Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980  

SciTech Connect

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-05-01T23:59:59.000Z

2

General-purpose heat source project and space nuclear safety and fuels program. Progress report  

SciTech Connect

Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

Maraman, W.J.

1980-02-01T23:59:59.000Z

3

Wood Heating Fuel Exemption  

Energy.gov (U.S. Department of Energy (DOE))

This statute exempts from the state sales tax all wood or "refuse-derived" fuel used for heating purposes. The law does not make any distinctions about whether the qualified fuels are used for...

4

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

5

General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980  

SciTech Connect

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-04-01T23:59:59.000Z

6

Passive solar space heating  

SciTech Connect

An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

Balcomb, J.D.

1980-01-01T23:59:59.000Z

7

List of Passive Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 278 Passive Solar Space Heat Incentives. CSV (rows 1 - 278) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy and Energy Conservation Patent Exemption (Corporate) (Massachusetts) Industry Recruitment/Support Massachusetts Commercial Biomass Fuel Cells Geothermal Electric Ground Source Heat Pumps Hydroelectric energy Municipal Solid Waste Passive Solar Space Heat Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy and Energy Conservation Patent Exemption (Personal) (Massachusetts) Industry Recruitment/Support Massachusetts General Public/Consumer Biomass

8

Solar Space Heating with Air and Liquid Systems  

Science Journals Connector (OSTI)

...several thousand solar space heating systems...can be supplied by solar energy delivered from flat-plate...liquid collection and storage systems, demand...Annual costs of solar heating equipment...current values of energy savings, but fuel...

1980-01-01T23:59:59.000Z

9

Passive Solar Space Heat | Open Energy Information  

Open Energy Info (EERE)

Passive Solar Space Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titlePassiveSolarSpaceHeat&oldid26718...

10

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings* ........................... 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity

11

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

12

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Revised: December, 2008 Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings ............................. 91.0 33.0 7.2 6.1 7.0 18.7 2.7 5.3 1.0 2.2 7.9 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 99.0 30.7 6.7 2.7 7.1 13.9 7.1 19.9 1.1 1.7 8.2 5,001 to 10,000 .......................... 80.0 30.1 5.5 2.6 6.1 13.6 5.2 8.2 0.8 1.4 6.6 10,001 to 25,000 ........................ 71.0 28.2 4.5 4.1 4.1 14.5 2.3 4.5 0.8 1.6 6.5 25,001 to 50,000 ........................ 79.0 29.9 6.8 5.9 6.3 14.9 1.7 3.9 0.8 1.8 7.1 50,001 to 100,000 ...................... 88.7 31.6 7.6 7.6 6.5 19.6 1.7 3.4 0.7 2.0 8.1 100,001 to 200,000 .................... 104.2 39.1 8.2 8.9 7.9 22.9 1.1 2.9 Q 3.2 8.7 200,001 to 500,000 ....................

13

Electric resistive space heating  

Science Journals Connector (OSTI)

The cost of heating residential buildings using electricity is compared to the cost employing gas or oil. (AIP)

David Bodansky

1985-01-01T23:59:59.000Z

14

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

SciTech Connect

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

15

Heating subsurface formations by oxidizing fuel on a fuel carrier  

DOE Patents (OSTI)

A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

Costello, Michael; Vinegar, Harold J.

2012-10-02T23:59:59.000Z

16

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ........................... 1,870 1,276 322 138 133 43.0 29.4 7.4 3.2 3.1 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 243 151 34 40 18 78.7 48.9 11.1 13.0 5.7 5,001 to 10,000 .......................... 202 139 31 29 Q 54.8 37.6 8.5 7.9 Q 10,001 to 25,000 ........................ 300 240 31 21 7 42.5 34.1 4.4 3.0 1.1 25,001 to 50,000 ........................ 250 182 40 11 Q 41.5 30.2 6.6 1.9 Q 50,001 to 100,000 ...................... 236 169 41 8 19 35.4 25.2 6.2 1.2 2.8 100,001 to 200,000 .................... 241 165 54 7 16 36.3 24.8 8.1 1.0 2.4 200,001 to 500,000 .................... 199 130 42 11 16 35.0 22.8 7.5 1.9 2.8 Over 500,000 ............................. 198

17

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Released: September, 2008 Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ............................. 2,037 1,378 338 159 163 42.0 28.4 7.0 3.3 3.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 249 156 35 41 18 78.6 49.1 11.0 12.9 5.6 5,001 to 10,000 .......................... 218 147 32 31 7 54.8 37.1 8.1 7.9 1.7 10,001 to 25,000 ........................ 343 265 34 25 18 43.8 33.9 4.4 3.2 2.3 25,001 to 50,000 ........................ 270 196 41 13 Q 40.9 29.7 6.3 2.0 2.9 50,001 to 100,000 ...................... 269 186 45 13 24 35.8 24.8 6.0 1.8 3.2 100,001 to 200,000 .................... 267 182 56 10 19 35.4 24.1 7.4 1.3 2.6 200,001 to 500,000 .................... 204 134 43 11 17 34.7 22.7 7.3 1.8 2.9 Over 500,000 .............................

18

Refundable Clean Heating Fuel Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refundable Clean Heating Fuel Tax Credit (Corporate) Refundable Clean Heating Fuel Tax Credit (Corporate) Refundable Clean Heating Fuel Tax Credit (Corporate) < Back Eligibility Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate 0.20/gallon Program Info Start Date 01/01/2008 (2008 reinstatement) Expiration Date 12/31/2016 State New York Program Type Corporate Tax Credit Rebate Amount 0.01/gallon for each percent of biodiesel Provider New York State Department of Taxation and Finance The state of New York began offering a corporate income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized for only one year from July 1, 2006 to June 30, 2007. However, in 2008 the law was amended to reinstate the credit for purchases made between January 1, 2008 and

19

Refundable Clean Heating Fuel Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Refundable Clean Heating Fuel Tax Credit (Personal) Refundable Clean Heating Fuel Tax Credit (Personal) Refundable Clean Heating Fuel Tax Credit (Personal) < Back Eligibility Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $0.20/gallon Program Info Start Date 01/01/2008 (2008 reinstatement) Expiration Date 12/31/2016 State New York Program Type Personal Tax Credit Rebate Amount $0.01/gallon for each percent of biodiesel Provider New York State Department of Taxation and Finance The state of New York began offering a personal income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized for only one year from July 1, 2006 to June 30, 2007. However, in 2008 the law was amended to reinstate the credit for purchases made between January 1, 2008 and

20

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

heating heating Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar energy. Passive Solar Space Heating Passive solar space heating takes advantage of warmth from the sun through design features, such as large south-facing windows, and materials in the floors or walls that absorb warmth during the day and release that warmth

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Multi-Function Fuel-Fired Heat Pump  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Function Fuel-Fired Heat Pump Multi-Function Fuel-Fired Heat Pump CRADA Ed Vineyard Oak Ridge National Laboratory, Building Equipment Research vineyardea@ornl.gov, 865-576-0576 April 2, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: 55% residential building energy use for space conditioning & water heating; highly efficient systems needed to facilitate DOE/BTO goal for 50% reduction in building energy use by 2030 Impact of Project: Cumulative energy savings potential of 0.25 Quads

22

Solar air heating system for combined DHW and space heating  

E-Print Network (OSTI)

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating S├Şren ├?stergaard Jensen

23

Water and Space Heating Heat Pumps  

E-Print Network (OSTI)

This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

Kessler, A. F.

1985-01-01T23:59:59.000Z

24

Combined Heat and Power Market Potential for Opportunity Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

25

Prospects of energy savings in residential space heating  

Science Journals Connector (OSTI)

This paper presents some insight to the problem of heating of housing in Jordan. Residential space and water heating are dependent particularly upon the combustion of fossil fuels, which thereby contribute significantly to air pollution and the build-up of carbon dioxide in the atmosphere. The results of a recent survey were used to evaluate the energy demand and conservation in Jordanian residential buildings. Space heating accounts for 61% of the total residential energy consumption with kerosene being the most popular fuel used, followed by liquefied petroleum gas (LPG), for heating purposes. Unvented combustion appliances employed to provide space heating produce high levels of combustion by-products that often exceed acceptable concentrations, degraded indoor air quality and cause unnecessary exposure to toxic gases such as carbon monoxide. During 1999, the number of accidents in households due to the use of different energy forms accounted for about 40% of all accidents, except road accidents, in Jordan. In light of the fact that only 5% of dwellings in Jordan have been provided with wall insulation and none employ roof insulation, the overall heat transfer coefficients, and consequently heating loads, were estimated for a typical single house using different constructions for external walls. It is concluded that space heating load can be reduced by about 50%, when economically-viable insulating measures are applied to the building envelopes, i.e. to ceilings and walls. These lead to corresponding reductions in fossil fuels consumption and in emissions of air pollutants.

Jamal O Jaber

2002-01-01T23:59:59.000Z

26

Solar space heating | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon ┬╗ Solar space heating (Redirected from - Solar Ventilation Preheat) Jump to: navigation, search (The following text is derived from the United States Department of Energy's description of solar space heating technology.)[1] Contents 1 Space Heating 2 Passive Solar Space Heating 3 Active Solar Space Heating 4 References Space Heating A solar space-heating system can consist of a passive system, an active system, or a combination of both. Passive systems are typically less costly and less complex than active systems. However, when retrofitting a building, active systems might be the only option for obtaining solar

27

Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used  

U.S. Energy Information Administration (EIA) Indexed Site

0. Space-Heating Energy Sources, Number of Buildings, 1999" 0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,1982,926,1082,214,"Q",162,"Q" "5,001 to 10,000 ..............",1110,946,379,624,73,"Q",88,"Q" "10,001 to 25,000 .............",708,629,324,389,52,19,42,"Q"

28

Heat exchanger for fuel cell power plant reformer  

DOE Patents (OSTI)

A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

1988-01-01T23:59:59.000Z

29

Fuel cell system with combustor-heated reformer  

DOE Patents (OSTI)

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

Pettit, William Henry (Rochester, NY)

2000-01-01T23:59:59.000Z

30

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet recommends installing waste heat recovery systems for fuel-fired furnaces to increase the energy efficiency of process heating systems.

31

Fuel-Flexible Microturbine and Gasifier System for Combined Heat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in...

32

Microfabricated fuel heating value monitoring device  

DOE Patents (OSTI)

A microfabricated fuel heating value monitoring device comprises a microfabricated gas chromatography column in combination with a catalytic microcalorimeter. The microcalorimeter can comprise a reference thermal conductivity sensor to provide diagnostics and surety. Using microfabrication techniques, the device can be manufactured in production quantities at a low per-unit cost. The microfabricated fuel heating value monitoring device enables continuous calorimetric determination of the heating value of natural gas with a 1 minute analysis time and 1.5 minute cycle time using air as a carrier gas. This device has applications in remote natural gas mining stations, pipeline switching and metering stations, turbine generators, and other industrial user sites. For gas pipelines, the device can improve gas quality during transfer and blending, and provide accurate financial accounting. For industrial end users, the device can provide continuous feedback of physical gas properties to improve combustion efficiency during use.

Robinson, Alex L. (Albuquerque, NM); Manginell, Ronald P. (Albuquerque, NM); Moorman, Matthew W. (Albuquerque, NM)

2010-05-04T23:59:59.000Z

33

Method and apparatus for fuel gas moisturization and heating  

DOE Patents (OSTI)

Fuel gas is saturated with water heated with a heat recovery steam generator heat source. The heat source is preferably a water heating section downstream of the lower pressure evaporator to provide better temperature matching between the hot and cold heat exchange streams in that portion of the heat recovery steam generator. The increased gas mass flow due to the addition of moisture results in increased power output from the gas and steam turbines. Fuel gas saturation is followed by superheating the fuel, preferably with bottom cycle heat sources, resulting in a larger thermal efficiency gain compared to current fuel heating methods. There is a gain in power output compared to no fuel heating, even when heating the fuel to above the LP steam temperature.

Ranasinghe, Jatila (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

34

Multi-Function Fuel-Fired Heat Pump Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy is currently conducting research into multi-function fuel-fired heat pumps. Multi-function fuel-fired heat pump technology has the potential for a significant impact...

35

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.

Pendergrass, J.C.

1997-05-13T23:59:59.000Z

36

Heat pump system with selective space cooling  

DOE Patents (OSTI)

A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.

Pendergrass, Joseph C. (Gainesville, GA)

1997-01-01T23:59:59.000Z

37

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility...

38

Passive Solar Building Design and Solar Thermal Space Heating...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Passive Solar Building Design and Solar Thermal Space Heating Webinar Passive Solar Building Design and Solar Thermal Space Heating Webinar Watch a recording of National Renewable...

39

List of Solar Space Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Space Heat Incentives Space Heat Incentives Jump to: navigation, search The following contains the list of 499 Solar Space Heat Incentives. CSV (rows 1 - 499) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat

40

"Table HC14.4 Space Heating Characteristics by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by West Census Region, 2005" 4 Space Heating Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Space Heating Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Do Not Have Space Heating Equipment",1.2,0.7,"Q",0.7 "Have Main Space Heating Equipment",109.8,23.4,7.5,16 "Use Main Space Heating Equipment",109.1,22.9,7.4,15.4 "Have Equipment But Do Not Use It",0.8,0.6,"Q",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,14.7,4.6,10.1 "Central Warm-Air Furnace",44.7,11.4,4,7.4

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

"Table HC12.4 Space Heating Characteristics by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Midwest Census Region, 2005" 4 Space Heating Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N" "Have Main Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Main Space Heating Equipment",109.1,25.6,17.7,7.9 "Have Equipment But Do Not Use It",0.8,"N","N","N" "Main Heating Fuel and Equipment"

42

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

43

Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Native Village of Teller Addresses Heating Fuel Shortage, Improves Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security June 22, 2012 - 4:54pm Addthis The combination of the Native Village of Teller’s limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL Native Village of Teller Addresses Heating Fuel Shortage, Improves Energy Security Native Village of Teller fuel storage. Photo by Alexander Dane, NREL Native Village of Teller fuel storage. Photo by Alexander Dane, NREL The combination of the Native Village of Teller's limited fuel storage capacity and a harsh winter led to a supply shortage. Photo by Alexander Dane, NREL

44

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 systems per household Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $400/system Provider York Electric Cooperative, Inc York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and industrial locations. The incentive is for the property owner only, meaning that renters/tenants are not

45

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

46

Winter Heating Fuels - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium Uranium fuel, nuclear...

47

Heat kernels on metric measure spaces Alexander Grigor'yan  

E-Print Network (OSTI)

Heat kernels on metric measure spaces Alexander Grigor'yan Department of Mathematics University Kong April 2013 Contents 1 What is the heat kernel 2 1.1 Examples of heat kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Heat kernel in Euclidean spaces . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Heat

Grigor'yan, Alexander

48

Liquid Metal Bond for Improved Heat Transfer in LWR Fuel Rods  

SciTech Connect

A liquid metal (LM) consisting of 1/3 weight fraction each of Pb, Sn, and Bi has been proposed as the bonding substance in the pellet-cladding gap in place of He. The LM bond eliminates the large AT over the pre-closure gap which is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond. The HEATING 7.3 heat transfer code indicates that these void spaces lead to local fuel hot spots.

Donald Olander

2005-08-24T23:59:59.000Z

49

Thermoacoustic device for nuclear fuel monitoring and heat transfer enhancement  

Science Journals Connector (OSTI)

The Fukushima Daiĺichi nuclear disaster of 2011 exposed the need for self-powered sensors that could transmit the status of the fuel rods within the reactor and in spent fuel ponds that was not dependent upon availability of external electrical power for either sensing or telemetry. One possible solution is the use of a thermoacoustic standing wave engine incorporated within a fuel rod which is heated by the nuclear fuel. The engineĺs resonance frequency is correlated to the fuel rod temperature and will be transmitted by sound radiation through the reactor's or storage pondĺs surrounding water. In addition to acting as a passive temperature sensor the thermoacoustic device will serve to enhance heat transfer from the fuel to the surrounding heat transfer fluid. When activated the acoustically-driven streaming flow of the gas within the fuel rod will circulate gas away from the nuclear fuel and convectively enhance heat transfer to the surrounding coolant. We will present results for a thermoacousticresonator built into a Nitonic« 60 (stainless steel) fuel rod that can be substituted for conventional fuel rods in the Idaho National Laboratoryĺs Advanced Test Reactor. This laboratory version is heated electrically. [Work supported by the U.S. Department of Energy.

Randall A. Ali; Steven L. Garrett; James A. Smith; Dale K. Kotter

2012-01-01T23:59:59.000Z

50

Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Parking Space Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

51

In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification Explores...

52

Environmental assessment for radioisotope heat source fuel processing and fabrication  

SciTech Connect

DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

Not Available

1991-07-01T23:59:59.000Z

53

The Heat Equation (One Space Dimension) In these notes we derive the heat equation for one space dimension. This partial  

E-Print Network (OSTI)

The Heat Equation (One Space Dimension) In these notes we derive the heat equation for one space dimension. This partial differential equation describes the flow of heat energy, and consequently the behaviour of the temperature, in an idealized long thin rod, under the assumptions that heat energy neither

Feldman, Joel

54

Heat kernels on metric measure spaces A.Grigor'yan  

E-Print Network (OSTI)

Heat kernels on metric measure spaces A.Grigor'yan Lectures at Cornell Probability Summer School, July 2010 #12;2 #12;Contents 1 The notion of the heat kernel 5 1.1 Examples of heat kernels . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.1 Heat kernel in Rn . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Heat kernels

Grigor'yan, Alexander

55

"Table B21. Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Space-Heating Energy Sources, Floorspace, 1999" 1. Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",67338,61612,32291,37902,5611,5534,2728,945 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,2651,3250,598,"Q",469,"Q" "5,001 to 10,000 ..............",8238,7090,2808,4613,573,"Q",688,"Q" "10,001 to 25,000 .............",11153,9865,5079,6069,773,307,682,"Q"

56

"Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Primary Space-Heating Energy Sources, Floorspace, 1999" 3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,1567,3080,482,"Q" "5,001 to 10,000 ..............",8238,7090,1496,4292,557,"Q" "10,001 to 25,000 .............",11153,9865,3035,5320,597,232 "25,001 to 50,000 .............",9311,8565,2866,4416,486,577

57

Native Village of Teller Addresses Heating Fuel Shortage, Improves...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

amounts of heating oil back to Teller. Brevig Mission, which was also running low on fuel, had plans to increase the price per gallon, thus raising the cost for Teller...

58

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

59

"Table HC15.4 Space Heating Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Four Most Populated States, 2005" 4 Space Heating Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Space Heating Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Main Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Main Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have Equipment But Do Not Use It",0.8,"N","Q","N",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,3.8,0.4,3.8,8.4

60

"Table HC10.4 Space Heating Characteristics by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by U.S. Census Region, 2005" 4 Space Heating Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Main Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Main Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have Equipment But Do Not Use It",0.8,"N","N","Q",0.6 "Main Heating Fuel and Equipment" "Natural Gas",58.2,11.4,18.4,13.6,14.7

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Heat-Release Behavior of Fuel Combustion Additives  

Science Journals Connector (OSTI)

Heat-Release Behavior of Fuel Combustion Additives ... Heats of combustion were determined in a constant-volume calorimeter by an independent test laboratory using ASTM procedure D 240.14 ... We probed for a solvent effect using several hydrocarbons and hydrocarbon mixtures. ...

Jimmie C. Oxley; James L. Smith; Evan Rogers; Wen Ye; Allen A. Aradi; Timothy J. Henly

2001-08-25T23:59:59.000Z

62

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

63

Residential Wood Heating Fuel Exemption (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood Heating Fuel Exemption (New York) Wood Heating Fuel Exemption (New York) Residential Wood Heating Fuel Exemption (New York) < Back Eligibility Multi-Family Residential Residential Savings Category Bioenergy Maximum Rebate None Program Info State New York Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider New York State Department of Taxation and Finance New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from local sales taxes. If a city with a population of 1 million or more chooses to grant the local exemption, it must enact a specific resolution that appears in the state law. Local sales tax rates in New York range from 1.5% to more than 4% in

64

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

SciTech Connect

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

65

Heat exchanger optimization for geothermal district heating systems: A fuel saving approach  

Science Journals Connector (OSTI)

One of the most commonly used heating devices in geothermal systems is the heat exchanger. The output conditions of heat exchangers are based on several parameters. The heat transfer area is one of the most important parameters for heat exchangers in terms of economics. Although there are a lot of methods to optimize heat exchangers, the method described here is a fairly easy approach. In this paper, a counter flow heat exchanger of geothermal district heating system is considered and optimum design values, which provide maximum annual net profit, for the considered heating system are found according to fuel savings. Performance of the heat exchanger is also calculated. In the analysis, since some values are affected by local conditions, Turkey's conditions are considered.

Ahmet Dagdas

2007-01-01T23:59:59.000Z

66

Space Heating & Cooling Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating & Cooling Research Space Heating & Cooling Research Space Heating & Cooling Research The Emerging Technology team conducts research in space heating and cooling technologies, with a goal of realizing aggregate energy savings of 20% relative to a 2010 baseline. In addition to work involving the development of products, the U.S. Department of Energy (DOE), along with industry partners and researchers, develops best practices, tests, and guides designed to reduce market barriers and increase public awareness of these energy saving technologies. Research is currently focusing on: Geothermal Heat Pumps Photo of a home with a geothermal heat pump, showing how it can regulate the temperature of a home using the temperature underground to cool warm air or heat cold air.

67

Sludge, fuel degradation and reducing fouling on heat exchangers  

SciTech Connect

Brookhaven National Laboratory, under contract to the US Department of Energy, operates an oil heat research primarily to lower energy consumption in the 12 million oil heated homes in the US. The program objectives include: Improve steady state efficiency of oil heating equipment, Improve seasonal efficiencies, Eliminate or minimize factors which tend to degrade system performance. This paper provides an overview of the status of three specific projects which fall under the above objectives. This includes our fuel quality project, oil appliance venting and a project addressing efficiency degradation due to soot fouling of heat exchangers.

Butcher, T.; Litzke, Wai Lin; Krajewski, R.; Celebi, Y.

1992-02-01T23:59:59.000Z

68

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

Because of the higher projected crude oil prices and because of Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

69

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at about $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

70

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

71

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

72

Space Heating and Cooling Products and Services | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services Space Heating and Cooling Products and Services June 24, 2012 - 2:50pm Addthis Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Get tips on heating and cooling product information and services. | Photo courtesy of Flickr user ActiveSteve. Use the following links to get product information and locate professional services for space heating and cooling. Product Information Boilers ENERGY STAR® Information on the benefits of ENERGY STAR boilers, as well as resources to calculate savings and find products. Ceiling Fans ENERGY STAR® Describes the benefits of choosing ENERGY STAR ceiling fans, as well as

73

Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery  

SciTech Connect

HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

None

2011-12-19T23:59:59.000Z

74

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases This project will develop a new,...

75

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

76

Low-Cost Gas Heat Pump For Building Space Heating | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Space Heating Lead Performer: Stone Mountain Technologies - Erwin, TN Partners: -- A.O. Smith - Milwaukee, WI -- Gas Technology Institute - Des Plaines, IL DOE Funding: 903,000...

77

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we have raised expected peak prices this winter for residential heating oil deliveries to $1.55 per gallon (January) compared to $1.43 per gallon in last month's projections. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. Primary distillate inventories in the United States failed to rise significantly in November despite some speculation that previous distributions into secondary and tertiary storage would back up burgeoning production and import volumes into primary storage that month. Average

78

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

79

Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Space Heating Equipment....... 1.2 0.6 Q Q Q 0.3 Q Have Main Space Heating Equipment.......... 109.8 32.3 8.0 3.3 5.8 14.1 1.1 Use Main Space Heating Equipment............ 109.1 31.8 8.0 3.2 5.6 13.9 1.1 Have Equipment But Do Not Use It.............. 0.8 0.5 N Q Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 16.4 4.5 2.1 3.2 6.2 0.3 Central Warm-Air Furnace........................ 44.7 10.0 3.3 1.4 1.6 3.3 0.3 For One Housing Unit........................... 42.9 8.6 3.3 1.2 1.4 2.4 0.3 For Two Housing Units..........................

80

Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Number of Household Members, 2005 4 Space Heating Characteristics by Number of Household Members, 2005 Total..................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Space Heating Equipment............ 1.2 0.3 0.3 Q 0.2 0.2 Have Main Space Heating Equipment............... 109.8 29.7 34.5 18.2 15.6 11.8 Use Main Space Heating Equipment................. 109.1 29.5 34.4 18.1 15.5 11.6 Have Equipment But Do Not Use It................... 0.8 Q Q Q Q Q Main Heating Fuel and Equipment Natural Gas....................................................... 58.2 15.6 18.0 9.5 8.4 6.7 Central Warm-Air Furnace............................. 44.7 10.7 14.3 7.6 6.9 5.2 For One Housing Unit................................ 42.9 10.1 13.8 7.3 6.5 5.2 For Two Housing Units...............................

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 41.8 35.3 2.8 1.2 1.0 1.6 Central Warm-Air Furnace........................ 44.7 34.8 29.7 2.3 0.7 0.6 1.4 For One Housing Unit........................... 42.9 34.3 29.5 2.3 0.6 0.6 1.4 For Two Housing Units..........................

82

Burgdorf Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Burgdorf Hot Springs Sector Geothermal energy Type Space Heating Location Burgdorf, Idaho Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

83

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 TDA...

84

EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat...

85

RTP Green Fuel: A Proven Path to Renewable Heat and Power | Department...  

Energy Savers (EERE)

RTP Green Fuel: A Proven Path to Renewable Heat and Power RTP Green Fuel: A Proven Path to Renewable Heat and Power Steve Lupton presentation at the May 9, 2012, Pyrolysis Oil...

86

Maywood Industries of Oregon Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Maywood Industries of Oregon Space Heating Low Temperature Geothermal Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Facility Maywood Industries of Oregon Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

87

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bozeman Hot Springs Space Heating Low Temperature Geothermal Facility Facility Bozeman Hot Springs Sector Geothermal energy Type Space Heating Location Bozeman, Montana Coordinates 45.68346┬░, -111.050499┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

88

Radium Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Radium Hot Springs Space Heating Low Temperature Geothermal Facility Radium Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Radium Hot Springs Space Heating Low Temperature Geothermal Facility Facility Radium Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122┬░, -118.0410627┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

89

Cedarville Elementary & High School Space Heating Low Temperature  

Open Energy Info (EERE)

Cedarville Elementary & High School Space Heating Low Temperature Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cedarville Elementary & High School Space Heating Low Temperature Geothermal Facility Facility Cedarville Elementary & High School Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606┬░, -120.1732781┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

90

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Spring Space Heating Low Temperature Geothermal Facility Facility Miracle Hot Spring Sector Geothermal energy Type Space Heating Location Bakersfield, California Coordinates 35.3732921┬░, -119.0187125┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

91

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004┬░, -93.0551795┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

92

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lolo Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Lolo Hot Springs Resort Sector Geothermal energy Type Space Heating Location Missoula County, Montana Coordinates 47.0240503┬░, -113.6869923┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

93

Klamath Schools (7) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Schools (7) Space Heating Low Temperature Geothermal Facility Schools (7) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Schools (7) Space Heating Low Temperature Geothermal Facility Facility Klamath Schools (7) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

94

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Shoshone Motel & Trailer Park Space Heating Low Temperature Geothermal Facility Facility Shoshone Motel & Trailer Park Sector Geothermal energy Type Space Heating Location Death Valley, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

95

Olene Gap Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Olene Gap Space Heating Low Temperature Geothermal Facility Olene Gap Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Olene Gap Space Heating Low Temperature Geothermal Facility Facility Olene Gap Sector Geothermal energy Type Space Heating Location Klamath County, Oregon Coordinates 42.6952767┬░, -121.6142133┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

96

Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hospital Space Heating Low Temperature Geothermal Facility Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Surprise Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Surprise Valley Hospital Sector Geothermal energy Type Space Heating Location Cedarville, California Coordinates 41.5290606┬░, -120.1732781┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

97

Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Wiesbaden Motel & Health Resort Space Heating Low Temperature Geothermal Facility Facility Wiesbaden Motel & Health Resort Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716┬░, -107.6714487┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

98

Marlin Hospital Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Marlin Hospital Space Heating Low Temperature Geothermal Facility Marlin Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Marlin Hospital Space Heating Low Temperature Geothermal Facility Facility Marlin Hospital Sector Geothermal energy Type Space Heating Location Marlin, Texas Coordinates 31.3062874┬░, -96.8980439┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

99

White Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sulphur Springs Space Heating Low Temperature Geothermal Facility Sulphur Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name White Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility White Sulphur Springs Sector Geothermal energy Type Space Heating Location White Sulphur Springs, Montana Coordinates 46.548277┬░, -110.9021561┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

100

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Facility Hillbrook Nursing Home Sector Geothermal energy Type Space Heating Location Clancy, Montana Coordinates 46.4652096┬░, -111.9863826┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Miracle Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Miracle Hot Springs Space Heating Low Temperature Geothermal Facility Facility Miracle Hot Springs Sector Geothermal energy Type Space Heating Location Buhl, Idaho Coordinates 42.5990714┬░, -114.7594946┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

102

LDS Wardhouse Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

LDS Wardhouse Space Heating Low Temperature Geothermal Facility LDS Wardhouse Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Wardhouse Space Heating Low Temperature Geothermal Facility Facility LDS Wardhouse Sector Geothermal energy Type Space Heating Location Newcastle, Utah Coordinates 37.6666413┬░, -113.549406┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

103

LDS Church Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

LDS Church Space Heating Low Temperature Geothermal Facility LDS Church Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name LDS Church Space Heating Low Temperature Geothermal Facility Facility LDS Church Sector Geothermal energy Type Space Heating Location Almo, Idaho Coordinates 42.1001924┬░, -113.6336192┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

104

The Wilderness Lodge Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

The Wilderness Lodge Space Heating Low Temperature Geothermal Facility The Wilderness Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name The Wilderness Lodge Space Heating Low Temperature Geothermal Facility Facility The Wilderness Lodge Sector Geothermal energy Type Space Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

105

Senior Citizens' Center Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Senior Citizens' Center Space Heating Low Temperature Geothermal Facility Facility Senior Citizens' Center Sector Geothermal energy Type Space Heating Location Truth or Consequences, New Mexico Coordinates 33.1284047┬░, -107.2528069┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

106

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Schutz's Hot Spring Space Heating Low Temperature Geothermal Facility Facility Schutz's Hot Spring Sector Geothermal energy Type Space Heating Location Crouch, Idaho Coordinates 44.1151717┬░, -115.970954┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

107

Mount Princeton Area Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Area Space Heating Low Temperature Geothermal Facility Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Mount Princeton Area Space Heating Low Temperature Geothermal Facility Facility Mount Princeton Area Sector Geothermal energy Type Space Heating Location Mount Princeton, Colorado Coordinates 38.749167┬░, -106.2425┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

108

Baranof Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Baranof Space Heating Low Temperature Geothermal Facility Facility Baranof Sector Geothermal energy Type Space Heating Location Sitka, Alaska Coordinates 57.0530556┬░, -135.33┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

109

Warm Springs State Hospital Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State Hospital Space Heating Low Temperature Geothermal State Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs State Hospital Space Heating Low Temperature Geothermal Facility Facility Warm Springs State Hospital Sector Geothermal energy Type Space Heating Location Warm Springs, Montana Coordinates 46.1813145┬░, -112.78476┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

110

Vale Residences Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Residences Space Heating Low Temperature Geothermal Facility Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Residences Space Heating Low Temperature Geothermal Facility Facility Vale Residences Sector Geothermal energy Type Space Heating Location Vale, Oregon Coordinates 43.9821055┬░, -117.2382311┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

111

Cotulla High School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Cotulla High School Space Heating Low Temperature Geothermal Facility Cotulla High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cotulla High School Space Heating Low Temperature Geothermal Facility Facility Cotulla High School Sector Geothermal energy Type Space Heating Location Cotulla, Texas Coordinates 28.436934┬░, -99.2350322┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

112

Melozi Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Melozi Space Heating Low Temperature Geothermal Facility Facility Melozi Sector Geothermal energy Type Space Heating Location Yukon, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

113

Indian Valley Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Valley Hospital Space Heating Low Temperature Geothermal Facility Valley Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Valley Hospital Space Heating Low Temperature Geothermal Facility Facility Indian Valley Hospital Sector Geothermal energy Type Space Heating Location Greenville, California Coordinates 40.1396126┬░, -120.9510675┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

114

Lakeview Residences Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Lakeview Residences Space Heating Low Temperature Geothermal Facility Lakeview Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lakeview Residences Space Heating Low Temperature Geothermal Facility Facility Lakeview Residences Sector Geothermal energy Type Space Heating Location Lakeview, Oregon Coordinates 42.1887721┬░, -120.345792┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

115

Boulder Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boulder Hot Springs Space Heating Low Temperature Geothermal Facility Facility Boulder Hot Springs Sector Geothermal energy Type Space Heating Location Boulder, Montana Coordinates 46.2365947┬░, -112.1208336┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

116

Langel Valley Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Langel Valley Space Heating Low Temperature Geothermal Facility Langel Valley Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Langel Valley Space Heating Low Temperature Geothermal Facility Facility Langel Valley Sector Geothermal energy Type Space Heating Location Bonanza, Oregon Coordinates 42.1987607┬░, -121.4061076┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

117

Henley High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Henley High School Space Heating Low Temperature Geothermal Facility Henley High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Henley High School Space Heating Low Temperature Geothermal Facility Facility Henley High School Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

118

Broadwater Athletic Club & Hot Springs Space Heating Low Temperature  

Open Energy Info (EERE)

Athletic Club & Hot Springs Space Heating Low Temperature Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Broadwater Athletic Club & Hot Springs Space Heating Low Temperature Geothermal Facility Facility Broadwater Athletic Club & Hot Springs Sector Geothermal energy Type Space Heating Location Helena, Montana Coordinates 46.6002123┬░, -112.0147188┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

119

Homestead Resort Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Resort Space Heating Low Temperature Geothermal Facility Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Homestead Resort Space Heating Low Temperature Geothermal Facility Facility Homestead Resort Sector Geothermal energy Type Space Heating Location Hot Springs, Virginia Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

120

Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Cottonwood Hot Springs Space Heating Low Temperature Geothermal Facility Facility Cottonwood Hot Springs Sector Geothermal energy Type Space Heating Location Buena Vista, Colorado Coordinates 38.8422178┬░, -106.1311288┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Jackson Hot Springs Lodge Sector Geothermal energy Type Space Heating Location Jackson, Montana Coordinates 45.3679793┬░, -113.4089438┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

122

Box Canyon Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Motel Space Heating Low Temperature Geothermal Facility Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Box Canyon Motel Space Heating Low Temperature Geothermal Facility Facility Box Canyon Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716┬░, -107.6714487┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

123

Ophir Creek Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ophir Creek Space Heating Low Temperature Geothermal Facility Ophir Creek Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ophir Creek Space Heating Low Temperature Geothermal Facility Facility Ophir Creek Sector Geothermal energy Type Space Heating Location SW, Alaska Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

124

Modoc High School Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Modoc High School Space Heating Low Temperature Geothermal Facility Modoc High School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modoc High School Space Heating Low Temperature Geothermal Facility Facility Modoc High School Sector Geothermal energy Type Space Heating Location Alturas, California Coordinates 41.4871146┬░, -120.5424555┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

125

East Middle School and Cayuga Community College Space Heating Low  

Open Energy Info (EERE)

Middle School and Cayuga Community College Space Heating Low Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name East Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Facility East Middle School and Cayuga Community College Sector Geothermal energy Type Space Heating Location Auburn, New York Coordinates 42.9317335┬░, -76.5660529┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

126

Indian Springs School Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

School Space Heating Low Temperature Geothermal Facility School Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Indian Springs School Space Heating Low Temperature Geothermal Facility Facility Indian Springs School Sector Geothermal energy Type Space Heating Location Big Bend, California Coordinates 39.6982182┬░, -121.4608015┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

127

Manley Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manley Hot Springs Space Heating Low Temperature Geothermal Facility Facility Manley Hot Springs Sector Geothermal energy Type Space Heating Location Manley Hot Springs, Alaska Coordinates 65.0011111┬░, -150.6338889┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

128

Ft Bidwell Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ft Bidwell Space Heating Low Temperature Geothermal Facility Ft Bidwell Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ft Bidwell Space Heating Low Temperature Geothermal Facility Facility Ft Bidwell Sector Geothermal energy Type Space Heating Location Ft. Bidwell, California Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

129

Medical Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Hot Springs Space Heating Low Temperature Geothermal Facility Facility Medical Hot Springs Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122┬░, -118.0410627┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

130

Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature  

Open Energy Info (EERE)

Space Heating Low Temperature Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Roosevelt Warm Springs Institute for Rehab. Space Heating Low Temperature Geothermal Facility Facility Roosevelt Warm Springs Institute for Rehab. Sector Geothermal energy Type Space Heating Location Warm Springs, Georgia Coordinates 32.8904081┬░, -84.6810381┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

131

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vichy Hot Springs Space Heating Low Temperature Geothermal Facility Facility Vichy Hot Springs Sector Geothermal energy Type Space Heating Location Ukiah, California Coordinates 39.1501709┬░, -123.2077831┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

132

Jump Steady Resort Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump Steady Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jump Steady Resort Space Heating Low Temperature Geothermal Facility Facility Jump Steady Resort Sector Geothermal energy Type Space Heating Location Buena Vista, Colorado Coordinates 38.8422178┬░, -106.1311288┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

133

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Summer Lake Hot Springs Space Heating Low Temperature Geothermal Facility Facility Summer Lake Hot Springs Sector Geothermal energy Type Space Heating Location Summer Lake, Oregon Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

134

Stroppel Hotel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Stroppel Hotel Space Heating Low Temperature Geothermal Facility Facility Stroppel Hotel Sector Geothermal energy Type Space Heating Location Midland, South Dakota Coordinates 44.0716539┬░, -101.1554178┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

135

Van Norman Residences Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Norman Residences Space Heating Low Temperature Geothermal Facility Norman Residences Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Van Norman Residences Space Heating Low Temperature Geothermal Facility Facility Van Norman Residences Sector Geothermal energy Type Space Heating Location Thermopolis, Wyoming Coordinates 43.6460672┬░, -108.2120432┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

136

Desert Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Desert Hot Springs Space Heating Low Temperature Geothermal Facility Facility Desert Hot Springs Sector Geothermal energy Type Space Heating Location Desert Hot Springs, California Coordinates 33.961124┬░, -116.5016784┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

137

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility Ouray Municipal Pool Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716┬░, -107.6714487┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

138

Canon City Area Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Canon City Area Space Heating Low Temperature Geothermal Facility Canon City Area Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Canon City Area Space Heating Low Temperature Geothermal Facility Facility Canon City Area Sector Geothermal energy Type Space Heating Location Canon City, Colorado Coordinates 38.439949┬░, -105.226097┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

139

Chena Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Chena Hot Springs Space Heating Low Temperature Geothermal Facility Facility Chena Hot Springs Sector Geothermal energy Type Space Heating Location Fairbanks, Alaska Coordinates 64.8377778┬░, -147.7163889┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

140

Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

(Poncha Spring) Space Heating Low Temperature Geothermal (Poncha Spring) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Salida Hot Springs (Poncha Spring) Space Heating Low Temperature Geothermal Facility Facility Salida Hot Springs (Poncha Spring) Sector Geothermal energy Type Space Heating Location Salida, Colorado Coordinates 38.5347193┬░, -105.9989022┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Memorial Hospital Space Heating Low Temperature Geothermal Facility Memorial Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Modesto Memorial Hospital Space Heating Low Temperature Geothermal Facility Facility Modesto Memorial Hospital Sector Geothermal energy Type Space Heating Location Modesto, California Coordinates 37.6390972┬░, -120.9968782┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

142

Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Peppermill Hotel Casino Space Heating Low Temperature Geothermal Facility Facility Peppermill Hotel Casino Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329┬░, -119.8138027┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

143

Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Lodge Space Heating Low Temperature Geothermal Lodge Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Glenwood Hot Springs Lodge Space Heating Low Temperature Geothermal Facility Facility Glenwood Hot Springs Lodge Sector Geothermal energy Type Space Heating Location Glenwood Springs, Colorado Coordinates 39.5505376┬░, -107.3247762┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

144

St. Mary's Hospital Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Mary's Hospital Space Heating Low Temperature Geothermal Facility Mary's Hospital Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name St. Mary's Hospital Space Heating Low Temperature Geothermal Facility Facility St. Mary's Hospital Sector Geothermal energy Type Space Heating Location Pierre, South Dakota Coordinates 44.3683156┬░, -100.3509665┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

145

Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Steamboat Villa Hot Springs Spa Space Heating Low Temperature Geothermal Facility Facility Steamboat Villa Hot Springs Spa Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329┬░, -119.8138027┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

146

YMCA Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

YMCA Space Heating Low Temperature Geothermal Facility YMCA Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name YMCA Space Heating Low Temperature Geothermal Facility Facility YMCA Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

147

Vale Slaughter House Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Vale Slaughter House Space Heating Low Temperature Geothermal Facility Vale Slaughter House Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Vale Slaughter House Space Heating Low Temperature Geothermal Facility Facility Vale Slaughter House Sector Geothermal energy Type Space Heating Location Vale, Oregon Coordinates 43.9821055┬░, -117.2382311┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

148

Pagosa Springs Private Wells Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Private Wells Space Heating Low Temperature Geothermal Private Wells Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs Private Wells Space Heating Low Temperature Geothermal Facility Facility Pagosa Springs Private Wells Sector Geothermal energy Type Space Heating Location Pagosa Springs, Colorado Coordinates 37.26945┬░, -107.0097617┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

149

Avila Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Avila Hot Springs Space Heating Low Temperature Geothermal Facility Facility Avila Hot Springs Sector Geothermal energy Type Space Heating Location San Luis Obispo, California Coordinates 35.2827524┬░, -120.6596156┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

150

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hunters Hot Spring Space Heating Low Temperature Geothermal Facility Facility Hunters Hot Spring Sector Geothermal energy Type Space Heating Location Lakeview, Oregon Coordinates 42.1887721┬░, -120.345792┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

151

Klamath Residence (500) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Residence (500) Space Heating Low Temperature Geothermal Facility Residence (500) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Residence (500) Space Heating Low Temperature Geothermal Facility Facility Klamath Residence (500) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

152

Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Apartment Buildings (13) Space Heating Low Temperature Geothermal Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Apartment Buildings (13) Space Heating Low Temperature Geothermal Facility Facility Klamath Apartment Buildings (13) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

153

Klamath Churches (5) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Churches (5) Space Heating Low Temperature Geothermal Facility Churches (5) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath Churches (5) Space Heating Low Temperature Geothermal Facility Facility Klamath Churches (5) Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

154

Klamath County Jail Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

County Jail Space Heating Low Temperature Geothermal Facility County Jail Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Klamath County Jail Space Heating Low Temperature Geothermal Facility Facility Klamath County Jail Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

155

Merle West Medical Center Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Merle West Medical Center Space Heating Low Temperature Geothermal Facility Merle West Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Merle West Medical Center Space Heating Low Temperature Geothermal Facility Facility Merle West Medical Center Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867┬░, -121.7816704┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

156

Lava Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Lava Hot Springs Space Heating Low Temperature Geothermal Facility Facility Lava Hot Springs Sector Geothermal energy Type Space Heating Location Lava Hot Springs, Idaho Coordinates 42.6193625┬░, -112.0110712┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

157

Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Rio Hot Springs Space Heating Low Temperature Geothermal Facility Rio Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Del Rio Hot Springs Space Heating Low Temperature Geothermal Facility Facility Del Rio Hot Springs Sector Geothermal energy Type Space Heating Location Preston, Idaho Coordinates 42.0963133┬░, -111.8766173┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

158

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Walley's Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Walley's Hot Springs Resort Sector Geothermal energy Type Space Heating Location Genoa, Nevada Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

159

Utah State Prison Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Prison Space Heating Low Temperature Geothermal Facility Prison Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Utah State Prison Space Heating Low Temperature Geothermal Facility Facility Utah State Prison Sector Geothermal energy Type Space Heating Location Salt Lake City, Utah Coordinates 40.7607793┬░, -111.8910474┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

160

Twin Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Springs Resort Space Heating Low Temperature Geothermal Facility Springs Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Springs Resort Space Heating Low Temperature Geothermal Facility Facility Twin Springs Resort Sector Geothermal energy Type Space Heating Location Boise, Idaho Coordinates 43.6135002┬░, -116.2034505┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Twin Peaks Motel Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Peaks Motel Space Heating Low Temperature Geothermal Facility Peaks Motel Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Twin Peaks Motel Space Heating Low Temperature Geothermal Facility Facility Twin Peaks Motel Sector Geothermal energy Type Space Heating Location Ouray, Colorado Coordinates 38.0227716┬░, -107.6714487┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

162

Health Spa Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Health Spa Space Heating Low Temperature Geothermal Facility Health Spa Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Health Spa Space Heating Low Temperature Geothermal Facility Facility Glenwood Springs Health Spa Sector Geothermal energy Type Space Heating Location Glenwood Springs, Colorado Coordinates 39.5505376┬░, -107.3247762┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

163

Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Geronimo Springs Museum Space Heating Low Temperature Geothermal Facility Facility Geronimo Springs Museum Sector Geothermal energy Type Space Heating Location Truth or Consequences, New Mexico Coordinates 33.1284047┬░, -107.2528069┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

164

Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hot Springs Space Heating Low Temperature Geothermal Facility Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Arrowhead Hot Springs Space Heating Low Temperature Geothermal Facility Facility Arrowhead Hot Springs Sector Geothermal energy Type Space Heating Location San Bernardino, California Coordinates 34.1083449┬░, -117.2897652┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

165

Medical Center Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Medical Center Space Heating Low Temperature Geothermal Facility Medical Center Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Medical Center Space Heating Low Temperature Geothermal Facility Facility Medical Center Sector Geothermal energy Type Space Heating Location Caliente, Nevada Coordinates 37.6149648┬░, -114.5119378┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

166

Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Sulphur Springs Space Heating Low Temperature Geothermal Facility Facility Hot Sulphur Springs Sector Geothermal energy Type Space Heating Location Hot Sulphur Springs, Colorado Coordinates 40.0730411┬░, -106.1027991┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

167

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Tecopa Hot Springs Space Heating Low Temperature Geothermal Facility Facility Tecopa Hot Springs Sector Geothermal energy Type Space Heating Location Inyo County, California Coordinates 36.3091865┬░, -117.5495846┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

168

Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Saratoga Springs Resort Space Heating Low Temperature Geothermal Facility Facility Saratoga Springs Resort Sector Geothermal energy Type Space Heating Location Lehi, Utah Coordinates 40.3916172┬░, -111.8507662┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

169

Bell Island Space Heating Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Bell Island Space Heating Low Temperature Geothermal Facility Facility Bell Island Sector Geothermal energy Type Space Heating Location Ketchikan, Alaska Coordinates 55.3422222┬░, -131.6461111┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

170

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warner Springs Ranch Resort Space Heating Low Temperature Geothermal Facility Facility Warner Springs Ranch Resort Sector Geothermal energy Type Space Heating Location San Diego, California Coordinates 32.7153292┬░, -117.1572551┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

171

Jackson Well Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Well Springs Space Heating Low Temperature Geothermal Facility Well Springs Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Well Springs Space Heating Low Temperature Geothermal Facility Facility Jackson Well Springs Sector Geothermal energy Type Space Heating Location Ashland, Oregon Coordinates 42.1853257┬░, -122.6980457┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

172

Banbury Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Banbury Hot Springs Space Heating Low Temperature Geothermal Facility Facility Banbury Hot Springs Sector Geothermal energy Type Space Heating Location Buhl, Idaho Coordinates 42.5990714┬░, -114.7594946┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

173

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network (OSTI)

to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy...

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

174

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

175

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

176

Organic combustion fingerprints of three common home heating fuels  

SciTech Connect

The paper discusses the chemical structures of three common home heating fuels: wood, coal, and No. 2 fuel oil. GC and GC/MS data are then presented which demonstrate how the thermal destruction of each fuel results in the production of a characteristic group of organic 'fingerprint' compounds. For wood, where the chief structural element is lignin polymer, they are methoxy benzenes, methoxy phenols, and alkyl bezenes. For coal, where the polymer contains more fused-ring structures, the chief products are fused-ring aromatics with structures of three or more rings, benzothiophenes, and to a lesser extent methyl-substituted phenols. For oil, the chief byproducts are unburned droplets of the oil. The paper concludes with a brief discussion of how these fingerprints can be used as apportionment guides in complex airsheds.

Steiber, R.S.

1993-01-01T23:59:59.000Z

177

Castor-1C spent fuel storage cask decay heat, heat transfer, and shielding analyses  

SciTech Connect

This report documents the decay heat, heat transfer, and shielding analyses of the Gesellschaft fuer Nuklear Services (GNS) CASTOR-1C cask used in a spent fuel storage demonstration performed at Preussen Elektra's Wurgassen nuclear power plant. The demonstration was performed between March 1982 and January 1984, and resulted in cask and fuel temperature data and cask exterior surface gamma-ray and neutron radiation dose rate measurements. The purpose of the analyses reported here was to evaluate decay heat, heat transfer, and shielding computer codes. The analyses consisted of (1) performing pre-look predictions (predictions performed before the analysts were provided the test data), (2) comparing ORIGEN2 (decay heat), COBRA-SFS and HYDRA (heat transfer), and QAD and DOT (shielding) results to data, and (3) performing post-test analyses if appropriate. Even though two heat transfer codes were used to predict CASTOR-1C cask test data, no attempt was made to compare the two codes. The codes are being evaluated with other test data (single-assembly data and other cask data), and to compare the codes based on one set of data may be premature and lead to erroneous conclusions.

Rector, D.R.; McCann, R.A.; Jenquin, U.P.; Heeb, C.M.; Creer, J.M.; Wheeler, C.L.

1986-12-01T23:59:59.000Z

178

Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Function Multi-Function Fuel-Fired Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Google Bookmark Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Delicious Rank Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Multi-Function Fuel-Fired Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities

179

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

180

Heat pump augmented radiator for low-temperature space applications  

SciTech Connect

Closed-cycle, space-based heat rejection systems depend solely on radiation to achieve their heat dissipation function. Since the payload heat rejection temperature is typically 50 K above that of the radiation sink in near earth orbit, the size and mass of these systems can be appreciable. Size (and potentially mass) reductions are achievable by increasing the rejection temperature via a heat pump. Two heat pump concept were examined to determine if radiator area reductions could be realized without increasing the mass of the heat rejection system. The first was a conventional, electrically-driven vapor compression system. The second is an innovative concept using a solid-vapor adsorption system driven by reject heat from the prime power system. The mass and radiator area of the heat pumpradiator systems were compared to that of a radiator only system to determine the merit of the heat pump concepts. Results for the compressor system indicated that the mass minimum occured at a temperature lift of about 50 K and radiator area reductions of 35% were realized. With a radiator specific mass of 10 kgm/sup 2/, the heat pump system is 15% higher than the radiator only baseline system. The complex compound chemisorption systems showed more promising results. Using water vapor as the working fluid in a single stage heat amplifier resulted in optimal temperature lifts exceeding 150 K. This resulted in a radiator area reduction of 83% with a mass reduction of 64%. 7 refs., 9 figs.

Olszewski, M.; Rockenfeller, U.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heat pipe cooled reactors for multi-kilowatt space power supplies  

SciTech Connect

Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

Ranken, W.A.; Houts, M.G.

1995-01-01T23:59:59.000Z

182

Design of a core-length thermionic fuel element for electrical heating  

SciTech Connect

This paper describes the design of an electrically heated version of a core-length Thermionic Fuel Element (TFE) with advanced features, as is suggested by the designation Advanced Thermionic Inititative (ATI). The advanced features include a high-strength emitter structure to be fabricated by Space Power, Incorporated. This structure consists of a cylindrical emitter, 15 mm diameter and 254 mm long of Chemically Vapor Deposited (CVD) tungsten, reinforced with tungsten-hafnium carbide wire wound over a CVD tungsten core with additional CVD tungsten incorporating and bonding the wire into the emitter. The emitter surface is CVD tungsten, deposited from tungsten chloride resulting in the desirable crystal orientation of [l angle]110[r angle]. It is possible to design a reactor with core-length TFEs so that it can be electrically tested prior to fueling. The program is focussed on the design and fabrication of a single core-length TFE with current collection at both ends which will be tested in a reactor. In parallel with this effort is the design, fabrication, and testing of an unfueled, electrically heated prototype. The intent is to make the electrically heated converter as similar as possible to the fueled one, while providing for accurate emitter and collector temperature measurement.

Miskolczy, G. (ThermoTrex Coporation, 85 First Avenue, P.O. Box 8995, Waltham, MA 02254-8995 (United States)); Horner, H. (General Atomics, 3550 General Atomics Court, P.O. Box 85608, San Diego, CA 92186-9784 (United States)); Lamp, T. (Wright Laboratories, WL/POOC-2, Wright Patternson Air Force Base, Ohio 45433-6563 (United States))

1993-01-20T23:59:59.000Z

183

Chico Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Chico Hot Springs Sector Geothermal energy Type Space Heating Location Pray, Montana Coordinates 45.3802143┬░, -110.6815999┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

184

Circle Hot Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Circle Hot Springs Sector Geothermal energy Type Space Heating Location Fairbanks, Alaska Coordinates 64.8377778┬░, -147.7163889┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

185

Buckhorn Mineral Wells Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Buckhorn Mineral Wells Sector Geothermal energy Type Space Heating Location Mesa, Arizona Coordinates 33.4222685┬░, -111.8226402┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

186

Jemez Springs Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Jemez Springs Sector Geothermal energy Type Space Heating Location Jemez Springs, New Mexico Coordinates 35.7686356┬░, -106.692258┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

187

Breitenbush Hot Springs Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Facility Breitenbush Hot Springs Sector Geothermal energy Type Space Heating Location Marion County, Oregon Coordinates 44.8446393┬░, -122.5927411┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

188

Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Facility Facility Jump to: navigation, search Name Fairmont Hot Springs Resort Space Heating Low Temperature Geothermal Facility Facility Fairmont Hot Springs Resort Sector Geothermal energy Type Space Heating Location Fairmont, Montana Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

189

Low Temperature Direct Use Space Heating Geothermal Facilities | Open  

Open Energy Info (EERE)

Low Temperature Direct Use Space Heating Geothermal Facilities Low Temperature Direct Use Space Heating Geothermal Facilities Jump to: navigation, search Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":800,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":"Geothermal

190

High Performance Catalytic Heat Exchanger for SOFC Systems - FuelCell Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalytic Heat Catalytic Heat Exchanger for SOFC Systems-FuelCell Energy Background In a typical solid oxide fuel cell (SOFC) power generation system, hot (~900 ┬░C) effluent gas from a catalytic combustor serves as the heat source within a high-temperature heat exchanger, preheating incoming fresh air for the SOFC's cathode. The catalytic combustor and the cathode air heat exchanger together represent the largest opportunity for cost

191

In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification  

Energy.gov (U.S. Department of Energy (DOE))

Explores in-cylinder mechanisms by which fuel reactivity stratification via a two fuel system affects premixed charge compression ignition heat release rate to achieve diesel-like efficiency

192

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power  

Energy.gov (U.S. Department of Energy (DOE))

With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

193

Plasma processing of spent nuclear fuel by two-frequency ion cyclotron resonance heating  

Science Journals Connector (OSTI)

A previously developed method for analyzing the plasma processing of spent nuclear fuel is generalized to a plasma containing multicharged fuel ions. In such a plasma, ion cyclotron resonance heating of nuclear a...

A. V. Timofeev

2009-11-01T23:59:59.000Z

194

Natural convection heat transfer analysis of ATR fuel elements  

SciTech Connect

Natural convection air cooling of the Advanced Test Reactor (ATR) fuel assemblies is analyzed to determine the level of decay heat that can be removed without exceeding the melting temperature of the fuel. The study was conducted to assist in the level 2 PRA analysis of a hypothetical ATR water canal draining accident. The heat transfer process is characterized by a very low Rayleigh number (Ra {approx} 10{sup {minus}5}) and a high temperature ratio. Since neither data nor analytical models were available for Ra < 0.1, an analytical approach is presented based upon the integral boundary layer equations. All assumptions and simplifications are presented and assessed and two models are developed from similar foundations. In one model, the well-known Boussinesq approximations are employed, the results from which are used to assess the modeling philosophy through comparison to existing data and published analytical results. In the other model, the Boussinesq approximations are not used, thus making the model more general and applicable to the ATR analysis.

Langerman, M.A.

1992-05-01T23:59:59.000Z

195

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004  

Energy.gov (U.S. Department of Energy (DOE))

Best opportunity fuels for distributed energy resources and combined heat and power (DER/CHP) applications; technologies that can use them; market impact potential.

196

Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Pump - 2013 Peer Review Multi-Function Fuel-Fired Heat Pump - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review...

197

Development of a coal fired pulse combustor for residential space heating. Phase I, Final report  

SciTech Connect

This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

NONE

1988-04-01T23:59:59.000Z

198

Comparative Life-Cycle Assessment of Residential Heating Systems, Focused on Solid Oxide Fuel Cells  

Science Journals Connector (OSTI)

This study aims to analyze a Solid Oxide Fuel Cell (SOFC) for residential heating applications by...producer, the user as an individual and the user...intended as the heating demand of a building, applied by defa...

Alba Cßnovas; Rainer Zah; Santiago Gassˇ

2013-01-01T23:59:59.000Z

199

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study...

200

Two-phase microfluidics, heat and mass transport in direct methanol fuel cells  

E-Print Network (OSTI)

CHAPTER 9 Two-phase microfluidics, heat and mass transport in direct methanol fuel cells G. Lu & C, including two-phase microfluidics, heat and mass transport. We explain how the better understanding

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Heat kernels on metric measure spaces with regular volume Alexander Grigor'yan  

E-Print Network (OSTI)

Heat kernels on metric measure spaces with regular volume growth Alexander Grigor'yan Department In this survey we study heat kernel estimates of self-similar type on metric mea- sure spaces with regular volume and phrases. Heat kernel, metric measure space, maximum principle, heat semigroup Contents 1 Introduction 2 1

Grigor'yan, Alexander

202

Heat kernels on metric measure spaces with regular volume Alexander Grigor'yan #  

E-Print Network (OSTI)

Heat kernels on metric measure spaces with regular volume growth Alexander Grigor'yan # Department In this survey we study heat kernel estimates of self┬şsimilar type on metric mea┬ş sure spaces with regular volume and phrases. Heat kernel, metric measure space, maximum principle, heat semigroup Contents 1 Introduction 2 1

Grigor'yan, Alexander

203

Calculating and reporting changes in net heat of combustion of wood fuel  

SciTech Connect

There is often confusion when reporting net heat of combustion changes in wood fuel due to changes in moisture content (MC) of the fuel. This paper was written to identify and clarify the bases on which changes in net heat of combustion can be calculated. Formulae for calculating changes in net heat of combustion of wood fuel due to MC changes are given both on a per unit weight of fuel basis and on an actual gain basis. Examples which illustrate the difference in the two reporting approaches, as well as the importance of both approaches, are presented. (Refs. 7).

Harris, R.A.; McMinn, J.W.; Payne, F.A.

1986-06-01T23:59:59.000Z

204

EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

573-S1: Proposed Renewable Fuel Heat Plant Improvements at the 573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO EA-1573-S1: Proposed Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory South Table Mountain Site, Golden, CO DOE's Golden Field Office has prepared a draft Supplemental Environmental Assessment (SEA) for proposed improvements to the Renewable Fuel Heat Plant (RFHP) at the National Renewable Energy Laboratory's South Table Mountain site. The SEA analyzes the potential environmental impacts associated with the proposed improvements tot he RFHP consisting of construction and operation of an onsite woodchip fuel storage silo and an expansion of woodchip fuel sources to a regional scale.

205

Econometric model of the joint production and consumption of residential space heat  

SciTech Connect

This study models the production and comsumption of residential space heat, a nonmarket good. Production reflects capital investment decisions of households; consumption reflects final demand decisions given the existing capital stock. In the model, the production relationship is represented by a translog cost equation and an anergy factor share equation. Consumption is represented by a log-linear demand equation. This system of three equations - cost, fuel share, and final demand - is estimated simultaneously. Results are presented for two cross-sections of households surveyed in 1973 and 1981. Estimates of own-price and cross-price elasticities of factor demand are of the correct sign, and less than one in magnitude. The price elasticity of final demand is about -0.4; the income elasticity of final demand is less than 0.1. Short-run and long-run elasticities of demand for energy are about -0.3 and -0.6, respectively. These results suggest that price-induced decreases in the use of energy for space heat are attributable equally to changes in final demand and to energy conservation, the substitution of capital for energy in the production of space heat. The model is used to simulate the behavior of poor and nonpoor households during a period of rising energy prices. This simulation illustrates the greater impact of rising prices on poor households.

Klein, Y.L.

1985-12-01T23:59:59.000Z

206

Electric Blanket vs. Space Heater: #EnergyFaceoff Round 3 Heats...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Blanket vs. Space Heater: EnergyFaceoff Round 3 Heats Up Electric Blanket vs. Space Heater: EnergyFaceoff Round 3 Heats Up November 17, 2014 - 9:49am Q&A Which appliance do you...

207

Study of the Heating Load of a Manufactured Space with a Gas-fired Radiant Heating System  

E-Print Network (OSTI)

A thermal balance mathematics model of a manufactured space with a gas-fired radiant heating system is established to calculate the heating load. Computer programs are used to solve the model. Envelope internal surface temperatures under different...

Zheng, X.; Dong, Z.

2006-01-01T23:59:59.000Z

208

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch May 16, 2011 - 9:35am Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does this mean for me? A new hydrogen fuel cell-powered mobile light tower that has the potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States. They are cleaner and quieter than diesel mobile light towers used today. Energy Department-funded research has helped to reduce the cost of fuel cells by 30% since 2008 and 80% since 2002. This has enabled increased widespread adoption and enabled commercial developments for fuel cell applications. Fuel cell technology will help light the way as the Space Shuttle

209

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12.5% of the nation's  

E-Print Network (OSTI)

Electric equipment providing space conditioning, water heating, and refrigeration consumes 12 are the heart of air conditioners, heat pumps, chillers, supermarket refrigeration systems, and more. Global use of vapor compression system configurations including multi-functional integrated heat pumps, multi

Oak Ridge National Laboratory

210

Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds  

SciTech Connect

A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

Moyer, M.W.

2001-01-11T23:59:59.000Z

211

Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight 5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight Geek-Up[5.20.2011]: Electricity from Waste Heat, Fuel from Sunlight May 20, 2011 - 5:53pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What are the key facts? 50 percent of the energy generated annually from all sources is lost as waste heat. Scientists have developed a high-efficiency thermal waste heat energy converter that actively cools electronic devices, photovoltaic cells, computers and other large industrial systems while generating electricity. Scientists have linked platinum nanoparticles with algae proteins, commandeering photosynthesis to produce hydrogen -- research that will help scientists harvest light with solar fuels. Thanks to scientists at Oak Ridge National Laboratory (ORNL), the billions

212

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2013-01-01T23:59:59.000Z

213

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2012-01-01T23:59:59.000Z

214

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Research Center, 2012 1/22 National Fuel Cell Research Center, 2012 1/22 High Temperature Fuel Cell Tri-Generation of Power, Heat & H 2 from Biogas Jack Brouwer, Ph.D. June 19, 2012 DOE/ NREL Biogas Workshop - Golden, CO ┬ę National Fuel Cell Research Center, 2012 2/22 Outline * Introduction and Background * Tri-Generation/Poly-Generation Analyses * OCSD Project Introduction ┬ę National Fuel Cell Research Center, 2012 3/22 Introduction and Background * Hydrogen fuel cell vehicle performance is outstanding * Energy density of H 2 is much greater than batteries * Rapid fueling, long range ZEV * H 2 must be produced * energy intensive, may have emissions, fossil fuels, economies of scale * Low volumetric energy density of H 2 compared to current infrastructure fuels (@ STP)

215

Analysis of a solar assisted heat pump system for indoor swimming pool water and space heating  

Science Journals Connector (OSTI)

Solar energy application is a good alternative to replace primary energy source especially for large-scale installations. Heat pumps are also effective means to reduce primary energy consumption. This paper describes a case study with a new design of solar assisted heat pump (SAHP) for indoor swimming pool space- and water-heating purposes. The system design procedure was first presented. The entire system was then modeled via the TRNSYS simulation environment and the energy performance was evaluated based on the winter time operation schedule. Economic analysis with a range of collector areas was also performed. The simulation results show that the overall system COP can reach 4.5, and the fractional factor of energy saving is 79% as compared to the conventional energy system. The economical payback period is less than 5áyears.

T.T. Chow; Y. Bai; K.F. Fong; Z. Lin

2012-01-01T23:59:59.000Z

216

Heat and water transport in a polymer electrolyte fuel cell electrode  

SciTech Connect

In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for various applications. Despite tremendous progress in recent years, a pivotal performance limitation in the PEFC comes from liquid water transport and the resulting flooding phenomena. Liquid water blocks the open pore space in the electrode and the fibrous diffusion layer leading to hindered oxygen transport. The electrode is also the only component in the entire PEFC sandwich which produces waste heat from the electrochemical reaction. The cathode electrode, being the host to several competing transport mechanisms, plays a crucial role in the overall PEFC performance limitation. In this work, an electrode model is presented in order to elucidate the coupled heat and water transport mechanisms. Two scenarios are specifically considered: (1) conventional, Nafion{reg_sign} impregnated, three-phase electrode with the hydrated polymeric membrane phase as the conveyer of protons where local electro-neutrality prevails; and (2) ultra-thin, two-phase, nano-structured electrode without the presence of ionomeric phase where charge accumulation due to electro-statics in the vicinity of the membrane-CL interface becomes important. The electrode model includes a physical description of heat and water balance along with electrochemical performance analysis in order to study the influence of electro-statics/electro-migration and phase change on the PEFC electrode performance.

Mukherjee, Partha P [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Borup, Rod L [Los Alamos National Laboratory; Ranjan, Devesh [TEXAS A& M UNIV

2010-01-01T23:59:59.000Z

217

The Northeast heating fuel market: Assessment and options  

SciTech Connect

In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

None

2000-07-01T23:59:59.000Z

218

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network (OSTI)

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen

Jawitz, James W.

219

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)  

SciTech Connect

Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

Not Available

2011-10-01T23:59:59.000Z

220

Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cells Shine a Light on the Last Endeavour Space Shuttle Launch Cells Shine a Light on the Last Endeavour Space Shuttle Launch Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch May 16, 2011 - 9:35am Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What does this mean for me? A new hydrogen fuel cell-powered mobile light tower that has the potential to drastically reduce dependence on diesel-fueled mobile lighting across the United States. They are cleaner and quieter than diesel mobile light towers used today. Energy Department-funded research has helped to reduce the cost of fuel cells by 30% since 2008 and 80% since 2002. This has enabled increased widespread adoption and enabled commercial developments for fuel cell applications. Fuel cell technology will help light the way as the Space Shuttle

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Fuel Heat Plant Improvements at the National Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1) EA-1887: Renewable Fuel Heat Plant Improvements at the National Renewable Energy Laboratory, Golden, Colorado (DOE/EA-1573-S1) Summary This EA evaluates the environmental impacts of a proposal to make improvements to the Renewable Fuel Heat Plant including construction and operation of a wood chip storage silo and the associated material handling conveyances and utilization of regional wood sources. DOE/EA-1887 supplements a prior EA (DOE/EA-1573, July 2007) and is also referred to as DOE/EA-1573-S1. Public Comment Opportunities None available at this time. Documents Available for Download April 9, 2012 EA-1887: Finding of No Significant Impact

222

Burning of Hydrocarbon Fuels Directly in a Water-Based Heat Carrier  

Science Journals Connector (OSTI)

A principal possibility of burning hydrocarbon fuels directly in a water-based heat carrier is demonstrated. The first experimental results are presented by an example of burning acetylene in water with initia...

V. S. Teslenko; V. I. Manzhalei; R. N. Medvedevů

2010-07-01T23:59:59.000Z

223

Thermochemical conversion of fuels into hydrogen-containing gas using recuperative heat of internal combustion engines  

Science Journals Connector (OSTI)

The problem of the thermochemical recuperation of heat from the exhaust gases of internal combustion engines (ICEs) as a method of ... the steam conversion of oxygen-containing fuels into syngas were developed, a...

V. A. Kirillov; A. B. Shigarov; N. A. Kuzinů

2013-09-01T23:59:59.000Z

224

Close-spaced thermionic converters with active spacing control and heat-pipe isothermal emitters  

SciTech Connect

Thermionic converters with interelectrode gaps smaller than 10 microns are capable of substantial performance improvements over conventional ignited mode diodes. Previous devices which have demonstrated operation at such small gaps have done so at low power densities and emitter temperatures. Higher power operation requires overcoming two primary design issues: thermal distortion of the emitter due to temperature gradients and degradation of the in-gap spacers at higher emitter temperatures. This work describes two innovations for solution of these issues. The issue of thermal distortion was addressed by an isothermal emitter incorporating a heat-pipe into its structure. Such a heat-pipe emitter, with a single-crystal emitting surface, was fabricated and characterized. Finite-element computational modeling was used to analyze its distortion with an applied heat flux. The calculations suggested that thermal distortion would be significantly reduced as compared with a solid emitter. Ongoing work and preliminary experimental results are described for a system of active interelectrode gap control. In the present design an integral transducer determines the interelectrode gap of the converter. Initial designs for spacing actuators and their required cesium vapor seals are discussed. A novel hot-shell converter design incorporating active spacing control and low-temperature seals is presented. A converter incorporating the above features would be capable of near ideal-converter performance at high power densities. In addition, active spacing control can potentially completely eliminate short-circuit failures in thermionic converter systems.

Fitzpatrick, G.O.; Koester, J.K.; Chang, J.; Britt, E.J.; McVey, J.B. [Space Power, Inc., San Jose, CA (United States)

1996-12-31T23:59:59.000Z

225

A Validation Study of Pin Heat Transfer for MOX Fuel Based on the IFA-597 Experiments  

SciTech Connect

Abstract The IFA-597 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the thermal behavior of mixed oxide (MOX) fuel and the effects of an annulus on fission gas release in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for MOX fuel systems was performed, with a focus on the first 20 time steps ( 6 GWd/MT(iHM)) for explicit comparison between the codes. In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole, dish, and chamfer. The analysis demonstrated relative agreement for both solid (rod 1) and annular (rod 2) fuel in the experiment, demonstrating the accuracy of the codes and their underlying material models for MOX fuel, while also revealing a small energy loss artifact in how gap conductance is currently handled in Exnihilo for chamfered fuel pellets. The within-pellet power shape was shown to significantly impact the predicted centerline temperatures. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for MOX fuel with respect to a well-validated nuclear fuel performance code.

Phillippe, Aaron M [ORNL; Clarno, Kevin T [ORNL; Banfield, James E [ORNL; Ott, Larry J [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Hamilton, Steven P [ORNL

2014-01-01T23:59:59.000Z

226

Plasma processing of spent nuclear fuel by two-frequency ion cyclotron resonance heating  

SciTech Connect

A previously developed method for analyzing the plasma processing of spent nuclear fuel is generalized to a plasma containing multicharged fuel ions. In such a plasma, ion cyclotron resonance heating of nuclear ash ions should be carried out in two monochromatic RF fields of different frequencies, provided that the fraction of {xi} multicharged ions is small, {xi} {<=} 0.1, a condition that substantially restricts the productivity of systems for processing spent nuclear fuel. Ways of overcoming this difficulty are discussed.

Timofeev, A. V. [Russian Research Centre Kurchatov Institute, Nuclear Fusion Institute (Russian Federation)

2009-11-15T23:59:59.000Z

227

Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy is utilizing its current commercialization channels to market the new hybrid fuel cell technologies. Distribution partners LOGAN Energy, Pfister Energy, and PPL Energy Plus...

228

Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Heating technologies fo r energy efficiency Vol.III-3-4 Practical Analysis of a New Type Radiant Heating Technology in a Large Space Building Guohui Feng Guangyu Cao Li Gang Ph.D. Ph... achieve above 95%. Since not heating up indoor air, it is specially suited for heating of factory buildings where the conditions of heat preservation and sealing are poor and their gates are opened frequently. The off-on of radiation heating system...

Feng, G.; Cao, G.; Gang, L.

2006-01-01T23:59:59.000Z

229

A Study on Heat Transfer Model in Sparse Zone of Oxy-Fuel Fired CFB  

Science Journals Connector (OSTI)

A model has been developed to calculate the coefficient heat transfer in sparse zone of oxy-fuel fired circulating fluidized bed boiler (CFBB). The model shows that the convective heat transfer coefficient is enhanced with increase in CO2 density, bed ...

Chunbo Wang; Weijun Hou; Wei Zhang; Guang Lu; Zhihong Huo; Jiao Zhang

2009-10-01T23:59:59.000Z

230

"Table HC13.4 Space Heating Characteristics by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by South Census Region, 2005" 4 Space Heating Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Space Heating Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N","Q" "Have Main Space Heating Equipment",109.8,40.3,21.4,6.9,12 "Use Main Space Heating Equipment",109.1,40.1,21.2,6.9,12 "Have Equipment But Do Not Use It",0.8,"Q","Q","N","N"

231

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

232

NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network (OSTI)

NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

Hall, Julian

233

Investigating Methods of Heat Recovery from Low-Temperature PEM Fuel Cells in CHP Applications  

SciTech Connect

Heat recovery from low-temperature proton exchange membrane (PEM) fuel cells poses a number of challenges. In response to these challenges, thermodynamic assessments of proposed heat recovery methods are studied in the context of combined heat and power (CHP) for building applications. Preheating combustion air in conjunction with desiccant dehumidification and absorption cooling technologies is one of the two strategies examined in this study. The other approach integrates the PEM fuel cell with a water-loop heat pump (WLHP) for direct heat recovery. As the primary objective, energy-saving potentials of the adopted heat recovery strategies are estimated with respect to various benchmarks. The quantified energy-saving potentials are translated into effective CHP performance indices and compared with those typically specified by the manufacturers for service hot water applications. The need for developing CHP performance protocols is also discussed in light of the proposed energy recovery techniques - thereby, accomplishing the secondary objective.

Jalalzadeh-Azar, A. A.

2004-01-01T23:59:59.000Z

234

Fuel and cladding nano-technologies based solutions for long life heat-pipe based reactors  

SciTech Connect

A novel nuclear reactor concept, unifying the fuel pipe with fuel tube functionality has been developed. The structure is a quasi-spherical modular reactor, designed for a very long life. The reactor module unifies the fuel tube with the heat pipe and a graphite beryllium reflector. It also uses a micro-hetero-structure that allows the fission products to be removed in the heat pipe flow and deposited in a getter area in the cold zone of the heat pipe, but outside the neutron flux. The reactor operates as a breed and burn reactor - it contains the fuel pipe with a variable enrichment, starting from the hot-end of the pipe, meant to assure the initial criticality, and reactor start-up followed by area with depleted uranium or thorium that get enriched during the consumption of the first part of the enriched uranium. (authors)

Popa-Simil, L. [LAVM LLC, Los Alamos (United States)

2012-07-01T23:59:59.000Z

235

Use of Integrated Decay Heat Limits to Facilitate Spent Nuclear Fuel Loading to Yucca Mountain  

SciTech Connect

As an alternative to the use of the linear loading or areal power density (APD) concept, using integrated decay heat limits based on the use of mountain-scale heat transfer analysis is considered to represent the thermal impact from the deposited spent nuclear fuel (SNF) to the Yucca Mountain repository. Two different integrated decay heat limits were derived to represent both the short-term (up to 50 years from the time of repository closure) and the long-term decay heat effect (up to 1500 years from the time of repository closure). The derived limits were found to appropriately represent the drift wall temperature limit (200 deg. C) and the midway between adjacent drifts temperature limit (96 deg. C) as long as used fuel is uniformly loaded into the mountain. These limits can be a useful practical guide to facilitate the loading of used fuel into Yucca Mountain. (authors)

Li, Jun; Yim, Man-Sung; McNelis, David [Department of Nuclear Engineering, North Carolina State University (United States); Piet, Steven [Idaho National Laboratory (United States)

2007-07-01T23:59:59.000Z

236

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle. 18 figs.

Jardine, D.M.

1983-03-22T23:59:59.000Z

237

Economizer refrigeration cycle space heating and cooling system and process  

DOE Patents (OSTI)

This invention relates to heating and cooling systems and more particularly to an improved system utilizing a Stirling Cycle engine heat pump in a refrigeration cycle.

Jardine, Douglas M. (Colorado Springs, CO)

1983-01-01T23:59:59.000Z

238

Lightning Dock Geothermal Space Heating Project: Lightning Dock...  

Open Energy Info (EERE)

and home heating systems, which consisted of pumping geothermal water and steam through passive steam heaters, and convert the systems to one using modern heat exchange units. It...

239

On Variations of Space-heating Energy Use in Office Buildings  

E-Print Network (OSTI)

HPB IEA IEAD LPD MJ NFRC SHC SHGC TRNSYS WWR VAV VT Americanheat gain coefficient (SHGC) reduce space-heating loads. Thetemperature difference. The SHGC represents the fractional

Lin, Hung-Wen

2014-01-01T23:59:59.000Z

240

Space Heating Scenarios for Ontario: a Demonstration of the Statistics Canada Household Model  

Science Journals Connector (OSTI)

ABSTRACT This paper describes the analytical and simulation capabilities of the currently implemented version of the ôhousehold modelö developed by the Structural Analysis Division, Statistics Canada. The household model, as described in A Design Framework for Long Term Energy ľ Economic Analysis of Dwelling Related Demand [1], is a simulation framework and related data base of the Canadian housing stocks, residential construction, and end-use energy consumption in the residential sector. The purpose of the model is to provide an analytical tool for evaluating a variety of residential energy conservation strategies including insulation retrofitting and the introduction of new building standards, the possibilities for fuel substitution afforded by equipment retrofitting, and the impact of new technologies for space conditioning with respect to impacts on residential energy requirements and construction materials over time. The simulation results for Ontario that are presented in the paper are for demonstration purposes only and do not constitute a forecast. The choice of Ontario was arbitrary; similar calculations can be performed for other provinces, for Canada as a whole, and for selected subprovincial regions. At the time of preparation of this paper, the population and household formation block at the national level, the housing stock block, and the space heating part of the space conditioning block are implemented. Therefore simulation results are limited to these areas.

R.H.H. Moll; K.H. Dickinson

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

242

Retrofit Integrated Space & Water Heating: Field Assessment, Minneapolis, Minnesota (Fact Sheet)  

SciTech Connect

This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water and forced air space heating. Called 'Combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (EF of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent.

Not Available

2014-05-01T23:59:59.000Z

243

Heating with energy saving alternatives to prevent biodeterioration of marine fuel oil  

Science Journals Connector (OSTI)

This study examined how alternative handling practices, including heat shock, can facilitate the prevention of biodeterioration of fuel oil onboard ships. At temperatures exceeding 50á░C, no microbes were observed after incubation for 2ádays. Under 30á░C incubation, the total number of viable aerobic bacteria, Escherichia coli and Pseudomonas maltophilia, decreased gradually during the incubation period. Conversely, most fungi were destroyed after incubation for 5ádays. Fungi generally had a better tolerance in marine fuel than E. coli after heat shock treatment. After incubation starting at ?45á░C, followed by different heat shock patterns, the total number of viable fungi and E. coli increased steadily during the 10-h incubation period. In contrast to fungi, heat shock effectively controlled E. coli growth. Heat shock treatment can control the growth of certain types of microbes at temperatures of up to 10á░C lower than commonly used.

J. Hua

2012-01-01T23:59:59.000Z

244

The Pacific Northwest residential consumer: Perceptions and preferences of home heating fuels, major appliances, and appliance fuels  

SciTech Connect

In 1983 the Bonneville Power Administration contracted with the Pacific Northwest Laboratory (PNL) to conduct an analysis of the marketing environment for Bonneville's conservation activities. Since this baseline residential study, PNL has conducted two follow up market research projects: Phase 2 in 1985, and Phase 3, in 1988. In this report the respondents' perceptions, preferences, and fuel switching possibilities of fuels for home heating and major appliances are examined. To aid in effective target marketing, the report identifies market segments according to consumers' demographics, life-cycle, attitudes, and opinions.

Harkreader, S.A.; Hattrup, M.P.

1988-09-01T23:59:59.000Z

245

Industrial Heat Pumps for Steam and Fuel Savings  

Energy.gov (U.S. Department of Energy (DOE))

This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for initial identification and evaluation of the opportunities being provided.

246

Space Heating and Cooling Basics | Department of Energy  

Energy Savers (EERE)

- 1:04pm Addthis A wide variety of technologies are available for heating and cooling homes and other buildings. In addition, many heating and cooling systems have certain...

247

Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011.

248

Irregular spacing of heat sources for treating hydrocarbon containing formations  

DOE Patents (OSTI)

A method for treating a hydrocarbon containing formation includes providing heat input to a first section of the formation from one or more heat sources located in the first section. Fluids are produced from the first section through a production well located at or near the center of the first section. The heat sources are configured such that the average heat input per volume of formation in the first section increases with distance from the production well.

Miller, David Scott (Katy, TX); Uwechue, Uzo Philip (Houston, TX)

2012-06-12T23:59:59.000Z

249

SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild  

E-Print Network (OSTI)

#12;SURVEY OF ADVANCED HEAT PUMP DEVELOPMENTS FOR SPACE CONDITIONING* Phillip D. Fairchild Energy Division Oak Ridge National Laboratory it*~~ ~Oak Ridge, Tennessee ABSTRACT Because of the heat pump energy research organiza- tions. This paper presents a survey of heat pump RD&D projects with special

Oak Ridge National Laboratory

250

HEAT KERNEL AND GREEN FUNCTION ESTIMATES ON NONCOMPACT SYMMETRIC SPACES II  

E-Print Network (OSTI)

HEAT KERNEL AND GREEN FUNCTION ESTIMATES ON NONCOMPACT SYMMETRIC SPACES II Jean┬şPhilippe Anker, Amer. Math. Soc. (2001), 1┬ş9 ┬ž1. Introduction For a complete Riemannian manifold, the heat kernel], [BGV] and the references there). Numerous results have been obtained for the heat kernel and Green

Boyer, Edmond

251

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Case Study: Fuel Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central Office in Garden City, New York. This fuel cell power plant, the largest in the United States at the time, is reaping environmental benefits and demonstrating the viabil- ity of fuel cells in a commercial, critical telecommunications setting. Background Verizon's Central Office in Garden City,

252

Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations  

E-Print Network (OSTI)

Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced 2013 Available online 5 November 2013 Keywords: Microbial fuel cells Refinery wastewater Biodegradability Separator electrode assembly a b s t r a c t The effectiveness of refinery wastewater (RW

253

Calculated fuel temperatures for a proposed space based reactor using the lumped parameter method  

E-Print Network (OSTI)

CALCULATED FUEL TEMPERATURES FOR A PROPOSED SPACE BASED REACTOR USING THE LUMPED PARAMETER METHOD A Thesis by CELESTE MARIE STEEN Submitted to the Office of Graduate Studies of Texas AgcM University in partial fulfillment of the requirements... f' or the degree of MASTER OF SCIENCE December 1990 Major Subject: Nuclear Engineering CALCULATED FUEL TEMPERATURES FOR A PROPOSED SPACE BASED REACTOR USING THE LUMPED PARAMETER METHOD A Thesis by CELESTE MARIE STEEiV Approved as to style...

Steen, Celeste Marie

2012-06-07T23:59:59.000Z

254

Membrane heat pipe development for space radiator applications  

SciTech Connect

A self-deploying membrane heat pipe (SMHP) is being designed and fabricated to operate in an in-cabin experiment aboard a STS flight. The heat pipe comprises a mylar membrane with a woven fabric arterial wick and R-11 as the working fluid. Preliminary results indicate that this SMHP design will successfully expand and retract in response to an applied heat load; the retraction force is provided by a constant force spring.

Woloshun, K.; Merrigan, M.

1986-01-01T23:59:59.000Z

255

Analysis of space heating and domestic hot water systems for energy-efficient residential buildings  

SciTech Connect

An analysis of the best ways of meeting the space heating and domestic hot water (DHW) needs of new energy-efficient houses with very low requirements for space heat is provided. The DHW load is about equal to the space heating load in such houses in northern climates. The equipment options which should be considered are discussed, including new equipment recently introduced in the market. It is concluded that the first consideration in selecting systems for energy-efficient houses should be identification of the air moving needs of the house for heat distribution, heat storage, ventilation, and ventilative cooling. This is followed, in order, by selection of the most appropriate distribution system, the heating appliances and controls, and the preferred energy source, gas, oil, or electricity.

Dennehy, G

1983-04-01T23:59:59.000Z

256

The field test and optimization of a solar assisted heat pump system for space heating in extremely cold area  

Science Journals Connector (OSTI)

Abstract As a kind of sustainable energy source, solar energy is becoming highly valued. Especially in extremely cold areas, the amount of energy consumed for space heating is huge, and the conventional coal heating has polluted the environment seriously, therefore solar heating is significant on both energy and environment conservation. In this study, a solar assisted heat pump (SAHP) system was investigated for space heating under extremely cold climatic condition. The system principle and operation modes was presented, and then the project profile and design procedure were introduced, and finally the system performance was evaluated by field test on typical winter days and modeling via TRNSYS simulation environment. The results show that the solar collector efficiency was 51%, and the solar fraction can reach 66% in December. Economic analysis was also performed and the heating expenses for the present SAHP system was 18áRMB/m2. Finally, the temperatures of solar energy for both direct heating and storage and only for direct heating (T1A and T1B) were simulated and optimized, which have important significance on the operation time of different operation modes.

Huifang Liu; Yiqiang Jiang; Yang Yao

2014-01-01T23:59:59.000Z

257

A Validation Study of Pin Heat Transfer for UO2 Fuel Based on the IFA-432 Experiments  

SciTech Connect

The IFA-432 (Integrated Fuel Assessment) experiments from the International Fuel Performance Experiments (IFPE) database were designed to study the effects of gap size, fuel density, and fuel densification on fuel centerline temperature in light-water-reactor fuel. An evaluation of nuclear fuel pin heat transfer in the FRAPCON-3.4 and Exnihilo codes for uranium dioxide (UO$_2$) fuel systems was performed, with a focus on the densification stage (2.2 \\unitfrac{GWd}{MT(UO$_{2}$)}). In addition, sensitivity studies were performed to evaluate the effect of the radial power shape and approximations to the geometry to account for the thermocouple hole. The analysis demonstrated excellent agreement for rods 1, 2, 3, and 5 (varying gap thicknesses and density with traditional fuel), demonstrating the accuracy of the codes and their underlying material models for traditional fuel. For rod 6, which contained unstable fuel that densified an order of magnitude more than traditional, stable fuel, the magnitude of densification was over-predicted and the temperatures were outside of the experimental uncertainty. The radial power shape within the fuel was shown to significantly impact the predicted centerline temperatures, whereas modeling the fuel at the thermocouple location as either annular or solid was relatively negligible. This has provided an initial benchmarking of the pin heat transfer capability of Exnihilo for UO$_2$ fuel with respect to a well-validated nuclear fuel performance code.

Phillippe, Aaron M [ORNL; Clarno, Kevin T [ORNL; Banfield, James E [ORNL; Ott, Larry J [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Hamilton, Steven P [ORNL

2014-01-01T23:59:59.000Z

258

Measured Space Conditioning and Water Heating Performance of a Ground-Source Integrated Heat Pump in a Residential Application  

SciTech Connect

In an effort to reduce residential building energy consumption, a ground-source integrated heat pump was developed to meet a home s entire space conditioning and water heating needs, while providing 50% energy savings relative to a baseline suite of minimum efficiency equipment. A prototype 7.0 kW system was installed in a 344 m2 research house with simulated occupancy in Oak Ridge, TN. The equipment was monitored from June 2012 through January 2013.

Munk, Jeffrey D [ORNL] [ORNL; Ally, Moonis Raza [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

259

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network (OSTI)

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

260

Space Math http://spacemath.gsfc.nasa.gov A Simple Gauge in a Fuel Tank -I 37  

E-Print Network (OSTI)

Space Math http://spacemath.gsfc.nasa.gov A Simple Gauge in a Fuel Tank - I 37 This is a photo of the Space Shuttle main fuel tank just after being jettisoned at an altitude of 50 miles. The liquid hydrogen. Problem 1 ┬ş To two significant figures, what is the volume of the fuel tank in: A) Cubic meters? B) Cubic

Christian, Eric

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Enhancement of Pool Boiling Heat Transfer in Confined Space  

E-Print Network (OSTI)

Pool boiling is an effective method used in many technical applications for a long time. Its highly efficient heat transfer performance results from not only the convection effect but also the phase change process in pool boiling. Pool boiling...

Hsu, Chia-Hsiang

2014-05-05T23:59:59.000Z

262

City of Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Twenty-Nine Palms Space Heating Low Temperature Geothermal Facility Facility City of Twenty-Nine Palms Sector Geothermal energy Type Space Heating Location Twenty-Nine Palms, California Coordinates 34.1355582┬░, -116.0541689┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

263

Hot Lake RV Park Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Park Space Heating Low Temperature Geothermal Facility Park Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Lake RV Park Space Heating Low Temperature Geothermal Facility Facility Hot Lake RV Park Sector Geothermal energy Type Space Heating Location Union County, Oregon Coordinates 45.2334122┬░, -118.0410627┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

264

Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Reno-Moana Area (300) Space Heating Low Temperature Geothermal Facility Facility Reno-Moana Area (300) Sector Geothermal energy Type Space Heating Location Reno, Nevada Coordinates 39.5296329┬░, -119.8138027┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

265

Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hi-Tech Fisheries Space Heating Low Temperature Geothermal Facility Facility Hi-Tech Fisheries Sector Geothermal energy Type Space Heating Location Bluffdale, Utah Coordinates 40.4896711┬░, -111.9388244┬░ Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

266

On Variations of Space-heating Energy Use in Office Buildings  

E-Print Network (OSTI)

CBECS CDD CRB DX EIA EPD EUI HDD HPB IEA IEAD LPD MJ NFRCin energy use intensity (EUI), defined as annual site energycomparing the space-heating EUI from each parametric run to

Lin, Hung-Wen

2014-01-01T23:59:59.000Z

267

Processing and utilizing high heat value, low ash alternative fuels from urban solid waste  

SciTech Connect

The history of technologies in the US that recover energy from urban solid waste is relatively short. Most of the technology as we know it evolved over the past 25 years. This evolution led to the development of about 100 modern mass burn and RDF type waste-to-energy plants and numerous small modular combustion systems, which collectively are handling about 20%, or about 40 million tons per year, of the nations municipal solid waste. Technologies also evolved during this period to co-fire urban waste materials with other fuels or selectively burn specific waste streams as primary fuels. A growing number of second or third generation urban waste fuels projects are being developed. This presentation discusses new direction in the power generating industry aimed at recovery and utilization of clean, high heat value, low ash alternative fuels from municipal and industrial solid waste. It reviews a spectrum of alternative fuels for feasible recovery and reuse, with new opportunities emerging for urban fuels processors providing fuels in the 6,000--15,000 BTU/LB range for off premises use.

Smith, M.L. [M.L. Smith Environmental and Associates, Tinley Park, IL (United States)

1995-10-01T23:59:59.000Z

268

A numerical investigation of natural convection heat transfer within horizontal spent-fuel assemblies  

SciTech Connect

A numerical investigation of natural convection heat transfer is carried out for a single, horizontal, spent-fuel assembly in an environment typical of spent-fuel transportation systems as well as some dry storage/disposal scenarios. The objective is to predict computationally the convective heat transfer trends for horizontal spent fuel and to compare the results to data taken in a supporting experimental effort. The predicted data consist of thermal and flow fields throughout the assembly for a wide range of Rayleigh number, as well as numerically obtained Nusselt-number data that are correlated as a function of Rayleigh number. Both laminar and turbulent approaches are examined for a Boussinesq fluid with Pr = 0.7. The data predict the existence of a conduction-dominated regime, a transition regime, and a convection regime. Compared with the laminar approach, a significant improvement in the predicted Nusselt number is obtained for large Rayleigh numbers when a turbulence model is employed. This lends additional support to the experimental evidence that a transition to turbulent flow occurs for Rayleigh numbers greater than 10{sup 7}. Overall, the numerically predicted heat transfer trends compare well with previously obtained experimental data, and the computed assembly Nusselt numbers generally reside within the range of experimental uncertainty. The predicted thermal and flow fields further provide a numerical flow visualization capability that enhances the understanding of natural convection in horizontal spent fuel and allows improved physical interpretation of the experimental data.

Canaan, R.E. [Lawrence Livermore National Lab., CA (United States); Klein, D.E. [Univ. of Texas System, Austin, TX (United States)

1998-08-01T23:59:59.000Z

269

Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Number of Household Members, 2005 5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................ 3.6 1.0 0.8 0.5 0.5 0.7 1 to 499........................................................ 6.1 3.0 1.6 0.6 0.6 0.3 500 to 999.................................................... 27.7 11.6 8.3 3.6 2.7 1.6 1,000 to 1,499..............................................

270

Prediction of heat transfer for a supercritical water test with a four pin fuel bundle  

SciTech Connect

As a next step to validate prediction methods for core design of a Supercritical Water Cooled Reactor, a small, electrically heated fuel bundle with 4 pins is planned to be tested. This paper summarizes first heat transfer predictions for such a test, which were performed based on supercritical and subcritical sub-channel analyses. For heat transfer under supercritical pressure conditions, the sub-channel code STAFAS has been applied, which had been tested successfully already for a supercritical water reactor design. Design studies with different assembly box sizes at a given pin diameter and pitch have been performed to optimize the coolant temperature distribution. With a fuel pin outer diameter of 10 mm and a pitch to diameter ratio of 1.15, an optimum inner width of the assembly box was determined to be 24 mm. Coolant and cladding surface temperatures to be expected at subcritical pressure conditions have been predicted with the sub-channel code MATRA. As, different from typical PWR or BWR conditions, a dryout has been foreseen for the tests, this code had to be extended to include suitable dryout criteria as well as post dryout heat transfer correlations at higher enthalpies and pressures. Different from PWR or BWR design, the cladding surface temperature of fuel pins in supercritical water reactors can vary significantly around the circumference of each pin, causing bending towards its hotter side which, in turn, can cause additional sub-channel heat-up and thus additional thermal bending of the pin. To avoid a thermal instability by this effect, a sensitivity study with respect to thermal bending of fuel pins has been performed, which determines the minimum number of grid spacers needed for this test. (authors)

Behnke, L. [RWE Power AG, Essen (Germany); Himmel, S.; Waata, C.; Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, PO Box 3640, D-76021 Karlsruhe (Germany); Laurien, E. [University of Stuttgart (Germany)

2006-07-01T23:59:59.000Z

271

Solar space heating installed at Kansas City, Kansas. Final report  

SciTech Connect

The solar energy system was constructed with the new 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while the auxiliary energy system heats the office area of about 9800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors, manufactured by Solaron Corporation, are double glazed flat plate collectors with a gross area of 7800 ft/sup 2/. Air is heated either through the collectors or by the electric resistance duct coils. No freeze protection or storage is required for this system. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

Not Available

1981-05-01T23:59:59.000Z

272

COBRA-SFS predictions of single assembly spent fuel heat transfer data  

SciTech Connect

The study reported here is one of several efforts to evaluate and qualify the COBRA-SFS computer code for use in spent fuel storage system thermal analysis. The ability of COBRA-SFS to predict the thermal response of two single assembly spent fuel heat transfer tests was investigated through comparisons of predictions with experimental test data. From these comparisons, conclusions regarding the computational treatment of the physical phenomena occurring within a storage system can be made. This objective was successfully accomplished as reasonable agreement between predictions and data were obtained for the 21 individual test cases of the two experiments.

Lombardo, N.J.; Michener, T.E.; Wheeler, C.L.; Rector, D.R.

1986-04-01T23:59:59.000Z

273

Effect of Fuel Type on the Attainable Power of the Encapsulated Nuclear Heat Source Reactor  

SciTech Connect

The Encapsulated Nuclear Heat Source (ENHS) is a small liquid metal cooled fast reactor that features uniform composition core, at least 20 effective full power years of operation without refueling, nearly zero burnup reactivity swing and heat removal by natural circulation. A number of cores have been designed over the last few years to provide the first three of the above features. The objective of this work is to find to what extent use of nitride fuel, with either natural or enriched nitrogen, affects the attainable power as compared to the reference metallic fueled core. All the compared cores use the same fuel rod diameter, D, and length but differ in the lattice pitch, P, and Pu weight percent. Whereas when using Pb-Bi eutectic for both primary and intermediate coolants the P/D of the metallic fueled core is 1.36, P/D for the nitride cores are, respectively, 1.21 for natural nitrogen and 1.45 for enriched nitrogen. A simple one-dimensional thermal hydraulic model has been developed for the ENHS reactor. Applying this model to the different designs it was found that when the IHX length is at its reference value of 10.4 m, the power that can be removed by natural circulation using nitride fuel with natural nitrogen is 65% of the reference power of 125 MWth that is attainable using metallic fuel. However, using enriched nitrogen the attainable power is 110% of the reference. To get 125 MWth the effective IHX length need be 8.7 m and 30.5 m for, respectively, enriched and natural nitrogen nitride fuel designs. (authors)

Okawa, Tsuyoshi; Greenspan, Ehud [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

2006-07-01T23:59:59.000Z

274

On-Board Fuel Processing for a Fuel Cell?Heat Engine Hybrid System  

Science Journals Connector (OSTI)

(9) Because they have used the same fuel, gasoline having an established infrastructure, to constrain the same well to tank (WTT) efficiency for the compared systems, the TTW efficiency of the hybrid FCHEV is unexpectedly low, because the gasoline processing to hydrogen with subsequent use of the latter in the FC had an efficiency of only 35% in their calculation. ... to increase by up to 15% by hybridizing it with an energy storage system. ...

Osman Sinan SŘslŘ; ?pek Becerik

2009-03-24T23:59:59.000Z

275

"Table HC15.5 Space Heating Usage Indicators by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Four Most Populated States, 2005" 5 Space Heating Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Space Heating Usage Indicators",,"New York","Florida","Texas","California" "Total U.S. Housing Units",111.1,7.1,7,8,12.1 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have But Do Not Use Equipment",0.8,"N","Q","N",0.5 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

276

"Table HC10.5 Space Heating Usage Indicators by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by U.S. Census Region, 2005" 5 Space Heating Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Usage Indicators",,"Northeast","Midwest","South","West" "Total U.S. Housing Units",111.1,20.6,25.6,40.7,24.2 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have But Do Not Use Equipment",0.8,"N","N","Q",0.6 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

277

"Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Urban/Rural Location, 2005" 5 Space Heating Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating Usage Indicators",,"City","Town","Suburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Do Not Have Heating Equipment",1.2,0.7,"Q",0.2,"Q" "Have Space Heating Equipment",109.8,46.3,18.9,22.5,22.1 "Use Space Heating Equipment",109.1,45.6,18.8,22.5,22.1 "Have But Do Not Use Equipment",0.8,0.7,"Q","N","N" "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

278

Countercurrent flow limited (CCFL) heat flux in the high flux isotope reactor (HFIR) fuel element  

SciTech Connect

The countercurrent flow (CCF) performance in the fuel element region of the HFIR is examined experimentally and theoretically. The fuel element consists of two concentric annuli filled with aluminum clad fuel plates of 1.27 mm thickness separated by 1.27 mm flow channels. The plates are curved as they go radially outward to accomplish constant flow channel width and constant metal-to-coolant ratio. A full-scale HFIR fuel element mock-up is studied in an adiabatic air-water CCF experiment. A review of CCF models for narrow channels is presented along with the treatment of CCFs in system of parallel channels. The experimental results are related to the existing models and a mechanistic model for the annular'' CCF in a narrow channel is developed that captures the data trends well. The results of the experiment are used to calculate the CCFL heat flux of the HFIR fuel assembly. It was determined that the HFIR fuel assembly can reject 0.62 Mw of thermal power in the CCFL situation. 31 refs., 17 figs.

Ruggles, A.E.

1990-10-12T23:59:59.000Z

279

Standard test method for heat of combustion of hydrocarbon fuels by bomb calorimeter (high-precision method)  

SciTech Connect

This method covers the determination of the heat of combustion of hydrocarbon fuels. It is designed specifically for use with aviation turbine fuels when the permissible difference between duplicate determinations is of the order of 0.1%. It can be used for a wide range of volatile and nonvolatile materials where slightly greater differences in precision can be tolerated. The heat of combustion is determined by burning a weighed sample in an oxygen-bomb calorimeter under controlled conditions. The temperature is measured by means of a platinum resistance thermometer. The heat of combustion is calculated from temperature observations before, during, and after combustion, with proper allowance for thermochemical and heat-transfer corrections. Either isothermal or adiabatic calorimeters may be used. The heat of combustion is a measure of the energy available from a fuel. A knowledge of this value is essential when considering the thermal efficiency of equipment for producing either power or heat.

Not Available

1980-01-01T23:59:59.000Z

280

Problems in developing bimodal space power and propulsion system fuel element  

SciTech Connect

The paper discusses design of a space nuclear power and propulsion system fuel element (PPFE) developed on the basis of an enhanced single-cell thermionic fuel element (TFE) of the 'TOPAZ-2' thermionic converter-reactor (TCR), and presents the PPFE performance for propulsion and power modes of operation. The choice of UC-TaC fuel composition is substantiated. Data on hydrogen effect on the PPFE output voltage are presented, design solutions are considered that allow to restrict hydrogen supply to an interelectrode gap (IEG). Long-term geometric stability of an emitter assembly is supported by calculated data.

Nikolaev, Yu. V.; Gontar, A. S.; Zaznoba, V. A.; Parshin, N. Ya.; Ponomarev-Stepnoi, N. N.; Usov, V. A. [Research Institute of SIA 'Lutch' Podolsk, Moscow Region, 142100 (Russian Federation); RRC 'Kurchatov Institute' Moscow, 123182 (Russian Federation)

1997-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

SciTech Connect

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

282

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

283

"Table HC11.5 Space Heating Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Northeast Census Region, 2005" 5 Space Heating Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Space Heating Usage Indicators",,,"Middle Atlantic","New England" "Total U.S. Housing Units",111.1,20.6,15.1,5.5 "Do Not Have Heating Equipment",1.2,"Q","Q","Q" "Have Space Heating Equipment",109.8,20.5,15.1,5.4 "Use Space Heating Equipment",109.1,20.5,15.1,5.4 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

284

"Table HC12.5 Space Heating Usage Indicators by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Midwest Census Region, 2005" 5 Space Heating Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Usage Indicators",,,"East North Central","West North Central" "Total U.S. Housing Units",111.1,25.6,17.7,7.9 "Do Not Have Heating Equipment",1.2,"Q","Q","N" "Have Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Space Heating Equipment",109.1,25.6,17.7,7.9 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

285

Heat kernels on metric spaces with doubling Alexander Grigor'yan, Jiaxin Hu and Ka-Sing Lau  

E-Print Network (OSTI)

Heat kernels on metric spaces with doubling measure Alexander Grigor'yan, Jiaxin Hu and Ka-Sing Lau Abstract. In this survey we discuss heat kernel estimates of self-similar type on metric spaces with doubling measures. We characterize the tail functions from heat kernel estimates in both non

Hu, Jiaxin

286

Heat kernels on metric spaces with doubling measure Alexander Grigor'yan, Jiaxin Hu and Ka-Sing Lau  

E-Print Network (OSTI)

Heat kernels on metric spaces with doubling measure Alexander Grigor'yan, Jiaxin Hu and Ka-Sing Lau Abstract. In this survey we discuss heat kernel estimates of self-similar type on metric spaces with doubling measures. We characterize the tail functions from heat kernel estimates in both non

Grigor'yan, Alexander

287

High Fuel Costs Spark Increased Use of Wood for Home Heating by Brian Handwerk for National Geographic News  

E-Print Network (OSTI)

families reducing their costly household oil or gas dependence by turning to a traditional fuel is typically delivered to homes in tanks, and is almost as expensive as heating oil. Berry manages the EIA Hampshire. Just last week, Erik said, he had a discussion with his fuel-oil supplier about how little oil

South Bohemia, University of

288

Local Structural Characteristics of Pore Space in GDLs of PEM Fuel Cells Based on Geometric 3D Graphs  

E-Print Network (OSTI)

Local Structural Characteristics of Pore Space in GDLs of PEM Fuel Cells Based on Geometric 3D. A very promising way is the fuel cell technology due to its high efficiency, where a key component of PEM┬ş und Wasserstoff┬şForschung Baden┬şW├╝rttemberg, 89081 Ulm, Germany present address: BASF Fuel Cell Gmb

Schmidt, Volker

289

Space nuclear safety and fuels program. Progress report, December 1980  

SciTech Connect

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Space and Terrestrial Systems Division of the US Department of Energy by the Los Alamos National Laboratory. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Bronisz, S.E. (comp.)

1981-02-01T23:59:59.000Z

290

Space nuclear safety and fuels program. Progress report, February 1980  

SciTech Connect

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Space and Terrestrial Systems Division of the US Department of Energy by the Los Alamos National Laboratory. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Bronisz, S.E. (comp.)

1981-05-01T23:59:59.000Z

291

Solar space and water heating system at Stanford University Central Food Services Building. Final report  

SciTech Connect

This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

Not Available

1980-05-01T23:59:59.000Z

292

Application analysis of ground source heat pumps in building space conditioning  

SciTech Connect

The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of GSHP. Different scenarios were simulated to quantify the impact of different factors on the GSHP performance, including heat balance, daily running mode, and spacing between boreholes. Our results show that GSHP is suitable for buildings with balanced cooling and heating loads. It can keep soil temperature at a relatively constant level for more than 10 years. Long boreholes, additional space between boreholes, intermittent running mode will improve the performance of GSHP, but large initial investment is required. The improper design will make the COP of GSHP even lower than traditional heat pumps. Professional design and maintenance technologies are greatly needed in order to promote this promising technology in the developing world.

Qian, Hua; Wang, Yungang

2013-07-01T23:59:59.000Z

293

Oxygen reduction in PEM fuel cell conditions: Heat-treated macrocycles and beyond  

NLE Websites -- All DOE Office Websites (Extended Search)

reduction in PEM fuel cell conditions: reduction in PEM fuel cell conditions: Heat-treated macrocycles and beyond J. P. Dodelet INRS-├ënergie et Mat├ęriaux C. P. 1020, Varennes, Qu├ębec, Canada, J3X 1S2 dodelet@inrs-ener.uquebec.ca Collaborators Michel Lef├Ęvre (INRS) S├ębastien Marcotte (INRS) Fr├ęd├ęric Jaouen (Royal Inst. of Technology, Sweden) Prof. Patrick Bertrand (Universit├ę Catholique de Louvain, Belgium) Prof. G├Âran Lindbergh (Royal Inst. Of Technology, Sweden) New Orleans workshop March 21 03. DODELET, J. P. ; New Orleans, March 21, 03 1 PEM Fuel Cells Anode : 2 H 2 Ôćĺ 4 H + + 4 e - Electrolyte : Perfluorinated polymer - SO 3 H Cathode : O 2 + 4 H + + 4 e - Ôćĺ 2 H 2 O Acidic Medium ( pH ~ 1 ) Low Temperature Fuel Cell (80┬░C) Ôćô Pt- based Anode and Cathode Catalysts Pt is not abundant and expensive

294

Carbonaceous material for production of hydrogen from low heating value fuel gases  

DOE Patents (OSTI)

A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

Koutsoukos, Elias P. (Los Angeles, CA)

1989-01-01T23:59:59.000Z

295

Analysis of selected surface characteristics and latent heat storage for passive solar space heating  

SciTech Connect

Results are presented of an analysis of the value of various technical improvements in the solar collector and thermal storage subsystems of passive solar residential, agricultural, and industrial systems for two regions of the country. The evaluated improvements are: decreased emissivity and increased absorptivity of absorbing surfaces, decreased reflectivity, and decreased emissivity of glazing surface, and the substitution of sensible heat storage media with phase change materials. The value of each improvement is estimated by the additional energy savings resulting from the improvement.

Fthenakis, V.; Leigh, R.

1981-12-01T23:59:59.000Z

296

The effect of drying on the heating value of biomass fuels  

E-Print Network (OSTI)

DF HEAT TRANsFER. with coal and coke as the fuels in mind. The guidelines for drying given by the EPA (Test Methods 160. 2 and 160. 3) are mainly for the liquid portion of the wastewater and explicitly excludes "non-representative particulates... most engineering applications are based. The documents of interest are: D3173-87, "Standard Test Method for Moisture in the Analysis Sample of Coal and Coke"; D2015- 93, "Standard Test Method for Gross Calorific Value of Coal and Coke by the Adiabatic...

Rodriguez, Pablo Gregorio

2012-06-07T23:59:59.000Z

297

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

SciTech Connect

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

298

Heating of a testing room by use of a hydrogen-fueled catalytic heater  

Science Journals Connector (OSTI)

Space heating experiments were carried out using flameless (catalytic) combustion of hydrogen with atmospheric oxygen on Pt and oxide catalyst pads. The heating rate required for warming of a testing room was calculated and material balance equations for oxygen depletion and steam production were derived. The following parameters have been investigated: 1. (a) change of the oxygen and water vapour contents in the testing room in comparison with the calculated values, 2. (b) the established thermal regime in the testing room is discussed in comparison with conventional heating. The following conclusions are drawn: 1. (1) The hydrogen combustion can be adjusted to produce the desired temperature level, 2. li(2) in order to maintain the oxygen concentration at the comfort level, the free ventilation in the room should be supplemented by short, periodic, forced ventilation, 3. (3) the comfort limits of humidity require the condensation of the surplus water vapour by using a suitable device.

J. Mercea; E. Grecu; T. Fodor

1981-01-01T23:59:59.000Z

299

"Table HC4.4 Space Heating Characteristics by Renter-Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Do Not Have Space Heating Equipment",1.2,0.6,"Q"...

300

Space effect on liquid film flow in a BWR fuel bundle  

SciTech Connect

Critical power at boiling transition is an important factor in a boiling water reactor (BWR) fuel bundle design. Boiling transition under high quality accounts for dryout as the result of the complete disappearance of film flow on a fuel rod. This liquid film vanishing process can be calculated by the liquid film model, which takes into account the evaporation due to heat from the rod surface, liquid film entrainment by steam flow, and liquid droplet deposition. It is known that spacers affect liquid film entrainment and liquid droplet deposition, so the detailed study of spacer effects on hydrodynamic characteristics is necessary for critical power prediction based on the film flow model. Many studies have been conducted to examine spacer effects on liquid film flow. However, most of them are restricted to simple test sections such as a rectangular conduit. There are a few reports on fuel bundle geometry; however the bundle studied was only a 3 by 3 rod array. It is known that spacers affect not only deposition and entrainment but also flow distribution among the subchannels. Therefore, in this research, liquid film thickness measurements were performed to clarify the deposition and entrainment at a spacer in a full-sized fuel bundle. Furthermore, critical power predictions on a BWR fuel bundle were carried out with a film flow model that included a spacer model.

Nishida, Koji; Kanazawa, Toru; Yokomizo, Osamu (Hitachi Ltd., Ibaraki (Japan))

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

RTP Green Fuel: A Proven Path to Renewable Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuels * Pourable, storable and transportable liquid fuel * Contains approximately 50-55% energy content of fossil fuel * Meets applicable ASTM Standard for industrial use (ASTM...

302

A long term radiological risk model for plutonium-fueled and fission reactor space nuclear system  

SciTech Connect

This report describes the optimization of the RISK III mathematical model, which provides risk assessment for the use of a plutonium-fueled, fission reactor in space systems. The report discusses possible scenarios leading to radiation releases on the ground; distinctions are made for an intact reactor and a dispersed reactor. Also included are projected dose equivalents for various accident situations. 54 refs., 31 figs., 11 tabs. (TEM)

Bartram, B.W.; Dougherty, D.K.

1987-01-01T23:59:59.000Z

303

Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413  

SciTech Connect

This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

2013-07-01T23:59:59.000Z

304

Heat Transfer -1 A satellite in space orbits the sun. The satellite can be approximated as a flat plate with  

E-Print Network (OSTI)

Heat Transfer - 1 A satellite in space orbits the sun. The satellite can be approximated as a flat plate with dimensions and properties given below. (a) Calculate the solar heat flux (W/m2 is at a distance where the solar heat flux (as defined above) is 500 W/m2 , and the flat plate is oriented

Virginia Tech

305

"Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" 4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Space Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Main Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

306

Dynamic modelling and simulation of a polymer electrolyte membrane fuel cell used in vehicle considering heat transfer effects  

Science Journals Connector (OSTI)

Fuel cell technology is recently becoming one of the most interesting fields for the car companies to invest in. This interest is because of their high efficiency and zero environmental pollution. Polymer electrolyte membrane fuel cells are the most appropriate type of fuel cells for use in vehicles due to their low performance temperature and high power density. Air and fuel mass flow rate and partial pressure fuel cell stack temperature relative humidity of fuel cellmembrane and heat and water management are the effective parameters of fuel cellpower systems. Good transient behavior is one of the important factors that affect the success of fuel cell vehicles. In order to avoid stack voltage drop during transient condition the control system of fuel cell vehicle is required to preserve optimal temperature membrane hydration and partial pressure of reactants across the membrane. In this paper we developed a dynamic model for fuel cellpower system. The compressor dynamic supply and return manifold filling dynamics (anode and cathode) cooling system dynamic membrane hydration and time-evolving reactant partial pressure are the most significant parameters in transient and steady state of system. The effects of membrane humidity varying inlet air pressure and compressor performance condition on the generated power are studied in this paper.

S. M. Hosseini; A. H. Shamekhi; A. Yazdani

2012-01-01T23:59:59.000Z

307

Fuel consumption rate in a heat-powered unit analyzed as a function of the temperature and consumption ratio of the air  

Science Journals Connector (OSTI)

An analysis of fuel consumption for a heat-powered unit in the ... of ceramic materials is given. The heat consumption rate is analyzed as a function of ... generating the working medium, and of the consumption r...

N. A. Tyutin

2006-01-01T23:59:59.000Z

308

Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack  

E-Print Network (OSTI)

) Included in this reaction is the decomposition of methanol, which produces CO: CH3OH CO + 2H2 (90.5 kJ mol a picture of the methanol reformer which has been designed to produce hydrogen for a 1 kWe HTPEM fuel cellExperimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

Berning, Torsten

309

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

310

SPACE-R nuclear power system SC-320 thermionic fuel element performance tests  

SciTech Connect

In 1993 and 1994, the Russian Scientific Research Institute NII NPO ``LUCH`` and Space Power, Inc., (SPI), of San Jose, California, developed a prototype of the single-cell thermionic fuel element (TFE) for the SPACE-R space nuclear power system (NPS). The SPACE-R system was designed as a part of the US Department of Energy`s (DOE) Space Reactor Development Program to develop a long life, space reactor system capable of supplying up to 40 kW(e) output power. The jointly developed SC-320 TFE is a prototype of the next generation thermionic converter for nuclear applications in space. This paper presents the results of the initial demonstration tests and subsequent parametric evaluations conducted on the SC-320 TFE as compared to the calculated performance characteristics. The demonstration tests were conducted jointly by Russian and American specialists at the Thermionic Evaluation Facility (TEF) at the New Mexico Engineering Research Institute (NMERI) of the University of New Mexico in Albuquerque.

Luchau, D.W.; Bruns, D.R. [Team Specialty Services, Inc., Albuquerque, NM (United States); Nikolaev, Y.V. [SIA LUCH Scientific Research Inst., Podolsk (Russian Federation)] [and others

1996-12-31T23:59:59.000Z

311

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network (OSTI)

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studiedů (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

312

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

Wilson, V.C. [General Electric RDC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico871059 (United States)

1997-01-01T23:59:59.000Z

313

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

Wilson, Volney C. [General Electric R and DC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico 87105 (United States)

1997-01-10T23:59:59.000Z

314

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

315

"Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,33,8,3.4,5.9,14.4,1.2 "Do Not Have Heating Equipment",1.2,0.6,"Q","Q","Q",0.3,"Q" "Have Space Heating Equipment",109.8,32.3,8,3.3,5.8,14.1,1.1

316

"Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

317

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling  

E-Print Network (OSTI)

Power, Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson Submitted to the graduate degree program..., Efficiency, and Emissions Optimization of a Single Cylinder Direct-Injected Diesel Engine for Testing of Alternative Fuels through Heat Release Modeling BY Jonathan Michael Stearns Mattson...

Mattson, Jonathan Michael Stearns

2013-08-31T23:59:59.000Z

318

Fission product retention in TRISCO coated UO sub 2 particle fuels subjected to HTR simulated core heating tests  

SciTech Connect

Results of the examination and analysis of 25,730 individual microspheres from spherical fuel elements HFR-K3/1 and HFR-K3/3 are reported. The parent spheres were irradiated in excess of end-of-life exposure and subsequently subjected to simulated core heating tests in a special high-temperature furnace at Forschungszentrum, Juelich, GmbH (KFA). Following the heating tests, the spheres were electrolytically deconsolidated to obtain unbonded fuel particles for Irradiated Microsphere Gamma Analyzer (IMGA) analysis. For sphere HFR-K3/1, which was heated for 500 h at 1600{degree}C, only four particles were identified as having released fission products. The remaining particles from the sphere showed no statistical evidence of fission product release. Scanning Electron Microscopy (SEM) examination showed that three of the defect particles had large sections of the TRISO coating missing, while the fourth appeared normal. For sphere HFR-K3/3, which was heated for 100 h at 1800{degree}C, the IMGA data revealed that fission product release (cesium) from individual particles was significant and that there was large particle-to-particle variation in retention capabilities. Individual particle release (cesium) averaged ten times the KFA-measured integral spherical fuel element release value. In addition, the bimodal distribution of the individual particle data indicated that two distinct modes of failure at fuel temperatures of 1800{degree}C and above may exist. 6 refs., 6 figs., 4 tabs.

Baldwin, C.A.; Kania, M.J.

1990-11-01T23:59:59.000Z

319

Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University  

SciTech Connect

Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system specifications is observed. Case study data for various micro-CHP system configurations have been discussed and compared. Comparisons are made of the different prime mover/fuel combinations. Also, micro- CHP monthly energy cost results are compared for each system configuration to conventional monthly utility costs for equivalent monthly building power, heating, and cooling requirements.

Louay Chamra

2008-09-26T23:59:59.000Z

320

Our winters of discontent: Addressing the problem of rising home-heating costs1  

E-Print Network (OSTI)

by rising fuel prices in international energy markets and the absence of federal and provincial energy: ┬Ě The cost of motive fuels (gasoline and diesel), electricity, and energy for home space heating will all

Hughes, Larry

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications  

SciTech Connect

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

2013-10-30T23:59:59.000Z

322

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

into operating costs using fuel price data, and into capitalConstruction Cost Data. Both fuel prices and capital costs1975]: "The Effects of Fuel Prices on Residential Appliance

Wood, D.J.

2010-01-01T23:59:59.000Z

323

Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System  

SciTech Connect

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered ômicroö-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturerĺs rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

Brooks, Kriston P.; Makhmalbaf, Atefe

2014-10-31T23:59:59.000Z

324

Wet ethanol in HCCI engines with exhaust heat recovery to improve the energy balance of ethanol fuels  

Science Journals Connector (OSTI)

This study explores the use of wet ethanol as a fuel for HCCI engines while using exhaust heat recovery to provide the high input energy required for igniting wet ethanol. Experiments were conducted on a 4-cylinder Volkswagen engine modified for HCCI operation and retrofitted with an exhaust gas heat exchanger connected to one cylinder. Tested fuel blends ranged from 100% ethanol to 80% ethanol by volume, with the balance being water. These blends are directly formed in the process of ethanol production from biomass. Comprehensive data was collected for operating conditions ranging from intake pressures of 1.4ľ2.0ábar and equivalence ratios from 0.25 to 0.55. The heat exchanger was used to preheat the intake air allowing HCCI combustion without electrical air heating. The results suggest that the best operating conditions for the HCCI engine and heat exchanger system in terms of high power output, low ringing, and low nitrogen oxide emissions occur with high intake pressures, high equivalence ratios, and highly delayed combustion timings. Removing the final 20% of water from ethanol is a major energy sink. The results of this study show that HCCI engines can use ethanol fuels with up to 20% water while maintaining favorable operating conditions. This can remove the need for the most energy-intensive portion of the water removal process.

Samveg Saxena; Silvan Schneider; Salvador Aceves; Robert Dibble

2012-01-01T23:59:59.000Z

325

Prospects for increased low-grade bio-fuels use in home and commercial heating applications .  

E-Print Network (OSTI)

??Though we must eventually find viable alternatives for fossil fuels in large segments of the energy market, there are economically attractive fossil fuel alternatives todayů (more)

Pendray, John Robert

2007-01-01T23:59:59.000Z

326

High Temperature Water Heat Pipes Radiator for a Brayton Space Reactor Power System  

SciTech Connect

A high temperature water heat pipes radiator design is developed for a space power system with a sectored gas-cooled reactor and three Closed Brayton Cycle (CBC) engines, for avoidance of single point failures in reactor cooling and energy conversion and rejection. The CBC engines operate at turbine inlet and exit temperatures of 1144 K and 952 K. They have a net efficiency of 19.4% and each provides 30.5 kWe of net electrical power to the load. A He-Xe gas mixture serves as the turbine working fluid and cools the reactor core, entering at 904 K and exiting at 1149 K. Each CBC loop is coupled to a reactor sector, which is neutronically and thermally coupled, but hydraulically decoupled to the other two sectors, and to a NaK-78 secondary loop with two water heat pipes radiator panels. The segmented panels each consist of a forward fixed segment and two rear deployable segments, operating hydraulically in parallel. The deployed radiator has an effective surface area of 203 m2, and when the rear segments are folded, the stowed power system fits in the launch bay of the DELTA-IV Heavy launch vehicle. For enhanced reliability, the water heat pipes operate below 50% of their wicking limit; the sonic limit is not a concern because of the water, high vapor pressure at the temperatures of interest (384 - 491 K). The rejected power by the radiator peaks when the ratio of the lengths of evaporator sections of the longest and shortest heat pipes is the same as that of the major and minor widths of the segments. The shortest and hottest heat pipes in the rear segments operate at 491 K and 2.24 MPa, and each rejects 154 W. The longest heat pipes operate cooler (427 K and 0.52 MPa) and because they are 69% longer, reject more power (200 W each). The longest and hottest heat pipes in the forward segments reject the largest power (320 W each) while operating at {approx} 46% of capillary limit. The vapor temperature and pressure in these heat pipes are 485 K and 1.97 MPa. By contrast, the shortest water heat pipes in the forward segments operate much cooler (427 K and 0.52 MPa), and reject a much lower power of 45 W each. The radiator with six fixed and 12 rear deployable segments rejects a total of 324 kWth, weights 994 kg and has an average specific power of 326 Wth/kg and a specific mass of 5.88 kg/m2.

El-Genk, Mohamed S.; Tournier, Jean-Michel [Institute for Space and Nuclear Power Studies, University of New Mexico, Albuquerque, NM 87131 (United States); Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

2006-01-20T23:59:59.000Z

327

Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration  

SciTech Connect

This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioning in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.

Bansal, Pradeep [ORNL; Vineyard, Edward Allan [ORNL; Abdelaziz, Omar [ORNL

2012-01-01T23:59:59.000Z

328

Numerical analysis of convective heat transfer characteristics of supercritical hydrocarbon fuel in cooling panel with local flow blockage structure  

Science Journals Connector (OSTI)

Abstract The convection heat transfer of hydrocarbon fuel at supercritical pressure has a great influence on the regenerative cooling technology of a scramjet engine. A three-dimensional numerical simulation was conducted for the convection transfer of hydrocarbon fuel in the cooling panel of a combustion chamber wall. And the flow field around the local flow blockage structure and the outlet flow rate distribution characteristics of fuel in the cooling channels were analyzed in detail. The results of analyses indicate that with the optimized local flow blockage structure, the outlet flow rate distribution of fuel among the cooling channels become more uniform, as the area of local flow dead zone decreases. However, as the fuel temperature increases, the dramatic variation of thermodynamic physical properties of fuel has a strong influence on the flow field around the local flow blockage structure. Especially, a local flow dead zone can be easily formed in the supercritical temperature region. Meanwhile, transverse pressure gradient around the throat region of blockage structure and additional loss, which is caused by turbulence fluctuation and energy exchange of fluid in the downstream area, affect the outlet flow rate distribution of fuel among the coolant passages seriously. It can therefore be concluded that the local flow blockage structure is more suitably designed in the subcritical temperature region by taking above-mentioned factors into consideration.

Yu Feng; Jiang Qin; Wen Bao; Qinchun Yang; Hongyan Huang; Zhongqi Wang

2014-01-01T23:59:59.000Z

329

Application Analysis of Ground Source Heat Pumps in Building Space Conditioning  

NLE Websites -- All DOE Office Websites (Extended Search)

Application Analysis of Ground Source Heat Application Analysis of Ground Source Heat Pumps in Building Space Conditioning Hua Qian 1,2 , Yungang Wang 2 1 School of Energy and Environment Southeast University Nanjing, 210096, China 2 Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA July 2013 The project was supported by National Key Technology Supported Program of China (2011BAJ03B10-1) and by the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

330

Impact of Ducting on Heat Pump Water Heater Space Conditioning Energy Use and Comfort  

SciTech Connect

Increasing penetration of heat pump water heaters (HPWHs) in the residential sector will offer an important opportunity for energy savings, with a theoretical energy savings of up to 63% per water heater and up to 11% of residential energy use (EIA 2009). However, significant barriers must be overcome before this technology will reach widespread adoption in the Pacific Northwest region and nationwide. One significant barrier noted by the Northwest Energy Efficiency Alliance (NEEA) is the possible interaction with the homesĺ space conditioning system for units installed in conditioned spaces. Such complex interactions may decrease the magnitude of whole-house savings available from HPWH installed in the conditioned space in cold climates and could lead to comfort concerns (Larson et al. 2011; Kresta 2012). Modeling studies indicate that the installation location of HPWHs can significantly impact their performance and the resultant whole-house energy savings (Larson et al. 2012; Maguire et al. 2013). However, field data are not currently available to validate these results. This field evaluation of two GE GeoSpring HPWHs in the PNNL Lab Homes is designed to measure the performance and impact on the Lab Home HVAC system of a GE GeoSpring HPWH configured with exhaust ducting compared to an unducted GeoSpring HPWH during heating and cooling season periods; and measure the performance and impact on the Lab Home HVAC system of the GeoSpring HPWH with both supply and exhaust air ducting as compared to an unducted GeoSpring HPWH during heating and cooling season periods. Important metrics evaluated in these experiments include water heater energy use, HVAC energy use, whole house energy use, interior temperatures (as a proxy for thermal comfort), and cost impacts. This technical report presents results from the PNNL Lab Homes experiment.

Widder, Sarah H.; Petersen, Joseph M.; Parker, Graham B.; Baechler, Michael C.

2014-07-21T23:59:59.000Z

331

Check Burner Air to Fuel Ratios (International Fact Sheet), Energy Tips-Process Heating, Process Heating Tip Sheet #2c  

SciTech Connect

This English/Chinese international tip sheet provides information for optimizing efficiency of industrial process heating systems and includes measurements in metric units.

Not Available

2010-10-01T23:59:59.000Z

332

The Unit Fuel Consumption Analysis and Energy Saving of the Building Heating  

Science Journals Connector (OSTI)

Now, when analyzing the ways of heating, we always aims at only energy supply or using, but the building heating ... , internet distribution and terminal using of the energy. Therefore, in view of the heating ......

Yuanyuan Jiang; Shaoxiang Zhou

2007-01-01T23:59:59.000Z

333

Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications  

SciTech Connect

The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the SP-100 was designed to use mono-uranium nitride fuel. Although the SP-100 reactor was not commissioned, tens of thousand of nitride fuel pellets were manufactured and lots of them, cladded in Nb-1-Zr had been irradiated in fast test reactors (FFTF and EBR-II) with good irradiation results. The Russian Naval submarines also use nitride fuel with stainless steel cladding (HT-9) in Pb-Bi coolant. Although the operating experience of the Russian submarine is not readily available, such combination of fuel, cladding and coolant has been proposed for a commercial-size liquid-metal cooled fast reactor (BREST-300). Uranium mono-nitride fuel is studied in this LDRD Project due to its favorable properties such as its high actinide density and high thermal conductivity. The thermal conductivity of mono-nitride is 10 times higher than that of oxide (23 W/m-K for UN vs. 2.3 W/m-K for UO{sub 2} at 1000 K) and its melting temperature is much higher than that of metal fuel (2630 C for UN vs. 1132 C for U metal). It also has relatively high actinide density, (13.51 gU/cm{sup 3} in UN vs. 9.66 gU/cm{sup 3} in UO{sub 2}) which is essential for a compact reactor core design. The objective of this LDRD Project is to: (1) Establish a manufacturing capability for uranium-based ceramic nuclear fuel, (2) Develop a computational capability to analyze nuclear fuel performance, (3) Develop a modified UN-based fuel that can support a compact long-life reactor core, and (4) Collaborate with the Nuclear Engineering Department of UC Berkeley on nitride fuel reprocessing and disposal in a geologic repository.

Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

2006-02-09T23:59:59.000Z

334

Effects of installing economizers in boilers used in space heating applications  

SciTech Connect

This paper discusses how the performance of a boiler can be improved by adding an economizer to preheat the boiler's feedwater. An energy analysis was applied to a boiler and then to both a boiler and an economizer (water pre-heater) to evaluate the benefits of heat recovery. Exergy rates calculated for both the boiler and the economizer determined that the temperature of the stack gases had primary effects on the performance of a boiler. The results from this study showed that 57% of the heat rejected at the boiler's stack could be recovered by installing an economizer to preheat the feedwater. As a result, the average cost savings that would be realized for a 36,400 kg/h (80,000 lbm/h) boiler averages US$8 per hour. The cost savings to steam production averaged US$0.20 per 455 kg (1,000 lbm) of steam and the ration between the cost savings to stack temperature averaged $0.02 per C (1.8 F). For this case, the fuel and the cost savings realized from using an economizer were averaged at 3.8% and 3.7%, respectively. These results translated to total cost savings, for an eight-day period considered, of US$940.

Gonzalez, M.A.; Medina, M.A.; Schruben, D.L.

1999-07-01T23:59:59.000Z

335

An experiment to simulate the heat transfer properties of a dry, horizontal spent nuclear fuel assembly  

E-Print Network (OSTI)

Nuclear power reactors generate highly radioactive spent fuel assemblies. Initially, the spent fuel assemblies are stored for a period of several years in an on-site storage facility to allow the radioactivity levels of ...

Lovett, Phyllis Maria

1991-01-01T23:59:59.000Z

336

Fuel Cycle Utilizing Plutonium-238 as aôHeat Spikeö for Proliferation Resistance  

Science Journals Connector (OSTI)

Technical Paper / Argonne National Laboratory Specialistsĺ Workshop on Basic Research Needs for Nuclear Waste Management / Fuel Cycle

W. R. Waltz; W. L. Godfrey; A. K. Williams

337

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel that meets the definition of either biodiesel or non-ester renewable...

338

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

3 * November 2010 3 * November 2010 Electricity Natural Gas Power Heat Natural Gas or Biogas Tri-Generation Fuel Cell Hydrogen Natural Gas Converted to hydrogen on site via steam-methane reforming electrolyzer peak burner heat sink FC SYSTEM + H 2 Renewables H 2 -FC H 2 -storage 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) * Grid electricity (hourly) * Fuel prices * Water price 0 2 4

339

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

340

Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.  

SciTech Connect

To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D simulations were performed to compare heat transfer predictions from CFD and the correlations. Section III of this document presents the results of this analysis.

Tzanos, C. P.; Dionne, B. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

342

Solar space- and water-heating system at Stanford University. Final report  

SciTech Connect

Application of an active hydronic domestic hot water and space heating solar system for the Central Food Services Building is discussed. The closed-loop drain-back system is described as offering dependability of gravity drain-back freeze protection, low maintenance, minimal costs, and simplicity. The system features an 840 square-foot collector and storage capacity of 1550 gallons. The acceptance testing and the predicted system performance data are briefly described. Solar performance calculations were performed using a computer design program (FCHART). Bidding, costs, and economics of the system are reviewed. Problems are discussed and solutions and recommendations given. An operation and maintenance manual is given in Appendix A, and Appendix B presents As-built Drawings. (MCW)

Not Available

1980-05-01T23:59:59.000Z

343

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE┬╗ Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

344

Modeling of fuel-to-steel heat transfer in core disruptive accidents  

E-Print Network (OSTI)

A mathematical model for direct-contact boiling heat transfer between immiscible fluids was developed and tested experimentally. The model describes heat transfer from a hot fluid bath to an ensemble of droplets of a cooler ...

Smith, Russell Charles

1980-01-01T23:59:59.000Z

345

Load Preheating Using Flue Gases from a Fuel-Fired Heating System  

Energy.gov (U.S. Department of Energy (DOE))

This tip sheet discusses how the thermal efficiency of a process heating system can be improved significantly by using heat contained in furnace flue gases to preheat the furnace load.

346

Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet summarizing project that will develop and demonstrate a prototype microturbine CHP fueled by synthesis gas & integrated with a biomass gasifier

347

Control of Lime Kiln Heat Balance is Key to Reduced Fuel Consumption  

E-Print Network (OSTI)

This article discusses the various heat loads in a pulp mill lime sludge kiln, pointing out which heat loads cannot be reduced and which heat loads can, and how a reduction in energy use can be achieved. In almost any existing rotary lime sludge...

Kramm, D. J.

1982-01-01T23:59:59.000Z

348

Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report  

SciTech Connect

The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

1993-06-01T23:59:59.000Z

349

Optimization of solar assisted ground source heat pump system for space heating application by Taguchi method and utility concept  

Science Journals Connector (OSTI)

Abstract In the present research, a methodology is proposed to optimize the solar collector area and ground heat exchanger length for achieving higher COP of Solar Assisted Ground Source Heat Pump (SAGSHP) system using Taguchi method and utility concept. Four operating parameters for solar collector and four parameters for ground heat exchanger have been selected with mixed level variation using an L18 (21, 37) orthogonal array. The key parameters such as solar collector area, ground heat exchanger length and COP of the SAGSHP system are optimized to predict the best levels of operating parameters for maximum COP of SAGSHP system. Lower the better concept has been used for the solar collector area and ground heat exchanger length whereas higher the better concept has been employed for the COP of SAGSHP system and the results have been analyzed for the optimum conditions using signal-to-noise (SN) ratio and ANOVA method. Computations were carried out for 18 experimental trial runs by considering 2áton heating load in winter season. The optimum COP for SAGSHP was estimated to be 4.23 from the utility concept, which is 8.74% higher than the optimum COP predicted by Taguchi optimization. Optimization of solar collector area and ground heat exchanger length by the utility concept has shown only about 2.3% reduction in area and 1.6% reduction in length respectively compared to those values optimized by the Taguchi method.

Vikas Verma; K. Murugesan

2014-01-01T23:59:59.000Z

350

Geothermal energy development in the Eastern United States. Technical assistance report No. 4. Geothermal space heating: Pittsville Middle/Elementary School, Pittsville, Maryland  

SciTech Connect

A technical evaluation was made to determine whether geothermal energy obtained from a well could be used to space heat the new school building being constructed as well as the existing elementary wing of the Pittsville School. The first part deals with space heating the new school building only; the second part pertains to space heating the new school building together with the new existing wing. An addendum was added for new well and production pump costs. (MHR)

Briesen, R.V.; Yu, K.

1980-06-01T23:59:59.000Z

351

Application analysis of ground source heat pumps in building space conditioning  

E-Print Network (OSTI)

temporal variation of the heat pump COP over the three-monthfor ground-source heat pumps. in ASHRAE Summer Meeting.savings of ground source heat pump systems in Europe: A

Qian, Hua

2014-01-01T23:59:59.000Z

352

Fuel Cell Combined Heat and Power Industrial Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kriston P. Brooks (Primary Contact), Siva P. Pilli, Dale A. King Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: (509) 372-4343 Email: kriston.brooks@pnnl.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Contract Number: DE-AC05-76RL01830 Subcontractor: ClearEdge Power, Portland, OR Project Start Date: May 2010 Project End Date: September 2012

353

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office  

Energy.gov (U.S. Department of Energy (DOE))

This is a case study about Verizons Communications, who installed a 14-MW phosphoric acid fuel cell system at its Central Office in Garden City, New York, in 2005 and is now reaping environmental benefits and demonstrating the viaility of fuel cells in a commerical, critical telecommunications setting.

354

Comparison of transient-heating burst test results of unirradiated and irradiated Zircaloy-4 fuel rod cladding  

SciTech Connect

The Nuclear Regulatory Commission supported an experimental program to study the mechanical properties of both unirradiated and irradiated fuel rod cladding. The program was designed to produce a mechanical property data base for use in developing modeling codes which could then be used to predict the performance of Zircaloy-4 clad fuel rods under various reactor loss-of-coolant accident (LOCA) conditions. Transient-heating burst tests were conducted at Argonne, Battelle Columbus, and ORNL. A brief description of the testing methods, specimens, equipment, and procedures illustrates the similarities and differences in tests conducted at each laboratory. The data obtained from tests conducted in steam and utilizing test specimens with internal heaters or specimens containing alumina mandrels or pellets were compared for heating rates of 5, 28, and 55 C/sec. Both burst pressure and circumferential failure strain data versus burst temperature were plotted and compared in the range of 650 to 1250/sup 0/C. It was found that testing methods, specimen oxidation layer, and irradiation affected the transient-heating burst test data.

Lowry, L.M. (Battelle Columbus Labs., OH); Perrin, J.S.

1982-01-01T23:59:59.000Z

355

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,AND FUEL CONSUMPTION FOR DIESEL - POWERED NONROAD FORKLIFT ENGINES ,

Delucchi, Mark

2003-01-01T23:59:59.000Z

356

Cycle simulation of coal-fueled engines utilizing low heat rejection concepts  

E-Print Network (OSTI)

achieved using the coal water slurry both with and without a diesel pilot. Fuel consumption was also comparable to that of diesel fuel. Ignition delays as long as 6 ms were observed, which was acceptable for the engines speed range. In general, exhaust.... Hsu [15, 16] reports on the successful operation of a General Electric locomotive engine on CWS with and without a diesel pilot. When no pilot was used, inlet air temperature had to be raised by about 40'C. Specific fuel consumption was comparable...

Roth, John M.

2012-06-07T23:59:59.000Z

357

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

SciTech Connect

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

358

Calculation of the heats of combustion of aromatic hydrocarbons contained in power-generating fuel  

Science Journals Connector (OSTI)

The additive method of group contributions is used for the calculation of the heats of combustion of aromatic hydrocarbons of different structures.

E. V. Sagadeev; V. V. Sagadeev

2006-07-01T23:59:59.000Z

359

Calculation of the Heats of Combustion of Saturated Hydrocarbons Contained in Power-Generating Fuels  

Science Journals Connector (OSTI)

An empirical method is suggested for the calculation of the heats of combustion of saturated hydrocarbons by the additive scheme proceeding from their...

E. V. Sagadeev; V. V. Sagadeev

2002-07-01T23:59:59.000Z

360

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat Conversion to Electricity  

Energy.gov (U.S. Department of Energy (DOE))

Working to expand the usage of thermoelectric technology beyond seat heating and cooling and in doing so reduce CO2 emissions and conserve energy.

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles  

SciTech Connect

A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of trangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k--epsilon model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 x 10/sup 4/, 10/sup 5/, 2 x 10/sup 5/, and for laminar flow of Re--2400. Friction factor and heat transfer ceofficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data.

Yuh-Shan Yueh; Ching-Chang Chieng

1987-08-01T23:59:59.000Z

362

On the calculation of flow and heat transfer characteristics for CANDU-type 19-rod fuel bundles  

SciTech Connect

A numerical study is reported of flow and heat transfer in a CANDU-type 19 rod fuel bundle. The flow domain of interest includes combinations of triangular, square, and peripheral subchannels. The basic equations of momentum and energy are solved with the standard k-{epsilon} model of turbulence. Isotropic turbulent viscosity is assumed and no secondary flow is considered for this steady-state, fully developed flow. Detailed velocity and temperature distributions with wall shear stress and Nusselt number distributions are obtained for turbulent flow of Re = 4.35 {times} 10{sup 4}, 10{sup 5}, 2 {times} 10{sup 5}, and for laminar flow of Re {approximately} 2,400. Friction factor and heat transfer coefficients of various subchannels inside the full bundle are compared with those of infinite rod arrays of triangular or square arrangements. The calculated velocity contours of peripheral subchannel agreed reasonably with measured data.

Yueh, Yuhshan; Chieng, Chingchang (National Tsing Hua Univ., Hsinchu (Taiwan))

1987-08-01T23:59:59.000Z

363

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

develop a low-cost, high-capacity expendable sorbent to remove both sulfur species in biogas to ppb levels, making its use possible in a fuel cell CHP unit The high...

364

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas  

Energy.gov (U.S. Department of Energy (DOE))

Success story about using waste water treatment gas for hydrogen production at UC Irvine. Presented by Jack Brouwer, UC Irvine, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

365

Low Temperature Heat Release Behavior of Conventional and Alternative Fuels in a Motored Engine  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

366

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office  

Fuel Cell Technologies Publication and Product Library (EERE)

This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

367

Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings- Control strategies to improve hydronic space heating performance  

Energy.gov (U.S. Department of Energy (DOE))

This webinar was presented on July 16, 2014, and provided information about improving the performance of central space conditioning systems in multifamily buildings.

368

A Study of Wind Energy Use for Space Heating in Prince Edward Island1 Larry Hughes, Mandeep Dhaliwal, Aaron Long, Nikita Sheth  

E-Print Network (OSTI)

and domestic hot water demand being met by imported fuel oil. Throughout most of the 1990s, the price of crude. Today's high price of crude oil has pushed the cost of home heating fuel to near record levels, bringing oil remained relatively stable. This changed dramatically in late 1999 when prices began to increase

Hughes, Larry

369

Modelling the impacts of building regulations and a property bubble on residential space and water heating  

Science Journals Connector (OSTI)

This paper develops a bottom-up model of space and water heating energy demand for new build dwellings in the Irish residential sector. This is used to assess the impacts of measures proposed in Ireland's National Energy Efficiency Action Plan (NEEAP). The impact of the housing construction boom, which resulted in 23% of occupied dwellings in 2008 having been built since 2002, and the subsequent bust, are also assessed. The model structure treats separately new dwellings added to the stock after 2007 and pre-existing occupied dwellings. The former is modelled as a set of archetype dwellings with energy end use affected by the relevant set of building regulations that apply during construction. Energy demand of existing dwellings is predicted by a simpler top down method based on historical energy use trends. The baseline scenario suggests residential energy demand will grow by 19% from 3206áktoe in 2007 to 3810áktoe in 2020. The results indicate that 2008 and 2010 building regulations will lead to energy savings of 305áktoe (8.0%) in 2020. Had the 2008 building regulations been introduced in 2002, at the start of the boom, there would be additional savings of 238áktoe (6.7%) in 2020.

D. Dineen; B.P. Ë Gallachˇir

2011-01-01T23:59:59.000Z

370

Research at the Building Research Establishment into the Applications of Solar Collectors for Space and Water Heating in Buildings [and Discussion  

Science Journals Connector (OSTI)

...and the E.E.C. Solar space heating is...experimental low energy house laboratories...using conventional solar collectors with interseasonal heat storage and the other a heat pump with an air solar collector. Studies...means of conserving energy in buildings. The...

1980-01-01T23:59:59.000Z

371

Calculation of the Heat of Combustion of Hydrocarbon Components of Fuels  

Science Journals Connector (OSTI)

Development is continued of the empirical method for the calculation of the heat of combustion of organic compounds and, in particular, of hydrocarbons of different structures by the additive scheme...

E. V. Sagadeev; V. V. Sagadeev

2004-05-01T23:59:59.000Z

372

Ultra Efficient Combined Heat, Hydrogen, and Power System- Presentation by FuelCell Energy, June 2011  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

373

Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling  

E-Print Network (OSTI)

Home Heating Anderson [21 Oil Price Electric Share Gas ShareBaughman and Joskow [3] Oil Price Gas Price Lin, Hirst,and Cohn [10] Gas Price Oil Price Hartman and Hollyer [8] (

Wood, D.J.

2010-01-01T23:59:59.000Z

374

Fuel Cell Animation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen...

375

Small Space Heater Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Space Heater Basics Small Space Heater Basics Small Space Heater Basics August 19, 2013 - 10:38am Addthis Small space heaters, also called portable heaters, are typically used when the main heating system is inadequate or when central heating is too costly to install or operate. Space heater capacities generally range between 10,000 Btu to 40,000 Btu per hour. Common fuels used for this purpose are electricity, propane, natural gas, and kerosene. Although most space heaters rely on convection (the circulation of air in a room), some rely on radiant heating; that is, they emit infrared radiation that directly heats up objects and people that are within their line of sight. Combustion Space Heaters Space heaters are classified as vented and unvented, or "vent free." Unvented combustion units are not recommended for inside use, as they

376

List of Solar Pool Heating Incentives | Open Energy Information  

Open Energy Info (EERE)

Heating Incentives Heating Incentives Jump to: navigation, search The following contains the list of 118 Solar Pool Heating Incentives. CSV (rows 1 - 118) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial Industrial Biomass CHP/Cogeneration Fuel Cells Microturbines Photovoltaics

377

Design, Feasibility, and Testing of Instrumented Rod Bundles to Improve Heat Transfer Knowledge in PWR Fuel Assemblies  

SciTech Connect

Two 5 x 5 test rod bundles mimicking the PWR fuel assembly have been adapted into two suitable test loop facilities, respectively, to carry out sufficiently detailed hydraulic and thermal measurements in identical geometric configuration. The objective is to investigate heat transfer phenomena in single-phase as well as with onset of nucleate boiling (ONB). The accuracy and reproducibility of the temperature measurements using the sliding-traversing thermocouple device under typical PWR conditions has been demonstrated in the thermal test facility. In the hydraulic loop, a Laser Doppler Velocimetry (LDV) system to precisely scan the local axial velocity component in each sub-channel has been implemented. The approach is to utilize mean sub-channel axial velocity distributions and pressure drop data from the hydraulic loop and the global boundary conditions (Pressure, Temperature, flow rate) from the thermal loop to simulate sub-channels in appropriate T/H codes. This permits computation of sub-channel averaged fluid temperatures (as well as mass velocity) in various subchannels within the test bundle. Subsequently, in conjunction with the wall temperatures and applied heat flux values from the thermal loop, it is possible to develop a complete map of heat transfer coefficients along the 9 instrumented central heater rods. Locations downstream of spacer grids would be of special interest. Depending on pressure, mass velocity and heat flux conditions of a given test, the inlet temperature will be a parameter to be varied so that the ONB boundary can be observed within the bundle. Detailed designs of the test section, required loop modifications, and adaptation of specialized instrumentation and data acquisition systems have been accomplished in both test loops. Further we have established that based on such detailed rod surface temperature and sub-channel axial velocity measurements, it is possible to achieve sufficient accuracy in the temperature measurements to meet the objective of improving the heat transfer correlations applicable to PWR cores. (authors)

Bergeron, A. [CEA, Saclay (France); Chataing, T.; Garnier, J. [CEA, Genoble (France); Decossin, E.; Peturaud, P. [EDF/R and D, Chatou (France); Yagnik, S.K. [Electric Power Research Institute - EPRI (United States)

2007-07-01T23:59:59.000Z

378

Design and optimization of the heat rejection system for a liquid cooled thermionic space nuclear reactor power system  

SciTech Connect

The heat transport subsystem for a liquid metal cooled thermionic space nuclear power system was modelled using algorithms developed in support of previous nuclear power system study programs, which date back to the SNAP-10A flight system. The model was used to define the optimum dimensions of the various components in the heat transport subsystem subjected to the constraints of minimizing mass and achieving a launchable package that did not require radiator deployment. The resulting design provides for the safe and reliable cooling of the nuclear reactor in a proven lightweight design.

Moriarty, M.P. (Rocketdyne Division, Rockwell International Corporation, 6633 Canoga Avenue, P.O. Box 7922, Canoga Park, California 91309-7922 (United States))

1993-01-15T23:59:59.000Z

379

Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Energy.gov (U.S. Department of Energy (DOE))

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

380

Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling  

E-Print Network (OSTI)

▒ 10.5 1 ) TBtu (primary energy consumption of 14.6 [▒ 12.4]▒ 4.0) TBtu (primary energy consumption of 25.5 [▒ 12.2]Primary Energy Space Heating Space Cooling Figure 2: Higher space conditioning end-use energy consumption

Blum, Helcio

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications  

Energy.gov (U.S. Department of Energy (DOE))

Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

382

Interaction between building design, management, household and individual factors in relation to energy use for space heating in apartment buildings  

Science Journals Connector (OSTI)

Abstract In Stockholm, 472 multi-family buildings with 7554 dwellings has been selected by stratified random sampling. Information about building characteristics and property management was gathered from each property owners. Energy use for space heating was collected from the utility company. Perceived thermal comfort, household and personal factors were assessed by a standardized self-administered questionnaire, answered by one adult person in each dwelling, and a proportion of each factor was calculated for each building. Statistical analysis was performed by multiple linear regression models with control for relevant factors all at the same time in the model. Energy use for heating was significantly related to the building age, type of building and ventilation, length of time since the last heating adjustment, ownership form, proportion of females, and proportion of occupants expressing thermal discomfort. How beneficial energy efficiency measures will be may depend on the relationship between energy use and factors related to the building and the property maintenance together with household and personal factors, as all these factors interact with each other. The results show that greater focus should be on real estate management and maintenance and also a need for research with a gender perspective on energy use for space heating.

Karin Engvall; Erik Lampa; Per Levin; Per Wickman; Egil Ífverholm

2014-01-01T23:59:59.000Z

383

Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources  

SciTech Connect

This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energyĺs request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

Not Available

2008-06-01T23:59:59.000Z

384

6 Nuclear Fuel Designs  

NLE Websites -- All DOE Office Websites (Extended Search)

Message from the Director Message from the Director 2 Nuclear Power & Researrh Reactors 3 Discovery of Promethium 4 Nuclear Isotopes 4 Nuclear Medicine 5 Nuclear Fuel Processes & Software 6 Nuclear Fuel Designs 6 Nuclear Safety 7 Nuclear Desalination 7 Nuclear Nonproliferation 8 Neutron Scattering 9 Semiconductors & Superconductors 10 lon-Implanted Joints 10 Environmental Impact Analyses 11 Environmental Quality 12 Space Exploration 12 Graphite & Carbon Products 13 Advanced Materials: Alloys 14 Advanced Materials: Ceramics 15 Biological Systems 16 Biological Systems 17 Computational Biology 18 Biomedical Technologies 19 Intelligent Machines 20 Health Physics & Radiation Dosimetry 21 Radiation Shielding 21 Information Centers 22 Energy Efficiency: Cooling & Heating

385

Combustion Characteristics and Heat Release Analysis of a Spark-Ignited Engine Fueled with Natural Gas?Hydrogen Blends  

Science Journals Connector (OSTI)

It can be seen that the laminar-burning velocity of hydrogen is 5 times that of natural gas and that the quenching distance of hydrogen is one-third that of natural gas, while the latter is beneficial to reduce the unburned hydrocarbons near the wall and from the top-land crevice. ... The signal of cylinder pressure was acquired for every 0.5 deg CA, the acquisition process covered 254 completed cycles, and the averaged value of these 254 cycles was outputted as the pressure data for calculation of the combustion parameters. ... Two factors are considered to influence the cylinder pressure:? one is the increase in flame propagation speed or combustion speed with the increase of the hydrogen fraction in the blends, and this will cause a rapid rising in the cylinder pressure and bring a higher value of the peak cylinder pressure; another is the decrease in the heating value of the fuel blends with the increase of the hydrogen fraction in natural gas?hydrogen blends, and this will decrease the volumetric heat release rate and the cylinder pressure rising, leading to the lower value of the peak cylinder pressure. ...

Zuohua Huang; Bing Liu; Ke Zeng; Yinyu Huang; Deming Jiang; Xibin Wang; Haiyan Miao

2007-08-15T23:59:59.000Z

386

Ignition of fuel issuing from a porous cylinder located adjacent to a heated wall: a numerical study  

Science Journals Connector (OSTI)

This work deals with the numerical simulation on an unstructured mesh of the ignition and burning in an oxidizing atmosphere of a fuel droplet heated on one side. This is relevant for studying the ignition of droplets in a spray when they are crossing a flame zone stabilized in it. The droplet here is replaced by a porous cylinder, and the flame by a hot solid wall. The reaction is assumed to be described by a single step, A + ?B ? P. The cell-centred finite volume scheme considered here uses a generalized Roe's approximate Riemann solver with the monotonic upwind scheme for conservative laws (MUSCL) technique for the convective part and GreenľGauss type interpolation for the viscous part. The thinness of the reaction zone is taken into account by using an adaptive refinementľunrefinement procedure. It has been found that the process of droplet ignition takes place by means of a propagation of a triple flame around the 'droplet' when the chemical reaction is sufficiently fast with respect to the molecular heat and mass diffusion process.

I Elmahi; F Benkhaldoun; R Borghi; S Raghay

2004-01-01T23:59:59.000Z

387

Space  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Earth Materials Science Technology The Lab All Paul Johnson Unusual light in dark space revealed by Los Alamos, NASA By looking at the dark spaces between visible...

388

Application analysis of ground source heat pumps in building space conditioning  

E-Print Network (OSTI)

2011. Direct utilization of geothermal energy 2010 worldwide2011. China's Geothermal Energy Utilization. Beijing:The adoption of geothermal energy in space conditioning of

Qian, Hua

2014-01-01T23:59:59.000Z

389

Development of a coal fired pulse combustor for residential space heating. Technical progress report, July--September 1987  

SciTech Connect

The systematic development of the residential combustion system is divided into three phases. Only Phase I is detailed here. Phase I constitutes the design, fabrication, testing, and evaluation of a pulse combustor sized for residential space heating. Phase II is an optional phase to develop an integrated system including a heat exchanger. Phase III is projected as a field test of the integrated coal-fired residential space heater. The Phase I effort was nearing completion during this reporting period and a final report is in preparation. The configuration testing was completed early in the period and based upon results of the configuration tests, an optimized configuration for the experimental development testing was chosen. The refractory-lined chambers were fabricated and tested from mid-September through early October. The tandem unit was operated on dry micromized coal without support gas or excitation air for periods lasting from one to three hours. Performance was stable and turndown ratios of 3:1 were achieved during the first three-hour test. A early commercial residential heating system configuration has been identified on the basis of the development testing conducted throughout the first phase of this effort. The development effort indicates that the residential unit goals are achievable with some additional product improvement effort to increase carbon burn-out efficiency, reduce CO emissions and develop a reliable and compact dry, ultrafine coal feed system (not included in the present effort).

NONE

1987-12-31T23:59:59.000Z

390

Energy Integration and Analysis of Solid Oxide Fuel Cell Based Microcombined Heat and Power Systems and Other Renewable Systems Using Biomass Waste Derived Syngas  

Science Journals Connector (OSTI)

(2, 3) The microgeneration or self-generation concept for dwellings is associated with several advantages, such as (1) cutting emissions of greenhouse gases, (2) reducing the number of people living in fuel poverty, (3) reducing the demands on transmission systems and distribution systems, (4) reducing the need for those systems to be modified, (5) enhancing the availability of electricity and heat for consumers, and (6) encouraging consumer engagement with energy efficient technologies. ... The SOFC can utilize heat of oxidization of gaseous fuels, such as hydrogen, syngas, and natural gas, in the anode in the presence of an oxidant in the cathode, to produce electricity. ... The biomass gasification plant under consideration comprises gasifiers, gas cooling and clean up technologies, gas turbines, heat recovery steam generators (HRSG), etc. ...

Jhuma Sadhukhan; Yingru Zhao; Matthew Leach; Nigel P. Brandon; Nilay Shah

2010-10-08T23:59:59.000Z

391

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network (OSTI)

with application to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University of Colorado, 1991 cells as a heat and electrical power source for residential combined heat and power (CHP

Victoria, University of

392

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

SciTech Connect

A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

2014-06-23T23:59:59.000Z

393

Heat conduction in systems with Kolmogorov-Arnold-Moser phase space structure  

E-Print Network (OSTI)

We study heat conduction in a billiard channel formed by two sinusoidal walls and the diffusion of particles in the corresponding channel of infinite length; the latter system has an infinite horizon, i.e., a particle can travel an arbitrary distance without colliding with the rippled walls. For small ripple amplitudes, the dynamics of the heat carriers is regular and analytical results for the temperature profile and heat flux are obtained using an effective potential. The study also proposes a formula for the temperature profile that is valid for any ripple amplitude. When the dynamics is regular, ballistic conductance and ballistic diffusion are present. The Poincar\\'e plots of the associated dynamical system (the infinitely long channel) exhibit the generic transition to chaos as ripple amplitude is increased.When no Kolmogorov-Arnold-Moser (KAM) curves are present to forbid the connection of all chaotic regions, the mean square displacement grows asymptotically with time t as tln(t).

I. F. Herrera-Gonzßlez; H. I. PÚrez-Aguilar; A. Mendoza-Sußrez; E. S Tututi

2012-09-28T23:59:59.000Z

394

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0.33 times the rate for diesel For other alternative fuels, the rate is based on the energy content of the fuels as compared to diesel fuel, using a lower heating value of...

395

ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS  

SciTech Connect

This report summarizes the work done during the fourth quarter of the project. Effort was directed in two areas, namely, continued further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge, and its relationship to cathode polarization; and fabrication of samaria-doped ceria porous (SDC). The work on the model development involves calculation of the effect of space charge on transport through porous bodies. Three specific cases have been examined: (1) Space charge resistivity greater than the grain resistivity, (2) Space charge resistivity equal to the grain resistivity, and (3) Space charge resistivity lower than the grain resistivity. The model accounts for transport through three regions: the bulk of the grain, the space charge region, and the structural part of the grain boundary. The effect of neck size has been explicitly incorporated. In future work, the effective resistivity will be incorporated into the effective cathode polarization resistance. The results will then be compared with experiments.

Anil V. Virkar

2003-12-12T23:59:59.000Z

396

Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels  

Science Journals Connector (OSTI)

The process of steam raising as a source of heat or means of generating electricity using combustible fuels began with the turn of the century. From the very beginning, impurities in the fuels were responsible for added maintenance, a reduction in rate of heat transfer and corrosion due to fireside deposits of sintered or molten ash. The nature and severity of deposit formation, i.e. slagging and fouling, changed as the fuels and their impurities changed, the steam raising process evolved and the steam generators increased in size and efficiency. With the introduction of computer science, the empirical art of ash deposition from impurities in combustion gases is rapidly being transformed into the science of mineral transformation and ash deposition. This manuscript presents in chronological order an overview of the art of ash deposition while firing coal, the mechanistic approach to the problem, the recent introduction of sophisticated analytical procedures, and modeling of mineral transformations, and ash deposition underway. Adaptation of fuels such as ash oil, petroleum coke, municipal waste, wood and biomass to the steam raising process are presented individually in the order in which they were introduced. Empirical indices presently used to characterize the slagging or fouling potentials of impurities in fuels are present. Fundamental data are provided where necessary to illustrate mechanisms for ash deposition. An extensive list of key references is offered for those wishing to investigate details of any particular aspect of fireside slagging, fouling or corrosion.

Richard W. Bryers

1996-01-01T23:59:59.000Z

397

Nonlinear control and online optimization of the burn condition in ITER via heating, isotopic fueling and impurity injection  

Science Journals Connector (OSTI)

The ITER tokamak, the next experimental step toward the development of nuclear fusion reactors, will explore the burning plasma regime in which the plasma temperature is sustained mostly by fusion heating. Regulation of the fusion power through modulation of fueling and external heating sources, referred to as burn control, is one of the fundamental problems in burning plasma research. Active control will be essential for achieving and maintaining desired operating points, responding to changing power demands, and ensuring stable operation. Most existing burn control efforts use either non-model-based control techniques or designs based on linearized models. These approaches must be designed for particular operating points and break down for large perturbations. In this work, we utilize a spatially averaged (zero-dimensional) nonlinear model to synthesize a multi-variable nonlinear burn control strategy that can reject large perturbations and move between operating points. The controller uses all of the available actuation techniques in tandem to ensure good performance, even if one or more of the actuators saturate. Adaptive parameter estimation is used to improve the model parameter estimates used by the feedback controller in real-time and ensure asymptotic tracking of the desired operating point. In addition, we propose the use of a model-based online optimization algorithm to drive the system to a state that minimizes a given cost function, while respecting input and state constraints. A zero-dimensional simulation study is presented to show the performance of the adaptive control scheme and the optimization scheme with a cost function weighting the fusion power and temperature tracking errors.

Mark D Boyer; Eugenio Schuster

2014-01-01T23:59:59.000Z

398

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

399

Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

Colella, Whitney G.

2010-04-01T23:59:59.000Z

400

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

97 BTUs of refinery energy per BTU of dieseland hydrogen) per BTU of diesel produced, depending onof refinery energy per BTU of diesel fuel In the real world

Delucchi, Mark

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode  

SciTech Connect

The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

2011-08-16T23:59:59.000Z

402

ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS  

SciTech Connect

This report summarizes the work done during the fifth quarter of the project. Effort was directed in two areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Fabrication of porous samaria-doped ceria (SDC) and investigation of the effect of thermal treatment on its conductivity. The model developed accounts for transport through three regions: (a) Transport through the bulk of the grain, RI, which includes parallel transport through space charge region. (b) Transport through the space charge region adjacent to the neck (grain boundary), RII. (c) Transport through the structural part of the neck (grain boundary), RIII. The work on the model development involves calculation RI, RII, RIII, and the sum of these three terms, which is the total resistance, as a function of the grain radius ranging between 0.5 and 5 microns and as a function of the relative neck size, described in terms of the angle theta, ranging between 5 and 45{sup o}. Three values of resistivity of the space charge region were chosen; space charge resistivity greater than grain resistivity, equal to grain resistivity, and lower than grain resistivity. Experimental work was conducted on samaria (Sm{sub 2}O{sub 3})-doped ceria (SDC) samples of differing porosity levels, before and after thermal treatment at 1200 C. The conductivity in the annealed samples was lower, consistent with enhanced Debye length. This shows the important role of space charge on ionic transport, and its implications concerning cathode polarization.

Anil V. Virkar

2004-03-08T23:59:59.000Z

403

ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS  

SciTech Connect

This report summarizes the work done during the sixth quarter of the project. Effort was directed in three areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Calculation of the effect of space charge and morphology of porous bodies on the effective charge transfer resistance of porous composite cathodes. (3) The investigation of the three electrode system for the measurement of cathodic polarization using amperometric sensors.

Anil V. Virkar

2004-05-17T23:59:59.000Z

404

Development of a technique for ex-reactor heating of electrodes and for obtaining voltage-current characteristics of multi-cell thermionic fuel elements  

SciTech Connect

This paper presents results of development of a technique for ex-reactor heating with simultaneous recording of voltage-current characteristics of multi-cell thermionic fuel elements (TFE). Heating pulses were applied to electrodes of a thermionic energy converter (TIC), and between these pulses in the antiphase to them there were applied shorter pulses. The TIC emitter was heated by energy of an electric current flowing from the collector (back current heating). Comparison of TIC voltage-current characteristics, obtained for direct (using electric heater) and back current (current from the collector) heating, shows that for the same conditions they differ only slightly. Significant difference may be observed in the case of different profiles along the collector working surface. Results are given of the investigation of multi-cell thermionic fuel assemblies conducted using this technique. The developed technique of the TFE diagnostics can be successfully employed to assess the device quality. Pre-loop testing of multi-cell TFE by the method of back currents allows for cost effective and expeditious thermovacuum treatment of the TFE on thermal stands and for checking of its serviceability prior to its mounting into an irradiation loop or reactor-converter, enables improvements to the TFE design, monitoring of its electric parameters, for example, after vibration testing, and TFE accelerated testing in the most arduous conditions (thermocycling, loss of vacuum, etc.).

Kalandarishvili, A.G.; Mailov, G.M.; Igumnov, B.N.; Bisko, V.A. [I.N. Vekua Sukhumi Inst. for Physics and Engineering, Tbilisi (Georgia)

1995-12-31T23:59:59.000Z

405

ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS  

SciTech Connect

This report summarizes the work done during the first quarter of the project. Effort was directed in three areas: (1) The determination of the role of ionic conductor morphology, used in composite cathodes, on the ionic conductivity of the ionic conductor. It was shown that if the particles are not well sintered, the necks formed between particles will be very narrow, and the resulting conductivity will be too low (resistivity will be too high). Specifically, a mathematical equation was derived to demonstrate the singular nature of conductivity. (2) Nanosize powders of Sc-doped CeO{sub 2} were prepared by combustion synthesis. The rationale is that the particle size of the composite electrode must be as small as possible to ensure a high ionic conductivity--and resulting in high performance in fuel cells. Di-gluconic acid (DGA) was used as fuel. The process led to the formation of nanosize Sc-doped CeO{sub 2}. The powder was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). (3) Samples were sintered to form materials containing various levels of porosity, from {approx}3% to {approx}43%. Conductivity was measured over a range of temperatures by four probe DC method. It was observed that in highly porous samples, the conductivity was far lower than can be expected purely based on total porosity. The difference could be rationalized on the basis of the theoretical model developed.

Professor Anil V. Virkar

2003-04-14T23:59:59.000Z

406

Guide to Geothermal Heat Pumps  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building...

407

A comparative evaluation of Al 2 O 3 coated low heat rejection diesel engine performance and emission characteristics using fuel as rice bran and pongamia methyl ester  

Science Journals Connector (OSTI)

In this study for the first time a nanoceramic Al 2 O 3 was used as a coatingmaterial in the low heat rejection engine concept. Experiments were conducted on single cylinder four stroke water cooled and direct injection diesel engine. First the engine was tested at different load conditions without coating. Then combustion chamber surfaces (cylinder head cylinder liner valves and piston crown face) were coated with nanoceramic material of Al 2 O 3 using plasma spray method. Comparative evaluation on performance and emission characteristics using fuel as rice bran methyl ester pongamia methyl ester and biodiesel/diesel fuel mixtures was studied in the ceramiccoated and uncoated engines under the same running conditions. An increase in engine power and a decrease in specific fuel consumption as well as significant improvements in exhaust gas emissions (except NOx) and smoke density were observed in the ceramiccoated engines compared with those of the uncoated engine.

M. Mohamed Musthafa; S. P. Sivapirakasam; M. Udayakumar

2010-01-01T23:59:59.000Z

408

Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information  

SciTech Connect

Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

M. Chen; CM Regan; D. Noe

2006-01-09T23:59:59.000Z

409

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Fuel Cell Tri-Generation System Case  

E-Print Network (OSTI)

the grid and heat from a furnace or boiler ┬ş More efficient; Heat from the facility is used for space ┬Ě Delivered heat ┬Ě Delivered hydrogen ┬Ě Fuel used ┬Ě Used grid electricity ┬Ě Sales to grid grid Syngas of potential combined heat and power/hydrogen production scenarios Approach: Rely on the H2A discounted cash

410

ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS  

SciTech Connect

This report summarizes the work done during the third quarter of the project. Effort was directed in two areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries, and its relationship to cathode polarization. Included indirectly through the grain boundary effect is the effect of space charge. (2) Synthesis of LSC + SDC composite cathode powders by combustion synthesis. (3) Fabrication and testing of anode-supported single cells made using synthesized LSC + ScDC composite cathodes.

Anil V. Virkar

2003-11-03T23:59:59.000Z

411

Fuel Cell Animation- Fuel Cell Stack (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

412

Fuel Cell Animation- Fuel Cell Components (Text Version)  

Energy.gov (U.S. Department of Energy (DOE))

This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts.

413

Design and modeling of 1ľ10áMWe liquefied natural gas-fueled combined cooling, heating and power plants for building applications  

Science Journals Connector (OSTI)

Abstract Decentralized, liquefied natural gas-fueled, trigeneration plants are considered as alternatives to centralized, electricity-only generating power plants to improve efficiency and minimize running costs. The proposed system is analyzed in terms of efficiency and cost. Electrical power is generated with a gas turbine, while waste heat is recovered and utilized effectively to cover heating and cooling needs for buildings located in the vicinity of the plant. The high quality of cooling energy carried in the LNG fluid is used to cool the air supply to the air compressor. Waste heat is recovered with heat exchangers to generate useful heating in the winter period, while in the summer period an integrated double-effect absorption chiller converts waste heat to useful cooling. For the base system (10áMWe), net electrical efficiency is up to 36.5%, while the primary energy ratio reaches 90%. The payback period for the base system is 4 years, for a lifecycle cost of 221.6 million euros and an investment cost of 13 million euros. The base system can satisfy the needs of more than 21,000 average households, while an equivalent conventional system can only satisfy the needs of 12,000 average households.

Alexandros Arsalis; Andreas Alexandrou

2015-01-01T23:59:59.000Z

414

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

415

Building America Case Study: Evaluation of Residential Integrated Space/Water Heat Systems, Illinois and New York (Fact Sheet)  

SciTech Connect

This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented Emerging Technology Programs. With support from PARR, NYSERDA and other partners, the project documented system performance and installations in Chicago and New York. Combi systems were found to save nearly 200 therms in cold climates at efficiencies between about 80% and 94%. Combi systems using third-party air handler units specially designed for condensing combi system operation performed better than the packaged integrated combi systems available for the project. Moreover, combi systems tended to perform poorly when the tankless water heaters operating at high turn-down ratios. Field tests for this study exposed installation deficiencies due to contractor unfamiliarity with the products and the complexity of field engineering and system tweaking to achieve high efficiencies. Widespread contractor education must be a key component to market expansion of combi systems. Installed costs for combi systems need to come down about 5% to 10% to satisfy total resource calculations for utility-administered energy efficiency programs. Greater sales volumes and contractor familiarity can drive costs down. More research is needed to determine how well heating systems such as traditional furnace/water heater, combis, and heat pumps compare in similar as-installed scenarios, but under controlled conditions.

Not Available

2014-11-01T23:59:59.000Z

416

Laser-induced heating of a multilayered medium resting on a half-space: Part 2 - Moving source  

SciTech Connect

Direct access storage devices (DASDs) are widely used in the computer industry to store and manage data. In conventional magnetic recording, an induction head flying very close to the disk surface alters the polarization of the magnetic field of the disk surface to erase and or write the information on the disk. However, a new technology known as magneto optical recording or optical recording has considerable promise to increase data densities and reliability of data source. In magneto-optical storage, magnetic fields are altered by a laser source, which heats the magnetic medium beyond its Curie point, a temperature at which the magnetic medium loses its magnetization. This domain with zero magnetization is subsequently reversed by using an induction magnet. All these processes take place when the disk is rotating at a very high speed with respect to the laser source. An optical disk is a multilayered medium consisting of a thick glass disk on which many layers of different materials are sputtered, only one layer of which serves as a magnetic medium. Therefore, in this paper, a problem of laser-induced heating of a multilayered medium resting on a half-space is considered when the laser is translation with respect to it. The transient heat conduction equation is solved by employing the Laplace transform in the time domain and the Fourier Transform in the x, y dimension. The resulting ordinary differential equation is solved and the inversion of the Lapplace transform is obtained by a technique developed by Crump. The Fourier inversion is obtained by using a Fast Fourier Transform. The technique developed here is then applied to calculate domain size for recorded bits for a given disk, laser power, source characteristics, and rotational velocity.

Kant, R.; Deckert, K.L. (IBM Research Div., San Jose, CA (USA))

1991-02-01T23:59:59.000Z

417

Nonlinear Electron Heat Conduction Equation and Self similar method for 1-D Thermal Waves in Laser Heating of Solid Density DT Fuel  

E-Print Network (OSTI)

Electron heat conduction is one of the ways that energy transports in laser heating of fusible target material. The aim of Inertial Confinement Fusion (ICF) is to show that the thermal conductivity is strongly dependent on temperature and the equation of electron heat conduction is a nonlinear equation. In this article, we solve the one-dimensional (1-D) nonlinear electron heat conduction equation with a self-similar method (SSM). This solution has been used to investigate the propagation of 1-D thermal wave from a deuterium-tritium (DT) plane source which occurs when a giant laser pulse impinges onto a DT solid target. It corresponds to the physical problem of rapid heating of a boundary layer of material in which the energy of laser pulse is released in a finite initial thickness.

A. Mohammadian Pourtalari; M. A. Jafarizadeh; M. Ghoranneviss

2011-05-22T23:59:59.000Z

418

Winter Heating Fuels Update  

U.S. Energy Information Administration (EIA) Indexed Site

Source: Ventyx Energy Velocity Suite and Bloomberg. JKM is a proxy for LNG priced into Japan, Korea, and Malaysia. The Algonquin Citygates, Transco Zone 6 New York, and Columbia...

419

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

420

Effect of rib spacing on heat transfer and friction in a rotating two-pass rectangular (AR=1:2) channel  

E-Print Network (OSTI)

The research focuses on testing the heat transfer enhancement in a channel for different spacing of the rib turbulators. Those ribs are put on the surface in the two pass rectangular channel with an aspect ratio of AR=1:2. The cross section...

Liu, Yao-Hsien

2006-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

A 5-1/2-dimensional theory for fast and accurate evaluation of the cyclotron resonance heating using a real-space wave representation  

SciTech Connect

The cyclotron resonance heating rate in a plasma has been evaluated so far from a five-dimensional (5D) quasilinear model because the 6D evaluation is prohibitively expensive. However, the quasilinear approach as applied to the cyclotron resonance heating has fundamental difficulties in evaluating the net effect from a large number of coupled wave modes (leading to strong spatial wave inhomogeneity) since the theory is built on the Fourier space wave representation, and does not include the regular nonlinear particle dynamics within a resonance passing event since the theory is based on the unperturbed orbit theory. A new 5-1/2D theory is formulated for evaluation of a more accurate resonant particle dynamics using the real-space wave representation, which overcomes the shortcomings of the quasilinear cyclotron resonance heating theories by reproducing the 6D physics at the 5D computing speed.

Park, Gunyoung; Chang, C. S. [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 and National Fusion Research Center, Daejeon 305-333 (Korea, Republic of); Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States) and Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

2007-05-15T23:59:59.000Z

422

Peculiarities of a method for ex-reactor heating of electrodes and obtaining voltage-current characteristics of multi-cell thermionic fuel elements  

SciTech Connect

The paper discusses principle of operation and applications of a pulse method of heating multi-cell thermionic fuel elements. Some experimental results are given for a cylindrical single-cell thermionic energy converter that simulates conditions close to that of multi-cell TFE operation. Basic requirements for technical parameters are stated that should be observed when testing TFE on thermal facilities. The means to improve the method are described, including both a computer-aided experiment and modifications in individual components of the test facility. {copyright} {ital 1996 American Institute of Physics.}

Kalandarishvili, A.G. [Sukhumi Institute of Physics and Engineering, Tbilisi 380008 Republic of (Georgia); Drozdov, A.A. [RRC ``Kurchatov Institute``, Moscow 123182 (Russia); Stepennov, B.S. [INERTEK, Moscow 123182 (Russia)

1996-03-01T23:59:59.000Z

423

Calculation of the Heat of Combustion of Components of Unsaturated Hydrocarbon-Based Power-Generating Fuel  

Science Journals Connector (OSTI)

Development is continued of the additive method of group contributions in application to the calculation of the heat of combustion of hydrocarbons of different chemical structures.

E. V. Sagadeev; V. V. Sagadeev

424

Oxygen Reduction in PEM Fuel Cell Conditions: Heat-Treated Non-Precious Metal-N4 Macrocycles and Beyond  

Science Journals Connector (OSTI)

Traditionally, fossil fuels (coal, oil, gas) have been used to satisfy the worldĺs energy needs. However, these resources are not endless. For instance, at the present 2% growth in demand, the peak of world pe...

Jean-Pol Dodelet

2006-01-01T23:59:59.000Z

425

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map...

426

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

427

Heat Transfer -2 A heat generating ( ) flat plate fuel element of thickness 2L is covered with flat plate steel cladding of  

E-Print Network (OSTI)

with flat plate steel cladding of thickness b. The heat generated is removed by a fluid at T, which adjoins on both sides On the sketch show regions where dT/dx is zero, constant and increasing. T , h x LL bb SteelSteel

Virginia Tech

428

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living Space in Summer  

E-Print Network (OSTI)

Energy Conservation and Comfort of Heat Pump Desiccant Air Conditioning System in Actual Living and total heat exchanger in terms of both energy conservation and thermal comfort in summer. 1. COP

Miyashita, Yasushi

429

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

,043 ,043 49 141 128 26 393 7 112 20 46 122 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 115 6 13 5 3 28 2 40 2 3 11 5,001 to 10,000 .......................... 86 5 11 5 2 28 1 17 2 3 11 10,001 to 25,000 ........................ 142 8 16 15 4 54 1 17 3 6 19 25,001 to 50,000 ........................ 116 5 18 16 3 41 (*) 11 2 5 14 50,001 to 100,000 ...................... 153 8 22 23 4 59 1 10 2 6 17 100,001 to 200,000 .................... 172 7 24 27 3 68 (*) 9 4 10 20 200,001 to 500,000 .................... 112 3 16 16 2 50 (*) 3 2 6 13 Over 500,000 ............................. 147 7 20 20 3 64 1 5 3 7 16 Principal Building Activity Education .................................. 109 4 22 24 3 33 (*) 5 1 9 6 Food Sales ................................ 61 2 4 2 Q 14 1 35 1 1 3 Food Service ............................. 63 3 8 7 3 12 4 20 (*) 1 4 Health Care ...............................

430

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

3,559 3,559 167 481 436 88 1,340 24 381 69 156 418 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 392 19 44 18 11 96 7 138 8 12 39 5,001 to 10,000 .......................... 293 18 38 18 8 95 4 57 6 10 39 10,001 to 25,000 ........................ 485 26 55 52 14 184 3 57 10 20 63 25,001 to 50,000 ........................ 397 18 62 55 12 140 2 37 7 17 48 50,001 to 100,000 ...................... 523 28 77 78 15 202 3 35 7 20 59 100,001 to 200,000 .................... 587 23 82 91 11 234 1 30 14 33 68 200,001 to 500,000 .................... 381 11 55 56 6 170 2 10 8 20 46 Over 500,000 ............................. 501 23 69 67 12 220 2 19 9 25 56 Principal Building Activity Education .................................. 371 15 74 83 11 113 2 16 4 32 21 Food Sales ................................ 208 6 12 7 Q 46 2 119 2 2 10 Food Service .............................

431

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

48.0 48.0 1.8 6.3 6.1 0.8 18.1 0.3 5.6 1.0 2.3 5.6 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 60.8 2.9 6.8 2.9 1.7 14.6 1.1 21.6 1.2 1.9 6.0 5,001 to 10,000 .......................... 42.2 2.0 5.6 2.8 0.9 13.3 0.7 9.0 0.9 1.5 5.7 10,001 to 25,000 ........................ 35.8 1.7 4.1 3.9 0.7 13.3 0.3 4.6 0.8 1.7 4.7 25,001 to 50,000 ........................ 41.8 1.8 6.6 6.0 1.0 14.4 0.2 4.1 0.8 1.9 5.0 50,001 to 100,000 ...................... 44.8 1.8 6.4 7.2 0.8 17.5 0.3 3.3 0.7 2.0 5.0 100,001 to 200,000 .................... 53.5 1.8 6.9 8.8 0.5 21.7 0.1 2.7 Q 3.5 6.2 200,001 to 500,000 .................... 51.2 1.2 7.2 7.6 0.7 23.0 0.2 1.2 1.1 2.7 6.1 Over 500,000 ............................. 64.9 1.4 7.9 9.5 0.5 30.6 0.3 2.1 1.4 3.9 7.3 Principal Building Activity Education .................................. 37.6 1.5 7.5

432

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

89.8 89.8 34.0 6.7 5.9 6.9 17.6 2.6 5.5 1.0 2.3 7.4 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 98.9 30.5 6.7 2.7 7.1 13.7 7.1 20.2 1.2 1.7 8.1 5,001 to 10,000 .......................... 78.3 30.0 5.4 2.6 6.1 12.5 5.2 8.4 0.8 1.4 5.9 10,001 to 25,000 ........................ 67.3 28.1 4.1 3.9 3.7 13.1 2.1 4.6 0.8 1.6 5.3 25,001 to 50,000 ........................ 77.6 30.2 6.6 5.8 6.3 13.9 1.6 3.9 0.8 1.9 6.7 50,001 to 100,000 ...................... 83.8 32.4 6.5 7.2 6.0 17.4 1.2 3.3 0.7 2.0 7.1 100,001 to 200,000 .................... 103.0 41.3 7.1 8.8 7.9 21.5 0.9 2.7 Q 3.4 8.0 200,001 to 500,000 .................... 101.0 39.0 7.6 7.5 9.4 22.6 1.9 1.2 1.1 2.7 8.1 Over 500,000 ............................. 129.7 44.9 11.5 9.5 11.7 30.6 2.2 2.1 Q 3.9 11.9 Principal Building Activity Education ..................................

433

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

3,037 3,037 115 397 384 52 1,143 22 354 64 148 357 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 386 19 43 18 11 93 7 137 8 12 38 5,001 to 10,000 .......................... 262 12 35 17 5 83 4 56 6 9 35 10,001 to 25,000 ........................ 407 20 46 44 8 151 3 53 9 19 54 25,001 to 50,000 ........................ 350 15 55 50 9 121 2 34 7 16 42 50,001 to 100,000 ...................... 405 16 57 65 7 158 2 29 6 18 45 100,001 to 200,000 .................... 483 16 62 80 5 195 1 24 Q 31 56 200,001 to 500,000 .................... 361 8 51 54 5 162 1 9 8 19 43 Over 500,000 ............................. 383 8 47 56 3 181 2 12 8 23 43 Principal Building Activity Education .................................. 371 15 74 83 11 113 2 16 4 32 21 Food Sales ................................ 208 6 12 7 Q 46 2 119 2 2 10 Food Service .............................

434

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

50.7 50.7 2.4 6.9 6.2 1.3 19.1 0.3 5.4 1.0 2.2 6.0 Building Floorspace (Square Feet) 1,001 to 5,000 ........................... 60.6 2.9 6.8 2.8 1.7 14.8 1.1 21.2 1.2 1.8 6.0 5,001 to 10,000 .......................... 44.0 2.6 5.7 2.8 1.1 14.3 0.7 8.6 0.9 1.4 5.8 10,001 to 25,000 ........................ 38.8 2.1 4.4 4.1 1.1 14.7 0.2 4.5 0.8 1.6 5.1 25,001 to 50,000 ........................ 43.7 2.0 6.8 6.1 1.3 15.4 0.2 4.0 0.8 1.9 5.3 50,001 to 100,000 ...................... 50.9 2.7 7.5 7.6 1.4 19.6 0.3 3.4 0.7 2.0 5.8 100,001 to 200,000 .................... 57.7 2.3 8.0 8.9 1.1 23.0 0.1 2.9 1.3 3.2 6.7 200,001 to 500,000 .................... 51.8 1.5 7.4 7.5 0.8 23.0 0.2 1.3 1.1 2.7 6.2 Over 500,000 ............................. 65.4 3.0 9.0 8.8 1.5 28.7 0.3 2.4 1.2 3.2 7.3 Principal Building Activity Education .................................. 37.6 1.5

435

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Dedicated Servers ... 56.0 2.0 7.5 7.7 0.8 21.9 0.2 4.5 1.6 3.4 6.3 Laser Printers ... 47.0 2.0 6.3 6.0 0.8 17.2 0.3 5.5 1.2 2.3 5.4...

436

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

Dedicated Servers ... 103.5 37.3 8.3 7.7 8.0 21.9 2.0 4.5 1.6 3.4 8.8 Laser Printers ... 91.2 34.8 6.9 6.0 7.4 17.2 2.4 5.5 1.2 2.3 7.5...

437

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

2 119 2 2 10 Food Service ... 217 10 28 24 10 42 13 70 2 2 15 Health Care ... 248 6 34 42 2 105 1 8 4 10 36 Inpatient...

438

Total Space Heat-  

Annual Energy Outlook 2012 (EIA)

... 258.3 43.1 17.4 14.8 40.4 25.4 63.5 42.1 1.0 1.0 9.5 Health Care ... 187.7 70.4 14.1 13.3 30.2 33.1 3.5 2.6 1.2 3.2...

439

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

4 2 Q 14 1 35 1 1 3 Food Service ... 63 3 8 7 3 12 4 20 (*) 1 4 Health Care ... 73 2 10 12 1 31 (*) 2 1 3 11 Inpatient...

440

Engineering economic assessment of whole-house residential wood heating in New York  

Science Journals Connector (OSTI)

Abstract Wood devices increasingly are being used for residential space heating in New York. Motivations include avoiding high and variable fuel costs, promoting energy independence, mitigating climate change, and stimulating local economic development. In this study, the influence of fuel prices, device costs, and device efficiencies on heating costs was examined. Lifetime costs of alternative heating technologies were calculated for a house in Syracuse, New York. Calculations were repeated to explore discount rates and fuel price projections. Combinations of wood price and device cost and efficiency were identified at which wood is competitive with other fuels. The results suggest that fuel costs drive competitiveness more than capital and installation costs. At typical wood prices, natural gas often is the least expensive option. Many rural areas do not have access to gas, however, and high-efficiency wood-heating devices can be very competitive with heat pumps, propane boilers, and fuel-oil boilers. Availability of low-cost or on-site wood can make wood the least expensive option. However, even ôfreeö wood is not free when the equipment, labor, space and time required are considered. Furthermore, efficiencies of wood devices and their pollutant emissions can differ greatly. High emission rates have led to restrictions on use of specific wood-heating devices in some locations. Improved information and tools should be available to consumers for evaluating the suitability of wood heating for their particular situations. The work presented here is an example of such information.

Daniel H. Loughlin; Rebecca S. Dodder

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel space heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Qualification of Alternative Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nozzle Heating System, Burner from Carlin Combustion Technologies , Fuel From Avello Bioenergy, Tests at BNL 5412. Summary of Steps * What target markets and in what order?...

442

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP  

E-Print Network (OSTI)

PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP for space heating since it directly utilizes the engine waste heat in addition to the energy obtained

Oak Ridge National Laboratory

443

System Modeling and Building Energy Simulations of Gas Engine Driven Heat Pump  

SciTech Connect

To improve the system performance of a gas engine driven heat pump (GHP) system, an analytical modeling and experimental study has been made by using desiccant system in cooling operation (particularly in high humidity operations) and suction line waste heat recovery to augment heating capacity and efficiency. The performance of overall GHP system has been simulated with a detailed vapor compression heat pump system design model. The modeling includes: (1) GHP cycle without any performance improvements (suction liquid heat exchange and heat recovery) as a baseline (both in cooling and heating mode), (2) the GHP cycle in cooling mode with desiccant system regenerated by waste heat from engine incorporated, (3) GHP cycle in heating mode with heat recovery (recovered heat from engine). According to the system modeling results, by using the desiccant system the sensible heat ratio (SHR- sensible heat ratio) can be lowered to 40%. The waste heat of the gas engine can boost the space heating efficiency by 25% at rated operating conditions. In addtion,using EnergyPlus, building energy simulations have been conducted to assess annual energy consumptions of GHP in sixteen US cities, and the performances are compared to a baseline unit, which has a electrically-driven air conditioner with the seasonal COP of 4.1 for space cooling and a gas funace with 90% fuel efficiency for space heating.

Mahderekal, Isaac [Oak Ridge National Laboratory (ORNL); Vineyard, Edward [Oak Ridge National Laboratory (ORNL)

2013-01-01T23:59:59.000Z

444

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

445

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents (OSTI)

A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

1996-01-01T23:59:59.000Z

446

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by...

447

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

SciTech Connect

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

448

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

SciTech Connect

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

449

Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England  

Energy.gov (U.S. Department of Energy (DOE))

This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and compatibility, and operational issues, then prioritized next steps for expanding use of pyrolysis oil as a replacement for home heating oil in the Northeast

450

Geothermal Energy Development in the Eastern United States: Technical assistance report No. 6 geothermal space heating and airconditioning -- McGuire Air Force Base, New Jersey  

SciTech Connect

A method of utilizing the geothermal (66 F) water resource for space heating and cooling of 200 of the 1452 housing units at McGuire AFB is suggested. Using projections of future costs of gas, coal and electricity made by DOD and by industry (Westinghouse), the relative costs of the geothermal-water-plus-heat-pump system and the otherwise-planned central gas heating (to be converted to coal in 1984) and air-conditioning (using individual electric units) system are compared. For heating with the geothermal/heat-pump system, an outlet temperature of 130 F is selected, requiring a longer running time than the conventional system (at 180 F) but permitting a COP (coefficient of performance) of the heat pump of about 3.4. For cooling (obtained in this study by changing directions of water flow, not refrigerant cycles), the change in temperature is less, and a COP near 4.5 is obtained. The cost of cooling in the summer months would be significantly less than the cost of using individual electric air-conditioners. Thus, by using nonreversible heat pumps, geothermal water is used to heat and to cool a section of the housing compound, minimizing operating expenditures. It is estimated that, to drill 1000 ft deep production and reinjection wells and to install ten heat pumps, heat exchangers and piping, would require a capital outlay of $643 K. This cost would replace the capital cost of purchasing and installing 200 air-conditioning units and 14% of the cost of the future coal-fired central heating system (which would otherwise serve all 1452 housing units at McGuire). The net additional capital outlay would be $299 K, which could be amortized in 10 years by the lower operating cost of the geothermal system if electricity and coal prices escalate as industry suggests. If the coal and electricity costs rise at the more modest rates that DOD projects, the capital costs would be amortized in a 15 year period.

Hill, F.K.; Briesen R. von

1980-12-01T23:59:59.000Z

451

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

452

Vehicle Technologies Office: Waste Heat Recovery | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

453

Vehicle Technologies Office: Fuel Efficiency and Emissions |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

454

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

455

Combined heat and power (CHP or cogeneration) for saving energy and carbon in commercial buildings  

SciTech Connect

Combined Heat and Power (CHP) systems simultaneously deliver electric, thermal and mechanical energy services and thus use fuel very efficiently. Today's small-scale CHP systems already provide heat, cooling and electricity at nearly twice the fuel efficiency of heat and power based on power remote plants and onsite hot water and space heating. In this paper, the authors have refined and extended the assessments of small-scale building CHP previously done by the authors. They estimate the energy and carbon savings for existing small-scale CHP technology such as reciprocating engines and two promising new CHP technologies--microturbines and fuel cells--for commercial buildings. In 2010 the authors estimate that small-scale CHP will emit 14--65% less carbon than separate heat and power (SHP) depending on the technologies compared. They estimate that these technologies in commercial buildings could save nearly two-thirds of a quadrillion Btu's of energy and 23 million tonnes of carbon.

Kaarsberg, T.; Fiskum, R.; Romm, J.; Rosenfeld, A.; Koomey, J.; Teagan, W.P.

1998-07-01T23:59:59.000Z

456

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Energy.gov (U.S. Department of Energy (DOE))

Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

457

Solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

Di Croce, A.M.; Draper, R.

1993-11-02T23:59:59.000Z

458

Thulium-170 heat source  

SciTech Connect

An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

W