Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

ITS—RR—07—07 A Low-Carbon Fuel Standard for California PartEnergy Commission. A Low Carbon Fuel Standard For CaliforniaPont, et al. (2007). Full Fuel Cycle Assessment Well To Tank

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

2

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

A Low-Carbon Fuel Standard for California Part 1: TechnicalEnergy Air Quality, and Fuels 2000. Schwarzenegger, Arnold.Order S-01-07: Low Carbon Fuel Standard. Sacramento, CA.

2007-01-01T23:59:59.000Z

3

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

California Crude Oil Production and Imports. Sacramento:2. Production Active oil production occurs from 209 oilfields (CDC-DOGGR 2006). Oil production in California occurs

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

4

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Department of Energy. “Alternative Fuels Data Center (HomeMotor Fuels: the Alternative Fuels Trade Model. Oak Ridge,Challenges for Alternative Fuel Vehicle and Transportation

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

5

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Department of Energy. “Alternative Fuels Data Center (HomeMotor Fuels: the Alternative Fuels Trade Model. Oak Ridge,Challenges for Alternative Fuel Vehicle and Transportation

2007-01-01T23:59:59.000Z

6

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

nuclear, and wind power plants) could allow California andwind whose generation is determined by natural patterns rather than a power plant

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

7

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

nuclear, and wind power plants) could allow California andwind whose generation is determined by natural patterns rather than a power plant

2007-01-01T23:59:59.000Z

8

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

2006. California Crude Oil Production and Imports. In Staffdue to changes in oil production and refining are ignored,differences in oil production and refining emissions (

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

9

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

California Crude Oil Production and Imports. Sacramento:and profits from crude oil production and less from refiningProfit structure Crude oil production is the most profitable

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

10

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

California Crude Oil Production and Imports. Sacramento:and profits from crude oil production and less from refiningProfit structure Crude oil production is the most profitable

2007-01-01T23:59:59.000Z

11

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

2006. California Crude Oil Production and Imports. In Staffof algae could greatly expand oil production due to the highincluding in-state oil production (39%), oil from Alaska (

2007-01-01T23:59:59.000Z

12

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

2006. California Crude Oil Production and Imports. In Staffof algae could greatly expand oil production due to the highincluding in-state oil production (39%), oil from Alaska (

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

13

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Real Prices (2005$) Crude Oil (left) US Retail Gasoline (retail prices in California including PG&E residential electricity $0.1144/kWh, gasolineretail prices Gasoline

2007-01-01T23:59:59.000Z

14

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Real Prices (2005$) Crude Oil (left) US Retail Gasoline (retail prices in California including PG&E residential electricity $0.1144/kWh, gasolineretail prices Gasoline

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

15

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel energy exceeds ethanol fuel energy on a GGE basis.the production of ethanol and other fuels. Both grain foral. (1999). Effects of Fuel Ethanol Use on Fuel-Cycle Energy

2007-01-01T23:59:59.000Z

16

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel energy exceeds ethanol fuel energy on a GGE basis.production of ethanol and other fuels. Cereals are generallyal. (1999). Effects of Fuel Ethanol Use on Fuel-Cycle Energy

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

17

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Prospects for Hydrogen and Fuel Cells,” Organization forquiet and powerful. .Hydrogen and fuel cells also offer thevehicles (PHEVs), hydrogen fuel cell vehicles (FCVs) are

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

18

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

2006. California Crude Oil Production and Imports. In Staffin Figure 2-2: crude oil production and shipment, petroleumto in-state heavy crude oil production which is related to

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

19

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

Magaret. 2006. California Crude Oil Production and Imports.and profits from crude oil production and less from refiningProfit structure Crude oil production is the most profitable

2007-01-01T23:59:59.000Z

20

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

Magaret. 2006. California Crude Oil Production and Imports.and profits from crude oil production and less from refiningProfit structure Crude oil production is the most profitable

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

2006. California Crude Oil Production and Imports. In Staffin Figure 2-2: crude oil production and shipment, petroleumto in-state heavy crude oil production which is related to

2007-01-01T23:59:59.000Z

22

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

the production and use of fuel ethanol in Brazil. Sao Paulo,and mandates, ethanol tariffs, vehicle and fuel testingthe decision over which fuel and ethanol they should buy and

2007-01-01T23:59:59.000Z

23

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

the production and use of fuel ethanol in Brazil. Sao Paulo,and mandates, ethanol tariffs, vehicle and fuel testingthe decision over which fuel and ethanol they should buy and

Sperling, Daniel; Farrell, Alexander

2007-01-01T23:59:59.000Z

24

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

biofuel”) and bio-based and FT diesel fuels are indicated,Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel energyDiesel Bio-Diesel Hydrogen Electric Figure 5-16: Fuel energy

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

25

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

biofuel”) and bio-based and FT diesel fuels are indicated,Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel energyDiesel Bio-Diesel Hydrogen Electric Figure 5-19: Fuel energy

2007-01-01T23:59:59.000Z

26

A Report on the Economics of California's Low Carbon Fuel Standard & Cost Containment Mechanisms  

E-Print Network [OSTI]

Warming Solutions Act of 2006. The program calls for large reductions in the carbon intensity of fuel sold traditional fossil fuels and alternative, low carbon intensity fuels; or if there are capacity or technological constraints to deploying alternative fuels, particularly those with low carbon intensity

Lin, C.-Y. Cynthia

27

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Catalysis Dimethyl Ether Flash Pyrolysis Fischer Tropschpure hydrogen fuel product. Flash pyrolysis Pyrolysis is the

2007-01-01T23:59:59.000Z

28

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Catalysis Dimethyl Ether Flash Pyrolysis Fischer Tropschpure hydrogen fuel product. Flash pyrolysis Pyrolysis is the

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

29

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

biofuel-based compliance strategy with no significant advancesthese low-GHG biofuel blends. Significant advances in fuel

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

30

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

biofuel-based compliance strategy with no significant advancesthese low-GHG biofuel blends. Significant advances in fuel

2007-01-01T23:59:59.000Z

31

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

for calculating the carbon intensity of biofuels. London:the carbon intensity of fuels 47carbon intensity..

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

32

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

for calculating the carbon intensity of biofuels. London:the carbon intensity of fuels 47carbon intensity..

2007-01-01T23:59:59.000Z

33

The Challenge of Achieving Californias Low Carbon Fuel Standard  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore Shale Proved Reserves (BillionAnalysis

34

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, A.V.

2010-01-01T23:59:59.000Z

35

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

A. Miller (1980). "Oil Shales and Carbon Dioxide." Sciencefor CO2 evolved from oil shale." Fuel Processing TechnologyCTLs, or CTL synfuels), and oil shale-based synthetic crude

2007-01-01T23:59:59.000Z

36

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

study, such as diesel hybrid electric vehicles (D HEVs). Thefuel vehicle Yes Diesel hybrid electric vehicle No SparkF-T Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel

2007-01-01T23:59:59.000Z

37

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

study, such as diesel hybrid electric vehicles (D HEVs). Thefuel vehicle Yes Diesel hybrid electric vehicle No SparkF-T Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

38

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel economies for diesel vehicles, electric vehicles, and10%, /85%) Low-GHG FT diesel blends Electric charging & H2study, such as diesel hybrid electric vehicles (D HEVs). The

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

39

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

and Greenhouse Gases of NExBTL. Heidelberg, IFEU - InstituteR. Linnaila, et al. (2005). NExBTL - Biodiesel fuel of therenewable diesel, such as the NexBTL process, are in active

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

40

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

and Greenhouse Gases of NExBTL. Heidelberg, IFEU - InstituteR. Linnaila, et al. (2005). NExBTL - Biodiesel fuel of therenewable diesel, such as the NexBTL process, are in active

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

42

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

2007-01-01T23:59:59.000Z

43

Low Carbon Fuel Standards  

E-Print Network [OSTI]

S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

44

CALIFORNIA ENERGY PETROLEUM FUELSPETROLEUM FUELS  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION PETROLEUM FUELSPETROLEUM FUELS SET-ASIDE PROGRAMSET-ASIDE PROGRAM for administering the Petroleum Fuels Set-Aside Program (Fuels Set-Aside Program). During a proclaimed state of emergency, intrastate petroleum and petroleum product stocks that are essential to life, property

45

California Low Carbon Fuels Infrastructure Investment Initiative...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

46

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

Nero, A.V.

2010-01-01T23:59:59.000Z

47

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

48

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

49

California Initiative for Large Molecule Sustainable Fuels  

E-Print Network [OSTI]

that are fungible with conventional petroleum based gasoline, diesel, and jet fuels, to meet Californias. ¡ Develop enhanced capability to effectively assess related emerging biofuel technologies. ¡ Begin

50

Fuel Cell Transit Bus Coordination and Evaluation Plan California...  

Broader source: Energy.gov (indexed) [DOE]

Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit...

51

Low Carbon Fuel Standards  

E-Print Network [OSTI]

emissions for fuels such as biofuels, electric- ity, andcould, for instance, sell biofuels or buy credits fromthat 36 billion gallons of biofuels be sold annu- ally by

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

52

Renewable Fuel Standards Resources  

Broader source: Energy.gov [DOE]

Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum...

53

Alternative Fuels Data Center: California Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative FuelInfrastructure DevelopmentCalifornia

54

HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES 2009 DOE Hydrogen Program...

55

An Introduction to SAE Hydrogen Fueling Standardization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SAE H2 Fueling Standardization 5 SAE HYDROGEN FUELING STANDARDIZATION Jesse Schneider (BMW) SAE J2601 & J2799 Sponsor SAE INTERNATIONAL *Hydrogen Fueling Background *SAE H2...

56

California Water Well Standards | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: CrystallineOpenPermit ApplicationPermitCalifornia

57

California Fuel Cell Partnership: Alternative Fuels Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154: CategoricalDepartmentFuel Cell Partnership -

58

CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT  

E-Print Network [OSTI]

, Contract Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director gas, propane, ethanol, electricity, alternative diesel fuels such as biodiesel and Fischer Tropsch, natural gas vehicles, propane vehicles, electric vehicles, ethanol fuel, E-85, biodiesel, Fischer

59

California Fuel Cell Partnership: Alternative Fuels Research | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPE OF131:770:9Aprilof Energy California

60

Proposed Energy Provisions of the California Green Building Standards Code  

E-Print Network [OSTI]

Proposed Energy Provisions of the California Green Building Standards Code Part 11 of the California Building Code (also known as CalGreen) Patrick Saxton, P.E. patrick.saxton@energy.ca.gov 916-651-0489 High Performance Buildings and Standards Development Office California Energy Commission September 20

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

35 Alternative Transportation Fuels in California ALTERNATIVE TRANSPORTATION  

E-Print Network [OSTI]

35 Alternative Transportation Fuels in California Chapter 4 ALTERNATIVE TRANSPORTATION FUELS IN CALIFORNIA INTRODUCTION The introduction of alternative fuels into California's transportation market has supply at low prices. But, with an uncertain long-term future for oil supplies and prices, alternative

62

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network [OSTI]

s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

63

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

64

Biomass Potentials from California Forest and Shrublands Including Fuel  

E-Print Network [OSTI]

Biomass Potentials from California Forest and Shrublands Including Fuel Reduction Potentials-04-004 February 2005 Revised: October 2005 Arnold Schwarzenegger, Governor, State of California #12;Biomass Tiangco, CEC Bryan M. Jenkins, University of California #12;Biomass Potentials from California Forest

65

Moving Forward With Fuel Economy Standards  

E-Print Network [OSTI]

Council. Automotive Fuel Economy: How Far Can We Go? (Lee Schipper. Automobile Fuel. Economy and CO 2 Emissions inGraham. The Effect of Fuel Economy Standards on Automobile

Schipper, Lee

2009-01-01T23:59:59.000Z

66

Renewable Fuel Standard Schedule | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(California andEnergy Information|Technologies,Fuel

67

* Corresponding author -kfingerman@berkeley.edu 1 Integrating Water Sustainability into the Low Carbon Fuel Standard  

E-Print Network [OSTI]

it to Average Fuel Carbon Intensity (AFCI) (c) Charge a tax on water use for biofuel production (d) Establish Carbon Fuel Standard Kevin Fingerman1* , Daniel Kammen1,2 , and Michael O'Hare2 1 Energy & Resources (Chapagain and Hoekstra, 2004). As the State of California implements the Low Carbon Fuel Standard (LCFS

Kammen, Daniel M.

68

Commercial Fleet Demand for Alternative-Fuel Vehicles in California  

E-Print Network [OSTI]

Precursors of demand for alternative-fuel vehicles: resultsFLEET DEMAND FOR ALTERNATIVE-FUEL VEHICLES IN CALIFORNIA*Abstract—Fleet demand for alternative-fuel vehicles (‘AFVs’

Golob, Thomas F; Torous, Jane; Bradley, Mark; Brownstone, David; Crane, Soheila Soltani; Bunch, David S

1996-01-01T23:59:59.000Z

69

Webinar: Introduction to SAE Hydrogen Fueling Standardization  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webinar titled "Introduction to SAE Hydrogen Fueling Standardization" on Thursday, September 11. The webinar will provide an overview of the SAE Standards SAE J2601 and J2799 and how they are applied to hydrogen fueling for fuel cell electric vehicles (FCEVs).

70

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Report LBL-5287. "Power Plant Reliability-Availability andConunercial Nuclear Power Plants", Report WASH-1400 (NUREG-Standards for Nuclear Power Plants," by A.V. Nero and Y.C.

Nero, A.V.

2010-01-01T23:59:59.000Z

71

Missouri Renewable Fuel Standard Brochure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota1 CleanbuttonbuttonWeb siteJuly

72

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

Infrastructure for Alternative Fuel Vehicles: LessonsAlthough California’s alternative fuel and vehicle policiescarbon by 2020 Provide alternative fuel supply once 20K veh

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

73

California Energy Commission Alternative and Renewable Fuel and Vehicle Technology  

E-Print Network [OSTI]

California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Advisory, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program (hereinafter "Program") to be administered by the California Energy Commission (Energy Commission).1 AB 118 authorizes

74

Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

75

Historic Fuel Standards | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum,Information NewHinesStandards

76

California: Agricultural Residues Produce Renewable Fuel | Department...  

Energy Savers [EERE]

that validated the viability of this technology platform for producing cellulosic ethanol from corn stover at reasonable yields. The California Energy Commission has awarded...

77

2013 California Building Energy Efficiency Standards December 2011 CODES AND STANDARDS ENHANCEMENT INITIATIVE (CASE)  

E-Print Network [OSTI]

INITIATIVE (CASE) Residential Refrigerant Charge Testing and Related Issues 2013 California Building Energy-owned rights including, but not limited to, patents, trademarks or copyrights #12;Residential Refrigerant Charge Testing and Related Issues Page 2 2013 California Building Energy Efficiency Standards December

78

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

order for the low carbon fuel standard, 2012. URL http://mediated e?ects of low carbon fuel policies. AgBioForum, 15(Gas Reductions under Low Carbon Fuel Standards? American

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

79

Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...  

Energy Savers [EERE]

5: December 12, 2011 Fuel Consumption Standards for Combination Tractors Fact 705: December 12, 2011 Fuel Consumption Standards for Combination Tractors The National Highway...

80

EISA 2007: Focus on Renewable Fuels Standard Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EISA 2007: Focus on Renewable Fuels Standard Focus on Renewable Fuels Standard Program Paul Argyropoulos Paul Argyropoulos Office of Office of T Tr ransportation ansportation and...

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Stationary and Portable Fuel Cell Systems Codes and Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary and Portable Fuel Cell Systems Codes and Standards Citations Stationary and Portable Fuel Cell Systems Codes and Standards Citations This document lists codes and...

82

State Clean Energy Practices: Renewable Fuel Standards  

SciTech Connect (OSTI)

The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

Mosey, G.; Kreycik, C.

2008-07-01T23:59:59.000Z

83

October 2012 Renewable Fuel Standard Waiver  

E-Print Network [OSTI]

for four different biofuel categories and their effects on agricultural commodity markets. This report no waiver of the RFS in response to the drought. Analysis reported here estimates the effects of a waiverOctober 2012 Renewable Fuel Standard Waiver Options during the Drought of 2012 FAPRI-MU Report #11

Noble, James S.

84

California Energy Commission Alternative and Renewable Fuel and Vehicle Technology  

E-Print Network [OSTI]

California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Advisory by the Energy Commission. Under the Program, the following shall be eligible for funding: 3 ¡ Alternative, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program (hereinafter

85

California's Renewables Portfolio Standard (RPS) List of Facilities Certification Status  

E-Print Network [OSTI]

California's Renewables Portfolio Standard (RPS) List of Facilities Certification Status Terms Facility State Facility County Commercial Operations Date Nameplate Capacity Technology Eligibility Date-Certification High Desert Solar One - HDSO Victorville CA San Bernardino 1/1/2007 101 Solar Thermal Electric 8

86

California Low Carbon Fuels Infrastructure Investment Initiative |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154: CategoricalDepartmentFuel Cell PartnershipDepartment

87

California Fuel Cell Partnership | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO)Burundi:Sales SeventeenJump7516 NinthFuel

88

Assessment of California reformulated gasoline impact on vehicle fuel economy  

SciTech Connect (OSTI)

Fuel economy data contained in the 1996 California Air Resources Board (CAROB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4 %, with a 95% upper confidence bound of 6 %. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CAROB with respect to the impact of CaRFG on fuel economy.

Aceves, S.; Glaser, R.; Richardson, J.

1997-01-01T23:59:59.000Z

89

Assessment of California reformulated gasoline impact on vehicle fuel economy  

SciTech Connect (OSTI)

Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

Aceves, S., LLNL

1997-01-01T23:59:59.000Z

90

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

GHG intensity among fossil fuels. We ?nd that the relativeunder a RFS while world fossil fuel price is the same orwith the more-polluting fossil fuels being consumed abroad

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

91

California Low Carbon Fuels Infrastructure Investment Initiative...  

Broader source: Energy.gov (indexed) [DOE]

* Transform entire existing gas stations into clean transportation hubs, offering new fuel options to a broader customer base * Create cost-effective efficiencies for quick...

92

Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL MANDATORY MEASURES  

E-Print Network [OSTI]

Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL of the California Green Building Standards Code Page 3 APPENDIX A4, RESIDENTIAL VOLUNTARY MEASURES APPENDIX A4 of the California Green Building Standards Code Page 4 1. Night lights which comply with Title 24, Part 6 Section

93

California and Connecticut: National Fuel Cell Bus Programs Drive Fuel  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden2 Categorical ExclusionOrderEconomy Higher | Department of

94

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

carbon tax, mandate, intensity standard JEL classi?cations: Q42; Q48 Introduction Governments throughout the world

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

95

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)  

Reports and Publications (EIA)

The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

2006-01-01T23:59:59.000Z

96

Greenhouse Gas Reductions Under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

LCFS limits carbon emissions per unit of current energycarbon fuel standard expressed as a limit on the emissions per energy

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2007-01-01T23:59:59.000Z

97

Greenhouse Gas Reductions under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

LCFS limits carbon emissions per unit of current energycarbon fuel standard expressed as a limit on the emissions per energy

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2008-01-01T23:59:59.000Z

98

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

relates domestic crude oil consumption q c to the marginalDomestic ROW Total Crude oil consumption (mbpd) Domestic ROWcrude oil fuels while achieving a total level of biofuel consumption.

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

99

Renewable Fuel Standards Resources | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergy

100

Fuel Cells & Renewable Portfolio Standards  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0AgencyLevel Fuel

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Introduction to SAE Hydrogen Fueling Standardization Webinar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

? At this time, the SAE J2601 only covers fueling for light-duty vehicles. However, motorcycle fueling (<2 kg) is planned to be covered in the future. Q: I may sound a little...

102

Fuel Cells and Renewable Portfolio Standards  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10, 2014 2014 organized

103

An Introduction to SAE Hydrogen Fueling Standardization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,An Evaluationfor Heating

104

Greenhouse Gas Reductions Under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

LCFS standard. If the carbon intensity is greater than (lessa national LCFS reducing carbon intensities by 10 percent),standard to reduce the carbon intensity of fuels for light-

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2007-01-01T23:59:59.000Z

105

Greenhouse Gas Reductions under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

LCFS standard. If the carbon intensity is greater than (lessa national LCFS reducing carbon intensities by 10 percent),standard to reduce the carbon intensity of fuels for light-

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2008-01-01T23:59:59.000Z

106

EISA 2007: Focus on Renewable Fuels Standard Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EISA 2007: Focus on Renewable Fuels Standard Program At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Paul Argyropoulos (U.S....

107

E85, Flex-Fuel Vehicles, and AB 1493 Integrating biofuels into California's vehicular greenhouse gas regulations  

E-Print Network [OSTI]

E85, Flex-Fuel Vehicles, and AB 1493 Integrating biofuels into California's vehicular greenhouse.................................................................................................. 5 1.1.3 CALIFORNIA CLEAN FUELS PROGRAM ....................................... 6 1.1.5 AB 1007: THE ALTERNATIVE FUELS PLAN

Kammen, Daniel M.

108

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

Prepared by Booz-Allen & Hamilton. January. California AirRail Fuel In 1991 Booz-Allen & Hamilton developed a 1987

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

109

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network [OSTI]

do fossil fuel carbon dioxide emissions from California go?do fossil fuel carbon dioxide emissions from California go?1° distribution of carbon dioxide emissions from fossil fuel

2008-01-01T23:59:59.000Z

110

California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)  

Reports and Publications (EIA)

In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

2005-01-01T23:59:59.000Z

111

Fuel Cells & Renewable Portfolio Standards | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel

112

Fuel Cells and Renewable Portfolio Standards | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCells

113

RENEWABLE ENERGY ACTION TEAM Milestones to Permit California Renewable Portfolio Standard Energy Projects  

E-Print Network [OSTI]

renewable energy resources. In November 2008, the CEC, DFG, the Bureau of Land Management (BLM1 RENEWABLE ENERGY ACTION TEAM Milestones to Permit California Renewable Portfolio Standard Energy on November 17, 2008, requiring 33 percent of the electricity sold in California to come from renewable

114

Timing for Startup of the Renewable Fuel Standard  

Reports and Publications (EIA)

This paper responds to whether or not moving the start date of the Renewable Fuel Standard (RFS) from its currently proposed January 2004 to October 2004 would improve the chances of a smooth transition.

2002-01-01T23:59:59.000Z

115

NREL: State and Local Governments - Renewable Fuel Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NREL resource assessmentFuel Standards A

116

The Renewable Fuel Standard and Ethanol Pricing: A Sensitivity Analysis  

E-Print Network [OSTI]

of biofuel. The current Renewable Fuel Standard (RFS) requires 36 billion gallons of renewable fuel use by 2022. A large proportion of the mandate is to consist of corn-based ethanol. Most ethanol is consumed in the U.S. as a 10 percent blend of ethanol...

McNair, Robert

2014-04-18T23:59:59.000Z

117

Fuel Mix Disclosure  

Broader source: Energy.gov [DOE]

California's retail electricity suppliers must disclose to all customers the fuel mix used in the generation of electricity. Utilities must use a standard label created by the California Energy...

118

Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards  

E-Print Network [OSTI]

on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA–

Wenzel, Thomas P

2010-01-01T23:59:59.000Z

120

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

new partnerships? H2-FCV Roadmap Report - FINAL December 21,Roadmap for Hydrogen and Fuel Cell Vehicles in California: ACalifornia, Davis H2-FCV Roadmap Report - FINAL December 21,

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems in California  

E-Print Network [OSTI]

PWP-092 Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems emissions, and petroleum use from motor vehicles, fuel cell vehicles (FCVs) could also act as distributed Fuel Cell Systems in California January 31, 2002 Dr. Timothy E. Lipman Ms. Jennifer L. Edwards Prof

Kammen, Daniel M.

122

Cellulosic biomass could help meet California’s transportation fuel needs  

E-Print Network [OSTI]

t uels Cellulosic biomass could help * meet California’smeasures are needed to help overcome the per- ceived risksrun; addition of the word "help." Laboratories at the Center

Wyman, Charles E.; Yang, Bin

2009-01-01T23:59:59.000Z

123

California Energy Standards Recognize the Importance of Filter Selection -  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartment of EnergyLANDSCAPE OF131:770:9April

124

Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative FuelInfrastructure

125

Alternative Fuels Data Center: California School District Creates  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative FuelInfrastructureFirst-of-Its-Kind

126

Cellulosic biomass could help meet California’s transportation fuel needs  

E-Print Network [OSTI]

bacterial catalysts for fuel ethanol production. Biotech-of process streams in fuel ethanol production from softwoodtion of biotechnology to fuel ethanol production from

Wyman, Charles E.; Yang, Bin

2009-01-01T23:59:59.000Z

127

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

is only one type of fossil fuel and one alternative fuel andGHG emissions and reducing fossil fuel use, and ?nd biofuelin GHG intensity of both fossil fuels and renewable fuels,

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

128

Examining new fuel economy standards for the United States.  

SciTech Connect (OSTI)

After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

Plotkin, S. E.; Energy Systems

2007-01-01T23:59:59.000Z

129

HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED HotSeptember 2005

130

California National Guard Sustainability Planning, Hydrogen Fuel Goals |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154: CategoricalDepartmentFuel CellDepartment of

131

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

security, renewable energy, bio- fuel, carbon tax, mandate,and taxpayer cost of bio- fuel excise tax credits dwarf the

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

132

California and Connecticut: National Fuel Cell Bus Programs Drive...  

Energy Savers [EERE]

250,000 miles and had almost 25,000 hours of fuel operation. The 12-month status report includes data collected from 18 fuel cell electric buses at three transit agencies:...

133

Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year2per6.48 6.18 5.63(Million Cubic

134

California Fuel Cell Partnership CaFCP | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city inCCSE Jump to:Control | Open EnergyOpenCaFCP Jump

135

California Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998 10,643Elements) GasFuel

136

Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy Embrittlement Fundamentals, Modeling,Department of

137

Prediction of Regulation Reserve Requirements in California ISO Control Area based on BAAL Standard  

SciTech Connect (OSTI)

This paper presents new methodologies developed at Pacific Northwest National Laboratory (PNNL) to estimate regulation capacity requirements in the California ISO control area. Two approaches have been developed: (1) an approach based on statistical analysis of actual historical area control error (ACE) and regulation data, and (2) an approach based on balancing authority ACE limit control performance standard. The approaches predict regulation reserve requirements on a day-ahead basis including upward and downward requirements, for each operating hour of a day. California ISO data has been used to test the performance of the proposed algorithms. Results show that software tool allows saving up to 30% on the regulation procurements cost .

Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.; Ma, Jian; Loutan, Clyde

2013-07-21T23:59:59.000Z

138

1989 annual book of ASTM standards. Section 5: Petroleum products, lubricants, and fossil fuels  

SciTech Connect (OSTI)

This standards volume covers test methods for rating motor, diesel, and aviation fuels. The standards include: Standard test method for knock characteristics of motor and aviation fuels by the motor method and Standard test method for knock characteristics of motor fuels by the research method.

Not Available

1989-01-01T23:59:59.000Z

139

California Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998 10,643 10,998Withdrawals

140

California Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998Decade Year-0Feet)Year Jan

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

California: Agricultural Residues Produce Renewable Fuel | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden2 Categorical ExclusionOrderEconomy Higher |

142

Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet) Year Jan Feb Mar Apr MayYearDecadeFeet)9 2010(Million Cubic

143

Sandia National Laboratories: California Alternative and Renewable Fuel and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASFBoeingPhysicsResourcesCSPCSPCSTVehicle

144

Fuel Cell Transit Bus Coordination and Evaluation Plan California...  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Laboratory For the United States Department of Energy Hydrogen, Fuel Cells & Infrastructure Technologies Program October 2003 1 Table of Contents About This...

145

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

increase in fuel consumers’ and ethanol producers’ surplusof cane ethanol, higher emissions, lower expenditure on fuelthe sum of fuel consumer, oil producer, and ethanol producer

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

146

1989 annual book of ASTM standards. Section 5: Petroleum products, lubricants and fossil fuels  

SciTech Connect (OSTI)

This volume of standards pertains to petroleum products and lubricants and to catalysts. The standards presented include: Standard test method for estimation of net and gross heat of combustion of petroleum fuels; Standard guide for generation and dissipation of static electricity in petroleum fuel systems; and Standard test method for solidification point of petroleum wax.

Not Available

1989-01-01T23:59:59.000Z

147

Stationary Fuel Cell Application Codes and Standards: Overview and Gap Analysis  

SciTech Connect (OSTI)

This report provides an overview of codes and standards related to stationary fuel cell applications and identifies gaps and resolutions associated with relative codes and standards.

Blake, C. W.; Rivkin, C. H.

2010-09-01T23:59:59.000Z

148

Energy Policy 33 (2005) 483498 Simulating the impacts of a strategic fuels reserve in California  

E-Print Network [OSTI]

of a strategic fuels reserve (SFR) designed to limit the increase in gasoline prices in the days following. The demand for gasoline is the sum of the retail demand and the wholesale demand to rebuild inventory. Background Gasoline prices in California are more volatile than in the rest of the country due to a variety

Ford, Andrew

2005-01-01T23:59:59.000Z

149

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California Lawrence Berkeley National Laboratory October, 2008 Contract #05-310 "Improving the Carbon Dioxide Emission Continuous Emissions Monitoring CHP Combined Heat and Power CO2 Carbon Dioxide DMV Department of Motor

150

California Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998 10,643 10,998WithdrawalsFeet)

151

California Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998Decade Year-0Feet)Year JanYear

152

Regulations, Codes, and Standards (RCS) Template for California Hydrogen Dispensing Stations  

SciTech Connect (OSTI)

This report explains the Regulations, Codes, and Standards (RCS) requirements for hydrogen dispensing stations in the State of California. The reports shows the basic components of a hydrogen dispensing station in a simple schematic drawing; the permits and approvals that would typically be required for the construction and operation of a hydrogen dispensing station; and a basic permit that might be employed by an Authority Having Jurisdiction (AHJ).

Rivkin, C.; Blake, C.; Burgess, R.; Buttner, W.; Post, M.

2012-11-01T23:59:59.000Z

153

Greenhouse Gas Reductions under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

Association, Historic U.S. Fuel Ethanol Production. http://state subsides for fuel ethanol are excluded. The constantblending more ethanol into the fuel supply. The assumption

Holland, Stephen P; Knittel, Christopher R; Hughes, Jonathan E.

2008-01-01T23:59:59.000Z

154

Greenhouse Gas Reductions Under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

Association, Historic U.S. Fuel Ethanol Production. http://state subsides for fuel ethanol are excluded. The constantblending more ethanol into the fuel supply. The assumption

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2007-01-01T23:59:59.000Z

155

Stationary and Portable Fuel Cell Systems Codes and Standards Citations (Brochure)  

SciTech Connect (OSTI)

This document lists codes and standards typically used for U.S. stationary and portable fuel cell systems.

Not Available

2011-05-01T23:59:59.000Z

156

Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0

157

Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards  

SciTech Connect (OSTI)

This report reviews the Open Automated Demand Response (OpenADR) deployments within the territories serviced by California?s investor-owned utilities (IOUs) and the transition from the OpenADR 1.0 specification to the formal standard?OpenADR 2.0. As demand response service providers and customers start adopting OpenADR 2.0, it is necessary to ensure that the existing Automated Demand Response (AutoDR) infrastructure investment continues to be useful and takes advantage of the formal standard and its many benefits. This study focused on OpenADR deployments and systems used by the California IOUs and included a summary of the OpenADR deployment from the U.S. Department of Energy-funded demonstration conducted by the Sacramento Municipal Utility District (SMUD). Lawrence Berkeley National Laboratory collected and analyzed data about OpenADR 1.0 deployments, categorized architectures, developed a data model mapping to understand the technical compatibility of each version, and compared the capabilities and features of the two specifications. The findings, for the first time, provided evidence of the total enabled load shed and average first cost for system enablement in the IOU and SMUD service territories. The OpenADR 2.0a profile specification semantically supports AutoDR system architectures and data propagation with a testing and certification program that promotes interoperability, scaled deployments by multiple vendors, and provides additional features that support future services.

Ghatikar, Girish; Riess, David; Piette, Mary Ann

2014-01-02T23:59:59.000Z

158

10 Questions Regarding SAE Hydrogen Fueling Standards | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021 -- NATIONAL

159

Stationary and Portable Fuel Cell Systems Codes and Standards Citations |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage Âť SearchEnergyDepartmentScopingOverviewFranklin M.

160

Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,Website PropertyRegulationsAdvancedBiofuel Jump

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Property:RenewableFuelStandard/CellulosicBiofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,Website

162

Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuel Jump to: navigation,

163

Property:RenewableFuelStandard/Total | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuel Jump to: navigation,Total

164

Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuel Jump to:

165

DOE Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop  

E-Print Network [OSTI]

to update 14687. To date, Type l, Grade D, has been added for fuel cell vehicles (distinct from grade A for fuel cell vehicles. JARI evaluated existing standards, namely JIS K0512 and ISO 14687, as well for the guidelines and standards e. rough budget for R&D and guideline/standard development. f. cost of analysis

166

Introduction to SAE Hydrogen Fueling Standardization | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan KalinResearch,Introducing the All-StarSAE Hydrogen Fueling

167

Alternative Fuels Data Center: Codes and Standards Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota Laws andWisconsinAFDC Printable

168

Alternative Fuels Data Center: Codes and Standards Resources  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota Laws andWisconsinAFDC

169

Alternative Fuels Data Center: E85 Codes and Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota Laws andWisconsinAFDCNaturalE85

170

HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES  

SciTech Connect (OSTI)

California State University, Los Angeles, has partnered with the Department of Energy in addressing the workforce preparation and public education needs of the fuel cell industry and the US economy through a comprehensive set of curriculum development and training activities: * Developing and offering several courses in fuel cell technologies, hydrogen and alternative fuels production, alternative and renewable energy technologies as means of zero emissions hydrogen economy, and sustainable environment. * Establishing a zero emissions PEM fuel cell and hydrogen laboratory supporting curriculum and graduate students���¢�������� teaching and research experiences. * Providing engaging capstone projects for multi-disciplinary teams of senior undergraduate students. * Fostering partnerships with automotive OEMs and energy providers. * Organizing and participating in synergistic projects and activities that grow the program and assure its sustainability.

David Blekhman

2011-09-30T23:59:59.000Z

171

Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

hydrogen systems (TIR) 01-2009 Safety Being revised SAE J2594 Design for recycling PEM fuel cell system 09-2003 Perf. Static SAE J2600 Compressed hydrogen fueling receptacles...

172

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, jA.V.

2010-01-01T23:59:59.000Z

173

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF FOSSIL-FUEL NUCLEAR, GEOTHERMAL, AND ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, A.V.

2010-01-01T23:59:59.000Z

174

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, A.V.

2010-01-01T23:59:59.000Z

175

A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Rosen, L.C.

2010-01-01T23:59:59.000Z

176

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarketsMillion DOE Award |Department

177

Template:Set RenewableFuelStandard | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO: Would be nice

178

Fact #705: December 12, 2011 Fuel Consumption Standards for Combination  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| DepartmentVehicle?

179

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| DepartmentVehicle?| Department of

180

Property:RenewableFuelStandard/Year | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFYID6/OrganizationID8/Website PropertymaterialYear

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place: Folsom,Inc Place:

182

Renewable Fuel Standards Program Update | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergy DieselRenewablePlants

183

Assessment of Technologies for Compliance with the Low Carbon Fuel Standard  

E-Print Network [OSTI]

based standard, carbon intensity, cost-effectiveness.from fuels with lower carbon intensity than gasoline orhave been assigned “carbon intensity” (CI) ratings (gCO 2 e/

Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

2009-01-01T23:59:59.000Z

184

NREL: Hydrogen and Fuel Cells Research - Safety, Codes, and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectriaProjects Photo ofSafety, Codes,

185

In 1991 UC Irvine adopted standards to outperform California's Title 24 Energy Efficiency Standards by 30 percent, use 100 percent reclaimed water, CO2 sensing for  

E-Print Network [OSTI]

in Sacramento. ¡ Nine buildings at UC Irvine bear the U.S. Green Building Council's Leadership in Energy¡ In 1991 UC Irvine adopted standards to outperform California's Title 24 Energy Efficiency, and no rainforest hardwoods ¡ UC Irvine's Smart Labs Initiative, which reduces energy consumption in new

Rose, Michael R.

186

Environmental Life Cycle Implications of Fuel Oxygenate Production from California Biomass  

SciTech Connect (OSTI)

Historically, more than 90% of the excess agricultural residue produced in California (approximately 10 million dry metric tons per year) has been disposed through open-field burning. Concerns about air quality have prompted federal, state, and local air quality agencies to tighten regulations related to this burning and to look at disposal alternatives. One use of this biomass is as an oxygenated fuel. This report focuses on quantifying and comparing the comprehensive environmental flows over the life cycles of two disposal scenarios: (1) burning the biomass, plus producing and using MTBE; and (2) converting and using ETBE.

Kadam, K. L. (National Renewable Energy Laboratory); Camobreco, V. J.; Glazebrook, B. E. (Ecobalance Inc.); Forrest, L. H.; Jacobson, W. A. (TSS Consultants); Simeroth, D. C. (California Air Resources Board); Blackburn, W. J. (California Energy Commission); Nehoda, K. C. (California Department of Forestry and Fire Protection)

1999-05-20T23:59:59.000Z

187

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

SciTech Connect (OSTI)

Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

2008-08-13T23:59:59.000Z

188

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy  

E-Print Network [OSTI]

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy://globalchange.mit.edu/ Printed on recycled paper #12;Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy

189

Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas  

E-Print Network [OSTI]

Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate

190

Fact #704: December 5, 2011 Fuel Consumption Standards for New...  

Energy Savers [EERE]

8,500 lbs., and passenger vans over 10,000 lbs. Standards were set separately for gasoline and diesel vehicles, on a scale that depends on a "work factor." The work factor,...

191

Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards  

SciTech Connect (OSTI)

In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

2010-04-08T23:59:59.000Z

192

FUEL ECONOMY AND CO2 EMISSIONS STANDARDS, MANUFACTURER PRICING STRATEGIES, AND FEEBATES  

SciTech Connect (OSTI)

Corporate Average Fuel Economy (CAFE) standards and CO2 emissions standards for 2012 to 2016 have significantly increased the stringency of requirements for new light-duty vehicle fuel efficiency. This study investigates the role of technology adoption and pricing strategies in meeting new standards, as well as the impact of feebate policies. The analysis is carried out by means of a dynamic optimization model that simulates manufacturer decisions with the objective of maximizing social surplus while simultaneously considering consumer response and meeting CAFE and emissions standards. The results indicate that technology adoption plays the major role and that the provision of compliance flexibility and the availability of cost-effective advanced technologies help manufacturers reduce the need for pricing to induce changes in the mix of vehicles sold. Feebates, when implemented along with fuel economy and emissions standards, can bring additional fuel economy improvement and emissions reduction, but the benefit diminishes with the increasing stringency of the standards.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL; Bunch, Dr David S. [University of California, Davis] [University of California, Davis

2012-01-01T23:59:59.000Z

194

Standard guide for drying behavior of spent nuclear fuel  

E-Print Network [OSTI]

1.1 This guide is organized to discuss the three major components of significance in the drying behavior of spent nuclear fuel: evaluating the need for drying, drying spent nuclear fuel, and confirmation of adequate dryness. 1.1.1 The guide addresses drying methods and their limitations in drying spent nuclear fuels that have been in storage at water pools. The guide discusses sources and forms of water that remain in SNF, its container, or both, after the drying process and discusses the importance and potential effects they may have on fuel integrity, and container materials. The effects of residual water are discussed mechanistically as a function of the container thermal and radiological environment to provide guidance on situations that may require extraordinary drying methods, specialized handling, or other treatments. 1.1.2 The basic issue in drying is to determine how dry the SNF must be in order to prevent issues with fuel retrievability, container pressurization, or container corrosion. Adequate d...

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

195

Multi-Year Analysis of Renewable Energy Impacts in California: Results from the Renewable Portfolio Standards Integration Cost Analysis; Preprint  

SciTech Connect (OSTI)

California's Renewable Portfolio Standard (RPS, Senate Bill 1078) requires the state's investor-owned utilities to obtain 20% of their energy mix from renewable generation sources. To facilitate the imminent increase in the penetration of renewables, the California Energy Commission (CEC), in support of the California Public Utility Commission (CPUC), initiated a study of integration costs in the context of RPS implementation. This effort estimated the impact of renewable generation in the regulation and load-following time scales and calculated the capacity value of renewable energy sources using a reliability model. The analysis team, consisting of researchers from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL) and the California Wind Energy Collaborative (CWEC), performed the study in cooperation with the California Independent System Operator (CaISO), the Pacific Gas and Electric Company (PG&E), and Southern California Edison (SCE). The study was conducted over three phases and was followed by an analysis of a multi-year period. This paper presents results from the multi-year analysis and the Phase III recommendations.

Milligan, M.; Shiu, H.; Kirby, B.; Jackson, K.

2006-08-01T23:59:59.000Z

196

What Has the Federal Renewable Fuels Standard Accomplished - A National Perspective (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of the nation's biofuels industry accomplishments and a perspective on the challenges and implications of reaching goals set in the Renewable Fuel Standard (RFS).

Schwab, A.

2013-04-01T23:59:59.000Z

197

Novel Materials for Intermediate-Temperature Solid Oxide Fuel Cells Vincent Wu, University of California, Berkeley, 2011 SURF Fellow  

E-Print Network [OSTI]

of California, Berkeley, 2011 SURF Fellow Advisor: Prof. Meilin Liu Graduate Mentors: Mingfei Liu, Ben Rainwater Introduction The need to develop new cathode materials for intermediate-temperature solid-oxide fuel cells (IT-SOFCs) is driven by the temperature conditions required for IT-SOFC operation. Designing SOFCs to operate at lower

Li, Mo

198

Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)  

SciTech Connect (OSTI)

Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

Jorgenson, J.; Denholm, P.; Mehos, M.

2014-06-01T23:59:59.000Z

199

Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard  

SciTech Connect (OSTI)

Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

Jorgenson, J.; Denholm, P.; Mehos, M.

2014-05-01T23:59:59.000Z

200

Codes and Standards Requirements for Deployment of Emerging Fuel Cell Technologies  

SciTech Connect (OSTI)

The objective of this NREL report is to provide information on codes and standards (of two emerging hydrogen power fuel cell technology markets; forklift trucks and backup power units), that would ease the implementation of emerging fuel cell technologies. This information should help project developers, project engineers, code officials and other interested parties in developing and reviewing permit applications for regulatory compliance.

Burgess, R.; Buttner, W.; Riykin, C.

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

2006-01-01T23:59:59.000Z

202

Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework  

SciTech Connect (OSTI)

Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each specific outcome threshold are estimated; and the highest of these MVRs, which would then meet all outcome thresholds, is selected as the target MVR. In a second step, implemented only if the target MVR from step 1 is judged impractically high, costs and benefits are estimated and this information is used in a risk management process. Four human outcomes with substantial quantitative evidence of relationships to VRs are identified for initial consideration in setting MVR standards. These are: building-related symptoms (sometimes called sick building syndrome symptoms), poor perceived indoor air quality, and diminished work performance, all with data relating them directly to VRs; and cancer and non-cancer chronic outcomes, related indirectly to VRs through specific VR-influenced indoor contaminants. In an application of step 1 for offices using a set of example outcome thresholds, a target MVR of 9 L/s (19 cfm) per person was needed. Because this target MVR was close to MVRs in current standards, use of a cost/benefit process seemed unnecessary. Selection of more stringent thresholds for one or more human outcomes, however, could raise the target MVR to 14 L/s (30 cfm) per person or higher, triggering the step 2 risk management process. Consideration of outdoor air pollutant effects would add further complexity to the framework. For balancing the objective and subjective factors involved in setting MVRs in a cost-benefit process, it is suggested that a diverse group of stakeholders make the determination after assembling as much quantitative data as possible.

Mendell, Mark J.; Fisk, William J.

2014-02-01T23:59:59.000Z

203

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

2007-01-01T23:59:59.000Z

204

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards,  

E-Print Network [OSTI]

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards

205

Understanding and Informing the Policy Environment: State-Level Renewable Fuels Standards  

SciTech Connect (OSTI)

Renewable fuels standard (RFS) policies are becoming a popular public policy mechanism for developing the market for renewable fuels in the transportation sector. During the past decade, U.S. states and several countries began implementing these more market-based (less command and control) policies to support increased biofuels production and use. This paper presents an overview of current and proposed U.S. state-level policies, as well as selected electric sector policies and international fuel standard policies. Current U.S. state-level renewable fuel policies list drivers including an improved economy and environment, as well as fuel self-sufficiency. Best practices and experience from an evaluation of renewable portfolio standards (RPS) in the United States and international RFS policies can inform U.S. state-level policy by illustrating the importance of policy flexibility, binding targets, effective cost caps, and tradable permits. Understanding and building on the experiences from these previous policies can improve the policy mechanism and further develop a market for renewable fuels to meet the goals of improved economy, environment, and fuel self-sufficiency.

Brown, E.; Cory, K.; Arent, D.

2007-01-01T23:59:59.000Z

206

Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.  

SciTech Connect (OSTI)

Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

1999-12-03T23:59:59.000Z

207

Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision  

SciTech Connect (OSTI)

Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

2000-05-01T23:59:59.000Z

208

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

vehicle component costs (for fuel cells and hydrogenand cost issues for hydrogen and fuel cell vehicles, andFuel economy: • Fuel cell system cost: % of DOE 2015 Target

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

209

CONFIRMATORY SURVEY OF THE FUEL OIL TANK AREA HUMBOLDT BAY POWER PLANT EUREKA, CALIFORNIA  

SciTech Connect (OSTI)

During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

WADE C. ADAMS

2012-04-09T23:59:59.000Z

210

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

section). Also, no conversion factor or carbon content isincludes the use of conversion factors. Since refinery fuelrefineries, a conversion factor specific to California

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

211

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network [OSTI]

future compositions of the electricity sector in California.Similar to the electricity sector, we integrate performanceour modeling of the electricity sector, we defined typical

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

212

Field evaluation of a standard test method for screening fuels in soils at a railroad site  

SciTech Connect (OSTI)

American Society for Testing and Materials (ASTM) Method D-5831-95 is a standard test method for screening fuel contamination in soils. This method uses low-toxicity chemicals and can be used to screen organic-rich soils. It is also fast, easy, and inexpensive to perform. The screening method calls for extracting a sample of soil with isopropyl alcohol (IPA) following treatment with calcium oxide. The resulting extract is filtered, and the ultraviolet (UV) absorbance of the extract is measured at 254 nm. Depending on the information available concerning the contaminant fuel type and availability of the contaminant fuel for calibration, the method can be used to determine the approximate concentration of fuel contamination, an estimated value of fuel contamination, or an indication of the presence or absence of fuel contamination. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and coal oil can be determined. ASTM Method D-5831 was evaluated by using the method to screen soil samples at an actual field site. Soil contaminated with weathered and fresh diesel fuel was sampled and tested for its contaminant concentration. Soil samples were screened in the field using ASTM Method D-5831 and a portable soil test kit. In addition, splits of the soil samples were analyzed in the laboratory using an extractable petroleum hydrocarbon method. Field and laboratory data were compared and show good correlation between field screening and laboratory results.

Schabron, J.F.; Sorini, S.S. [Western Research Institute, Laramie, WY (United States); Butler, E.L. [Gradient Corp., Cambridge, MA (United States); Frisbie, S. [Johnson Co., Inc., Montpelier, VT (United States)

1997-12-31T23:59:59.000Z

213

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

Recommendation 6 Redwood Coast Energy Authority Northwest California Alternative Fuels Readiness Project $300 Alternative Fuel Readiness Proposed Awards California Energy Commission Alternative and Renewable FuelSTATE OF CALIFORNIA ­ NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY

214

Regional variations in US residential sector fuel prices: implications for development of building energy performance standards  

SciTech Connect (OSTI)

The Notice of Proposed Rulemaking for Energy Performance Standards for New Buildings presented life-cycle-cost based energy budgets for single-family detached residences. These energy budgets varied with regional climatic conditions but were all based on projections of national average prices for gas, oil and electricity. The Notice of Proposed Rulemaking indicated that further analysis of the appropriateness of various price measures for use in setting the Standards was under way. This part of that ongoing analysis addresses the availability of fuel price projections, the variation in fuel prices and escalation rates across the US and the effects of aggregating city price data to the state, Region, or national level. The study only provides a portion of the information required to identify the best price aggregation level for developing of the standards. The research addresses some of the economic efficiency considerations necessary for design of a standard that affects heterogeneous regions. The first section discusses the effects of price variation among and within regions on the efficiency of resource allocation when a standard is imposed. Some evidence of the extreme variability in fuel prices across the US is presented. In the second section, time series, cross-sectional fuel price data are statistically analyzed to determine the similarity in mean fuel prices and price escalation rates when the data are treated at increasing levels of aggregation. The findings of this analysis are reported in the third section, while the appendices contain price distributions details. The last section reports the availability of price projections and discusses some EIA projections compared with actual prices.

Nieves, L.A.; Tawil, J.J.; Secrest, T.J.

1981-03-01T23:59:59.000Z

215

Renewables Portfolio Standard  

Broader source: Energy.gov [DOE]

California’s Renewables Portfolio Standard (RPS) was originally established by legislation enacted in 2002. Subsequent amendments to the law have resulted in a requirement for California’s...

216

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

commitment to hydrogen and fuel cell vehicles has beenand storage R&D and fuel cell vehicle program, whilepower applications of fuel cells. Congress has recently re-

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

217

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

a background on alternative fuel acceptance research, withexperience with alternative fuels, impressions of hydrogenRespondent experience with alternative fuels and hydrogen 3)

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

218

Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy  

E-Print Network [OSTI]

clean vehicle and alternative fuel policies have led thethe critical role of alternative fuels and advanced vehicleUC Davis A Portfolio of Alternative Fuel and Vehicle Options

Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

2008-01-01T23:59:59.000Z

219

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network [OSTI]

same circumstances. iii ALTERNATIVE FUEL VEHICLES: THE CASEDoug; Chelius, Michael, “Alternative Fuel Vehicle Programs:Conventional and Alternative Fuel Response Simulator: A

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

220

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.8680 BEHAVIORAL RESPONSE TO HYDROGEN FUEL CELL VEHICLES AND

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

222

EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations  

SciTech Connect (OSTI)

California has been using DOE-2 as the main building energy analysis tool in the development of building energy efficiency standards (Title 24) and the code compliance calculations. However, DOE-2.1E is a mature program that is no longer supported by LBNL on contract to the USDOE, or by any other public or private entity. With no more significant updates in the modeling capabilities of DOE-2.1E during recent years, DOE-2.1E lacks the ability to model, with the necessary accuracy, a number of building technologies that have the potential to reduce significantly the energy consumption of buildings in California. DOE-2's legacy software code makes it difficult and time consuming to add new or enhance existing modeling features in DOE-2. Therefore the USDOE proposed to develop a new tool, EnergyPlus, which is intended to replace DOE-2 as the next generation building simulation tool. EnergyPlus inherited most of the useful features from DOE-2 and BLAST, and more significantly added new modeling capabilities far beyond DOE-2, BLAST, and other simulations tools currently available. With California's net zero energy goals for new residential buildings in 2020 and for new commercial buildings in 2030, California needs to evaluate and promote currently available best practice and emerging technologies to significantly reduce energy use of buildings for space cooling and heating, ventilating, refrigerating, lighting, and water heating. The California Energy Commission (CEC) needs to adopt a new building energy simulation program for developing and maintaining future versions of Title 24. Therefore, EnergyPlus became a good candidate to CEC for its use in developing and complying with future Title 24 upgrades. In 2004, the Pacific Gas and Electric Company contracted with ArchitecturalEnergy Corporation (AEC), Taylor Engineering, and GARD Analytics to evaluate EnergyPlus in its ability to model those energy efficiency measures specified in both the residential and nonresidential Alternative Calculation Method (ACM) of the Title-24 Standards. The AEC team identified gaps between EnergyPlus modeling capabilities and the requirements of Title 24 and ACMs. AEC's evaluation was based on the 2005 version of Title 24 and ACMs and the version 1.2.1 of EnergyPlus released on October 1, 2004. AEC's evaluation is useful for understanding the functionality and technical merits of EnergyPlus for implementing the performance-based compliance methods described in the ACMs. However, it did not study the performance of EnergyPlus in actually making building energy simulations for both the standard and proposed building designs, as is required for any software program to be certified by the CEC for use in doing Title-24 compliance calculations. In 2005, CEC funded LBNL to evaluate the use of EnergyPlus for compliance calculations by comparing the ACM accuracy test runs between DOE-2.1E and EnergyPlus. LBNL team identified key technical issues that must be addressed before EnergyPlus can be considered by the CEC for use in developing future Nonresidential Title-24 Standards or as an ACM tool. With Title 24 being updated to the 2008 version (which adds new requirements to the standards and ACMs), and EnergyPlus having been through several update cycles from version 1.2.1 to 2.1, it becomes crucial to review and update the previously identified gaps of EnergyPlus for use in Title 24, and more importantly to close the gaps which would help pave the way for EnergyPlus to be adopted as a Title 24 compliance ACM. With this as the key driving force, CEC funded LBNL in 2008 through this PIER (Public Interest Energy Research) project with the overall technical goal to expand development of EnergyPlus to provide for its use in Title-24 standard compliance and by CEC staff.

Hong, Tianzhen; Buhl, Fred; Haves, Philip

2008-03-28T23:59:59.000Z

223

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

2006. “California Crude Oil Production and Imports” AprilProduction Report (Quarterly) EIA-856 Monthly Foreign Crude OilProduction Annual Report of Natural and Supplemental Gas Supply and Disposition Domestic Crude Oil

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

224

Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards  

E-Print Network [OSTI]

of  Standards  and  Technology,  Lawrence  Berkeley  Honeywell,  and  IPKeys  Technologies.  Published  in  the  Environmental  Energy  Technologies  Division.  Presented  

Ghatikar, Girish

2014-01-01T23:59:59.000Z

225

Building America Top Innovations 2014 Profile: California Energy Standards Recognize the Importance of Filter Selection  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 < prev next > Sun MonThisManagementBUILDING

226

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

California Energy Commission STAFF REPORT ENERGY EFFICIENCY COMPARISON California's Building Energy Efficiency Standards and the International Energy Conservation Code and American Society America Standard 90.1 JULY 2013 CEC4002013009 CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr

227

Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository  

SciTech Connect (OSTI)

The U.S.Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, “EM shall design and fabricate … DOE SNF canisters for shipment to RW.” (1) It also states, “EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71.” (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

2001-02-01T23:59:59.000Z

228

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

of residual fuel oil are identical in the inventory and inCARB SEDS inventory fuel use Residual fuel oil Distillatein their oil and gas extraction processes. In its inventory,

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

229

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

by 2017 (CA ZEV Regulation) • Fuel Carbon Intensity: 10%reduction in carbon intensity of all fuel sold in state byis the “well to tank” carbon intensity of the fuel itself,

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

230

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

recently re-instated hydrogen and fuel cell vehicle researchTM_2007_094.pdf 6. Hydrogen and Fuel Cell Technical AdvisoryCommittee (HTAC), “Hydrogen and Fuel Cell Technical Advisory

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

231

Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy  

E-Print Network [OSTI]

2010 DOE storage and fuel cell cost targets when competinghydrogen storage and fuel cell costs are higher than theH2 storage; b) fuel cell system cost and durability; c)

Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

2008-01-01T23:59:59.000Z

232

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

commitment to hydrogen and fuel cell vehicles has beenrecently re-instated hydrogen and fuel cell vehicle researchTM_2007_094.pdf 6. Hydrogen and Fuel Cell Technical Advisory

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

233

Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy  

E-Print Network [OSTI]

Academies Press. Hydrogen and Fuel Cell Technical AdvisorySeptember 10. Hydrogen and Fuel Cell Technical AdvisoryUCD-ITS-RR-08-06 Why Hydrogen and Fuel Cells are Needed to

Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

2008-01-01T23:59:59.000Z

234

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

also novel new on-site hydrogen storage systems. In relationfor fuel cells and hydrogen storage), fuel cell durability,firms) on vehicle hydrogen storage pressure and station

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

235

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

s future commitment to hydrogen and fuel cell vehicles haselimination of the U.S. DOE hydrogen production, deliveryhas recently re-instated hydrogen and fuel cell vehicle

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

236

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

on technical and cost issues for hydrogen and fuel cellvehicle component costs (for fuel cells and hydrogenfuel cell durability, vehicle range and hydrogen station capacity and costs.

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

237

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Biofuel (85%) F-T Diesel Bio-Diesel Hydrogen Electric Figureblend Biofuel (85%) F-T Diesel Bio-Diesel Hydrogen ElectricDiesel CNG F-T Diesel Bio-Diesel Methanol Hydrogen Electric

2007-01-01T23:59:59.000Z

238

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Biofuel (85%) F-T Diesel Bio-Diesel Hydrogen Electric FigureBiofuel (85%) F-T Diesel Bio-Diesel Billions GGE HydrogenDiesel CNG F-T Diesel Bio-Diesel Methanol Hydrogen Electric

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

239

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

bio-crude” derived from pyrolysis of biomass possibly at apyrolysis biorefineries all derive their process energy from a portion of the biomass

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

240

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

bio-crude” derived from pyrolysis of biomass possibly at apyrolysis biorefineries all derive their process energy from a portion of the biomass

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

gasoline. “CNG” is compressed natural gas. “BTL” is biomass-gasoline. “CNG” is compressed natural gas. “BTL” is biomass-Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

242

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

gasoline. “CNG” is compressed natural gas. “BTL” is biomass-gasoline. “CNG” is compressed natural gas. “BTL” is biomass-Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied

2007-01-01T23:59:59.000Z

243

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Robert E. 2000. Petroleum refinery process economics. 2ndrefineries.case of biofuels) and the refinery. The term “global warming

2007-01-01T23:59:59.000Z

244

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Robert E. 2000. Petroleum refinery process economics. 2ndrefineries.case of biofuels) and the refinery. The term “global warming

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

245

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

the biofuel crops, and oil refinery equipment. In practice,part of this business, but refinery profits have been goodenergy (in U.S. refineries), and also has differences in

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

246

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

the biofuel crops, and oil refinery equipment. In practice,part of this business, but refinery profits have been goodenergy (in U.S. refineries), and also has differences in

2007-01-01T23:59:59.000Z

247

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

20 percent of all gasoline stations, but sell approximatelypercent of the gasoline retail stations but these stationsthan half of the gasoline retail stations, and have branding

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

248

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

20 percent of all gasoline stations, but sell approximatelypercent of the gasoline retail stations but these stationsthan half of the gasoline retail stations, and have branding

2007-01-01T23:59:59.000Z

249

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

industrial biomass resource is large, the quantity ofbiomass gasification is commercialized, however, significant quantities

2007-01-01T23:59:59.000Z

250

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

industrial biomass resource is large, the quantity ofbiomass gasification is commercialized, however, significant quantities

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

251

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

for calculating the carbon intensity of biofuels. London:is introduced with a carbon intensity of -14 gCO 2 eq. /the average biofuel carbon intensity to 40 gCO 2 eq. /MJ by

2007-01-01T23:59:59.000Z

252

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

for calculating the carbon intensity of biofuels. London:were taken to reduce carbon intensity. Before January 2007,require a reduction in carbon intensity of 31% by 2020 4 .

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

253

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

gas comp. gas comp. gas Hydrogen production from natural gashydrogen production Figure 3-6: Options for hydrogen production Large amounts of

2007-01-01T23:59:59.000Z

254

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

other fossil sources. 15 Syngas-based processes like steamwith catalytic synthesis or syngas fermentation are intendedliquids synthesized from syngas. Demonstration on the scale

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

255

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

other fossil sources. 15 Syngas-based processes like steamwith catalytic synthesis or syngas fermentation are intendedliquids synthesized from syngas. Demonstration on the scale

2007-01-01T23:59:59.000Z

256

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

U.S. Department of Energy. “Biodiesel: Handling and Usecosts and benefits of biodiesel and ethanol biofuels." PNAS,aquatic species program--biodiesel from algae: NREL/TP-580-

2007-01-01T23:59:59.000Z

257

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

cellulosic ethanol, and biodiesel. The renewable volumeof 1, whereas FAME biodiesel is assigned an equivalencysale, ethanol and/or biodiesel may need to be manufactured

2007-01-01T23:59:59.000Z

258

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

the cultivation of biomass feedstocks, including the impactsand a wide range of biomass feedstocks could be utilized forproduced for millenia. Biomass feedstocks are the source of

2007-01-01T23:59:59.000Z

259

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

the cultivation of biomass feedstocks, including the impactsand a wide range of biomass feedstocks could be utilized forproduced for millenia. Biomass feedstocks are the source of

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

260

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

biomass, delivered by pipeline Hydrogen Hydrogen from steam-Coal-based hydrogen with CCS and pipeline distribution mightbiomass, delivered by pipeline H11 Hydrogen Hydrogen from

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

biomass, delivered by pipeline Hydrogen Hydrogen from steam-Coal-based hydrogen with CCS and pipeline distribution mightbiomass, delivered by pipeline H11 Hydrogen Hydrogen from

2007-01-01T23:59:59.000Z

262

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

61 4.3 Carbon capture andPart II: Policy Analysis Page 5 R12: Carbon capture andstorage If carbon capture and storage (CCS) technologies

Sperling, Daniel; Farrell, Alexander

2007-01-01T23:59:59.000Z

263

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

264

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

61 4.3 Carbon capture andPart II: Policy Analysis Page 5 R12: Carbon capture andstorage If carbon capture and storage (CCS) technologies

2007-01-01T23:59:59.000Z

265

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

110 Table 4-14: WESTCARB carbon capture and sequestrationThat $25 charge might make carbon capture and storage (CCS)combined cycle with carbon capture and storage Natural gas

2007-01-01T23:59:59.000Z

266

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

worldwide screening for CO2-EOR and CO2-ECBM projects.enhanced oil recovery (CO 2 -EOR) in which the undergroundreductions due to CO 2 -EOR would automatically be included.

Sperling, Daniel; Farrell, Alexander

2007-01-01T23:59:59.000Z

267

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

b. d – CCS through CO 2 -induced-EOR is not included here.CCS capacity available through EOR projects is highly field-0.3 tonnes CO 2 per bbl of EOR output. However, much of this

2007-01-01T23:59:59.000Z

268

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

worldwide screening for CO2-EOR and CO2-ECBM projects.enhanced oil recovery (CO 2 -EOR) in which the undergroundreductions due to CO 2 -EOR would automatically be included.

2007-01-01T23:59:59.000Z

269

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

b. d – CCS through CO 2 -induced-EOR is not included here.CCS capacity available through EOR projects is highly field-0.3 tonnes CO 2 per bbl of EOR output. However, much of this

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

270

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

D PHEV FFV HEV FCV EV Figure 5-20: New LDV sales per year inFCV EV SI PHEV D PHEV FFV HEV Figure 5-25: New LDVs sales

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

271

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

D PHEV FFV HEV FCV EV Figure 5-20: New LDV sales per year inPHEV FFV HEV FCV EV Figure 5-25: New LDVs sales per year in

2007-01-01T23:59:59.000Z

272

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

and power via biomass gasification. Biomass and Bioenergyrenewables Integrated coal gasification combined cycle withLubricants Waxes Naptha Gasification Ethane, Benzene, and

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

273

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

and power via biomass gasification. Biomass and Bioenergyrenewables Integrated coal gasification combined cycle withLubricants Waxes Naptha Gasification Ethane, Benzene, and

2007-01-01T23:59:59.000Z

274

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

P. Willhite (1998). Enhanced Oil Recovery. Richardson, TX,Deep Offshore Enhanced Oil Recovery Thermal CO 2 Flood ExtraNormalized emissions Enhanced oil recovery d low estimate

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

275

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

P. Willhite (1998). Enhanced Oil Recovery. Richardson, TX,Deep Offshore Enhanced Oil Recovery Thermal CO 2 Flood ExtraNormalized emissions Enhanced oil recovery d low estimate

2007-01-01T23:59:59.000Z

276

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

methyl-tertiary butyl ether (MTBE), from gasoline by 2004.MTBE was used to meet a requirement for gasoline to containbeginning in 2002, replacing MTBE with ethanol. According to

2007-01-01T23:59:59.000Z

277

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

methyl-tertiary butyl ether (MTBE), from gasoline by 2004.MTBE was used to meet a requirement for gasoline to containbeginning in 2002, replacing MTBE with ethanol. According to

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

278

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

M. , T. Howes, et al. (2004). Biofuels For Transport. Paris,the carbon intensity of biofuels. London: E4tech, ECCM,Markets for Green Biofuels. In Transportation Sustainability

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

279

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

M. , T. Howes, et al. (2004). Biofuels For Transport. Paris,the carbon intensity of biofuels. London: E4tech, ECCM,Markets for Green Biofuels. In Transportation Sustainability

2007-01-01T23:59:59.000Z

280

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

the carbon intensity of biofuels. London: E4tech, ECCM,85 Mathews, John A. 2007. Biofuels: What a Biopact betweenPolicy Should Distinguish Biofuels by Differential Global

Sperling, Daniel; Farrell, Alexander

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

the carbon intensity of biofuels. London: E4tech, ECCM,85 Mathews, John A. 2007. Biofuels: What a Biopact betweenLehman. 2006. Carbon-Negative Biofuels from Low- Input High-

2007-01-01T23:59:59.000Z

282

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

projection to meet the 2050 stabilization goal, the average carbon intensitycarbon intensity reductions. Developing consistent and reasonable cost projectionsprojection should be interpreted as a conservative rate of reduction in the average carbon intensity

2007-01-01T23:59:59.000Z

283

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

projection to meet the 2050 stabilization goal, the average carbon intensitycarbon intensity reductions. Developing consistent and reasonable cost projectionsprojection should be interpreted as a conservative rate of reduction in the average carbon intensity

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

284

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Prunings Gasification Ligno-Cellulosic Wastes Food Wasteis likely to be gasification of biomass wastes. Studiesonly from waste oils and greases. If biomass gasification is

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

285

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Prunings Gasification Ligno-Cellulosic Wastes Food Wasteis likely to be gasification of biomass wastes. Studiesonly from waste oils and greases. If biomass gasification is

2007-01-01T23:59:59.000Z

286

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

oils (soybean, palm oil, canola, mustard), algae, Starch;properties differ from canola biodiesel, which in turncrops, including soybeans, canola and mustard seeds, and

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

287

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

oils (soybean, palm oil, canola, mustard), algae, Starch;properties differ from canola biodiesel, which in turncrops, including soybeans, canola and mustard seeds, and

2007-01-01T23:59:59.000Z

288

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

gasolines and diesels, biogas, synthetic natural gas,manure- biodigesters (biogas). Biomethane has similarin landfill gas Methane in biogas from waste-water treatment

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

289

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

manure- biodigesters (biogas). Biomethane has similargasolines and diesels, biogas, synthetic natural gas,in landfill gas Methane in biogas from waste-water treatment

2007-01-01T23:59:59.000Z

290

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

corn Ethanol - EU grain Ethanol - cellulose Fischer Tropschcosts for enzymatic cellulose-ethanol process with on-sitecosts for enzymatic cellulose-ethanol process with on-site

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

291

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

corn Ethanol - EU grain Ethanol - cellulose Fischer Tropschcosts for enzymatic cellulose-ethanol process with on-sitecosts for enzymatic cellulose-ethanol process with on-site

2007-01-01T23:59:59.000Z

292

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

electricity prices with non-generation costs of $0.07816/kWh (Pacific Gas and Electric Company, 2006). Households

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

293

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

electricity prices with non-generation costs of $0.07816/kWh (Pacific Gas and Electric Company, 2006). Households

2007-01-01T23:59:59.000Z

294

Bush Hydrogen Vision "Fueled" By California Station Opening | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess toSustainableClimateSealingColdEnergyClimate Change

295

Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy  

E-Print Network [OSTI]

natural gas (the mostly likely near term source up to 2025), hydrogen used in Recent Alternative Fuel and Vehicle Trends

Cunningham, Joshua M; Gronich, Sig

2008-01-01T23:59:59.000Z

296

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

Thermal Unit Thermally Enhanced Oil Recovery Total fuel useduse of thermally enhanced oil recovery process (TEOR). TEOR

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

297

Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics  

E-Print Network [OSTI]

vehicles powered by clean fuel technology. Participants werewith respect to clean vehicle technology. The post-clinic

Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

2009-01-01T23:59:59.000Z

298

The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States  

E-Print Network [OSTI]

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

299

The effect of standard ambient conditions used for the determination of road load to predict vehicle fuel economy  

E-Print Network [OSTI]

THE EFFECT OF STANDARD AN1BIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject: Mechanical Engineering THE EFFECT OF STANDARD AMBIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Approved...

Love, Michael Lee

1982-01-01T23:59:59.000Z

300

California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,643 10,998Decade Year-0Feet)Year

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

California renewable portfolio could be about 75% variable resources from solar andCalifornia Public Utilities Commission CSP Concentrating solara direct solar fuels industry. California’s Energy Future -

2011-01-01T23:59:59.000Z

302

Vehicle Technologies Office Merit Review 2014: California Fleets and Workplace Alternative Fuels Project  

Broader source: Energy.gov [DOE]

Presentation given by Bay Area Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

303

World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard  

SciTech Connect (OSTI)

This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

Sastri, B.; Lee, A.

2008-09-15T23:59:59.000Z

304

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

California renewable portfolio could be about 75% variable resources from solar andCalifornia Public Utilities Commission CSP Concentrating solara direct solar fuels industry. California’s Energy Future -

Yang, Christopher

2011-01-01T23:59:59.000Z

305

2006-01-0434 Standardized Equation for Hydrogen Gas Densities for Fuel  

E-Print Network [OSTI]

the Fuel Consumption and Range of Fuel Cell Powered Electric and Hybrid Electric Vehicles Using Compressed are presented with experimental data and with the full 32-term equation of state. INTRODUCTION Motor vehicle in fuel economy results. The advent of new drive technology and fuels in motor vehicles has required

Magee, Joseph W.

306

Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartmentLifeDepartment|

307

Property:RenewableFuelStandard/BiomassBasedDiesel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,Website PropertyRegulationsAdvancedBiofuel

308

Introduction to SAE Hydrogen Fueling Standardization Webinar: Q&A  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationary Fuel EnerNOC,FEDERAL ENERGY

309

Assessment of Technologies for Compliance with the Low Carbon Fuel Standard  

E-Print Network [OSTI]

fuels (e.g. , compressed natural gas, oil derived from tar20% by volume), compressed natural gas, electricity, and

Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

2009-01-01T23:59:59.000Z

310

Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:Energy 2:DepartmentYears

311

Fact #704: December 5, 2011 Fuel Consumption Standards for New Heavy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| DepartmentVehicle? |Department

312

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

Nero, jA.V.

2010-01-01T23:59:59.000Z

313

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

Nero, jA.V.

2010-01-01T23:59:59.000Z

314

Assessment of Technologies for Compliance with the Low Carbon Fuel Standard  

E-Print Network [OSTI]

of U.S. croplands for biofuels increases greenhouse gasesthe indirect Effects of Biofuels Production. Renewable FuelsTyner, W. E. ; Birur, D. K. Biofuels for all? Understanding

Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

2009-01-01T23:59:59.000Z

315

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.2 9,758.63,846.302.8Effective

316

We Can't Wait: Driving Forward with New Fuel Economy Standards |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget Water Power

317

Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO]Industry Group Learns About Lights

318

E-Print Network 3.0 - aftermarket fuel delivery Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lands (CEMML) Collection: Environmental Management and Restoration Technologies 6 CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT Summary: CALIFORNIA ALTERNATIVE FUELS MARKET...

319

Sandia National Laboratories: University of California Davis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI ResearchersTroughCalifornia Davis Sandia-UC

320

Vehicle Standards in a Climate Policy Framework WORKING PAPER  

E-Print Network [OSTI]

action to raise Corporate Average Fuel Economy (CAFE) standards and issue vehicle greenhouse gas (GHG) emissions standards both in California and federally. At the same time, U.S. policy makers are moving toward a national program to limit GHG emissions economy wide. The most robust strategy entails capping emissions

Edwards, Paul N.

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal  

E-Print Network [OSTI]

1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

322

Achieving Vehicle Fuel Efficiency: The CAFE Standards and Abstract: As a series of political objectives converge and call for enhanced domestic automobile  

E-Print Network [OSTI]

recommendations for the United States and China: rework minimum fuel efficiency standards, raise the gasoline tax situation in the United States is largely defined by the Energy Policy and Conservation Act, whichAchieving Vehicle Fuel Efficiency: The CAFE Standards and Beyond Abstract: As a series of political

Mauzerall, Denise

323

Approaches to representing aircraft fuel efficiency performance for the purpose of a commercial aircraft certification standard  

E-Print Network [OSTI]

Increasing concern over the potential harmful effects of green house gas emissions from various sources has motivated the consideration of an aircraft certification standard as one way to reduce aircraft C02 emissions and ...

Yutko, Brian M. (Brian Matthew)

2011-01-01T23:59:59.000Z

324

Approaches to Representing Aircraft Fuel Efficiency Performance for the Purpose of a Commercial Aircraft Certification Standard  

E-Print Network [OSTI]

Increasing concern over the potential harmful effects of green house gas emissions from various sources has motivated the consideration of an aircraft certification standard as one way to reduce aircraft CO2 emissions and ...

Yutko, Brian

2011-06-27T23:59:59.000Z

325

Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard  

E-Print Network [OSTI]

affected advanced biofuel companies and decreased soybean oil futures prices, while prices in other in biofuel consumption through 2022. To understand RIN market dynamics, we develop a dynamic model mandate, decreased the value of the subsidy (tax) provided by the RFS2 to the biofuel (fossil fuel

Lin, C.-Y. Cynthia

326

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section VI. Safety and Codes & Standards  

E-Print Network [OSTI]

to H2 from 0-100% at 450o C in N2 background Future Directions ¡ Fabricate 2nd generation sensors.A Safety VI.A.1 Gallium Nitride Integrated Gas/Temperature Sensors for Fuel Cell System Monitoring catalytic gate field effect transistor (FET) sensors to resolve and detect carbon monoxide (CO

327

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

Nero, A.V.

2010-01-01T23:59:59.000Z

328

Renewables Portfolio Standards | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(California andEnergyRenewable FundingStandard

329

Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel  

SciTech Connect (OSTI)

It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

Sonat Sen; Gilles Youinou

2013-02-01T23:59:59.000Z

330

Standard guide for establishing calibration for a measurement method used to analyze nuclear fuel cycle materials  

E-Print Network [OSTI]

1.1 This guide provides the basis for establishing calibration for a measurement method typically used in an analytical chemistry laboratory analyzing nuclear materials. Guidance is included for such activities as preparing a calibration procedure, selecting a calibration standard, controlling calibrated equipment, and documenting calibration. The guide is generic and any required technical information specific for a given method must be obtained from other sources.

American Society for Testing and Materials. Philadelphia

2003-01-01T23:59:59.000Z

331

FY 2012 USED FUEL DISPOSITION CAMPAIGN TRANSPORTATION TASK REPORT ON INL EFFORTS SUPPORTING THE MODERATOR EXCLUSION CONCEPT AND STANDARDIZED TRANSPORTATION  

SciTech Connect (OSTI)

Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for a longer time period than initially assumed. Previous transportation task work in FY 2011, under the Department of Energy’s Office of Nuclear Energy, Used Fuel Disposition Campaign, proposed an alternative for safely transporting used fuel regardless of the structural integrity of the used fuel, baskets, poisons, or storage canisters after an extended period of storage. This alternative assures criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). By relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal or hypothetical accident conditions of transportation. This Transportation Task report addresses the assigned FY 2012 work that supports the proposed moderator exclusion concept as well as a standardized transportation system. The two tasks assigned were to (1) promote the proposed moderator exclusion concept to both regulatory and nuclear industry audiences and (2) advance specific technical issues in order to improve American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 3 rules for storage and transportation containments. The common point behind both of the assigned tasks is to provide more options that can be used to resolve current issues being debated regarding the future transportation of used fuel after extended storage.

D. K. Morton

2012-08-01T23:59:59.000Z

332

Criticality Analysis for Proposed Maximum Fuel Loading in a Standardized SNF Canister with Type 1a Baskets  

SciTech Connect (OSTI)

This document represents a summary version of the criticality analysis done to support loading SNF in a Type 1a basket/standard canister combination. Specifically, this engineering design file (EDF) captures the information pertinent to the intact condition of four fuel types with different fissile loads and their calculated reactivities. These fuels are then degraded into various configurations inside a canister without the presence of significant moderation. The important aspect of this study is the portrayal of the fuel degradation and its effect on the reactivity of a single canister given the supposition there will be continued moderation exclusion from the canister. Subsequent analyses also investigate the most reactive ‘dry’ canister in a nine canister array inside a hypothetical transport cask, both dry and partial to complete flooding inside the transport cask. The analyses also includes a comparison of the most reactive configuration to other benchmarked fuels using a software package called TSUNAMI, which is part of the SCALE 5.0 suite of software.

Chad Pope; Larry L. Taylor; Soon Sam Kim

2007-02-01T23:59:59.000Z

333

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

.............................................................................................................................2 Purpose of Transportation Fuel Price and Demand Forecasts.....................................................................................................................3 CHAPTER 2: Long-Term Fuel Demand Forecast MethodsCalifornia Energy Commission STAFF REPORT TRANSPORTATION FUEL PRICE CASES AND DEMAND SCENARIOS

334

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

SciTech Connect (OSTI)

Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were observed. The southward fluxes over the Pacific Ocean were maintained in a relatively coherent flow within the marine boundary layer, while the eastward fluxes were more vertically dispersed. Our results indicate that state and continental scale atmospheric inversions need to consider areas where concentration measurements are sparse (e.g., over the ocean to the south and west of California), transport within and across the marine boundary layer, and terrestrial boundary layer dynamics. Measurements of {Delta}{sub g} can be very useful in constraining these estimates.

Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

2008-05-01T23:59:59.000Z

335

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic Impact in the United States  

E-Print Network [OSTI]

The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use, as well as (more recently) greenhouse gas (GHG) ...

Karplus, V.J.

336

Electroweak stars: how nature may capitalize on the standard model's ultimate fuel  

SciTech Connect (OSTI)

We study the possible existence of an electroweak star — a compact stellar-mass object whose central core temperature is higher than the electroweak symmetry restoration temperature. We found a solution to the Tolman-Oppenheimer-Volkoff equations describing such an object. The parameters of such a star are not substantially different from a neutron star — its mass is around 1.3 Solar masses while its radius is around 8km. What is different is the existence of a small electroweak core. The source of energy in the core that can at least temporarily balance gravity are standard-model non-perturbative baryon number (B) and lepton number (L) violating processes that allow the chemical potential of B+L to relax to zero. The energy released at the core is enormous, but gravitational redshift and the enhanced neutrino interaction cross section at these energies make the energy release rate moderate at the surface of the star. The lifetime of this new quasi-equilibrium can be more than ten million years. This is long enough to represent a new stage in the evolution of a star if stellar evolution can take it there.

Dai, De-Chang; Stojkovic, Dejan [Department of Physics, SUNY at Buffalo, 239 Fronczak Hall, Buffalo, NY 14260-1500 (United States); Lue, Arthur; Starkman, Glenn, E-mail: ddai@buffalo.edu, E-mail: shinypup@gmail.com, E-mail: gds6@case.edu, E-mail: ds77@buffalo.edu [CERCA, Department of Physics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7079 U.S.A (United States)

2010-12-01T23:59:59.000Z

337

Standard review plan for reviewing safety analysis reports for dry metallic spent fuel storage casks  

SciTech Connect (OSTI)

The Cask Standard Review Plan (CSRP) has been prepared as guidance to be used in the review of Cask Safety Analysis Reports (CSARs) for storage packages. The principal purpose of the CSRP is to assure the quality and uniformity of storage cask reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The CSRP also sets forth solutions and approaches determined to be acceptable in the past by the NRC staff in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a CSAR does not have to follow the solutions or approaches presented in the CSRP. However, applicants should recognize that the NRC staff has spent substantial time and effort in reviewing and developing their positions for the issues. A corresponding amount of time and effort will probably be required to review and accept new or different solutions and approaches.

Not Available

1988-01-01T23:59:59.000Z

338

Electroweak stars: how nature may capitalize on the standard model's ultimate fuel  

E-Print Network [OSTI]

We study the possible existence of an electroweak star - a compact stellar-mass object whose central core temperature is higher than the electroweak symmetry restoration temperature. We found a solution to the Tolman-Oppenheimer-Volkoff equations describing such an object. The parameters of such a star are not substantially different from a neutron star - its mass is around 1.3 Solar masses while its radius is around 8 km. What is different is the existence of a small electroweak core. The source of energy in the core that can at least temporarily balance gravity are standard-model non-perturbative baryon number (B) and lepton number (L) violating processes that allow the chemical potential of $B+L$ to relax to zero. The energy released at the core is enormous, but gravitational redshift and the enhanced neutrino interaction cross section at these energies make the energy release rate moderate at the surface of the star. The lifetime of this new quasi-equilibrium can be more than ten million years. This is long enough to represent a new stage in the evolution of a star if stellar evolution can take it there.

De-Chang Dai; Arthur Lue; Glenn Starkman; Dejan Stojkovic

2011-01-19T23:59:59.000Z

339

Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and Standards Multi-Year Research,

340

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.7 Hydrogen Safety, Codes and Standards  

Broader source: Energy.gov [DOE]

Hydrogen Safety, Codes and Standards technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)  

SciTech Connect (OSTI)

This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

Not Available

2012-04-01T23:59:59.000Z

342

Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)  

SciTech Connect (OSTI)

This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

Not Available

2014-03-01T23:59:59.000Z

343

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...  

Office of Environmental Management (EM)

Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

344

Safety, codes and standards for hydrogen installations :  

SciTech Connect (OSTI)

Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

Harris, Aaron P.; Dedrick, Daniel E.; LaFleur, Angela Christine; San Marchi, Christopher W.

2014-04-01T23:59:59.000Z

345

California Policy Stimulates Carbon Negative CNG for Heavy Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks Describes system for fueling truck...

346

CALIFORNIA ENERGY COMMISSIONGUIDEBOOK  

E-Print Network [OSTI]

renewable energy, production incentives, renewables portfolio standard, biomass, solar thermal electricCALIFORNIA ENERGY COMMISSION COMMISSIONGUIDEBOOK EXISTING RENEWABLE FACILITIES PROGRAM FIFTH Office Manager RENEWABLE ENERGY OFFICE Valerie Hall Deputy Director ENERGY EFFICIENCY AND RENEWABLES

347

Sandia National Laboratories: University of California-Los Angeles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreakingStandardsTCESJBEI ResearchersTroughCalifornia Davis

348

Low Carbon Fuel Standards  

E-Print Network [OSTI]

gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

349

Low Carbon Fuel Standards  

E-Print Network [OSTI]

security and climate change concerns, transportation is the principal culprit. It consumes half the oil

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

350

STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

of major energy trends and issues facing California's electricity, natural gas, and transportation fuelSTATE OF CALIFORNIA -- NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY reliable, secure, and diverse energy supplies; enhance California's economy; and protect public health

351

STATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION  

E-Print Network [OSTI]

, or unnecessary energy use by prescribing, by regulation, standards for minimum levels of operating efficiencySTATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION Rulemaking I. PURPOSE AND AUTHORITY OF THE PROCEEDING The California Energy Commission ("Commission") hereby

352

Smog Check II Evaluation California Inspection and  

E-Print Network [OSTI]

National Ambient Air Quality Standards NO Nitrogen Oxide NO2 Nitrogen Dioxide NOx Nitrogen Oxides RAP Assistance Program CHP California Highway Patrol CO Carbon Monoxide CO2 Carbon Dioxide DMV California

Denver, University of

353

STATE OF CALIFORNIA -NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

the CALIFORNIA ENERGY COMMISSION DECISION for the SEGS VIII SOLAR FACILITY (88-AFC-1C) On June 11, 2013, Next, and standards (Title 20, California Code of Regulations, section 1769). Energy Commission staff is currentlySTATE OF CALIFORNIA - NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY

354

California Energy Commission STAFF DRAFT REPORT  

E-Print Network [OSTI]

drive, hydrogen, fuel cell vehicles, biofuels, biomethane, biodiesel, renewable diesel, diesel AND RENEWABLE FUEL AND VEHICLE TECHNOLOGY PROGRAM CALIFORNIA ENERGY COMMISSION Edmund G. Brown, Jr, Chapter 750, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program

355

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

of Resource Needs for Fuel Cell and Hydrogen Technologies,hydrogen storage is not yet technically feasible, and fuel cellFuels cells can be used in both vehicles and buildings, and California has major hydrogen

2011-01-01T23:59:59.000Z

356

STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

, natural gas, and transportation fuels to meet the needs of the state's economy and growing population proceeding on a range of issues facing California's electricity, natural gas, and transportation fuel sectorsSTATE OF CALIFORNIA -- NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY

357

Solar Construction Permitting Standards (California)  

Broader source: Energy.gov [DOE]

Two bills signed in 2012 place limits on the fees that cities, counties, cities and counties, and charter cities can charge for a solar permit. AB 1801 specifies that a local government cannot base...

358

STATE OF CALIFORNIA STANDARD AGREEMENT  

E-Print Network [OSTI]

SIGNING Exempt per: Rachel L. Grant Kiley, Contracts Grants and Loans Office Manager ADDRESS 1516 Ninth contained in this Agreement shall preclude advance payment to the Government pursuant to Title 2, Government

359

Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.  

SciTech Connect (OSTI)

Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

Bryan, Charles R.; Enos, David George

2014-07-01T23:59:59.000Z

360

Summary of the California Energy Commission's Renewables Portfolio  

E-Print Network [OSTI]

Summary of the California Energy Commission's Renewables Portfolio Standard Contractor Reports, and the Status of Renewables Portfolio Standard Contracting and Regulation Prepared For: California Energy Director, Renewable Energy Program Drake Johnson Office Manager Renewable Energy Office Valerie Hall Deputy

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

Recommendation 6 Redwood Coast Energy Authority Northwest California Alternative Fuels Readiness Project $300 Alternative and Renewable Fuel and Vehicle Technology Program California Energy Commission Alternative Fuel*** Redwood Coast Energy Authority Northwest Califoirnia Alternative Fuels Readiness Project $300,000 $0 $60

362

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Mobile Electricity” Technologies, Early California Household Markets, and Innovation ManagementMobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

Williams, Brett D

2010-01-01T23:59:59.000Z

363

Information California,  

E-Print Network [OSTI]

Ge, Sridevi Parise, Padhraic Smyth Information and Computer Science University of California, Irvine

Smyth, Padhraic

364

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel-cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, EarlyFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early

Williams, Brett D

2010-01-01T23:59:59.000Z

365

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Honda's More Powerful Fuel Cell Concept with Home Hydrogen

Williams, Brett D

2010-01-01T23:59:59.000Z

366

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

Williams, Brett D

2007-01-01T23:59:59.000Z

367

Safety Criticality Standards Using the French CRISTAL Code Package: Application to the AREVA NP UO{sub 2} Fuel Fabrication Plant  

SciTech Connect (OSTI)

Criticality safety evaluations implement requirements to proof of sufficient sub critical margins outside of the reactor environment for example in fuel fabrication plants. Basic criticality data (i.e., criticality standards) are used in the determination of sub critical margins for all processes involving plutonium or enriched uranium. There are several criticality international standards, e.g., ARH-600, which is one the US nuclear industry relies on. The French Nuclear Safety Authority (DGSNR and its advising body IRSN) has requested AREVA NP to review the criticality standards used for the evaluation of its Low Enriched Uranium fuel fabrication plants with CRISTAL V0, the recently updated French criticality evaluation package. Criticality safety is a concern for every phase of the fabrication process including UF{sub 6} cylinder storage, UF{sub 6}-UO{sub 2} conversion, powder storage, pelletizing, rod loading, assembly fabrication, and assembly transportation. Until 2003, the accepted criticality standards were based on the French CEA work performed in the late seventies with the APOLLO1 cell/assembly computer code. APOLLO1 is a spectral code, used for evaluating the basic characteristics of fuel assemblies for reactor physics applications, which has been enhanced to perform criticality safety calculations. Throughout the years, CRISTAL, starting with APOLLO1 and MORET 3 (a 3D Monte Carlo code), has been improved to account for the growth of its qualification database and for increasing user requirements. Today, CRISTAL V0 is an up-to-date computational tool incorporating a modern basic microscopic cross section set based on JEF2.2 and the comprehensive APOLLO2 and MORET 4 codes. APOLLO2 is well suited for criticality standards calculations as it includes a sophisticated self shielding approach, a P{sub ij} flux determination, and a 1D transport (S{sub n}) process. CRISTAL V0 is the result of more than five years of development work focusing on theoretical approaches and the implementation of user-friendly graphical interfaces. Due to its comprehensive physical simulation and thanks to its broad qualification database with more than a thousand benchmark/calculation comparisons, CRISTAL V0 provides outstanding and reliable accuracy for criticality evaluations for configurations covering the entire fuel cycle (i.e. from enrichment, pellet/assembly fabrication, transportation, to fuel reprocessing). After a brief description of the calculation scheme and the physics algorithms used in this code package, results for the various fissile media encountered in a UO{sub 2} fuel fabrication plant will be detailed and discussed. (authors)

Doucet, M.; Durant Terrasson, L.; Mouton, J. [AREVA-NP (France)

2006-07-01T23:59:59.000Z

368

UNIVERSITY OF CALIFORNIA Santa Barbara  

E-Print Network [OSTI]

, B. Dooher, and D. Rice, Analysis of dissolved benzene plumes and methyl tertiary butyl ether (MTBE, An evaluation of MTBE impacts to California groundwater resources, pp. 68 p., Lawrence Livermore National, Temporal Analysis of Methyl Tertiary Butyl Ether (MTBE) Plumes at California Leaking Underground Fuel tank

California at Santa Barbara, University of

369

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

of Resource Needs for Fuel Cell and Hydrogen Technologies,hydrogen storage is not yet technically feasible, and fuel cellFuels cells can be used in both vehicles and buildings, and California has major hydrogen

Yang, Christopher

2011-01-01T23:59:59.000Z

370

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Mobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

Williams, Brett D

2007-01-01T23:59:59.000Z

371

Energy Prices and California's Economic  

E-Print Network [OSTI]

1 Energy Prices and California's Economic Security David RolandHolst October, 2009 on Energy Prices, Renewables, Efficiency, and Economic Growth: Scenarios and Forecasts, financial support drivers, the course of fossil fuel energy prices, energy efficiency trends, and renewable energy

Sadoulet, Elisabeth

372

advanced nuclear fuels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycles University of California eScholarship Repository Summary: uranium or thorium ores and production of nuclear fuel, anynuclear fuel strontium Sievert Trivalent...

373

advanced nuclear fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cycles University of California eScholarship Repository Summary: uranium or thorium ores and production of nuclear fuel, anynuclear fuel strontium Sievert Trivalent...

374

Standard test method for heat of combustion of hydrocarbon fuels by bomb calorimeter (high-precision method)  

SciTech Connect (OSTI)

This method covers the determination of the heat of combustion of hydrocarbon fuels. It is designed specifically for use with aviation turbine fuels when the permissible difference between duplicate determinations is of the order of 0.1%. It can be used for a wide range of volatile and nonvolatile materials where slightly greater differences in precision can be tolerated. The heat of combustion is determined by burning a weighed sample in an oxygen-bomb calorimeter under controlled conditions. The temperature is measured by means of a platinum resistance thermometer. The heat of combustion is calculated from temperature observations before, during, and after combustion, with proper allowance for thermochemical and heat-transfer corrections. Either isothermal or adiabatic calorimeters may be used. The heat of combustion is a measure of the energy available from a fuel. A knowledge of this value is essential when considering the thermal efficiency of equipment for producing either power or heat.

Not Available

1980-01-01T23:59:59.000Z

375

Transforming California's Freight Transport System  

E-Print Network [OSTI]

Transforming California's Freight Transport System Policy Forum on the Role of Freight Transport Standard #12;2050 Vision- Key Conceptual Outcomes Technology Transformation Early Action Cleaner Combustion Multiple Strategies Federal Action Efficiency Gains Energy Transformation 9 #12;Further reduce localized

California at Davis, University of

376

California Nuclear Profile - All Fuels  

U.S. Energy Information Administration (EIA) Indexed Site

other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

377

ENERGY EFFICIENCY STANDARDS FOR RESIDENTIALAND  

E-Print Network [OSTI]

ENERGY EFFICIENCY STANDARDS FOR RESIDENTIALAND NONRESIDENTIAL BUILDINGS 1 JULY 1995 CALIFORNIA ENERGY =I COMMISSION Pete Wilson, Governor ~400-95-001 For historical reference Current Title 24 Standards are available at: http://www.energy.ca.gov/title24/ #12;CALIFORNIA ENERGY COMMISSION Valerie Hall

378

STATE ALTERNATIVE FUELS PLAN COMMISSIONREPORT  

E-Print Network [OSTI]

endorsement of the Plan. Accubuilt Mobility Division Air Products and Chemicals, Inc. Alaska Natural GasSTATE ALTERNATIVE FUELS PLAN COMMISSIONREPORT December 2007 CEC-600-2007-011-CMF California Air Resources Board California Energy Commission Arnold Schwarzenegger, Governor #12;CALIFORNIA AIR RESOURCES

379

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network [OSTI]

independent budgeting of fossil fuel CO 2 over Europe by (CO2008), Where do fossil fuel carbon dioxide emissions from2004), Estimates of annual fossil-fuel CO 2 emitted for each

2008-01-01T23:59:59.000Z

380

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network [OSTI]

of radiocarbon and fossil fuel-derived CO2 in surface air2004), Estimates of annual fossil-fuel CO 2 emitted for eachindependent budgeting of fossil fuel CO2 over Europe by (

Riley, W.J.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model  

E-Print Network [OSTI]

independent budgeting of fossil fuel CO 2 over Europe by (CO2008 Where do fossil fuel carbon dioxide emissions frompatterns and mixing of fossil fuel-derived CO 2 is important

2008-01-01T23:59:59.000Z

382

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

Williams, Brett D

2007-01-01T23:59:59.000Z

383

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

Williams, Brett D

2010-01-01T23:59:59.000Z

384

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2010-01-01T23:59:59.000Z

385

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

Williams, Brett D

2007-01-01T23:59:59.000Z

386

Standard guide for pyrophoricity/combustibility testing in support of pyrophoricity analyses of metallic uranium spent nuclear fuel  

E-Print Network [OSTI]

1.1 This guide covers testing protocols for testing the pyrophoricity/combustibility characteristics of metallic uranium-based spent nuclear fuel (SNF). The testing will provide basic data for input into more detailed computer codes or analyses of thermal, chemical, and mechanical SNF responses. These analyses would support the engineered barrier system (EBS) design bases and safety assessment of extended interim storage facilities and final disposal in a geologic repository. The testing also could provide data related to licensing requirements for the design and operation of a monitored retrievable storage facility (MRS) or independent spent fuel storage installation (ISFSI). 1.2 This guide describes testing of metallic uranium and metallic uranium-based SNF in support of transportation (in accordance with the requirements of 10CFR71), interim storage (in accordance with the requirements of 10CFR72), and geologic repository disposal (in accordance with the requirements of 10CFR60/63). The testing described ...

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

387

Standard guide for evaluation of materials used in extended service of interim spent nuclear fuel dry storage systems  

E-Print Network [OSTI]

1.1 Part of the total inventory of commercial spent nuclear fuel (SNF) is stored in dry cask storage systems (DCSS) under licenses granted by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this guide is to provide information to assist in supporting the renewal of these licenses, safely and without removal of the SNF from its licensed confinement, for periods beyond those governed by the term of the original license. This guide provides information on materials behavior under conditions that may be important to safety evaluations for the extended service of the renewal period. This guide is written for DCSS containing light water reactor (LWR) fuel that is clad in zirconium alloy material and stored in accordance with the Code of Federal Regulations (CFR), at an independent spent-fuel storage installation (ISFSI). The components of an ISFSI, addressed in this document, include the commercial SNF, canister, cask, and all parts of the storage installation including the ISFSI pad. The language of t...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

388

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

Williams, Brett D

2007-01-01T23:59:59.000Z

389

CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

390

Special Problem for Chapter 4: Compare the Lower Heating Values of different fuel gases per Standard Cubic Foot, recalling that  

E-Print Network [OSTI]

2 + 3.76N2) - 1H2Ovapor + 1.88N2 0 = 1 lbmolH2 O lbmolfuel Ă? 18.016 lbmH2 O lbmolH2 O Âľ -5774.6 BTU lbmH2 0 Âś + Qout 0 = -104040 BTU/lbmolfuel + Qout Qout = 104040 BTU/lbmolfuel = 51607 BTU/lbmfuel = 266 BTU/ft3 fuel [274 BTU/SCF] For 16.043 lbm of Methane CH4 + 2 (O2 + 3.76N2) - 2H2O + CO2 + 7.52N2

391

STATE OF CALIFORNIA STATE ENERGY RESOURCES CONSERVATION  

E-Print Network [OSTI]

.5.4, 25402.8 and 25910. II. HISTORY OF THE PROCEEDING To develop the 2013 Standards, the Energy CommissionSTATE OF CALIFORNIA STATE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION ) 2013 Title 24 Building Energy Efficiency ) Docket No. 12-BSTD-1 Standards Rulemaking Proceeding ) California Code

392

California Hydrogen Infrastructure Project  

SciTech Connect (OSTI)

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a Ă?Â?Ă?¢Ă?Â?Ă?Â?Ă?Â?Ă?Â?real-worldĂ?Â?Ă?¢Ă?Â?Ă?Â?Ă?Â?Ă? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nationĂ?Â?Ă?¢Ă?Â?Ă?Â?Ă?Â?Ă?Â?s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air ProductsĂ?Â?Ă?¢Ă?Â?Ă?Â?Ă?Â?Ă?Â? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station userĂ?Â?Ă?¢Ă?Â?Ă?Â?Ă?Â?Ă?Â?s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

393

California Solar Initiative California Public Utilities Commission  

E-Print Network [OSTI]

..................................................................................... 30 5.8 California Solar Initiative Increases Statewide GridInstalled Capacity by 40 Percent since California Solar Initiative California Public Utilities Commission Staff Progress Report July 2008 #12;California Solar Initiative, CPUC Staff Progress Report, July 2008

394

California Solar Initiative California Public Utilities Commission  

E-Print Network [OSTI]

California Solar Initiative California Public Utilities Commission Staff Progress Report January 2008 #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 This page intentionally left blank. #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 Table of Contents

395

California Public Utilities Commission California Solar Initiative  

E-Print Network [OSTI]

California Public Utilities Commission California Solar Initiative Program Handbook May 2014 #12, Sonoma, CA Courtesy: SolarCraft #12;Table of Contents i California Solar Initiative Program Handbook September 2012 1. Introduction: California Solar Initiative Program

396

Standards, Ethics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout Âť Staff Basic Energy Sciences (BES)Standards for

397

California Energy Commission GUIDELINES  

E-Print Network [OSTI]

California Energy Commission GUIDELINES GUIDELINES FOR CALIFORNIA'S SOLAR guidelines for solar energy system incentive programs in California. The Senate Bill 1, California Solar Initiative, CSI, New Solar Homes Partnership, NSHP, California Energy Commission

398

California Energy Commission GUIDELINES  

E-Print Network [OSTI]

California Energy Commission GUIDELINES GUIDELINES FOR CALIFORNIA'S SOLAR ELECTRIC INCENTIVE Bill 1, this document presents guidelines for solar energy system incentive programs in California the California Solar Initiative and the New Solar Homes Partnership. This legislation requires the California

399

California Energy Commission LEAD COMMISSIONER REPORT  

E-Print Network [OSTI]

and renewable fuels supports California's commitment to curb greenhouse gas emissions, reduce petroleum use measurable transition from the nearly exclusive use of petroleum fuels to a diverse portfolio of alternative fuels that meet petroleum reduction goals and alternative fuel use goals." The Energy Commission has

400

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

On other hand, accidents at nuclear facilities could nott ed expos ur e from a nuclear accident which would warrantresulting from accidents at nuclear facilities. Average

Nero, A.V.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

average value for nuclear plants) aFinal Envir. Statement (Statement, Koshkonong Nuclear Plant, August 1976. U. S.rem; operation of the nuclear plants themselves only *Other

Nero, A.V.

2010-01-01T23:59:59.000Z

402

Scholastic Standards Scholastic Standards  

E-Print Network [OSTI]

Scholastic Standards _______________ 1.8 Page 1 Scholastic Standards Center for Advising-7095 Gaye DiGregorio, Executive Director Scholastic standards are mandated by the faculty through the Faculty Council Committee on Scholastic Standards. Procedures relative to scholastic standards

403

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

challenges facing hydrogen storage technologies, refuelinguncertainties surrounding hydrogen storage, fuel-cell-system1) vehicle range/hydrogen storage and 2) home refueling. 1:

Williams, Brett D

2010-01-01T23:59:59.000Z

404

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

storage, and initial cost barriers—enable hydrogen-fuel-cellHydrogen Economy. New York: Tarcher-Putnam, 2002. ) production, fuel-cell costfuel-cell vehicle fed hydrogen by a stationary reformer reforming natural gas to produce hydrogen at a cost

Williams, Brett D

2010-01-01T23:59:59.000Z

405

California City, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city inCCSE Jump to: navigation, searchCalifornia City

406

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

room )I I( I I ,i I CALIFORNIA SOLAR DATA MANUAL I. ! I ienergy resource. The California Solar Data Manual describestowards fulfilling California's solar data needs is the

Berdahl, P.

2010-01-01T23:59:59.000Z

407

About California Agriculture  

E-Print Network [OSTI]

Submissions. California Agriculture manages the peer reviewread our CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 2Carol Lovatt California Agriculture (ISSN 0008-0845, print,

Editor, The

2013-01-01T23:59:59.000Z

408

About California Agriculture  

E-Print Network [OSTI]

Form 3579” to California Agriculture at the address above. ŠSubmissions. California Agriculture manages the peer reviewour Writing CALIFORNIA AGRICULTURE • VOLUME 66 , NUMBER 4

Editors, The

2012-01-01T23:59:59.000Z

409

About California Agriculture  

E-Print Network [OSTI]

Submissions. California Agriculture manages the peer reviewread our CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 1Carol Lovatt California Agriculture (ISSN 0008-0845, print,

Editor, The

2013-01-01T23:59:59.000Z

410

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

411

Effects of the drought on California electricity supply and demand  

E-Print Network [OSTI]

ELECTRICITY SUPPLY Hydroelectric Energy Supply Thermal-question. Data on PG&E's hydroelectric resources and Pacific27 Table 28 Table 29 Hydroelectric Supply in California Fuel

Benenson, P.

2010-01-01T23:59:59.000Z

412

California Register | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: CrystallineOpen EnergyCalifornia Public UtilitiesRegister

413

California Solar Initiative California Public Utilities Commission  

E-Print Network [OSTI]

California Solar Initiative California Public Utilities Commission Staff Progress Report January 2009 #12;2 California Solar Initiative CPUC Staff Progress Report - January 2009 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

414

California Solar Initiative California Public Utilities Commission  

E-Print Network [OSTI]

California Solar Initiative California Public Utilities Commission Staff Progress Report October 2008 #12;2 California Solar Initiative CPUC Staff Progress Report - October 2008 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

415

Ex parte communication of the California Energy Commission- Docket...  

Broader source: Energy.gov (indexed) [DOE]

standards for battery chargers and Class A external power supplies. Ex parte communication of the California Energy Commission- Docket No. EERE-2008-BT-STD-0005 More...

416

Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission  

SciTech Connect (OSTI)

The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

Mosey, G.; Vimmerstedt, L.

2009-07-01T23:59:59.000Z

417

Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts  

E-Print Network [OSTI]

Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts J,b a Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA b Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Faraon, Andrei

418

California Independent System Operator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline RockCaldera2CaliforniaCalifornia

419

Hydesville, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,is aHy9Hydesville, California:

420

San Pablo, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solaris aMarino, California:Pablo, California:

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Huntington Park, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark, California: Energy Resources

422

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

423

Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519  

SciTech Connect (OSTI)

Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States)

2013-07-01T23:59:59.000Z

424

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

each type of fuel. Gas and Oil Demand The California energyin the first scenario. Oil Demand and Supply For the firstfrom the CEReDe staff. Oil demand and supply forecasts for

Authors, Various

2010-01-01T23:59:59.000Z

425

California Energy Commission COMMITTEE DRAFT REPORT  

E-Print Network [OSTI]

and renewable fuels supports California's commitment to curb greenhouse gas emissions, reduce petroleum use the nearly exclusive use of petroleum fuels to a diverse portfolio of alternative fuels that meet petroleum Partnership (courtesy of Toyota Motor Corporation) ii #12;PREFACE The increased use of alternative

426

STATE OF CALIFORNIA ENERGY RESOURCES CONSERVATION  

E-Print Network [OSTI]

MIX Fuel Type Net System Power Coal 11% Large Hydroelectric 10% Natural Gas 50% Nuclear 16% Other 1 is the percentage of annual generation produced for consumption in California during the previous calendar year from each of the statute's fuel type categories. Imports of out-of-state generation by fuel type are added

427

State Experience in Hydrogen Infrastructure in California  

E-Print Network [OSTI]

Exceed Renewable Requirement Multiple technologies encouraged -extra scoring points for fuel cell energy District $2.7 $8.2 100 Co-generating electricity & fuel cell quality hydrogen using high temperature fuel Board #12;Agenda California Station History Approach for State Solicitations Stations under

428

California Energy Commission SUPPLEMENTAL STAFF REPORT  

E-Print Network [OSTI]

testing and data collection, and establish reach codes for "green buildings." The Energy CommissionCalifornia Energy Commission SUPPLEMENTAL STAFF REPORT SUPPLEMENTAL INITIAL STUDY/PROPOSED NEGATIVE DECLARATION FOR THE 2013 BUILDING ENERGY EFFICIENCY STANDARDS FOR RESIDENTIAL

429

California Energy Commission STAFF DRAFT REPORT  

E-Print Network [OSTI]

with certifying eligible renewable energy resources that satisfy RPS procurement requirements and developing California Energy Commission STAFF DRAFT REPORT RENEWABLES PORTFOLIO STANDARD 20082010 Kate Zocchetti Acting Office Manager RENEWABLE ENERGY OFFICE Suzanne Korosec Deputy Director RENEWABLE

430

Palmdale, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place:FerrySprings, California:

431

Newark, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) Jump to: navigation, searchCalifornia: Energy

432

Oakley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut,Place, Louisiana:Oakdale isOakley, California:

433

Lathrop, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN) JumpLarderelloLathrop, California: Energy

434

Lawndale, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN)Lauderhill, Florida:Lawndale, California:

435

Littlerock, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)isLithologicallyLittlerock, California:

436

Liberty Power Corp. (California) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012LeeCalifornia References: EIA

437

Energy Incentive Programs, California | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y.EnergyDepartmentCalifornia Energy

438

Montara, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate Zone Subtype A.InformationGuideMDUMontara, California:

439

Montebello, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate Zone SubtypeSereno, California: Energy Resources Jump

440

Manteca, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town in CarrollManteca, California: Energy Resources

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Maywood, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis aMaury County, Tennessee:MayflowerMaywood, California:

442

Westley, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation,WesternWestley, California: Energy Resources Jump

443

Westminster, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation,WesternWestley, California: Energy

444

Westmorland, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to: navigation,WesternWestley, California:WestminsterWestmorland,

445

Gardena, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. It is classifiedGardena, California:

446

Gilroy, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformationGilroy, California: Energy Resources Jump to:

447

Rainbow, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River SectorRainbow, California:

448

Rubidoux, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRoosevelt Gardens is°andRubidoux, California: Energy Resources

449

Inglewood, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429IndianaProfessionalInglewood, California: Energy

450

Tracy, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmontInformation WaynesvilleTracy, California: Energy

451

Fremont, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont, California: Energy Resources

452

Fresno, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont, California: EnergyFrench

453

Imperial, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISIIrrigation District (Redirected

454

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

Yang, Christopher

2011-01-01T23:59:59.000Z

455

California Energy Commission COMMITTEE REPORT  

E-Print Network [OSTI]

, certificates, certification, conduit hydroelectric, digester gas, electrolysis, eligibility, fuel cell, renewable energy credits, Renewables Portfolio Standard, repowered, retail sales, small hydroelectric, Self

456

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

Infrastructure: Electric, Natural Gas, Propane, E85, and Diesel Substitutes Terminals was posted on April 27 Program Under Solicitation PON11602 ­ Alternative Fuels Infrastructure: Electric, Natural Gas, Propane, E85, and Diesel Substitutes Terminals MARCH 2013 CEC6002012004AD3 #12;CALIFORNIA ENERGY

457

Car buyers and fuel economy?  

E-Print Network [OSTI]

corporate average fuel economy standards. Economic InquiryAll rights reserved. Keywords: Fuel economy; Fuel ef?ciency;improvement in the fuel economy of an SUV they have designed

Turrentine, Tom; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

458

Biodiesel Fuel  

E-Print Network [OSTI]

publication 442-880 There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel. ASTM standard for biodiesel (ASTM D6751) Biodiesel fuel, hereafter referred to as simply biodiesel,

unknown authors

459

STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

examines a range of issues facing the state's electricity, natural gas, and transportation fuel sectorsSTATE OF CALIFORNIA -- NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY reliability, enhance the #12;2 state's economy, and protect public health and safety." (Public Resources Code

460

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

STATE OF CALIFORNIA ­ NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY and Renewable Fuel and Vehicle Technology Program." The Energy Commission proposes to award funding to the projects listed below, which received federal awards in response to the U.S. Department of Energy

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

STATE OF CALIFORNIA ­ NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY and Reinvestment Act of 2009 Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program." The Energy federal awards in response to the U.S. Department of Energy's American Recovery and Reinvestment Act

462

STATE OF CALIFORNIA NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

STATE OF CALIFORNIA ­ NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY federal awards in response to the U.S. Department of Energy's American Recovery and Reinvestment Act Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Solicitation PON-08

463

CALIFORNIA ENERGY COMMISSION California Energy Commission  

E-Print Network [OSTI]

ASSOCIATION, AND THE VOTE SOLAR INITIATIVE FOR SOCIETAL COST-BENEFIT EVALUATION OF CALIFORNIA'S NET ENERGY undertake a study of the societal costs and benefits ofthe net energy metering ("NEM") program authorized, CALIFORNIA CENTER FOR SUSTAINABLE ENERGY, CALIFORNIA ENVIRONMENTAL JUSTICE ALLIANCE, CALIFORNIA SOLAR ENERGY

464

California's Environmental  

E-Print Network [OSTI]

-2011 #12;Local Governments Shape How Communities Grow photostock #12;California is investing in communities and planning ¡ Strategic Growth Council ­ Planning grants ­ Modeling improvement grants ­ MPO-State Agency Associates for OPR #12;Sustainable Communities Provide Fiscal Benefits to Local Governments $0.0 $20.0 $40

California at Davis, University of

465

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low Carbon Fuels Standard

466

Delivering the Green: The Future of California's Freight Transportation System Summary and Reading List  

E-Print Network [OSTI]

List California's freight sector is a critical part of California's economic engine, generating-duty vehicles in California. This includes, in the near term: efficiency improvements in the engines-in electric and hydrogen fuel cell electric powertrains and lower-carbon fuels. ¡ In addition to their energy

California at Davis, University of

467

User`s manual for the data acquisition system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California  

SciTech Connect (OSTI)

This report describes the use of the data acquisition software developed by Argonne National Laboratory and installed at the fuel oil spill site at Sandia National Laboratories. This software provides various programs for interacting with the monitoring and logging system that collects electronic data from sensors installed downhole in the study area. This manual provides basic information on the design and use of these user interfaces, which assists the site coordinator in monitoring the status of the data collection process. Four software programs are included in the data acquisition software suite to provide the following capabilities: datalogger interaction, file management, and data security.

Widing, M.A.; Leser, C.C.

1995-04-01T23:59:59.000Z

468

User`s manual for the data analysis system for monitoring the fuel oil spill at the Sandia National Laboratories installation in Livermore, California  

SciTech Connect (OSTI)

This report describes the use of the data analysis software developed by Argonne National laboratory (ANL) and installed at the fuel oil spill site at Sandia National Laboratories. This software provides various programs for anlayzing the data from physical and chemical sensors. This manual provides basic information on the design and use of these user interfaces. Analysts use these interfaces to evaluate the site data. Four software programs included in the data analysis software suite provide the following capabilities; physical data analysis, chemical data entry, chemical data analysis, and data management.

Widing, M.A.; Leser, C.C.

1995-04-01T23:59:59.000Z

469

Got Standards? "Got Standards?"  

E-Print Network [OSTI]

9000 standards were developed by the International Organization for Standardization, which was founded in 1946. The purpose of the organization was to promote the development of international standards in order to bring harmony to global standards for international trade. Enter ISO 9000. The Basics In order

Vardeman, Stephen B.

470

Residential ventilation standards scoping study  

SciTech Connect (OSTI)

The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

McKone, Thomas E.; Sherman, Max H.

2003-10-01T23:59:59.000Z

471

Fuel Efficiency Automobile Test Quality Assurance Narrative  

E-Print Network [OSTI]

Fuel Efficiency Automobile Test Quality Assurance Narrative Standard Operating Procedures Help ........................................................................................................... 3 FEAT Standard Operating Procedures...................................................................................................................24 Maintenance Items

Denver, University of

472

Clean Cities: Southern California Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmerging FuelsRelated4Rogue Valley CleanCalifornia Clean

473

STATE OF CALIFORNIA --NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

) 2013 BUILDING ENERGY EFFICIENCY STANDARDS California Energy Commission Docket No. 12-BSTD-01 The Notice Energy Commission of the proposed update to the Energy Efficiency Building Standards of Title 24 Part 6/rulemaking/notices/2012-02- 07_NOPA_2013_Building_Efficiency_Standards.pdf #12;

474

Can feedstock production for biofuels be sustainable in California?  

E-Print Network [OSTI]

sustainability standards for bio- fuel production (van Damsustainable use of crops for bio- fuels will depend on ever-for bio- nitrogen fertilizer from soils at greater fuel.

Kaffka, Stephen R.

2009-01-01T23:59:59.000Z

475

California's Water Energy Relationship  

E-Print Network [OSTI]

.........................................................................................................................7 THE ENERGY INTENSITY OF THE WATER USE CYCLE.........................................................................................9 ENERGY INTENSITY IN NORTHERN AND SOUTHERN CALIFORNIA1 CALIFORNIA ENERGY COMMISSION California's Water ­ Energy Relationship Prepared in Support

476

Nationwide: New Efficiency Standards for Power Supplies Anticipate...  

Energy Savers [EERE]

Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon California: Heliotrope Technologies Wins R&D 100 Award for Universal Smart...

477

CALIFORNIA'S NEXT GENERATION OF LOAD MANAGEMENT STANDARDS  

E-Print Network [OSTI]

eliminate the need for new peaking generation capacity and associated transmission and distribution capacity. By reducing capacity, generation and infrastructure costs, it can lower total power costs and customer bills wholesale power spot markets more competitive and efficient and less subject to the abuse of market power

478

CALIFORNIA'S NEXT GENERATION OF LOAD MANAGEMENT STANDARDS  

E-Print Network [OSTI]

the need for new peaking generation capacity and associated transmission and distribution capacity. By reducing capacity, generation and infrastructure costs, it can lower total power costs and customer bills wholesale power spot markets more competitive and efficient and less subject to the abuse of market power

479

Teacher Instructions: California State Standard's Covered  

E-Print Network [OSTI]

is neutralized with a base (Alka-Seltzer). A neutralization reaction always produces salt and water. 2. Acid rain is rain that is slightly acidic due to pollution in the air. Acid rain greatly affects the ecosystems is acid rain, fog, or snow dangerous to sea life but also to human's respiratory system as well. #12;

Spakowitz, Andrew J.

480

Arnold Schwarzenegger CALIFORNIA OCEAN WAVE  

E-Print Network [OSTI]

Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration ¡ Transportation California Ocean Wave Energy Assessment is the final report

Note: This page contains sample records for the topic "fuel standard california" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

California energy flow in 1991  

SciTech Connect (OSTI)

Energy consumption in California fell in 1991 for the first time in five years. The State`s economy was especially hard hit by a continuing national recession. The construction industry for the second year experienced a dramatic downturn. Energy use in the industrial sector showed a modest increase, but consumption in other end-use categories declined. The decrease in energy used in transportation can be traced to a substantial fall in the sales of both highway diesel fuels and vessel bunkering fuels at California ports, the latter reflecting a mid-year increase in taxes. Gasoline sales by contrast increased as did the number of miles traveled and the number of automobiles in the State. Production in California`s oil and gas fields was at 1990 levels thus arresting a steady decline in output. Due to enlarged steam flooding operations, production at several fields reached record levels. Also countering the decline in many of California fields was new production from the Port Arguello offshore field. California natural gas production, despite a modest 1991 increase, will not fill the use within the State. Petroleum comprised more than half of the State`s energy supply principally for transportation. Natural gas use showed a small increase. Oil products play virtually no role in electrical production. The largest single source of electricity to the State is imports from the Pacific Northwest and from coal-fired plants in the Southwest. Combined contributions to transmitted electricity from renewable and alternate sources declined as hydropower was constrained by a prolonged drought and as geothermal power from the largest and oldest field at The Geysers fell. Windpower grew slightly; however solar power remained at 1990 levels and made no substantial contribution to total power generation.

Borg, I.Y.; Briggs, C.K.

1993-04-01T23:59:59.000Z

482

California's electricity crisis  

E-Print Network [OSTI]

The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

Joskow, Paul L.

2001-01-01T23:59:59.000Z

483

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

484

STATE OF CALIFORNIA STATE ENERGY RESOURCES CONSERVATION  

E-Print Network [OSTI]

. HISTORY OF THE PROCEEDING To develop the 2013 Standards, the Energy Commission conducted an open, transpaSTATE OF CALIFORNIA STATE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION ) 2013 Title 24 Building Energy Efficiency) Docket No. 12-BSTD-1 Standards Rulemaking Proceeding ) Order No. 12

485

Where do California's greenhouse gases come from?  

ScienceCinema (OSTI)

Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

Fischer, Marc

2013-05-29T23:59:59.000Z

486

E-Print Network 3.0 - adding e85 fueling Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuels, as defined. The people ... Source: California Energy Commission Collection: Energy Storage, Conversion and Utilization 3 NC Alternative Fuels Consortium Meeting May...

487

E-Print Network 3.0 - alternative fuels program Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air quality: alternative fuels. Existing law imposes various limitations... the use of alternative fuels, as ... Source: California Energy Commission Collection: Energy Storage,...

488

E-Print Network 3.0 - alternative fuel reductions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air quality: alternative fuels. Existing law imposes various limitations... the use of alternative fuels, as defined. The ... Source: California Energy Commission Collection:...

489

E-Print Network 3.0 - alternative fuel program Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air quality: alternative fuels. Existing law imposes various limitations... the use of alternative fuels, as ... Source: California Energy Commission Collection: Energy Storage,...

490

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels standard requires 36 billion gallons of renewable  

E-Print Network [OSTI]

Utilizing Bioenergy By-products in Beef Production Systems The newly expanded renewable fuels studies. Current research focuses on impacts of feeding by-prod- ucts of the bioenergy industry on Animal

491

PROGRAM OPPORTUNITY NOTICE Alternative and Renewable Fuel and Vehicle  

E-Print Network [OSTI]

Alternative Fuel Readiness Plans PON-13-603 http://www.energy.ca.gov/contracts State of California California Energy Commission August 12, 2013 #12;8-9-13 Page i PON-13-603 Alternative Fuel Readiness Plans TablePROGRAM OPPORTUNITY NOTICE Alternative and Renewable Fuel and Vehicle Technology Program

492

Fuel Cell Vehicles and Hydrogen in Preparing for market launch  

E-Print Network [OSTI]

Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 ¡ 300-400 mile range ¡ Zero-tailpipe emissions ¡ To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

California at Davis, University of

493

The Environmental Protection Agency's Safety Standards for Disposal of Spent Nuclear Fuel: Potential Path Forward in Response to the Report of the Blue Ribbon Commission on America's Nuclear Future - 13388  

SciTech Connect (OSTI)

Following the decision to withdraw the Yucca Mountain license application, the Department of Energy created a Blue Ribbon Commission (BRC) on America's Nuclear Future, tasked with recommending a national strategy to manage the back end of the nuclear fuel cycle. The BRC issued its final report in January 2012, with recommendations covering transportation, storage and disposal of spent nuclear fuel (SNF); potential reprocessing; and supporting institutional measures. The BRC recommendations on disposal of SNF and high-level waste (HLW) are relevant to the U.S. Environmental Protection Agency (EPA), which shares regulatory responsibility with the Nuclear Regulatory Commission (NRC): EPA issues 'generally applicable' performance standards for disposal repositories, which are then implemented in licensing. For disposal, the BRC endorses developing one or more geological repositories, with siting based on an approach that is adaptive, staged and consent-based. The BRC recommends that EPA and NRC work cooperatively to issue generic disposal standards-applying equally to all sites-early in any siting process. EPA previously issued generic disposal standards that apply to all sites other than Yucca Mountain. However, the BRC concluded that the existing regulations should be revisited and revised. The BRC proposes a number of general principles to guide the development of future regulations. EPA continues to review the BRC report and to assess the implications for Agency action, including potential regulatory issues and considerations if EPA develops new or revised generic disposal standards. This review also involves preparatory activities to define potential process and public engagement approaches. (authors)

Forinash, Betsy; Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Radiation Protection Division (United States)] [U.S. Environmental Protection Agency, Radiation Protection Division (United States)

2013-07-01T23:59:59.000Z

494

ORISE: Standards development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACKRadiological programStandards development For 30 years,

495

Interconnection Standards  

Broader source: Energy.gov [DOE]

'''''Note: The California Public Utilities Commission (CPUC) approved a [http://docs.cpuc.ca.gov/EFILE/MOTION/162852.PDF proposed settlement] in September 2012, enacting the first fundamental...

496

NUCLEAR POWER in CALIFORNIA  

E-Print Network [OSTI]

NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

497

California Energy Commission GUIDELINES  

E-Print Network [OSTI]

California Energy Commission GUIDELINES GUIDELINES FOR CALIFORNIA'S SOLAR ELECTRIC INCENTIVE, this document presents guidelines for solar energy system incentive programs in California. Senate Bill 1 is the culmination of the Governor's Million Solar Roofs Initiative, expanding upon the California Solar Initiative

498

Energy Department Invests $7 Million to Commercialize Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

per fueling and test 20 of these trucks at FedEx facilities in Tennessee and California. Air Products and Chemicals, Inc., of Allentown, Pennsylvania, and Structural Composites...

499

Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr....

500

Fuel Processor Enabled NOx Adsorber Aftertreatment System for...  

Broader source: Energy.gov (indexed) [DOE]

4 Diesel Engine Emissions Reduction Conference Coronado, California August 29-September 2, 2004 Fuel Processor Enabled NOx Adsorber After-Treatment System for Diesel Engine...