National Library of Energy BETA

Sample records for fuel rates miles

  1. Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Highways Oregon Celebrates 200 Miles of Electric Highways to someone by E-mail Share Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Facebook Tweet about Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Twitter Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Google Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Delicious Rank

  2. "Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Economy, Selected Survey Years (Miles Per Gallon)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",15.1,16.1,18.3,19.3,19.8,20.2 "Household Characteristics" "Census...

  3. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 (Continued) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor:...

  4. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 43 Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994...

  5. Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of Commercial Trucking; A Key Enabler of Expanded U.S. Trade and Economic Growth Poster presentation at the 2007 Diesel ...

  6. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

    Broader source: Energy.gov [DOE]

    In 1975, only three percent of all new cars had a fuel economy above 25 miles per gallon (mpg), but by 2014, 73% did. Great improvements were made in the fuel economy of cars from 1975 to 1985, so...

  7. Nondestructive techniques for assaying fuel debris in piping at Three Mile Island Unit 2

    SciTech Connect (OSTI)

    Vinjamuri, K.; McIsaac, C.V.; Beller, L.S.; Isaacson, L.; Mandler, J.W.; Hobbins, R.R. Jr.

    1981-11-01

    Four major categories of nondestructive techniques - ultrasonic, passive gamma ray, infrared detection, and remote video examination - have been determined to be feasible for assaying fuel debris in the primary coolant system of the Three Mile Island Unit 2 (TMI-2) Reactor. Passive gamma ray detection is the most suitable technique for the TMI-2 piping; however, further development of this technique is needed for specific application to TMI-2.

  8. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

  9. Review of Destructive Assay Methods for Nuclear Materials Characterization from the Three Mile Island (TMI) Fuel Debris

    SciTech Connect (OSTI)

    Carla J. Miller

    2013-09-01

    This report provides a summary of the literature review that was performed and based on previous work performed at the Idaho National Laboratory studying the Three Mile Island 2 (TMI-2) nuclear reactor accident, specifically the melted fuel debris. The purpose of the literature review was to document prior published work that supports the feasibility of the analytical techniques that were developed to provide quantitative results of the make-up of the fuel and reactor component debris located inside and outside the containment. The quantitative analysis provides a technique to perform nuclear fuel accountancy measurements

  10. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    G. G. Hall

    2000-02-01

    This report presents the results of the 1999 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  11. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2002-02-01

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  12. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation (2005)

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  13. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island - Unit 2 Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Gregory G. Hall

    2003-02-01

    This report presents the results of the 2002 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  14. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  15. Robin Miles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robin Miles Mechanical Engineer Robin Miles is an expert at targeting You've been at the Lab 15 years. Where did you start out? I first worked at the LLNL Microfabrication Facility Microtechnology Center where I came to work on NA-22, a DOE program to reduce threats to national security through developing new and novel technology. I was group leader for microfluidics (control of fluids on a sub-millimeter scale) in the bioengineering group. We built systems around sensors for biological and

  16. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact 659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The ...

  17. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; Hu, Jianwei; Ilas, Germina; Haverlock, T. J.; Romano, Catherine E.

    2016-01-01

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via highmore » performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.« less

  18. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation

    SciTech Connect (OSTI)

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; Hu, Jianwei; Ilas, Germina; Haverlock, T. J.; Romano, Catherine E.

    2016-01-01

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via high performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.

  19. Full Useful Life (120,000 miles) Exhaust Emission Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel ... with Ultralow-Sulfur Fuel Full Useful Life (120,000 miles) Exhaust Emission ...

  20. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    1998-03-01

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  1. Fission rate measurements in fuel plate type assembly reactor cores

    SciTech Connect (OSTI)

    Rogers, J.W.

    1988-01-01

    The methods, materials and equipment have been developed to allow extensive and precise measurement of fission rate distributions in water moderated, U-Al fuel plate assembly type reactor cores. Fission rate monitors are accurately positioned in the reactor core, the reactor is operated at a low power for a short time, the fission rate monitors are counted with detectors incorporating automated sample changers and the measurements are converted to fission rate distributions. These measured fission rate distributions have been successfully used as baseline information related to the operation of test and experimental reactors with respect to fission power and distribution, fuel loading and fission experiments for approximately twenty years at the Idaho National Engineering Laboratory (INEL). 7 refs., 8 figs.

  2. Miles Hand Grenade

    DOE Patents [OSTI]

    Harrington, John J.; Buttz, James H.; Maish, Alex B.; Page, Ray R.; Metcalf, Herbert E.

    2005-11-15

    A simulated grenade for MILES-type simulations generates a unique RF signal and a unique audio signal. A detector utilizes the time between receipt of the RF signal and the slower-traveling audio signal to determine the distance between the detector and the simulated grenade.

  3. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy...

    Broader source: Energy.gov (indexed) [DOE]

    track your own fuel economy and compare it to that of other users and to the test ratings. ... How does your fuel economy compare to the test ratings on Fueleconomy.gov? Each Thursday, ...

  4. Chapter 3. Vehicle-Miles Traveled

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Vehicle-Miles Traveled Chapter 3. Vehicle-Miles Traveled Vehicle-miles traveled--the number of miles that residential vehicles are driven--is probably the most important...

  5. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  6. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel Reactivity Stratification

    Broader source: Energy.gov [DOE]

    Explores in-cylinder mechanisms by which fuel reactivity stratification via a two fuel system affects premixed charge compression ignition heat release rate to achieve diesel-like efficiency

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Motor fuel taxes for propane used in vehicles are collected through an annual sticker permit fee based on the vehicles' registered gross vehicle weight rating and the number of miles driven the previous year. Exemptions apply for transit and interstate vehicles. (Reference Texas Statutes, Tax Code 162.305

  8. Fact #860 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of Gasoline

    Broader source: Energy.gov [DOE]

    The prices of gasoline and diesel fuel affect the transportation sector in many ways. For example, fuel prices can impact the number of miles driven and affect the choices consumers make when...

  9. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov?

    Energy Savers [EERE]

    | Department of Energy Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis On Monday, you read about the resources on Fueleconomy.gov and how they can help you compare the fuel economy of vehicles. Fueleconomy.gov also offers a tool called Your MPG, where you can track your own fuel economy and compare it to that of other users and to the test ratings. Many factors

  10. Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute A 2014 survey asked a sample of the U.S. population the question "Which one of the following ...

  11. Spent fuel dissolution rates as a function of burnup and water chemistry

    SciTech Connect (OSTI)

    Gray, W.J.

    1998-06-01

    To help provide a source term for performance-assessment calculations, dissolution studies on light-water-reactor (LWR) spent fuel have been conducted over the past few years at Pacific Northwest National Laboratory in support of the Yucca Mountain Site Characterization Project. This report describes that work for fiscal years 1996 through mid-1998 and includes summaries of some results from previous years for completeness. The following conclusions were based on the results of various flowthrough dissolution rate tests and on tests designed to measure the inventories of {sup 129}I located within the fuel/cladding gap region of different spent fuels: (1) Spent fuels with burnups in the range 30 to 50 MWd/kgM all dissolved at about the same rate over the conditions tested. To help determine whether the lack of burnup dependence extends to higher and lower values, tests are in progress or planned for spent fuels with burnups of 13 and {approximately} 65 MWd/kgM. (2) Oxidation of spent fuel up to the U{sub 4}O{sub 9+x} stage does not have a large effect on intrinsic dissolution rates. However, this degree of oxidation could increase the dissolution rates of relatively intact fuel by opening the grain boundaries, thereby increasing the effective surface area that is available for contact by water. From a disposal viewpoint, this is a potentially more important consideration than the effect on intrinsic rates. (3) The gap inventories of {sup 129}I were found to be smaller than the fission gas release (FGR) for the same fuel rod with the exception of the rod with the highest FGR. Several additional fuels would have to be tested to determine whether a generalized relationship exists between FGR and {sup 129}I gap inventory for US LWR fuels.

  12. Parametric study of radiation dose rates from rail and truck spent fuel transport casks

    SciTech Connect (OSTI)

    Parks, C.V.; Hermann, O.W.; Knight, J.R.

    1985-08-01

    Neutron and gamma dose rates from typical rail and truck spent fuel transport casks are reported for a variety of spent PWR fuel sources and cask conditions. The IF 300 rail cask and NLI 1/2 truck cask were selected for use as appropriate cask models. All calculations (cross section preparation, generation of spent fuel source terms, radiation transport calculations, and dose evaluation) were performed using various modules of the SCALE computational system. Conditions or parameters for which there were variations between cases include: detector distance from cask, spent fuel cooling time, the setting of fuel or neutron shielding cavities to either wet or dry, the cobalt content of assembly materials, normal fuel assemblies and consolidated cannisters, the geometry mesh interval size, and the order of the angular quadrature set. 13 refs., 6 figs., 9 tabs.

  13. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  14. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    SciTech Connect (OSTI)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  15. Occupational safety data and casualty rates for the uranium fuel cycle. [Glossaries

    SciTech Connect (OSTI)

    O'Donnell, F.R.; Hoy, H.C.

    1981-10-01

    Occupational casualty (injuries, illnesses, fatalities, and lost workdays) and production data are presented and used to calculate occupational casualty incidence rates for technologies that make up the uranium fuel cycle, including: mining, milling, conversion, and enrichment of uranium; fabrication of reactor fuel; transportation of uranium and fuel elements; generation of electric power; and transmission of electric power. Each technology is treated in a separate chapter. All data sources are referenced. All steps used to calculate normalized occupational casualty incidence rates from the data are presented. Rates given include fatalities, serious cases, and lost workdays per 100 man-years worked, per 10/sup 12/ Btu of energy output, and per other appropriate units of output.

  16. Fuel Cell and Battery Electric Vehicles Compared

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... EV 300 miles compared to a fuel cell EV traveling 300 miles In effect, the increased ... city cars for niche markets, the underlying benefits of the fuel cell have not changed. ...

  17. Miles Electric Vehicles | Open Energy Information

    Open Energy Info (EERE)

    Electric Vehicles Jump to: navigation, search Name: Miles Electric Vehicles Place: Santa Monica, California Zip: 90405 Sector: Vehicles Product: California-based developer of...

  18. Effect of fuel properties on the bottom ash generation rate by a laboratory fluidized bed combustor

    SciTech Connect (OSTI)

    Rozelle, P.L.; Pisupati, S.V.; Scaroni, A.W.

    2007-06-15

    The range of fuels that can be accommodated by an FBC boiler system is affected by the ability of the fuel, sorbent, and ash-handling equipment to move the required solids through the boiler. Of specific interest is the bottom ash handling equipment, which must have sufficient capacity to remove ash from the system in order to maintain a constant bed inventory level, and must have sufficient capability to cool the ash well below the bed temperature. Quantification of a fuel's bottom ash removal requirements can be useful for plant design. The effect of fuel properties on the rate of bottom ash production in a laboratory FBC test system was examined. The work used coal products ranging in ash content from 20 to 40+ wt. %. The system's classification of solids by particle size into flyash and bottom ash was characterized using a partition curve. Fuel fractions in the size range characteristic of bottom ash were further analyzed for distributions of ash content with respect to specific gravity, using float sink tests. The fuel fractions were then ashed in a fixed bed. In each case, the highest ash content fraction produced ash with the coarsest size consist (characteristic of bottom ash). The lower ash content fractions were found to produce ash in the size range characteristic of flyash, suggesting that the high ash content fractions were largely responsible for the production of bottom ash. The contributions of the specific gravity fractions to the composite ash in the fuels were quantified. The fuels were fired in the laboratory test system. Fuels with higher amounts of high specific gravity particles, in the size ranges characteristic of bottom ash, were found to produce more bottom ash, indicating the potential utility of float sink methods in the prediction of bottom ash removal requirements.

  19. Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

    SciTech Connect (OSTI)

    Miao, Yinbin; Ye, Bei; Mei, Zhigang; Hofman, Gerard; Yacout, Abdellatif

    2015-12-10

    Uranium silicide (U3Si2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U3Si2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U3Si2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U3Si2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U3Si2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U3Si2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U3Si2 fuel as an accident-tolerant alternative for uranium dioxide.

  20. Mile High: Order (2012-SE-4501)

    Broader source: Energy.gov [DOE]

    DOE ordered Mile High Equipment, LLC to pay a $17,525 civil penalty after finding Mile High had manufactured and distributed in commerce in the U.S. approximately 109 units of lce-O-Matic brand automatic commercial ice maker basic model ICE2106 FW, HW, a noncompliant product.

  1. Combustion rates of chars from high-volatile fuels for FBC application

    SciTech Connect (OSTI)

    Masi, S.; Salatino, P.; Senneca, O.

    1997-12-31

    The fluidized bed combustion of high volatile fuels is often associated with huge occurrence of comminution phenomena. These result into in-bed generation of substantial amounts of carbon fines which further undergo competitive processes of combustion and elutriation. The small size of carbon fines generated by comminution is such that their further combustion is largely controlled by the intrinsic kinetics of carbon oxidation, alone or in combination with intraparticle diffusion. The competition between fine combustion and elutriation strongly affects the efficiency of fixed carbon conversion and calls for thorough characterization of the combustion kinetics and of residence times of fines in a fluidized bed of coarse solids. In this paper a collection of intrinsic combustion kinetic and porosimetric data for chars from three high-volatile fuels suitable for FBC application is presented. Chars from a Refuse Derived Fuel (RDF), a Tyre Derived Fuel (TDF) and a biomass (Robinia Pseudoacacia) are obtained from devolatilization, in fluidized bed, of fuel samples. Thermogravimetric analysis, mercury porosimetry and helium pycnometry are used to characterize the reactivity and the pore structure of the chars. Combustion rates are characterized over a wide range of temperatures (320--850 C) and oxygen partial pressures, covering the entire range of interest in fluidized bed combustion. Analysis of thermogravimetric and porosimetric data is directed to obtaining the parameters (pre-exponential factors, reaction orders, activation energies, intraparticle diffusivities) of combustion kinetic submodels for application in fluidized bed combustor modeling.

  2. Mile High: Noncompliance Determination (2012-SE-4501)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Mile High Equipment, LLC finding that Ice-O-Matic brand automatic commercial ice maker basic model ICE2106 FW, HW does not comport with the energy conservation standards.

  3. Mile High: Proposed Penalty (2012-SE-4501)

    Broader source: Energy.gov [DOE]

    DOE alleged in a Notice of Proposed Civil Penalty that Mile High Equipment, LLC manufactured and distributed noncompliant Ice-O-Matic brand automatic commercial ice maker basic model ICE2106 FW, HW in the U.S.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduced Registration Fee for Fuel-Efficient Vehicles A new motor vehicle with a U.S. Environmental Protection Agency estimated average city fuel economy of at least 40 miles per ...

  5. Compound and Elemental Analysis At Seven Mile Hole Area (Larson...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Seven Mile Hole...

  6. Methodology for Calculating Cost-per-Mile for Current and Future Vehicle Powertrain Technologies, with Projections to 2024: Preprint

    SciTech Connect (OSTI)

    Ruth, M.; Timbario, T. A.; Timbario, T. J.; Laffen, M.

    2011-01-01

    Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all over time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). This paper is a summary of the development by the authors of a more accurate cost-per-mile calculator that allows the user to analyze vehicle acquisition and operating costs for both consumer and fleets. Cost-per-mile results are reported for consumer-operated vehicles travelling 15,000 miles per year and for fleets travelling 25,000 miles per year.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    High Occupancy Vehicle (HOV) Lane Exemption and Discount New Jersey Turnpike Authority (Authority) allows qualified hybrid electric vehicles to travel in the HOV lanes located between Interchange 11 and Interchange 14 on the New Jersey Turnpike. The Authority offers a 10% discount on off-peak New Jersey Turnpike and Garden State Parkway toll rates through NJ EZ-Pass for drivers of vehicles that have a fuel economy of 45 miles per gallon or higher and meet the California Super Ultra Low Emission

  8. Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings

    Broader source: Energy.gov [DOE]

    An increase in fuel economy by 5 miles per gallon (mpg) does not translate to a constant fuel savings amount. Thus, trading a low-mpg car or truck for one with just slightly better mpg will save...

  9. Pennsylvania Nuclear Profile - Three Mile Island

    U.S. Energy Information Administration (EIA) Indexed Site

    Three Mile Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,805,"6,634",94.1,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,805,"6,634",94.1

  10. CURRENT APPLICATIONS OF THREE MILE ISLAND-2 CORE AND DEBRIS HANDLING AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Carmack, William Jonathan; Braase, Lori Ann

    2015-09-01

    Fuel recovery from severe accidents requires careful planning and execution. The Idaho National Laboratory played a key role in the Three Mile Island (TMI) fuel and core recovery. This involved technology development to locate and handle the damaged fuel; characterization of fuel and debris; analysis of fuel interaction with structural components and materials; development of fuel drying technology for long-term storage. However, one of the critical activities from the TMI project was the extensive effort document all the activities and archive the reports and photos. A historical review of the TMI project at the INL leads to the identification of current applications and considerations for facility designs, fuel handling, robotic applications, material characterization, etc.

  11. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  12. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  13. March 28, 1979: Three Mile Island | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 28, 1979: Three Mile Island March 28, 1979 A partial meltdown of the core occurs at one of the two reactors at the Three Mile Island nuclear power plant near Harrisburg, ...

  14. Salt Wells, Eight Mile Flat | Open Energy Information

    Open Energy Info (EERE)

    Eight Mile Flat Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells, Eight Mile Flat Abstract Abstract unavailable. Author Nevada Bureau...

  15. Fact #860 February 16, 2015 Relationship of Vehicle Miles of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 860 February 16, 2015 Relationship of Vehicle Miles of Travel and the Price of Gasoline - Dataset Excel file and dataset for Relationship of Vehicle Miles of Travel and the ...

  16. Water Emissions from Fuel Cell Vehicles

    Broader source: Energy.gov [DOE]

    Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles using gasoline-powered internal combustion engines (ICEs).

  17. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel economy of 22 miles per gallon (as listed at www.fueleconomy.gov) and may not be a sport utility vehicle. Exemptions apply to security, emergency rescue, snow removal, and...

  18. Focus Series: Denver Energy Advisor Program Helps Homeowners Go the Extra Mile in Mile-High City

    Broader source: Energy.gov [DOE]

    Focus Series: Denver Energy Advisor Program Helps Homeowners Go the Extra Mile in Mile-High City, a publication of the U.S. Department of Energy's Better Buildings Program.

  19. In-Cylinder Mechanisms of PCI Heat-Release Rate Control by Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty ... (RCCI) Combustion in a Light-Duty Engine High Efficiency Fuel Reactivity ...

  20. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate

  1. Summary Report of Commercial reactor Criticality Data for Three Mile Island Unit 1

    SciTech Connect (OSTI)

    Larry B. Wimmer

    2001-08-29

    The objective of the ''Summary Report of Commercial Reactor Criticality Data for Three Mile Island Unit I'' is to present the CRC data for the TMI-1 reactor. Results from the CRC evaluations will support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel. These models and their validation are discussed in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000).

  2. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency has developed a new methodology for determining how fuel economy information will be displayed on the window sticker of a vehicle that operates on electricity....

  3. Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute

    Broader source: Energy.gov [DOE]

    A 2014 survey asked a sample of the U.S. population the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel...

  4. Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle

    SciTech Connect (OSTI)

    Kang, H.G.; Yun, S.H.; Chung, D.; Oh, Y.H.; Chang, M.H.; Cho, S.; Chung, H.; Song, K.M.

    2015-03-15

    For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the delivery performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)

  5. Entiat 4Mile WELLs Completion Report, 2006.

    SciTech Connect (OSTI)

    Malinowksi, Richard

    2007-01-01

    The Entiat 4-mile Wells (Entiat 4-mile) project is located in the Entiat subbasin and will benefit Upper Columbia steelhead, spring Chinook and bull trout. The goal of this project is to prevent juvenile fish from being diverted into an out-of-stream irrigation system and to eliminate impacts due to the annual maintenance of an instream pushup dam. The objectives include eliminating a surface irrigation diversion and replacing it with two wells, which will provide Bonneville Power Administration (BPA) and the Bureau of Reclamation (Reclamation) with a Federal Columbia River Power System (FCRPS) BiOp metric credit of one. Wells were chosen over a new fish screen based on biological benefits and costs. Long-term biological benefits are provided by completely eliminating the surface diversion and the potential for fish entrainment in a fish screen. Construction costs for a new fish screen were estimated at $150,000, which does not include other costs associated with implementing and maintaining a fish screening project. Construction costs for a well were estimated at $20,000 each. The diversion consisted of a pushup dam that diverted water into an off-channel pond. Water was then pumped into a pressurized system for irrigation. There are 3 different irrigators who used water from this surface diversion, and each has multiple water right claims totaling approximately 5 cfs. Current use was estimated at 300 gallons per minute (approximately 0.641 cfs). Some irrigated acreage was taken out of orchard production less than 5 years ago. Therefore, approximately 6.8 acre-feet will be put into the State of Washington Trust Water Right program. No water will be set aside for conservation savings. The construction of the two irrigation wells for three landowners was completed in September 2006. The Lower Well (Tippen/Wick) will produce up to 175 gpm while the Upper Well (Griffith) will produce up to 275 gpm during the irrigation season. The eight inch diameter wells were developed to a depth of 75 feet and 85 feet, respectively, and will be pumped with Submersible Turbine pumps. The irrigation wells have been fitted with new electric boxes and Siemens flowmeters (MAG8000).

  6. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    SciTech Connect (OSTI)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations.

  7. Petroleum Reduction Strategies to Reduce Vehicle Miles Traveled

    Broader source: Energy.gov [DOE]

    For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to reduce vehicle miles traveled, as well as guidance and best practices for each strategy.

  8. Seven Mile Hill Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    www.wsgs.uwyo.eduTopicsEnergyResourceswind.aspx http:renewableenergydev.comredwind-power-seven-mile-hill-wind-energy-project Retrieved from "http:en.openei.orgw...

  9. Determination of alternative fuels combustion products: Phase 3 report

    SciTech Connect (OSTI)

    Whitney, K.A.

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  10. Cryotank for storage of hydrogen as a vehicle fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Renewable hydrogen has no toxic or greenhouse gas emissions * Fuel cells using hydrogen achieve greater than 50% efficiency * Cost per mile will be comparable to...

  11. Assessment of the Effects of Flow Rate and Ionic Strength on Microbial Fuel Cell Performance Using Electrochemical Impedance Spectroscopy

    SciTech Connect (OSTI)

    Aaron, D; Tsouris, Costas; Hamilton, Choo Yieng; Borole, Abhijeet P

    2010-01-01

    Impedance changes of the anode, cathode and solution were examined for a microbial fuel cell (MFC) under varying conditions in order to improve its performance. An MFC inoculated with a pre-enriched microbial culture resulted in a startup time of ten days. Over this period, the anode impedance decreased below the cathode impedance, suggesting a cathode limited power output. Decreasing the anode flow rate did not impact the anode impedance significantly, while it increased the cathode impedance by 65% . Reducing the anode-medium ionic strength from 100% to 10% increased the cathode impedance by 48%.

  12. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Cell Materials and Design for 300 Mile Range EVs Yimin Zhu, PDPI OneD Material, LLC (former Nanosys Energy Storage) Palo Alto, California June 16 20, 2014 DOE Vehicle ...

  13. China has 6,000-mile pipeline system

    SciTech Connect (OSTI)

    Ming, S.

    1983-08-01

    A dramatic change has taken place in China's oil transport system, with pipelines replacing tank-cars as the most important means of transport for crude oil and petroleum products. According to Petroleum Ministry officials, the volume of crude oil carried by China's pipeline system increased from 23.2 percent in 1971 to 65.6 percent in 1981, while the volume delivered by tank-cars declined from 61.11 percent to 8.4 percent. The remainder was transported by tankers. China's 9,700 km (6,000-mile) pipeline network includes 5,600 km (3,500 miles) designed to carry crude oil and more than 600 km (375 miles) for petroleum products, plus 3,400 km (2,100 miles), mostly in Sichuan province, for natural gas.

  14. Seven Mile, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Seven Mile is a village in Butler County, Ohio. It falls under Ohio's 8th congressional district.12 References ...

  15. Indoor air pollution from portable kerosene-fired space heaters. [Effects of wick height and fuel consumption rate

    SciTech Connect (OSTI)

    Traynor, G.W.; Apte, M.G.; Dillworth, J.F.; Grimsrud, D.T.

    1983-02-01

    Indoor use of unvented combustion appliances is known to cause an increase in indoor air pollutant levels. Laboratory tests were conducted on radiant and convective portable kerosene-fired space heaters to identify the pollutants they emit and to determine their emission rates. Laboratory-derived CO and NO/sub 2/ emission rates from unvented portable kerosense-fired space heaters are summarized and the effect of wick height and fuel consumption rate on CO and NO/sub 2/ emissions is given. Pollutant concentration profiles resulting from the use of kerosene heaters in a 27m/sup 3/ environmental chamber and a 240m/sup 3/ house are presented. When such heaters are operated for one hour in a 27m/sup 3/ chamber with 0.4 air changes per hour, the resultant CO/sub 2/ concentrations are well above the U.S. occupational standard, and NO/sub 2/ concentrations are well above California's short-term outdoor standard. Further data on parameters such as heater usage patterns and air exchange rates are needed to determine the actual pollutant exposure that kerosene heater users experience.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel, Advanced Vehicle, and Idle Reduction Technology Tax Credit The Colorado Department of Revenue offers the Innovative Motor Vehicle Credit for a vehicle titled and registered in Colorado that uses or is converted to use an alternative fuel, is a diesel hybrid electric vehicle (HEV), is a plug-in hybrid electric vehicle (PHEV), or has its power source replaced with one that uses an alternative fuel. Electric vehicles (EVs) and PHEVs must have a maximum speed of at least 55 miles

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    has a maximum speed greater than 20 miles per hour (mph) but not more than 25 mph and has a gross vehicle weight rating less than 3,000 pounds. (Reference Arkansas Code 23-112-103...

  18. Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009)...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Seven Mile Hole Area (Larson, Et...

  19. Isotopic Analysis At Seven Mile Hole Area (Larson, Et Al., 2009...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis At Seven Mile Hole Area (Larson, Et...

  20. Field Mapping At Seven Mile Hole Area (Larson, Et Al., 2009)...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Seven Mile Hole Area (Larson, Et...

  1. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings

    Broader source: Energy.gov [DOE]

    The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Thus, an increase in fuel economy by 5 mpg does not translate to a constant fuel savings amount...

  2. Effect of fuel rate and annealing process of LiFePO{sub 4} cathode material for Li-ion batteries synthesized by flame spray pyrolysis method

    SciTech Connect (OSTI)

    Halim, Abdul; Setyawan, Heru; Machmudah, Siti; Nurtono, Tantular; Winardi, Sugeng

    2014-02-24

    In this study the effect of fuel rate and annealing on particle formation of LiFePO{sub 4} as battery cathode using flame spray pyrolysis method was investigated numerically and experimentally. Numerical study was done using ANSYS FLUENT program. In experimentally, LiFePO{sub 4} was synthesized from inorganic aqueous solution followed by annealing. LPG was used as fuel and air was used as oxidizer and carrier gas. Annealing process attempted in inert atmosphere at 700C for 240 min. Numerical result showed that the increase of fuel rate caused the increase of flame temperature. Microscopic observation using Scanning Electron Microscopy (SEM) revealed that all particles have sphere and polydisperse. Increasing fuel rate caused decreasing particle size and increasing particles crystallinity. This phenomenon attributed to the flame temperature. However, all produced particles still have more amorphous phase. Therefore, annealing needed to increase particles crystallinity. Fourier Transform Infrared (FTIR) analysis showed that all particles have PO4 function group. Increasing fuel rate led to the increase of infrared spectrum absorption corresponding to the increase of particles crystallinity. This result indicated that phosphate group vibrated easily in crystalline phase. From Electrochemical Impedance Spectroscopy (EIS) analysis, annealing can cause the increase of Li{sup +} diffusivity. The diffusivity coefficient of without and with annealing particles were 6.8439910{sup ?10} and 8.5988810{sup ?10} cm{sup 2} s{sup ?1}, respectively.

  3. Fuel Cell Animation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Animation Fuel Cell Animation This fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Hydrogen fuel cell vehicles emit approximately the same amount of water per mile as conventional vehicles powered by internal combustion engines. Learn more about water emissions from fuel cell vehicles. View text version of animation. FCTO Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen

  4. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    SciTech Connect (OSTI)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injection strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.

  5. Alternative Fuels Data Center: Transportation System Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Traveled (VMT) U.S. Light-Duty Fuel Consumption and Vehicle Miles Traveled (VMT) More ... on How to Transform Cities by Improving Energy Efficiency in Urban Transport Systems ...

  6. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Generatedthumb20140708-12454-1nsa79k U.S. Light-Duty Fuel Consumption and Vehicle Miles ... The state zoom function summarizes state energy use and infrastructure for traditional and ...

  7. Effect of Accelerated Aging Rate on the Capture of Fuel-Borne Metal Impurities by Emissions Control Devices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    INTRODUCTION Metallic fuel contaminants such as sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) may be introduced into diesel fuel through a number of different sources. As one example, biodiesel production relies on sodium hydroxide or potassium hydroxide to catalyze the reaction of vegetable oils with methanol to form methyl esters. In this process, residual amounts of Na or K can be left behind. In addition, small amounts of Ca or Mg can be added to the fuel from the purifcation

  8. New York Nuclear Profile - Nine Mile Point Nuclear Station

    U.S. Energy Information Administration (EIA) Indexed Site

    Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,630,"5,294",95.9,"BWR","application/vnd.ms-excel","application/vnd.ms-excel"

  9. Fact #772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save Fuel

    Broader source: Energy.gov [DOE]

    A recent study by Oak Ridge National Laboratory shows that the fuel economy of cars and light trucks in the study decreases rapidly at speeds above 50 miles per hour (mph). The study of 74 light...

  10. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant, influence. Lastly, temperature stratification had a negligible influence due to the NTC behavior of the PRF mixtures.« less

  11. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Inspection and Gamma-Ray Dose Rate Measurements of the Annulus of the VSC-17 Concrete Spent Nuclear Fuel Storage Cask

    SciTech Connect (OSTI)

    P. L. Winston

    2007-09-01

    The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.

  13. Fact #729: May 28, 2012 Secondary Household Vehicles Travel Fewer Miles

    Broader source: Energy.gov [DOE]

    When a household has more than one vehicle, the secondary vehicles travel fewer miles than the primary vehicle. In a two-vehicle household, the second vehicle travels less than half of the miles...

  14. A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals

    SciTech Connect (OSTI)

    Deshmukh, S.R.; Vlachos, D.G.

    2007-06-15

    A reduced mechanism and a one-step rate expression for fuel-lean methane/air catalytic combustion on an Rh catalyst are proposed. These are developed from a detailed microkinetic model using a computer-aided model reduction strategy that employs reaction path analysis, sensitivity analysis, partial equilibrium analysis, and simple algebra to deduce the most abundant reaction intermediate and the rate-determining step. The mechanism and the one-step rate expression are then tested on Pt catalyst. It is found that the reaction proceeds effectively via the same mechanistic pathway on both noble metals, but the effective reaction orders differ due to the difference in the adsorption strength of oxygen. Based on the homologous series idea, the rate expression is extended to small alkanes (ethane and propane; butane is also briefly discussed) and is found to reasonably describe experimental data. Estimation of the relevant parameters in the rate expression for various fuels and catalysts using the semiempirical bond-order conservation theory, quantum mechanical density functional theory, and/or simple experiments is discussed. Finally, it is proposed that detailed microkinetic models with coverage-dependent parameters can assist in rationalizing the apparent discrepancies between experimental data from various research groups. (author)

  15. Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    Nearly 64% of new cars sold in model year (MY) 1975 had combined highway/city fuel economy of 15 miles per gallon (mpg) or less [blue shading]. By 2010, 63% of cars had fuel economy of 25 mpg or...

  16. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise

    Broader source: Energy.gov [DOE]

    The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2013 was 1.6 miles per gallon (mpg) higher than MY 2011. This increase brings the new light vehicle fuel...

  17. Fact #764: January 28, 2013 Model Year 2013 Brings More Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a consumer purchasing a new large car in 2008, the highest combined cityhighway fuel economy available was 25 miles per gallon (mpg); for 2013, the top fuel economy of the ...

  18. Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy

    Broader source: Energy.gov [DOE]

    The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy...

  19. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed

    Broader source: Energy.gov [DOE]

    Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed of 55 miles per...

  20. Analysis of Three Mile Island-Unit 2 accident

    SciTech Connect (OSTI)

    Not Available

    1980-03-01

    The Nuclear Safety Analysis Center (NSAC) of the Electric Power Research Institute has analyzed the Three Mile Island-2 accident. Early results of this analysis were a brief narrative summary, issued in mid-May 1979 and an initial version of this report issued later in 1979 as noted in the Foreword. The present report is a revised version of the 1979 report, containing summaries, a highly detailed sequence of events, a comparison of that sequence of events with those from other sources, 25 appendices, references and a list of abbreviations and acronyms. A matrix of equipment and system actions is included as a folded insert.

  1. Early dismantlement of Three Mile Island Unit 2

    SciTech Connect (OSTI)

    Byrne, J.; Heisey, K.A.

    1996-12-31

    Three Mile Island Unit 2 (TMI-2) nuclear station ceased commercial operation following the March 1979 accident. Following completion of an extensive cleanup effort that included removal and shipment of the damaged core, the U.S. Nuclear Regulatory Commission issued a possession-only license (POL) amendment on September 14, 1993. Postdefueling monitored storage (PDMS) technical specifications were issued on December 28, 1993. Entry into PDMS required that the licensee demonstrate that the plant was in a safe and stable condition and posed no risk to public health and safety.

  2. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  3. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  4. Radioactive Waste Management: Study of Spent Fuel Dissolution Rates in Geological Storage Using Dosimetry Modeling and Experimental Verification

    SciTech Connect (OSTI)

    Hansen, Brady; Miller, William

    2011-10-28

    This research will provide improved predictions into the mechanisms and effects of radiolysis on spent nuclear fuel dissolution in a geological respository through accurate dosimetry modeling of the dose to water, mechanistic chemistry modeling of the resulting radiolytic reactions and confirmatory experimental measurements. This work will combine effort by the Nuclear Science and Engineering Institute (NSEI) and the Missouri University Research Reactor (MURR) at the University of Missouri-Columbia, and the expertise and facilities at the Pacific Northwest National Laboratory (PNNL).

  5. 2012 Fuel Economy of New Vehicles Sets Record High: EPA

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon.

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Air Pollution Control Program The Air Pollution Control Program assists state, local, and tribal agencies in planning, developing, establishing, improving, and maintaining adequate programs for prevention and control of air pollution or implementation of national air quality standards. Plans may emphasize alternative fuels, vehicle maintenance, and transportation choices to reduce vehicle miles traveled. Eligible applicants may receive federal funding for up to 60% of project costs to implement

  7. Renewable Fuels and Vehicles Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuels & Vehicles Overview Dale Gardner Associate Director, Renewable Fuels S&T 12 August 2008 State Energy Advisory Board to 2 National Renewable Energy Laboratory Innovation for Our Energy DOE Programs Supported 3 National Renewable Energy Laboratory Innovation for Our Energy Advanced Energy Initiative * Develop advanced battery technologies that allow plug-in hybrid electric vehicles to have a 40 mile range operating solely on battery charge. * Accelerate progress towards the

  8. Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year?

    Broader source: Energy.gov [DOE]

    According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline vehicle with that fuel...

  9. Vehicle Efficiency and Tractive Work: Rate of Change for the Past Decade and Accelerated Progress Required for U.S. Fuel Economy and CO2 Regulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, John

    2016-04-05

    A major driving force for change in light-duty vehicle design and technology is the National Highway Traffic Safety Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) joint final rules concerning Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emissions for model years (MY) 2016 through 2025 passenger cars and light trucks. The chief goal of this current study is to compare the already rapid pace of fuel economy improvement and technological change over the previous decade to the needed rate of change to meet regulations over the next decade. EPA and NHTSA comparisons of the MY 2004 USmore » light-duty vehicle fleet to the MY 2014 fleet shows improved fuel economy (FE) of approximately 28% using the same FE estimating method mandated for CAFE regulations. Future predictions by EPA and NHTSA concerning ensemble fleet fuel economy are examined as an indicator of needed vehicle rate-of-change. A set of 40 same-model vehicle pairs for MY 2005 and MY 2015 is compared to examine changes in energy use and related technological change over the 10 year period. Powertrain improvements measured as increased vehicle efficiency, and vehicle mass-glider improvements measured as decreased tractive work requirements are quantified. The focus is first on conventional gasoline powertrain vehicles which currently dominate the market, with hybrids also examined due to their high potential importance for CAFE compliance. Most hybrid vehicles with significant sales in 2014 were represented in the study. Results show 10 years of progress for the studied vehicle set includes lowered tractive effort of about 5.6% and improved powertrain efficiency of about 16.5%. Further analysis shows that this high rate of past progress must increase by about 50% in order to meet the 2025 CAFE standards. Examination of where certain MY 2015 vehicle compare to CAFE regulations is offered as well as some simple conjecture on what is needed to meet regulations under reasonable assumptions.« less

  10. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find alternative fuel vehicle resources. Alternative Fuels Data Center FuelEconomy.gov-Gas Mileage, Emissions, Air Pollution Ratings, and Safety Data National Renewable Energy ...

  11. Table 5.13. U.S. Average Vehicle-Miles Traveled by Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    More ... 12.3 Q Q 11.4 10.8 12.8 13.9 12.7 Q 10.7 Below Poverty Line 100 Percent ... 10.7 Q Q 8.8 10.2 10.9 12.0...

  12. Table 5.3. U.S. per Vehicle Miles Traveled, Vehicle Fuel Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    3.0 75,000 or More ... 19.1 12.3 620 727 19.8 4.2 Below Poverty Line 100 Percent ... 12.4 10.7 558 647 19.2 6.8...

  13. Effects of uncertainty in SAPRC90 rate constants and selected product yields on reactivity adjustment factors for alternative fuel vehicle emissions. Final report

    SciTech Connect (OSTI)

    Bergin, M.S.; Russell, A.G.; Yang, Y.J.; Milford, J.B.; Kirchner, F.; Stockwell, W.R.

    1996-07-01

    Tropospheric ozone is formed in the atmosphere by a series of reactions involving volatile organic compounds (VOCs) and nitrogen oxides (NO{sub x}). While NOx emissions are primarily composed of only two compounds, nitrogen oxide (NO) and nitrogen dioxide (NO{sub 2}), there are hundreds of different VOCs being emitted. In general, VOCs promote ozone formation, however, the rate and extent of ozone produced by the individual VOCs varies considerably. For example, it is widely acknowledged that formaldehyde (HCHO) is a very reactive VOC, and produces ozone rapidly and efficiently under most conditions. On the other hand, VOCs such as methane, ethane, propane, and methanol do not react as quickly, and are likely to form less urban ozone than a comparable mass of HCHO. The difference in ozone forming potential is one of the bases for the use of alternative fuels. The fuels considered in this study included compressed natural gas, LPG, mixtures of methanol and gasoline, ethanol and gasoline, and a reformulated gasoline.

  14. Determination of total Pu content in a Spent Fuel Assembly by Measuring Passive Neutron Count rate and Multiplication with the Differential Die-Away Instrument

    SciTech Connect (OSTI)

    Henzl, Vladimir; Croft, Stephen; Swinhoe, Martyn T.; Tobin, Stephen J.

    2012-07-18

    A key objective of the Next Generation Safeguards Initiative (NGSI) is to evaluate and develop non-destructive assay (NDA) techniques to determine the elemental plutonium content in a commercial-grade nuclear spent fuel assembly (SFA) [1]. Within this framework, we investigate by simulation a novel analytical approach based on combined information from passive measurement of the total neutron count rate of a SFA and its multiplication determined by the active interrogation using an instrument based on a Differential Die-Away technique (DDA). We use detailed MCNPX simulations across an extensive set of SFA characteristics to establish the approach and demonstrate its robustness. It is predicted that Pu content can be determined by the proposed method to a few %.

  15. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  16. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  17. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Vehicle Tax Alternative fuels used to operate on-road vehicles are taxed at a rate of $0.162 per gasoline gallon equivalent (GGE). Alternative fuels are taxed at the same rate as gasoline and gasohol (5.1% of the statewide average wholesale price of a gallon of self-serve unleaded regular gasoline). Refer to the Virginia Department of Motor Vehicles (DMV) Fuels Tax Rates and Alternative Fuels Conversion website for fuel-specific GGE calculations. All-electric vehicles (EVs)

  19. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  20. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Tax Alternative fuels are subject to an excise tax at a rate of 0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale...

  1. Fact #903: December 14, 2015 Vehicle Miles of Travel is up in 2015 -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dataset | Department of Energy 03: December 14, 2015 Vehicle Miles of Travel is up in 2015 - Dataset Fact #903: December 14, 2015 Vehicle Miles of Travel is up in 2015 - Dataset Excel file and dataset for Vehicle Miles of Travel is up in 2015 File fotw#903_web.xlsx More Documents & Publications Project Reports for Salish and Kootenai Tribes, Confederated Tribes of the Flathead Reservation: S&K Holding Company - 2004 Project 2015 GTO Peer Review U.S. LNG Imports and Exports

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  3. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOE Patents [OSTI]

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  4. 51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

    Broader source: Energy.gov [DOE]

    51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

  5. Fuel Efficiency of New European HD Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    erkkila.pdf More Documents & Publications Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of Commercial Trucking; A Key Enabler of Expanded U.S. Trade and Economic Growth Fuel-Borne Catalyst Assisted DPF regeneration on a Renault truck MD9 Engine Outfitted with SCR Multicylinder Diesel Engine Design for HCCI Operation

  6. A smooth transition to hydrogen transportation fuel

    SciTech Connect (OSTI)

    Berry, G.D.; Smith, J.R.; Schock, R.N.

    1995-04-14

    The goal of this work is to examine viable near-term infrastructure options for a transition to hydrogen fueled vehicles and to suggest profitable directions for technology development. The authors have focused in particular on the contrasting options of decentralized production using the existing energy distribution network, and centralized production of hydrogen with a large-scale infrastructure. Delivered costs have been estimated using best available industry cost and deliberately conservative economic assumptions. The sensitivities of these costs have then been examined for three small-scale scenarios: (1) electrolysis at the home for one car, and production at the small station scale (300 cars/day), (2) conventional alkaline electrolysis and (3) steam reforming of natural gas. All scenarios assume fueling a 300 mile range vehicle with 3.75 kg. They conclude that a transition appears plausible, using existing energy distribution systems, with home electrolysis providing fuel costing 7.5 to 10.5{cents}/mile, station electrolysis 4.7 to 7.1{cents}/mile, and steam reforming 3.7 to 4.7{cents}/mile. The average car today costs about 6{cents}/mile to fuel. Furthermore, analysis of liquid hydrogen delivered locally by truck from central processing plants can also be competitive at costs as low as 4{cents}/mile. These delivered costs are equal to $30 to $70 per GJ, LHV. Preliminary analysis indicates that electricity transmission costs favor this method of distributing energy, until very large (10 GW) hydrogen pipelines are installed. This indicates that significant hydrogen pipeline distribution will be established only when significant markets have developed.

  7. Fact #728: May 21, 2012 Average Trip Length is Less Than Ten Miles

    Broader source: Energy.gov [DOE]

    The average trip length (one-way) is 9.7 miles according to the 2009 Nationwide Personal Transportation Survey. Trip lengths vary by the purpose of the trip. Shopping and family/personal business...

  8. Fact #640: September 13, 2010 Monthly Trends in Vehicle Miles of Travel

    Broader source: Energy.gov [DOE]

    Vehicle travel in the U.S. varies by month. There are many reasons for this, including the fact that some months are shorter than others. The vehicle miles of travel (VMT) recorded in February is...

  9. Fact #552: January 5, 2009 Vehicle Miles of Travel by Region

    Broader source: Energy.gov [DOE]

    Total vehicle miles of travel (VMT) in the U.S. have declined from 2007 to 2008. The latest data available, September 2008, shows a 4.4% decline in travel that varies by region. Comparing September...

  10. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Transit Buses Operated on Biodiesel Blends (B20) 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20) Presentation given at DEER 2006, ...

  11. Fact #670: April 11, 2011 Vehicle-Miles of Travel Rises in 2010

    Broader source: Energy.gov [DOE]

    The preliminary estimates from the Federal Highway Administration show that vehicle-miles of travel (VMT) increased slightly in 2010 over the previous year, but have not surpassed the peak of 3.03...

  12. Fact #903: December 14, 2015 Vehicle Miles of Travel is up in...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Miles of Travel is up in 2015 File fotw903web.xlsx More Documents & Publications Project Reports for Salish and Kootenai Tribes, Confederated Tribes of the Flathead ...

  13. Bureaucracy in crisis: Three Mile Island, the shuttle Challenger, and risk assessment

    SciTech Connect (OSTI)

    Casamayou, M.H.

    1995-07-01

    This book is a study in organizational theory about how technological bureaucracies perceive, communicate about, and respond to potential risks to public safety, using Three mile island and the Challenger accident as examples.

  14. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three...

    Office of Scientific and Technical Information (OSTI)

    Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation Gauld, Ian C. Oak Ridge National Lab. (ORNL), Oak Ridge,...

  15. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type

    Broader source: Energy.gov [DOE]

    The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs)...

  16. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Accepted Manuscript: Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation This...

  17. Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy

    Broader source: Energy.gov [DOE]

    The "Gas Guzzler Tax" is collected from the public for each new car purchased with fuel economy less than 22.5 miles per gallon (mpg). The Gas Guzzler Tax does not apply to light trucks, only cars....

  18. Fact #826: June 23, 2014 The Effect of Tire Pressure on Fuel Economy

    Broader source: Energy.gov [DOE]

    Researchers at Oak Ridge National Laboratory recently conducted a study that measured the effect of tire pressure on fuel economy at speeds ranging from 40 to 80 miles per hour. The figure below...

  19. Operational and Environmental Monitoring Within a Three-Mile Radius of Project Rulison

    Office of Legacy Management (LM)

    FIRST QUARTER 20 08 REPORT Operational and Environmental Monitoring Within a Three-Mile Radius of Project Rulison Prepared by: A U G U S T 2 0 0 8 FIRST QUARTER 2008 REPORT OPERATIONAL AND ENVIRONMENTAL MONITORING WITHIN A THREE-MILE RADIUS OF PROJECT RULISON Prepared for: Noble Energy Production, Inc. Prepared by: URS Corporation 8181 East Tufts Avenue Denver, CO 80237 August 12, 2008 First Quarter 2008 Report August 2008 i TABLE OF CONTENTS Page 1 Introduction

  20. 1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion

    SciTech Connect (OSTI)

    Hall, D.

    1982-07-01

    Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

  1. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    system-efficiency Go Generated_thumb20140708-12454-1nsa79k U.S. Light-Duty Fuel Consumption and Vehicle Miles Traveled (VMT) Generated_thumb20140708-12454-1nsa79k Trend of per capita VMT and fuel use in U.S. light-duty vehicles from 1970-2012 Last update July 2014 View Graph Graph Download Data Generated_thumb20141209-960-hxf1gg Clean Cities Petroleum Savings by Fuel Economy and VMT Reductions Generated_thumb20141209-960-hxf1gg Trend of displacement by fuel economy improvement and VMT reduction

  2. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Compressed natural gas motor fuel is subject to the state fuel excise tax at the rate of $0.30 per 120 cubic feet, measured at 14.73 pounds per square inch and 60 degrees Fahrenheit. Propane motor fuel is subject to the excise tax $0.30 per 1.3 gallons at 60 degrees Fahrenheit. (Reference Oregon Revised Statutes 319.530

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.14 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor fuel that is typically derived from agricultural products that have been denatured. Methyl alcohol is a motor fuel that is most commonly derived from wood products. (Reference South Dakota Statutes 10-47B-3 and 10-47B-4

  5. Analysis of the Three Mile Island submerged demineralizer system vessel burial data

    SciTech Connect (OSTI)

    Jasen, W.G.; Amir, S.J.

    1989-09-01

    The Submerged Demineralizer System (SDS) was used during the Three Mile Island (TMI) nuclear reactor cleanup to remove cesium and strontium from contaminated water. The SDS vessels are 2-ft-in diameter and 4-ft tall stainless steel cylinders containing up to 60 kCi of radioactive cesium and strontium loaded on damp zeolite. The water in the damp zeolite absorbs some of the ionizing radiation and decomposes to hydrogen and oxygen by a process called radiolysis. Gas generation rates approaching 1 L/h (Quinn et al. 1984) have been calculated and measured for some of these loaded vessels. Each of the SDS vessels contains a catalyst bed to recombine the available hydrogen and oxygen back to water. Tests have proven this hydrogen control method to be highly effective, even under very wet (but unsubmerged) conditions. Nineteen SDS vessels, packaged one at a time in a shielded and licensed shipping cask, were shipped to Rockwell Hanford Operations (Rockwell). Collectively, these vessels contain approximately 7,500 kCi of radioactive material. Sixteen vessels were transloaded into concrete overpacks and buried at the Hanford Site. The contents of the other three vessels were vitrified at Pacific Northwest Laboratory. Subsequent to placement of the SDS vessels in the burial grounds, DOE Order 5820.2A (DOE 1988) was issued in September 1988. This order requires wastes to be evaluated against 10 CFR 61.55 for radioactivity above greater-than-class C(GTCC) limits. Fourteen of the sixteen vessels buried at the Hanford Site have been determined to be GTCC waste. 5 refs., 3 figs., 3 tabs.

  6. To Pluto and Beyond: Powering New Horizons' 3-Billion-Mile Journey |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy To Pluto and Beyond: Powering New Horizons' 3-Billion-Mile Journey To Pluto and Beyond: Powering New Horizons' 3-Billion-Mile Journey July 15, 2015 - 11:23am Addthis This image of Pluto, taken by New Horizons after a 9 1/2-year journey, is our highest-resolution photo of the dwarf planet since its discovery by Clyde Tombaugh in 1930. | Photo courtesy of NASA. This image of Pluto, taken by New Horizons after a 9 1/2-year journey, is our highest-resolution photo of the

  7. NUREG-0668 MASTER* TITLE LIST PUBLICLY AVAILABLE DOCUMENTS THREE MILE ISLAND UNIT 2

    Office of Scientific and Technical Information (OSTI)

    RECSIVEP ev Tin JUN 11157^; NUREG-0668 MASTER* TITLE LIST PUBLICLY AVAILABLE DOCUMENTS THREE MILE ISLAND UNIT 2 DOCKET 50-320 Cumulated to May 21,1979 Office of Administration U. S. Nuclear Regulatory Commission NUREG-0668 TITLE LIST PUBLICLY AVAILABLE DOCUMENTS THREE MILE ISLAND UNIT 2 DOCKET 50-320 Cumulated to M a y 2 1 , 1979 Division of Technical Information and Document Control Office of Administration U. S. Nuclear Regulatory Commission Washington, D.C. 20555 . CONTENTS Page Preface. v

  8. A Long Term Field Emissions Study of Natural Gas Fueled Refuse Haulers in New York City

    SciTech Connect (OSTI)

    Nigel N. Clark; Byron l. Rapp; Mridul Gautam; Wenguang Wang; Donald W. Lyons

    1998-10-19

    New York City Department of Sanitation has operated natural gas fueled refuse haulers in a pilot study: a major goal of this study was to compare the emissions from these natural gas vehicles with their diesel counterparts. The vehicles were tandem axle trucks with GVW (gross vehicle weight) rating of 69,897 pounds. The primary use of these was for street collection and transporting the refuse to a landfill. West Virginia University Transportable Heavy Duty Emissions Testing Laboratories have been engaged in monitoring the tailpipe emissions from these trucks for seven-years. In the later years of testing the hydrocarbons were speciated for non-methane and methane components. Six of these vehicles employed the older technology (mechanical mixer) Cummins L-10 lean burn natural gas engines. Five trucks were equipped with electronically controlled Detroit Diesel Series 50 lean burn engines, while another five were powered by Caterpillar stoichiometric burn 3306 natural gas engines, The Ca terpillar engines employed an exhaust oxygen sensor feedback and three way catalysts. Since the refuse haulers had automatic Allison transmissions, and since they were employed in stop-and-go city service, initial emissions measurements were made using the Central Business Cycle (SAE Jl376) for buses at 42,000 pound test weight. Some additional measurements were made using an ad hoc cycle that has been designed to be more representative of the real refuse hauler use that included several compaction cycles. The Cummins powered natural gas vehicles showed oxides of nitrogen and carbon monoxide emission variations typically associated with variable fuel mixer performance. In the first Year of testing, the stoichiometric Caterpillar engines yielded low emission levels, but in later years two of these refuse haulers had high carbon monoxide attributed to failure of the feedback system. For example, carbon monoxide on these two vehicles rose from 1.4 g/mile and 10 g/mile in 1995 to 144.9 g/mile and 57.8 g/mile in 1996. These stoichiometric engines were also less fuel efficient than their lean burn counterparts. The Detroit Diesel Series 50 powered refuse haulers produced high levels of oxides of nitrogen. However, it was found that changing the shifting patterns of the transmission lowered the oxides of nitrogen. All three engine types showed the potential for low emissions operation and the particulate matter reduction advantage offered by natural gas was evident from the results.

  9. Fact #616: March 29, 2010 Household Vehicle-Miles of Travel by Trip Purpose

    Broader source: Energy.gov [DOE]

    In 2009, getting to and from work accounted for about 27% of household vehicle-miles of travel (VMT). Work-related business was 8.4% of VMT in 2001, but declined to 6.7% in 2009, possibly due to...

  10. Fact #860 February 16, 2015 Relationship of Vehicle Miles of Travel and the

    Broader source: Energy.gov (indexed) [DOE]

    Price of Gasoline - Dataset | Department of Energy Relationship of Vehicle Miles of Travel and the Price of Gasoline File fotw#860_web.xlsx More Documents & Publications Fact #906: January 4, 2016 VMT and the Price of Gasoline Typically Move in Opposition - Dataset 2012 Data File 2013 Wind Technologies Market Report Data

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Excise Taxes All licensed on-road vehicles fueled with compressed natural gas (CNG) or liquefied petroleum gas (propane) are subject to a special fuels tax through the Excise Taxes Division of the Louisiana Department of Revenue (LDR). Vehicle owners or operators must pay either an annual flat rate decal fee in the amount of $120 per vehicle with a gross vehicle weight rating (GVWR) of less than 10,000 pounds (lbs.) or a variable rate of 80% of the current special fuels tax rate. The owners or

  12. Review of the state of criticality of the Three Mile Island Unit 2 core and reactor vessel

    SciTech Connect (OSTI)

    Stratton, W.R. )

    1987-04-15

    The events during the early hours of the Three Mile Island Unit 2 (TMI-2) accident on March 28, 1979 caused the fuel in the reactor core to crumble or disintegrate, and then subside into a rubble structure more compact that its normal configuration. The present height of the core is about seven feet, five feet less than its normal configuration of 12 feet. With the same boron content and some or all of the control rod and burnable poison rod material as the normal core configuration, the collapsed structure is calculated to be more reactive. However, the reactor is assuredly subcritical at present because of the extraordinarily high boron concentration maintained in the coolant water. Four additional and different physical models are discussed briefly in the report to illustrate the margin of subcriticality, to provide a better estimate of the neutron multiplication factor, and to provide some understanding of the criticality effects of the important parameters. Two different finite, cylindrical models of a collapsed core are also presented in this report. The conclusion of this review is that the reactor is now very far subcritical with a boron concentration of 4350 ppM or more, and no conceivable rearrangement of fuel can create a critical state. Careful administrative control to maintain the boron concentration of the reactor coolant close to 5000 ppM, and controls to rigorously exclude addition of unborated water to the primary system, provide additional assurance that subcriticality will be maintained. The immediate corollary is that the defueling of the reactor vessel can proceed as planned, with complete confidence that such operations will remain subcritical. 20 refs.

  13. A reevaluation of cancer incidence near the Three Mile Island nuclear plant: The collision of evidence and assumptions

    SciTech Connect (OSTI)

    Wing, S.; Richardson, D.; Armstrong, D.; Crawford-Brown, D.

    1997-01-01

    Previous studies concluded that there was no evidence that the 1979 nuclear accident at Three Mile Island (TMI) affected cancer incidence in the surrounding area; however, there were logical and methodological problems in earlier reports that led us to reconsider data previously collected. A 10-mile area around TMI was divided into 69 study tracts, which were assigned radiation dose estimates based on radiation readings and models of atmospheric dispersion. Incident cancers from 1975 to 1985 were ascertained from hospital records and assigned to study tracts. Associations between accident doses and incidence rates of leukemia, lung cancer, and all cancer were assessed using relative dose estimates calculated by the earlier investigators. Adjustments were made for age, sex, socioeconomic characteristics, and preaccident variation in incidence. Considering a 2-year latency, the estimated percent increase per dose unit {plus_minus} standard error was 0.020 {plus_minus} 0.012 for all cancer, 0.082 {plus_minus} 0.032 for lung cancer, and 0.116 {plus_minus} 0.067 for leukemia. Adjustment for socioeconomic variables increased the estimates to 0.034 {plus_minus} 0.013, 0.103 {plus_minus} 0.035, and 0.139 {plus_minus} 0.073 for all cancer, lung cancer, and leukemia, respectively. Associations were generally larger considering a 5-year latency, but were based on smaller numbers of cases. Results support the hypothesis that radiation doses are related to increased cancer incidence around TMI. The analysis avoids medical detection bias, but suffers from inaccurate dose classification; therefore, results may underestimate the magnitude of the association between radiation and cancer incidence. These associations would not be expected, based on previous estimates of near-background levels of radiation exposure following the accident. 35 refs., 3 tabs.

  14. Fuel Cell Electric Vehicles Make Rapid Progress in Range, Durability - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Fuel Cell Electric Vehicles Make Rapid Progress in Range, Durability NREL analyzed data from 500,000 individual vehicle trips covering 3.6 million miles August 10, 2012 The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) recently completed a seven-year project to demonstrate and evaluate hydrogen fuel cell electric vehicles (FCEVs) and hydrogen fueling infrastructure in real-world settings. The National Fuel Cell Electric Vehicle Learning

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax Rates A special excise tax rate of 2% is imposed on the sale of propane and an excise tax of $0.23 per gallon is imposed on all special fuels sales and deliveries, including compressed natural gas (CNG) and liquefied natural gas (LNG). One gallon of special fuel is equal to 120 cubic feet of CNG or 1.7 gallons of LNG. Retailers must obtain a license from the Office of the State Tax Commissioner to sell special fuels. Exceptions apply. (Reference House Bill 1133, 2015, and

  16. Structure and Dynamics of Fuel Jets Injected into a High-Temperature Subsonic Crossflow: High-Data-Rate Laser Diagnostic Investigation under Steady and Oscillatory Conditions

    SciTech Connect (OSTI)

    Lucht, Robert; Anderson, William

    2015-01-23

    An investigation of subsonic transverse jet injection into a subsonic vitiated crossflow is discussed. The reacting jet in crossflow (RJIC) system investigated as a means of secondary injection of fuel in a staged combustion system. The measurements were performed in test rigs featuring (a) a steady, swirling crossflow and (b) a crossflow with low swirl but significant oscillation in the pressure field and in the axial velocity. The rigs are referred to as the steady state rig and the instability rig. Rapid mixing and chemical reaction in the near field of the jet injection is desirable in this application. Temporally resolved velocity measurements within the wake of the reactive jets using 2D-PIV and OH-PLIF at a repetition rate of 5 kHz were performed on the RJIC flow field in a steady state water-cooled test rig. The reactive jets were injected through an extended nozzle into the crossflow which is located in the downstream of a low swirl burner (LSB) that produced the swirled, vitiated crossflow. Both H2/N2 and natural gas (NG)/air jets were investigated. OH-PLIF measurements along the jet trajectory show that the auto-ignition starts on the leeward side within the wake region of the jet flame. The measurements show that jet flame is stabilized in the wake of the jet and wake vortices play a significant role in this process. PIV and OH–PLIF measurements were performed at five measurement planes along the cross- section of the jet. The time resolved measurements provided significant information on the evolution of complex flow structures and highly transient features like, local extinction, re-ignition, vortex-flame interaction prevalent in a turbulent reacting flow. Nanosecond-laser-based, single-laser-shot coherent anti-Stokes Raman scattering (CARS) measurements of temperature and H2 concentraiton were also performed. The structure and dynamics of a reacting transverse jet injected into a vitiated oscillatory crossflow presents a unique opportunity for applying advanced experimental diagnostic techniques with increasing fidelity for the purposes of computational validation and model development. Numerical simulation of the reacting jet in crossflow is challenging because of the complex vortical structures in the flowfield and compounded by an unsteady crossflow. The resulting benchmark quality data set will include comprehensive, accurate measurements of mean and fluctuating components of velocity, pressure, and flame front location at high pressure and with crossflow conditions more representative of modern gas turbine engines. A proven means for producing combustion dynamics is used for the performing combustion instability experimental study on a reacting jet in crossflow configuration. The method used to provide an unsteady flowfield into which the transverse jet is injected is a unique and novel approach that permits elevated temperature and pressure conditions. A model dump combustor is used to generate and sustain an acoustically oscillating vitiated flow that serves as the crossflow for transverse jet injection studies. A fully optically accessible combustor test section affords full access surrounding the point of jet injection. High speed 10 kHz planar measurements OH PLIF and high frequency 180 kHz wall pressure measurements are performed on the injected reacting transverse jet and surrounding flowfield, respectively, under simulated unstable conditions. The overlay of the jet velocity flowfield and the flame front will be investigated using simultaneous 10 kHz OH PLIF and PIV in experiments to be performed in the near future.

  17. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  18. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  19. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  20. Model Year 2007 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  1. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  2. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  3. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  4. Model Year 2008 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  5. Model Year 2006 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2005-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  6. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  7. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicle (EV) Access to Roadways A low-speed EV, also known as a neighborhood electric vehicle, is defined as a motor vehicle with four wheels, a gross vehicle weight rating of 3,000 pounds or less, and capable of achieving a minimum speed of 20 miles per hour (mph) and a maximum speed of 25 mph. Low-speed EVs are subject to all provisions applicable to a motor vehicle and must meet federal safety standards established in Title 49 of the Code of Federal Regulations, section 571.500.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Definition A PEV is defined as a vehicle that: Draws electricity from a battery with a capacity of at least four kilowatt-hours and is capable of being charged from an external source; Has not been modified from the original equipment manufacturer power train specifications; Has a gross vehicle weight rating of 8,500 pounds or less; Has a maximum speed of at least 65 miles per hour; and Meets applicable requirements in Title 49 of the U.S. Code of Federal Regulations, section 571. (Reference

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated feedstock production, fueling infrastructure, and fleet vehicles. Loan recipients must complete a loan application and pay a loan application fee. For more information, including application forms and interest rate and fee information, see the SELP website. (Reference Oregon

  11. Reactor engineering support of operations at Three Mile Island nuclear station

    SciTech Connect (OSTI)

    Tropasso, R.T.

    1995-12-31

    The purpose of this paper is to detail the activities in which plant nuclear engineering personnel provide direct support to plant operations. The specific activities include steady-state, transient, and shutdown/refueling operation support as well as special project involvement. The paper is intended to describe the experiences at Three Mile Island (TMI) in which significant benefit to the success of the activity is achieved through the support of the nuclear engineers.

  12. Fuel Pumping System And Method

    DOE Patents [OSTI]

    Shafer, Scott F.; Wang, Lifeng

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  13. Fuel pumping system and method

    DOE Patents [OSTI]

    Shafer, Scott F.; Wang, Lifeng ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Vehicle Acquisition Requirements When purchasing new state vehicles, the North Carolina Department of Administration must give purchase preference to vehicles with fuel economy ratings that rank among the top 15% of comparable vehicles in their class. (Reference North Carolina General Statutes 143-341(8)(i)

  15. NREL: Transportation Research - NREL Study Predicts Fuel and Emissions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Automated Mobility District Study Predicts Fuel and Emissions Impact of Automated Mobility District January 21, 2016 With emerging technologies, travel behavior may shift from personal vehicles to automated transit systems. An NREL study shows that a campus-sized -- ranging from four to 10 square miles -- automated mobility district (AMD) has the potential to reduce fuel consumption and greenhouse gas emissions by 4% to 14% depending on various operating and ridership factors.

  16. Recent Developments in the Management of Cameco Corporation's Fuel Services Division Waste - 13144

    SciTech Connect (OSTI)

    Smith, Thomas P.

    2013-07-01

    Cameco Corporation is a world leader in uranium production. Headquartered in Saskatoon, Saskatchewan our operations provide 16% of the world uranium mine production and we have approximately 435 million pounds of proven and probable uranium reserves. Cameco mining operations are located in Saskatchewan, Wyoming, Nebraska and Kazakhstan. Cameco is also a major supplier of uranium processing services required to produce fuel for the generation of clean energy. These operations are based in Blind River, Cobourg and Port Hope, Ontario and are collectively referred to as the Fuel Services Division. The Fuel Services Division produces uranium trioxide from uranium ore concentrate at the Blind River Refinery. Cameco produces uranium hexafluoride and uranium dioxide at the Port Hope Conversion Facility. Cameco operates a fuel manufacturing facility in Port Hope, Ontario and a metal fabrication facility located in Cobourg, Ontario. The company manufactures fuel bundles utilized in the Candu reactors. Cameco's Fuel Services Division produces several types of low-level radioactively contaminated wastes. Internal processing capabilities at both the Blind River Refinery and Port Hope Conversion Facility are extensive and allow for the recycling of several types of waste. Notwithstanding these capabilities there are certain wastes that are not amenable to the internal processing capabilities and must be disposed of appropriately. Disposal options for low-level radioactively contaminated wastes in Canada are limited primarily due to cost considerations. In recent years, Cameco has started to ship marginally contaminated wastes (<500 ppm uranium) to the United States for disposal in an appropriate landfill. The landfill is owned by US Ecology Incorporated and is located near Grand View, Idaho 70 miles southeast of Boise in the Owyhee Desert. The facility treats and disposes hazardous waste, non-hazardous industrial waste and low-activity radioactive material. The site's arid climate, deep groundwater and favourable geology help ensure permanent waste isolation. Combined with a state of the art multi-layer landfill liner system, the Grand View facility represents an ideal choice to minimize environmental liability. Marginally contaminated wastes from operations within the Fuel Services Division are typically loaded into PacTec IP-2 rated Intermediary Bulk Containers and then transported by road to a nearby rail siding. The Intermediary Bulk Containers are then loaded in US Ecology owned gondola rail-cars. The gondolas are then transported via Canadian Pacific and Union Pacific railroads to the US Ecology Rail Transfer facility located in Mayfield, Idaho. The Intermediary Bulk Containers are unloaded into trucks for transport to the disposal facility located approximately 32 miles away. (authors)

  17. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect (OSTI)

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected during this period lead to the conclusion that the BMW Hydrogen 7 Mono-Fuel demonstration vehicles are likely the cleanest combustion engine vehicles ever tested at Argonne's APRF.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E Pacific Gas & Electric (PG&E) offers discounted Residential Time-of-Use rates for electricity used for plug-in electric vehicle charging. Discounted rates are also available for compressed or uncompressed natural gas used in natural gas vehicle (NGV) home fueling appliances. For more information, see the PG&E Electric Vehicle Rate Options and NGV Rates websites.

  19. Revisiting Insights from Three Mile Island Unit 2 Postaccident Examinations and Evaluations in View of the Fukushima Daiichi Accident

    SciTech Connect (OSTI)

    Joy Rempe; Mitchell Farmer; Michael Corradini; Larry Ott; Randall Gauntt; Dana Powers

    2012-11-01

    The Three Mile Island Unit 2 (TMI-2) accident, which occurred on March 28, 1979, led industry and regulators to enhance strategies to protect against severe accidents in commercial nuclear power plants. Investigations in the years after the accident concluded that at least 45% of the core had melted and that nearly 19 tonnes of the core material had relocated to the lower head. Postaccident examinations indicate that about half of that material formed a solid layer near the lower head and above it was a layer of fragmented rubble. As discussed in this paper, numerous insights related to pressurized water reactor accident progression were gained from postaccident evaluations of debris, reactor pressure vessel (RPV) specimens, and nozzles taken from the RPV. In addition, information gleaned from TMI-2 specimen evaluations and available data from plant instrumentation were used to improve severe accident simulation models that form the technical basis for reactor safety evaluations. Finally, the TMI-2 accident led the nuclear community to dedicate considerable effort toward understanding severe accident phenomenology as well as the potential for containment failure. Because available data suggest that significant amounts of fuel heated to temperatures near melting, the events at Fukushima Daiichi Units 1, 2, and 3 offer an unexpected opportunity to gain similar understanding about boiling water reactor accident progression. To increase the international benefit from such an endeavor, we recommend that an international effort be initiated to (a) prioritize data needs; (b) identify techniques, samples, and sample evaluations needed to address each information need; and (c) help finance acquisition of the required data and conduct of the analyses.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Rate Reduction - SoCalGas Southern California Gas Company (SoCalGas) offers natural gas at discounted rates to customers fueling natural gas vehicles (NGVs). G-NGVR, Natural Gas Service for Home Fueling of Motor Vehicles, is available to residential customers; G-NGV, Natural Gas Service for Motor Vehicles, is available to commercial customers. For more information, see the SoCalGas NGVs website.

  1. Fuel performance during severe accidents. [PWR

    SciTech Connect (OSTI)

    Buescher, B.J.; Gruen, G.E.; MacDonald, P.E.

    1982-01-01

    As a result of the Three Mile Island Unit-2 (TMI-2) accident, the Nuclear Regulatory Commission has initiated a severe fuel damage test program to evaluate fuel rod and core response during severe accidents similar to TMI-2. This program is underway in the Power Burst Facility at the Idaho National Engineering Laboratory. In preparation for the first test, predictions have been performed using the TRAC-BD1 computer. This paper presents the calculated results showing a slow heatup to 2400 K over 5 hours, and the analysis includes accelerated oxidation of the zirconium cladding at temperatures above 1850 K.

  2. Desulfurization Fuel Filter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. PDF icon 2006_deer_rohrbach.pdf More Documents & Publications Diesel Desulfurization Filter Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel Development of NOx Adsorber System for

  3. Percolation Cooling of the Three Mile Island Unit 2 Lower Head by Way of Thermal Cracking and Gap Formation

    SciTech Connect (OSTI)

    Thomsen, K.L.

    2002-01-15

    Two partial models have been developed to elucidate the Three Mile Island Unit 2 lower head coolability by water percolation from above into the thermally cracking debris bed and into a gap between the debris and the wall. The bulk permeability of the cracked top crust is estimated based on simple fracture mechanics and application of Poiseuille's law to the fractures. The gap is considered as an abstraction representing an initially rugged interface, which probably expanded by thermal deformation and cracking in connection with the water ingress. The coupled flow and heat conduction problem for the top crust is solved in slab geometry based on the two-phase Darcy equations together with quasi-steady mass and energy conservation equations. The resulting water penetration depth is in good agreement with the depth of the so-called loose debris bed. The lower-head and bottom-crust problem is treated analogously by a two-dimensional axisymmetric model. The notion of a gap is maintained as a useful concept in the flow analysis. Simulations show that a central hot spot with a peak wall temperature of 1075 to 1100 deg. C can be obtained, but the quenching rates are not satisfactory. It is concluded that a three-dimensional model with an additional mechanism to explain the sudden water ingress to the hot spot center would be more appropriate.

  4. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana, Hettinger, North Dakota, and New Underwood, South Dakota, in Custer and Fallon Counties in Montana, Adams, Bowman, and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  5. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  6. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  7. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit

  8. Compilation of Earthquakes from 1850-2007 within 200 miles of the Idaho National Laboratory

    SciTech Connect (OSTI)

    N. Seth Carpenter

    2010-07-01

    An updated earthquake compilation was created for the years 1850 through 2007 within 200 miles of the Idaho National Laboratory. To generate this compilation, earthquake catalogs were collected from several contributing sources and searched for redundant events using the search criteria established for this effort. For all sets of duplicate events, a preferred event was selected, largely based on epicenter-network proximity. All unique magnitude information for each event was added to the preferred event records and these records were used to create the compilation referred to as “INL1850-2007”.

  9. Examination of claims of Miles et al. in Pons-Fleischmann-type cold fusion experiments

    SciTech Connect (OSTI)

    Jones, S.E.; Hansen, L.D.

    1995-05-04

    In cold fusion experiments conducted at the Naval Research Laboratory in China Lake, M. H. Miles and co-workers claim to have produced excess heat correlated with helium-4 production, X-rays, and Geiger-counter excitation. However, scrutiny of the claims shows that unreliable calorimetric and nuclear-product detection methods were used. Moreover, inconsistencies and errors are found in the data and data analysis. The juxtaposition of several poor techniques and inconsistent data does not make a compelling case for cold fusion. We conclude that the evidence for cold fusion from these efforts is far from compelling. 20 refs., 2 figs., 2 tabs.

  10. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculation | Department of Energy DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$), which represents the cost at which hydrogen fuel cell electric vehicles are projected to become competitive on a cost per mile basis with the competing vehicles (gasoline in

  11. Laboratory measurement verification of laser hazard analysis for miles weapon simulators used in force on force exercises.

    SciTech Connect (OSTI)

    Augustoni, Arnold L.

    2006-08-01

    Due to the change in the batteries used with the Small Arm Laser Transmitters (SALT) from 3-volts dc to 3.6-volts dc and changes to SNL MILES operating conditions, the associated laser hazards of these units required re-evaluation to ensure that the hazard classification of the laser emitters had not changed as well. The output laser emissions of the SNL MILES, weapon simulators and empire guns, used in Force-On-Force (FOF) training exercises, was measured in accordance to the ANSI Standard Z136.4-2005, ''Recommended Practice for Laser Safety Measurements for Hazard Evaluation''. The laser hazard class was evaluated in accordance with the ANSI Standard Z136.1-2000, ''Safe Use of Lasers'', using ''worst'' case conditions associated with these MILES units. Laser safety assessment was conducted in accordance with the ANSI Standard Z136.6-2005, ''Safe Use of Lasers Outdoors''. The laser hazard evaluation of these MILES laser emitters was compared to and supersedes SAND Report SAND2002-0246, ''Laser Safety Evaluation of the MILES and Mini MILES Laser Emitting Components'', which used ''actual'' operating conditions of the laser emitters at the time of its issuance.

  12. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  13. Chapter 11. Fuel Economy: The Case for Market Failure

    SciTech Connect (OSTI)

    Greene, David L; German, John; Delucchi, Mark A

    2009-01-01

    The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of water heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.

  14. To Pluto and Beyond: Powering New Horizons' 3-Billion-Mile Journey...

    Energy Savers [EERE]

    Ridge National Laboratory in Tennessee. The plutonium-238 itself came from the Savannah River Site in South Carolina, which produced nuclear fuel for NASA's space missions for...

  15. Lessons Learned from Three Mile Island Packaging, Transportation and Disposition that Apply to Fukushima Daiichi Recovery

    SciTech Connect (OSTI)

    Layne Pincock; Wendell Hintze; Dr. Koji Shirai

    2012-07-01

    Following the massive earthquake and resulting tsunami damage in March of 2011 at the Fukushima Daiichi nuclear power plant in Japan, interest was amplified for what was done for recovery at the Three Mile Island Unit 2 (TMI-2) in the United States following its meltdown in 1979. Many parallels could be drawn between to two accidents. This paper presents the results of research done into the TMI-2 recovery effort and its applicability to the Fukushima Daiichi cleanup. This research focused on three topics: packaging, transportation, and disposition. This research work was performed as a collaboration between Japan’s Central Research Institute of Electric Power Industry (CRIEPI) and the Idaho National Laboratory (INL). Hundreds of TMI-2 related documents were searched and pertinent information was gleaned from these documents. Other important information was also obtained by interviewing employees who were involved first hand in various aspects of the TMI-2 cleanup effort. This paper is organized into three main sections: (1) Transport from Three Mile Island to Central Facilities Area at INL, (2) Transport from INL Central Receiving Facility to INL Test Area North (TAN) and wet storage at TAN, and (3) Transport from TAN to INL Idaho Nuclear Technology and Engineering Center (INTEC) and Dry Storage at INTEC. Within each of these sections, lessons learned from performing recovery activities are presented and their applicability to the Fukushima Daiichi nuclear power plant cleanup are outlined.

  16. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  17. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  18. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  19. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  20. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  1. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  2. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  3. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  4. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  5. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

  6. fuel cells | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fuel cells

  7. Results of the radiological survey at Two Mile Creek, Tonawanda, New York (TNY002)

    SciTech Connect (OSTI)

    Murray, M.E.; Rodriguez, R.E.; Uziel, M.S.

    1997-08-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey at Two Mile Creek, Tonawanda, New York. The survey was performed in November 1991 and May 1996. The purpose of the survey was to determine if radioactive materials from work performed under government contract at the Linde Air Products Division of Union Carbide Corporation, Tonawanda, New York, had been transported into the creek. The survey included a surface gamma scan in accessible areas near the creek and the collection of soil, sediment, and core samples for radionuclide analyses. Survey results indicate that no significant material originating at the Linde plant is presently in the creek. Three of the 1991 soil sample locations on the creek bank and one near the lake contained slightly elevated concentrations of {sup 238}U with radionuclide distributions similar to that found in materials resulting from former processing activities at the Linde site.

  8. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  9. Light-duty vehicle MPG (miles per gallon) and market shares report, Model year 1989

    SciTech Connect (OSTI)

    Williams, L.S. ); Hu, P.S. )

    1990-04-01

    This issue of Light-Duty Vehicle MPG and Market Shares Report: Model Year 1989 reports the estimated sales-weighted fuel economies, sales, market shares, and other vehicle characteristics of automobiles and light trucks. The estimates are made on a make and model basis (e.g., Chevrolet is a make and Corsica is a model), from model year 1976 to model year 1989. Vehicle sales data are used as weighting factors in the sales-weighted estimation procedure. Thus, the estimates represent averages of the overall new vehicle fleet, reflecting the composition of the fleet. Highlights are provided on the trends in the vehicle characteristics from one model year to the next. Analyses are also made on fuel economy changes to determine what caused the changes. Both new automobile and new light truck fleets experienced fuel economy losses of 0.5 mpg from the previous model year, dropping to 28.0 mpg for automobiles and 20.2 mpg for light trucks. This is the first observed decline in fuel economy of new automobiles since model year 1983 and the largest decline since model year 1976. The main reason for the fuel economy decline in automobiles was that every automobile size class showed either losses or no change in their fuel economies. The fuel economy decline in light trucks was primarily due to the fact that two popular size classes, large pickup and small utility vehicle, both experienced losses in their fuel economies. Overall, the sales-weighted fuel economy of the entire light-duty vehicle fleet (automobiles and light trucks) dropped to 25.0 mpg, a reduction of 0.5 mpg from model year 1988. 9 refs., 32 figs., 50 tabs.

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax An excise tax rate of 9% of the average wholesale price on a per gallon basis applies to all special fuels, including diesel, natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, hydrogen, and any other combustible gases and liquids, excluding gasoline, used to propel motor vehicles. For taxation purposes, one gasoline gallon equivalent (GGE) of compressed natural gas (CNG) is equal to 5.66 pounds (lbs.) or 126.67 cubic feet. One GGE of liquefied natural gas

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas and Propane Vehicle License Fee Drivers using natural gas or propane to fuel a vehicle may pay an annual special use fuel license fee in lieu of the state fuel excise tax of $0.30 per gallon. The fee is determined by multiplying a base amount in the table below by the current tax rate and dividing by 12. Combined Vehicle Weight (pounds) Base Amount 0 - 10,000 $60 10,001 - 26,000 $300 26,001 and above $400 (Reference Oregon Revised Statutes 319.530

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax Rate A license tax of $0.24 per gasoline gallon equivalent (GGE) or diesel gallon equivalent (DGE) is collected on all alternative fuel used, sold, or distributed for sale or use in Wyoming. Alternative fuels include compressed natural gas (CNG), liquefied natural gas (LNG), liquefied petroleum gas (propane), electricity, and renewable diesel. For taxation purposes, one GGE of CNG is equal to 5.66 pounds (lbs.), one DGE of LNG is equal to 6.06 lbs., one GGE of propane is

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dealer and Commercial User License Beginning January 1, 2017, alternative fuel dealers and alternative fuel commercial users must apply for a license from the Michigan Department of Treasury. Commercial users are defined as those operating vehicles with three or more axles, or two axles and a gross vehicle weight rating exceeding 26,000 pounds, that operate in more than one state. Alternative fuel dealers must pay a license fee of $500 and commercial users must pay a license fee of $50. For the

  14. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  15. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations Regulated electric utility tariffs must explicitly permit customers to resell electricity for use as a motor fuel, as long as the entity is not considered a public utility as defined in Oregon Revised Statutes 757.005 and does not provide any utility service. Additionally, each regulated electric utility must provide customers with a choice of flat rate or time of use electricity rates specific to PEV owners.

  17. 100,000-Mile Evaluation of Transit Buses Operated on Biodiesel Blends (B20)

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  18. Innovative Cell Materials and Designs for 300 Mile Range EVs | Department

    Broader source: Energy.gov (indexed) [DOE]

    Transfer | Department of Energy The Energy Department's Pacific Northwest National Laboratory (PNNL) recently won a 2015 Excellence in Technology Transfer Award for developing an innovative process that uses heat and pressure to convert whole algae into biocrude oil in just minutes-much faster than existing processes. Using traditional refining methods, the biocrude oil can then be turned into into aviation fuel, gasoline, and diesel fuel. This process has the potential to double the yield

  19. JW-1-J Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    JW-1-J Wholesale Power Rate Schedule JW-1-J Wholesale Power Rate Schedule Area: Woodruff Preference Customer System: Jim Woodruff This rate schedule shall be available to public bodies and cooperatives served by the Progress Energy Florida and having points of delivery within 150 miles of the Jim Woodruff Project (hereinafter called the Project). This rate schedule shall be applicable to firm power and accompanying energy made available by the Government from the Project and sold in wholesale

  20. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  1. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  2. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  3. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  4. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Compressed natural gas used as a special motor fuel is subject to the state fuel excise tax rate of $0.32 per gasoline gallon equivalent, measured at 5.66 lbs. or 126.67 cubic feet at a base temperature of 60 degrees Fahrenheit and a pressure of 14.7 lbs. per square inch. Liquefied natural gas is also subject to the excise tax rate of $0.25 per diesel gallon equivalent, measured at 6.06 lbs. (Reference House Bill 343, 2016, and Idaho Statutes 63-2402 and 63-2424

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Liquefied Natural Gas (LNG) Tax LNG is taxed at a rate of $0.14 per gallon when used as a motor fuel. For taxation purposes, LNG is converted to its gasoline gallon equivalent (GGE) at the rate of 1.5536 gallons of LNG to equal one volumetric gross gallon of gasoline. LNG is defined as natural gas for use as a motor fuel, which has been cooled to approximately -260 degrees Fahrenheit and is in a liquid state. (Reference South Dakota Statutes 10-47B-3 and 10-47B-4)

  7. Cancer incidence among residents of the Three Mile Island accident area: 1982-1995

    SciTech Connect (OSTI)

    Han, Yueh-Ying; Youk, Ada O.; Sasser, Howell; Talbott, Evelyn O.

    2011-11-15

    Background: The Pennsylvania Department of Health established a registry of the Three Mile Island (TMI) nuclear power plant accident in 1979. Over 93% of the population present on the day of the accident within a 5-mile radius was enrolled and interviewed. We used the registry to investigate the potential cancer risk from low-dose radiation exposure among the TMI population. Methods: Cancer incidence data among the TMI cohort were available from 1982 to 1995. Because more than 97% of the population were white and few cancer cases were reported for those younger than 18 years of age, we included whites of age 18 years and older (10,446 men and 11,048 women) for further analyses. Cox regression models were used to estimate the relative risk (RR) per 0.1 m Sv and 95% confident interval (CI) of cancer by radiation-related exposures. The cancers of interest were all malignant neoplasms, cancer of bronchus, trachea, and lung, cancer of lymphatic and hematopoietic tissues, leukemia, and female breast. Results: Among men and women, there was no evidence of an increased risk for all malignant neoplasms among the TMI cohort exposed to higher maximum and likely {gamma} radiation (RR=1.00, 95% CI=0.97, 1.01 and RR=0.99, 95% CI=0.94, 1.03, respectively) after adjusting for age, gender, education, smoking, and background radiation. Elevation in risk was noted for cancer of the bronchus, trachea, and lung in relation to higher background radiation exposure (RR=1.45, 95% CI=1.02-2.05 at 8.0-8.8 {mu}R/h compared to 5.2-7.2 {mu}R/h). An increased risk of leukemia was found among men exposed to higher maximum and likely {gamma} radiation related to TMI exposure during the ten days following the accident (RR=1.15, 95% CI=1.04, 1.29 and RR=1.36, 95% CI=1.08, 1.71, respectively). This relationship was not found in women. Conclusion: Increased cancer risks from low-level radiation exposure within the TMI cohort were small and mostly statistically non-significant. However, additional follow-up on this population is warranted, especially to explore the increased risk of leukemia found in men.

  8. Fact #913: February 22, 2016 The Most Common Warranty for Plug-In Vehicle Batteries is 8 Years/100,000 Miles- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for The Most Common Warranty for Plug-In Vehicle Batteries is 8 Years/100,000 Miles

  9. Fact #854 January 5, 2015 Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Driving Ranges for All-Electric Vehicles in Model Year 2014 Vary from 62 to 265 Miles

  10. EA-1985: Virginia Offshore Wind Technology Advancement Project (VOWTAP), 24 nautical miles offshore of Virginia Beach, Virginia

    Broader source: Energy.gov [DOE]

    DOE is proposing to fund Virginia Electric and Power Company's Virginia Offshore Wind Technology Advancement Project (VOWTAP). The proposed VOWTAP project consists of design, construction and operation of a 12 megawatt offshore wind facility located approximately 24 nautical miles off the coast of Virginia Beach, VA on the Outer Continental Shelf.

  11. Historical summary of the Three Mile Island Unit 2 core debris transportation campaign

    SciTech Connect (OSTI)

    Schmitt, R.C.; Tyacke, M.J.; Quinn, G.J.

    1993-03-01

    Transport of the damaged core materials from the Unit 2 reactor of the Three Mile Island Nuclear Power Station (TMI-2) to the Idaho National Engineering Laboratory (INEL) for examination and storage presented many technical and institutional challenges, including assessing the ability to transport the damaged core; removing and packaging core debris in ways suitable for transport; developing a transport package that could both meet Federal regulations and interface with the facilities at TMI-2 and the INEL; and developing a transport plan, support logistics, and public communications channels suited to the task. This report is a historical summary of how the US Department of Energy addressed those challenges and transported, received, and stored the TMI-2 core debris at the INEL. Subjects discussed include preparations for transport, loading at TMI-2, institutional issues, transport operations, receipt and storage at the INEL, governmental inquiries/investigations, and lessons learned. Because of public attention focused on the TMI-2 Core Debris Transport Program, the exchange of information between the program and public was extensive. This exchange is a focus for parts of this report to explain why various operations were conducted as they were and why certain technical approaches were employed. And, because of that exchange, the program may have contributed to a better public understanding of such actions and may contribute to planning and execution of similar future actions.

  12. Evaluation of the Three Mile Island Unit 2 reactor building decontamination process

    SciTech Connect (OSTI)

    Dougherty, D.; Adams, J. W.

    1983-08-01

    Decontamination activities from the cleanup of the Three Mile Island Unit 2 Reactor Building are generating a variety of waste streams. Solid wastes being disposed of in commercial shallow land burial include trash and rubbish, ion-exchange resins (Epicor-II) and strippable coatings. The radwaste streams arising from cleanup activities currently under way are characterized and classified under the waste classification scheme of 10 CFR Part 61. It appears that much of the Epicor-II ion-exchange resin being disposed of in commerical land burial will be Class B and require stabilization if current radionuclide loading practices continue to be followed. Some of the trash and rubbish from the cleanup of the reactor building so far would be Class B. Strippable coatings being used at TMI-2 were tested for leachability of radionuclides and chelating agents, thermal stability, radiation stability, stability under immersion and biodegradability. Actual coating samples from reactor building decontamination testing were evaluated for radionuclide leaching and biodegradation.

  13. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, R.M.; Furth, H.P.; Valeo, E.J.; Goldhaber, M.

    1983-05-09

    This invention relates to a method of controlling the reaction rates in a nuclear fusion reactor; and more particularly, to the use of polarized nuclear fuel.

  14. Fuel removal, transport, and storage

    SciTech Connect (OSTI)

    Reno, H.W.

    1986-01-01

    The March 1979 accident at Unit 2 of the Three Mile Island Nuclear Power Station (TMI-2) which damaged the core of the reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing the core debris from the reactor, packaging it into canisters, loading canisters into a rail cask, and transporting the debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights how some challenges were resolved, including lessons learned and benefits derived therefrom. Key to some success at TMI was designing, testing, fabricating, and licensing two rail casks, which each provide double containment of the damaged fuel. 10 refs., 12 figs.

  15. Emissions from Trucks using Fischer-Tropsch Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Brent Bailey; Nigel N. Clark; Donald W. Lyons; Stephen Goguen; James Eberhardt

    1998-10-19

    The Fischer-Tropsch (F-T) catalytic conversion process can be used to synthesize diesel fuels from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, Fischer-Tropsch diesel fuels may also be economically competitive with California B- diesel fuel if produced in large volumes. overview of Fischer-Tropsch diesel fuel production and engine emissions testing is presented. Previous engine laboratory tests indicate that F-T diesel is a promising alternative fuel because it can be used in unmodified diesel engines, and substantial exhaust emissions reductions can be realized. The authors have performed preliminary tests to assess the real-world performance of F-T diesel fuels in heavy-duty trucks. Seven White-GMC Class 8 trucks equipped with Caterpillar 10.3 liter engines were tested using F-T diesel fuel. Vehicle emissions tests were performed using West Virginia University's unique transportable chassis dynamometer. The trucks were found to perform adequately on neat F-T diesel fuel. Compared to a California diesel fuel baseline, neat F-T diesel fuel emitted about 12% lower oxides of nitrogen (NOx) and 24% lower particulate matter over a five-mile driving cycle.

  16. Green Means Go for Hybrid and Alternative Fuel Taxis | Department of Energy

    Energy Savers [EERE]

    Means Go for Hybrid and Alternative Fuel Taxis Green Means Go for Hybrid and Alternative Fuel Taxis August 24, 2010 - 7:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program The taxi, the icon of the bustling city, is getting a makeover. Cities nationwide are encouraging taxi fleets to turn over a new leaf and reduce their petroleum consumption. As taxis average more than 55,000 miles a year, reducing one taxi's gasoline consumption can make a big difference.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Vehicle Production Property Tax Incentive Alternative fuel production facilities, including biodiesel, biomass, biogas, and ethanol production facilities, may qualify for a reduced property tax rate of 3% of market value. Renewable energy manufacturing facilities, including those manufacturing plug-in electric vehicles or hybrid electric vehicles, also qualify. In addition, temporary property tax rate abatements are available for qualified biodiesel, biomass, biogas, and ethanol production

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Acquisition Goal North Carolina established a goal that at least 75% of new or replacement state government light-duty cars and trucks with a gross vehicle weight rating of 8,500 pounds or less must be AFVs or low emission vehicles. (Reference North Carolina General Statutes 143-215.107C)

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) Tax CNG used in motor vehicles is subject to a state motor fuel tax rate of $0.26 per gasoline gallon equivalent (GGE). For taxation purposes, one GGE is equal to 5.66 pounds or 126.67 standard cubic feet of natural gas. (Reference House Bill 5466, 2014, and Special Notice 2014-2

  20. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Fact Sheets Research Team Members Key Contacts Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1000 hours over a

  1. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van -- Operating Summary

    SciTech Connect (OSTI)

    Karner, D.; Francfort, James Edward

    2003-01-01

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure- hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  2. Advanced Vehicle Testing Activity: Hydrogen-Fueled Mercedes Sprinter Van Operating Summary - January 2003

    SciTech Connect (OSTI)

    Karner, D.; Francfort, J.E.

    2003-01-22

    Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of testing conducted over 6,864 kilometers (4,265 miles) of operation using the pure-hydrogen-fueled Mercedes Sprinter van.

  3. LWR fuel assembly designs for the transmutation of LWR Spent Fuel TRU with FCM and UO{sub 2}-ThO{sub 2} Fuels

    SciTech Connect (OSTI)

    Bae, G.; Hong, S. G.

    2013-07-01

    In this paper, transmutation of transuranic (TRU) nuclides from LWR spent fuels is studied by using LWR fuel assemblies which consist of UO{sub 2}-ThO{sub 2} fuel pins and FCM (Fully Ceramic Microencapsulated) fuel pins. TRU from LWR spent fuel is loaded in the kernels of the TRISO particle fuels of FCM fuel pins. In the FCM fuel pins, the TRISO particle fuels are distributed in SiC matrix having high thermal conductivity. The loading patterns of fuel pins and the fuel compositions are searched to have high transmutation rate and feasible neutronic parameters including pin power peaking, temperature reactivity coefficients, and cycle length. All studies are done only in fuel assembly calculation level. The results show that our fuel assembly designs have good transmutation performances without multi-recycling and without degradation of the safety-related neutronic parameters. (authors)

  4. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  5. On the Road with Fuel Saving Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On the Road with Fuel Saving Tools On the Road with Fuel Saving Tools May 23, 2014 - 11:07am Addthis Driving efficiently can help you save money on gas this summer.| Photo courtesy of ©iStockphoto.com/HelpingHandPhotos Driving efficiently can help you save money on gas this summer.| Photo courtesy of ©iStockphoto.com/HelpingHandPhotos Shannon Shea Clean Cities Communications Manager What does this mean for me? Driving the speed limit can save you money. Every five miles you drive above 50

  6. Variable area fuel cell process channels

    DOE Patents [OSTI]

    Kothmann, Richard E.

    1981-01-01

    A fuel cell arrangement having a non-uniform distribution of fuel and oxidant flow paths, on opposite sides of an electrolyte matrix, sized and positioned to provide approximately uniform fuel and oxidant utilization rates, and cell conditions, across the entire cell.

  7. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. PDF icon apu2011_6_roychoudhury.pdf More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  8. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  9. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  10. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Partnership - Alternative Fuels Research TNS Automotive Chris White Communications Director cwhite@cafcp.org 2 TNS Automotive for California Fuel Cell Partnership ...

  11. Biodegradation of biodiesel fuels

    SciTech Connect (OSTI)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.

  12. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  13. Proceedings: 1987 fuel supply seminar

    SciTech Connect (OSTI)

    Prast, W.G.

    1988-08-01

    The seventh annual EPRI Fuel Supply Seminar was held in Baltimore, Maryland, from October 6 to 8, 1987. The major emphasis of the meeting was on identifying fuel market risks and planning concerns in order to cope with inherent uncertainties and make informed fuel supply decisions. Sessions dealt with the natural gas markets including the prospects for continued availability of gas as a boiler fuel, the relationship of gas and oil prices and the relevance of different regulatory issues. Other sessions addressed the political dimensions of world oil supply and the role of oil inventories in price dynamics, the interaction of world trade cycles, interest rates and currency fluctuations on utility fuel planning, and the role of strategic fuel planning in various utilities. The changing coal transportation market was the subject of several presentations, concluding with a review of utility experiences in integrating coal transportation and coal supply procurement. Presentations were made by various specialists including EPRI research contractors reporting on the results of ongoing research, speakers drawn from the utility, coal and natural gas industries, and independent consultants. The principal purpose of the seminar continues to be to provide utility fuel planners and fuel procurement managers with data and insights into the structure, operations and uncertainties of the fuel markets, thereby supporting their development of flexible fuel strategies and contributing to integrated utility decision making. Selected papers have been processed separately for inclusion in the energy data base.

  14. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    SciTech Connect (OSTI)

    Lomax, F.D. Jr.; James, B.D.; Mooradian, R.P.

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Truck Idle Reduction Requirements A driver of a diesel-fueled vehicle with a gross vehicle weight rating of more than 10,000 pounds may not idle the vehicle's primary engine for more than five consecutive minutes at any location, and is not allowed to operate a diesel-fueled auxiliary power system (APS) on the vehicle for more than five minutes when located within 100 feet of a restricted area. Exceptions apply in certain situations and for certain vehicles. Any internal combustion

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate, as is gasoline sold for use in certain non-road applications. Gasoline that contains at least 9.2% agriculturally derived ethanol that meets ASTM specification D4806 complies with the mandate. For the purpose of the mandate, ethanol must meet ASTM specification D4806. The governor may suspend the renewable fuels mandate for

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas and Propane Tax Effective January 1, 2019, propane, compressed natural gas (CNG), and liquefied natural gas (LNG) will be subject to an excise tax at a rate of $0.04 per gasoline gallon equivalent (GGE), plus a $0.01 ninth-cent fuel tax, a $0.01 local option fuel tax, and an additional variable component to be determined by the Florida Department of Revenue (Department) each calendar year for the following 12-month period. To determine this tax, the Department will require each

  18. Are We Forgetting the Lessons From the Accident at Three Mile Island Unit 2, March 1979: A Case Study

    SciTech Connect (OSTI)

    Christie, Bob; Johnson, David H.

    2002-07-01

    The accident at Three Mile Island Unit 2 in March 1979 resulted in major changes to the way emergency procedures were written and operators were trained at nuclear commercial electric generating units. These changes had a major impact on the public health risk of nuclear electric generating units. The record over the last 20 years has been excellent. For approximately 2000 reactor years of operation since 1979, there have been no accidents equivalent to TMI Unit 2 in the USA. Other factors have had an influence on this excellent record but it is clear that more efficient emergency procedures and better operator training had a significant impact on the excellent record achieved over the last 20 plus years. Abnormal events still occur at the nuclear commercial electric generating units in the USA and these events have the potential for causing damage to the reactor core. In some cases, the emergency procedures used in abnormal events and the training received by the operators of the nuclear units have not been based on the lessons learned from the accident at Three Mile Island. The following paper describes one such case. It is clear to the authors of this paper that further changes should be made to make sure that the lessons learned from the accident at Three Mile Island Unit 2 in 1979 are implemented and not forgotten. (authors)

  19. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  20. Method of controlling fusion reaction rates

    DOE Patents [OSTI]

    Kulsrud, Russell M.; Furth, Harold P.; Valeo, Ernest J.; Goldhaber, Maurice

    1988-01-01

    A method of controlling the reaction rates of the fuel atoms in a fusion reactor comprises the step of polarizing the nuclei of the fuel atoms in a particular direction relative to the plasma confining magnetic field. Fusion reaction rates can be increased or decreased, and the direction of emission of the reaction products can be controlled, depending on the choice of polarization direction.

  1. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  2. Renewable Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels 5 th Annual Green Technologies Conference IEEE IEEE Ch IEEE IEEE H l Helena L L. Chum April 5 April 5 th 2013 , 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Outline * Renewable Fuels Renewable Fuels * Biomass and Bioenergy Today C di i i i i /d l i * Commoditization existing/developing * Sustainability y Considerations to Imp prove Agriculture and

  3. FUEL ELEMENT

    DOE Patents [OSTI]

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  4. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  5. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  6. A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics

    Broader source: Energy.gov [DOE]

    Results indicate a strong tradeoff between maximum rate of cylinder pressure rise (which also correlates to NOx and peak cylinder pressure) and fuel economy for 21 tested fuels.

  7. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yield the Greatest Savings | Department of Energy Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings SUBSCRIBE to the Fact of the Week The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Advanced Vehicle Technology Research and Demonstration Bonds Qualified state, tribal, and local governments may issue Qualified Energy Conservation Bonds subsidized by the U.S. Department of Treasury at competitive rates to fund capital expenditures on qualified energy conservation projects. Eligible activities include research and demonstration projects related to cellulosic ethanol and other non-fossil fuels, as well as advanced battery manufacturing technologies. Government entities may

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle (NGV) and Fueling Infrastructure Grants The Texas Commission on Environmental Quality (TCEQ) administers the NGV Grant Program (Program) as part of the Texas Emissions Reduction Plan. The Program provides grants to replace existing medium- and heavy-duty vehicles with new, converted, or repowered NGVs. Qualifying vehicles must be on-road vehicles with a gross vehicle weight rating of more than 8,500 pounds and must be certified to current federal emissions standards. Grant

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle (AFV) Low-Interest Loans Oklahoma has a private loan program with a 3% interest rate for the cost of converting private fleets to operate on alternative fuels and for the incremental cost of purchasing an original equipment manufacturer AFV. The loan repayment has a maximum six-year period. For more information, see the Oklahoma Department of Commerce loan application guidelines. Point of Contact Marshall Vogts Director of Programs Oklahoma Department of Commerce Phone: (405) 815-5339

  11. Factors influencing specific fuel use in Nebraska

    SciTech Connect (OSTI)

    Shelton, D.P.; Von Bargen, K.

    1981-01-01

    Fuel use data relating to agricultural field operations were collected and analyzed during the Nebraska fuel use survey. The farms surveyed had a mean size of 598 ha and a mean total tractor power rating of 221 kW. Mean operating depth, field speed, and tractor power rating were determined for the major field operations. Mean field speeds were generally in agreement with commonly accepted values. Total annual fuel energy use increased with increasing farm size. Over 87 percent of this energy was used from April through October. Even though total fuel energy was increased, specific fuel energy use decreased with increasing farm size. Specific fuel use for field operations was influenced by the size of area worked, operation depth, field speed, and tractor power rating.

  12. Fuel cell membranes and crossover prevention

    DOE Patents [OSTI]

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The inspection must occur proximate to the conversion; every three years or 36,000 miles after the conversion, whichever comes first; and following any collision in which the ...

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The converted vehicle must be less than two years old and have an odometer reading of fewer than 30,000 miles. Modified vehicles are eligible for credits equal to 30% of the ...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle (EV) Access to Roadways A low-speed vehicle is defined as a four-wheeled motor vehicle capable of reaching speeds of more than 20 miles per hour (mph) but not more...

  16. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  17. Dynamic Modeling in Solid-Oxide Fuel Cells Controller Design

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2007-06-28

    In this paper, a dynamic model of the solid-oxide fuel cell (SOFC) power unit is developed for the purpose of designing a controller to regulate fuel flow rate, fuel temperature, air flow rate, and air temperature to maintain the SOFC stack temperature, fuel utilization rate, and voltage within operation limits. A lumped model is used to consider the thermal dynamics and the electro-chemial dynamics inside an SOFC power unit. The fluid dynamics at the fuel and air inlets are considered by using the in-flow ramp-rates.

  18. CleanFleet. Final report: Volume 4, fuel economy

    SciTech Connect (OSTI)

    1995-12-01

    Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day. The energy adjusted fuel economy (distance per energy consumed) of the alternative fuel vans operating on a typical FedEx duty cycle was between 13 percent lower and 4 percent higher than that of control vans from the same manufacturer. The driving range of vans operating on liquid and gaseous alternative fuels was 1 percent to 59 percent lower than for vans operating on unleaded gasoline. The driving range of the electric G-Vans was less than 50 miles. These comparisons are affected to varying degrees by differences in engine technology used in the alterative fuel and control vehicles. Relative fuel economy results from dynamometer emissions tests were generally consistent with those obtained from FedEx operations.

  19. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems ...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas (LNG), have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and compressed natural gas (CNG) used to operate a motor vehicle is taxed at a rate of $0.064 and $0.21 per gallon, respectively. For taxation purposes, 126.67 cubic feet of CNG, 36.3 cubic feet (4.2 pounds (lbs.)) of propane, or 6.06 lbs. of LNG is considered equal to

  2. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  3. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  4. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  5. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  6. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  7. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  9. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  10. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 1112011 2 | Fuel Cell Technologies Program Source: US ...

  11. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (OSTI)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore » be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  12. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar; Davidson, Diane

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

  13. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Electric Vehicle...

  14. Mechanical Analysis of High Power Internally Cooled Annular Fuel...

    Office of Scientific and Technical Information (OSTI)

    The structural behavior issues arising from the higher flow rate required to cool the fuel ... The structural behavior of the 17 x 17 traditional solid fuel array is compared with that ...

  15. A Vehicle Manufacturer's Perspective on Higher-Octane Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Manufacturer's Perspective on Higher-Octane Fuels Tom Leone, Ford Motor Company DOE "Biomass 2014" meeting Washington, D.C. July 29, 2014 2 Octane rating of fuel The ...

  16. Local Leaders: Respond to Fuel Shortages | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Shortages Local Leaders: Respond to Fuel Shortages Local Leaders: Respond to Fuel Shortages Ensuring adequate fuel supplies is a key component in responding to energy emergencies. Fuel powers backup generators and allows emergency responders and utility workers to drive to where they are needed. Monitor petroleum supplies-Seek out accurate and timely information about petroleum supply, wholesale and retail prices, inventories, and production rates for State and regional refineries. Get in

  17. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells ...

  18. California Fuel Cell Partnership: Alternative Fuels Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    provides information about alternative fuels research. PDF icon cafcpinitiativescall.pdf More Documents & Publications The Department of Energy Hydrogen and Fuel Cells Program ...

  19. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  20. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  1. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  2. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  3. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  4. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  5. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on

  6. Synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    In January 1982, the Department of Energy guaranteed a loan for the construction and startup of the Great Plains project. On August 1, 1985, the partnership defaulted on the $1.54 billion loan, and DOE acquired control of, and then title to, the project. DOE continued to operate the plant, through the ANG Coal Gasification Company, and sell synthetic fuel. The DOE's ownership and divestiture of the plant is discussed.

  7. Transformer failure and common-mode loss of instrument power at Nine Mile Point Unit 2 on August 13, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    On August 13, 1991, at Nine Mile Point Unit 2 nuclear power plant, located near Scriba, New York, on Lake Ontario, the main transformer experienced an internal failure that resulted in degraded voltage which caused the simultaneous loss of five uninterruptible power supplies, which in turn caused the loss of several nonsafety systems, including reactor control rod position indication, some reactor power and water indication, control room annunciators, the plant communications system, the plant process computer, and lighting at some locations. The reactor was subsequently brought to a safe shutdown. Following this event, the US Nuclear Regulatory Commission dispatched an Incident Investigation Team to the site to determine what happened, to identify the probable causes, and to make appropriate findings and conclusions. This report describes the incident, the methodology used by the team in its investigation, and presents and the team's findings and conclusions. 59 figs., 14 tabs.

  8. Disposal demonstration of a high integrity container (HIC) containing an EPICOR-II prefilter from Three Mile Island

    SciTech Connect (OSTI)

    McConnell, J.W. Jr.; Tyacke, M.J.; Schmitt, R.C.; Reno, H.W.

    1985-02-01

    A high integrity container (HIC) was developed, tested, and certified for use in disposing of unusual low-level radioactive waste from Three Mile Island Unit 2 (TMI-2). The work was coordinated by EG and G Idaho, Inc. and funded by the US Department of Energy. A disposal demonstration using an HIC containing an EPICOR-II prefilter from TMI-2 was completed at the commercial disposal facility in the State of Washington. A Certification of Compliance was issued by the Department of Social and Health Services of the State of Washington to use the HIC in disposing of up to 50 EPICOR-II prefilters. That Certification of Compliance was issued after rigorous review of the HIC design and test program by the State and by the US Nuclear Regulatory Commission. This report describes the processes of loading, transporting, and disposing of the demonstration HIC and briefly describes the design, testing, and approval effort leading up to the demonstration.

  9. Transporting TMI-2 (Three Mile Island Unit 2) core debris to INEL: Public safety and public response

    SciTech Connect (OSTI)

    Schmitt, R.C.; Reno, H.W.; Young, W.R.; Hamric, J.P.

    1987-01-01

    This paper describes the approach taken by the US Department of Energy (DOE) to ensure that public safety is maintained during transport of core debris from the Unit-2 reactor at the Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID. It provides up-to-date information about public response to the transport action and discusses DOE's position on several institutional issues. The authors advise that planners of future transport operations be prepared for a multitude of comments from all levels of federal, state, and local governments, special interest groups, and private citizens. They also advise planners to keep meticulous records concerning all informational transactions.

  10. Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC)

    Broader source: Energy.gov (indexed) [DOE]

    Activity | Department of Energy 3 DEER Conference Presentation: National Renewable Energy Laboratory PDF icon deer_2003_thornton.pdf More Documents & Publications Status of APBF-DEC NOx Adsorber/DPF Projects Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-Duty Engine in Conjunction with Ultralow-Sulfur Fuel APBF-DEC Light-duty NOx Adsorber/DPF Project

  11. Engineered fuel: Renewable fuel of the future?

    SciTech Connect (OSTI)

    Tomczyk, L.

    1997-01-01

    The power generation and municipal solid waste management industries share an interest in the use of process engineered fuel (PEF) comprised mainly of paper and plastics as a supplement to conventional fuels. PEF is often burned in existing boilers, making PEF an alternative to traditional refuse derived fuels (RDF). This paper describes PEF facilities and makes a comparison of PEF and RDF fuels.

  12. BPA Power Rates (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power Function Review (PFR) Firstgov BPA Fuel Mix 2012 2013 2014...

  13. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect (OSTI)

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  14. Long-term Decline of Aggregate Fuel Use per Cargo-ton-mile of Commercial Trucking; A Key Enabler of Expanded U.S. Trade and Economic Growth

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  15. Alternative Fuels Data Center: Fuel Cell Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel

  16. Alternative Fuels Data Center: Strategies to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Strategies to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Strategies to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center:

  17. Alternative Fuels Data Center: Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Stations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Stations on Digg Find More places to share Alternative Fuels Data

  18. Alternative Fuels Data Center: Test Your Alternative Fuel IQ

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Test Your Alternative Fuel IQ to someone by E-mail Share Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Facebook Tweet about Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Twitter Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Google Bookmark Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Delicious Rank Alternative Fuels Data Center: Test Your Alternative Fuel IQ on Digg Find More places to share Alternative Fuels Data

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85% or more of alcohol with gasoline; natural gas and liquid fuels domestically produced from natural gas; liquefied petroleum gas (propane); coal-derived liquid fuels; hydrogen; electricity; pure biodiesel (B100); fuels, other than alcohol, derived from biological materials; and P-Series fuels. In addition, the U.S.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirements Alternative fuel dispensers must be labeled with information to help consumers make informed decisions about fueling a vehicle, including the name of the fuel and the minimum percentage of the main component of the fuel. Labels may also list the percentage of other fuel components. This requirement applies to, but is not limited to, the following fuel types: methanol, denatured ethanol, and/or other alcohols; mixtures containing 85% or more by volume of

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Truckstop Electrification Truck Stop Electrification Locator Locate

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Decal The state motor fuel tax does not apply to passenger vehicles, certain buses, or commercial vehicles that are powered by an alternative fuel, if they obtain an AFV decal. Owners or operators of such vehicles that also own or operate their own personal fueling stations are required to pay an annual alternative fuel decal fee, as listed below. Motor vehicles licensed as historic vehicles that are powered by alternative fuels are exempt from the motor fuels tax

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Loan Program The Oregon Department of Energy (ODOE) AFV Revolving Fund provides loans to public agencies, private entities, and tribes for the incremental cost of AFVs and AFV conversions. Priority will be given to converting petroleum-powered vehicles to AFVs. The loan recipient may be responsible for a fee of 0.1% of the loan, up to $2,500, as well as fees to cover the cost of application processing. ODOE may set the interest rate anywhere from 0% to the current

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the following vehicle weights: Unladen Weight Fee All passenger cars and other vehicles 4,000 pounds (lbs.) or less $36 More than 4,000 lbs. but less than 8,001 lbs. $72 More than 8,000 lbs. but less than 12,001 lbs. $120 12,001 lbs. or more $168 Alternatively,

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Liquefied petroleum gas (propane) and compressed natural gas are subject to a federal excise tax of $0.183 per gasoline gallon equivalent (GGE). The liquefied natural gas tax rate is $0.243 per diesel gallon equivalent (DGE). For taxation purposes, one GGE is equal to 5.75 pounds (lbs.) of propane and 5.66 lbs. of CNG. One DGE is equal to 6.06 lbs. of LNG. (Reference Public Law 114-41 and 26 U.S. Code 4041 and 4081) Point of Contact Excise Tax Branch U.S. Internal

  14. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Hydrogen Fueling ...

  15. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: ...

  16. DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's Fuel Cell Technologies Office ...

  17. Customizable Fuel Processor Technology Benefits Fuel Cell Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Hydrogen and Fuel Cell Hydrogen and Fuel Cell Building Energy Efficiency Building Energy Efficiency Find More Like This Return to Search ...

  18. Used Fuel Degradation: Experimental and Modeling Report

    Broader source: Energy.gov [DOE]

    The report describes the strategy for coupling process level models to produce an integrated Used Fuel Degradation Model (FDM), and addresses fractional degradation rate, instant release fractions, other continuum modeling approaches, and experimental support.

  19. Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mid, and high), gross vehicle weight rating (class 7 and 8), and types of tractor (day cab, sleeper cab). Combination Tractor Fuel Consumption Standards, Model Years (MY)...

  20. Describing current and potential markets for alternative-fuel vehicles

    SciTech Connect (OSTI)

    1996-03-26

    Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law to emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Electric Vehicle (PEV) Fee All-electric vehicle operators must pay an annual vehicle registration renewal fee of $100. This fee expires if the legislature imposes a vehicle miles traveled fee or tax in the state. Beginning July 1, 2016, this fee is increased to $150. Also beginning July 1, 2016, plug-in hybrid electric vehicles with an all-electric range of at least 30 miles will be subject to the registration renewal fee. (Reference Revised Code of Washington 46.17.323)

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) requires that hydrogen fuel used in internal combustion engines and fuel cells must meet the SAE International J2719 standard for hydrogen fuel quality. For more information, see the DMS Hydrogen Fuel News website. (Reference California Code of Regulations Title 4, Section 4180-4181

  3. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells & Renewable Portfolio Standards Webinar - Jun 9 th , 2011 Ohio Fuel Cell Coalition Ohio Fuel Cell Coalition * Mission - The Ohio Fuel Cell Coalition is a united group ...

  4. Nuclear Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuels Nuclear Fuels A reactor's ability to produce power efficiently is significantly affected by the composition and configuration of its fuel system. A nuclear fuel ...

  5. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  6. Extended life aluminide fuel. Final report

    SciTech Connect (OSTI)

    Miller, L.G.; Beeston, J.M.

    1986-06-01

    As the price of fuel fabrication, shipment of both new and spent fuel, and fuel reprocessing continue to rise at a rapid rate, researchers look for alternate methods to keep reactor fuel costs within their limited funding. Extended fuel element lifetimes, without jeopardizing reactor safety, can reduce fuel costs by up to a factor of two. The Extended Life Aluminide (ELAF) program was started at the Idaho National Engineering Laboratory (INEL) as a joint project of the United States Department of Energy (DOE), the University of Missouri, and the Massachusetts Institute of Technology research reactors. Fuel plates of Advanced Test Reactor (ATR) type construction were fabricated at Atomics International and irradiated in the ATR at the INEL. Four fuel matrix compositions were tested (i.e., 50 vol% UAl/sub x/ cores for reference, and 40, 45 and 50 vol% UAl/sub 2/ cores). The 50 vol% UAl/sub 2/ cores contained up to 3 grams U-235 per cm/sup 3/ of core. Three plates of each composition were irradiated to peak burnup levels of 3 x 10/sup 21/ fission/cm/sup 3/ of core. The only observed damage was due to external corrosion at similar rates experienced by UAl/sub x/ fuel elements in test reactors.

  7. Stationary Liquid Fuel Fast Reactor

    SciTech Connect (OSTI)

    Yang, Won Sik; Grandy, Andrew; Boroski, Andrew; Krajtl, Lubomir; Johnson, Terry

    2015-09-30

    For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel container is penetrated by twelve hexagonal control assembly (CA) guide tubes, each of which has 3.0 mm thickness and 69.4 mm flat-to-flat outer distance. The distance between two neighboring CA guide tube is selected to be 26 cm to provide an adequate space for CA driving systems. The fuel container has 18181 penetrating coolant tubes of 6.0 mm inner diameter and 2.0 mm thickness. The coolant tubes are arranged in a triangular lattice with a lattice pitch of 1.21 cm. The fuel, structure, and coolant volume fractions inside the fuel container are 0.386, 0.383, and 0.231, respectively. Separate steel reflectors and B4C shields are used outside of the fuel container. Six gas expansion modules (GEMs) of 5.0 cm thickness are introduced in the radial reflector region. Between the radial reflector and the fuel container is a 2.5 cm sodium gap. The TRU inventory at the beginning of equilibrium cycle (BOEC) is 5081 kg, whereas the TRU inventory at the beginning of life (BOL) was 3541 kg. This is because the equilibrium cycle fuel contains a significantly smaller fissile fraction than the LWR TRU feed. The fuel inventory at BOEC is composed of 34.0 a/o TRU, 41.4 a/o Ce, 23.6 a/o Co, and 1.03 a/o solid fission products. Since uranium-free fuel is used, a theoretical maximum TRU consumption rate of 1.011 kg/day is achieved. The semi-continuous fuel cycle based on the 300-batch, 1- day cycle approximation yields a burnup reactivity loss of 26 pcm/day, and requires a daily reprocessing of 32.5 kg of SLFFR fuel. This yields a daily TRU charge rate of 17.45 kg, including a makeup TRU feed of 1.011 kg recovered from the LWR used fuel. The charged TRU-Ce-Co fuel is composed of 34.4 a/o TRU, 40.6 a/o Ce, and 25.0 a/o Co.

  8. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    U.S. Energy Information Administration (EIA) Indexed Site

    Provider Fleet Vehicles Fleet Vehicle Miles Traveled Propane Provider Survey In the analysis of annual vehicle miles traveled, the diesel vehicles tended to stand out. On...

  9. Alternative Fuels Data Center: CNG Vehicle Fueling Animation

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Google Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation on Delicious Rank Alternative Fuels Data

  10. Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CNG Fuel System and Cylinder Maintenance to someone by E-mail Share Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Facebook Tweet about Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Twitter Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Google Bookmark Alternative Fuels Data Center: CNG Fuel System and Cylinder Maintenance on Delicious Rank Alternative Fuels Data Center: CNG Fuel System and Cylinder

  11. Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels

  12. Alternative Fuels Data Center: South Florida Fleet Fuels with Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    South Florida Fleet Fuels with Propane to someone by E-mail Share Alternative Fuels Data Center: South Florida Fleet Fuels with Propane on Facebook Tweet about Alternative Fuels Data Center: South Florida Fleet Fuels with Propane on Twitter Bookmark Alternative Fuels Data Center: South Florida Fleet Fuels with Propane on Google Bookmark Alternative Fuels Data Center: South Florida Fleet Fuels with Propane on Delicious Rank Alternative Fuels Data Center: South Florida Fleet Fuels with Propane on

  13. Alternative Fuels Data Center: Alternative Fuels Save Money in Indy

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels Save Money in Indy to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Save Money in Indy on Digg Find

  14. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Station Locations on Digg Find More places to

  15. Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Fuels Education in Alabama to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Digg Find

  16. Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel

  17. Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Staples Delivers on Fuel Efficiency to someone by E-mail Share Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Facebook Tweet about Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Twitter Bookmark Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Google Bookmark Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Delicious Rank Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency on Digg Find More

  18. Jet fuel from LPG

    SciTech Connect (OSTI)

    Maples, R.E.; Jones, J.R.

    1983-02-01

    Explains how jet fuel can be manufactured from propane and/or butane with attractive rates of return. This scheme is advantageous where large reserves of LPG-bearing gas is available or LPG is in excess. The following sequence of processes in involved: dehydrogenation of propane (and/or butane) to propylene (and/or butylene); polymerization of this monomer to a substantial yield of the desired polymer by recycling undesired polymer; and hydrotreating the polymer to saturate double bonds. An attribute of this process scheme is that each of the individual processes has been practiced commercially. The process should have appeal in those parts of the world which have large reserves of LPG-bearing natural gas but little or no crude oil, or where large excesses of LPG are available. Concludes that economic analysis shows attractive rates of return in a range of reasonable propane costs and product selling prices.

  19. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  20. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Dispenser Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or methanol must be clearly labeled to inform customers that the fuel contains ethanol or methanol. (Reference Texas Statutes, Agriculture Code 17.051

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Road Tax Alternative fuels including, but not limited to, natural gas or propane sold by a licensed alternative fuel dealer and used in on-road vehicles is subject to a...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient vehicles. Reductions may be met by petroleum displaced through the use of biodiesel, ethanol, other alternative fuels, the use of hybrid electric vehicles, other fuel-efficient or low emission vehicles, or additional methods the North Carolina Division of Energy, Mineral and Land Resources approves.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon Clean Fuels Program (Program), which requires fuel producers and importers to register and keep records of and report the volumes and carbon intensities of the fuels they provide in Oregon. DEQ adopted rules for the next phase of the Program, effective February 1, 2015, requiring fuel suppliers to reduce the carbon content of transportation fuels. For more information, see the DEQ

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Exemption and Refund for Government Fleet Vehicles State excise tax does not apply to special fuels, including gaseous special fuels, when used in state or federal government owned vehicles. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition, state excise tax paid on special fuels used in state or federal government vehicles is subject to a refund, as long as the tax was

  7. Fuel processor for fuel cell power system

    DOE Patents [OSTI]

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  8. Fuel Cells in Telecommunications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Simply Powerful Fuel Cells in Telecommunications J. Blanchard December 2011 - ReliOn Overview Markets Backup, grid supplement, and off grid power systems for critical ...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Economy Test Procedures and Labeling The U.S. Environmental Protection Agency (EPA) is responsible for motor vehicle fuel economy testing. Manufacturers test their own ...

  10. Fuel Cell Financing Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paul J. Rescsanski, Manager, Business Finance UTC Power Paul J. Rescsanski, Manager, Business Finance Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology ...

  11. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    F8: Distillate Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures ... Where shown, (s) Expenditure value less than 0.05. Notes: Distillate fuel oil estimates ...

  12. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    F4: Fuel ethanol consumption estimates, 2014 State Commercial Industrial Transportation ... a In estimating the Btu consumption of fuel ethanol, the Btu content of denaturant ...

  13. Fuel Tables.indd

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    F7: Distillate Fuel Oil Consumption Estimates, 2014 State Residential Commercial ... value less than 0.05. Notes: Distillate fuel oil estimates include biodiesel blended ...

  14. Fuel Tables.indd

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    : Jet fuel consumption, price, and expenditure estimates, 2014 State Jet fuel a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million ...

  15. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alternative fuels are defined as methanol, ethanol, natural gas, liquefied petroleum gas (propane), coal-derived liquid fuels, hydrogen, electricity, biodiesel, renewable diesel,...

  16. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax Exemptions and Reductions Propane, natural gas, electricity, and hydrogen, also known as special fuel, used to operate motor vehicles are exempt from state fuel taxes, but...

  17. Fuel Cells at NASCAR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... would be responsible for fuel delivery coordination and providing security access First ... uptime Demonstrate improved race event safety by removal of fueling needs during ...

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    License Fee Effective July 1, 2015, each alternative fuel supplier, refiner, distributor, terminal operator, importer or exporter of alternative fuel used in motor vehicles must...

  19. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Fuel Cycle Subcommittee meeting is given below. The meeting provided members an overview of various research efforts funded by the DOE Office of Nuclear Energy's Fuel Cycle ...

  20. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3142012 2 | Fuel Cell ...

  1. Mechanical Analysis of High Power Internally Cooled Annular Fuel (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Mechanical Analysis of High Power Internally Cooled Annular Fuel Citation Details In-Document Search Title: Mechanical Analysis of High Power Internally Cooled Annular Fuel Annular fuel with internal flow is proposed to allow higher power density in pressurized water reactors. The structural behavior issues arising from the higher flow rate required to cool the fuel are assessed here, including buckling, vibrations, and potential wear problems. Five flow-induced

  2. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These properties can include higher octane ratings and cetane numbers than conventional petroleum-based fuels, which can help an engine run more smoothly.

  3. Severe fuel-damage scoping test performance. [PWR

    SciTech Connect (OSTI)

    Gruen, G.E.; Buescher, B.J.

    1983-01-01

    As a result of the Three Mile Island Unit-2 (TMI-2) accident, the Nuclear Regulatory Commission has initiated a severe fuel damage test program to evaluate fuel rod and core response during severe accidents similar to TMI-2. The first test of Phase I of this series has been successfully completed in the Power Burst Facility at the Idaho National Engineering Laboratory. Following the first test, calculations were performed using the TRAC-BD1 computer code with actual experimental boundary conditions. This paper discusses the test conduct and performance and presents the calculated and measured test bundle results. The test resulted in a slow heatup to 2000 K over about 4 h, with an accelerated reaction of the zirconium cladding at temperatures above 1600 K in the lower part or the bundle and 2000 K in the upper portion of the bundle.

  4. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  5. NUCLEAR REACTOR FUEL-BREEDER FUEL ELEMENT

    DOE Patents [OSTI]

    Currier, E.L. Jr.; Nicklas, J.H.

    1962-08-14

    A fuel-breeder fuel element was developed for a nuclear reactor wherein discrete particles of fissionable material are dispersed in a matrix of fertile breeder material. The fuel element combines the advantages of a dispersion type and a breeder-type. (AEC)

  6. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  7. Internal reforming fuel cell assembly with simplified fuel feed

    DOE Patents [OSTI]

    Farooque, Mohammad; Novacco, Lawrence J.; Allen, Jeffrey P.

    2001-01-01

    A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

  8. miles-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that gives the quiet air fall spectrum of the entire population of cloud ... Method The Doppler spectrum measured by a cloud radar is the convolution of the quiet air ...

  9. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  10. Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November 1, 2011. PDF icon Fuel Cell ...

  11. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Locator to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Locator on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Locator on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Locator on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Station Locator on

  12. Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling

  13. Alternative Fuels Data Center: Technician Training for Alternative Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technician Training for Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Technician Training for Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Technician Training for Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Technician Training for Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Technician Training for Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Technician Training for

  14. Fuel Cells and Renewable Gaseous Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells and Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Breakout Session 3-C: Renewable Gaseous Fuels Fuel Cells and Renewable Gaseous Fuels Sarah Studer, ORISE Fellow-Fuel Cell Technologies Office, U.S. Department of Energy PDF icon studer_bioenergy_2015.pdf More Documents & Publications Workshop on Gas Clean-Up for Fuel Cell Applications U.S Department of Energy Fuel Cell Technologies Office Overview: 2015 Smithsonian Science Education Academies for Teachers Novel

  15. Alternative Fuels Data Center: About the Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center: About the Alternative Fuels Data

  16. Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced Vehicles on Google Bookmark Alternative Fuels Data Center: Alternative Fuels and Advanced

  17. Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient

  18. Alternative Fuels Data Center: Flexible Fuel Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Digg Find More places to share Alternative

  19. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on

  20. Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Techniques for Drivers to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Techniques for Drivers to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Techniques for Drivers to Conserve

  1. Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Boulder Commits to Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Boulder Commits to Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Boulder

  2. Alternative Fuels Data Center: Ethanol Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative

  3. Alternative Fuels Data Center: Hydrogen Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank

  4. Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Maryland Conserves Fuel With Hybrid Trucks to someone by E-mail Share Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Facebook Tweet about Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Twitter Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Google Bookmark Alternative Fuels Data Center: Maryland Conserves Fuel With Hybrid Trucks on Delicious Rank Alternative Fuels Data Center: Maryland Conserves

  5. Alternative Fuels Data Center: Natural Gas Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to

  6. Alternative Fuels Data Center: Propane Fueling Station Locations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative

  7. Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    EVs Reynolds Logistics Reduces Fuel Costs With EVs to someone by E-mail Share Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Facebook Tweet about Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Twitter Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Google Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Delicious Rank Alternative Fuels Data

  8. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  9. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  10. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend must be clearly identified on the retail pump, storage tank, and sales invoice in order to be eligible for the exemption. (Reference Texas Statutes, Tax Code 162.2

  12. FUEL ROD CLUSTERS

    DOE Patents [OSTI]

    Schultz, A.B.

    1959-08-01

    A cluster of nuclear fuel rods and a tubular casing therefor through which a coolant flows in heat-exchange contact with the fuel rods is described. The fuel rcds are held in the casing by virtue of the compressive force exerted between longitudinal ribs of the fuel rcds and internal ribs of the casing or the internal surfaces thereof.

  13. Advanced nuclear fuel

    SciTech Connect (OSTI)

    Terrani, Kurt

    2014-07-14

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  14. Advanced nuclear fuel

    ScienceCinema (OSTI)

    Terrani, Kurt

    2014-07-15

    Kurt Terrani uses his expertise in materials science to develop safer fuel for nuclear power plants.

  15. The Nuclear Accident at Three Mile Island a Practical Lesson in the Fundamental Importance of Effective Communications

    SciTech Connect (OSTI)

    DeVine Jr, J.C.

    2008-07-01

    The Three Mile Island Unit 2 (TMI-2) accident in March 1979 had a profound effect on the course of commercial nuclear generation in the United States and around the world. And while the central elements of the accident were matters of nuclear engineering, design and operations, its consequences were compounded, and in some respects superseded, by extraordinarily ineffective communications by all parties at all levels. Communications failures during the accident and its aftermath caused misunderstanding, distrust, and incorrect emergency response - and seeded or reinforced public opposition to nuclear power that persists to this day. There are communications lessons from TMI that have not yet been fully learned, and some that once were learned but are now gradually being forgotten. The more glaring TMI communications problems were in the arena of external interactions and communications among the plant owner, the Nuclear Regulatory Commission (NRC), the media, and the public. Confusing, fragmented, and contradictory public statements early in the accident, regardless of cause, undermined all possibility for reasonable discourse thereafter. And because the TMI accident was playing out on a world stage, the breakdown in public trust had long term and widespread implications. At the plant site, both TMI-2 cleanup and restart of the undamaged TMI-1 unit met with years of public and political criticism, and attendant regulatory pressure. Across the nation, public trust in nuclear power and those who operate it plummeted, unquestionably contributing to the 25+ year hiatus in new plant orders. There were other, less visible but equally important, consequences of ineffective communications at TMI. The unplanned 'precautionary' evacuation urged by the governor two days after the accident - a life changing, traumatic event for thousands of residents - was prompted primarily by misunderstandings and miscommunications regarding the condition of the plant. And today, nearly 30 years after the event, many in our nuclear industry have insufficient knowledge or regard for the underlying nuclear safety vulnerabilities revealed by the accident, in part because these have not been well explained. From this single, compelling experience, many lessons can be drawn. Some of these were recognized early and taken to heart by those who own and operate nuclear plants - but over time, respect for their importance has given way somewhat to the seemingly more urgent practicalities of plant cost, schedule and production goals. In other cases, the lessons have remained largely obscure. This paper will describe in greater detail the communications aspects of the TMI accident, lessons that can be drawn from them, and their implications on current and future nuclear facility operation. The paper reflects the author's personal, direct experience as part of the accident response team and subsequent cleanup operations at TMI. In summary: The Three Mile Accident was the most severe nuclear accident in U.S. history. It also is perhaps the most studied industrial accident of any kind in U.S. history. Exhaustive examinations of the public health consequences of the accident show convincingly that the effects of radioactivity releases, if any, were imperceptibly low. It is generally agreed, however, that there have been perceptible health consequences from the TMI-2 accident - those linked to stress. Stress to members of the public, particularly those living near the plant, was unquestionably high. And for some the combination of rumor, confusion, contradictory reports and uncertainty, all leading to an evacuation recommendation from the governor, took a toll. It could be argued that the ineffective internal and external communications during the course of the event were as influential to the outcome as the equipment and operational breakdowns that are now so well understood. And for that reason alone, this accident points out that communications capabilities - staffing, systems, facilities, training - can be as important to protection of the public, the plant an

  16. Lower head creep rupture failure analysis associated with alternative accident sequences of the Three Mile Island Unit 2

    SciTech Connect (OSTI)

    Sang Lung, Chan

    2004-07-01

    The objective of this lower head creep rupture analysis is to assess the current version of MELCOR 1.8.5-RG against SCDAP/RELAP5 MOD 3.3kz. The purpose of this assessment is to investigate the current MELCOR in-vessel core damage progression phenomena including the model for the formation of a molten pool. The model for stratified molten pool natural heat transfer will be included in the next MELCOR release. Presently, MELCOR excludes the gap heat-transfer model for the cooling associated with the narrow gap between the debris and the lower head vessel wall. All these phenomenological models are already treated in SCDAP/RELAP5 using the COUPLE code to model the heat transfer of the relocated debris with the lower head based on a two-dimensional finite-element-method. The assessment should determine if current MELCOR capabilities adequately cover core degradation phenomena appropriate for the consolidated MELCOR code. Inclusion of these features should bring MELCOR much closer to a state of parity with SCDAP/RELAP5 and is a currently underway element in the MELCOR code consolidation effort. This assessment deals with the following analysis of the Three Mile Island Unit 2 (TMI-2) alternative accident sequences. The TMI-2 alternative accident sequence-1 includes the continuation of the base case of the TMI-2 accident with the Reactor Coolant Pumps (RCP) tripped, and the High Pressure Injection System (HPIS) throttled after approximately 6000 s accident time, while in the TMI-2 alternative accident sequence-2, the reactor coolant pumps is tripped after 6000 s and the HPIS is activated after 12,012 s. The lower head temperature distributions calculated with SCDAP/RELAP5 are visualized and animated with open source visualization freeware 'OpenDX'. (author)

  17. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E.; Barbanti, Giancarlo

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  18. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  19. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report; Fleet Compliance Results for MY 2013/FY 2014

    SciTech Connect (OSTI)

    2015-09-01

    Compliance rates for covered state government and alternative fuel provider fleets under the Alternative Fuel Transportation Program (pursuant to the Energy Policy Act or EPAct) are reported for MY 2013/FY 2014 in this publication.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Carbon Fuel Standard California's Low Carbon Fuel Standard (LCFS) Program requires a reduction in the carbon intensity of transportation fuels that are sold, supplied, or offered for sale in the state by a minimum of 10% by 2020. The California Air Resources Board (ARB) regulations require transportation fuel producers and importers to meet specified average carbon intensity requirements for fuel. In the regulations, carbon intensity reductions are based on reformulated gasoline mixed with

  1. Qualification of Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels May 8, 2012 Pyrolysis Oil Workshop Thomas Butcher Sustainable Energy Technologies Department Applications Baseline - Residential and Light Commercial Pressure-atomized burners with 100-150 psi fuel pressure, no fuel heating; Cyclic operation - to 12,000 cycles per year; Fuel filtration to 90 microns or finer; Storage for periods of 1 year, possibly longer; Storage temperature varied; Visible range flame detection for safety; Nitrile seal materials common; Fuels

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition - Internal Revenue Code The Internal Revenue Service (IRS) defines alternative fuels as liquefied petroleum gas (propane), compressed natural gas, liquefied natural gas, liquefied hydrogen, liquid fuel derived from coal through the Fischer-Tropsch process, liquid hydrocarbons derived from biomass, and P-Series fuels. Biodiesel, ethanol, and renewable diesel are not considered alternative fuels by the IRS. While the term "hydrocarbons" includes liquids that

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Special Fuel Definitions The definition of alternative fuel includes liquefied petroleum gas (propane). Special fuel is defined as all combustible gases and liquids that are suitable for powering an internal combustion engine or motor or are used exclusively for heating, industrial, or farm purposes. Special fuels include biodiesel, blended biodiesel, and natural gas products, including liquefied and compressed natural gas. (Reference Indiana Code 6-6-2.5-1 and 6-6-2.5-22

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Residential Compressed Natural Gas (CNG) Fueling Infrastructure Rebate The Nebraska Energy Office (NEO) offers rebates for qualified CNG fueling infrastructure that is installed at a residence after January 4, 2016. The rebate amount is 50% of the cost of the fueling infrastructure, up to $2,500 for each installation. Qualified fueling infrastructure includes new dispensers certified for use with CNG from a private home or residence for non-commercial use. Fueling infrastructure is not eligible

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle and Fueling Infrastructure Grants and Loans The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, provides grants and loans to assist businesses and government entities to include: The incremental cost of purchasing original equipment manufactured clean fuel vehicles, and The cost of fueling equipment for public/private sector business and government vehicles (grants require federal and non-federal matching funds).

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a variety of alternative fuel projects, including the replacement of conventional vehicles with AFVs; the purchase of new AFVs; the conversion of conventional vehicles to operate on alternative fuels; and the construction or purchase of fueling stations or equipment. The maximum loan amount is $750,000 per borrower, and the

  8. Alcohol-fuel symposium

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A symposium was conducted on the state-of-the-art of ethanol production and use. The following topics were discussed: ethanol as a fuel for internal combustion engines; ethanol production system design; the economics of producing fuel alcohol in form size plants; alternate feedstocks for ethanol stillage as a cattle feed; high energy sorghum, ethanol versus other alternative fuels; alcohol-fuel; legal and policy issues in ethanol production; and small scale fuel alcohol production. (DMC)

  9. Vegetable oil fuel

    SciTech Connect (OSTI)

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  10. Corrosion Evaluation of RERTR Uranium Molybdenum Fuel

    SciTech Connect (OSTI)

    A K Wertsching

    2012-09-01

    As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Flux Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.

  11. IMPACT OF DME-DIESEL FUEL BLEND PROPERTIES ON DIESEL FUEL INJECTION SYSTEMS

    SciTech Connect (OSTI)

    Elana M. Chapman; Andre L. Boehman; Kimberly Wain; Wallis Lloyd; Joseph M. Perez; Donald Stiver; Joseph Conway

    2002-07-01

    The objectives of this research program are to develop information on lubricity and viscosity improvers and their impact on the wear mechanisms in fuel injectors operating on blends of dimethyl ether (DME) and diesel fuel. This project complements another ongoing project titled ''Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Demonstration Project''. The objectives of that research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In the shuttle bus project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. In this project, they have sought to develop methods for extending the permissible DME content in the DME-diesel blends without experiencing rapid injector failure due to wear. To date, the activities have covered two areas: development of a high-pressure lubricity test apparatus for studies of lubricity and viscosity improvers and development of an injector durability stand for evaluation of wear rates in fuel injectors. This report provides summaries of the progress toward completion of both experimental systems and a summary of the plan for completion of the project objectives.

  12. Drop In Fuels: Where the Road Leads

    Broader source: Energy.gov [DOE]

    Reviews key fuel industry drivers, renewable fuel mandates and projected impact on hydrocarbon fuels

  13. Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles

    SciTech Connect (OSTI)

    Staunton, R.H.; Thomas, J.F.

    1998-12-01

    The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

  14. California Fuel Cell Partnership: Alternative Fuels Research | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy California Fuel Cell Partnership: Alternative Fuels Research California Fuel Cell Partnership: Alternative Fuels Research This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research. PDF icon cafcp_initiatives_call.pdf More Documents & Publications The Department of Energy Hydrogen and Fuel Cells Program Plan Vehicle Technologies Office Merit Review 2015: Alternative Fuel Station Locator Fuel Cell Buses in U.S.

  15. Alternative Fuels Data Center: Alternative Fueling Station Counts by State

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: Alternative Fueling Station Counts by State to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Station Counts by State on Google Bookmark Alternative Fuels Data Center:

  16. Alternative Fuels Data Center: About the Alternative Fueling Station Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Locate Stations Printable Version Share this resource Send a link to Alternative Fuels Data Center: About the Alternative Fueling Station Data to someone by E-mail Share Alternative Fuels Data Center: About the Alternative Fueling Station Data on Facebook Tweet about Alternative Fuels Data Center: About the Alternative Fueling Station Data on Twitter Bookmark Alternative Fuels Data Center: About the Alternative Fueling Station Data on Google Bookmark Alternative Fuels Data Center: About the

  17. Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version to someone by E-mail Share Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Facebook Tweet about Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Twitter Bookmark Alternative Fuels Data Center: CNG Vehicle Fueling Animation Text Version on Google Bookmark Alternative Fuels Data Center: CNG Vehicle

  18. Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loan Program Utah's Clean Fuels and Vehicle Technology Loan Program to someone by E-mail Share Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Facebook Tweet about Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Twitter Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan Program on Google Bookmark Alternative Fuels Data Center: Utah's Clean Fuels and Vehicle Technology Loan

  19. Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Columbus, Ohio Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles

  20. Alternative Fuels Data Center: Diversity of Fuels Supports Sustainability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    in Fort Collins Diversity of Fuels Supports Sustainability in Fort Collins to someone by E-mail Share Alternative Fuels Data Center: Diversity of Fuels Supports Sustainability in Fort Collins on Facebook Tweet about Alternative Fuels Data Center: Diversity of Fuels Supports Sustainability in Fort Collins on Twitter Bookmark Alternative Fuels Data Center: Diversity of Fuels Supports Sustainability in Fort Collins on Google Bookmark Alternative Fuels Data Center: Diversity of Fuels Supports

  1. Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles GE Showcases Innovation in Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: GE Showcases Innovation in Alternative Fuel Vehicles on

  2. Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Upstate New York Green Fueling Station Powers Fleets in Upstate New York to someone by E-mail Share Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Facebook Tweet about Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Twitter Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in Upstate New York on Google Bookmark Alternative Fuels Data Center: Green Fueling Station Powers Fleets in

  3. Alternative Fuels Data Center: Natural Gas Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Development Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center:

  4. Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet North Carolina City Expands Alternative Fuel Fleet to someone by E-mail Share Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Facebook Tweet about Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Twitter Bookmark Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Google Bookmark Alternative Fuels Data Center: North Carolina City Expands Alternative Fuel Fleet on Delicious Rank

  5. Apparatus and method for combusting low quality fuel

    DOE Patents [OSTI]

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  6. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    SciTech Connect (OSTI)

    W. L. Poe, Jr.; P.F. Wise

    1998-11-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

  7. Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: ... Exposition on October 19, 2010. PDF icon Hydrogen and Fuel Cell Technologies Update More ...

  8. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or...

  9. Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Presented ...

  10. Fuel Station of the Future- Innovative Approach to Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in California Fuel Station of the Future- Innovative Approach to Fuel Cell Technology Unveiled in ...

  11. Alternative Fuels Data Center: E85: An Alternative Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E85: An Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: E85: An Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: E85: An Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Google Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Delicious Rank Alternative Fuels Data Center: E85: An Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: E85: An Alternative

  12. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  13. Alternative Fuels Data Center: Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... U.S. Department of Energy Energy Efficiency and Renewable Energy Source: Alternative Fuels ... Biodiesel Electricity Ethanol Hydrogen Natural Gas Propane Emerging Fuels Fuel Prices ...

  14. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  15. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  16. Fuel injector system

    DOE Patents [OSTI]

    Hsu, Bertrand D.; Leonard, Gary L.

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  17. Automated remote control of fuel supply section for the coal fired power plant

    SciTech Connect (OSTI)

    Chudin, O.V.; Maidan, B.V.; Tsymbal, A.A.

    1996-05-01

    Approximately 6,000 miles east of Moscow, lays the city of Khabarovsk. This city`s coal-fired Power Plant 3 supplies electricity, heat and hot water to approximately 250,000 customers. Plant 3 has three units with a combined turbine capacity of 540 MW, (3 {times} 180) electrical and 780 (3 {times} 260) Gkal an hour thermal capacity with steam productivity of 2010 (3 {times} 670) tons per hour at 540 C. Coal fired thermal electric power plants rely on the equipment of the fuel supply section. The mechanism of the fuel supply section includes: conveyor belts, hammer crushers, guiding devices, dumping devices, systems for dust neutralizing, iron separators, metal detectors and other devices. As a rule, the fuel path in the power plant has three main directions: from the railroad car unloading terminal to the coal warehouse; from the coal warehouse to the acceptance bunkers of the power units, and the railroad car unloading terminal to the acceptance bunkers of power units. The fuel supply section always has a reserve and is capable of uninterruptible fuel supply during routine maintenance and/or repair work. This flexibility requires a large number of fuel traffic routes, some of which operate simultaneously with the feeding of coal from the warehouse to the acceptance bunkers of the power units, or in cases when rapid filling of the bunkers is needed, two fuel supply routes operate at the same time. The remote control of the fuel handling system at Power Plant 3 is described.

  18. Water injected fuel cell system compressor

    DOE Patents [OSTI]

    Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

    2001-01-01

    A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

  19. Lignite Fuel Enhancement

    SciTech Connect (OSTI)

    Charles Bullinger; Nenad Sarunac

    2010-03-31

    Pulverized coal power plants which fire lignites and other low-rank high-moisture coals generally operate with reduced efficiencies and increased stack emissions due to the impacts of high fuel moisture on stack heat loss and pulverizer and fan power. A process that uses plant waste heat sources to evaporate a portion of the fuel moisture from the lignite feedstock in a moving bed fluidized bed dryer (FBD) was developed in the U.S. by a team led by Great River Energy (GRE). The demonstration was conducted with Department of Energy (DOE) funding under DOE Award Number DE-FC26-04NT41763. The objectives of GRE's Lignite Fuel Enhancement project were to demonstrate reduction in lignite moisture content by using heat rejected from the power plant, apply technology at full scale at Coal Creek Station (CCS), and commercialize it. The Coal Creek Project has involved several stages, beginning with lignite drying tests in a laboratory-scale FBD at the Energy Research Center (ERC) and development of theoretical models for predicting dryer performance. Using results from these early stage research efforts, GRE built a 2 ton/hour pilot-scale dryer, and a 75 ton/hour prototype drying system at Coal Creek Station. Operated over a range of drying conditions, the results from the pilot-scale and prototype-scale dryers confirmed the performance of the basic dryer design concept and provided the knowledge base needed to scale the process up to commercial size. Phase 2 of the GRE's Lignite Fuel Enhancement project included design, construction and integration of a full-scale commercial coal drying system (four FBDs per unit) with Coal Creek Units 1 and 2 heat sources and coal handling system. Two series of controlled tests were conducted at Coal Creek Unit 1 with wet and dried lignite to determine effect of dried lignite on unit performance and emissions. Wet lignite was fired during the first, wet baseline, test series conducted in September 2009. The second test series was performed in March/April 2010 after commercial coal drying system was commissioned. Preliminary tests with dried coal were performed in March/April 2010. During the test Unit 2 was in outage and, therefore, test unit (Unit 1) was carrying entire station load and, also, supplying all auxiliary steam extractions. This resulted in higher station service, lower gross power output, and higher turbine cycle heat rate. Although, some of these effects could be corrected out, this would introduce uncertainty in calculated unit performance and effect of dried lignite on unit performance. Baseline tests with dried coal are planned for second half of 2010 when both units at Coal Creek will be in service to establish baseline performance with dried coal and determine effect of coal drying on unit performance. Application of GRE's coal drying technology will significantly enhance the value of lignite as a fuel in electrical power generation power plants. Although existing lignite power plants are designed to burn wet lignite, the reduction in moisture content will increase efficiency, reduce pollution and CO{sub 2} emissions, and improve plant economics. Furthermore, the efficiency of ultra supercritical units burning high-moisture coals will be improved significantly by using dried coal as a fuel. To date, Great River Energy has had 63 confidentiality agreements signed by vendors and suppliers of equipment and 15 utilities. GRE has had agreements signed from companies in Canada, Australia, China, India, Indonesia, and Europe.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Agency Coordination to Address Climate Change The Rhode Island Climate Change Coordinating Council (Council) was established to coordinate efforts between state agencies to reduce greenhouse gas (GHG) emissions. With assistance from the Council, state agencies will develop programs to encourage state employees to reduce vehicle miles traveled and use public transportation when available. The Council will also work with municipalities to encourage sustainability; identify federal, state,

  1. Development of Modified Pag (Polyalkylene Glycol) High VI High Fuel Efficient Lubricant for LDV Applications

    SciTech Connect (OSTI)

    Gangopadhyay, Arup; McWatt, D. G.; Zdrodowski, R. J.; Liu, Zak; Elie, Larry; Simko, S. J.; Erdemir, Ali; Ramirez, Giovanni; Cuthbert, J.; Hock, E. D.

    2015-09-30

    Engine oils play a critical role in friction reduction. Improvements in engine oil technology steadily improved fuel economy as the industry moved through ILSAC GF-1 to GF-5 specifications. These improvements were influenced by changes in base oil chemistry, development of new friction modifiers and their treat levels, and the total additive package consisting of various other components. However, the improvements are incremental and further fuel consumption reduction opportunities are becoming more challenging. Polyalkylene glycol (PAG) based engine oils are being explored as a step forward for significant fuel consumption reduction. Although PAG fluids are used in many industrial applications, its application as an engine oil has been explored in a limited way. The objective of this project is to deep dive in exploring the applicability of PAG technology in engine oil, understanding the benefits, and limitations, elucidating the mechanism(s) for friction benefits, if any, and finally recommending how to address any limitations. The project was designed in four steps, starting with selection of lubricant technology, followed by friction and wear evaluations in laboratory bench tests which are relatively simple and inexpensive and also served as a screener for further evaluation. Selected formulations were chosen for more complex engine component level tests i.e., motored valvetrain friction and wear, piston ring friction using a motored single cylinder, and motored engine tests. A couple of formulations were further selected based on component level tests for engine dyno tests i.e., Sequence VID (ASTM D6709) for fuel economy, Sequence IVA (ASTM D6891) for valvetrain wear, and Sequence VG (ASTM D6593) for sludge and varnish protection. These are some of the industry standard tests required for qualifying engine oils. Out of these tests, a single PAG oil was selected for chassis roll dynamometer tests for fuel economy and emission measurements using FTP (Federal Test Procedure) metro/highway cycles. Five different PAG chemistries were selected by varying the starting alcohol, the oxide monomers (ethylene oxide, propylene oxide, or butylene oxide), capped or uncapped, homopolymer or random copolymer. All formulations contained a proprietary additive package and one which contained additional antiwear and friction modifier additives. Laboratory bench tests (Pin-on-Disk, High Frequency Reciprocating Rig (HFRR), Block-on-Ring, Mini-Traction Machine (MTM) identified formulations having friction, wear, and load carrying characteristics similar to or better than baseline GF-5 SAE 5W-20 oil. Motored valvetrain and motored piston ring friction tests showed nearly 50% friction reduction for some of the PAG formulations compared to GF-5 SAE 5W-20 oil. Motored engine tests showed up to 15% friction benefit over GF-5 SAE 5W-20 oil. It was observed that friction benefits are more related to PAG base oil chemistry than their lower viscosity compared to GF-5 SAE 5W-20 oil. Analysis of wear surfaces from laboratory bench tests and bucket tappets from motored valvetrain tests confirmed the presence of PAG molecules. The adsorption of these polar molecules is believed to be reason for friction reduction. However, the wear surfaces also had thin tribo-film derived from additive components. The tribo-film consisting of phosphates, sulfides, and molybdenum disulfide (when molybdenum additive was present) were observed for both GF-5 SAE 5W-20 and PAG fluids. However, when using PAG fluids, motored valvetrain tests showed high initial wear, which is believed to be due to delay in protective tribo-film formation. After the initial wear, the wear rate of PAG fluids was comparable to GF-5 SAE 5W-20 oil. The PAG oil containing additional antiwear and friction reducing additives showed low initial wear as expected. However, when this oil was evaluated in Sequence IVA test, it showed initially low wear comparable to GF-5 oil but wear accelerated with oil aging indicating rapid deterioration of additive components. ASTM Sequence VG test showed good sludge protection capability but failed to meet varnish rating for GF-5 requirement. Chassis roll dynamometer tests with PAG oil 15-1 showed about 1% fuel economy benefit over GF-5 SAE 5W-20 oil in EPA city cycles only and when the oil was slightly aged (500 miles). No fuel economy benefits could be observed in combined EPA metro/highway cycles. Also, no fuel economy benefit could be observed with continued (500- 10000 miles) oil aging. However, the emission level was comparable to the reference oil and was within EPA limits. Analysis of the PAG oil following tests showed low iron content although additive components were significantly degraded. The results indicate that PAG fluids have significant friction reduction potential but there are challenges with wear and varnish protection capabilities. These limitations are primarily because the selected additive components were chosen to provide a fluid with no metal content that forms little or no sulphated ash. Significant development work is needed to identify additive components compatible with PAG chemistry including their solubility in PAG oil. Miscibility of PAG fluids with mineral base oil is another challenge for oil change service. There is PAG chemistry (oil soluble PAG, OSP) which is soluble in mineral oils but the formulation explored in this investigation did not show significant friction reduction in motored engine tests. Again, highlighting the need for additive development for specific PAG chemistry. The thermal oxidation behavior of these oils has not been explored in this investigation and needs attention.

  2. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect (OSTI)

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Signage The Ohio Turnpike Commission allows businesses to place their logos on directional signs within the right-of-way of state turnpikes. An alternative fuel retailer may include a marking or symbol within their logo indicating that it sells one or more types of alternative fuel. Alternative fuels are defined as E85, fuel blends containing at least 20% biodiesel (B20), natural gas, propane, hydrogen, or any fuel that the U.S. Department of Energy determines, by final rule, to be

  4. Micro fuel cell

    SciTech Connect (OSTI)

    Zook, L.A.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States); Hockaday, R. [Energy Related Devices Inc., Los Alamos, NM (United States)

    1998-12-31

    An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

  5. Dieselgreen Fuels | Open Energy Information

    Open Energy Info (EERE)

    Dieselgreen Fuels Jump to: navigation, search Logo: DieselGreen Fuels Name: DieselGreen Fuels Place: Austin, Texas Region: Texas Area Sector: Biofuels Product: Grease collection...

  6. Arbor Fuel | Open Energy Information

    Open Energy Info (EERE)

    Sector: Biomass Product: Arbor Fuel is developing micro-organisms to convert biomass into alternative fuels like biobutanol. References: Arbor Fuel1 This article is a stub. You...

  7. Planet Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Jump to: navigation, search Name: Planet Fuels Place: Brighton, United Kingdom Product: A UK based producer and supplier of biodiesel. References: Planet Fuels1 This...

  8. Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel ...

  9. Fuel Cells in the States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Fuel Cells in the States States State and Regional State and Regional Initiatives ... Jennifer Gangi Jennifer Gangi Program Director Program Director Fuel Cells 2000 Fuel Cells ...

  10. DOE Fuel Cell Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office Energy Efficiency and Renewable ...

  11. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  12. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  13. Boiler efficiency calculation for multiple fuel burning boilers

    SciTech Connect (OSTI)

    Khodabakhsh, F.; Munukutla, S.; Clary, A.T.

    1996-12-31

    A rigorous method based on the output/loss approach is developed for calculating the coal flow rate for multiple fuel burning boilers. It is assumed that the ultimate analyses of all the fuels are known. In addition, it is assumed that the flow rates of all the fuels with the exception of coal are known. The calculations are performed iteratively, with the first iteration taking into consideration coal as the only fuel. The results converge to the correct answer after a few number of iterations, typically four or five.

  14. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    1997-03-01

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  15. Fuel cells and fuel cell catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  16. Renewable Fuels and Lubricants (ReFUEL) Laboratory

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    Fact sheet describing NREL's Renewable Fuels and Lubricants Laboratory (ReFUEL). ReFUEL is a world-class research and testing facility dedicated to future fuels and advanced heavy-duty vehicle research, located in Denver, Colorado.

  17. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel ...

  18. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

  19. Final assessment of MOX fuel performance experiment with Japanese PWR specification fuel in the HBWR

    SciTech Connect (OSTI)

    Fujii, Hajime; Teshima, Hideyuki; Kanasugi, Katsumasa; Kosaka, Yuji; Arakawa, Yasushi

    2007-07-01

    In order to obtain high burn-up MOX fuel irradiation performance data, SBR and MIMAS MOX fuel rods with Pu-fissile enrichment of about 6 wt% had been irradiated in the HBWR from 1995 to 2006. The peak burn-up of MOX pellet achieved 72 GWd/tM. In this test, fuel centerline temperature, rod internal pressure, stack length and cladding length were measured for MOX fuel and UO{sub 2} fuel as reference. MOX fuel temperature is confirmed to have no significant difference in comparison with UO{sub 2}, taking into account of adequate thermal conductivity degradation due to PuO{sub 2} addition and burn-up development. And the measured fuel temperature agrees well with FINE code calculation up to high burn-up region. Fission gas release of MOX is possibly greater than UO{sub 2} based on temperature and pressure assessment. No significant difference is confirmed between SBR and MIMAS MOX on FGR behavior. MOX fuel swelling rate agrees well with solid swelling rate in the literature. Cladding elongation data shows onset of PCMI in high power region. (authors)

  20. Nuclear fuel element

    DOE Patents [OSTI]

    Zocher, Roy W.

    1991-01-01

    A nuclear fuel element and a method of manufacturing the element. The fuel element is comprised of a metal primary container and a fuel pellet which is located inside it and which is often fragmented. The primary container is subjected to elevated pressure and temperature to deform the container such that the container conforms to the fuel pellet, that is, such that the container is in substantial contact with the surface of the pellet. This conformance eliminates clearances which permit rubbing together of fuel pellet fragments and rubbing of fuel pellet fragments against the container, thus reducing the amount of dust inside the fuel container and the amount of dust which may escape in the event of container breach. Also, as a result of the inventive method, fuel pellet fragments tend to adhere to one another to form a coherent non-fragmented mass; this reduces the tendency of a fragment to pierce the container in the event of impact.

  1. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CDOT and DPA must also determine opportunities to expand state pricing into alternative fuel and fuel-efficient heavy-duty equipment, as well as into idle reduction technologies ...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    regardless of the number of passengers. Qualified AFVs may also use the HOT lanes toll-free. AFVs include plug-in electric vehicles and bi-fuel or dual-fuel vehicles that operate...

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Personal Use Biofuel Reporting Taxpayers producing and using biodiesel and ethanol for personal use must report the total gallons of fuel produced by year and the portion of fuel ...

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Any individual using or selling compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) as a motor fuel must report fuel use and remit taxes ...

  6. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 80% of the proceeds from the sale of fuel blends containing between 1% and 10% biodiesel and the sale of fuels containing 10% ethanol (E10) made between July 1, 2003, and...

  7. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motor Vehicle Fuel Promotion An eight member Natural Gas Fuel Board (Board) was created to advise the Nebraska Energy Office regarding the promotion of natural gas as a motor...

  8. Propane Fuel Basics

    Broader source: Energy.gov [DOE]

    Propane, also known as liquefied petroleum gas (LPG), or autogas, is a clean-burning, high-energy alternative fuel. It has been used for decades to fuel light-duty and heavy-duty propane vehicles.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Eligible projects include powertrains and energy storage or conversion devices (e.g., fuel cells and batteries), and implementation of clean fuels (e.g., natural gas, propane, and ...

  10. Fuel Cells Go Live

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    green h y d r o g e n f u e l i n g POWer Fuel Cells Go live A closer look at the ... commercially available hydrogen fuel cell systems into their lift truck fleets. ...

  11. Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Paul Machiele, Center Director for Fuel Programs, Office of Transportation & Air Quality, U.S. Environmental Protection Agency PDF icon b13_machiele_2-b.pdf More Documents & Publications High Octane Fuels Can Make Better Use of Renewable Transportation Fuels The

  12. Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (FCEVs) | Department of Energy for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)" held on June 24, 2014. PDF icon Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Webinar Slides More Documents

  13. Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Availability Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Electric Availability on Google Bookmark Alternative

  14. Alternative Fuels Data Center: Metropolitan Utilities District Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles With Natural Gas Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center:

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit for Residents Through the Residential Energy Tax Credit program, qualified residents may receive a tax credit for 25% of alternative fuel infrastructure project costs, up to $750. Qualified residents may receive a tax credit for 50% of project costs, up to $750. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other fuels that the Oregon Department of Energy approves. A

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Emission Vehicle (LEV) Standards California's LEV II exhaust emissions standards apply to Model Year (MY) 2004 and subsequent model year passenger cars, light-duty trucks, and medium-duty passenger vehicles meeting specified exhaust standards. The LEV II standards represent the maximum exhaust emissions for LEVs, Ultra Low Emission Vehicles, and Super Ultra Low Emission Vehicles, including flexible fuel, bi-fuel, and dual-fuel vehicles when operating on an alternative fuel. MY 2009 and

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Vehicle Acquisition Requirements State agency fleets with more than 15 vehicles, excluding emergency and law enforcement vehicles, may not purchase or lease a motor vehicle unless the vehicle uses compressed or liquefied natural gas, propane, ethanol or fuel blends of at least 85% ethanol (E85), methanol or fuel blends of at least 85% methanol (M85), biodiesel or fuel blends of at least 20% biodiesel (B20), or electricity (including plug-in hybrid electric vehicles).

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Grants The Texas Commission on Environmental Quality (TCEQ) administers the Alternative Fueling Facilities Program (AFFP) as part of the Texas Emissions Reduction Plan. AFFP provides grants for 50% of eligible costs, up to $600,000, to construct, reconstruct, or acquire a facility to store, compress, or dispense alternative fuels in Texas air quality nonattainment areas. Qualified alternative fuels include biodiesel, electricity, natural gas, hydrogen, propane,

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  20. Spent Nuclear Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Spent Nuclear Fuel Release date: December 7, 2015 Next release date: Late 2018 Spent nuclear fuel data are