National Library of Energy BETA

Sample records for fuel standard california

  1. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    ITS—RR—07—07 A Low-Carbon Fuel Standard for California PartEnergy Commission. A Low Carbon Fuel Standard For CaliforniaPont, et al. (2007). Full Fuel Cycle Assessment Well To Tank

  2. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    California States at a fraction of the energy and environmental cost.California 2006). Major breakthroughs in biomass yields, production cost reductions, and energyenergy A Low Carbon Fuel Standard For California costs

  3. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    A Low-Carbon Fuel Standard for California Part 1: TechnicalEnergy Air Quality, and Fuels 2000. Schwarzenegger, Arnold.Order S-01-07: Low Carbon Fuel Standard. Sacramento, CA.

  4. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    innovation and development of new technologies that can dramatically lower GHG emissions at low costsinnovation and thus A Low Carbon Fuel Standard For California are somewhat lower than current production costs

  5. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    from California’s heavy oil and importing fuel refined frommanufactured from heavy oil, and fuel b might representresources, including heavy oil, tar sands, oil shale and

  6. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    from California’s heavy oil and importing fuel refined frommanufactured from heavy oil, and fuel b might representresources, including heavy oil, tar sands, oil shale and

  7. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    CDC 2005). Heavy oil resources require additional energyin California Low-quality oil resources produce fuels withthan high-quality oil resources. The differences between

  8. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    CDC 2005). Heavy oil resources require additional energyin California Low-quality oil resources produce fuels withthan high-quality oil resources. The differences between

  9. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    and diesel fuel, but not LPG, jet fuel, residual oil, orbaseline year, 2004 Fuel LPG Motor gasoline Jet fuel Dieseland diesel fuel, but not LPG, A Low Carbon Fuel Standard For

  10. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    and diesel fuel, but not LPG, jet fuel, residual oil, orbaseline year, 2004 Fuel LPG Motor gasoline Jet fuel Dieseland diesel fuel, but not LPG, A Low Carbon Fuel Standard For

  11. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    S. Denning, C. B. A Low Carbon Fuel Standard for Californiaunder the Renewable Transport Fuel Obligation: TechnicalOrder S-01-07: Low Carbon Fuel Standard. Sacramento, CA.

  12. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    S. Denning, C. B. A Low Carbon Fuel Standard for Californiaunder the Renewable Transport Fuel Obligation: TechnicalOrder S-01-07: Low Carbon Fuel Standard. Sacramento, CA.

  13. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Forecasts of California Transportation Energy Demand 2005-70 percent of California’s transportation energy, diesel 17of the transportation energy market in California. However,

  14. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    Forecasts of California Transportation Energy Demand 2005-70 percent of California’s transportation energy, diesel 17of the transportation energy market in California. However,

  15. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    given to the California Power Exchange in 1999. Also, thefrom the California Power Exchange to show that millions ofgiven to the California Power Exchange in 1999. Also, the

  16. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    given to the California Power Exchange in 1999. Also, thefrom the California Power Exchange to show that millions ofgiven to the California Power Exchange in 1999. Also, the

  17. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Forecasts of California Transportation Energy Demand 2005-of California’s transportation and energy systems, meansand Energy Use in Transportation (GREET) model with various assumptions modified for the California

  18. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    Forecasts of California Transportation Energy Demand 2005-of California’s transportation and energy systems, meansand Energy Use in Transportation (GREET) model with various assumptions modified for the California

  19. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    and wind power plants) could allow California and otherIn California, there are nearly a thousand power plants thatCalifornia Energy Commission Media Office. “Power Plant Fact

  20. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    and wind power plants) could allow California and otherIn California, there are nearly a thousand power plants thatCalifornia Energy Commission Media Office. “Power Plant Fact

  1. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    California Crude Oil Production and Imports. Sacramento:2. Production Active oil production occurs from 209 oilfields (CDC-DOGGR 2006). Oil production in California occurs

  2. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    California Crude Oil Production and Imports. Sacramento:2. Production Active oil production occurs from 209 oilfields (CDC-DOGGR 2006). Oil production in California occurs

  3. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01

    California Crude Oil Production and Imports. Sacramento:Profit structure Crude oil production is the most profitableand much of California oil production is heavy oil that is

  4. A Report on the Economics of California's Low Carbon Fuel Standard & Cost Containment Mechanisms

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    D Candidate, Department of Agricultural and Resource Economics, University of California, Davis. Associate and Policy, University of California, Davis. Acknowledgments: We thank Sonia Yeh and the California Air statewide reductions in greenhouse gas emissions required by California's Assembly Bill 32, the Global

  5. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    produced in CA Diesel Ultra-low-sulfur diesel produced in CAbelow) California ultra low sulfur diesel, pathway D2

  6. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    produced in CA Diesel Ultra-low-sulfur diesel produced in CAbelow) California ultra low sulfur diesel, pathway D2

  7. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    2006. California Crude Oil Production and Imports. In Staffdue to changes in oil production and refining are ignored,differences in oil production and refining emissions (

  8. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    2006. California Crude Oil Production and Imports. In Staffof algae could greatly expand oil production due to the highincluding in-state oil production (39%), oil from Alaska (

  9. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Magaret. 2006. California Crude Oil Production and Imports.revenue and profits from crude oil production and less fromand regional firms. Crude oil is a fairly competitive global

  10. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    Magaret. 2006. California Crude Oil Production and Imports.revenue and profits from crude oil production and less fromand regional firms. Crude oil is a fairly competitive global

  11. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    2006. California Crude Oil Production and Imports. In Staffdue to changes in oil production and refining are ignored,differences in oil production and refining emissions (

  12. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    of Plug-In Hybrid Electric Vehicles in California Energy2007. ) Electric and Hybrid Electric Vehicles: A Technologycell vehicles Battery electric vehicles Low- GHG Biofuel

  13. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    California Crude Oil Production and Imports. Sacramento:and profits from crude oil production and less from refiningProfit structure Crude oil production is the most profitable

  14. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    Petroleum, natural gas, very heavy oil, coal, tar sands, oilgas production), extra heavy oil, tar sands, and evenof hydrocarbons are the heavy oils of California, Venezuela,

  15. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    Petroleum, natural gas, very heavy oil, coal, tar sands, oilgas production), extra heavy oil, tar sands, and evenof hydrocarbons are the heavy oils of California, Venezuela,

  16. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    Magaret. 2006. California Crude Oil Production and Imports.and profits from crude oil production and less from refiningProfit structure Crude oil production is the most profitable

  17. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Magaret. 2006. California Crude Oil Production and Imports.and profits from crude oil production and less from refiningProfit structure Crude oil production is the most profitable

  18. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    2006. California Crude Oil Production and Imports. In Staffin Figure 2-2: crude oil production and shipment, petroleumto in-state heavy crude oil production which is related to

  19. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    2006. California Crude Oil Production and Imports. In Staffin Figure 2-2: crude oil production and shipment, petroleumto in-state heavy crude oil production which is related to

  20. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    Margaret. 2006. California Crude Oil Production and Imports.A. 2000. Pricing Royalty Crude Oil: Economic Insight, inc.108 Table 4-12: Crude oil and hydrogen capacities for

  1. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    Margaret. 2006. California Crude Oil Production and Imports.A. 2000. Pricing Royalty Crude Oil: Economic Insight, inc.a barrel of synthetic crude oil are reported at 11.54

  2. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    of Plug-In Hybrid Electric Vehicles in California Energy2007. ) Electric and Hybrid Electric Vehicles: A Technology173 Table 5-28: Populations of off-road electric vehicle

  3. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    of Plug-In Hybrid Electric Vehicles in California Energy2007. ) Electric and Hybrid Electric Vehicles: A Technology173 Table 5-28: Populations of off-road electric vehicle

  4. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01

    resources, including heavy oil, tar sands, oil shale andCalifornia oil production is heavy oil that is more viscousfrom gasoline made from heavy oil are upstream, due to

  5. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    resources, including heavy oil, tar sands, oil shale andCalifornia oil production is heavy oil that is more viscousfrom gasoline made from heavy oil are upstream, due to

  6. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Daniel Rutherford. 2007. Full Fuel Cycle Assessment Tank ToLarry Waterland. 2007. Full Fuel Cycle Assessment Well Tos digest. TIAX LLC, “Full Fuel Cycle Assessment – Well to

  7. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    Daniel Rutherford. 2007. Full Fuel Cycle Assessment Tank ToLarry Waterland. 2007. Full Fuel Cycle Assessment Well Tos digest. TIAX LLC, “Full Fuel Cycle Assessment – Well to

  8. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    B. “Alternative Transportation Fuels and Vehicles: Energy,alternative fuels for market share, energy resources and capital. Though complex and dynamic alternative fuel vehicle

  9. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    B. “Alternative Transportation Fuels and Vehicles: Energy,alternative fuels for market share, energy resources and capital. Though complex and dynamic alternative fuel vehicle

  10. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    Pont, et al. (2007). Full Fuel Cycle Assessment Well To TankJ. Pont, et al. (2007). Full Fuel Cycle Assessment Well Toand L. Waterland. 2007. Full Fuel Cycle Assessment Well To

  11. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Pont, et al. (2007). Full Fuel Cycle Assessment Well To TankJ. Pont, et al. (2007). Full Fuel Cycle Assessment Well ToM. Chan, et al. (2007). Full Fuel Cycle Assessment Tank To

  12. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    and L. Waterland. 2007. Full Fuel Cycle Assessment Well ToM. Chan, et al. (2007). Full Fuel Cycle Assessment Tank ToJ. Pont, et al. (2007). Full Fuel Cycle Assessment Well To

  13. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Dimethyl Ether (DME), CH3OCH3, is another fuel that can beFuel Gasoline Diesel Liquefied Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied Natural Gas (LNG) Dimethyl Ether (DME)

  14. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    Dimethyl Ether (DME), CH3OCH3, is another fuel that can beFuel Gasoline Diesel Liquefied Petroleum Gas (LPG) Compressed Natural Gas(CNG) Liquefied Natural Gas (LNG) Dimethyl Ether (DME)

  15. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    derived diesel fuel can be produced by the hydrogenation of animal or plant oils, possibly including both waste

  16. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    derived diesel fuel can be produced by the hydrogenation of animal or plant oils, possibly including both waste

  17. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    technologies for making fluid fuels from coal." Energy andfuels. For this reason, carbon must be rejected from the crude oil in refining (through fluid

  18. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    technologies for making fluid fuels from coal." Energy andfuels. For this reason, carbon must be rejected from the crude oil in refining (through fluid

  19. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    products include gasoline, diesel, jet fuel, and blendingReformulated Gasoline Blendstock for Oxygenate Blending).the ubiquitous blending of ethanol in gasoline. Biodiesel is

  20. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01

    products include gasoline, diesel, jet fuel, and blendingReformulated Gasoline Blendstock for Oxygenate Blending).the ubiquitous blending of ethanol in gasoline. Biodiesel is

  1. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    from the use of natural gas in transportation. V. Hydrogenas a transportation fuel in compressed natural gas vehiclesand transportation, the cost of electricity from natural gas

  2. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    from the use of natural gas in transportation. V. Hydrogenas a transportation fuel in compressed natural gas vehiclesand transportation, the cost of electricity from natural gas

  3. The Challenge of Achieving Californias Low Carbon Fuel Standard

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices, SalesMoroccoTurkeyTexas-Louisiana-Author:

  4. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    fuel in compressed natural gas vehicles or reformed toare over 125,000 natural gas vehicles in the United Statesthat peak natural gas demand for vehicles should not pose a

  5. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    fuel in compressed natural gas vehicles or reformed toare over 125,000 natural gas vehicles in the United Statesthat peak natural gas demand for vehicles should not pose a

  6. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

  7. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

  8. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    in this study, such as diesel hybrid electric vehicles (Dflex-fuel vehicle Yes Diesel hybrid electric vehicle Nocell vehicle Yes Diesel plug-in hybrid electric vehicle No

  9. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    in this study, such as diesel hybrid electric vehicles (Dflex-fuel vehicle Yes Diesel hybrid electric vehicle Nocell vehicle Yes Diesel plug-in hybrid electric vehicle No

  10. CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT

    E-Print Network [OSTI]

    , natural gas vehicles, propane vehicles, electric vehicles, ethanol fuel, E-85, biodiesel, Fischer a current snapshot of the alternative fuel development and commercial vehicle status. This current update the baseline of alternative fuel development and use in California by identifying vehicles, market niche

  11. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01

    S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

  12. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California EnergyFuel Cell

  13. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  14. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    in U. S. Conunercial Nuclear Power Plants", Report WASH-Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"

  15. Fuel Cell Transit Bus Coordination and Evaluation Plan California...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation...

  16. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

  17. California Low Carbon Fuels Infrastructure Investment Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California

  18. California Fuel Cell Partnership: Alternative Fuels Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research. cafcpinitiativescall.pdf More Documents & Publications The Department of Energy Hydrogen and Fuel Cells Program Plan Vehicle Technologies Office Merit Review 2015:...

  19. California Energy Standards Recognize the Importance of Filter...

    Energy Savers [EERE]

    Energy Standards Recognize the Importance of Filter Selection - Building America Top Innovation California Energy Standards Recognize the Importance of Filter Selection - Building...

  20. California Fuel Cell Partnership: Alternative Fuels Research | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12Power,5 BUDGETU S DEPARTMENTJune 18, 2012of Energy California

  1. Proposed Energy Provisions of the California Green Building Standards Code

    E-Print Network [OSTI]

    Proposed Energy Provisions of the California Green Building Standards Code Part 11 of the California Building Code (also known as CalGreen) Patrick Saxton, P.E. patrick.saxton@energy.ca.gov 916-651-0489 High Performance Buildings and Standards Development Office California Energy Commission September 20

  2. Biomass Potentials from California Forest and Shrublands Including Fuel

    E-Print Network [OSTI]

    Biomass Potentials from California Forest and Shrublands Including Fuel Reduction Potentials-04-004 February 2005 Revised: October 2005 Arnold Schwarzenegger, Governor, State of California #12;Biomass Tiangco, CEC Bryan M. Jenkins, University of California #12;Biomass Potentials from California Forest

  3. EPA's Renewable Fuels Standard Web page

    SciTech Connect (OSTI)

    2011-12-30

    The Renewable Fuel Standard (RFS) program regulations were developed in collaboration with refiners, renewable fuel producers, and many other stakeholders.

  4. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    0.3 million * man-rem~ fuel reprocessing operations wouldServices Barnwell fuel reprocessing facility, as amendedLaboratory, "Siting of Fuel Reprocessing Plants and Waste

  5. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    requirement for reprocessing spent fuel. MaX = mixed oxidesspent fuel when it is reprocessed, unless controls are introduced to prevent their escape at the reprocessing

  6. 35 Alternative Transportation Fuels in California ALTERNATIVE TRANSPORTATION

    E-Print Network [OSTI]

    potential means for diversifying an energy resource base for the transportation sector. Largely as a result, there is a potential for the entrance of an estimated one million alternative fuel vehicles (AFVs) into the California35 Alternative Transportation Fuels in California Chapter 4 ALTERNATIVE TRANSPORTATION FUELS

  7. ,"California Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  8. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    Report LBL-5287. "Power Plant Reliability-Availability andConunercial Nuclear Power Plants", Report WASH-1400 (NUREG-Standards for Nuclear Power Plants," by A.V. Nero and Y.C.

  9. Webinar: Introduction to SAE Hydrogen Fueling Standardization

    Broader source: Energy.gov [DOE]

    Video recording and text version of the Fuel Cell Technologies Office webinar titled "Introduction to SAE Hydrogen Fueling Standardization," originally presented on September 11, 2014.

  10. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology

    E-Print Network [OSTI]

    California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Advisory, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program (hereinafter "Program") to be administered by the California Energy Commission (Energy Commission).1 AB 118 authorizes

  11. Moving Forward With Fuel Economy Standards

    E-Print Network [OSTI]

    Schipper, Lee

    2009-01-01

    Council. Automotive Fuel Economy: How Far Can We Go? (Lee Schipper. Automobile Fuel. Economy and CO 2 Emissions inGraham. The Effect of Fuel Economy Standards on Automobile

  12. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program

    E-Print Network [OSTI]

    California at Davis, University of

    1 California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program infrastructure awards ($83,467,422) b. Fuel standards development ($4,001,990) c. Demonstration projects ($8,489,590 was provided by the Energy Commission.) Total anticipated project match is $2.7 million. ABAG will contract

  13. Missouri Renewable Fuel Standard Brochure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case forbutton highlighted DoE/NREL/EPAJuly

  14. Historic Fuel Standards | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHessWind ProjectHines JumpHistoric

  15. Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

  16. Webinar: Introduction to SAE Hydrogen Fueling Standardization

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Introduction to SAE Hydrogen Fueling Standardization" on Thursday, September 11. The webinar will provide an overview of the SAE Standards SAE J2601 and J2799 and how they are applied to hydrogen fueling for fuel cell electric vehicles (FCEVs).

  17. California National Guard Sustainability Planning, Hydrogen Fuel Goals |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09CaliforniaCaliforniaDepartment of

  18. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

  19. Fuel Cells and Renewable Portfolio Standards

    Broader source: Energy.gov [DOE]

    Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells and Renewable Portfolio Standards, June 9, 2011.

  20. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    Standard cubic feet State Energy Data System U.S. Standardsources of California energy data, primarily from thesources of California energy data, primarily from the

  1. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology

    E-Print Network [OSTI]

    California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Advisory by the Energy Commission. Under the Program, the following shall be eligible for funding: 3 · Alternative, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program (hereinafter

  2. California Water Well Standards | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: EnergyCalendarCalhounWebpageProjectPrograms Jump to:Well

  3. California Fuel Cell Partnership CaFCP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:CalendarResourcesPowerFuel Cell

  4. Fuel Cells & Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells & Renewable Portfolio Standards Fuel Cells & Renewable Portfolio Standards Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel...

  5. Renewable Fuel Standard Potential Economic and Environmental

    E-Print Network [OSTI]

    Renewable Fuel Standard Potential Economic and Environmental Effects of U.S. Biofuel Policy Wallace. Burke (Cochair)2--Ecology Wallace E. Tyner (Cochair)2--Energy Economics Virginia H. Dale. Miranowski--Agricultural Economics Aristides Patrinos--Renewable Fuel Production Jerald L. Schnoor3--Water

  6. California Fuel Cell Partnership | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossenceBrunswick,Calendar Home > CommunityHelp toPower

  7. Renewable Fuel Standard Schedule | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy RFPsLtd RES GroupStandard Schedule

  8. Energy Impact of Residential Ventilation Standards in California

    E-Print Network [OSTI]

    by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U was also supported by the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy underLBNL 61282 Energy Impact of Residential Ventilation Standards in California Max H. Sherman and Iain

  9. Assessment of California reformulated gasoline impact on vehicle fuel economy

    SciTech Connect (OSTI)

    Aceves, S., LLNL

    1997-01-01

    Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

  10. California and Connecticut: National Fuel Cell Bus Programs Drive Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOof Energy Office04 Calendar Year3Economy

  11. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    order for the low carbon fuel standard, 2012. URL http://mediated e?ects of low carbon fuel policies. AgBioForum, 15(Gas Reductions under Low Carbon Fuel Standards? American

  12. State Clean Energy Practices: Renewable Fuel Standards

    SciTech Connect (OSTI)

    Mosey, G.; Kreycik, C.

    2008-07-01

    The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

  13. Fact #704: December 5, 2011 Fuel Consumption Standards for New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thereafter. Fuel Consumption Target Standards for Gasoline Heavy Pickups and Vans, 2014-2018 Graph showing fuel consumption target standards for gasoline heavy pickups and...

  14. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    do Fossil Fuel Carbon Dioxide Emissions from California Go?Figure 1. 2004 Carbon Dioxide Emissions from Fuel CombustionImproving the Carbon Dioxide Emission Estimates from the

  15. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (Update) (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The state of California was given authority under the Clean Air Act Amendments of 1990 (CAAA90) to set emissions standards for light-duty vehicles that exceed federal standards. In addition, other states that do not comply with the National Ambient Air Quality Standards (NAAQS) set by the Environmental Protection Agency under CAAA90 were given the option to adopt Californias light-duty vehicle emissions standards in order to achieve air quality compliance. CAAA90 specifically identifies hydrocarbon, carbon monoxide, and NOx as vehicle-related air pollutants that can be regulated. California has led the nation in developing stricter vehicle emissions standards, and other states have adopted the California standards.

  16. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    of proof to show world fossil fuel price decreases under anya RFS while world fossil fuel price is the same or lowerf f denote the world fossil fuel price and p the world price

  17. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    of both biofuel and fossil fuel and thereby increases totalof proof to show world fossil fuel price decreases under anyGHG intensity among fossil fuels. We ?nd that the relative

  18. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    carbon policies on the renewable fuels standard: economicreport: 2009 update. REN21 Renewable Energy Policy Networktransportation fuels: Comparing renewable fuel mandates and

  19. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    impacts of alberta’s oil sands. canadian energy researchLife cycle assessment of oil sands tech- nologies. InstituteElasticity of demand for fuel Oil sand capacity and growth

  20. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    non-crude oil fuels (i.e, oilsand and biofuel) when comparedthe primary feedstock (oilsand, coal or gas) into usefulthe blending obligation for oilsand is higher under the FGIS

  1. E85, Flex-Fuel Vehicles, and AB 1493 Integrating biofuels into California's vehicular greenhouse gas regulations

    E-Print Network [OSTI]

    Kammen, Daniel M.

    E85, Flex-Fuel Vehicles, and AB 1493 Integrating biofuels into California's vehicular greenhouse.................................................................................................. 5 1.1.3 CALIFORNIA CLEAN FUELS PROGRAM ....................................... 6 1.1.5 AB 1007: THE ALTERNATIVE FUELS PLAN

  2. The Design and Economics of Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    The Design and Economics of Low Carbon Fuel Standards Gabriel E. Lade and C.-Y. Cynthia Lin January greenhouse gas (GHG) emissions, and the vast majority of those emissions are the direct result of fossil fuel in the sector. Proposals include using carbon taxes, fuel economy standards for new vehicles, renewable fuel

  3. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    Riley, W.J.

    2008-01-01

    south and west of California), transport within and acrossCalifornia and their relationships with atmospheric transportfossil fuel CO 2 transport out of California. The figure

  4. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01

    do fossil fuel carbon dioxide emissions from California go?do fossil fuel carbon dioxide emissions from California go?1° distribution of carbon dioxide emissions from fossil fuel

  5. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuel Cells &

  6. Fuel Cells and Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen h y dFueland

  7. Renewable Fuel Standards Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTIRegulatoryResidential

  8. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at 1 Table of Contents NumberSolutionsAnIntroduction to SAE

  9. California Greenhouse Gas Emissions Standards for Light-Duty Vehicles (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In July 2002, California Assembly Bill 1493 (A.B. 1493) was signed into law. The law requires that the California Air Resources Board (CARB) develop and adopt, by January 1, 2005, greenhouse gas emission standards for light-duty vehicles that provide the maximum feasible reduction in emissions. In estimating the feasibility of the standard, CARB is required to consider cost-effectiveness, technological capability, economic impacts, and flexibility for manufacturers in meeting the standard.

  10. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  11. Greenhouse Gas Reductions under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2008-01-01

    Admin- istration. Wang, M. The Greenhouse Gases, RegulatedGreenhouse Gas Reductions under Low Carbon Fuel Standards?LCFS) seeks to reduce greenhouse gas emissions by capping an

  12. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

  13. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pmaterialsveenstra.pdf More Documents & Publications Introduction to SAE Hydrogen Fueling Standardization CNG and Hydrogen Tank Safety, R&D, and Testing Hydrogen Tank Testing R&D...

  14. UNIVERSITY OF CALIFORNIA -SCHOOL OF MEDICINE TECHNICAL, NON-ACADEMIC, STANDARDS

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    UNIVERSITY OF CALIFORNIA - SCHOOL OF MEDICINE TECHNICAL, NON-ACADEMIC, STANDARDS Essential and characteristics described herein are also referred to as technical (or non-academic) standards. They are described involve heavy workloads and stressful situations. Delineation of technical standards is required

  15. Commercial Fleet Demand for Alternative-Fuel Vehicles in California

    E-Print Network [OSTI]

    Golob, Thomas F; Torous, Jane; Bradley, Mark; Brownstone, David; Crane, Soheila Soltani; Bunch, David S

    1996-01-01

    Operating cost (cents/mile) NGV operating cost Number offuel type on California roads NGV penetration Dual fueldummy: (0=NGV only; 1 =can also run on gasoline) NGV dual

  16. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01

    new partnerships? H2-FCV Roadmap Report - FINAL December 21,Roadmap for Hydrogen and Fuel Cell Vehicles in California: ACalifornia, Davis H2-FCV Roadmap Report - FINAL December 21,

  17. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01

    south and west of California), transport within and acrossFOSSIL FUEL CO 2 TRANSPORT IN CALIFORNIA EIA (2003), StateFOSSIL FUEL CO 2 TRANSPORT IN CALIFORNIA Stephens, B. , et

  18. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    update. REN21 Renewable Energy Policy Network and Worldwatchconclusion Policies such as renewable energy mandates arerenewable fuels standard: economic and greenhouse gas implications. Energy Policy

  19. Template:Set RenewableFuelStandard | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation JumpSet RenewableFuelStandard Jump to: navigation,

  20. Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL MANDATORY MEASURES

    E-Print Network [OSTI]

    Energy Provisions of the California Green Building Standards Code Page 2 CHAPTER 4, RESIDENTIAL Building (Energy Budget) and the annual TDV energy consumption for lighting and components not regulated for energy use components included in the performance compliance approach for the Standard Design Building

  1. EISA 2007: Focus on Renewable Fuels Standard Program

    Broader source: Energy.gov [DOE]

    At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Paul Argyropoulos (U.S. Environmental Protection Agency, Office of Transportation and Air Quality) explained the EISA 2007, Renewable Fuel Standards.

  2. Timing for Startup of the Renewable Fuel Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper responds to whether or not moving the start date of the Renewable Fuel Standard (RFS) from its currently proposed January 2004 to October 2004 would improve the chances of a smooth transition.

  3. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sets aggressive new fuel-economy standards for cars and light-duty trucks. A number of Energy Department projects and investments are unleashing innovation that will create jobs...

  4. Alternative Fuels Data Center: California Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digg FindPortsas a VehicleNatural Gas Printable

  5. Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers to someone by E-mail

  6. Alternative Fuels Data Center: California School District Creates

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender Pump Dispensers to someone by

  7. Ethanol Fuels Incentives Applied in the U.S.: Reviewed from California's Perspective

    SciTech Connect (OSTI)

    None

    2004-01-01

    This report describes measures employed by state governments and by the federal government to advance the production and use of ethanol fuel in the United States. The future of ethanol as an alternative transportation fuel poses a number of increasingly-important issues and decisions for California government, as the state becomes a larger consumer, and potentially a larger producer, of ethanol.

  8. HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancing Programs |ReferencePower SuppliesofANGELES | Department of

  9. Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill FinancingDepartment ofPowerScenario AnalysisFuel Cell Basics

  10. California Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuel ConsumptionFuel Consumption

  11. California: Agricultural Residues Produce Renewable Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOof Energy Office04 Calendar

  12. California and Connecticut: National Fuel Cell Bus Programs Drive...

    Broader source: Energy.gov (indexed) [DOE]

    Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses. During this...

  13. California Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuel Consumption (Million Cubic Feet)

  14. California Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuel Consumption (Million Cubic

  15. California Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15 Jun-15Decade Year-0Decade

  16. California Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15 Jun-15Decade

  17. Building America Top Innovations 2014 Profile: California Energy Standards

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01Technical Information-- Energy, science,

  18. California Energy Standards Recognize the Importance of Filter Selection -

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCarib Energy (USA) LLCAdministration of theVersion

  19. RENEWABLE ENERGY ACTION TEAM Milestones to Permit California Renewable Portfolio Standard Energy Projects

    E-Print Network [OSTI]

    1 RENEWABLE ENERGY ACTION TEAM Milestones to Permit California Renewable Portfolio Standard Energy renewable energy resources. In November 2008, the CEC, DFG, the Bureau of Land Management (BLM the Renewable Energy Action Team (REAT) to address permitting issues associated with specific renewable energy

  20. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    Transportation California Air Resources Board California EnergyTransportation Statistics British thermal unit California Conventional and Alternative Vehicle Response Simulator model California Energy

  1. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy andELECTRIC GENERATION IN CALIFORNIA A project performed for the California Energy

  2. A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Rosen, L.C.

    2010-01-01

    AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy andELECTRIC GENERATION IN CALIFORNIA A project performed for the California Energy

  3. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy andELECTRIC GENERATION IN CALIFORNIA A project performed for the California Energy

  4. Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards

    E-Print Network [OSTI]

    Wenzel, Thomas P

    2010-01-01

    on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA–

  5. Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar AprThousand CubicDecadeDecade(Million Cubic(Million Cubic

  6. Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014ProvedYear Jan FebYear Jan Feb(Million Cubic

  7. INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY

    E-Print Network [OSTI]

    -van employ compressed hydrogen gas storage. Although the energy density of compressedhydrogen gasis lower,less costly and more energy efficient, refueling canbe accomplished rapidly, and hydrogen canbe produced from~--- - ~ .. INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY Joan

  8. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    is only one type of fossil fuel and one alternative fuel andGHG emissions and reducing fossil fuel use, and ?nd biofuelin GHG intensity of both fossil fuels and renewable fuels,

  9. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    and sector. In California, the transport sector is by farAbout 95% of California’s 2000 transport-sector residualair transport, CALEB estimated that 39.9% of California’s

  10. Examining new fuel economy standards for the United States.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-01-01

    After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

  11. Regulations, Codes, and Standards (RCS) Template for California Hydrogen Dispensing Stations

    SciTech Connect (OSTI)

    Rivkin, C.; Blake, C.; Burgess, R.; Buttner, W.; Post, M.

    2012-11-01

    This report explains the Regulations, Codes, and Standards (RCS) requirements for hydrogen dispensing stations in the State of California. The reports shows the basic components of a hydrogen dispensing station in a simple schematic drawing; the permits and approvals that would typically be required for the construction and operation of a hydrogen dispensing station; and a basic permit that might be employed by an Authority Having Jurisdiction (AHJ).

  12. Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel CellMaterials Meetings

  13. Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax

    E-Print Network [OSTI]

    Rajagopal, Deepak; Hochman, G.; Zilberman, D.

    2012-01-01

    policies, the world price of fossil fuel, domestic fossilreduce the world price of fossil fuel except when the supplywhich case the world price of fossil fuel is unchanged. The

  14. Alternatives to conventional diesel fuel-some potential implications of California's TAC decision on diesel particulate.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-08-10

    Limitations on the use of petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to provisions of the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies. (1) Increased penetration of natural gas and greater gasoline use in the transportation fuels market, to the extent that some compression-ignition (CI) applications revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on exhaust products of individual diesel fuel constituents. Each of these alternatives results in some degree of (conventional) diesel displacement. In the first case, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles, and gasoline demand in California increases by 32.2 million liters per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter equivalents per day, about 7 percent above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Economic implications of vehicle and engine replacement were not evaluated.

  15. Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy

    E-Print Network [OSTI]

    Cunningham, Joshua M; Gronich, Sig

    2008-01-01

    of all transportation energy in California by 2020. EnactedEnergy Hydrogen Program Institute of Transportation Studies ? University of California,

  16. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    SciTech Connect (OSTI)

    Ghatikar, Girish; Riess, David; Piette, Mary Ann

    2014-01-02

    This report reviews the Open Automated Demand Response (OpenADR) deployments within the territories serviced by California?s investor-owned utilities (IOUs) and the transition from the OpenADR 1.0 specification to the formal standard?OpenADR 2.0. As demand response service providers and customers start adopting OpenADR 2.0, it is necessary to ensure that the existing Automated Demand Response (AutoDR) infrastructure investment continues to be useful and takes advantage of the formal standard and its many benefits. This study focused on OpenADR deployments and systems used by the California IOUs and included a summary of the OpenADR deployment from the U.S. Department of Energy-funded demonstration conducted by the Sacramento Municipal Utility District (SMUD). Lawrence Berkeley National Laboratory collected and analyzed data about OpenADR 1.0 deployments, categorized architectures, developed a data model mapping to understand the technical compatibility of each version, and compared the capabilities and features of the two specifications. The findings, for the first time, provided evidence of the total enabled load shed and average first cost for system enablement in the IOU and SMUD service territories. The OpenADR 2.0a profile specification semantically supports AutoDR system architectures and data propagation with a testing and certification program that promotes interoperability, scaled deployments by multiple vendors, and provides additional features that support future services.

  17. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01

    develop new modules for EnergyPlus. Also, Fortran 90 allowscapability. California. EnergyPlus can calculate water usageCHP, and fuel cells. EnergyPlus has detailed daylighting

  18. Future prospects for compression ignition fuel in California : fuel-related implications of possible pathways to mitigation of public health threats.

    SciTech Connect (OSTI)

    Eberhardt, J. J.; Rote, D. M.; Saricks, C. L.; Stodolsky, F.

    1999-04-08

    This paper documents methods and results of an investigation of the options for and year 2010 consequences of possible new limitations on the use of diesel fuel in California, USA. California's Air Resources Board will undertake a risk management process to determine steps necessary to protect the health and safety of the public from carcinogenic species resident on diesel combustion exhaust particles. Environmental activist groups continue to call for the elimination of diesel fuel in California and other populous states. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Thus, two ''mid-course'' strategies now appear feasible: (1) Increased penetration of natural gas, LPG, and possibly lower alcohols into the transportation fuels market, to the extent that some Cl applications would revert to spark-ignition (SI) engines. (2) New specifications requiring diesel fuel reformulation based on more detailed investigation of exhaust products of individual diesel fuel constituents.

  19. 1. What are positive economical impacts of improving the fuel mileage standards? 2. What is the current fuel mileage standard for the United States?

    E-Print Network [OSTI]

    Bowen, James D.

    1. What are positive economical impacts of improving the fuel mileage standards? 2. What is the current fuel mileage standard for the United States? 3. If Dr Bowen rides his bike 90% of the year, how much fuel is saved by Dr Bowen compared to the average American? (Use assumptions) 4. What would

  20. Stationary Fuel Cell Application Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C. W.; Rivkin, C. H.

    2010-09-01

    This report provides an overview of codes and standards related to stationary fuel cell applications and identifies gaps and resolutions associated with relative codes and standards.

  1. HYDROGEN AND FUEL CELL EDUCATION AT CALIFORNIA STATE UNIVERSITY, LOS ANGELES

    SciTech Connect (OSTI)

    David Blekhman

    2011-09-30

    California State University, Los Angeles, has partnered with the Department of Energy in addressing the workforce preparation and public education needs of the fuel cell industry and the US economy through a comprehensive set of curriculum development and training activities: * Developing and offering several courses in fuel cell technologies, hydrogen and alternative fuels production, alternative and renewable energy technologies as means of zero emissions hydrogen economy, and sustainable environment. * Establishing a zero emissions PEM fuel cell and hydrogen laboratory supporting curriculum and graduate students���¢�������� teaching and research experiences. * Providing engaging capstone projects for multi-disciplinary teams of senior undergraduate students. * Fostering partnerships with automotive OEMs and energy providers. * Organizing and participating in synergistic projects and activities that grow the program and assure its sustainability.

  2. CaliforniaFIRST (California) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells using Renewable Fuels Photovoltaics Solar Water Heat Program Info State California Program Type PACE Financing The CaliforniaFIRST Program is a Property Assessed Clean...

  3. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  4. Alternative Fuels Data Center: Codes and Standards Resources

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case for E85 Fuel Retailers to someone

  5. Alternative Fuels Data Center: Codes and Standards Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement Vouchers TheIncentiveAlternative FuelCodes

  6. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01

    Martin, Elliot, Shaheen, Susan, Lipman, Timothy,OF CALIFORNIA DRIVE CLINICS Elliot Martin Graduate Student

  7. Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    2006-2016: Staff energy demand forecast (revised September2005) Forecasts of California transportation energy demand

  8. Fuel Cells and Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy LoftusFuel CellFuel Fuelgreen h y

  9. Alternative Fuels Data Center: E85 Codes and Standards

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case for E85 Fuel Retailers toE85 Codes and

  10. In 1991 UC Irvine adopted standards to outperform California's Title 24 Energy Efficiency Standards by 30 percent, use 100 percent reclaimed water, CO2 sensing for

    E-Print Network [OSTI]

    Rose, Michael R.

    in Sacramento. · Nine buildings at UC Irvine bear the U.S. Green Building Council's Leadership in Energy· In 1991 UC Irvine adopted standards to outperform California's Title 24 Energy Efficiency, and no rainforest hardwoods · UC Irvine's Smart Labs Initiative, which reduces energy consumption in new

  11. Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel Jump to: navigation,

  12. Property:RenewableFuelStandard/CellulosicBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel Jump

  13. Property:RenewableFuelStandard/Total | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel

  14. Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuelEnergy

  15. Renewable Fuel Standards Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTIRegulatoryResidential SavingsEnergyofRenewable

  16. Fuel Cells & Renewable Portfolio Standards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize:4Fuel Celland Battery

  17. Recommended Changes to Specifications for Demand Controlled Ventilation in California's Title 24 Building Energy Efficiency Standards

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David

    2010-04-08

    In demand-controlled ventilation (DCV), rates of outdoor air ventilation are automatically modulated as occupant density varies. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. DCV is most often used in spaces with highly variable and sometime dense occupancy. In almost all cases, carbon dioxide (CO{sub 2}) sensors installed in buildings provide the signal to the ventilation rate control system. People produce and exhale CO{sub 2} as a consequence of their normal metabolic processes; thus, the concentrations of CO{sub 2} inside occupied buildings are higher than the concentrations of CO{sub 2} in the outdoor air. The magnitude of the indoor-outdoor CO{sub 2} concentration difference decreases as the building's ventilation rate per person increases. The difference between the indoor and outdoor CO{sub 2} concentration is also a proxy for the indoor concentrations of other occupant-generated bioeffluents, such as body odors. Reviews of the research literature on DCV indicate a significant potential for energy savings, particularly in buildings or spaces with a high and variable occupancy. Based on modeling, cooling energy savings from applications of DCV are as high as 20%. With support from the California Energy Commission and the U.S. Department of Energy, the Lawrence Berkeley National Laboratory has performed research on the performance of CO{sub 2} sensing technologies and optical people counters for DCV. In addition, modeling was performed to evaluate the potential energy savings and cost effectiveness of using DCV in general office spaces within the range of California climates. The above-described research has implications for the specifications pertaining to DCV in section 121 of the California Title 24 Standard. Consequently, this document suggests possible changes in these specifications based on the research findings. The suggested changes in specifications were developed in consultation with staff from the Iowa Energy Center who evaluated the accuracy of new CO{sub 2} sensors in laboratory-based research. In addition, staff of the California Energy Commission, and their consultants in the area of DCV, provided input for the suggested changes in specifications.

  18. A Method for the Preparation of NIST Traceable Fossil Fuel Standards with Concentrations

    E-Print Network [OSTI]

    A Method for the Preparation of NIST Traceable Fossil Fuel Standards with Concentrations for the Preparation of NIST Traceable Fossil Fuel Standards with Concentrations Intermediate to SRM Values W. Robert than either of the SRM components. Because the sulfur content of all fossil fuel SRMs was certified

  19. Introduction to SAE Hydrogen Fueling Standardization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the BillDepartment ofEnergy Introduction SCADA Security forSAE Hydrogen

  20. Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel JumpRenewableBiofuel

  1. NREL: State and Local Governments - Renewable Fuel Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS - Simple Model ofData andWorkingDIYEnergyFuel

  2. Stationary and Portable Fuel Cell Systems Codes and Standards Citations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department of Energy 1 DOE HydrogenDepartment of Energy and

  3. Property:RenewableFuelStandard/Year | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url Jump to:ProgrammableYear Jump to: navigation, search This

  4. Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolarOpen5All HomeAlphakatResources | Open Energy

  5. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -DepartmentAvailable for PublicDepartment ofNewNew TribalDepartment of

  6. 10 Questions Regarding SAE Hydrogen Fueling Standards | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3of/ The Office of10 CFR10 Facts

  7. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California

    E-Print Network [OSTI]

    Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

    2001-01-01

    by the California Power Exchange, Available at: http://CalPX – California Power Exchange CARB – California Airby the California Power Exchange (CalPX). The other two

  8. Multi-Year Analysis of Renewable Energy Impacts in California: Results from the Renewable Portfolio Standards Integration Cost Analysis; Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Shiu, H.; Kirby, B.; Jackson, K.

    2006-08-01

    California's Renewable Portfolio Standard (RPS, Senate Bill 1078) requires the state's investor-owned utilities to obtain 20% of their energy mix from renewable generation sources. To facilitate the imminent increase in the penetration of renewables, the California Energy Commission (CEC), in support of the California Public Utility Commission (CPUC), initiated a study of integration costs in the context of RPS implementation. This effort estimated the impact of renewable generation in the regulation and load-following time scales and calculated the capacity value of renewable energy sources using a reliability model. The analysis team, consisting of researchers from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL) and the California Wind Energy Collaborative (CWEC), performed the study in cooperation with the California Independent System Operator (CaISO), the Pacific Gas and Electric Company (PG&E), and Southern California Edison (SCE). The study was conducted over three phases and was followed by an analysis of a multi-year period. This paper presents results from the multi-year analysis and the Phase III recommendations.

  9. Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration published a final rule setting fuel consumption standards for heavy trucks in September 2011. For tractor-trailers, the standards focus on the...

  10. NREL: Hydrogen and Fuel Cells Research - Safety, Codes, and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14RecentGeospatialReliabilityWorkingResearch Staff

  11. Testing standards for physical security systems at Category 1 fuel cycle facilities

    SciTech Connect (OSTI)

    Dwyer, P.A.

    1991-10-01

    This NUREG is a compilation of physical security testing standards for use at fuel cycle facilities using or possessing formula quantities of strategic special nuclear material.

  12. Impact of Renewable Fuels Standard/MTBE Provisions of S. 517 Requested by Sens. Daschle & Murkowski

    Reports and Publications (EIA)

    2002-01-01

    Additional analysis of the impact of the Renewable Fuels Standard (RFS) and methyl tertiary butyl ether (MTBE) ban provisions of S. 517.

  13. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016

    Broader source: Energy.gov [DOE]

    The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model produced for sale in the United States will have a fuel...

  14. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01

    Nataliya, “Costs of Oil Dependence: A 2000 Update,” OakCEC, 2000). California oil refineries have been operating at

  15. Multi-objective regulations on transportation fuels: Comparing renewable fuel mandates and emission standards

    E-Print Network [OSTI]

    Rajagopal, D; Plevin, R; Hochman, G; Zilberman, D

    2015-01-01

    gas emissions from petroleum-based fuels and impactson low carbon fuel policies. Environ. Sci. Technol. 450 (1),effects of low carbon fuel policies. AgBioforum 150 (1), 1–

  16. Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of fuel per thousand ton-miles. Ton-miles are equal to the weight of a shipment transported multiplied by the distance hauled. Because differences in the tractors create...

  17. Greenhouse Gas Reductions Under Low Carbon Fuel Standards?

    E-Print Network [OSTI]

    Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

    2007-01-01

    CSEM WP 167 Greenhouse Gas Reductions under Low Carbon Fuel94720-5180 www.ucei.org Greenhouse Gas Reductions under LowLCFS) seeks to reduce greenhouse gas emissions by capping an

  18. California

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) AugustA. Geographic Available for saleCHAPTER i R5/%2A

  19. Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy

    E-Print Network [OSTI]

    Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy://globalchange.mit.edu/ Printed on recycled paper #12;Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy

  20. Impact of Renewable Fuels Standard/MTBE Provisions of S. 1766

    Reports and Publications (EIA)

    2002-01-01

    This service report addresses the Renewable Fuels Standard (RFS)/methyl tertiary butyl ether (MTBE) provisions of S. 1766. The 'S. 1766' Case reflects provisions of S. 1766 including a renewable fuels standard (RFS) reaching five billion gallons by 2012, a complete phase-out of MTBE within four years, and the option for states to waive the oxygen requirement for reformulated gasoline (RFG).

  1. Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas

    E-Print Network [OSTI]

    Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate

  2. DOE Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop

    E-Print Network [OSTI]

    process. After introductions by the participants, Jim Ohi of NREL reviewed the agenda and the purpose on the performance of single cells. The objective of JARI's work is to help establish hydrogen fuel quality standards for fuel cell vehicles. JARI evaluated existing standards, namely JIS K0512 and ISO 14687, as well

  3. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-06-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  4. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    SciTech Connect (OSTI)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

  5. Is the California Special Education Achievement Gap Really Closing?

    E-Print Network [OSTI]

    Fearn, Emilene Johnson

    2012-01-01

    2011c). California Standards Tests technical report, Spring2009c). California Standards Tests technical report, Spring2010c). California Standards Tests technical report, Spring

  6. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    2006. “California Crude Oil Production and Imports” Aprilwww.energy.ca.gov/oil/statistics/crude_oil_receipts.html desector shows inputs of crude oil, unfinished oil and

  7. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01

    Infrastructure F. Current California CNG Vehicle UseCharacteristics of CNG Vehicles Review of Previous Studies/RP) Studies of AFVs/CNG Vehicles i. British Columbia, Canada

  8. Developing evidence-based prescriptive ventilation rate standards for commercial buildings in California: a proposed framework

    SciTech Connect (OSTI)

    Mendell, Mark J.; Fisk, William J.

    2014-02-01

    Background - The goal of this project, with a focus on commercial buildings in California, was to develop a new framework for evidence-based minimum ventilation rate (MVR) standards that protect occupants in buildings while also considering energy use and cost. This was motivated by research findings suggesting that current prescriptive MVRs in commercial buildings do not provide occupants with fully safe and satisfactory indoor environments. Methods - The project began with a broad review in several areas ? the diverse strategies now used for standards or guidelines for MVRs or for environmental contaminant exposures, current knowledge about adverse human effects associated with VRs, and current knowledge about contaminants in commercial buildings, including their their presence, their adverse human effects, and their relationships with VRs. Based on a synthesis of the reviewed information, new principles and approaches are proposed for setting evidence-based VRs standards for commercial buildings, considering a range of human effects including health, performance, and acceptability of air. Results ? A review and evaluation is first presented of current approaches to setting prescriptive building ventilation standards and setting acceptable limits for human contaminant exposures in outdoor air and occupational settings. Recent research on approaches to setting acceptable levels of environmental exposures in evidence-based MVR standards is also described. From a synthesis and critique of these materials, a set of principles for setting MVRs is presented, along with an example approach based on these principles. The approach combines two sequential strategies. In a first step, an acceptable threshold is set for each adverse outcome that has a demonstrated relationship to VRs, as an increase from a (low) outcome level at a high reference ventilation rate (RVR, the VR needed to attain the best achievable levels of the adverse outcome); MVRs required to meet each specific outcome threshold are estimated; and the highest of these MVRs, which would then meet all outcome thresholds, is selected as the target MVR. In a second step, implemented only if the target MVR from step 1 is judged impractically high, costs and benefits are estimated and this information is used in a risk management process. Four human outcomes with substantial quantitative evidence of relationships to VRs are identified for initial consideration in setting MVR standards. These are: building-related symptoms (sometimes called sick building syndrome symptoms), poor perceived indoor air quality, and diminished work performance, all with data relating them directly to VRs; and cancer and non-cancer chronic outcomes, related indirectly to VRs through specific VR-influenced indoor contaminants. In an application of step 1 for offices using a set of example outcome thresholds, a target MVR of 9 L/s (19 cfm) per person was needed. Because this target MVR was close to MVRs in current standards, use of a cost/benefit process seemed unnecessary. Selection of more stringent thresholds for one or more human outcomes, however, could raise the target MVR to 14 L/s (30 cfm) per person or higher, triggering the step 2 risk management process. Consideration of outdoor air pollutant effects would add further complexity to the framework. For balancing the objective and subjective factors involved in setting MVRs in a cost-benefit process, it is suggested that a diverse group of stakeholders make the determination after assembling as much quantitative data as possible.

  9. CONFIRMATORY SURVEY OF THE FUEL OIL TANK AREA HUMBOLDT BAY POWER PLANT EUREKA, CALIFORNIA

    SciTech Connect (OSTI)

    WADE C. ADAMS

    2012-04-09

    During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

  10. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect (OSTI)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  11. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect (OSTI)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  12. System dynamics of the competition of municipal solid waste to landfill, electricity, and liquid fuel in California

    SciTech Connect (OSTI)

    Westbrook, Jessica; Malczynski, Leonard A.; Manley, Dawn Kataoka

    2014-03-01

    A quantitative system dynamics model was created to evaluate the economic and environmental tradeoffs between biomass to electricity and to liquid fuel using MSW biomass in the state of California as a case study. From an environmental perspective, landfilling represents the worst use of MSW over time, generating more greenhouse gas (GHG) emissions compared to converting MSW to liquid fuel or to electricity. MSW to ethanol results in the greatest displacement of GHG emissions per dollar spent compared to MSW to electricity. MSW to ethanol could save the state of California approximately $60 billion in energy costs by 2050 compared to landfilling, while also reducing GHG emissions state-wide by approximately 140 million metric tons during that timeframe. MSW conversion to electricity creates a significant cost within the state's electricity sector, although some conversion technologies are cost competitive with existing renewable generation.

  13. Fact #704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans

    Broader source: Energy.gov [DOE]

    In September 2011 the National Highway Traffic Safety Administration issued the final rule to set standards regulating the fuel use of new vehicles heavier than 8,500 lbs. gross vehicle weight....

  14. What Has the Federal Renewable Fuels Standard Accomplished - A National Perspective (Presentation)

    SciTech Connect (OSTI)

    Schwab, A.

    2013-04-01

    This presentation provides an overview of the nation's biofuels industry accomplishments and a perspective on the challenges and implications of reaching goals set in the Renewable Fuel Standard (RFS).

  15. Review of Transportation Issues & Comparison of Infrastructure Costs for a Renewable Fuels Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes the inter-regional transportation issues and associated costs for increased distribution of renewable fuels with the assumption that ethanol will be used to meet the standards.

  16. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  17. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  18. Assessing the U.S. Senate Vote on the Corporate Average Fuel Economy (CAFE) Standard

    E-Print Network [OSTI]

    Preston, Scott

    classify cars as light trucks to "bend" the restrictions set by the standard. (Vehicles classified as light reclassified as a light truck, Subaru was able to add weight to the vehicle without making expenditures Kerry proposed raising the Corporate Average Fuel Economy (CAFE) standard for cars and trucks. On March

  19. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    2006. “California Crude Oil Production and Imports” AprilProduction Report (Quarterly) EIA-856 Monthly Foreign Crude OilProduction Annual Report of Natural and Supplemental Gas Supply and Disposition Domestic Crude Oil

  20. Codes and Standards Requirements for Deployment of Emerging Fuel Cell Technologies

    SciTech Connect (OSTI)

    Burgess, R.; Buttner, W.; Riykin, C.

    2011-12-01

    The objective of this NREL report is to provide information on codes and standards (of two emerging hydrogen power fuel cell technology markets; forklift trucks and backup power units), that would ease the implementation of emerging fuel cell technologies. This information should help project developers, project engineers, code officials and other interested parties in developing and reviewing permit applications for regulatory compliance.

  1. * Corresponding author -kfingerman@berkeley.edu 1 Integrating Water Sustainability into the Low Carbon Fuel Standard

    E-Print Network [OSTI]

    Kammen, Daniel M.

    sustainability as a task under the Alternative and Renewable Fuel and Vehicle Technology Program (AB 118 Carbon Fuel Standard Kevin Fingerman1* , Daniel Kammen1,2 , and Michael O'Hare2 1 Energy & Resources crops are displaced by energy feedstocks. Often, however, a tradeoff exists between minimizing

  2. Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT California Energy Balance Update and Decomposition Analysis for the Industry and Building Sectors

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2014-01-01

    2010. Fuel and Electricity Consumption by California CementCEC. 2010d. Electricity Consumption by Standard Industrialnatural gas and electricity consumption used in CALEB come

  3. Safety analysis of B and W Standard PWR using thorium-based fuels

    SciTech Connect (OSTI)

    Uotinen, V.O.; Carroll, W.P.; Jones, H.M.; Toops, E.C.

    1980-06-01

    A study was performed to assess the safety and licenseability of the Babcock and Wilcox standard 205-fuel assembly PWR when it is fueled with three types of thoria-based fuels denatured (/sup 233/U//sup 238/U-Th)O/sub 2/, denatured (/sup 235//U/sup 238/U-Th)O/sub 2/, and (Th-Pu)O/sub 2/. Selected transients were analyzed using typical PWR safety analysis calculational methods. The results support the conclusion that it is feasible from a safety standpoint to utilize either of the denatured urania-thoria fuels in the standard B and W plant. In addition, it appears that the use of thoria-plutonia fuels would probably also be feasible. These tentative conclusions depend on a data that is more limited than that available for UO/sub 2/ fuels.

  4. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  5. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    fuels consumed for international maritime shipping as wellby intrastate marine shipping. Distillate fuel use by ocean-residual fuel, 3.5% was used by interstate marine shipping,

  6. Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy

    E-Print Network [OSTI]

    Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

    2008-01-01

    A. Weiss. 2006. Future Fuel Cell and Internal CombustionPress. Hydrogen and Fuel Cell Technical Advisory Committee.September 10. Hydrogen and Fuel Cell Technical Advisory

  7. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    by electricity generation/CHP facilities by distillate fuelFossil Fuel Consumption for Electricity and Heat GenerationFossil Fuel Consumption for Electricity and Heat Generation

  8. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01

    bus demonstration and hydrogen fuel. Energy Policy 19.on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.

  9. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01

    uncertain commitment to hydrogen fuel cell vehicles by U.S.Cell Vehicles and Hydrogen Fuel Stations,” West Sacramento,Cell Partnership, “Hydrogen Fuel Cell Vehicle and Station

  10. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01

    commitment to hydrogen and fuel cell vehicles has beenand storage R&D and fuel cell vehicle program, whilepower applications of fuel cells. Congress has recently re-

  11. Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards,

    E-Print Network [OSTI]

    Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards

  12. EnergyPlus Analysis Capabilities for Use in California Building Energy Efficiency Standards Development and Compliance Calculations

    SciTech Connect (OSTI)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-03-28

    California has been using DOE-2 as the main building energy analysis tool in the development of building energy efficiency standards (Title 24) and the code compliance calculations. However, DOE-2.1E is a mature program that is no longer supported by LBNL on contract to the USDOE, or by any other public or private entity. With no more significant updates in the modeling capabilities of DOE-2.1E during recent years, DOE-2.1E lacks the ability to model, with the necessary accuracy, a number of building technologies that have the potential to reduce significantly the energy consumption of buildings in California. DOE-2's legacy software code makes it difficult and time consuming to add new or enhance existing modeling features in DOE-2. Therefore the USDOE proposed to develop a new tool, EnergyPlus, which is intended to replace DOE-2 as the next generation building simulation tool. EnergyPlus inherited most of the useful features from DOE-2 and BLAST, and more significantly added new modeling capabilities far beyond DOE-2, BLAST, and other simulations tools currently available. With California's net zero energy goals for new residential buildings in 2020 and for new commercial buildings in 2030, California needs to evaluate and promote currently available best practice and emerging technologies to significantly reduce energy use of buildings for space cooling and heating, ventilating, refrigerating, lighting, and water heating. The California Energy Commission (CEC) needs to adopt a new building energy simulation program for developing and maintaining future versions of Title 24. Therefore, EnergyPlus became a good candidate to CEC for its use in developing and complying with future Title 24 upgrades. In 2004, the Pacific Gas and Electric Company contracted with ArchitecturalEnergy Corporation (AEC), Taylor Engineering, and GARD Analytics to evaluate EnergyPlus in its ability to model those energy efficiency measures specified in both the residential and nonresidential Alternative Calculation Method (ACM) of the Title-24 Standards. The AEC team identified gaps between EnergyPlus modeling capabilities and the requirements of Title 24 and ACMs. AEC's evaluation was based on the 2005 version of Title 24 and ACMs and the version 1.2.1 of EnergyPlus released on October 1, 2004. AEC's evaluation is useful for understanding the functionality and technical merits of EnergyPlus for implementing the performance-based compliance methods described in the ACMs. However, it did not study the performance of EnergyPlus in actually making building energy simulations for both the standard and proposed building designs, as is required for any software program to be certified by the CEC for use in doing Title-24 compliance calculations. In 2005, CEC funded LBNL to evaluate the use of EnergyPlus for compliance calculations by comparing the ACM accuracy test runs between DOE-2.1E and EnergyPlus. LBNL team identified key technical issues that must be addressed before EnergyPlus can be considered by the CEC for use in developing future Nonresidential Title-24 Standards or as an ACM tool. With Title 24 being updated to the 2008 version (which adds new requirements to the standards and ACMs), and EnergyPlus having been through several update cycles from version 1.2.1 to 2.1, it becomes crucial to review and update the previously identified gaps of EnergyPlus for use in Title 24, and more importantly to close the gaps which would help pave the way for EnergyPlus to be adopted as a Title 24 compliance ACM. With this as the key driving force, CEC funded LBNL in 2008 through this PIER (Public Interest Energy Research) project with the overall technical goal to expand development of EnergyPlus to provide for its use in Title-24 standard compliance and by CEC staff.

  13. Understanding and Informing the Policy Environment: State-Level Renewable Fuels Standards

    SciTech Connect (OSTI)

    Brown, E.; Cory, K.; Arent, D.

    2007-01-01

    Renewable fuels standard (RFS) policies are becoming a popular public policy mechanism for developing the market for renewable fuels in the transportation sector. During the past decade, U.S. states and several countries began implementing these more market-based (less command and control) policies to support increased biofuels production and use. This paper presents an overview of current and proposed U.S. state-level policies, as well as selected electric sector policies and international fuel standard policies. Current U.S. state-level renewable fuel policies list drivers including an improved economy and environment, as well as fuel self-sufficiency. Best practices and experience from an evaluation of renewable portfolio standards (RPS) in the United States and international RFS policies can inform U.S. state-level policy by illustrating the importance of policy flexibility, binding targets, effective cost caps, and tradable permits. Understanding and building on the experiences from these previous policies can improve the policy mechanism and further develop a market for renewable fuels to meet the goals of improved economy, environment, and fuel self-sufficiency.

  14. PROJECT INFORMATION FORM Project Title Deployment of Sustainable Fueling/Charging Systems at California

    E-Print Network [OSTI]

    California at Davis, University of

    fueling stations for fuel cell vehicles and fast charging stations for electric infrastructure investment. Present hydrogen fueling stations, fast EV charging stations, renewable power sources, and energy storages are usually located at different sites

  15. Behavioral Response to Hydrogen Fuel Cell Vehicles and Refueling: Results of California Drive Clinics

    E-Print Network [OSTI]

    Martin, Elliot W; Shaheen, Susan A; Lipman, T E; Lidicker, Jeffrey

    2009-01-01

    on the attitude towards hydrogen fuel cell buses in the CUTEthe attitude towards hydrogen fuel cell buses in Stockholm.of Driver Preferences for Fuel Cell Taxis. Energy Policy

  16. Why Hydrogen and Fuel Cells are Needed to Support California Climate Policy

    E-Print Network [OSTI]

    Cunningham, Joshua M; Gronich, Sig; Nicholas, Michael A

    2008-01-01

    as soon as possible. Hydrogen fuel cell vehicles (H2-FCVs),the timely commercialization of hydrogen fuel cell vehicles.a federal tax credit for hydrogen fuel sales that could help

  17. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  18. Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs

    SciTech Connect (OSTI)

    Harris, D.R.; Matos, J.E.; Young, H.H.

    1985-01-01

    The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab.

  19. Building America Top Innovations 2014 Profile: California Energy Standards Recognize the Importance of Filter Selection

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBerylliumDepartmentResolution ofBETTER|BrianOvercoat: Airtightness3. EffectiveBUILDING AMERICA

  20. Gauging citizen support for a low carbon fuel standard Ekaterina Rhodes n

    E-Print Network [OSTI]

    carbon fuel standard (LCFS). We observe passive support: low awareness and high support of the policy. An LCFS achieves broad support among British Columbia's and Canadian citizens. Households relying support it. We refer to this combination of low knowledge and high support as "passive support." We find

  1. RADIOLOGICAL EMERGENCY RESPONSE PLANNING FOR NUCLEAR POWER PLANTS IN CALIFORNIA. VOLUME 4 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Yen, W.W.S.

    2010-01-01

    DENSITIES AROUND CALIFORNIA NUCLEAR POWER PLANT. le Iil _. .AROUND CALIFORNIA NUCLEAR POWER PLANTS Miles San OnofreIN CALIFORNIA The California Nuclear Power Plant Emergency

  2. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01

    close to suitable oil resources, it may become moreproduced from heavy oil resources over the last 50 years.Division of Oil, Gas and Geothermal Resources. CEC. (

  3. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    renewables Integrated coal gasification combined cycle withmethane reforming or coal gasification are well established,central plant) Coal Coal gasification with Carbon Capture

  4. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    and biogas produced from sewage and waste-water treatment.produced at present primarily for high value protein and for its nutrient management capacity in waste-water treatment,

  5. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    and biogas produced from sewage and waste-water treatment.produced at present primarily for high value protein and for its nutrient management capacity in waste-water treatment,

  6. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    1993. Integrated solid waste management. New York: McGraw-Handbook of Solid Waste Management. New York: McGraw-Hill.municipal solid wastes. Waste Management & Research 20 (3):

  7. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    Handbook of Solid Waste Management. New York: McGraw-Hill.1993. Integrated solid waste management. New York: McGraw-municipal solid wastes. Waste Management & Research 20 (3):

  8. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    possibly including both waste oils and crop-derived oils (latter is made only from waste oils and greases. If biomassSunflower Oil Palm Algae Waste Oils Hydrogenation Trans

  9. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    possibly including both waste oils and crop-derived oils (latter is made only from waste oils and greases. If biomassSunflower Oil Palm Algae Waste Oils Hydrogenation Trans

  10. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    could be used for bioethanol feedstocks. Grown currentlypotential for conventional bioethanol production are rice,ethanol production means bioethanol fermented from starch

  11. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    could be used for bioethanol feedstocks. Grown currentlypotential for conventional bioethanol production are rice,ethanol production means bioethanol fermented from starch

  12. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    chemical industries, primarily from natural gas or other fossil sources. 15 Syngas-based processes like steam methane

  13. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    chemical industries, primarily from natural gas or other fossil sources. 15 Syngas-based processes like steam methane

  14. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    and power via biomass gasification. Biomass and Bioenergyrenewables Integrated coal gasification combined cycle withLubricants Waxes Naptha Gasification Ethane, Benzene, and

  15. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    and power via biomass gasification. Biomass and Bioenergyrenewables Integrated coal gasification combined cycle withLubricants Waxes Naptha Gasification Ethane, Benzene, and

  16. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    manure- biodigesters (biogas). Biomethane has similargasolines and diesels, biogas, synthetic natural gas,in landfill gas Methane in biogas from waste-water treatment

  17. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    gasolines and diesels, biogas, synthetic natural gas,manure- biodigesters (biogas). Biomethane has similarin landfill gas Methane in biogas from waste-water treatment

  18. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    CNG) Liquefied Natural Gas (LNG) Dimethyl Ether (DME)Diesel Liquefied Petroleum Gas (LPG) Compressed Natural Gas(and liquefied gas. There are over 125,000 natural gas

  19. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    CNG) Liquefied Natural Gas (LNG) Dimethyl Ether (DME)Diesel Liquefied Petroleum Gas (LPG) Compressed Natural Gas(and liquefied gas. There are over 125,000 natural gas

  20. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Energy Board (2004). Canada's oil sands: opportunities andheavy oil, coal, tar sands, oil shale Natural gas, biomassproduction), extra heavy oil, tar sands, and even natural

  1. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    Energy Board (2004). Canada's oil sands: opportunities andheavy oil, coal, tar sands, oil shale Natural gas, biomassproduction), extra heavy oil, tar sands, and even natural

  2. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    for environmental life-cycle assessment." EnvironmentalEnvironmental Life Cycle Assessment of Goods and Services.management — Life cycle assessment — Principles and

  3. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    for environmental life-cycle assessment." EnvironmentalEnvironmental Life Cycle Assessment of Goods and Services.management — Life cycle assessment — Principles and

  4. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    1. '( Assumption #3. Increase number of CNG vehicles The newLDV market share for CNG vehicles begins to increase rapidlyafter 2015. New CNG vehicles sales reach 94,000 by 2020. '(

  5. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    10% vol. ) #3. Increase CNG sales to vehicles #4. IntroduceBAU BAU Low-GHG Biofuel CNG Electricity BAU BAU BAU BAUzero GHG Biofuel Vehicles CNG vehicles (H5, H10, H15) Plug-

  6. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    Orchard and Vine Total Field and Seed Total Vegetable Total Food Processing Total Forestry Mill Residue Forest Thinnings Logging Slash Chaparral Total Urban

  7. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Orchard and Vine Total Field and Seed Total Vegetable Total Food Processing Total Forestry Mill Residue Forest Thinnings Logging Slash Chaparral Total Urban

  8. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    hydrotreating, and hydrocracking capacity in Californiainputs of hydrogen for hydrocracking to crude qualities (

  9. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    hydrotreating, and hydrocracking capacity in Californiainputs of hydrogen for hydrocracking to crude qualities (

  10. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    natural gas, biomass) and energy conversion technologies (ed: Great Lakes Regional Biomass Energy Program & Renewableof fertilizers or using biomass energy for processing), and

  11. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    natural gas, biomass) and energy conversion technologies (ed: Great Lakes Regional Biomass Energy Program & Renewableof fertilizers or using biomass energy for processing), and

  12. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    innovation and development of new technologies that can dramatically lower GHG emissions at low costs

  13. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    innovation and development of new technologies that can dramatically lower GHG emissions at low costs

  14. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    innovation and thus are somewhat lower than current production costsinnovation and development of new technologies that can dramatically lower GHG emissions at low costs

  15. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    Impacts estimated by two LCA models, adjusted for energy atwarming impacts estimated by two LCA models under variousthe LCFS. Life cycle assessment (LCA) is used to measure the

  16. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    the cultivation of biomass feedstocks, including the impactsand a wide range of biomass feedstocks could be utilized forproduced for millenia. Biomass feedstocks are the source of

  17. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    the cultivation of biomass feedstocks, including the impactsand a wide range of biomass feedstocks could be utilized forproduced for millenia. Biomass feedstocks are the source of

  18. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    hydrogen and natural gas used for transportation purposesinterested in natural gas and electric transportation for anatural gas and propane are commonly used in specialized transportation

  19. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    hydrogen and natural gas used for transportation purposesinterested in natural gas and electric transportation for anatural gas and propane are commonly used in specialized transportation

  20. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    007CMF. Integrated energy policy report update 2006. 2007.by 2010 (Integrated energy policy report update 2006 2007).Integrated energy policy report update 2006 2007). The

  1. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    007CMF. Integrated energy policy report update 2006. 2007.by 2010 (Integrated energy policy report update 2006 2007).Integrated energy policy report update 2006 2007). The

  2. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    for conventional bioethanol production are rice, wheat,Conventional ethanol production means bioethanol fermented

  3. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    for conventional bioethanol production are rice, wheat,Conventional ethanol production means bioethanol fermented

  4. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    May 2005. British Petroleum (2006). BP Statistical ReviewOf World Energy. London, The British Petroleum Company, plc.prices Sources: British Petroleum (2006); Energy Information

  5. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    May 2005. British Petroleum (2006). BP Statistical ReviewOf World Energy. London, The British Petroleum Company, plc.prices Sources: British Petroleum (2006); Energy Information

  6. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    similar to conventional hydrocarbons, but they have extremehydrocarbon molecules. Producing Resource Production and Transport Refining End use (combustion) Conventional

  7. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    and power via biomass gasification. Biomass and Bioenergyas the use of biomass gasification systems or utilization ofcentral plant) Biomass gasification (central plant)

  8. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    and power via biomass gasification. Biomass and Bioenergyas the use of biomass gasification systems or utilization ofcentral plant) Biomass gasification (central plant)

  9. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    U.S. Department of Energy. “Biodiesel: Handling and Usecosts and benefits of biodiesel and ethanol biofuels." PNAS,aquatic species program--biodiesel from algae: NREL/TP-580-

  10. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    U.S. Department of Energy. “Biodiesel: Handling and Usecosts and benefits of biodiesel and ethanol biofuels." PNAS,aquatic species program--biodiesel from algae: NREL/TP-580-

  11. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    cellulosic ethanol, and biodiesel. The renewable volumeof 1, whereas FAME biodiesel is assigned an equivalencysale, ethanol and/or biodiesel may need to be manufactured

  12. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    cellulosic ethanol, and biodiesel. The renewable volumeof 1, whereas FAME biodiesel is assigned an equivalencysale, ethanol and/or biodiesel may need to be manufactured

  13. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Ligno-Cellulosic Wastes Food Waste Yard Waste Paper Wastecardboard, 10 percent food waste, 19 percent constructionBranches & Stumps Food Waste Textiles Source: USDOE (2007)

  14. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    Ligno-Cellulosic Wastes Food Waste Yard Waste Paper Wastecardboard, 10 percent food waste, 19 percent constructionBranches & Stumps Food Waste Textiles Source: USDOE (2007)

  15. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    Other Municipal Solid Waste Construction and Demo Debrispercent food waste, 19 percent construction and demolition

  16. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    Other Municipal Solid Waste Construction and Demo Debrispercent food waste, 19 percent construction and demolition

  17. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    M.Z. 2007. Effects of ethanol (E85) versus gasoline vehiclese.g. , E85 indicates 85% anhydrous ethanol by volume. Ine.g. , E85 actually contains roughly 81% ethanol), and in

  18. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    M.Z. 2007. Effects of ethanol (E85) versus gasoline vehiclese.g. , E85 indicates 85% anhydrous ethanol by volume. Ine.g. , E85 actually contains roughly 81% ethanol), and in

  19. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Sperling, Daniel; Farrell, Alexander

    2007-01-01

    oil companies own about 10 percent of the gasoline retailof retail gasoline. Major oil companies lease slightly less

  20. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    oil companies own about 10 percent of the gasoline retailof retail gasoline. Major oil companies lease slightly less

  1. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    in transportation energy, petroleum consumption and GHGtransportation energy comes from petroleum products, andprices Sources: British Petroleum (2006); Energy Information

  2. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    in transportation energy, petroleum consumption and GHGtransportation energy comes from petroleum products, andprices Sources: British Petroleum (2006); Energy Information

  3. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    57 Figure 3-4: Biofuel productionsector (e.g. , biofuel production and electric vehicles)may result from biofuel production). The term “life cycle”

  4. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    due to expansion of biofuel production. Because food andemission estimates from biofuel production due to land usefor biofuels Page 52 Biofuel production involves complex and

  5. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    57 Figure 3-4: Biofuel productionsector (e.g. , biofuel production and electric vehicles)may result from biofuel production). The term “life cycle”

  6. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    due to expansion of biofuel production. Because food andemission estimates from biofuel production due to land usefor biofuels Page 52 Biofuel production involves complex and

  7. Regional variations in US residential sector fuel prices: implications for development of building energy performance standards

    SciTech Connect (OSTI)

    Nieves, L.A.; Tawil, J.J.; Secrest, T.J.

    1981-03-01

    The Notice of Proposed Rulemaking for Energy Performance Standards for New Buildings presented life-cycle-cost based energy budgets for single-family detached residences. These energy budgets varied with regional climatic conditions but were all based on projections of national average prices for gas, oil and electricity. The Notice of Proposed Rulemaking indicated that further analysis of the appropriateness of various price measures for use in setting the Standards was under way. This part of that ongoing analysis addresses the availability of fuel price projections, the variation in fuel prices and escalation rates across the US and the effects of aggregating city price data to the state, Region, or national level. The study only provides a portion of the information required to identify the best price aggregation level for developing of the standards. The research addresses some of the economic efficiency considerations necessary for design of a standard that affects heterogeneous regions. The first section discusses the effects of price variation among and within regions on the efficiency of resource allocation when a standard is imposed. Some evidence of the extreme variability in fuel prices across the US is presented. In the second section, time series, cross-sectional fuel price data are statistically analyzed to determine the similarity in mean fuel prices and price escalation rates when the data are treated at increasing levels of aggregation. The findings of this analysis are reported in the third section, while the appendices contain price distributions details. The last section reports the availability of price projections and discusses some EIA projections compared with actual prices.

  8. California Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15 Jun-15DecadeVehicle Fuel

  9. California Motor Vehicle Standards and Federalism: Lessons for the European Union

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01

    to Reduce Motor Vehicle Emissions in Major Metropolitanin establishing motor vehicle emissions controls. The stateprocess in setting motor vehicle emissions standards has led

  10. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oilOil Lubricants Naphtha Petroleum feedstocks Natural Gas Liquids Municipal Solid Waste

  11. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01

    also novel new on-site hydrogen storage systems. In relationfunding for R&D on hydrogen storage, production and deliveryfor fuel cells and hydrogen storage), fuel cell durability,

  12. California Energy Commission CONSULTANT REPORT

    E-Print Network [OSTI]

    roofs and the energy requirement for renovated lighting systems to meet the new 2013 energyCalifornia Energy Commission CONSULTANT REPORT IMPACT ANALYSIS California's 2013 Building Energy Efficiency Standards JULY 2013 CEC4002013008 CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr

  13. Building America Top Innovations 2014 Profile: California Energy Standards Recognize the Importance of Filter Selection

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements of structuralRussianEnergy,Energy,Energy, science,--Recognizing

  14. California Motor Vehicle Standards and Federalism: Lessons for the European Union

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01

    rather than on per car emissions standards. The Tier 2effective for MY 2009 cars, the emissions of carbon dioxide,regulate greenhouse gas emissions from passenger cars. Yet

  15. Bush Hydrogen Vision "Fueled" By California Station Opening | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment|Marketing, LLCEfficiency | DepartmentEnergy CHINO, CALIF. - In a

  16. Standard test method for atom percent fission in uranium and plutonium fuel (Neodymium-148 Method)

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1996-01-01

    1.1 This test method covers the determination of stable fission product 148Nd in irradiated uranium (U) fuel (with initial plutonium (Pu) content from 0 to 50 %) as a measure of fuel burnup (1-3). 1.2 It is possible to obtain additional information about the uranium and plutonium concentrations and isotopic abundances on the same sample taken for burnup analysis. If this additional information is desired, it can be obtained by precisely measuring the spike and sample volumes and following the instructions in Test Method E267. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    and Related Standards for Nuclear Power Plants", LawrenceDensities Surrounding Nuclear Power Plants", LawrenceResponse Planning for Nuclear Power Plants in California",

  18. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California

    E-Print Network [OSTI]

    Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

    2001-01-01

    at the power plant as the figure suggests; in California, itplants running at full power, or about 4% of current Californiastationary power plants is 0.75 TW e . In California, under

  19. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results

    SciTech Connect (OSTI)

    John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

    2009-09-01

    Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting “raw” fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such “raw” PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

  20. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    in California PEV Technology and Costs The main challengesthis analysis. FCV Technology and Costs A hydrogen fuel cell6. Hydrogen storage technology and cost status compared to

  1. Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    electricity, natural gas, and transportation fuels demandsnatural gas, or coal), it would also offer opportunities to improve the efficiency and reliability of energy supply by integrating the electricity and transportation

  2. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    the case of oil and extraction, consumption of natural gasGas, Crude Oil and Distillates NGLs consumption in CALEBOil and Gas Extraction (Mcf) Re-pressuring Lease Fuel Consumption

  3. Vehicle Technologies Office Merit Review 2014: California Fleets and Workplace Alternative Fuels Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Bay Area Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  4. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    Performance Monitoring System IEA International Energy Agency IPCC Intergovernmental Panel on Climate Change SCAQMD South Coast Air Quality Management District scf Standard cubic feet SEDS State Energy Data System by: Stephane de la Rue du Can Tom Wenzel Lynn Price Environmental Energy Technologies Division

  5. Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    at the University of Michigan Transportation, Energy, Economics and the Environment Conference; Camp Resources XXI of California, Davis May 7, 2015 Corresponding author: gelade@ucdavis.edu Gabriel E. Lade is a PhD candidate, C and Resource Economics, University of California, Davis. Lin and Smith are members of the Giannini Foundation

  6. Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels the utilization of clean, renewable fuel sources in the production of finished motor gasoline. Many are the renewable fuel standard (RFS) at the national level and California's Low Carbon Fuels Standard (LCFS). Both

  7. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    energy demand along with the potential for technologies in different transportation sectors to reduce fuelpotential for reductions in energy demand, rather than the supply of low-carbon transportation fuel.potential for reductions in fuel use is provided. California’s Energy

  8. The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States

    E-Print Network [OSTI]

    Karplus, Valerie

    2012-07-31

    Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

  9. The effect of standard ambient conditions used for the determination of road load to predict vehicle fuel economy 

    E-Print Network [OSTI]

    Love, Michael Lee

    1982-01-01

    THE EFFECT OF STANDARD AN1BIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject: Mechanical Engineering THE EFFECT OF STANDARD AMBIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Approved...

  10. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    Standards for Nuclear Power Plants," by A.V. Nero and Y.C.Planning for Nuclear Power Plants in California," by W.W.S.Surrounding Nuclear Power Plants," by A.V. Nero, C.H.

  11. CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, jA.V.

    2010-01-01

    Related Standards for Nuclear Power Plants," by A.V. NeroResponse Planning for Nuclear Power Plants in California,"Densities Surrounding Nuclear Power Plants," by A.V. Nero,

  12. Ex Parte Meeting between DOE and California Energy Commission...

    Broader source: Energy.gov (indexed) [DOE]

    The California Energy Commission (Energy Commission) expressed concern about the differences in the stringency of California standards and the proposed DOE standards. The Energy...

  13. >.........standard

    E-Print Network [OSTI]

    to the multimedia research and product development industry Planned Accomplishments MPEG Standards: ·Establishing 2D. ......... IETF standard protocols Collaborators / Customers Standards Groups: MPEG, SMPTE NIST Collaborators: ATP Other Collaborators: Academic

  14. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California

    E-Print Network [OSTI]

    Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

    2001-01-01

    and of the electric power grid, yet analysts, industries,be realized only if the power grid operator has control overplugged in when the power grid needs them. A. The California

  15. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  16. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Evidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation EnergyCCST 2011a. California’s Energy Future - The View to 2050,

  17. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    of meeting California’s transportation energy needs andEvidence California’s Energy Future - Transportation Energymarine. California’s Energy Future - Transportation Energy

  18. SCENARIOS FOR MEETING CALIFORNIA'S 2050 CLIMATE GOALS California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results

    E-Print Network [OSTI]

    Wei, Max

    2014-01-01

    California Average Hourly Generation Mix by Fuel, ImportsBase Scenario Average Hourly Generation Mix by Fuel withinCalifornia Average Hourly Generation Mix by Fuel, Imports

  19. Property:RenewableFuelStandard/BiomassBasedDiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource HistoryPotentialRuralUtilityScalePVGeneration Jump to: navigation,PowerAdvancedBiofuel Jump to:

  20. Introduction to SAE Hydrogen Fueling Standardization Webinar: Q&A

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICE INDUSTRIALU.S. Department of EnergyPresentation

  1. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 20153DanielthroughDeterminingmanagement toLifeNEET|

  2. STATE OF CALIFORNIA --THE RESOURCES AGENCY Arnold Schwarzenegger, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    Kammen, Daniel M.

    1 STATE OF CALIFORNIA -- THE RESOURCES AGENCY Arnold Schwarzenegger, Governor CALIFORNIA ENERGY efficiency standards, resource acquisition, energy security, and other related matters. Litigation COMMISSION 1516 Ninth Street Sacramento, California 95814 WEBSITES Main website: www.energy.ca.gov Children

  3. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01

    California, June (1986). General Electric, Direct Energy Conversion Programs, Feasibility Study ofSPE Fuel Cell Power Plants

  4. Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat IsHeavy-DutyCELLs more and

  5. Achieving Vehicle Fuel Efficiency: The CAFE Standards and Abstract: As a series of political objectives converge and call for enhanced domestic automobile

    E-Print Network [OSTI]

    Mauzerall, Denise

    Achieving Vehicle Fuel Efficiency: The CAFE Standards and Beyond Abstract: As a series of political objectives converge and call for enhanced domestic automobile fuel efficiency, it is time to reassess the United States Corporate Average Fuel Economy (CAFE) standards and compare future options for limiting

  6. We Can't Wait: Driving Forward with New Fuel Economy Standards |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumerWaste1 Conference, February

  7. Comparison of three options for geologic sequestration of CO2 - a case study for California

    E-Print Network [OSTI]

    Benson, S.M.

    2000-01-01

    power plants in California POWER PLANT PROXIMITY TO SUITABLEfossil fuel power plants in California and their proximityfuel fired power plants in California and discusses the

  8. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  9. Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 0 1 0 0EffectiveEffective

  10. Approaches to representing aircraft fuel efficiency performance for the purpose of a commercial aircraft certification standard

    E-Print Network [OSTI]

    Yutko, Brian M. (Brian Matthew)

    2011-01-01

    Increasing concern over the potential harmful effects of green house gas emissions from various sources has motivated the consideration of an aircraft certification standard as one way to reduce aircraft C02 emissions and ...

  11. Approaches to Representing Aircraft Fuel Efficiency Performance for the Purpose of a Commercial Aircraft Certification Standard

    E-Print Network [OSTI]

    Yutko, Brian

    2011-06-27

    Increasing concern over the potential harmful effects of green house gas emissions from various sources has motivated the consideration of an aircraft certification standard as one way to reduce aircraft CO2 emissions and ...

  12. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    SciTech Connect (OSTI)

    Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L.

    2008-05-01

    Characterizing flow patterns and mixing of fossil fuel-derived CO{sub 2} is important for effectively using atmospheric measurements to constrain emissions inventories. Here we used measurements and a model of atmospheric radiocarbon ({sup 14}C) to investigate the distribution and fluxes of atmospheric fossil fuel CO{sub 2} across the state of California. We sampled {sup 14}C in annual C{sub 3} grasses at 128 sites and used these measurements to test a regional model that simulated anthropogenic and ecosystem CO{sub 2} fluxes, transport in the atmosphere, and the resulting {sup 14}C of annual grasses ({Delta}{sub g}). Average measured {Delta}{sub g} in Los Angeles, San Francisco, the Central Valley, and the North Coast were 27.7 {+-} 20.0, 44.0 {+-} 10.9, 48.7 {+-} 1.9, and 59.9 {+-} 2.5{per_thousand}, respectively, during the 2004-2005 growing season. Model predictions reproduced regional patterns reasonably well, with estimates of 27.6 {+-} 2.4, 39.4 {+-} 3.9, 46.8 {+-} 3.0, and 59.3 {+-} 0.2{per_thousand} for these same regions and corresponding to fossil fuel CO{sub 2} mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm. {Delta}{sub g} spatial heterogeneity in Los Angeles and San Francisco was higher in the measurements than in the predictions, probably from insufficient spatial resolution in the fossil fuel inventories (e.g., freeways are not explicitly included) and transport (e.g., within valleys). We used the model to predict monthly and annual transport patterns of fossil fuel-derived CO{sub 2} within and out of California. Fossil fuel CO{sub 2} emitted in Los Angeles and San Francisco was predicted to move into the Central Valley, raising Cf above that expected from local emissions alone. Annually, about 21, 39, 35, and 5% of fossil fuel emissions leave the California airspace to the north, east, south, and west, respectively, with large seasonal variations in the proportions. Positive correlations between westward fluxes and Santa Ana wind conditions were observed. The southward fluxes over the Pacific Ocean were maintained in a relatively coherent flow within the marine boundary layer, while the eastward fluxes were more vertically dispersed. Our results indicate that state and continental scale atmospheric inversions need to consider areas where concentration measurements are sparse (e.g., over the ocean to the south and west of California), transport within and across the marine boundary layer, and terrestrial boundary layer dynamics. Measurements of {Delta}{sub g} can be very useful in constraining these estimates.

  13. fuel

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A en

  14. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in...

  15. Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

  16. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

    2009-08-01

    Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

  17. POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

  18. The origin of California’s zero emission vehicle mandate

    E-Print Network [OSTI]

    Sperling, Dan; Collantes, Gustavo O

    2008-01-01

    Regulations for Low-Emission Vehicles and Clean Fuels: FinalAmendments to the Zero-Emissions Vehicle Requirements, Marchauthority to regulate vehicle emissions. California is not

  19. A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    GEOTHERMAL, AND ELECTRIC GENERATION IN CALIFORNIA Energy andELECTRIC GENERATION IN CALIFORNIA A project performed for the California Energy

  20. Fuel Quality & Metering Current Status and Future Needs

    E-Print Network [OSTI]

    Fuel Quality & Metering Current Status and Future Needs DOE Tank Safety Workshop Sandia National with enforcing the quality standards for Gasoline, Diesel, Motor Oil, Coolants, Brake Fluid, ATF, and Hydrogen commercial weighing, measuring, or counting device. This includes all Retail Motor Fuel devices (California

  1. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  2. Ex-Post Costs and RIN Prices Under the Renewable Fuel Standard

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    particularly on the EPA's methods used to calculate costs of the policy on the US fuel market. We compare, as well as recommend the use of `stress tests' in RIAs to ensure that programs like the RFS2 are designed in ways that can manage high compliance cost scenarios. a Department of Agricultural and Resource

  3. California Energy Incentive Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Department ofBusinessCEA90:2:09California Energy Incentive

  4. Novel Materials for Intermediate-Temperature Solid Oxide Fuel Cells Vincent Wu, University of California, Berkeley, 2011 SURF Fellow

    E-Print Network [OSTI]

    Li, Mo

    Introduction The need to develop new cathode materials for intermediate-temperature solid-oxide fuel cells (IT-SOFCsNovel Materials for Intermediate-Temperature Solid Oxide Fuel Cells Vincent Wu, University) is driven by the temperature conditions required for IT-SOFC operation. Designing SOFCs to operate at lower

  5. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    SciTech Connect (OSTI)

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

  6. Standard format and content for emergency plans for fuel cycle and materials facilities

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This regulatory guides is being developed to provide guidance acceptable to the NRC staff on the information to be included in emergency plans and to establish a format for presenting the information. Use of a standard format will help ensure uniformity and completeness in the preparation of emergency plans. An acceptable emergency plan should describe the licensed activities conducted at the facility and the types of accidents that might occur. It should provide information on classifying postulated accidents and the licensee's procedures for notifying and coordinating with offsite authorities. The plan should provide information on emergency response measures that might be necessary, the equipment and facilities available to respond to an emergency, and how the licensee will maintain emergency preparedness capability. It should describe the records and reports that will be maintained. There should also be a section on recovery after an accident and plans for restoring the facility to a safe condition. 4 refs.

  7. Criticality Analysis for Proposed Maximum Fuel Loading in a Standardized SNF Canister with Type 1a Baskets

    SciTech Connect (OSTI)

    Chad Pope; Larry L. Taylor; Soon Sam Kim

    2007-02-01

    This document represents a summary version of the criticality analysis done to support loading SNF in a Type 1a basket/standard canister combination. Specifically, this engineering design file (EDF) captures the information pertinent to the intact condition of four fuel types with different fissile loads and their calculated reactivities. These fuels are then degraded into various configurations inside a canister without the presence of significant moderation. The important aspect of this study is the portrayal of the fuel degradation and its effect on the reactivity of a single canister given the supposition there will be continued moderation exclusion from the canister. Subsequent analyses also investigate the most reactive ‘dry’ canister in a nine canister array inside a hypothetical transport cask, both dry and partial to complete flooding inside the transport cask. The analyses also includes a comparison of the most reactive configuration to other benchmarked fuels using a software package called TSUNAMI, which is part of the SCALE 5.0 suite of software.

  8. Standard review plan for reviewing safety analysis reports for dry metallic spent fuel storage casks

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Cask Standard Review Plan (CSRP) has been prepared as guidance to be used in the review of Cask Safety Analysis Reports (CSARs) for storage packages. The principal purpose of the CSRP is to assure the quality and uniformity of storage cask reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The CSRP also sets forth solutions and approaches determined to be acceptable in the past by the NRC staff in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a CSAR does not have to follow the solutions or approaches presented in the CSRP. However, applicants should recognize that the NRC staff has spent substantial time and effort in reviewing and developing their positions for the issues. A corresponding amount of time and effort will probably be required to review and accept new or different solutions and approaches.

  9. Electroweak stars: how nature may capitalize on the standard model's ultimate fuel

    E-Print Network [OSTI]

    De-Chang Dai; Arthur Lue; Glenn Starkman; Dejan Stojkovic

    2011-01-19

    We study the possible existence of an electroweak star - a compact stellar-mass object whose central core temperature is higher than the electroweak symmetry restoration temperature. We found a solution to the Tolman-Oppenheimer-Volkoff equations describing such an object. The parameters of such a star are not substantially different from a neutron star - its mass is around 1.3 Solar masses while its radius is around 8 km. What is different is the existence of a small electroweak core. The source of energy in the core that can at least temporarily balance gravity are standard-model non-perturbative baryon number (B) and lepton number (L) violating processes that allow the chemical potential of $B+L$ to relax to zero. The energy released at the core is enormous, but gravitational redshift and the enhanced neutrino interaction cross section at these energies make the energy release rate moderate at the surface of the star. The lifetime of this new quasi-equilibrium can be more than ten million years. This is long enough to represent a new stage in the evolution of a star if stellar evolution can take it there.

  10. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    Fuel and Vehicle Technology Program Under Solicitation PON-09-604 #12;CALIFORNIA ENERGY COMMISSION impacts report assesses and reports on the potential localized health impacts of this additional fuelCalifornia Energy Commission STAFF REPORT MAY 2011 CEC-600-2010-009-AD2 LOCALIZED HEALTH IMPACTS

  11. Implementing Performance-Based Sustainability Requirements for the Low Carbon Fuel Standard – Key Design Elements and Policy Considerations

    E-Print Network [OSTI]

    Yeh, Sonia; Sumner, Daniel A.; Kaffka, Stephen R.; Ogden, J; Jenkins, Bryan M.

    2009-01-01

    Standard – Key Design Elements and Policy ConsiderationsStandard ? Key Design Elements and Policy Considerations:Standard ? Key Design Elements and Policy Considerations:

  12. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    on the potential localized health impacts of this additional fuel production project recommendedCalifornia Energy Commission STAFF REPORT MARCH 2011 CEC-600-2010-004-AD Awarded Funding Through the Alternative and Renewable Fuel and Vehicle Technology

  13. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    on the potential localized health impacts of this additional fuel production project recommendedCalifornia Energy Commission STAFF REPORT MARCH 2011 CEC-600-2010-009-AD Projects Awarded Funding Through the Alternative and Renewable Fuel and Vehicle

  14. California Energy Commission COMMISSION REPORT

    E-Print Network [OSTI]

    Natural Gas Vehicle Coalition Brooke Coleman ­ New Fuels Alliance Will Coleman ­ Mohr Davidow Ventures ­ Western Propane Gas Association Bonnie HolmesGen ­ American Lung Association Roland Hwang ­ Natural of biofuels within California. Alternative and renewable transportation fuels include electricity, natural

  15. Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic Impact in the United States

    E-Print Network [OSTI]

    Karplus, V.J.

    The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use, as well as (more recently) greenhouse gas (GHG) ...

  16. California's Housing Problem

    E-Print Network [OSTI]

    Kroll, Cynthia; Singa, Krute

    2008-01-01

    only improve California’s housing opportunities but produce2004: California’s Affordable Housing Crisis. 2004. http://Raising the Roof: California Housing Development Projections

  17. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California...

  18. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    air conditioning requirements in 2025, we use appliance efficiency standards mandated by the California Energy

  19. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01

    dry and often hot offshore winds. Raphael [2003] described awintertime offshore Santa Ana (SA) wind conditions [ConilCalifornia wind regimes (alongshore, on- shore, and offshore

  20. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    Riley, W.J.

    2008-01-01

    dry and often hot offshore winds. Raphael [2003] described awintertime offshore Santa Ana (SA) wind conditions [ConilCalifornia wind regimes (alongshore, onshore, and offshore

  1. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    and other “Mobile Energy” innovations in California: Av. Hippel, Democratizing innovation. Cambridge, Mass. : MITusing lessons from the innovation and niche marketing

  2. California Energy Commission COMMITTEE DRAFT REPORT

    E-Print Network [OSTI]

    . Alternative and renewable transportation fuels include electricity, natural gas, biomethane, propane ­ California Air Resources Board Tim Carmichael ­ California Natural Gas Vehicle Coalition Brooke Coleman ENERGY COMMISSION TRANSPORTATION COMMITTEE James D. Boyd Vice-Chair Presiding Member Carla Peterman

  3. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  4. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  5. Safety, codes and standards for hydrogen installations :

    SciTech Connect (OSTI)

    Harris, Aaron P.; Dedrick, Daniel E.; LaFleur, Angela Christine; San Marchi, Christopher W.

    2014-04-01

    Automakers and fuel providers have made public commitments to commercialize light duty fuel cell electric vehicles and fueling infrastructure in select US regions beginning in 2014. The development, implementation, and advancement of meaningful codes and standards is critical to enable the effective deployment of clean and efficient fuel cell and hydrogen solutions in the energy technology marketplace. Metrics pertaining to the development and implementation of safety knowledge, codes, and standards are important to communicate progress and inform future R&D investments. This document describes the development and benchmarking of metrics specific to the development of hydrogen specific codes relevant for hydrogen refueling stations. These metrics will be most useful as the hydrogen fuel market transitions from pre-commercial to early-commercial phases. The target regions in California will serve as benchmarking case studies to quantify the success of past investments in research and development supporting safety codes and standards R&D.

  6. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  7. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01

    S E DWARD B URTYNSKY , Oil Sands #2, Fort McMurray, Alberta,for the very heavy oils and tar sands that oil companies aremade from tar sands and conventional oil. Envi- ronmental

  8. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01

    more concerned with energy security than with cli- matehen it comes to energy security and climate change concerns,petroleum—usually for energy security reasons but also to

  9. California Air Resources Board's "California Green Building Strategy"

    E-Print Network [OSTI]

    California Air Resources Board's "California Green Building Strategy" Collectively, energy use, as well as the sustainable operation, retrofitting and renovation of existing buildings. Since 1978, when building energy efficiency standards (Title 24, Part 6) were adopted, Californian's have saved more than

  10. California’s K-12 Educational Infrastructure Investments: Leveraging the State’s Role for Quality School Facilities in Sustainable Communities

    E-Print Network [OSTI]

    Vincent, Jeffrey M.

    2012-01-01

    guidelines,  standards,  incentives,   technical  support,  guidelines,  standards,  incentives,  technical   support,  Standards,  STEM  (Science,  Technology,  Engineering,  and   California’s K-12 Educational Infrastructure Investments Math)  curriculum,  and  Career  Technical  

  11. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    therms of natural gas, or 9 gge of liquid fuel. California’stherms (Mtherms) of natural gas. Liquid fuels (gge, bgge):for natural gas with CCS) • 15.5 bgge/yr for liquid fuels –

  12. Electric Vehicle Manufacturing in Southern California: Current Developments, Future Prospects

    E-Print Network [OSTI]

    Scott, Allen J.

    1993-01-01

    power plants) that produce the electricity required to recharge EVs, given the fuel generat~tng mix of Southern California,

  13. SCE- California Advanced Homes Incentives

    Broader source: Energy.gov [DOE]

    Southern California Edison offers an incentive for home builders to build homes which exceed 2008 Title 24 standards by 15%. The program is open to all single-family and multi-family new...

  14. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    Commercializing an alternate vehicle fuel: lessons learnedCommercializing an alternate vehicle fuel: lessons learned

  15. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    Commercializing an alternate vehicle fuel: lessons learnedCommercializing an alternate vehicle fuel: lessons learned

  16. California Energy Futures Study Working Committee

    E-Print Network [OSTI]

    California at Davis, University of

    #12;#12;#12;California Energy Futures Study Working Committee Robert Budnitz, LBNL Linda Cohen, UC Somerville, UC Berkeley H. Youngs ­ EBI, UC Berkeley California's Energy Future, Biofuels #12;Stress tests California's Energy Future, Biofuels #12;#12;#12;Reduced Fuel Demand Scenario H. Youngs ­ EBI, UC Berkeley

  17. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    truck activity in California. Transport Policy. Volume 16,in California Travel Demand Reductions Decreasing transportCalifornia, USA. Transportation Research, Part D: Transport

  18. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01

    Joint Center for Artificial Photosynthesis (JCAP) Fuel fromJoint Center for Artificial Photosynthesis LBNL LawrenceCenter for Artificial Photosynthesis, California Institute

  19. California Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net...

  20. Economic Impacts Associated With Commercializing Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts Associated With Commercializing Fuel Cell Electric Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model Economic Impacts Associated With...

  1. CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

  2. CALIFORNIA ENERGY FOURTH EDITION

    E-Print Network [OSTI]

    further public funding, and to secure for California the environmental, economic, and reliability benefits, details how funding awards will be made, describes invoicing procedures, and includes necessary forms standard, biomass, solar thermal electric, wind, existing renewable #12;Table of Contents I - Introduction

  3. CALIFORNIA ENERGY COMMISSIONGUIDEBOOK

    E-Print Network [OSTI]

    these facilities may become selfsustaining without further public funding by 2011, and to secure for California. The Guidebook outlines eligibility and legal requirements, details how funding awards will be made, describes renewable energy, production incentives, renewables portfolio standard, biomass, solar thermal electric

  4. How the green guys won : interest group strategies & the California Clean Cars Legislation

    E-Print Network [OSTI]

    Paine, Carli

    2005-01-01

    In July of 2002, the California State Legislature passed the "California Clean Cars Bill," the first law in the United States to regulate carbon dioxide as a vehicular pollutant. California's vehicular standards have ...

  5. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    plots two different fuel-cell applications with dramaticallycommercializing fuel cells in various applications, startingMembrane Fuel Cell System for Transportation Applications:

  6. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    plots two different fuel-cell applications with dramaticallycommercializing fuel cells in various applications, startingMembrane Fuel Cell System for Transportation Applications:

  7. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    Riley, W.J.

    2008-01-01

    of radiocarbon and fossil fuel-derived CO2 in surface airindependent budgeting of fossil fuel CO2 over Europe by (contributions from fossil fuels, oceans, the stratosphere,

  8. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: “Mobile Electricity"

  9. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Transition: Designing a Fuel- Cell Hypercar. ” 8th Annual

  10. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Energy Use in California PEV Technology and Costs The mainEnergy Use in California Component HEV Battery Cost, $/kWhaccount the cost of delivery. California’s Energy Future -

  11. STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    Manager California Energy Commission 1516 9th Street, MS 2000 Sacramento, CA 95814 Comments may are routinely monitored with a continuous emission monitoring system. An averaging time requirement is standardSTATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY

  12. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Deputy Project Director, Energy and Environmental Security,Security Principal Directorate, Lawrence Livermore National Lab California’s Energy

  13. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    therms of natural gas, or 9 gge of liquid fuel. California’stherms (Mtherms) of natural gas. Liquid fuels (gge, bgge):for natural gas with CCS) • 15.5 bgge/yr for liquid fuels –

  14. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    energy, gasoline, diesel, jet fuel, ethanol, E85, propane, biodiesel, transportation fuel demand, demandCalifornia Energy Commission STAFF REPORT TRANSPORTATION FUEL PRICE CASES AND DEMAND SCENARIOS methods and inputs to be used for preparing long-term transportation energy demand scenarios. Price

  15. California Proved Nonproducing Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (Million Cubic Feet)per272 522 542

  16. Recovery Act State Memos California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI | Department8Recovery ActCalifornia For

  17. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    Joint Center for Artificial Photosynthesis (JCAP) Fuel fromJoint Center for Artificial Photosynthesis LBNL LawrenceCenter for Artificial Photosynthesis, California Institute

  18. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01

    independent budgeting of fossil fuel CO 2 over Europe by (COcontributions from fossil fuels, oceans, the stratosphere,15 of 16 G04002 RILEY ET AL. : FOSSIL FUEL CO 2 TRANSPORT IN

  19. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01

    independent budgeting of fossil fuel CO 2 over Europe by (CO2008 Where do fossil fuel carbon dioxide emissions frompatterns and mixing of fossil fuel-derived CO 2 is important

  20. California Energy Commission COMMITTEE FINAL REPORT

    E-Print Network [OSTI]

    Natural Gas Vehicle Coalition Brooke Coleman ­ New Fuels Alliance Will Coleman ­ Mohr Davidow Ventures ­ Western Propane Gas Association Bonnie HolmesGen ­ American Lung Association Roland Hwang ­ Natural of biofuels within California. Alternative and renewable transportation fuels include electricity, natural

  1. -California -Washington

    E-Print Network [OSTI]

    with Hawaii-based U.S. fisheries, as well as the fleets of other Pacific Rim nations. As such, the managementPacific - California - Oregon - Washington #12;Regional Summary Pacific Region Management Context The Pacific Region includes California, Oregon, and Washington. Federal fisheries in this region are managed

  2. California's Environmental

    E-Print Network [OSTI]

    California at Davis, University of

    SB 375 and California's Environmental Goals Louise Bedsworth Deputy Director Governor's Office of Planning and Research January 22, 2014 UC Davis Policy Forum Series #12;A vision for California's future Strong economy Thriving urban areas Prosperous rural regions Clean Environment Clean and efficient energy

  3. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01

    electricity marginal generation mix in California’s Low Carbon Fueland Fuel Cell Electric Vehicle Symposium Table 1: Summary of California electricity supply (2005) Capacity, Generation,and Fuel Cell Electric Vehicle Symposium GHG emissions rate Variable cost Demand/Generation (MW) Figure 1: Representative California-wide electricity

  4. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness CaseBiomethane Promotion The California

  6. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    , Statutes of 1997) requires retail electricity providers to disclose quarterly and annual fuel mix the mix of electricity fuel and technology types of the retail suppliers' sources of power and includes to disclose total California system electricity, which is the sum of all in-state generation and net

  7. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California. Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    SciTech Connect (OSTI)

    Mendell, Mark J.; Apte, Mike G.

    2010-10-31

    This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptive ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These strategies, however, would make it more complex and more prescriptive, and would require substantial research. One practical intermediate strategy to save energy would be an alternate VRP, allowing VRs lower than currently prescribed, as long as indoor VOC concentrations were no higher than with VRs prescribed under the current VRP. This kind of hybrid, with source reduction and use of air cleaning optional but permitted, could eventually evolve, as data, materials, and air-cleaning technology allowed gradual lowering of allowable concentrations, into a fully developed IAQP. Ultimately, it seems that VR standards must evolve to resemble the IAQP, especially in California, where buildings must achieve zero net energy use within 20 years.

  8. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    economy from today’s levels, cutting energy consumption pertoday, though they will likely continue to improve and be refined over time. California’s Energy

  9. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01

    aviation, marine and rail sectors. Energy use, broken out bysuch as aviation and marine. California’s Energy Future -and marine. We believe that the CEF transportation energy

  10. STATE OF CALIFORNIA --THE NATURAL RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    available on May 18, 2010. This report is a review of the projects submitted under the Biomethane Production Scientific Enhanced Transportation Biomethane Production from Municipal Sludge Digesters ­ Elk Grove Natural Gas Vehicle Fuel ­ Oroville, California · Pixley Biogas ­ Pixley, California · High Mountain Fuels

  11. Standard guide for pyrophoricity/combustibility testing in support of pyrophoricity analyses of metallic uranium spent nuclear fuel

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide covers testing protocols for testing the pyrophoricity/combustibility characteristics of metallic uranium-based spent nuclear fuel (SNF). The testing will provide basic data for input into more detailed computer codes or analyses of thermal, chemical, and mechanical SNF responses. These analyses would support the engineered barrier system (EBS) design bases and safety assessment of extended interim storage facilities and final disposal in a geologic repository. The testing also could provide data related to licensing requirements for the design and operation of a monitored retrievable storage facility (MRS) or independent spent fuel storage installation (ISFSI). 1.2 This guide describes testing of metallic uranium and metallic uranium-based SNF in support of transportation (in accordance with the requirements of 10CFR71), interim storage (in accordance with the requirements of 10CFR72), and geologic repository disposal (in accordance with the requirements of 10CFR60/63). The testing described ...

  12. Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge '92

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P.

    1992-01-01

    The Natural Gas Vehicle Challenge '92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  13. Meeting future exhaust emissions standards using natural gas as a vehicle fuel: Lessons learned from the natural gas vehicle challenge `92

    SciTech Connect (OSTI)

    Rimkus, W.A.; Larsen, R.P.

    1992-09-01

    The Natural Gas Vehicle Challenge `92, organized by Argonne National Laboratory and sponsored by the US Department of Energy, the Energy, Mines, and Resources - Canada, the Society of Automotive Engineers, and many others, resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck, donated by General Motors, teams of college and university student engineers strived to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student-modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the US Environmental Protection Agency. Factors in achieving good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  14. Standard guide for evaluation of materials used in extended service of interim spent nuclear fuel dry storage systems

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Part of the total inventory of commercial spent nuclear fuel (SNF) is stored in dry cask storage systems (DCSS) under licenses granted by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this guide is to provide information to assist in supporting the renewal of these licenses, safely and without removal of the SNF from its licensed confinement, for periods beyond those governed by the term of the original license. This guide provides information on materials behavior under conditions that may be important to safety evaluations for the extended service of the renewal period. This guide is written for DCSS containing light water reactor (LWR) fuel that is clad in zirconium alloy material and stored in accordance with the Code of Federal Regulations (CFR), at an independent spent-fuel storage installation (ISFSI). The components of an ISFSI, addressed in this document, include the commercial SNF, canister, cask, and all parts of the storage installation including the ISFSI pad. The language of t...

  15. Is the California Special Education Achievement Gap Really Closing?

    E-Print Network [OSTI]

    Fearn, Emilene Johnson

    2012-01-01

    Performance Assessment technical report, 2010 SpringModified Assessment (CMA) technical report, Spring 2010California Standards Tests technical report, Spring 2010

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

  17. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

  18. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    and S. E. Letendre, "Electric Vehicles as a New Power Sourceassessment for fuel cell electric vehicles." Argonne, Ill. :at 20th International Electric Vehicle Symposium (EVS-20),

  19. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    assessment for fuel cell electric vehicles." Argonne, Ill. :of Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Recharging and Household Electric Vehicle Market: A Near-

  20. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    for example, fuel-cell refurbishment costs resulting fromand capital degradation/refurbishment. They also note twoassociated need for refurbishment). These trade-offs between

  1. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    for example, fuel-cell refurbishment costs resulting fromand capital degradation/refurbishment. They also note twoassociated need for refurbishment). These trade-offs between

  2. “The Making of” California’s Energy Crisis

    E-Print Network [OSTI]

    Whittington, Jan

    2002-01-01

    2000. California’s Energy Crisis, Whittington Vogel, Nancy (23 2001. California’s Energy Crisis, Whittington Girion,of” California’s Energy Crisis Jan Whittington Abstract This

  3. The California Zero-Emission Vehicle Mandate: A Study of the Policy Process, 1990-2004

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2006-01-01

    in the history of vehicle emissions regulation: the Zero-adopt and implement motor vehicle emission standards, in-useCalifornia and Federal vehicle emission standards to that

  4. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    radiation The primary source of information on acute effectsresults. The primary source of information for these cancer

  5. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    the BEIR Committee - boiling water reactor - Code of FederalACCIDENT FOR BOILING WATER REACTORS (Revision 2, 6/74) 1.4ACCIDENT FOR BOILING WATER REACTORS (3/71) 1.24 ASSUMPTIONS

  6. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    the possible risk from nuclear power . it . is sufficient tothe Cancer Risk Due to Nuclear-Electric Power Generation",of Accident Risks in U.S. Commercial Nuclear Power Plants",

  7. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    OF RADIOACTIVE MATERIALS IN GASEOUS AND LIQUID EFFLUENTSof radioactive materials in liquid and gaseous effluents to

  8. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    Measurements - Nuclear Regulatory Commission - protectiveand by the Nuclear Regulatory Commission (NRC) as a basisplants. The Nuclear Regulatory Commission is the agency

  9. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    the entire area of nuclear safety. A portion of the safetypeaceful uses of nuclear energy; health and safety measuresU. S. Nuclear Regulatory Conunission, "Reactor Safety Study:

  10. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    DESIGN, TESTING, AND MAINTENANCE CRITERIA FOR ENGINEERED-SAFETY-design and operating criteria and to show the adequacy of the site characteristics from a safety

  11. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01

    Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

  12. California Energy Commission Technical Assistance for the Alternative and

    E-Print Network [OSTI]

    California Energy Commission 1 Technical Assistance for the Alternative and Renewable Fuel and Vehicle Technology (ARFVT) Program California Energy Commission Request for Proposals RFP # 600-12-604 Pre-Bid Conference Date: January 23, 2013 #12;California Energy Commission AGENDA 10:00 Welcome and Introductions

  13. Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission

    SciTech Connect (OSTI)

    Mosey, G.; Vimmerstedt, L.

    2009-07-01

    The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

  14. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff design specification for the service...

  15. California Regulations on Renewble Hydrogen and Low Carbon Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nworkshopnov16achtelik.pdf More Documents & Publications Transportation and Stationary Power Integration Workshop: A California Perspective Vision for Rollout of Fuel Cell...

  16. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    ELECTRICITY SUPPLY Hydroelectric Energy Supply Thermal-question. Data on PG&E's hydroelectric resources and Pacific27 Table 28 Table 29 Hydroelectric Supply in California Fuel

  17. California Policy Stimulates Carbon Negative CNG for Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks California Policy Stimulates Carbon Negative CNG for Heavy Duty Trucks Describes system for fueling truck fleet with...

  18. California Lighting Technology Center (University of California, Davis) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: EnergyCalendarCalhounWebpage |Open EnergyCalifornia LakeOpen

  19. California City, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: Energy ResourcesCRED:Calendar Home2015Energy Jump

  20. An Update on Alternative Fuels & the Renewable Fuel

    E-Print Network [OSTI]

    Pennycook, Steve

    An Update on Alternative Fuels & the Renewable Fuel Standard (RFS2) Center for Bio Fuel Standard 0 5 10 15 20 25 30 35 40 2012 2015 2022 Renewable Fuel Standard Production Targets (billions of gallons) · The Renewable Fuel Standard (RFS) sets aggressive goals

  1. CALIFORNIA ENERGY COMMISSION California Energy Commission

    E-Print Network [OSTI]

    , CALIFORNIA CENTER FOR SUSTAINABLE ENERGY, CALIFORNIA ENVIRONMENTAL JUSTICE ALLIANCE, CALIFORNIA SOLAR ENERGY., LOCAL ENERGY AGGREGATION NETWORK, DR. LUIS PACHECO, PRESENTE.ORG, SIERRA CLUB, SOLAR ENERGY INDUSTRIES ASSOCIATION, AND THE VOTE SOLAR INITIATIVE FOR SOCIETAL COST-BENEFIT EVALUATION OF CALIFORNIA'S NET ENERGY

  2. California State Historic Preservation Programmatic Agreement | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels| Departmentof Energy California State Historic Preservation

  3. California State Fire Marshal Information Bulletin

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case for E85California State Fire Marshal

  4. Itron (California) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) Jump to: navigation, search Name: Itron

  5. California Ridge | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California: EnergyNatural Resources Agency Jump to:

  6. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01

    alternative energy pathways (such as hydrogen and electric vehicles).Vehicle Conventional and Alternative Fuel Response Simulator California Energyenergy consumption Vehicle-miles traveled Vehicle stock turnover model Water heater vii EXECUTIVE SUMMARY Introduction This report describes five alternative

  7. California/Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information 2ndCalifornia/Incentives < California Jump

  8. Calimesa, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas:Information 2ndCalifornia/Incentives < California

  9. Calipatria, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California:InformationInformation 9thCalipatria, California:

  10. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles...

  11. San Marcos, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas,Rey, California: EnergyCalifornia:

  12. San Martin, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas,Rey, California:Martin, California:

  13. California Offshore-California Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (Million Cubic Feet) Plant Liquids

  14. California Onshore-California Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (Million Cubic Feet)

  15. California: California’s Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of California.

  16. CALIFORNIA INVESTMENT PLAN FOR THE

    E-Print Network [OSTI]

    . California Air Resources Board California Energy Commission Gerhard Achtelik Mike Smith Independent Oil Marketers Association Gerald Secundy, California Council for Environmental and Economic and Anthony Brunello, California Resources Agency Rick Shedd, California Department of General Services John

  17. Wendel, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to:Search YourIndiana:Wendel, California:

  18. Westley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy ResourcesTurin,Westhaven-Moonstone,Westley, California:

  19. Westmorland, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland: Energy Resources JumpWestmorland, California:

  20. Willowbrook, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy Resources Jump to:Willoughby,California: Energy