project Start Date: April 1, 2012 Project End Date: March 31, 2015 Fiscal Year (FY) 2012 Objectives

374

Alternative Fuels Data Center: Status Update: Ethanol Blender...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blender pumps are fuel dispensers that draw fuel from two separate bulk storage tanks and can dispense preprogrammed blends of those fuels into vehicles. Many stations...

375

Impact of the Fuel Molecular Structure on the Oxidation Process...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oxidation Process of Real Diesel fuels According to Storage Conditions and Biodiesel Content Impact of the Fuel Molecular Structure on the Oxidation Process of Real Diesel fuels...

376

Hydrogen Storage Materials Database Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

| Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov | Fuel Cell Technologies Program Source: US DOE 4/25/2011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech Team Lead Fuel Cell Technologies Program U.S. Department of Energy 12/13/2011 Hydrogen Storage Materials Database Marni Lenahan December 13, 2011 Database Background * The Hydrogen Storage Materials Database was built to retain information from DOE Hydrogen Storage funded research and make these data more accessible. * Data includes properties of hydrogen storage materials investigated such as synthesis conditions, sorption and release conditions, capacities, thermodynamics, etc. http://hydrogenmaterialssearch.govtools.us Current Status * Data continues to be collected from DOE funded research.

377

Final LDRD report : nanoscale mechanisms in advanced aging of materials during storage of spent %22high burnup%22 nuclear fuel.  

SciTech Connect

We present the results of a three-year LDRD project focused on understanding microstructural evolution and related property changes in Zr-based nuclear cladding materials towards the development of high fidelity predictive simulations for long term dry storage. Experiments and modeling efforts have focused on the effects of hydride formation and accumulation of irradiation defects. Key results include: determination of the influence of composition and defect structures on hydride formation; measurement of the electrochemical property differences between hydride and parent material for understanding and predicting corrosion resistance; in situ environmental transmission electron microscope observation of hydride formation; development of a predictive simulation for mechanical property changes as a function of irradiation dose; novel test method development for microtensile testing of ionirradiated material to simulate the effect of neutron irradiation on mechanical properties; and successful demonstration of an Idaho National Labs-based sample preparation and shipping method for subsequent Sandia-based analysis of post-reactor cladding.

Clark, Blythe G.; Rajasekhara, Shreyas; Enos, David George; Dingreville, Remi Philippe Michel; Doyle, Barney Lee; Hattar, Khalid Mikhiel; Weiner, Ruth F.

2013-09-01T23:59:59.000Z

378

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

379

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

380

Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Highway Electric Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Highway

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Lifecycle Verification of Polymeric Storage Tank Liners - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Barton Smith (Primary Contact) and Lawrence M. Anovitz Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831 Phone: (865) 574-2196 Email: smithdb@ornl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Start Date: June 2008 Projected End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Continue temperature cycling and permeation * measurements on tank liner polymers, and use permeation data to assess ability of tank liners to retain a steady-state hydrogen discharge rate that does not exceed 110% of the 75 normal cubic centimeters per minute (Ncc)/min permeation requirement of SAE International

382

HGMS: Glasses and Nanocomposites for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kris Lipinska (Primary Contact), Oliver Hemmers Harry Reid Center, University of Nevada Las Vegas (UNLV) 4505 Maryland Parkway, Box 454009 Las Vegas, NV 89154-4009 Phones: (702) 895-4450, (702) 895-3742 Emails: kristina.lipinska@unlv.edu, oliver.hemmers@unlv.edu DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-EE0000269 Project Start Date: November 25, 2009 Project End Date: October 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Fabricate glasses and nanocrystalline composites: * improve materials composition by introducing functional dopants Demonstrate controlled nucleation of nanocrystals

383

Hydrogen Storage Engineering Center of Excellence - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Donald L. Anton (Primary Contact), Theodore Motyka, Bruce Hardy and David Tamburello Savannah River National Laboratory (SRNL) Bldg. 999-2W Aiken, SC 29808 Phone: (803) 507-8551 Email: DONALD.ANTON@SRNL.DOE.GOV DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Technical Advisor Robert Bowman Phone: 818-354-7941 Email: rcbjr1967@gmail.com Subcontractors: * Pacific Northwest National Laboratory (PNNL) * United Technologies Research Center (UTRC) * General Motors Corp (GM) * Ford Motor Corp. (FMC)

384

Development of Improved Composite Pressure Vessels for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Norman Newhouse (Primary Contact), Jon Knudsen, John Makinson Lincoln Composites, Inc. 5117 NW 40 th Street Lincoln, NE 68524 Phone: (402) 470-5035 Email: nnewhouse@lincolncomposites.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19004 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Improve the performance characteristics, including * weight, volumetric efficiency, and cost, of composite pressure vessels used to contain hydrogen in adsorbants. Evaluate design, materials, or manufacturing process *

385

Final Technical Report: Residential Fuel Cell Demonstration by the Delaware County Electric Cooperative, Inc.  

SciTech Connect

This demonstration project contributes to the knowledge base in the area of fuel cells in stationary applications, propane fuel cells, edge-of-grid applications for fuel cells, and energy storage in combination with fuel cells. The project demonstrated that it is technically feasible to meet the whole-house electrical energy needs of a typical upstate New York residence with a 5-kW fuel cell in combination with in-home energy storage without any major modifications to the residence or modifications to the consumption patterns of the residents of the home. The use of a fuel cell at constant output power through a 120-Volt inverter leads to system performance issues including: • relatively poor power quality as quantified by the IEEE-defined short term flicker parameter • relatively low overall system efficiency Each of these issues is discussed in detail in the text of this report. The fuel cell performed well over the 1-year demonstration period in terms of availability and efficiency of conversion from chemical energy (propane) to electrical energy at the fuel cell output terminals. Another strength of fuel cell performance in the demonstration was the low requirements for maintenance and repair on the fuel cell. The project uncovered a new and important installation consideration for propane fuel cells. Alcohol added to new propane storage tanks is preferentially absorbed on the surface of some fuel cell reformer desulfurization filters. The experience on this project indicates that special attention must be paid to the volume and composition of propane tank additives. Size, composition, and replacement schedules for the de-sulfurization filter bed should be adjusted to account for propane tank additives to avoid sulfur poisoning of fuel cell stacks. Despite good overall technical performance of the fuel cell and the whole energy system, the demonstration showed that such a system is not economically feasible as compared to other commercially available technologies such as propane reciprocating engine generators.

Mark Hilson Schneider

2007-06-06T23:59:59.000Z

386

Hydrogen Storage atHydrogen Storage at Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory  

E-Print Network (OSTI)

Hydrogen Storage atHydrogen Storage at Lawrence Berkeley National LaboratoryLawrence Berkeley National Laboratory Presentation at thePresentation at the Hydrogen Storage Grand ChallengeHydrogen Storage expertise to hydrogen storage, fuel cells, and system integration issues ­Novel membranes and other

387

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

388

Market Transformation: Fuel Cell Early Adoption (Presentation...  

Office of Environmental Management (EM)

Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes, and Standards Education Market...

389

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

390

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

391

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

PEM Fuel Cell Additional Equipment Installation CostsFuel Cell_PAFC Fuel Cell_PEM Power (units/ yr) Total Cost Ccosts of generating power with stationary and motor vehicle PEM fuel cell

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

392

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network (OSTI)

PEM Fuel Cell Additional Equipment Installation CostsFuel Cell_PAFC Fuel Cell_PEM Power (units/ yr) Total Cost Ccosts of generating power with stationary and motor vehicle PEM fuel cell

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

393

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect

During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.

K. Payette; D. Tillman

2001-10-01T23:59:59.000Z

394

Complex Hydrides for Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrides for Hydrides for Hydrogen Storage George Thomas, Consultant Sandia National Laboratories G. J. Thomas Efficient onboard hydrogen storage is a critical enabling technology for the use of hydrogen in vehicles * The low volumetric density of gaseous fuels requires a storage method which densifies the fuel. - This is particularly true for hydrogen because of its lower energy density relative to hydrocarbon fuels. * Storage methods result in additional weight and volume above that of the fuel. How do we achieve adequate stored energy in an efficient, safe and cost-effective system? G. J. Thomas However, the storage media must meet certain requirements: - reversible hydrogen uptake/release - lightweight - low cost - cyclic stability - rapid kinetic properties - equilibrium properties (P,T) consistent

395

Telecommunications Keyless Entry Hardware Install  

E-Print Network (OSTI)

Telecommunications Keyless Entry Hardware Install 1. Fax completed form to 979.847.1111. 2. If you Telecommunications Office Use Only Service Due Date: Installation Cost: Billed To: Print Form #12;

396

NREL: Hydrogen and Fuel Cells Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery Hydrogen storage Manufacturing Market transformation...

397

A Brief Overview of Hydrogen Storage Issues and Needs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brief Overview of Hydrogen Storage Issues and Needs George Thomas and Sunita Satyapal Joint Tech Team Meeting Delivery, Storage and Fuels Pathway Tech Teams May 8-9, 2007 Storage...

398

Fuel transfer system  

DOE Patents (OSTI)

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

Townsend, H.E.; Barbanti, G.

1994-03-01T23:59:59.000Z

399

Fuel transfer system  

DOE Patents (OSTI)

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

1994-01-01T23:59:59.000Z

400

Installation Guide 1. PREFACE .................................................................................................................................................... 3  

E-Print Network (OSTI)

AoC Installation Guide #12;Contents 1. PREFACE....................................................................................................................................................... 4 3.2 AOC............................................................................................................................................................. 4 3.3 AOC ADMIN

Natvig, Lasse

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Planned Community and Condominium Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Planned Community and Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations to someone by E-mail Share Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Facebook Tweet about Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Twitter Bookmark Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Google Bookmark Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Delicious Rank Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Digg

402

E-Print Network 3.0 - autothermal jp5 fuel Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Fuel Processing Valri...

403

E-Print Network 3.0 - alkaline electrolyte fuel cells Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 FUEL CELL TECHNOLOGIES...

404

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

405

Limestone and Ash Storage Silos and Lime Preparation Equipment, Part  

NLE Websites -- All DOE Office Websites (Extended Search)

Limestone and Ash Storage Silos and Lime Preparation Equipment, Part Limestone and Ash Storage Silos and Lime Preparation Equipment, Part of the System to Inject Limestone Sorbent for SO, Control. Nucla, CO Nucla...continued Before being repowered, the plant consisted of three 12 MWe coal stoker- fired units built in 1959, which were taken out of service in 1984 due to low efficiency and high fuel cost. Antici- pating a need for additional power in the early 1990s. and after review of many power generation alternatives, CUEA started constmction of the re- powered Nucla CFB plant in Novem- ber 1984 and completed the project in May 1987. The original boilers were replaced with a new Fympower Corp. CFB bailer, a new high pressure 74 MWe steam turbine generator was installed, the three original 12 MWe steam turbines were

406

Optimal Control of Harvesting Ice Thermal Storage Systems  

E-Print Network (OSTI)

for optimal control of a harvesting ice storage system. A simplified procedure is used to develop 24 hour load data. Example installations will be shown....

Knebel, D. E.

1988-01-01T23:59:59.000Z

407

Two New Energy Storage Safety Reports Now Available | Department...  

Office of Environmental Management (EM)

increases. The issue of safety affects all aspects of a storage system, from battery chemistry, to devices, installation, and operation. Addthis Related Articles Energy Department...

408

Nuclear waste storage bill passes Congress  

Science Journals Connector (OSTI)

Nuclear waste storage bill passes Congress ... The law sets up provisions to evaluate ways to store spent nuclear fuel and wastes. ...

1983-01-03T23:59:59.000Z

409

Activated Aluminum Hydride Hydrogen Storage Compositions - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Find More Like This Return to Search Activated Aluminum Hydride Hydrogen Storage Compositions Brookhaven National Laboratory Contact BNL About This...

410

Activated aluminum hydride hydrogen storage compositions and...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

411

Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Infrastructure Tax Credit A tax credit is available for 25% of the cost to install or retrofit

412

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

413

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

414

Fuel Cells Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pat Davis 2 Fuel Cells Technical Goals & Objectives Goal : Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications. 3 Fuel Cells Technical Goals & Objectives Objectives * Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW (including hydrogen storage) by 2010. * Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of $45/kW by

415

Hydrogen Storage Workshop Argonne National Laboratory  

E-Print Network (OSTI)

hydrogen, fuel cells, and distribution..." #12;1. Hydrogen Storage 2. Hydrogen Production 3. Fuel Cell Cost Energy & Water Appropriations #12;FY 2002 Budget = $47.425M Transportation Fuel Cell Stack Subsystem Rossmeissl Hydrogen, Fuel Cells & Infrastructure Technologies Program Energy Efficiency and Renewable Energy

416

Alternative Fuels Data Center: Alternative Fuel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina

417

U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen- Facility Locations and Hydrogen Storage/Delivery Logistics  

Energy.gov (U.S. Department of Energy (DOE))

Overview of DoD Energy Use, Federal Facilities Goals and Requirements, Federal Vehicles and Fuel Goals, Opportunities & Conclusions

418

HTAR Client Configuration and Installation  

NLE Websites -- All DOE Office Websites (Extended Search)

Configuration and Installation Configuration and Installation HTAR Configuration and Installation HTAR is an archival utility similar to gnu-tar that allows for the archiving and extraction of local files into and out of HPSS. Configuration Instructions This distribution has default configuration settings which will work for most environments. If you want to use the default values (recommended) you can skip to the section labeled INSTALLATION INSTRUCTIONS. In certain environments, for example if your installation is on a machine which has more than one network interface, you may want to change some of these default settings. To help with this, an interactive Configure script is provided. To use it do $ ./Configure prior to installing. Configure will provide a description of the options

419

Marketing Cool Storage Technology  

E-Print Network (OSTI)

storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

McCannon, L.

420

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - air fuel ratio Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 3 Fuel Cell Power PlantsFuel...

422

Hydrogen Storage Materials Requirements to Meet the 2017 On Board Hydrogen Storage Technical Targets  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the Hydrogen Storage Materials Requirements webinar presented by the US Department of Energy Fuel Cell Technologies Office on June 25, 2013.

423

Hydrogen storage in carbon materials—preliminary results  

Science Journals Connector (OSTI)

Recent developments aiming at the accelerated commercialization of fuel cells for automotive applications have triggered an intensive research on fuel storage concepts for fuel cell cars. The fuel cell technology currently lacks technically and economically viable hydrogen storage technologies. On-board reforming of gasoline or methanol into hydrogen can only be regarded as an intermediate solution due to the inherently poor energy efficiency of such processes. Hydrogen storage in carbon nanofibers may lead to an efficient solution to the above described problems.

Ludwig Jörissen; Holger Klos; Peter Lamp; Gudrun Reichenauer; Victor Trapp

1998-01-01T23:59:59.000Z

424

DOE Hydrogen Analysis Repository: Emissions Analysis of Electricity Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Analysis of Electricity Storage with Hydrogen Emissions Analysis of Electricity Storage with Hydrogen Project Summary Full Title: Emissions Analysis of Electricity Storage with Hydrogen Project ID: 269 Principal Investigator: Amgad Elgowainy Brief Description: Argonne National Laboratory examined the potential fuel cycle energy and emissions benefits of integrating hydrogen storage with renewable power generation. ANL also examined the fuel cycle energy use and emissions associated with alternative energy storage systems, including pumped hydro storage (PHS), compressed air energy storage (CAES), and vanadium-redox batteries (VRB). Keywords: Hydrogen; Emissions; Greenhouse gases (GHG); Energy storage; Life cycle analysis Performer Principal Investigator: Amgad Elgowainy Organization: Argonne National Laboratory (ANL)

425

Miniature ceramic fuel cell  

DOE Patents (OSTI)

A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

1997-06-24T23:59:59.000Z

426

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage.  

E-Print Network (OSTI)

??Efficient hydrogen storage is required for fuel cell vehicles to be competitive with those driven by internal combustion engines. Current methods of storage such as… (more)

Barcelo, Steven James

2009-01-01T23:59:59.000Z

427

Property:EZFeed/InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name EZFeed/InstalledCapacity Property Type String Description EZFeed Installed Capacity property Subproperties This property has the following 6079 subproperties: 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) 3 30% Business Tax Credit for Solar (Vermont) 4 401 Certification (Vermont) A AEP (Central and North) - CitySmart Program (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Residential Home Retrofit Program (West Virginia)

428

Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression,...

429

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network (OSTI)

s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

430

A Model Fuels Consortium to Promote Engine Modeling | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Changes in Storage Media Accurate Predictions of Fuel Effects on Combustion and Emissions in Engines Using CFD Simulations With Detailed Fuel Chemistry DOE-HDBK-3010-94...

431

Fuel Quality and Metering: Current Status and Future Needs |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Quality and Metering: Current Status and Future Needs Fuel Quality and Metering: Current Status and Future Needs These slides were presented at the Onboard Storage Tank...

432

Used Fuel Disposition Campaign Disposal Research and Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

related to storage, transportation and disposal of used nuclear fuel (UNF) and high level nuclear waste (HLW) generated by existing and future nuclear fuel cycles. The disposal of...

433

Hydrogen-Fueled Vehicle Safety Systems Animation | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of hydrogen. View text version of animation. Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation...

434

DOE Announces Webinars on Integrating Hydrogen and Fuel Cell...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Upcoming Webinars August 19: Live Webinar on Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Webinar Sponsor: Fuel Cell Technologies Office...

435

Subscribe to the Fuel Cell Technologies Office Newsletter | Department...  

Office of Environmental Management (EM)

Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes, and Standards Education Market...

436

Storage Tanks (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

437

Energy Storage - More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage - More Information Energy Storage - More Information Energy Storage - More Information As energy storage technology may be applied to a number of areas that differ in power and energy requirements, DOE's Energy Storage Program performs research and development on a wide variety of storage technologies. This broad technology base includes batteries (both conventional and advanced), flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems. The Energy Storage Program works closely with industry partners, and many of its projects are highly cost-shared. The Program collaborates with utilities and State energy organizations such as the California Energy Commission and New York State Energy Research and Development Authority to field major pioneering storage installations that

438

Proceedings of the 6. international conference on stability and handling of liquid fuels. Volume 1  

SciTech Connect

Volume 1 of these proceedings contain 29 papers related to aviation fuels and long term and strategic storage. Studies investigated fuel contamination, separation processes, measurement techniques, thermal stability, compatibility with fuel system materials, oxidation reactions, and degradation during storage.

Giles, H.N. [ed.] [Deputy Assistant Secretary for Strategic Petroleum Reserve, Washington, DC (United States). Operations and Readiness Office

1998-12-01T23:59:59.000Z

439

Solar heating and cooling system installed at Columbus, Ohio. Final report  

SciTech Connect

The Solar Energy System installed at Columbus Technical Institute, Columbus, Ohio was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5000 gallon steel tank below ground storage system, hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building. Extracts from the site files specification references, drawings, installation, operation and maintenance instructions are included.

Coy, R. G.; Braden, R. P.

1980-09-01T23:59:59.000Z

440

Hydrogen Storage -Overview George Thomas, Hydrogen Consultant to SNL*  

E-Print Network (OSTI)

Hydrogen Storage - Overview George Thomas, Hydrogen Consultant to SNL* and Jay Keller, Hydrogen volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen and cost-effective hydrogen storage? #12;4/14/03 3 Sandia National Laboratories From George Thomas, BES

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar Installation Labor Market Analysis  

SciTech Connect

The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

Friedman, B.; Jordan, P.; Carrese, J.

2011-12-01T23:59:59.000Z

442

Foldtrack Installation in C-110  

Energy.gov (U.S. Department of Energy (DOE))

Crews successfully installed a new and improved version of the Foldtrack into tank C-110, a single-shell tank with about 17,200 gallons of waste remaining.

443

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

444

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

445

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

446

FCT Fuel Cells: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

447

Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15--August 15, 1996  

SciTech Connect

The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers is also evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) was conducted with a proven coal-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrind circuit was recently installed and was evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and was used to generate baseline data firing No. 6 fuel oil and fire CWSF. A temporary storage system for No. 6 fuel oil was installed and modifications to the existing CWSF handling and preheating system were made to accommodate No. 6 oil.

Miller, B.G.; Scaroni, A.W.

1997-06-03T23:59:59.000Z

448

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

and Solar-Energy - Progress, Promise and Problems. J.energy storage problem. Solar fuels are concentrated energy

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

449

E-Print Network 3.0 - automotive hydrogen storage Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Hydrogen Composite Tank...

450

Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Water Heaters Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Conventional storage water heaters remain the most popular type of water heating system for the home. Here you'll find basic information about how storage water heaters work; what criteria to use when selecting the right model; and some installation, maintenance, and safety tips. How They Work A single-family storage water heater offers a ready reservoir -- from 20 to

451

STATE OF CALIFORNIA ICE STORAGE AIR CONDITIONING (ISAC) UNITS  

E-Print Network (OSTI)

cooling with the compressor). Yes No #12;STATE OF CALIFORNIA ICE STORAGE AIR CONDITIONING (ISAC) UNITS CECSTATE OF CALIFORNIA ICE STORAGE AIR CONDITIONING (ISAC) UNITS CEC-CF-6R-MECH-08 (Revised 08/09) CALIFORNIA ENERGY COMMISSION INSTALLATION CERTIFICATE CF-6R-MECH-08 Ice Storage Air Conditioning (ISAC) Units

452

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

453

Steam reforming of methane using double-walled reformer tubes containing high-temperature thermal storage Na2CO3/MgO composites for solar fuel production  

Science Journals Connector (OSTI)

Abstract Double-walled reactor tubes containing thermal storage materials based on the molten carbonate salts—100 wt% Na2CO3 molten salt, 90 wt% Na2CO3/10 wt% MgO and 80 wt% Na2CO3/20 wt% MgO composite materials—were studied for the performances of the reactor during the heat charging mode, while those of methane reforming with steam during heat discharging mode for solar steam reforming. The variations in the temperatures of the catalyst and storage material, methane conversion, duration of reforming for obtaining high levels of methane conversion (>90%), higher heating value (HHV) power of reformed gas and efficiency of the reactor tubes were evaluated for the double-walled reactor tubes and a single-wall reactor tube without the thermal storage. The results for the heat charging mode indicated that the composite thermal storage could successfully store the heat transferred from the exterior wall of the reactor in comparison to the pure molten-salt. The double-walled reactor tubes with the 90 wt% Na2CO3/10 wt% MgO composite material was the most desirable for steam reforming of methane to realize large HHV amounts of reformed gas and higher efficiencies during heat-discharging mode.

Nobuyuki Gokon; Shohei Nakamura; Tsuyoshi Hatamachi; Tatsuya Kodama

2014-01-01T23:59:59.000Z

454

Production of New Biomass/Waste-Containing Solid Fuels  

SciTech Connect

CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration in Phase II. In Phase II (June 2001 to December 2004), the project team demonstrated the GranuFlow technology as part of a process to combine paper sludge and coal to produce a composite fuel with combustion and handling characteristics acceptable to existing boilers and fuel handling systems. Bench-scale studies were performed at DOE-NETL, followed by full-scale commercial demonstrations to produce the composite fuel in a 400-tph coal cleaning plant and combustion tests at a 90-MW power plant boiler to evaluate impacts on fuel handling, boiler operations and performance, and emissions. A circuit was successfully installed to re-pulp and inject paper sludge into the fine coal dewatering circuit of a commercial coal-cleaning plant to produce 5,000 tons of a ''composite'' fuel containing about 5% paper sludge. Subsequent combustion tests showed that boiler efficiency and stability were not compromised when the composite fuel was blended with the boiler's normal coal supply. Firing of the composite fuel blend did not have any significant impact on emissions as compared to the normal coal supply, and it did not cause any excursions beyond Title V regulatory limits; all emissions were well within regulatory limits. SO{sub 2} emissions decreased during the composite fuel blend tests as a result of its higher heat content and slightly lower sulfur content as compared to the normal coal supply. The composite fuel contained an extremely high proportion of fines because the parent coal (feedstock to the coal-cleaning plant) is a ''soft'' coal (HGI > 90) and contained a high proportion of fines. The composite fuel was produced and combustion-tested under record wet conditions for the local area. In spite of these conditions, full load was obtained by the boiler when firing the composite fuel blend, and testing was completed without any handling or combustion problems beyond those typically associated with wet coal. Fuel handling and pulverizer performance (mill capacity and outlet temperatures) could become greater concerns when firing composite fuels which contain higher percent

Glenn A. Shirey; David J. Akers

2005-09-23T23:59:59.000Z

455

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

456

Solar Installation Labor Market Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Installation Labor Installation Labor Market Analysis Barry Friedman National Renewable Energy Laboratory Philip Jordan Green LMI Consulting John Carrese San Francisco Bay Area Center of Excellence Technical Report NREL/TP-6A20-49339 December 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Solar Installation Labor Market Analysis Barry Friedman National Renewable Energy Laboratory Philip Jordan Green LMI Consulting John Carrese San Francisco Bay Area Center of Excellence

457

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

458

Characterization Studies of Materials and Devices used for Electrochemical Energy Storage  

E-Print Network (OSTI)

solar and wind energy requires some form of energy storage,solar cells, fuel cells, redox flow batteries and electrochemical energy storage.energy generation and storage technologies. Dye Sensitized Solar

Membreno, Daniel Eduardo

2014-01-01T23:59:59.000Z

459

Characterization and High Throughput Analysis of Metal Hydrides for Hydrogen Storage  

E-Print Network (OSTI)

Metal Hydrides for Hydrogen Storage by Steven James BarceloMetal Hydrides for Hydrogen Storage by Steven James BarceloCo-chair Efficient hydrogen storage is required for fuel

Barcelo, Steven James

2009-01-01T23:59:59.000Z

460

The Impacts of Dry-Storage Canister Designs on Spent Nuclear...  

Office of Environmental Management (EM)

The Impacts of Dry-Storage Canister Designs on Spent Nuclear Fuel Handling, Storage, Transportation, and Disposal in the U.S. The Impacts of Dry-Storage Canister Designs on Spent...

Note: This page contains sample records for the topic "fuel storage installation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Process Improvement at Army Installations  

E-Print Network (OSTI)

and pressed, and the cans are then placed on a conveyor belt. On this conveyor belt, which constitutes one of the production bottlenecks, a plastic cap and starter cap is installed in each can. The final steps for each can include installing the lid... each fuse. Load and Packout When the cans arrive at