Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Naval Spent Fuel Rail Shipment Accident Exercise Objectives  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy Second Quarter Report1-93 JulyDepartment

2

Naval Spent Fuel Rail Shipment Accident Exercise Objectives | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 Printing andNancyFairbanksNaturalDecreeCouncilEnergy

3

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections Tasked for the Transportation of Spent Nuclear Fuel  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES AND INTER-JURISDICTIONAL56-2011 June 20112002, DOE/IG-0567

4

Air Shipment of Spent Nuclear Fuel from Romania to Russia  

SciTech Connect (OSTI)

Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

2010-10-01T23:59:59.000Z

5

AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR  

SciTech Connect (OSTI)

The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

Dewes, J.

2014-02-24T23:59:59.000Z

6

HOW MANY DID YOU SAY? HISTORICAL AND PROJECTED SPENT NUCLEAR FUEL SHIPMENTS IN THE UNITED STATES, 1964 - 2048  

SciTech Connect (OSTI)

No comprehensive, up-to-date, official database exists for spent nuclear fuel shipments in the United States. The authors review the available data sources, and conclude that the absence of such a database can only be rectified by a major research effort, similar to that carried out by Oak Ridge National Laboratory (ORNL) in the early 1990s. Based on a variety of published references, and unpublished data from the U.S. Nuclear Regulatory Commission (NRC), the authors estimate cumulative U.S. shipments of commercial spent fuel for the period 1964-2001. The cumulative estimates include quantity shipped, number of cask-shipments, and shipment-miles, by truck and by rail. The authors review previous estimates of future spent fuel shipments, including contractor reports prepared for the U.S. Department of Energy (DOE), NRC, and the State of Nevada. The DOE Final Environmental Impact Statement (FEIS) for Yucca Mountain includes projections of spent nuclear fuel and high-level radioactive was te shipments for two inventory disposal scenarios (24 years and 38 years) and two national transportation modal scenarios (''mostly legal-weight truck'' and ''mostly rail''). Commercial spent fuel would compromise about 90 percent of the wastes shipped to the repository. The authors estimate potential shipments to Yucca Mountain over 38 years (2010-2048) for the DOE ''mostly legal-weight truck'' and ''mostly rail'' scenarios, and for an alternative modal mix scenario based on current shipping capabilities of the 72 commercial reactor sites. The cumulative estimates of future spent fuel shipments include quantity shipped, number of cask-shipments, and shipment-miles, by legal-weight truck, heavy-haul truck, rail and barge.

Halstead, Robert J.; Dilger, Fred

2003-02-27T23:59:59.000Z

7

RUSSIAN-ORIGIN HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL SHIPMENT FROM BULGARIA  

SciTech Connect (OSTI)

In July 2008, the Global Threat Reduction Initiative and the IRT 2000 research reactor in Sofia, Bulgaria, operated by the Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped 6.4 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel (SNF) to the Russian Federation. The shipment, which resulted in the removal of all HEU from Bulgaria, was conducted by truck, barge, and rail modes of transport across two transit countries before reaching the final destination at the Production Association Mayak facility in Chelyabinsk, Russia. This paper describes the work, equipment, organizations, and approvals that were required to complete the spent fuel shipment and provides lessons learned that might assist other research reactor operators with their own spent nuclear fuel shipments.

Kelly Cummins; Igor Bolshinsky; Ken Allen; Tihomir Apostolov; Ivaylo Dimitrov

2009-07-01T23:59:59.000Z

8

Moab Resumes Rail Shipments After Rockslide | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives InitiativesShippingHowTheMission MissionMissionRidge |Moab

9

Application of ALARA principles to shipment of spent nuclear fuel  

SciTech Connect (OSTI)

The public exposure from spent fuel shipment is very low. In view of this low exposure and the perfect safety record for spent fuel shipment, existing systems can be considered satisfactory. On the other hand, occupational exposure reduction merits consideration and technology improvement to decrease dose should concentrate on this exposure. Practices that affect the age of spent fuel in shipment and the number of times the fuel must be shipped prior to disposal have the largest impact. A policy to encourage a 5-year spent fuel cooling period prior to shipment coupled with appropriate cask redesign to accommodate larger loads would be consistent with ALARA and economic principles. And finally, bypassing high population density areas will not in general reduce shipment dose.

Greenborg, J.; Brackenbush, L.W.; Murphy, D.W. Burnett, R.A.; Lewis, J.R.

1980-05-01T23:59:59.000Z

10

Case histories of West Valley spent fuel shipments: Final report  

SciTech Connect (OSTI)

In 1983, NRC/FC initiated a study on institutional issues related to spent fuel shipments originating at the former spent fuel processing facility in West Valley, New York. FC staff viewed the shipment campaigns as a one-time opportunity to document the institutional issues that may arise with a substantial increase in spent fuel shipping activity. NRC subsequently contracted with the Aerospace Corporation for the West Valley Study. This report contains a detailed description of the events which took place prior to and during the spent fuel shipments. The report also contains a discussion of the shipment issues that arose, and presents general findings. Most of the institutional issues discussed in the report do not fall under NRC's transportation authority. The case histories provide a reference to agencies and other institutions that may be involved in future spent fuel shipping campaigns. 130 refs., 7 figs., 19 tabs.

Not Available

1987-01-01T23:59:59.000Z

11

Rail Access to Yucca Mountain: Critical Issues  

SciTech Connect (OSTI)

The proposed Yucca Mountain repository site currently lacks rail access. The nearest mainline railroad is almost 100 miles away. Absence of rail access could result in many thousands of truck shipments of spent nuclear fuel and high-level radioactive waste. Direct rail access to the repository could significantly reduce the number of truck shipments and total shipments. The U.S. Department of Energy (DOE) identified five potential rail access corridors, ranging in length from 98 miles to 323 miles, in the Final Environmental Impact Statement (FEIS) for Yucca Mountain. The FEIS also considers an alternative to rail spur construction, heavy-haul truck (HHT) delivery of rail casks from one of three potential intermodal transfer stations. The authors examine the feasibility and cost of the five rail corridors, and DOE's alternative proposal for HHT transport. The authors also address the potential for rail shipments through the Las Vegas metropolitan area.

Halstead, R. J.; Dilger, F.; Moore, R. C.

2003-02-25T23:59:59.000Z

12

Fall Protection Procedures for Sealing Bulk Waste Shipments by Rail Cars at Formerly Utilized Sites Remedial Action Program (FUSRAP) Sites - 13509  

SciTech Connect (OSTI)

Rail-cars loaded with radioactive materials must be closed and fastened to comply with United States Department of Transportation (DOT) requirements before they shipped. Securing waste shipments in a manner that meets these regulations typically results in the use of a sealable rail-car liner. Workers accessing the tops of the 2.74 m high rail-cars to seal and inspect liners for compliance prior to shipment may be exposed to a fall hazard. Relatively recent revisions to the Fall Protection requirements in the Safety and Health Requirements Manual (EM385-1-1, U.S. Army Corps of Engineers) have necessitated modifications to the fall protection systems previously employed for rail-car loading at Formerly Utilized Sites Remedial Action Program (FUSRAP) sites. In response these projects have developed site-specific procedures to protect workers and maintain compliance with the improved fall protection regulations. (authors)

Boyle, J.D. [U.S. Army Corps of Engineers - Buffalo District, Buffalo, New York 14207 (United States)] [U.S. Army Corps of Engineers - Buffalo District, Buffalo, New York 14207 (United States); Fort, E. Joseph; Lorenz, William [Cabrera Services (Cabrera) East Harford, CT 06108 (United States)] [Cabrera Services (Cabrera) East Harford, CT 06108 (United States); Mills, Andy [Shaw Environmental and Infrastructure, Inc. (Shaw) Baton Rouge, LA 70809 (United States)] [Shaw Environmental and Infrastructure, Inc. (Shaw) Baton Rouge, LA 70809 (United States)

2013-07-01T23:59:59.000Z

13

Truck and rail charges for shipping spent fuel and nuclear waste  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

1986-06-01T23:59:59.000Z

14

Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254  

SciTech Connect (OSTI)

Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's regulatory and demonstration testing of MAGNOX fuel flasks in the United Kingdom (the CEGB 'Operation Smash Hit' tests), and the 1980's regulatory drop and fire tests conducted on the TRUPACT II containers used for transuranic waste shipments to the Waste Isolation Pilot Plant in New Mexico. The primary focus of the paper is a detailed evaluation of the cask testing programs proposed by the NRC in its decision implementing staff recommendations based on the Package Performance Study, and by the State of Nevada recommendations based on previous work by Audin, Resnikoff, Dilger, Halstead, and Greiner. The NRC approach is based on demonstration impact testing (locomotive strike) of a large rail cask, either the TAD cask proposed by DOE for spent fuel shipments to Yucca Mountain, or a similar currently licensed dual-purpose cask. The NRC program might also be expanded to include fire testing of a legal-weight truck cask. The Nevada approach calls for a minimum of two tests: regulatory testing (impact, fire, puncture, immersion) of a rail cask, and extra-regulatory fire testing of a legal-weight truck cask, based on the cask performance modeling work by Greiner. The paper concludes with a discussion of key procedural elements - test costs and funding sources, development of testing protocols, selection of testing facilities, and test peer review - and various methods of communicating the test results to a broad range of stakeholder audiences. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge Northridge, CA 91330 (United States)

2012-07-01T23:59:59.000Z

15

USED FUEL RAIL SHOCK AND VIBRATION TESTING OPTIONS ANALYSIS  

SciTech Connect (OSTI)

The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data that are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges) on the surrogate fuel assemblies, cask and cradle structures, and the railcar so that forces and deflections that would result in the greatest potential for damage to high burnup and long-cooled UNF can be determined. For purposes of this report we consider testing on controlled track when we have control of the track and speed to facilitate modeling.

Ross, Steven B.; Best, Ralph E.; Klymyshyn, Nicholas A.; Jensen, Philip J.; Maheras, Steven J.

2014-09-29T23:59:59.000Z

16

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted...  

Broader source: Energy.gov (indexed) [DOE]

U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000 Russian Nuclear Warheads Arrives in United States and Will Be Used for U.S. Electricity Under U.S.-Russia...

17

Evaluation of Shortline Railroads & SNF/HLW Rail Shipment Inspections  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJustice EnvironmentalDISTRIBUTIO192-01Tasked for the

18

Rail Planning Timeline  

Broader source: Energy.gov (indexed) [DOE]

dispatching center(s) during the duration of the actual movement of the first shipment to conduct oversight duties of the rail carrier dispatching center operations during periods...

19

Radiation Exposures Associated with Shipments of Foreign Research Reactor Spent Nuclear Fuel  

SciTech Connect (OSTI)

Experience has shown that the analyses of marine transport of spent fuel in the Environmental Impact Statement (EIS) were conservative. It is anticipated that for most shipments. The external dose rate for the loaded transportation cask will be more in line with recent shipments. At the radiation levels associated with these shipments, we would not expect any personnel to exceed radiation exposure limits for the public. Package dose rates usually well below the regulatory limits and personnel work practices following ALARA principles are keeping human exposures to minimal levels. However, the potential for Mure shipments with external dose rates closer to the exclusive-use regulatory limit suggests that DOE should continue to provide a means to assure that individual crew members do not receive doses in excess of the public dose limits. As a minimum, the program will monitor cask dose rates and continue to implement administrative procedures that will maintain records of the dose rates associated with each shipment, the vessel used, and the crew list for the vessel. DOE will continue to include a clause in the contract for shipment of the foreign research reactor spent nuclear fuel requiring that the Mitigation Action Plan be followed.

MASSEY,CHARLES D.; MESSICK,C.E.; MUSTIN,T.

1999-11-01T23:59:59.000Z

20

EIS-0250-S2: Supplemental EIS for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada- Nevada Rail Transportation Corridor  

Broader source: Energy.gov [DOE]

This SEIS is to evaluate the potential environmental impacts of constructing and operating a railroad for shipments of spent nuclear fuel and high-level radioactive waste from an existing rail line in Nevada to a geologic repository at Yucca Mountain. The purpose of the evaluation is to assist the Department in deciding whether to construct and operate a railroad in Nevada, and if so, in which corridor and along which specific alignment within the selected corridor.

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Technical Review Report for the Justification for Shipment of Sodium-Bonded Carbide Fuel Pins in the T-3 Cask  

SciTech Connect (OSTI)

This report documents the review of the Fluor Submittal (hereafter, the Submittal), prepared by Savannah River Packaging Technology (SRPT) of Savannah River National Laboratory (SRNL), at the request of the Department of Energy's (DOE) Richland Operations Office, for the shipment of unirradiated and irradiated sodium-bonded carbide fuel pins. The sodium-bonded carbide fuel pins are currently stored at the Fast Flux Test Facility (FFTF) awaiting shipment to Idaho National Laboratory (INL). Normally, modified contents are included into the next revision of the SARP. However, the contents, identified to be shipped from FFTF to Idaho National Laboratory, are a one-way shipment of 18 irradiated fuel pins and 7 unirradiated fuel pins, where the irradiated and unirradiated fuel pins are shipped separately, and can be authorized with a letter amendment to the existing Certificate of Compliance (CoC).

West, M; DiSabatino, A

2008-01-04T23:59:59.000Z

22

Present experience of NRI REZ with preparation of spent nuclear fuel shipment to Russian Federation  

SciTech Connect (OSTI)

The Nuclear Research Institute Rez plc (NRI) jointed the Russian Research Reactor Fuel Return (RRRFR) programme under the US-Russian Global Threat Reduction Initiative (GTRI) initiative and started the preparation of the spent nuclear fuel (SNF) shipment from the LVR-15 research reactor back to the Russian Federation (RF). The transport of 16 SKODA VPVR/M casks with EK-10, IRT-2M 80 %, and IRT-2M 36% fuel types is planned for the autumn of 2007. The paper describes the experience gained so far during the preparatory works for the SNF shipment (facility equipment modification, cask licenses) and the actual preparation of the SNF for transport, in particular its checking, repacking in a hot cell, loading into the VPVR/M casks, drying, manipulation, completion of the transport documentation, etc., including its transport to the SNF storage facility at the NRI before it is shipped to the RF. The paper also briefly describes a regulatory framework for these activities with a focus on legislative and methodological aspects of the return of vitrified waste back to the Czech Republic. (author)

Svitak, F.; Broz, V.; Hrehor, M.; Marek, M.; Novosad, P.; Podlaha, J.; Rychecky, J. [Nuclear Research Institute Rez plc, Husinec 130, CZ-25068 (Czech Republic)

2008-07-15T23:59:59.000Z

23

Physical Protection of Spent Fuel Shipments: Resolution of Stakeholder Concerns Through Rulemaking - 12284  

SciTech Connect (OSTI)

In 1999, the State of Nevada brought its concerns about physical protection of current spent nuclear fuel (SNF) shipments, and future SNF shipments to a federal repository, before the NRC in a 1999 petition for rulemaking (PRM-73-10). In October 2010, the NRC published a rulemaking decision which would significantly strengthen physical protection of SNF in transit. The newest articulation of the rule (10 CFR 73.37) incorporates regulatory clarifications and security enhancements requested in Nevada's 1999 petition for rulemaking, codifies the findings of the Nuclear NRC and DOE consequence analyses into policy guidance documents and brings forward into regulations the agency and licensee experience gained since the terrorist attacks of September 11, 2001. Although at present DOE SNF shipments would continue to be exempt from these NRC regulations, Nevada considers the rule to constitute a largely satisfactory resolution to stakeholder concerns raised in the original petition and in subsequent comments submitted to the NRC. This paper reviews the process of regulatory changes, assesses the specific improvements contained in the new rules and briefly describes the significance of the new rule in the context of a future national nuclear waste management program. Nevada's petition for rulemaking led to a generally satisfactory resolution of the State's concerns. The decade plus timeframe from petition to rulemaking conclusion saw a sea change in many aspects of the relevant issues - perhaps most importantly the attacks on 9/11 led to the recognition by regulatory bodies that a new threat environment exists wherein shipments of SNF and HLW pose a viable target for human initiated events. The State of Nevada has always considered security a critical concern for the transport of these highly radioactive materials. This was one of the primary reasons for the original rulemaking petition and subsequent advocacy by Nevada on related issues. NRC decisions on the majority of the concerns expressed in the petition, additional developments by other regulatory bodies and the change in how the United States sees threats to the homeland - all of these produced a satisfactory resolution through the rulemaking process. While not all of the concerns expressed by Nevada were addressed in the proposed rule and significant challenges face any programmatic shipment campaign in the future, the lesson learned on this occasion is that stakeholder concerns can be resolved through rulemaking. If DOE would engage with stakeholders on its role in transport of SNF and HLW under the NWPA, these concerns would be better addressed. Specifically the attempts by DOE to resist transportation and security regulations now considered necessary by the NRC for the adequate protection of the shipments of highly radioactive materials, these DOE efforts seem ill advised. One clear lesson learned from this successful rulemaking petition process is that the system of stakeholder input can work to better the regulatory environment. (authors)

Ballard, James D. [Department of Sociology, California State University, Northridge, Northridge, CA 91330 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects Carson City, NV 89706 (United States); Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)

2012-07-01T23:59:59.000Z

24

I:\\Archive\\Projects - NUMBERED\\8000\\8400\\8404 Rail Presentation...  

Broader source: Energy.gov (indexed) [DOE]

905 8404.3 905 First Rail Shipment: April 26, 1999 54 Railcars As of Today: Unit trains shipped 158 Railcars shipped 9,380 Tons shipped 1,009,176 First Rail Shipment: April...

25

A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?  

SciTech Connect (OSTI)

Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

Mark Schanfein

2009-07-01T23:59:59.000Z

26

Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation  

SciTech Connect (OSTI)

On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

2008-07-01T23:59:59.000Z

27

Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud  

SciTech Connect (OSTI)

Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

Hazelton, R.F.

1987-09-01T23:59:59.000Z

28

50th Anniversary of First Fuel Shipment Highlights EM's Role | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6Residential Buildings|ProposedYouatof

29

Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria  

SciTech Connect (OSTI)

The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

K. J. Allen; T. G. Apostolov; I. S. Dimitrov

2009-03-01T23:59:59.000Z

30

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment of

31

Under U.S.-Russia Partnership, Final Shipment of Fuel Converted From 20,000  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear Security Administration Speaks

32

Approval Shipment of Two Canisters of Irradiated Fuel Material from General Atomics.  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka, Alaska,BV

33

MATERIALS COMPATIBILITY OF SNAP FUEL COMPONENTS DURING SHIPMENT IN 9975 PACKAGING  

SciTech Connect (OSTI)

Materials Science and Technology has evaluated materials compatibility for the SNAP (Systems for Nuclear Auxiliary Power) fuel for containment within a 9975 packaging assembly for a shipping period of one year. The evaluation included consideration for potential for water within the convenience can, corrosion from water, galvanic corrosion, tape degradation, and thermal expansion risk. Based on a review of existing literature and assumed conditions, corrosion and/or degradation of the 304 stainless steel (SS) Primary Containment Vessel (PCV) and the 304 stainless steel convenience cans containing the SNAP fuel is not significant to cause failure during the 1 year time shipping period in the 9975 packaging assembly. However, storage beyond the 1 year shipping period has not been validated.

Vormelker, P

2006-11-14T23:59:59.000Z

34

Current Status and Potential Impacts Regarding the Proposed Development of a Rail Line to the Yucca Mountain Nuclear Waste Repository  

SciTech Connect (OSTI)

This paper provides a description of the current status regarding the proposed development of a rail line to the Yucca Mountain Nuclear Waste Repository in Nye County, Southern Nevada, which includes potential impacts analyzed during the National Environmental Policy Act (NEPA) process, and the subsequent creation of an Environmental Impact Statement (EIS) for the rail line. Potential impacts are addressed within the context of impacts to natural and human environmental resources found within the geographic area of the proposed federal project. Potential impacts to these resources have been fully analyzed in the Rail Alignment Draft EIS (DEIS). This paper includes a summary of the potential impacts analyzed in the DEIS. Examples of potential impacts include land use conflicts, air quality, water use, and impacts to biological and cultural resources, among others. In conclusion: Based on its obligations under the NWPA and its decision to select the mostly rail scenario for the transportation of spent nuclear fuel and high-level radioactive waste, DOE needs to ship these materials by rail in Nevada to a repository at Yucca Mountain. DOE prepared the Rail Alignment EIS to provide the background, data, information, and analyses to help decision makers and the public understand the potential environmental impacts that could result from constructing and operating a railroad for shipment of spent nuclear fuel, high-level radioactive waste, and other materials from an existing rail line in Nevada to a repository at Yucca Mountain. This railroad would consist of a rail line, railroad operations support facilities, and other related infrastructure. DOE will use the Rail Alignment EIS to decide whether to construct and operate the proposed railroad, and if so, to: - Select a rail alignment (Caliente rail alignment or Mina rail alignment) in which to construct the railroad; - Select the common segments and alternative segments within either a Caliente rail alignment or a Mina rail alignment. The Department would use the selected common segments and alternative segments to identify the public lands to be included in right-of-way applications; - Decide where to construct proposed railroad operations support facilities; - Decide whether to restrict use of the rail line to DOE trains, or whether to allow commercial shippers to operate over the rail line; and - Determine what mitigation measures to implement. (authors)

Lanthrum, G. [U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, DC (United States); Gunnerson, J. [Booz Allen Hamilton, Las Vegas, NV (United States)

2008-07-01T23:59:59.000Z

35

Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask  

SciTech Connect (OSTI)

This Preliminary Design Report (PDR) provides a detailed description of the design, analyses, and testing programs for the BR-100 cask. The BR-100 is a Type B(U) cask designed for transport by rail or barge. This report presents the preliminary analyses and tests which have been performed for the BR-100 and outlines the confirmatory analyses and tests which will be performed.

none,

1990-02-01T23:59:59.000Z

36

Shielding and criticality analyses of phase I reference truck and rail cask designs for spent nuclear fuel  

SciTech Connect (OSTI)

Results are presented herein to determine the adequacy with respect to shielding regulations of reference designs for a truck cask containing 2 PWR or 5 BWR assemblies of standard burnup (45 GWd/MTU for PWR, 40 GWd/MTU for BWR) and 1 PWR assembly with extended burnup (55 GWd/MTU). The study also includes reference and modified rail cask designs with projected payloads of 8, 10, or 12 PWR assemblies. The burnup/age trends are analyzed in one dimension for both Pb and depleted uranium (DU) gamma-ray shields. The results of the two-dimensional shielding analysis uphold the one-dimensional results as being an appropriate means of studying the burnup/age trends for the truck cask. These results show that the reference design for the Pb-shield truck cask is inadequate for all cases considered, while the DU-shield truck cask is capable of carrying the desired payloads. The one-dimensional shielding analysis results for the reference Pb and DU rail casks indicate substantial margins exist in the side doses for reasonable burnup/age combinations. For a Pb-cask configuration, margins exist primarily for long-cooled (15 years) fuel. For the modified Pb and DU rail casks, the 2-m dose rates offer substantial margins below the regulatory limits for all burnup values considered provided the spent fuel has cooled for {>=}10 years. The modified Pb and DU casks yield essentially identical results and, hence, could be considered equivalent from a shielding perspective. The criticality analyses that were performed indicate that a truck basket can be designed to provide an adequate subcritical margin for 2 PWR assemblies enriched to 5 wt%. While the 10- and 12- assembly rail cask designs are very close to the regulatory limit of 0.95 for k{sub eff}, after accounting for a 0.01 {Delta}k bias and 2 standard deviations, the limit is exceeded by about 3%. It is believed that a combination of decreased enrichments and/or increased water gaps should allow these baskets to be acceptable.

Broadhead, B.L.; Childs, R.L.; Parks, C.V.

1996-03-01T23:59:59.000Z

37

Assessing the level of service for shipments originating or terminating on short line railroads  

E-Print Network [OSTI]

This thesis measures railroad freight trip time and trip time reliability for freight rail shipments involving short lines in 2006. It is based on an underlying MIT study commissioned by members of the short line railroading ...

Alpert, Steven M

2007-01-01T23:59:59.000Z

38

Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns  

SciTech Connect (OSTI)

Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

2003-02-27T23:59:59.000Z

39

Radiological consequences of ship collisions that might occur in U.S. Ports during the shipment of foreign research reactor spent nuclear fuel to the United States in break-bulk freighters  

SciTech Connect (OSTI)

Accident source terms, source term probabilities, consequences, and risks are developed for ship collisions that might occur in U.S. ports during the shipment of spent fuel from foreign research reactors to the United States in break-bulk freighters.

Sprung, J.L.; Bespalko, S.J.; Massey, C.D.; Yoshimura, R. [Sandia National Laboratory, Albuquerque, NM (United States); Johnson, J.D. [GRAM Inc., Albuquerque, NM (United States); Reardon, P.C. [PCRT Technologies, Albuquerque, NM (United States); Ebert, M.W.; Gallagher D.W. [Science Applications International Corp., Reston, VA (United States)

1996-08-01T23:59:59.000Z

40

TRANSCOM: The US Department of Energy (DOE) system for tracking shipments  

SciTech Connect (OSTI)

The US Department of energy (DOE) Transportation Management Division (TMD) has developed a system which allows communications with and near real-time tracking of high-visibility shipments of hazardous materials. This system, which is known as TRANSCOM (Transportation Tracking and Communications System), is currently in operation. This paper summarizes the current status of TRANSCOM, its history, the experience associated with its use, and the future plans for its growth and enhancement. during the first half of fiscal year (FY) 1994, 38 shipments were tracked by the TRANSCOM system. These shipments included two Mark-42 spent fuel shipments, one BUSS cask shipment, and one waterway shipment (the Seawolf shipment).

Boes, K.S.; Joy, D.S.; Pope, R.B. [Oak Ridge National Lab., TN (United States); Thomas, T.M. [US Dept. of Energy, Germantown, MD (United States); Lester, P.B. [US Dept. of Energy, Oak Ridge, TN (United States)

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

WIPP - Shipment & Disposal Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome VelenciaNewsNews ThisPrivacy ActShipment

42

Stakeholder Transportation Scorecard: Reviewing Nevada's Recommendations for Enhancing the Safety and Security of Nuclear Waste Shipments - 13518  

SciTech Connect (OSTI)

As a primary stakeholder in the Yucca Mountain program, the state of Nevada has spent three decades examining and considering national policy regarding spent nuclear fuel and high-level radioactive waste transportation. During this time, Nevada has identified 10 issues it believes are critical to ensuring the safety and security of any spent nuclear fuel transportation program, and achieving public acceptance. These recommendations are: 1) Ship the oldest fuel first; 2) Ship mostly by rail; 3) Use dual-purpose (transportable storage) casks; 4) Use dedicated trains for rail shipments; 5) Implement a full-scale cask testing program; 6) Utilize a National Environmental Policy Act (NEPA) process for the selection of a new rail spur to the proposed repository site; 7) Implement the Western Interstate Energy Board (WIEB) 'straw man' process for route selection; 8) Implement Section 180C assistance to affected States, Tribes and localities through rulemaking; 9) Adopt safety and security regulatory enhancements proposed states; and 10) Address stakeholder concerns about terrorism and sabotage. This paper describes Nevada's proposals in detail and examines their current status. The paper describes the various forums and methods by which Nevada has presented its arguments and sought to influence national policy. As of 2012, most of Nevada's recommendations have been adopted in one form or another, although not yet implemented. If implemented in a future nuclear waste program, the State of Nevada believes these recommendations would form the basis for a successful national transportation plan for shipments to a geologic repository and/or centralized interim storage facility. (authors)

Dilger, Fred C. [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)

2013-07-01T23:59:59.000Z

43

The ENCOAL project: Initial commercialization shipment and utilization of both solid and liquid products. Topical report  

SciTech Connect (OSTI)

ENCOAL is co-funding a mild gasification project and shipping the products to customers. The ENCOAL Corporation has shipped, to two utility customers, over 500 rail cars (six partial trains and two full trains) of solid product (PDF) from its plant located at Triton Coal Company`s Buckskin Mine near Gillette Wyoming. Shipments span a range of blends from 15% to essentially unblended PDF. Utility handling of these shipments is comparable to that of run-of-mine Buckskin coal. Results related to spontaneous combustion and generation of fugitive dust are particularly favorable. Combustion tests were performed both in a pulverized-fired boiler and in a cyclone-fired boiler. Commercialization utilization of the liquid product (CDL) depends on customer facility capabilities and the source of any blending fuel, as expected. A total of 56 tank cars have been sent to three customers. The 1994 test program met or exceeded ENCOAL`s major objectives of transporting and burning both PDF and CDL in existing customer facilities.

McCord, T.G.

1995-03-01T23:59:59.000Z

44

Common Rail Injection System Development  

SciTech Connect (OSTI)

The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

Electro-Motive,

2005-12-30T23:59:59.000Z

45

Surrogate Spent Nuclear Fuel Vibration Integrity Investigation  

SciTech Connect (OSTI)

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading encountered during road or rail shipment. ORNL has been developing testing capabilities that can be used to improve our understanding of the impacts of vibration loading on SNF integrity, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety of SNF storage and transportation operations.

Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL

2014-01-01T23:59:59.000Z

46

User Shipments | Linac Coherent Light Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsedUser Services Print The UserShipments

47

User Shipments | Stanford Synchrotron Radiation Lightsource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdates byUser Guide Print 1.HomeShipments Shipping

48

Rail ClipsRail Clips Track Renewal  

E-Print Network [OSTI]

Rail ClipsRail Clips and Track Renewal ver. 1 ME 6222: Manufacturing Processes and Systems Prof. J 2009 7 #12;Track Renewal ­ Tie replacement ballast packingTie replacement, ballast packing ME 6222: Manufacturing Processes and Systems Prof. J.S. Colton © GIT 2009 8 #12;Track Renewal ME 6222: Manufacturing

Colton, Jonathan S.

49

Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask  

SciTech Connect (OSTI)

The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.

none,

1990-02-01T23:59:59.000Z

50

An investigation of high pressure/late cycle injection of CNG (compressed natural gas) as a fuel for rail applications  

SciTech Connect (OSTI)

This report describes a demonstration effort to investigate the use of natural gas in a medium-speed diesel engine. The effort was unique in the sense that natural gas was injected directly into the combustion chamber late in the compression stroke, as a high pressure gas rather than through low pressure fumigation or low pressure injection early in the compression stroke. Tests were performed on a laboratory two-cylinder, two-stroke cycle medium-speed diesel engine in an attempt to define its ability to operate on the high pressure/late cycle injection concept and to define the performance and emission characteristics of the engine under such operation. A small quantity of No.-2 diesel fuel was injected into the cylinder slightly before the gas injection to be used as an ignition source for the gas. Pilot (diesel fuel) and main (natural gas) timing and injection duration were systematically varied to optimize engine performance. The test demonstrated that the medium-speed engine was capable of attaining full rated speed and load (unlike the low pressure approach) with very low percentages of pilot injection with the absence of knock. Thermal efficiency was as much as 10 percent less than thermal efficiency levels obtained with neat diesel fuel. This was primarily due to the placement and injection characteristics of the pilot and main injectors. Optimization of the injection system would undoubtedly result in increased thermal efficiency. 11 figs., 4 tabs.

Wakenell, J.F.; O'Neal, G.G.; Baker, Q.A.; Urban, C.M.

1988-04-01T23:59:59.000Z

51

( Sample of Shipment Notice) Federal Records Center | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice) Federal Records Center ( Sample of

52

Department of Energy Spent Fuel Shipping Campaigns: Comparisons of Transportation Plans and Lessons Learned  

SciTech Connect (OSTI)

Over the last 30 years, the U.S. Department of Energy (DOE) has successfully and safely transported shipments of spent nuclear fuel over America's highways and railroads. During that time, an exemplary safety record has been established with no identifiable fatalities, injuries, or environmental damage caused by the radioactive nature of the shipments. This paper evaluates some rail and truck shipping campaigns, planning processes, and selected transportation plans to identify lessons learned in terms of planning and programmatic activities. The intent of this evaluation is to document best practices from current processes and previous plans for DOE programs preparing or considering future plans. DOE's National Transportation Program (NTP) reviewed 13 plans, beginning with core debris shipments from Three Mile Island to current, ongoing fuel campaigns. This paper describes lessons learned in the areas of: emergency planning, planning information, security, shipment prenotification, emergency notification/response, terrorism/sabotage risk, and recovery and cleanup, as well as routing, security, carrier/driver requirements, transportation operational contingencies, tracking, inspections and safe parking.

Holm, Judith A.; Thrower, Alex W.; Antizzo, Karen

2003-02-27T23:59:59.000Z

53

SGP Shipment Notification Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORT SANDSDNTM7/31/13 Page3 SGP Cloud

54

RH_SRS_Shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a February 2009WIPP

55

Rail Routing Criteria Selection  

Broader source: Energy.gov (indexed) [DOE]

TEC 12 File name 13 Example: Four Alternate Rail Routes From Fernald, OH to Caliente, NV Map source: WebTRAGIS TEC 13 File name 14 Ranking Route Length Total Route Length...

56

A TRANSPORTATION RISK ASSESSMENT TOOL FOR ANALYZING THE TRANSPORT OF SPENT NUCLEAR FUEL AND HIGH-LEVEL RADIOACTIVE WASTE TO THE PROPOSED YUCCA MOUNTAIN REPOSITORY  

SciTech Connect (OSTI)

The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis addressed the potential for transporting spent nuclear fuel and high-level radioactive waste from 77 origins for 34 types of spent fuel and high-level radioactive waste, 49,914 legal weight truck shipments, and 10,911 rail shipments. The analysis evaluated transportation over 59,250 unique shipment links for travel outside Nevada (shipment segments in urban, suburban or rural zones by state), and 22,611 links in Nevada. In addition, the analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The analysis also used mode-specific accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. This complex mix of data and information required an innovative approach to assess the transportation impacts. The approach employed a Microsoft{reg_sign} Access database tool that incorporated data from many sources, including unit risk factors calculated using the RADTRAN IV transportation risk assessment computer program. Using Microsoft{reg_sign} Access, the analysts organized data (such as state-specific accident and fatality rates) into tables and developed queries to obtain the overall transportation impacts. Queries are instructions to the database describing how to use data contained in the database tables. While a query might be applied to thousands of table entries, there is only one sequence of queries that is used to calculate a particular transportation impact. For example, the incident-free dose to off-link populations in a state is calculated by a query that uses route segment lengths for each route in a state that could be used by shipments, populations for each segment, number of shipments on each segment, and an incident-free unit risk factor calculated using RADTRAN IV. In addition to providing a method for using large volumes of data in the calculations, the queries provide a straight-forward means used to verify results. Another advantage of using the MS Access database was the ability to develop query hierarchies using nested queries. Calculations were broken into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing unit risk factors calculated using RADTRAN IV to produce radiological impacts. Through the use of queries, impacts by origin, mode, fuel type or many other parameters can be obtained. The paper will show both the flexibility of the assessment tool and the ease it provides for verifying results.

NA

2001-02-15T23:59:59.000Z

57

The Development of an Effective Transportation Risk Assessment Model for Analyzing the Transport of Spent Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository  

SciTech Connect (OSTI)

Past approaches for assessing the impacts of transporting spent fuel and high-level radioactive waste have not been effectively implemented or have used relatively simple approaches. The Yucca Mountain Draft Environmental Impact Statement (DEIS) analysis considers 83 origins, 34 fuel types, 49,914 legal weight truck shipments, 10,911 rail shipments, consisting of 59,250 shipment links outside Nevada (shipment kilometers and population density pairs through urban, suburban or rural zones by state), and 22,611 shipment links in Nevada. There was additional complexity within the analysis. The analysis modeled the behavior of 41 isotopes, 1091 source terms, and used 8850 food transfer factors (distinct factors by isotope for each state). The model also considered different accident rates for legal weight truck, rail, and heavy haul truck by state, and barge by waterway. To capture the all of the complexities of the transportation analysis, a Microsoft{reg_sign} Access database was created. In the Microsoft{reg_sign} Access approach the data is placed in individual tables and equations are developed in queries to obtain the overall impacts. While the query might be applied to thousands of table entries, there is only one equation for a particular impact. This greatly simplifies the validation effort. Furthermore, in Access, data in tables can be linked automatically using query joins. Another advantage built into MS Access is nested queries, or the ability to develop query hierarchies. It is possible to separate the calculation into a series of steps, each step represented by a query. For example, the first query might calculate the number of shipment kilometers traveled through urban, rural and suburban zones for all states. Subsequent queries could join the shipment kilometers query results with another table containing the state and mode specific accident rate to produce accidents by state. One of the biggest advantages of the nested queries is in validation. Temporarily restricting the query to one origin, one shipment, or one state and validating that the query calculation is returning the expected result allows simple validation. The paper will show the flexibility of the assessment tool to consider a wide variety of impacts. Through the use of pre-designed queries, impacts by origin, mode, fuel type or many other parameters can be obtained.

McSweeney; Thomas; Winnard; Ross; Steven B.; Best; Ralph E.

2001-02-06T23:59:59.000Z

58

324 Building B-Cell Pressurized Water Reactor Spent Fuel Packaging & Shipment RL Readiness Assessment Final Report [SEC 1 Thru 3  

SciTech Connect (OSTI)

A parallel readiness assessment (RA) was conducted by independent Fluor Hanford (FH) and U. S. Department of Energy, Richland Operations Office (RL) team to verify that an adequate state of readiness had been achieved for activities associated with the packaging and shipping of pressurized water reactor fuel assemblies from B-Cell in the 324 Building to the interim storage area at the Canister Storage Building in the 200 Area. The RL review was conducted in parallel with the FH review in accordance with the Joint RL/FH Implementation Plan (Appendix B). The RL RA Team members were assigned a FH RA Team counterpart for the review. With this one-on-one approach, the RL RA Team was able to assess the FH Team's performance, competence, and adherence to the implementation plan and evaluate the level of facility readiness. The RL RA Team agrees with the FH determination that startup of the 324 Building B-Cell pressurized water reactor spent nuclear fuel packaging and shipping operations can safely proceed, pending completion of the identified pre-start items in the FH final report (see Appendix A), completion of the manageable list of open items included in the facility's declaration of readiness, and execution of the startup plan to operations.

HUMPHREYS, D C

2002-08-01T23:59:59.000Z

59

Slide 1  

Broader source: Energy.gov (indexed) [DOE]

Fuel Shipment Synopsis (continued) -Rail shipment * DOE selected route * Dedicated train; 2 locomotives, 2 cask cars, 3 buffer cars, 1 passenger car * Nuclear Regulatory...

60

1International High Speed Rail Conference 19642064 High Speed Rail  

E-Print Network [OSTI]

1International High Speed Rail Conference 1964­2064 High Speed Rail: Celebrating Ambition 2014 by the Birmingham Centre for Railway Research and Education Conference programme 8 ­10 December 2014 Kindly supported by: #12;2 International High Speed Rail Conference Monday 8 December 12:00 ­ 12:50 Registration

Birmingham, University of

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Rail Splitter Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access Permit5-ID-aREC SolarRadium HotRail Splitter Wind Farm

62

Removing nuclear waste, one shipment at a time  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories » Removing nuclear waste, one shipment at a time

63

Annual Transportation Report for Radioactive Waste Shipments...  

National Nuclear Security Administration (NNSA)

ANNUAL TRANSPORTATION REPORT FY 2008 Radioactive Waste Shipments to and from the Nevada Test Site (NTS) February 2009 United States Department of Energy National Nuclear Security...

64

Removing nuclear waste, one shipment at a time  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Removing nuclear waste, one shipment at a time Removing nuclear waste, one shipment at a time The Lab's 1,000th shipment of transuranic waste recently left Los Alamos, on its way...

65

Portsmouth Site Delivers First Radioactive Waste Shipment to...  

Office of Environmental Management (EM)

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal Facility in Texas...

66

1 Copyright 2014 by ASME Proceedings of the 2014 Joint Rail Conference  

E-Print Network [OSTI]

. These operators report energy consumption in purchased electricity (kWh) instead of gallons of liquid fuel transportation alternative to reduce energy consumption and emissions in large urban areas. Use of commuter rail-term efficiency trends for rail as an urban transportation mode, this study analyzes historic trends in energy

Barkan, Christopher P.L.

67

Ultrasonic methods for rail inspection  

E-Print Network [OSTI]

operating speed over defective rail to 30 m.p.h. until jointoperating speed over the defective rail to 30 m.p.h. until jointThe operating speed cannot be over 30 m.p.h. C. Apply joint

Phillips, Robert Ronald

2012-01-01T23:59:59.000Z

68

The Rail Alignment Environmental Impact Statement: An Update  

SciTech Connect (OSTI)

On July 23,2002, the President of the United States signed into law a joint resolution of the United States Congress designating the Yucca Mountain site in Nye County, Nevada, for development as a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste. If the US. Nuclear Regulatory Commission authorizes construction of the repository and receipt and possession of spent nuclear fuel and high-level radioactive at Yucca Mountain, the U.S. Department of Energy (DOE) would be responsible for transporting these materials to the Yucca Mountain repository as part of its obligation under the Nuclear Waste Policy Act. Part of the site recommendation decision included the analysis of a nation-wide shipping campaign to the proposed repository site. The ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada'' (February 2002) (Repository EIS) evaluated the potential impacts of the transportation of 70,000 Metric Tons of Heavy Metal spent nuclear fuel and high-level radioactive waste from 77 locations around the nation to the potential repository in Nevada over a 24 year shipping campaign. In the Repository EIS, DOE identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. In December 2003, based on public comments and the environmental analyses in the Repository EIS, DOE identified a preference for the Caliente rail corridor in Nevada. On April 8, 2004, DOE issued a Record of Decision (ROD) on the Mode of Transportation and Nevada Rail Corridor for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada. In this ROD, the DOE announced that it had decided to select the mostly rail scenario analyzed in the Repository EIS as the transportation mode both on a national basis and in the State of Nevada. Under the mostly rail scenario, the DOE would rely on a combination of rail, truck and possibly barge to transport to the repository site at Yucca Mountain up to 70,000 MTHM of spent nuclear fuel and high-level radioactive waste, with most of the spent nuclear fuel and high-level radioactive waste being transported by rail. This will ultimately require construction of a rail line in Nevada to the repository. In addition, the DOE has decided to select the Caliente rail corridor in which to examine potential alignments within which to construct that rail line. A corridor is a strip of land, approximately 400 meters (0.25 miles) wide, that encompasses one of several possible routes through which DOE could build a rail line. An alignment is the specific location of a rail line in a corridor, and would likely be 60 meters [200 feet] or less in width. Also on April 8, 2004, DOE issued a Notice of Intent to Prepare an Environmental Impact Statement for the Alignment, Construction, and Operation of a Rail Line to a Geologic Repository at Yucca Mountain, Nye County, NV. In the Notice of Intent, the Department announced its intent to prepare a Rail Alignment EIS to assist in selecting a possible alignment for construction of a rail line that would connect the repository at Yucca Mountain to an existing main rail line in Nevada. The Rail Alignment EIS also would consider the potential construction and operation of a rail-to-truck intermodal transfer facility, proposed to be located at the confluence of an existing mainline railroad and a highway, to support legal-weight truck transportation until the rail system is fully operational. This corridor is approximately 513 kilometers (319 miles) long and would cost an estimated $880 million (2001 dollars). Should DOE decide to build the Caliente corridor, it may be the longest rail line built in the United States since the Transcontinental Railroad was constructed in 1869. Some of the challenges in building this rail corridor are steep grades (the corridor crosses over 7 mountain ranges), isolated terrain, possible tunnels, and stakeholder acceptance.

R. Sweeney

2005-01-20T23:59:59.000Z

69

"The Vendor's Optimal Policy for Stock Replenishment and Shipment Scheduling under Temporal Shipment Consolidation  

E-Print Network [OSTI]

"The Vendor's Optimal Policy for Stock Replenishment and Shipment Scheduling under Temporal stock replenishment and shipment scheduling problem applicable under a vendor-managed inventory (VMI) contract where the vendor has flexibility over the timing and quantity of resupply at a group of retailers

Reisslein, Martin

70

2010 Minnesota Comprehensive Statewide Freight and Passenger Rail Plan  

E-Print Network [OSTI]

and transit connections ·! Positive return on investment, 1.5-2.5 times more than cost ·! Bridge, bottleneck for rail investment creates a unique opportunity ·! Global and national economic and environmental trends are likely to increase fuel costs and impose controls on greenhouse gas emission ·! Therefore, Minnesota

Minnesota, University of

71

Segmented rail linear induction motor  

DOE Patents [OSTI]

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

Cowan, Jr., Maynard (1107 Stagecoach Rd. SE., Albuquerque, NM 87123); Marder, Barry M. (1412 Pinnacle View Dr. NE., Albuquerque, NM 87123)

1996-01-01T23:59:59.000Z

72

Segmented rail linear induction motor  

DOE Patents [OSTI]

A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

Cowan, M. Jr.; Marder, B.M.

1996-09-03T23:59:59.000Z

73

The Environmental Injector: Beyond Common Rail and Hydraulic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Environmental Injector: Beyond Common Rail and Hydraulic Intensificatiion The Environmental Injector: Beyond Common Rail and Hydraulic Intensificatiion The Environmental...

74

WIPP Receives 100th Shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP

75

WIPP Receives 200th Shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP200 th

76

LANL Resumes Shipments to WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial2 J.N. Shadid,a Cover imagesLANL Resumes

77

LANL reaches waste shipment milestone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs &Jeff Yarbrough joins Los AlamosLANL reaches

78

Waste Shipment Approval - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable VersionProtective ActionsWasteSampling andAbout

79

Operations start and shipments begin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002 WholesaleEnergy'sRunning

80

Overseas shipments of 48Y cylinders  

SciTech Connect (OSTI)

This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Bayou Choctaw Oil Shipment Test  

SciTech Connect (OSTI)

In early October of 1993, an oil shipment of about 1 million barrels was made from the Bayou Choctaw Strategic Petroleum Reserve storage facility to St. James Terminal. During the shipment, oil temperatures and soil temperatures along the pipeline were recorded. The field data were used to make estimations of soil thermal properties, thermal conductivity and specific heat. These data were also used to validate and calibrate a heat transfer code, OILPIP, which has been used to calculate pipeline cooling of oil during a drawdown.

Bauer, S.J.; Ballard, S.; Barker, G.T.

1994-05-01T23:59:59.000Z

82

Rail Transportation and Engineering Center (RailTEC) The University of Illinois at Urbana-Champaign  

E-Print Network [OSTI]

Rail Transportation and Engineering Center (RailTEC) The University of Illinois at Urbana Effects and Interaction of Terminal and Mainline Delay Rail Operational and Energy Efficiency -Passenger Rail Energy Consumption and Emissions Relative to Competing Modes -Economic and Operating Impacts

Illinois at Urbana-Champaign, University of

83

www.ave.kth.se Rail Vehicles  

E-Print Network [OSTI]

www.ave.kth.se Rail Vehicles Part of the Masters program in Vehicle Engineering Master's Thesis: Validation of wheel wear calculation code Background Rail vehicle operators have a genuine concern about wheel and rail wear prediction methodologies, due to the influence of worn profiles in the cost of both

Haviland, David

84

7.1.1. Fernbahnhof / Rail Station  

E-Print Network [OSTI]

Fernbahnhofs 7.1.1.4.5 Kälteversorgung des Fernbahnhofs / Cooling Supply of Rail Station 7 Abwasserversorgung des Fernbahnhofs / Fresh and Used Water Supply of Rail Stations 7.1.1.4.1.1 Verfahren zur Fernbahnhofs 7.1.1.4.2 Stromversorgung des Fernbahnhofs / Power Supply of Rail Station 7

Berlin,Technische Universität

85

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170Thousand2.442 3.028 3.803 3.971Feet)06Coal

86

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousand Cubic Feet) OmanThousand36,610.05 KeroseneCoal Glossary

87

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousand Cubic Feet) OmanThousand36,610.05 KeroseneCoal

88

Rail Coal Transportation Rates  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S.Feet) Year Weekly77a.REVISIONreports

89

Rail Coal Transportation Rates to the Electric Power Sector  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170Thousand2.442 3.028 3.803 3.971Feet)06CoalRail

90

TEC Working Group Topic Groups Rail | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommitteeRenewable Energy, U.S.ArbitraryTask6ManualRail TEC

91

Microsoft PowerPoint - Rail_Kneitel [Compatibility Mode  

Office of Environmental Management (EM)

created procedure for BNL shipments - LIRR sends Safety Inspector to walk down each train * BNL makes notifications in accordance with protocols * Shipments made on weekends...

92

10,000th Shipment Celebrated at WIPP | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley Responsible DOEQA: NA Root CauseDepartment0,000th Shipment

93

Microsoft Word - 10,000th Shipment Commemoration Release Final.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping RichlandScatteringWater Vapor77 PAGE OF838:UFC10,000 th Shipment

94

Intermodal transportation of spent fuel  

SciTech Connect (OSTI)

Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate.

Elder, H.K.

1983-09-01T23:59:59.000Z

95

Identification of High-Speed Rail Ballast Flight Risk Factors and Risk Mitigation Strategies  

E-Print Network [OSTI]

Francesco Bedini Jacobini, Erol Tutumluer, Mohd Rapik Saat Rail Transportation and Engineering Center (Rail

Barkan, Christopher P.L.

96

Impacts of SNF burnup credit on the shipment capability of the GA-4 cask  

SciTech Connect (OSTI)

Scoping analyses were performed to determine the impacts of two different levels of burnup credit and two different spent fuel pickup rates on the shipment capability and the minimum fleet size of the GA-4 cask. The analyses involved developing loading curves for the GA-4 cask based on the actinide-only and principal-isotope burnup credit considerations. The analyses also involved examination of the spent nuclear fuel assembly population at nine reactor sites and categorization of the assemblies in accordance with the loading restrictions imposed. The results revealed that for the nine sites considered, depending on the level of burnup credit and the pickup rate assumed, the total savings in shipment and cask fleet costs (1994 dollars) can range from $55 million to $74 million.

Mobasheran, A.S. [Roy F. Weston, Inc., Washington, DC (United States); Lake, W. [Department of Energy, Washington, DC (United States); Richardson, J. [Raytheon Nuclear Inc., Washington, DC (United States)

1996-12-01T23:59:59.000Z

97

Enhancements to System for Tracking Radioactive Waste Shipments...  

Energy Savers [EERE]

Multiple Users January 30, 2013 - 12:00pm Addthis Transportation Tracking and Communication System users can now track shipments of radioactive materials and access...

98

Bridge deck designs for railing impacts  

E-Print Network [OSTI]

AND MATERIALS TESTING Concrete Steel CHAPTER IV. TEXAS BRIDGE RAILING TYPE T101 Description . Tests on the T101 Steel Post with a Rigid Support . Static Tests on the Standard T101 Bridge Railing Dynamic Tests on the Standard T101 Bridge Railing . Tests... Stress Calculations on Bridge Deck Connection to Texas T202 Concrete Wall Table A-3. Flexure Stress Calculations on Bridge Deck Connection to Texas T5 Bridge Rail Table 8-1. Concrete Cylinder Compression Tests Table 8-2. Reinforcing Steel Tensile...

Arnold, Althea Gayle

1984-01-01T23:59:59.000Z

99

TEC Rail TG Summary_Kansas City  

Broader source: Energy.gov (indexed) [DOE]

January 31-February 1, 2007 Atlanta, Georgia Rail Topic Group Mr. Thrower (OCRWMOLM) introduced Mr. Blackwell (FRA), who gave a presentation on the DOT Notice of Proposed...

100

Optimization Online - Shunting Minimal Rail Car Allocation  

E-Print Network [OSTI]

Jun 30, 2003 ... Abstract: We consider the rail car management at industrial in-plant railroads. Demands for materials or empty cars are characterized by a track, ...

Marco E. Luebbecke

2003-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Advanced Diesel Common Rail Injection System for Future Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Common Rail Injection System for Future Emission Legislation Advanced Diesel Common Rail Injection System for Future Emission Legislation 2004 Diesel Engine Emissions Reduction...

102

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine P-3 Gregory Lilik, Jos Martn...

103

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel...  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine This study measured the effects of...

104

Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructu...  

Broader source: Energy.gov (indexed) [DOE]

Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure Fractal dimensions of particle...

105

Selection of Processes for Welding Steel Rails  

E-Print Network [OSTI]

...._ _) Selection of Processes for Welding Steel Rails by N.S. Tsai* and T.W. Eagar* ABSTRACT 421 The advantages and limitations ofseveral conventional and prospective rail welding processes are reviewed with emphasis on the heat input rate, on joint preparation, on post weld grinding and on resultant metallurgical

Eagar, Thomas W.

106

Thiago Bizarria, Ryan Kernes, Riley Edwards Joint Rail Conference  

E-Print Network [OSTI]

variation in temperature FMEA Analysis #12;Slide 7Mechanistic behavior of rail pad assemblies Mechanics

Barkan, Christopher P.L.

107

Effects of Ignition Quality and Fuel Composition on Critical...  

Broader source: Energy.gov (indexed) [DOE]

of Michigan Overview Motivation Multi-cylinder, turbocharged, common rail, direct injection study in which high ignition quality fuel was found avoid NO X , PM, THC and CO...

108

Determination of Longitudinal Stress in Rails  

E-Print Network [OSTI]

The objective of this research is to determine the longitudinal stress in rails by using the polarization of Rayleigh waves. Analytical models are developed to describe the effect of applied stress on wave speed and on the polarization of Rayleigh...

Djayaputra, Ferdinand

2012-02-14T23:59:59.000Z

109

Estimating carbon emissions from less-than-truckload (LTL) shipments  

E-Print Network [OSTI]

Less-than-truckload (LTL) is a $32-billion sector of the trucking industry that focuses on moving smaller shipments, typically with weights between 100 and 10,000 pounds, that do not require a full trailer to be moved. ...

Veloso de Aguiar, Guilherme

2014-01-01T23:59:59.000Z

110

Structured hypothesis tests based diagnosis : application to a common rail diesel injection system  

E-Print Network [OSTI]

Structured hypothesis tests based diagnosis : application to a common rail diesel injection system Zahi SABEH, José RAGOT, Frédéric KRATZ Delphi Diesel Systems, Centre Technique de Blois 9 boulevard de to increase diesel engine performances and to reduce noise, emission and fuel consumption. Such goals

Boyer, Edmond

111

Optimal Railroad Rail Grinding for Fatigue Mitigation  

E-Print Network [OSTI]

............................................................................. 25 2.4.1 FEA of Wheel-Rail Contact with an Elastic Material ...... 25 2.4.2 FEA of Wheel-Rail Contact with Plasticity Model .......... 27 2.5 Results and Discussion ................................................................. 28... 2.5.1 The Steady State of Residual Stresses .............................. 30 2.5.2 Accumulation of Residual Stresses in Rolling Contact .... 31 2.5.3 Comparisons between the Equivalent Rolling Stresses of Elastic and Hardening...

Tangtragulwong, Potchara

2012-02-14T23:59:59.000Z

112

Challenges of Including the Mina Route in the Nevada Rail Alignment Environmental Impact Statement  

SciTech Connect (OSTI)

The Department of Energy's Office of Civilian Radioactive Waste Management is developing the Yucca Mountain repository for the disposition of spent nuclear fuel (SNF) and high level radioactive waste (HLW). Part of that development is the transportation infrastructure needed to ship SNF and HLW from 77 sites around the country to the repository. A Record of Decision was issued in 2004 to use mostly rail as the mode of transport both nationally, and in the State of Nevada. No rail access exists to the Yucca Mountain site, so a Rail Alignment Environmental Impact Statement (RA-EIS) is being prepared to address the impacts associated with connecting existing track in Nevada to Yucca Mountain. Late in the preparation of the Draft RA-EIS, an option to consider an additional alignment alternative was introduced. This paper describes the consideration given to the new alternative and describes how it is being incorporated into the RA-EIS. (authors)

Lanthrum, G.; Larson, N. [U.S. Department of Energy, Office of Civilian Radioactive Waste, Washington, DC (United States); Mussler, R. [Booze Allen Hamilton, Suite (United States)

2007-07-01T23:59:59.000Z

113

Pipe overpack container for trasuranic waste storage and shipment  

DOE Patents [OSTI]

A Pipe Overpack Container for transuranic waste storage and shipment. The system consists of a vented pipe component which is positioned in a vented, insulated 55 gallon steel drum. Both the vented pipe component and the insulated drum are capable of being secured to prevent the contents from leaving the vessel. The vented pipe component is constructed of 1/4 inch stainless steel to provide radiation shielding. Thus, allowing shipment having high Americium-241 content. Several Pipe Overpack Containers are then positioned in a type B, Nuclear Regulatory Commission (NRC) approved, container. In the current embodiment, a TRUPACT-II container was employed and a maximum of fourteen Pipe Overpack Containers were placed in the TRUPACT-II. The combination received NRC approval for the shipment and storage of transuranic waste.

Geinitz, Richard R. (Arvada, CO); Thorp, Donald T. (Broomfield, CO); Rivera, Michael A. (Boulder, CO)

1999-01-01T23:59:59.000Z

114

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

Prepared by Booz-Allen & Hamilton. January. California AirRail Fuel In 1991 Booz-Allen & Hamilton developed a 1987

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

115

Volume, Number of Shipments Surpass Goals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface. | EMSLVisualizingwithshatters records in

116

WIPP Receives 500th Waste Shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP200

117

WIPP receives 9,000th shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2,RadiologicalWIPP

118

Hazardous Material Shipments | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960Options forHazardous

119

Microsoft Word - ORNL_first_shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWERFebruarySavebased on an All42 EEO365 19NEWS

120

Lab sets new record for waste shipments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space control NewsUWFiveMarchNew record for waste

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Rocky Flats resumes shipments to WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergy Innovation Portal Robust,RELEASE

122

First Savannah River Shipment Arrives At WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField OfficeFirmFirst Proof ofFirstFirst Savannah River

123

Los Alamos shipments to Waste Control Specialists  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6,LocalNuclearandplantsLos AlamosLos Alamos8, 2014 Los

124

Microsoft Word - 10000th_shipment.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping RichlandScatteringWater Vapor77 PAGE896:UFC 2300.00 DepartmentFor

125

Development Impacts of high-speed rail : megalopolis formation and implications for Portugal's Lisbon-Porto High-Speed Rail Link  

E-Print Network [OSTI]

High-speed rail (HSR) has been gaining acceptance worldwide with development of rail technology and rising concerns over climate change and congestion in airports and on roads. The implementation of high-speed rail lines ...

Melibaeva, Sevara (Sevara Mukhtarovna)

2010-01-01T23:59:59.000Z

126

An analytical study of rail grinding optimization for rail-head fatigue defect prevention  

E-Print Network [OSTI]

and increased train traffic on the remaining routes. These changes in railroad industry practice have caused an increase in the rate of occurrence of rail head fatigue defects, one potential cause of train derailment. The primary form of maintenance employed...

Jones, Scott Laurence

1997-01-01T23:59:59.000Z

127

Dispatcher Reliability Analysis : SPICA-RAIL Experiments  

E-Print Network [OSTI]

Dispatcher Reliability Analysis : SPICA-RAIL Experiments Fabien Belmonte, Jean-Louis Boulanger of scenarios and evaluate the behaviour of human operators. A state of the art in human reliability is pre coupled to a traffic simulator. It allows to gather data for human reliability evaluation and man

Paris-Sud XI, Université de

128

Rail gun development for EOS research  

SciTech Connect (OSTI)

The status of a railgun program for EOS research in progress at Los Alamos and Livermore National Laboratories is described. The operating principle of rail guns, the power supplies used to drive them, diagnostic techniques used to monitor their performance and initial efforts to develop projectiles suitable for EOS research are discussed. (WHK)

Fowler, C.M.; Peterson, D.R.; Hawke, R.S.; Brooks, A.L.

1981-01-01T23:59:59.000Z

129

Intercity Passenger Rail Federal Funding presented by  

E-Print Network [OSTI]

Intercity Passenger Rail ­ Federal Funding Process presented by: Minnesota Department, equipment and connections ·! Long term: build efficient HSR network ­! Connecting major population centers ·! Lead state on Milwaukee to Twin Cities segment ·! 2008 state bonding to match federal funds

Minnesota, University of

130

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

A Life-Cycle Model of an Automobile, Environmental Science &Pollutant Inventories of Automobiles, Buses, Light Rail,Pollutant Inventories of Automobiles, Buses, Light Rail,

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

131

Integrated main rail, feed rail, and current collector  

DOE Patents [OSTI]

A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.

Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.

1994-11-08T23:59:59.000Z

132

Integrated main rail, feed rail, and current collector  

DOE Patents [OSTI]

A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.

Petri, Randy J. (Crete, IL); Meek, John (Downers Grove, IL); Bachta, Robert P. (Chicago, IL); Marianowski, Leonard G. (Mount Prospect, IL)

1994-01-01T23:59:59.000Z

133

SAFETY ANALYSIS ON RAIL HIGHWAY AT-GRADE CROSSING IN ALABAMA  

E-Print Network [OSTI]

Administration (FRA) database · Highway-rail crossing inventory · Highway-rail crossing history file · Highway-rail crossing accident database Alabama Department of Transportation (ALDOT) database · Rail-highway at,720 RHGCs FRA highway-rail crossing history file Crossing ID Crossing characteristics Crash count over 1998

Illinois at Urbana-Champaign, University of

134

TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring...  

Broader source: Energy.gov (indexed) [DOE]

Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring Subgroup Radiation Monitoring Subgroup Draft Work Plan - February 4, 2008 More...

135

TEC Working Group Topic Groups Rail Conference Call Summaries...  

Broader source: Energy.gov (indexed) [DOE]

Radiation Monitoring Subgroup TEC Working Group Topic Groups Rail Conference Call Summaries Radiation Monitoring Subgroup Radiation Monitoring Subgroup October 11, 2007 More...

136

Transportation of Spent Nuclear Fuel and High Level Waste to Yucca Mountain: The Next Step in Nevada  

SciTech Connect (OSTI)

In the U.S. Department of Energy's ''Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada,'' the Department states that certain broad transportation-related decisions can be made. These include the choice of a mode of transportation nationally (mostly legal-weight truck or mostly rail) and in Nevada (mostly rail, mostly legal-weight truck, or mostly heavy-haul truck with use of an associated intermodal transfer station), as well as the choice among alternative rail corridors or heavy-haul truck routes with use of an associated intermodal transfer station in Nevada. Although a rail line does not service the Yucca Mountain site, the Department has identified mostly rail as its preferred mode of transportation, both nationally and in the State of Nevada. If mostly rail is selected for Nevada, the Department would then identify a preference for one of the rail corridors in consultation with affected stakeholders, particularly the State of Nevada. DOE would then select the rail corridor and initiate a process to select a specific rail alignment within the corridor for the construction of a rail line. Five proposed rail corridors were analyzed in the Final Environmental Impact Statement. The assessment considered the impacts of constructing a branch rail line in the five 400-meter (0.25mile) wide corridors. Each corridor connects the Yucca Mountain site with an existing mainline railroad in Nevada.

Sweeney, Robin L,; Lechel, David J.

2003-02-25T23:59:59.000Z

137

High Speed Rail in America Thomas Ducharme, Matt Schena,  

E-Print Network [OSTI]

International Airport. · Florida is on track to open one of America's first HSR express service between Tampa Situation of High Speed Rail · The US only has one high speed rail o Acela Which runs from Boston Airport congestion o By eliminating 900,000 city to city flights · Give access to cheaper long distance

Nagurney, Anna

138

CONTINUOUS FLOW "RAIL-AND-TRAP" MICROFLUIDIC PROCESSORS FOR AUTONOMOUS  

E-Print Network [OSTI]

CONTINUOUS FLOW "RAIL-AND-TRAP" MICROFLUIDIC PROCESSORS FOR AUTONOMOUS BEAD-BASED MIXING laborious and time intensive fluidic mixing procedures. Although microfluidic platforms offer significant, here we present a microfluidic "rail-and-trap" processor that functions autonomously under continuous

Lin, Liwei

139

Mixing Fast Trains on Freight Rail Corridors presented by  

E-Print Network [OSTI]

Mixing Fast Trains on Freight Rail Corridors presented by: Minnesota Department of Transportation May 23, 2012 #12;Presentation Outline · State Plans for Fast (Passenger) Trains · Overarching) Suggest picture of CP grain train be inserted here #12;Passenger Rail Development Overarching Principles

Minnesota, University of

140

2007 Fuel Cell Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021STATE6 DRAFTResearch: Requirement

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

August 1999 Radiation Safety Manual Section 12 Shipment of Radioactive Materials  

E-Print Network [OSTI]

August 1999 Radiation Safety Manual Section 12 ­ Shipment of Radioactive Materials UW Environmental Health and Safety Page 12-1 Section 12 Shipment of Radioactive Materials Contents A. Shipping Regulations regulations for the safe transportation of radioactive materials. These regulations are adopted from those

Wilcock, William

142

Spent fuel integrity during transportation  

SciTech Connect (OSTI)

The conditions of recent shipments of light water reactor spent fuel were surveyed. The radioactivity level of cask coolant was examined in an attempt to find the effects of transportation on LWR fuel assemblies. Discussion included potential cladding integrity loss mechanisms, canning requirements, changes of radioactivity levels, and comparison of transportation in wet or dry media. Although integrity loss or degradation has not been identified, radioactivity levels usually increase during transportation, especially for leaking assemblies.

Funk, C.W.; Jacobson, L.D.

1980-01-01T23:59:59.000Z

143

Heat Transfer in Underground Rail Tunnels  

E-Print Network [OSTI]

The transfer of heat between the air and surrounding soil in underground tunnels ins investigated, as part of the analysis of environmental conditions in underground rail systems. Using standard turbulent modelling assumptions, flow profiles are obtained in both open tunnels and in the annulus between a tunnel wall and a moving train, from which the heat transfer coefficient between the air and tunnel wall is computed. The radial conduction of heat through the surrounding soil resulting from changes in the temperature of air in the tunnel are determined. An impulse change and an oscillating tunnel air temperature are considered separately. The correlations between fluctuations in heat transfer coefficient and air temperature are found to increase the mean soil temperature. Finally, a model for the coupled evolution of the air and surrounding soil temperature along a tunnel of finite length is given.

Sadokierski, Stefan

2007-01-01T23:59:59.000Z

144

Robotics virtual rail system and method  

DOE Patents [OSTI]

A virtual track or rail system and method is described for execution by a robot. A user, through a user interface, generates a desired path comprised of at least one segment representative of the virtual track for the robot. Start and end points are assigned to the desired path and velocities are also associated with each of the at least one segment of the desired path. A waypoint file is generated including positions along the virtual track representing the desired path with the positions beginning from the start point to the end point including the velocities of each of the at least one segment. The waypoint file is sent to the robot for traversing along the virtual track.

Bruemmer, David J. (Idaho Falls, ID); Few, Douglas A. (Idaho Falls, ID); Walton, Miles C. (Idaho Falls, ID)

2011-07-05T23:59:59.000Z

145

Improved performance of railcar/rail truck interface components  

E-Print Network [OSTI]

turning moments around curved track, wear of truck components, and increased detrimental dynamic effects. The recommended improvement of the rail truck interface is a set of two steel inserts, one concave and one convex, that can be retrofit to center...

Story, Brett Alan

2009-05-15T23:59:59.000Z

146

Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructu...  

Broader source: Energy.gov (indexed) [DOE]

Rail Pressure and Biodiesel Composition on Soot Nanostructure P-20 Ye, P 1 ; Sun, C-X 1 ; Lapuerta, M 2 ; Agudelo, J 3 ; Vander Wal, R 1 ; Boehman, AL 1 , Toops, TJ 4 ; Daw, CS 4...

147

Novel monitoring system to diagnose rail track foundation problems  

E-Print Network [OSTI]

A low cost, remote monitoring system has been developed to diagnose rail track subgrade failures. The portable monitoring system consists of five liquid vertical settlement probes, one piezometer, a small data acquisition ...

Aw, Eng Sew, 1978-

2004-01-01T23:59:59.000Z

148

Automating Risk Assessments of Hazardous Material Shipments for Transportation Routes and Mode Selection  

SciTech Connect (OSTI)

The METEOR project at Idaho National Laboratory (INL) successfully addresses the difficult problem in risk assessment analyses of combining the results from bounding deterministic simulation results with probabilistic (Monte Carlo) risk assessment techniques. This paper describes a software suite designed to perform sensitivity and cost/benefit analyses on selected transportation routes and vehicles to minimize risk associated with the shipment of hazardous materials. METEOR uses Monte Carlo techniques to estimate the probability of an accidental release of a hazardous substance along a proposed transportation route. A METEOR user selects the mode of transportation, origin and destination points, and charts the route using interactive graphics. Inputs to METEOR (many selections built in) include crash rates for the specific aircraft, soil/rock type and population densities over the proposed route, and bounding limits for potential accident types (velocity, temperature, etc.). New vehicle, materials, and location data are added when available. If the risk estimates are unacceptable, the risks associated with alternate transportation modes or routes can be quickly evaluated and compared. Systematic optimizing methods will provide the user with the route and vehicle selection identified with the lowest risk of hazardous material release. The effects of a selected range of potential accidents such as vehicle impact, fire, fuel explosions, excessive containment pressure, flooding, etc. are evaluated primarily using hydrocodes capable of accurately simulating the material response of critical containment components. Bounding conditions that represent credible accidents (i.e; for an impact event, velocity, orientations, and soil conditions) are used as input parameters to the hydrocode models yielding correlation functions relating accident parameters to component damage. The Monte Carlo algorithms use random number generators to make selections at the various decision points such as; crash, location, etc. For each pass through the routines, when a crash is randomly selected, crash parameters are then used to determine if failure has occurred using either external look up tables, correlations functions from deterministic calculations, or built in data libraries. The effectiveness of the software was recently demonstrated in safety analyses of the transportation of radioisotope systems for the US Dept. of Energy. These methods are readily adaptable to estimating risks associated with a variety of hazardous shipments such as spent nuclear fuel, explosives, and chemicals.

Barbara H. Dolphin; William D. RIchins; Stephen R. Novascone

2010-10-01T23:59:59.000Z

149

Intercity passenger rail productivity in the Northeast Corridor : implications for the future of high-speed Rail  

E-Print Network [OSTI]

The ongoing discussion about the future implementation of high-speed rail (HSR) in the Northeast Corridor (NEC) is full of questions on the feasibility of HSR and the ability of Amtrak to implement it. Indeed, the introduction ...

Archila Téllez, Andrés Felipe

2013-01-01T23:59:59.000Z

150

Planning for a regional rail system : analysis of high speed and high quality rail in the Basque region  

E-Print Network [OSTI]

The goal of this thesis is to provide guidance for regional rail network planning to achieve the maximum benefits in terms of economic growth, passenger satisfaction, and environmental sustainability. The hypothesis is ...

Lewis, Paul R. S. (Paul Robinson S.)

2011-01-01T23:59:59.000Z

151

Recovery Act Funding Leads to Record Year for Transuranic Waste Shipments  

Broader source: Energy.gov [DOE]

With the help of American Recovery and Reinvestment Act funding, the Waste Isolation Pilot Plant (WIPP) received the most transuranic waste shipments in a single year since waste operations began...

152

Packaging and Transportation for Offsite Shipment of Materials of National Security Interest  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The purpose of this Order is to make clear that the packaging and transportation of all offsite shipments of materials of national security interest for DOE must be conducted in accordance with DOT and Nuclear Regulatory Commission (NRC) regulations that would be applicable to comparable commercial shipments, except where an alternative course of action is identified in this Order. Cancels DOE O 461.1A.

2010-12-20T23:59:59.000Z

153

10 Questions Regarding SAE Hydrogen Fueling Standards | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021 -- NATIONAL

154

2008 Annual Merit Review Results Summary - 10. Fuels Technologies |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021STATE6

155

2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, AnalysisofCombustion |

156

Union Station, Tacoma, Washington : a design study for a surplus rail site  

E-Print Network [OSTI]

Recent technological changes in railroads, mergers, major shifts in urban land use patterns, and declining rail passenger travel has resulted in a surplus of urban rail lands. These lands represent a significant resource ...

Rhoads, Jeffrey David

1982-01-01T23:59:59.000Z

157

High-speed rail commuting in the United States : a case study in California  

E-Print Network [OSTI]

High-speed rail (HSR) is primarily for intermediate distance intercity passenger travel. The concept of high-speed rail commuting is to provide short distance commuting transportation service on dedicated HSR, by sharing ...

Kasuya, Shuichi, 1972-

2005-01-01T23:59:59.000Z

158

Using land value capture to fund rail transit extensions in Mexico City and Santiago de Chile  

E-Print Network [OSTI]

The effects of rail rapid transit on land uses and land values are discussed. Rail transit can enhance accessibility, and can raise the demand for locating in areas around stations, increasing land value, and in some cases ...

Covarrubias, Alvaro, 1973-

2004-01-01T23:59:59.000Z

159

Radiation Doses to the Public From the Transport of Spent Nuclear Fuel  

SciTech Connect (OSTI)

This paper reviews issues that have been raised concerning radiological risks and safety of the public exposed to shipments of spent nuclear fuel and high-level radioactive waste to a Yucca Mountain repository. It presents and analyzes the contrasting viewpoints of opponents and proponents, presents facts about radiological exposures and risks, and provides perspective from which to observe the degree of risk that would devolve from the shipments. The paper concludes that the risks to the public's health and safety from being exposed to radiation from the shipments will not be discernable.

Best, R. E.; Maheras, S. J.; Ross, S. S.; Weiner, R.

2003-02-25T23:59:59.000Z

160

Microsoft Word - Crude by rail July 2014  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribal LeaderDE-OE0000660 Page 1June 29,

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Microsoft PowerPoint - Rail_English  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007NavalMelvin G. Williams,UseNWTRBOverviewMeeting: New

162

Microsoft PowerPoint - Rail_Massaro  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007NavalMelvin G. Williams,UseNWTRBOverviewMeeting: New14 Annual

163

Using Strain Gauges to Detect Epoxy Debonding in Insulated Rail Joints  

E-Print Network [OSTI]

within a control block. Adjacent circuits within the track are separated by insulated rail joints (alsoUsing Strain Gauges to Detect Epoxy Debonding in Insulated Rail Joints Daniel Peltier, Christopher mainline track. These require insulated rail joints every several kilometers in order to electrically

Barkan, Christopher P.L.

164

Turbine blade squealer tip rail with fence members  

DOE Patents [OSTI]

A turbine blade includes an airfoil, a blade tip section, a squealer tip rail, and a plurality of chordally spaced fence members. The blade tip section includes a blade tip floor located at an end of the airfoil distal from the root. The blade tip floor includes a pressure side and a suction side joined together at chordally spaced apart leading and trailing edges of the airfoil. The squealer tip rail extends radially outwardly from the blade tip floor adjacent to the suction side and extends from a first location adjacent to the airfoil trailing edge to a second location adjacent to the airfoil leading edge. The fence members are located between the airfoil leading and trailing edges and extend radially outwardly from the blade tip floor and axially from the squealer tip rail toward the pressure side.

Little, David A

2012-11-20T23:59:59.000Z

165

2008 Fuel Cell Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, Analysis |Summaryof EnergyFUEL

166

Readiness Assessments for the Shipment of TRU from West Jefferson, Ohio  

SciTech Connect (OSTI)

From 1943 through 1986, Battelle Memorial Institute (BMI) performed research and development work at its own facilities for the U.S. Department of Energy (DOE) and its predecessor agencies. The most highly contaminated facilities, comprising BMI's Nuclear Sciences Area, are located on 11 acres in West Jefferson, Ohio. Three buildings in this area were used to study nuclear reactor fuels, fuel element components, reactor designs, and radiochemistry analyses: one building contained nuclear hot cells, a second building contained a critical assembly and radiochemistry laboratory, and a third building once housed a nuclear research reactor. The Columbus Environmental Management Project (CEMP), one of the DOE Ohio Field Office's radioactive cleanup sites, oversees the Battelle Columbus Laboratories Decommissioning Project (BCLDP) for the decontamination and decommissioning (D&D) of BMI's Nuclear Sciences Area. The BCLDP mission is to decontaminate the Nuclear Sciences Area to a condition that is suitable for use without restrictions and to dispose of or store the associated radioactive waste at a suitable DOE-approved facility. During decontamination work, the CEMP is expected to generate approximately 120, 55-gallon drums of transuranic (TRU) waste, or about 20 truckloads. This TRU waste will be transported to DOE's Hanford nuclear facility in Washington State for temporary storage, prior to its ultimate disposal at the Waste Isolation Pilot Plant (WIPP). This paper presents a detailed approach for conducting readiness assessments for TRU waste shipments from any DOE site. It is based on demonstrating satisfaction of the 18 core requirements contained in DOE Order 425.1B, Startup and Restart of Nuclear Facilities, that are derived from the seven guiding principles of DOE's integrated safety management system.

Duffy, M. A.

2003-02-26T23:59:59.000Z

167

Radioactive waste shipments to Hanford Retrievable Storage from the General Electric Vallecitos Nuclear Center, Pleasanton, California  

SciTech Connect (OSTI)

During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Approximately 3.8% of the TRU waste to be retrieved for shipment to WIPP was generated at the General Electric (GE) Vallecitos Nuclear Center (VNC) in Pleasanton, California and shipped to the Hanford Site for storage. The purpose of this report is to characterize these radioactive solid wastes using process knowledge, existing records, and oral history interviews. The waste was generated almost exclusively from the activities, of the Plutonium Fuels Development Laboratory and the Plutonium Analytical Laboratory. Section 2.0 provides further details of the VNC physical plant, facility operations, facility history, and current status. The solid radioactive wastes were associated with two US Atomic Energy Commission/US Department of Energy reactor programs -- the Fast Ceramic Reactor (FCR) program, and the Fast Flux Test Reactor (FFTR) program. These programs involved the fabrication and testing of fuel assemblies that utilized plutonium in an oxide form. The types and estimated quantities of waste resulting from these programs are discussed in detail in Section 3.0. A detailed discussion of the packaging and handling procedures used for the VNC radioactive wastes shipped to the Hanford Site is provided in Section 4.0. Section 5.0 provides an in-depth look at this waste including the following: weight and volume of the waste, container types and numbers, physical description of the waste, radiological components, hazardous constituents, and current storage/disposal locations.

Vejvoda, E.J.; Pottmeyer, J.A.; DeLorenzo, D.S.; Weyns-Rollosson, M.I. [Los Alamos Technical Associates, Inc., NM (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1993-10-01T23:59:59.000Z

168

Enhancements to System for Tracking Radioactive Waste Shipments Benefit  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupportingEnergy Engagingbasics.pdfMultiple Users |

169

Development of a guardrail-to-bridge rail transition  

E-Print Network [OSTI]

DEVELOPMENT OF A GUARDRAIL-TO-BRIDGE RAIL TRANSITION A Thesis by ROGER PATRICK JUDE BLIGH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1988... Major Subject: Civil Engineering DEVELOPMENT OF A GUARDRAIL-TO-BRIDGE RAIL TRANSITION A Thesis by ROGER PATRICK JUDE BLIGH Approved as to style and content by: ayes E. Ross, (C air of Comm ttee) Eugene Buth (Member) J seph M. Herrmann (Member...

Bligh, Roger P

1988-01-01T23:59:59.000Z

170

Intelligent Rail Networks | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land SurfaceVirus-InfectedIntelligent Coatings for Location

171

Public Meeting In Chicago - Rail Infrastructure Presentation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | DepartmentDepartment ofThermoChemJanuary 2, 20122008Secretary

172

RAIL ROUTING PRACTICES AND PROPOSED ALTERNATIVES  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbus HTS1, 2008EnergyDepartmentINCINERATIONSAVANNAH6on

173

Development and testing of a low-maintenance, energy-absorbing bridge rail  

E-Print Network [OSTI]

vehicle leaves the flow of traffic and strikes a bridge rail. The second concern is for the safety of the maintenance workers who must repair bridge rail damage following a collision. Third, the increasing cost of maintaining br idge decks and rails... during a more severe collision. Furthermore, the new bridge rail is designed to fit either new or existing standard bridge decks. Following development of the new bridge rail, two full-scale vehicle crash-tests were performed at the TTI Research...

Cain, John Craig

1985-01-01T23:59:59.000Z

174

Portsmouth Site Delivers First Radioactive Waste Shipment to Disposal  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNationalNuclearRockyServicesFindings

175

Laboratory increases shipments of waste to WIPP repository  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocs space Combined Routes12th annual HAZMATLab

176

High Speed Rail in Greece : methods for evaluating economic impacts  

E-Print Network [OSTI]

High Speed Rail is a mode that gains popularity every day. Many countries have such a network and others are on the way to adopting one. Greece, which is part of the European Union, is one of those countries that are looking ...

Radopoulou, Stefania Christina

2010-01-01T23:59:59.000Z

177

Rail assembly for use in a radioactive environment  

DOE Patents [OSTI]

An improved rail assembly and method of construction thereof is disclosed herein that is particularly adapted for use with a crane trolley in a hot cell environment which is exposed to airborne and liquidborne radioactive contaminants. The rail assembly is generally comprised of a support wall having an elongated, rail-housing recess having a floor, side wall and ceiling. The floor of the recess is defined at least in part by the load-bearing surface of a rail, and is substantially flat, level and crevice-free to facilitate the drainage of liquids out of the recess. The ceiling of the recess overhangs and thereby captures trolley wheels within the recess to prevent them from becoming dislodged from the recess during a seismic disturbance. Finally, the interior of the recess includes a power track having a slot for receiving a sliding electrical connector from the crane trolley. The power track is mounted in an upper corner of the recess with its connector-receiving groove oriented downwardly to facilitate the drainage of liquidborne contaminants and to discourage the collection of airborne contaminants within the track.

Watts, Ralph E. (Harrison, OH)

1989-01-01T23:59:59.000Z

178

Commuter Choice Program Rail/Vanpool Reimbursement Form  

E-Print Network [OSTI]

workdays to meet program eligibility. Eligible non-permit holders receive 100% reimbursement (max $120); eligible permit holders receive 25% reimbursement (max $30) You will receive your reimbursement check CHANGES FROM THE PRIOR MONTH (ADDRESS, WORK LOCATION, WORK HRS, PERMIT PURCHASE/TURNED IN) COST OF RAIL

de Lijser, Peter

179

Tradeoff between Efficiency and Melting for a High-Performance Electromagnetic Rail Gun  

E-Print Network [OSTI]

We estimate the temperature distribution in the rails of an electromagnetic rail gun (EMG) due to the confinement of the current in a narrow surface layer resulting from the skin effect. In order to obtain analytic results, we assume a simple geometry for the rails, an electromagnetic skin effect boundary edge that propagates with the accelerating armature, and a current carrying channel controlled by magnetic field diffusion into the rails. We compute the temperature distribution in the rails at the time that the armature leaves the rails. For the range of exit velocities, from 1500 m/s to 5000 m/s, we find the highest temperatures are near the gun breech. After a single gun firing, the temperature reaches the melting temperature of the metal rails in a layer of finite thickness near the surface of the rails, for rails made of copper or tantalum. We plot the thickness of the melt layer as a function of position along the rails. In all cases, the thickness of the melt layer increases with gun velocity, making damage to the gun rails more likely at higher velocity. We also calculate the efficiency of the EMG as a function of gun velocity and find that the efficiency increases with increasing velocity, but only if the length of the gun is sufficiently long. The thickness of the melted layer also decreases with increasing rail length. Therefore, there is a tradeoff: for rails of sufficient length, the gun efficiency increases with increasing velocity but the melted layer thickness in the rails also increases.

William C. McCorkle; Thomas B. Bahder

2010-08-11T23:59:59.000Z

180

The Security Afforded Selected Tritium Reservoir Shipments (U), IG-0619  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategory 2 NuclearTheTheMay

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Level: National Data; Row: Values of Shipments within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next MECS will3

182

Level: National Data; Row: Values of Shipments within NAICS Codes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next MECS

183

2010 Annual Progress Report for Fuels Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, Analysisof annualDepartment of

184

High-pressure late cycle direct injection of natural gas in a rail medium speed diesel engine  

SciTech Connect (OSTI)

The performance of an Electro-Motive Division (EMD) 567B, two-cylinder locomotive research engine, when operated on high-pressure/late-cycle injection of natural gas, is presented in this paper. A redesign and fabrication of the fuel system was undertaken to facilitate the consumption of natural gas. A small percentage of No.2 diesel fuel (DF-2) was used to ignite the natural gas. Engine performance, while running natural gas, resulted in matching rated speed and power with slightly lower thermal efficiency. Full power was achieved with a ratio of 99 percent natural gas and 1 percent diesel fuel. However, at high natural gas to diesel fuel ratios, audible knock was detected. The primary objective of the project was to establish technical feasibility of, and basic technology for, operating medium-speed rail diesel engines on high-pressure natural gas. Secondary objectives were to attain adequate engine performance levels for rail application, develop a system oriented toward retrofit of in-service locomotives, and realize any potential improvements in thermal efficiency due to use of the high-pressure/late-cycle approach.

Wakenell, J.F.; O'Neal, G.B.; Baker, Q.A.

1987-01-01T23:59:59.000Z

185

Microsoft Word - RailTG_Jan26_call_minutes _3_.rtf  

Broader source: Energy.gov (indexed) [DOE]

has been some refocusing of the package plan activities in DOE known as Transport, Aging and Disposal concept. This makes avoiding legal weight truck shipments a higher...

186

First Shipment of Compressors Leaves Portsmouth | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire ProtectionUpdates

187

WIPP Receives First Shipment | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP200

188

Idaho Site Achieves Successful Nuclear Shipment on Newly Constructed Haul  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness Plan CompetitionDepartmentRoad | Department of

189

Final Transuranic Waste Shipment Leaves Rocky Flats | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinal Design Review ModuleDecember

190

Waste Shipment Tracking Technology Lowers Costs, Increases Efficiency |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotionWhenStatusin 2013

191

Portsmouth, Paducah Project Leaps Past Shipment Milestone, Delivering  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015 7:00AM09Department ofPortsmouth

192

Safety and Security Technologies for Radioactive Material Shipments |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1 Department of Energy and

193

DOE Seeks Trucking Services for Transuranic Waste Shipments | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartmentEnergy Waste Tracking Contract DOE

194

DOE Shipment Activities: What We Accomplished and a Look Forward |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartmentEnergy WasteLawrenceContract at

195

SR-08-03 _LEU Shipments_.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORTSORN Template and1 THIS7, 20044

196

Ensuring Safe Shipment of Hazardous Materials | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment ofFeaturingThanks

197

Rocky Flats 100th Shipments Arrives at WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergy Innovation Portal Robust,RELEASE Rocky

198

DOE Shipment Activities: What We Accomplished and a Look Forward  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2ConsolidatedDepartment of1990, status:Department

199

Enhanced Driver Requirements for WIPP Shipments - Fact Sheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy StorageEngineEngineering Subscribe

200

Hanford Shipment Arrives Safely At Waste Isolation Pilot Plant  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky9, 2010 The meetingand Eric EdlundWaste07 Revision 0

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

RPR 14 ISU-1 REQUEST FOR SHIPMENT OF RADIOACTIVE MATERIAL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote:BEAMENV-39658 Revision37045624

202

Los Alamos National Laboratory Accelerates Transuranic Waste Shipments:  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Ownedof Energy The EnergySeptemberof theThe Department of EnergyDepartment

203

Safety and Security Technologies for Radioactive Material Shipments  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartmentRestrictionsExample Sheet) | Department of EnergySAFETYSafety

204

Los Alamos National Laboratory celebrates 1000th transuranic waste shipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera A B C D »LANLPumpingLANL celebrates

205

Los Alamos National Laboratory resumes transuranic waste shipments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformationPostdocsCenterCentera APollution Prevention AwardsLANL

206

Microsoft Word - First LANL Shipment Arrives at WCS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWER MEETING Tulsa16,DOE-Los Alamos NWP Media

207

Milestone reached: Waste shipment leaves Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8 -3Eutectic CompositesMike Simpson (2014)Waste

208

Milestone Shipment Arrives at WIPP | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to: A

209

Final Hanford Offsite Waste Shipment Leaves Idaho Treatment Facility |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulie A. Reddick|Document that listsS.CommitteeDepartment of

210

2009 Fuel Cell Market Report, November 2010  

SciTech Connect (OSTI)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

Not Available

2010-11-01T23:59:59.000Z

211

The politics of Peacekeeper Rail Garrison. Doctoral thesis  

SciTech Connect (OSTI)

In 1985, the Congress capped at 50 the number of Peacekeeper ICBMs that could be deployed in vulnerable Minuteman silos, thereby sending the Reagan administration and the Air Force in search of another basing mode so that 100 of the ton-warhead missiles could be deployed as recommended by the Scowcroft Commission. The result was Peacekeeper rail garrison--a strategic nuclear weapon system that combined the Peacekeeper missile with railroad trains garrisoned at military installations. The missile trains would have dispersed across the nation's railways only during times of 'national need like the Cuban Missile Crisis. This case study examines the politics of that weapon system in order to contribute to the literature regarding weapons acquisition, test a number of propositions suggested by the bureaucratic politics model, and assess the influence of nonbureaucratic forces and actors on Peacekeeper rail garrison's fortunes.

Van Tassel, A.R.

1992-01-01T23:59:59.000Z

212

Transportation impact analysis for the shipment of low specific activity nitric acid. Revisison 1  

SciTech Connect (OSTI)

This is in support of the Plutonium-Uranium Extraction (PUREX) Facility Low Specific Activity (LSA) Nitric Acid Shipment Environmental Assessment. It analyzes potential toxicological and radiological risks associated with transportation of PUREX Facility LSA Nitric Acid from the Hanford Site to Portsmouth VA, Baltimore MD, and Port Elizabeth NJ.

Green, J.R.

1995-05-16T23:59:59.000Z

213

Routing of radioactive shipments in networks with time-varying costs and curfews  

SciTech Connect (OSTI)

This research examines routing of radioactive shipments in highway networks with time-dependent travel times and population densities. A time-dependent least-cost path (TDLCP) algorithm that uses a label-correcting approach is adapted to include curfews and waiting at nodes. A method is developed to estimate time-dependent population densities, which are required to estimate risk associated with the use of a particular highway link at a particular time. The TDLCP algorithm is implemented for example networks and used to examine policy questions related to radioactive shipments. It is observed that when only Interstate highway facilities are used to transport these materials, a shipment must go through many cities and has difficulty avoiding all of them during their rush hour periods. Decreases in risk, increased departure time flexibility, and modest increases in travel times are observed when primary and/or secondary roads are included in the network. Based on the results of the example implementation, the suitability of the TDLCP algorithm for strategic nuclear material and general radioactive material shipments is demonstrated.

Bowler, L.A.; Mahmassani, H.S. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

1998-09-01T23:59:59.000Z

214

E-Print Network 3.0 - area southern rail Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

proximity to a light-rail station affects ... Source: Levinson, David M. - Department of Civil Engineering, University of Minnesota Collection: Engineering 2 Reprinted from...

215

Valuing Rail Transit: Comparing Capital and Operating Costs to Consumer Benefits  

E-Print Network [OSTI]

D.C. , 1994; Booz Allen Hamilton, Inc. Light rail transitD.C. , 2003; Booz Allen Hamilton, Inc. , Managing Capital

Guerra, Erick

2010-01-01T23:59:59.000Z

216

Promoting technological investment in the Australian rail freight sector: evaluating the feasibility of accelerated depreciation.  

E-Print Network [OSTI]

??Although regulation for emissions, pollution, etc., is becoming stricter, the Australian rail freight industry is still locked in to using large numbers of existing rolling… (more)

Koowattanatianchai, Nattawoot

2011-01-01T23:59:59.000Z

217

2010 Fuel Cell Project Kick-off Welcome | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation,Emissions from an

218

2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation,Emissions

219

2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation,EmissionsInfrastructure Meeting

220

2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation,EmissionsInfrastructure

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TEC Working Group Topic Groups Rail Conference Call Summaries Rail Topic  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENT VERIFICATION ATSubgroup | Department of

222

2004 FUEL ECONOMY GUIDE BEST IN CLASS | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021STATE ENERGY3 Commercial andof4 FUEL

223

2008 Fuel Cell Technologies Market Report | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, Analysis |Summaryof EnergyFUEL08

224

2010 Hydrogen and Fuel Cell Global Commercialization & Development Update  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation,Emissions from anFUEL

225

Status of the TRIGA shipments to the INEEL from Europe  

SciTech Connect (OSTI)

This paper reports the activities underway by the US Department of Energy (DOE) for returning Training, Research, Isotope, General Atomics (TRIGA) spent nuclear fuel (SNF) from foreign research reactors (FRR) in four European countries to the Idaho National Engineering and Environmental Laboratory (INEEL). Those countries are Germany, Italy, Romania, and Slovenia. This is part of the ``Nuclear Weapons Nonproliferation Policy`` of returning research reactor SNF containing uranium enriched in the US. This paper describes the results of a pre-assessment trip in September, 1997, to these countries, including: history of the reactors and research being performed; inventory of TRIGA SNF; fuel types (stainless steel, aluminum, or Incoloy) and enrichments; and each country`s plans for returning their TRIGA SNF to the INEEL.

Mustin, T. [Dept. of Energy, Washington, DC (United States); Stump, R.C. [Dept. of Energy Idaho Operations Office, Idaho Falls, ID (United States); Tyacke, M.J. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

1997-10-09T23:59:59.000Z

226

Air, High Speed Rail, or Highway: A Cost Comparison in the California Corridor  

E-Print Network [OSTI]

these reduced social costs offset rail's high capital and operating costs. The development of cost estimates, any of these three modes. In this study we include estimates of four types of external, social costs design characteristics observed in the California corridor. We estimate rail costs with models adapted

Levinson, David M.

227

Project Information Form Project Title Integrating Management of Truck and Rail Systems in Los Angeles  

E-Print Network [OSTI]

Project Information Form Project Title Integrating Management of Truck and Rail Systems in Los or organization) Volvo Research and Educational Foundation- $79,604.00 Total Project Cost $79,604.00 Agency ID of Research Project This project will develop models to optimize the balance of freight demand across rail

California at Davis, University of

228

Rail Focused US DOTRITA Tier I University Transportation Center University of Illinois at Urbana-Champaign  

E-Print Network [OSTI]

.S. freight railroad system is one of the transportation success stories of the latter 20th and early 21st is a seven- university consortium led by the Rail Transportation and Engineering Center (Rail Engineering at UIUC. Christopher Barkan Center Director Conrad Ruppert, Jr. Associate Director for Research

Entekhabi, Dara

229

Photoinduced electron transfer from rail to rung within a self-assembled oligomeric porphyrin ladderw  

E-Print Network [OSTI]

from an oligomer (rail) to the center of a terminal tetrazine (rung), with the remaining hole being-pyridyl-1,2,4,5-tetrazine, DPT). The studies employed absorption, fluorescence, transient absorption-linked porphyrin trimers (rails) and tetrazine species (rungs) are the electron donors and acceptors, respectively

230

Photoinduced electron transfer from rail to rung within a self-assembled oligomeric porphyrin ladder  

SciTech Connect (OSTI)

Photoinduced electron transfer in a self-assembled supramolecular ladder structure comprising oligomeric porphyrin rails and ligated dipyridyltetrazine rungs was characterized by transient absorption spectroscopy and transient direct current photoconductivity to be mainly from an oligomer (rail) to the center of a terminal tetrazine (rung), with the remaining hole being delocalized on the oligomer and subsequent charge recombination in 0.19 ns.

She, Chunxing; Lee, Suk Joong; McGarrah, James E.; Vura-Weis, Josh; Wasielewski, Michael; Chen, Hanning; Schatz, George C.; Ratner, Mark A.; Hupp, Joseph T.

2010-01-01T23:59:59.000Z

231

Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays  

E-Print Network [OSTI]

demonstrate the combination of a rails and anchors microfluidic system with laser forcing to enable to anchor holes made in the base of a microfluidic channel, enabling the creation of arrays their merging and a chemical reaction to take place. Finally by adding guiding rails within the microfluidic

Boyer, Edmond

232

Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing{  

E-Print Network [OSTI]

Continuous flow multi-stage microfluidic reactors via hydrodynamic microparticle railing{ Ryan D-at-a-time). Microfluidic processors that enable multi-stage fluidic reactions with suspended microparticles (e-on-a-chip technologies. Here we present a single-layer microfluidic reactor that utilizes a microfluidic railing

Lin, Liwei

233

INSTRUCTIONS FOR OPENING RADIONUCLIDE SHIPMENTS All packages containing radioactive material are physically received at the Department of Environmental  

E-Print Network [OSTI]

are monitored and contamination of the package exterior is assessed. The radioactive stock vialINSTRUCTIONS FOR OPENING RADIONUCLIDE SHIPMENTS All packages containing radioactive material radionuclide packages. GENERAL PROCEDURES 1. Radioactive packages must be opened and inspected as soon

Firestone, Jeremy

234

ELUCIDATING THE DIFFERENCES BETWEEN ONSITE AND OFFSITE SHIPMENT OF RADIOACTIVE MATERIALS  

SciTech Connect (OSTI)

Federal regulations stipulate how radioactive materials are transported within the United States. However, the Department of Energy, under Department of Energy Order, has the authority to operate, within the boundaries of their physical site, to other stipulations. In many cases the DOE sites have internal reviews for onsite transfers that rival reviews performed by the regulatory authorities for offsite shipments. Most of the differences are in the level or type of packaging that is required, but in some cases it may be in the amount and type of material that is allowed to be transferred. This paper will describe and discuss those differences and it will discuss ways to effectively align the onsite rules for transferring materials with those for offsite shipment.

Loftin, B.; Watkins, R.

2013-06-19T23:59:59.000Z

235

Overview of Requirements for Using Overweight Vehicles to Ship Spent Nuclear Fuel  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE's) Final Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada, considered a range of options for transportation. In evaluating the impacts of the mostly-legal weight truck scenario, DOE assumed that some shipments would use overweight trucks. The use of overweight trucks is also considered in the Draft Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada, issued for public comment in Fall 2007. With the exception of permit requirements and operating restrictions, the vehicles for overweight shipments would be similar to legal-weight truck shipments but might weigh as much as 52,200 kilograms (115,000 pounds). The use of overweight trucks was determined to be acceptable for the Office of Civilian Radioactive Waste Management (OCRWM) Program because the payload is not divisible and the packaging alone may make shipments overweight. Overweight truck shipments are common, and states routinely issue overweight permits, some for vehicles with a gross vehicle weight up to 58,500 kilograms (129,000 pounds). This paper will present an overview of state overweight truck permitting policies and national and regional approaches to promote safety and uniformity. In conclusion: Overweight truck shipments are made routinely by carriers throughout the country. State permits are obtained by the carriers or by companies that provide permitting services to the carriers. While varying state permit restrictions may add complexity to OCRWM's planning activities, the well-established experience of commercial carriers and efforts to bring uniformity to the permitting process should allow the overweight shipment of SNF to be a viable option. (authors)

Thrower, A.W. [U.S. Department of Energy, Office of Civilian Radioactive Waste Management, Washington, DC (United States); Offner, J. [Booz Allen Hamilton, Washington, DC (United States); Bolton, P. [Booz Allen Hamilton, Santa Fe, NM (United States)

2008-07-01T23:59:59.000Z

236

Effects of shipment on diffusive dosimetry recovery efficiency for pentane, hexane and heptane  

E-Print Network [OSTI]

Sciences College of Pharmacy Chairman of' Advisory Committee: Mr. Charles L. Gilmore The effects of' shipment on recovery was investigated for three aliphatic hydrocarbons adsorbed on the 3M Company's $3500 Organic Vapor Monitor and the Scientific Kit... Combination Vs. Contaminant INTRODUCTION The Occupational Safety and Health Adminsitration (OSHA) has promulgated standards including permissible exposure limits (PEL) for humans based on eight hour time-weighted average (TWA) exposures for approximately...

Read, Ronald Bruce

1981-01-01T23:59:59.000Z

237

Diesel Locomotive Fueling Problem (LFP) in Railroad Operations  

E-Print Network [OSTI]

Chapter 2 Diesel Locomotive Fueling Problem (LFP) in Railroad Operations Bodhibrata Nag Katta G their operating costs low. About 75% of transport by railroads in the world is based on diesel locomotives by diesel locomotives. One of the major compo- nents in the operating cost of diesel powered rail transport

Murty, Katta G.

238

2006 Alkaline Membrane Fuel Cell Workshop Final Report | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021STATE ENERGY3habeger.pdfEnergy

239

2010 New Fuel Cell Projects Meeting Agenda | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation,Emissions from anFUELof Energy

240

1 | Fuel Cell Technologies Program Source: US DOE 8/24/2011 eere.energy.gov ASME 2011-Plenary  

E-Print Network [OSTI]

Reduced CO2 Emissions · 35­50%+ reductions for CHP systems (>80% with biogas) · 55­90% reductions for CHP systems Fuel Flexibility · Clean fuels -- including biogas, methanol, H2 · Hydrogen -- can Korea Germany Other (MW) Megawatts Shipped, Key Countries: 2008-2010 North American Shipments

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effect of Rail Rate Deregulation: The Case of Wheat Exports from the South Plains.  

E-Print Network [OSTI]

. ....................................... 4 Effect of Rail Rate Deregulation: The Case of Wheat Exports from the South Plains Stephen Fuller and C.V. Shanmugham" a INTRODUCTION Agriculture is an important user of rail services for shipping products to market and for moving produc...- tion supplies to rural communities. The l e d and structure of rail rates affect returns to farmers as well as farmers' competitive positions in distant markets. Farm products tend to be buIky and heavy reIative to their value; accordingly...

Fuller, Stephen; Shanmugham, C.V

1982-01-01T23:59:59.000Z

242

Steering system for a train of rail-less vehicles  

DOE Patents [OSTI]

A steering system for use with a multiple vehicle train permits tracking without rails of one vehicle after another. This system is particularly useful for moving conveyor systems into and out of curved paths of room and pillar underground mine installations. The steering system features an elongated steering bar pivotally connected to each of adjacent vehicles at end portions of the bar permitting angular orientation of each vehicle in respect to the steering bar and other vehicles. Each end portion of the steering bar is linked to the near pair of vehicle wheels through wheel yoke pivot arms about king pin type pivots. Movement of the steering bar about its pivotal connection provides proportional turning of the wheels to effect steering and tracking of one vehicle following another in both forward and reverse directions.

Voight, Edward T. (Worthington, OH)

1983-01-01T23:59:59.000Z

243

RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage  

SciTech Connect (OSTI)

Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

2003-02-26T23:59:59.000Z

244

Estimating commuter rail demand to Kendall Square along the Grand Junction Corridor  

E-Print Network [OSTI]

Since acquiring the Grand Junction Railroad in June 2010 from CSX, the Massachusetts Bay Transit Authority (MBTA) has explored the possibility of using the line for commuter rail service. In addition the Grand Junction ...

Bockelie, Adam

2012-01-01T23:59:59.000Z

245

The Effect of Light Rail Transit on Employment: A Case Study of Dallas, Texas  

E-Print Network [OSTI]

in the area. This can help attract more jobs into the central city, while potentially increasing the employment opportunities for low income residents. This study aims to investigate whether proximity to light rail transit influence total employment...

Mendez, Joel

2014-08-05T23:59:59.000Z

246

Rails-to-trails Conversions in Oklahoma: Politics, Practices and Future.  

E-Print Network [OSTI]

??This study was designed to review the historical issues associated with the State of Oklahoma and the development of a long distance rail-to-trail conversion during… (more)

Cowan, Jerel Lee

2009-01-01T23:59:59.000Z

247

Low cost monitoring system to diagnose problematic rail bed : case study of Mud Pumping Site  

E-Print Network [OSTI]

This thesis describes the development of low cost sensors and wireless sensor network (WSN) platform aimed at characterizing problematic rail beds (subgrade). The instrumentations are installed at a busy high-speed Northeast ...

Aw, Eng Sew, 1978-

2007-01-01T23:59:59.000Z

248

Shaping time light and movement : a modern rail station for Boston  

E-Print Network [OSTI]

After a century of neglect, due to investment in worldwide road construction and enlargements of airports, there is a renewed incentive to revive rail travel within the continental US. This motivation is derived from both ...

Lin, Juintow, 1973-

2000-01-01T23:59:59.000Z

249

Cost-effectiveness of freeway median high occupancy vehicle (HOV) facility conversion to rail guideway transit  

E-Print Network [OSTI]

Many freeways in the United States contain median high occupancy vehicle (HOV) facilities. These facilities have been envisioned by some as reserved space for future rail guideway transit. This thesis examines the cost-effectiveness of converting a...

Best, Matthew Evans

1996-01-01T23:59:59.000Z

250

Determination of applied stresses in rails using the acoustoelastic effect of ultrasonic waves  

E-Print Network [OSTI]

This research develops a procedure to determine the applied stresses in rails using the acoustoelastic effect of ultrasonic waves. Acoustoelasticity is defined as the stress dependency of ultrasonic wave speed or wave polarization. Analytical models...

Gokhale, Shailesh Ashok

2008-10-10T23:59:59.000Z

251

Determination of applied stresses in rails using the acoustoelastic effect of ultrasonic waves  

E-Print Network [OSTI]

This research develops a procedure to determine the applied stresses in rails using the acoustoelastic effect of ultrasonic waves. Acoustoelasticity is defined as the stress dependency of ultrasonic wave speed or wave polarization. Analytical models...

Gokhale, Shailesh Ashok

2009-05-15T23:59:59.000Z

252

Cooled electronic system with thermal spreaders coupling electronics cards to cold rails  

DOE Patents [OSTI]

Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

2013-07-23T23:59:59.000Z

253

Contracting Rail Freight Services for Country Elevators in the Texas Panhandle.  

E-Print Network [OSTI]

rooe ZTA245.7 B873 r\\O. 1473 -.-_ LIBRARY B-1473 JUDe 1984 JUL 27 1984 Co Rail Freight Services for Country Elevators in the Texas Panhandle The Texas Agricultural Experiment Station, Neville P. Clarke, Director, The Texas A&M University... ............................................................... 14 ACKNOWLEDGEMENTS ........................................................... 14 CONTRACTING RAIL FREIGHT-SERVICES FOR COUNTRY ELEVATORS IN THE TEXAS PANHANDLE Stephen Fuller Department of Agricultural Economics Texas Agricultural Experiment...

Fuller, Stephen

1984-01-01T23:59:59.000Z

254

Effectiveness of bomber deployed autonomous airborne vehicles in finding rail mobile SS-24s  

SciTech Connect (OSTI)

Computer simulation predictions of the effectiveness of autonomous airborne vehicles in finding rail mobile SS-24s are presented. Effectiveness is discussed for several autonomous airborne vehicle endurances and survivabilities for the search area southwest of Moscow. The effect of where the Soviets place the SS-24s on the rail network was also investigated. The simulation predicts significant variations in the ability of a multi-autonomous airborne vehicle system to find SS-24s with these parameters. 12 figs., 1 tab.

Abey, A.E.; Erickson, S.A.; Norquist, P.D.

1990-08-01T23:59:59.000Z

255

Evaluation of nuclear facility decommissioning projects: Summary status report: Three Mile Island Unit 2. Radioactive waste and laundry shipments  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 through April 19, 1987. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Haffner, D. R.

1988-06-01T23:59:59.000Z

256

ENVIRONMENTAL ASSESSMENT FOR THE PROPOSED WITHDRAWAL OF PUBLIC LANDS WITHIN AND SURROUNDING THE CALIENTE RAIL CORRIDOR, NEVADA  

SciTech Connect (OSTI)

The purpose for agency action is to preclude surface entry and the location of new mining claims, subject to valid existing rights, within and surrounding the Caliente rail corridor as described in the Yucca Mountain FEIS (DOE 2002). This protective measure is needed to enhance the safe, efficient, and uninterrupted evaluation of land areas for potential rail alignments within the Caliente rail corridor. The evaluation will assist the DOE in determining, through the Rail Alignment environmental impact statement (EIS) process, whether to construct a branch rail line, and to provide support to the BLM in deciding whether or not to reserve a ROW for the rail line under the Federal Land Policy and Management Act (FLPMA). The BLM participated as a cooperating agency in preparing this EA because it is the responsible land manager and BLM staff could contribute resource specific expertise.

DOE

2005-12-01T23:59:59.000Z

257

Advanced Diesel Common Rail Injection System for Future Emission  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative RecordsBiofuelseffort

258

2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation,Emissions from anFUEL CELL

259

Impacts of Rail Pressure and Biodiesel Composition on Soot Nanostructure |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho4Fuel ConsumptionproblemImpacts

260

Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519  

SciTech Connect (OSTI)

Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Crude Oil Movements of Crude Oil by Rail  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User

262

Annual Report - FY 2002, Radioactive Waste Shipments To and From the Nevada Test Site  

SciTech Connect (OSTI)

In February 1997, the U.S. Department of Energy, Nevada Operations Office issued the Mitigation Action Plan which addressed potential impacts described in the ''Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada'' (DOE/EIS 0243). The U.S. Department of Energy, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Sites (RWMSs) at Area 3 and Area 5. This document satisfies requirements with regard to low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to or from the NTS during fiscal year (FY) 2002.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-01-01T23:59:59.000Z

263

The Environmental Injector: Beyond Common Rail and Hydraulic  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds Families The EnergyIntensificatiion |

264

PHOENIX ENERGIZES LIGHT RAIL CORRIDOR WITH UPGRADES | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on OurSempriusEnergy PART 708PHEV

265

Microsoft PowerPoint - Rail_Kneitel [Compatibility Mode]  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007NavalMelvin G. Williams,UseNWTRBOverviewMeeting: New1

266

Hydrogen Assisted Diesel Combustion in a Common Rail Turbodiesel Engine |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto Apply forInstitute Mission&Department of

267

The Contribution of Degraded Modes of Operation to Accidents in the US, UK and Australian Rail Industries  

E-Print Network [OSTI]

The Contribution of Degraded Modes of Operation to Accidents in the US, UK and Australian Rail, operators develop `work arounds' that help them to cope with these degraded modes. This has led to a culture with the safety culture in rail operati

Johnson, Chris

268

The impact of high-speed rail and low-cost carriers on European air passenger traffic  

E-Print Network [OSTI]

The impact of high-speed rail and low-cost carriers on European air passenger traffic Regina R, and market characteristics on air traffic; and 2) the impact of high-speed rail and low-cost in system-wide air travel demand, whereas the expansion of low-cost carriers has led to a significant

Gummadi, Ramakrishna

269

Moisture-Driven Deterioration and Abrasion of Concrete Sleeper Rail Seats Submitted for publication in the proceedings of the  

E-Print Network [OSTI]

in the proceedings of the 9th World Congress on Railway Research 1 February 2011 John C. Zeman1 , Ryan G. Kernes2 , J and Environmental Engineering University of Illinois at Urbana-Champaign 205 N. Mathews Ave., Urbana, IL 61801 Fax is the degradation of the concrete underneath the rail and results in problems such as wide gauge, insufficient rail

Barkan, Christopher P.L.

270

Analysis of the D0 Crane Rail as a Support for a Horizontal Lifeline  

SciTech Connect (OSTI)

The D-Zero crane rail is analyzed for use as an anchor support for a one person Horizon{trademark} Horizontal Lifeline system that will span the pit area at D-Zero assembly hall. The lifeline will span 75 ft across the pit area, will be located out of the travel of the crane and above the concrete lentil wall. The crane rail is a suitable anchor for a one person Horizon TM Horizontal Lifeline system. The expected stress on the rail is 1,995 psi which has a factor of safety of 5.5 on the allowable stress. The anchor position is located 18 feet away from the concrete lentil wall and out of the travel of the overhead crane.

Cease, H.; /Fermilab

2000-03-02T23:59:59.000Z

271

2009 Fuel Cell Market Report, November 2010, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, Analysis |Summaryofof9Fourth Annual

272

Arrival condition of spent fuel after storage, handling, and transportation  

SciTech Connect (OSTI)

This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

1982-11-01T23:59:59.000Z

273

Comparative Cost Estimates Caliente Rail Corridor Summary Report  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME | NationalTbilisi08 to17 2.7 i R iii

274

QER Public Meeting in Chicago, IL: Rail, Barge, Truck Transportation |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoans | Department of Energy20

275

Rail Networks Are Getting Smarter | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenter forQualityRSSRadiological

276

Rail Transportation of Crude Oil in North America  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenter forQualityRSSRadiologicalreports U.S.

277

Agenda: Rail, Barge, Truck Transportation | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet,ProposedEnergySITING Agenda:Energy

278

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalon Clean DevelopmentCorporation -|Enhanced

279

TEC Working Group Topic Groups Rail Archived Documents | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENT VERIFICATION AT

280

TEC Working Group Topic Groups Rail Conference Call Summaries Inspections  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENT VERIFICATION ATSubgroup | Department of Energy

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

TEC Working Group Topic Groups Rail Conference Call Summaries | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENT VERIFICATION ATSubgroup | Department ofof

282

TEC Working Group Topic Groups Rail Key Documents Intermodal Subgroup |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENT VERIFICATION ATSubgroup | Department

283

TEC Working Group Topic Groups Rail Key Documents Planning Subgroup |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENT VERIFICATION ATSubgroup | DepartmentDepartment of

284

TEC Working Group Topic Groups Rail Key Documents Radiation Monitoring  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENT VERIFICATION ATSubgroup | DepartmentDepartment

285

TEC Working Group Topic Groups Rail Meeting Summaries | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENT VERIFICATION ATSubgroup |

286

Conventional Gasoline Movements by Tanker, Pipeline, Barge and Rail between  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECSYearThousandPAD

287

Remarks on Rail Transportation of Energy Resources John R. Birge  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |Regulation Services System:Affairs, to the Beijing Energy Club|Accesson

288

Proposed Work Scope for the Rail Topic Group  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbus HTS PowerAdministered by28518 Vol. 77, No. 9431548234

289

Shipping Radioactive Waste by Rail from Brookhaven National Laboratory |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational Energy Agency |AwardJohnson, Steve5,

290

A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository  

SciTech Connect (OSTI)

The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as well as non-radioactive traffic fatalities. The Yucca Mountain EIS Transportation Database was developed using Microsoft Access 97{trademark} software and the Microsoft Windows NT{trademark} operating system. The database consists of tables for storing data, forms for selecting data for querying, and queries for retrieving the data in a predefined format. Database queries retrieve records based on input parameters and are used to calculate incident-free and accident doses using unit risk factors obtained from RADTRAN results. The next section briefly provides some background that led to the development of the database approach used in preparing the Yucca Mountain DEIS. Subsequent sections provide additional details on the database structure and types of impacts calculated using the database.

Ralph Best; T. Winnard; S. Ross; R. Best

2001-08-17T23:59:59.000Z

291

AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT  

SciTech Connect (OSTI)

One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

Bunting, Bruce G [ORNL] [ORNL; Boyd, Alison C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

292

Does rail have a place in a rebuilt Christchurch?  

E-Print Network [OSTI]

global green economy trends... 1 In 2008 `peak fossil fuel power investment' occurred: global renewable power investment higher than fossil fuel power investment for first time. Now 2:1... 2 In 2004 `peak oil production' occurred...no increase in production for 5 years... end of cheap oil. 4 In 2008

Hickman, Mark

293

Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site, Fiscal Year 2009  

SciTech Connect (OSTI)

In February 1997, the U.S. Department of Energy (DOE), Nevada Operations Office (now known as the Nevada Site Office) issued the Mitigation Action Plan which addressed potential impacts described in the “Final Environmental Impact Statement for the Nevada Test Site and Off-Site Locations in the State of Nevada” (DOE/EIS 0243). The DOE, Nevada Operations Office committed to several actions, including the preparation of an annual report, which summarizes waste shipments to and from the Nevada Test Site (NTS) Radioactive Waste Management Site (RWMS) at Area 5 and Area 3. Since 2006, the Area 3 RWMS has been in cold stand-by. This document satisfies requirements regarding low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) transported to and from the NTS during FY 2009. In addition, this document provides shipment, volume, and route information on transuranic (TRU) waste shipped from the NTS to the Idaho National Laboratory, near Idaho Falls, Idaho.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2010-02-01T23:59:59.000Z

294

Effect of reduced enrichment on the fuel cycle for research reactors  

SciTech Connect (OSTI)

The new fuels developed by the RERTR Program and by other international programs for application in research reactors with reduced uranium enrichment (<20% EU) are discussed. It is shown that these fuels, combined with proper fuel-element design and fuel-management strategies, can provide at least the same core residence time as high-enrichment fuels in current use, and can frequently significantly extend it. The effect of enrichment reduction on other components of the research reactor fuel cycle, such as uranium and enrichment requirements, fuel fabrication, fuel shipment, and reprocessing are also briefly discussed with their economic implications. From a systematic comparison of HEU and LEU cores for the same reference research reactor, it is concluded that the new fuels have a potential for reducing the research reactor fuel cycle costs while reducing, at the same time, the uranium enrichment of the fuel.

Travelli, A.

1982-01-01T23:59:59.000Z

295

Fossil fuels -- future fuels  

SciTech Connect (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

296

CALCULATIONS OF FIRE SMOKE BEHAVIOUR IN LONG RAIL TUNNELS S. DARON, E. RUFFIN  

E-Print Network [OSTI]

2000-13 CALCULATIONS OF FIRE SMOKE BEHAVIOUR IN LONG RAIL TUNNELS S. DAÃ?RON, E. RUFFIN INERIS Parc in complex underground networks, we want to implement a coupling between a ID ventilation code and a CFD model or a zone model. The project consists in 3 main steps: the development of a ID ventilation code

Paris-Sud XI, Université de

297

Hydraulic Mechanisms of the Deterioration of Concrete Sleeper Rail Seats , R. Kernes  

E-Print Network [OSTI]

Hydraulic Mechanisms of the Deterioration of Concrete Sleeper Rail Seats J. Zeman 2 , R. Kernes 1 to have five potential mechanisms, and this research investigates three of them: hydraulic pressure cracking, hydro-abrasive erosion, and abrasion. In order to investigate the two hydraulic-driven mechanisms

Barkan, Christopher P.L.

298

Evaluation of sight distance as a criterion for prioritizing rail-highway intersections in Texas  

E-Print Network [OSTI]

for its effects on the overall ranking of the rail-highway intersections. A state hazard index was chosen from a state-of-the-practice review with which to compare the current and revised Texas Priority Indices. Finally, the effectiveness of each...

Pecheux, Kelley Klaver

2012-06-07T23:59:59.000Z

299

Development of Improved Traveler Survey Methods for High-Speed Intercity Passenger Rail Planning  

E-Print Network [OSTI]

High-speed passenger rail is seen by many in the U.S. transportation policy and planning communities as an ideal solution for fast, safe, and resource-efficient mobility in high-demand intercity corridors. To expand the body of knowledge for high...

Sperry, Benjamin

2012-07-16T23:59:59.000Z

300

Simulating calculations and optimization design of a new HVDC supply power for light rail system  

E-Print Network [OSTI]

such a complex system, taking into account vehicle motion and HVDC electrical distribution. Then, an optimizationSimulating calculations and optimization design of a new HVDC supply power for light rail system Rémi Vial, Delphine Riu, Nicolas Retière Grenoble Electrical Engineering Laboratory, 38402 Saint

Boyer, Edmond

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Rail costs and capital adjustments in a quasi-regulated environment  

E-Print Network [OSTI]

This paper reports on results obtained from estimation of a rail cost function using a pooled time-series cross section of Class I U.S. railroads for the period 1973-1986. Based on the results of this cost function, an ...

Friedlaender, Ann Fetter

1990-01-01T23:59:59.000Z

302

Christopher T. Rapp, Marcus S. Dersch, J. Riley Edwards 2013 Joint Rail Conference  

E-Print Network [OSTI]

of Experimentation · Testing Background ­ Laboratory Experimentation · July 2012 Field Instrumentation ­ TLV Based Tactile Surface Sensors (MBTSS) · Measure magnitude and distribution of pressure at the concrete of Concrete Crosstie Rail Seats MBTSS Testing Background · Proven feasibility for use on concrete crosstie

Barkan, Christopher P.L.

303

A GIS-Assisted Rail Construction Econometric Model that Incorporates LlDAR Data  

E-Print Network [OSTI]

A GIS-Assisted Rail Construction Econometric Model that Incorporates LlDAR Data David J. Cowen employed a raster GIS econometric routing model for the exploration of potential routes using construction in the grid-based econometric model was obtained from Light Detection and Ranging (LIDAR)data with accurate 0

Hodgson, Michael E.

304

An Econometrics Analysis of Freight Rail Demand Growth in Albert Wijeweera a, *  

E-Print Network [OSTI]

1 An Econometrics Analysis of Freight Rail Demand Growth in Australia Albert Wijeweera a, * , Hong of non-bulk freight demand in Australia. The paper uses a simple but robust econometrics method this growth at about four per cent per year (BTRE, 2006). The econometric model used herein enables us

305

Laser infrared photothermal radiometric depth profilometry of steels and its potential in rail track evaluation  

E-Print Network [OSTI]

-surface structures and damage in materials, well beyond the optical penetration depth of illu- mination sources, iLaser infrared photothermal radiometric depth profilometry of steels and its potential in rail and Manufacturing Ontario, 5 King's College Road, Toronto, Ont, Canada M5S 3G8 Abstract Laser Infrared Photothermal

Mandelis, Andreas

306

1 Copyright 2014 by ASME Proceedings of the 2014 Joint Rail Conference  

E-Print Network [OSTI]

1 Copyright © 2014 by ASME Proceedings of the 2014 Joint Rail Conference JRC2014 April 2-4, 2014 the catenary to the power grid. This electrical power can be used by other trains in the same power section, regenerative energy cannot always be fully absorbed. When there is insufficient power demand from adjacent

Barkan, Christopher P.L.

307

Proceedings of the 2013 Joint Rail Conference April 15-18, 2013, Knoxville, Tennessee, USA  

E-Print Network [OSTI]

American operating environment differs than the operating practices found throughout much of the rest freight and intercity passenger traffic. One of the challenges created by this operating environmentProceedings of the 2013 Joint Rail Conference JRC2013 April 15-18, 2013, Knoxville, Tennessee, USA

Barkan, Christopher P.L.

308

Proceedings of the ASME 2012 Joint Rail Conference April 17-19, 2012, Philadelphia, Pennsylvania, USA  

E-Print Network [OSTI]

Proceedings of the ASME 2012 Joint Rail Conference JRC2012 April 17-19, 2012, Philadelphia, and Debakanta Mishra3 Department of Civil and Environmental Engineering University of Illinois at Urbana characteristics, foundation type, ballast settlement from fouling and/or degradation, as well as fill and subgrade

309

Test plan for K-Basin fuel handling tools  

SciTech Connect (OSTI)

The purpose of this document is to provide the test plan and procedures for the acceptance testing of the handling tools enveloped for the removal of an N-Reactor fuel element from its storage canister in the K-Basins storage pool and insertion into the Single fuel Element Can for subsequent shipment to a Hot Cell for examination. Examination of these N-Reactor fuel elements is part of the overall characterization effort. New hand tools were required since previous fuel movement has involved grasping the fuel in a horizontal position. The 305 Building Cold Test Facility will be used to conduct the acceptance testing of the Fuel Handling Tools. Upon completion of this acceptance testing and any subsequent training of operators, the tools will be transferred to the 105 KW Basin for installation and use.

Bridges, A.E.

1995-02-08T23:59:59.000Z

310

Proposed Work Scope for the Rail Topic Group  

Broader source: Energy.gov (indexed) [DOE]

option: A DOE supplement to the Yucca Mountain EIS evaluated the impacts of shipping spent nuclear fuel to Nevada using LWT casks transported on railcars for the first six...

311

Variable Spaced Grating (VSG) Snout, Rotator and Rails for use at LLE  

SciTech Connect (OSTI)

The Variable Spaced Grating (VSG) is a spectrometer snout mounted to an X-Ray Framing Camera (XRFC) through the Unimount flange. This equipment already exists and is used at the University of Rochester, Laboratory for Laser Energetics (LLE) facility. The XRFC and the Unimount flange are designed by LLE. The Tilt Rotator fixture that mounts next to the XRFC and the cart rails are designed by LLNL, and are included in this safety note. The other related components, such as the TIM rails and the Unimount flange, are addressed in a separate safety note, EDSN09-500005-AA. The Multipurpose Spectrometer (MSPEC) and VSG are mounted on the TIM Boat through the cart rails that are very similar in design. The tilt rotator combination with the Unimount flange is also a standard mounting procedure. The later mounting system has been included in this safety note. Figure-1 shows the interface components and the VSG snout. Figure-2 shows the VSG assembly mounted on the Unimount flange. The calibration pointer attachment is shown in place of the snout. There are two types of VSG, one made of 6061-T6 aluminum, weighing approximately 3 pounds, and the other made of 304 stainless steel, weighing approximately 5.5 pounds. This safety note examines the VSG steel design. Specific experiments may require orienting the VSG snout in 90 degrees increment with respect to the Unimount flange. This is done by changing the bolts position on the VSG-main body adapter flange to the Unimount adapter plate. There is no hazard involved in handling the VSG during this procedure as it is done outside the target chamber on the cart rail before installing on the TIM. This safety note addresses the mechanical integrity of the VSG structure, the tilt rotating fixture, the cart rails with handle and their connections. Safety Factors are also calculated for the MSPEC in place of the VSG.

Mukherjee, S K; Emig, J A; Griffith, L V; Heeter, R F; House, F A; James, D L; Schneider, M B; Sorce, C M

2010-01-25T23:59:59.000Z

312

A document review to characterize Atomic International SNAP fuels shipped to INEL 1966--1973  

SciTech Connect (OSTI)

This report provides the results of a document search and review study to obtain information on the spent fuels for the following six Nuclear Auxiliary Power (SNAP) reactor cores now stored at the Idaho National Engineering Laboratory (INEL): SNAP-2 Experimental Reactor, SNAP-2 Development Reactor, SNAP-10A Ground Test Reactor, SNAP-8 Experimental Reactor, SNAP-8 Development Reactor, and Shield Test Reactor. The report also covers documentation on SNAP fuel materials from four in-pile materials tests: NAA-82-1, NAA-115-2, NAA-117-1, and NAA-121. Pieces of these fuel materials are also stored at INEL as part of the SNAP fuel shipments.

Wahnschaffe, S.D.; Lords, R.E. [eds.; Kneff, D.W.; Nagel, W.E.; Pearlman, H.; Schaubert, V.J.

1995-09-01T23:59:59.000Z

313

"TRU" Success: SRS Recovery Act Prepares to Complete Shipment of More Than  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition InformationWindWoodDepartmenteGallon:`5,000

314

Application of a systems-theoretic approach to risk analysis of high-speed rail project management in the US  

E-Print Network [OSTI]

High-speed rail (HSR) is drawing attention as an environmentally-friendly transportation mode, and is expected to be a solution for socio-technical transportation issues in many societies. Currently, its market has been ...

Kawakami, Soshi

2014-01-01T23:59:59.000Z

315

Productivity of the U.S. freight rail industry: a review of the past and prospects for the future  

E-Print Network [OSTI]

Productivity growth in the U.S. freight rail industry has slowed in recent years, raising the issue of the sustainability of the significant improvements achieved during the past three decades. Indeed, between 1979 and ...

Kriem, Youssef

2011-01-01T23:59:59.000Z

316

The agglomerative role of transportation investment : a comparative analysis of Portuguese and American high-speed rail proposals  

E-Print Network [OSTI]

This research uses a comparative analysis of High-Speed Rail (HSR) impacts from proposals in both Portugal and Illinois to understand the wider economic implications of these proposed transportation links and corollary ...

Westrom, Ryan J. (Ryan Jeremy)

2014-01-01T23:59:59.000Z

317

Cross-border barriers to the development of HSR projects : analysis of the Singapore- Kuala Lumpur high speed rail link/  

E-Print Network [OSTI]

It is widely recognized that the benefits of High Speed Rail (HSR) such as a driving force of the economy, helps us to reshape the activities of people and business. These benefits were brought to light for its reliability, ...

Mori, Iori

2014-01-01T23:59:59.000Z

318

A systems approach for developing, designing, and transitioning moving map technology in U.S. rail applications  

E-Print Network [OSTI]

Safety, efficiency and productivity are top priorities for rail industries, but technology implementation faces many barriers. While the demands of locomotive engineers and railroads are increasing, the industry lacks a ...

Voelbel, Kathleen

2014-01-01T23:59:59.000Z

319

,"Energy","Water","Renewable","Petroleum","Alt. Fuel",,"On-Line Data Collection System",,"Report Period","Due In",,,"Primary","Secondary","Secondary"  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice) Federal Records CenterHVAC

320

The Planning, Licensing, Modifications, and Use of a Russian Vessel for Shipping Spent Nuclear Fuel by Sea in Support of the DOE RRRFR Program  

SciTech Connect (OSTI)

The Russian Research Reactor Fuel Return (RRRFR) Program, under the U.S. Department of Energy’s Global Threat Reduction Initiative, began returning Russian-supplied high-enriched uranium (HEU) spent nuclear fuel (SNF), stored at Russian-designed research reactors throughout the world, to Russia in January 2006. During the first years of making HEU SNF shipments, it became clear that the modes of transportation needed to be expanded from highway and railroad to include sea and air to meet the extremely aggressive commitment of completing the first series of shipments by the end of 2010. The first shipment using sea transport was made in October 2008 and used a non-Russian flagged vessel. The Russian government reluctantly allowed a one-time use of the foreign-owned vessel into their highly secured seaport, with the understanding that any future shipments would be made using a vessel owned and operated by a Russian company. ASPOL-Baltic of St. Petersburg, Russia, owns and operates a small fleet of vessels and has a history of shipping nuclear materials. ASPOL-Baltic’s vessels were licensed for shipping nuclear materials; however, they were not licensed to transport SNF materials. After a thorough review of ASPOL Baltic’s capabilities and detailed negotiations, it was agreed that a contract would be let with ASPOL-Baltic to license and refit their MCL Trader vessel for hauling SNF in support of the RRRFR Program. This effort was funded through a contract between the RRRFR Program, Idaho National Laboratory, and Radioactive Waste Management Plant of Swierk, Poland. This paper discusses planning, Russian and international maritime regulations and requirements, Russian authorities’ reviews and approvals, licensing, design, and modifications made to the vessel in preparation for SNF shipments. A brief summary of actual shipments using this vessel, experiences, and lessons learned also are described.

Michael Tyacke; Dr. Igor Bolshinsky; Wlodzimierz Tomczak; Sergey Naletov; Oleg Pichugin

2001-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

First Oak Ridge Remote-Handled Transuranic Waste Shipment Arrives Safely at  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OFthe TexasFirstFirstWIPP |

322

Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948 138,6760

323

Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948 138,67602

324

Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948 138,676022

325

Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948 138,6760224

326

Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,948

327

Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,442 140,9488 Capability

328

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.4 Number of3.41.4

329

Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.4 Number

330

Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next

331

Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next2

332

Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next22

333

Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next224

334

Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next2246

335

Level: National and Regional Data; Row: NAICS Codes, Value of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next22468

336

Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49 Next22468 Coke

337

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.49

338

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.492.3 Nonfuel

339

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.492.3 Nonfuel2

340

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.492.3 Nonfuel24

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.492.3 Nonfuel246

342

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.492.3

343

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.492.34.3

344

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.492.34.32

345

Level: National and Regional Data; Row: Values of Shipments and Employment Sizes;  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs Year in Review1,213 136,422 133,4422.492.34.322

346

10,000th Waste Shipment Milestone is All in the Family | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition#EnergyFaceoff1 1 1 MoreEnergy Waste

347

Microsoft Word - 2014 3-19 FINAL WIPP News Release - WCS Shipments Contract  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & Fuel Cells This image cannot4DR0214 /

348

Uraninum-233 Inventory in Oak Ridge Lightened with First Shipment of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|Solar DecathlonManufacturing LoanMaterial from

349

U.S. and Bahamian Governments to Cooperate on Detecting Illicit Shipments  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. of Energy, Office ofNuclear WeaponstoU.S.0:Windof Nuclear

350

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of54 Number.1.

351

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of54 Number.1.4

352

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of54

353

" Row: NAICS Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End Uses of54.4 Number

354

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End2.1.2 Number of21.

355

" Row: Selected SIC Codes; Column: Energy Sources and Shipments;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End2.1.2 Number of21.2.

356

" Row: NAICS Codes, Value of Shipments and Employment Sizes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End2.1.24 Number2

357

" Row: NAICS Codes, Value of Shipments and Employment Sizes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End2.1.24 Number24

358

" Row: NAICS Codes, Value of Shipments and Employment Sizes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End2.1.24 Number246

359

" Row: NAICS Codes, Value of Shipments and Employment Sizes;"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropane PAD2006..........A49. Total2 End2.1.24 Number2468

360

Life Cycle Assessment Comparing the Use of Jatropha Biodiesel in the Indian Road and Rail Sectors  

SciTech Connect (OSTI)

This life cycle assessment of Jatropha biodiesel production and use evaluates the net greenhouse gas (GHG) emission (not considering land-use change), net energy value (NEV), and net petroleum consumption impacts of substituting Jatropha biodiesel for conventional petroleum diesel in India. Several blends of biodiesel with petroleum diesel are evaluated for the rail freight, rail passenger, road freight, and road-passenger transport sectors that currently rely heavily on petroleum diesel. For the base case, Jatropha cultivation, processing, and use conditions that were analyzed, the use of B20 results in a net reduction in GHG emissions and petroleum consumption of 14% and 17%, respectively, and a NEV increase of 58% compared with the use of 100% petroleum diesel. While the road-passenger transport sector provides the greatest sustainability benefits per 1000 gross tonne kilometers, the road freight sector eventually provides the greatest absolute benefits owing to substantially higher projected utilization by year 2020. Nevertheless, introduction of biodiesel to the rail sector might present the fewest logistic and capital expenditure challenges in the near term. Sensitivity analyses confirmed that the sustainability benefits are maintained under multiple plausible cultivation, processing, and distribution scenarios. However, the sustainability of any individual Jatropha plantation will depend on site-specific conditions.

Whitaker, M.; Heath, G.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Environmental Life-cycle Assessment of Passenger Transportation An Energy, Greenhouse Gas, and Criteria Pollutant Inventory of Rail and Air Transportation  

E-Print Network [OSTI]

Selection in Life-Cycle Inventories Using Hybrid Approaches,and Criteria Pollutant Inventories of Automobiles, Buses,Criteria Pollutant Inventory of Rail and Air Transportation

Horvath, Arpad; Chester, Mikhail

2008-01-01T23:59:59.000Z

362

Evaluation of nuclear facility decommissioning projects. Three Mile Island Unit 2. Radioactive waste and laundry shipments. Volume 9. Summary status report  

SciTech Connect (OSTI)

This document summarizes information concerning radioactive waste and laundry shipments from the Three Mile Island Nuclear Station Unit 2 to radioactive waste disposal sites and to protective clothing decontamination facilities (laundries) since the loss of coolant accident experienced on March 28, 1979. Data were collected from radioactive shipment records, summarized, and placed in a computerized data information retrieval/manipulation system which permits extraction of specific information. This report covers the period of April 9, 1979 to May 5, 1985. Included in this report are: waste disposal site locations, dose rates, curie content, waste description, container type and number, volumes and weights. This information is presented in two major categories: protective clothing (laundry) and radioactive waste. Each of the waste shipment reports is in chronological order.

Doerge, D. H.; Miller, R. L.; Scotti, K. S.

1986-05-01T23:59:59.000Z

363

Draft News Release: DOE Investigates Shipment of Wrong Drum to WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice -Integrated

364

Annual Transportation Report for Radioactive Waste Shipments to and from the Nevada Test Site  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME | NationalTbilisi | Available for sale

365

First TRUPACT-III Shipment Arrives Safely at the Waste Isolation Pilot  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire ProtectionUpdatesPlant

366

U.S. uranium concentrate production and shipments, 1993-2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlong version) The U.S.1,summer gasoline price to

367

WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE WIPP200 For

368

January 23, 2007: WIPP receives first shipment of waste | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusinessDepartmentat Larger ScaleWORKING

369

NR-SRS TRU Waste Shipments Milestone June 4 2013.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNP User FacilitiesSRS:

370

PTS 13.2 Packaging and Preparation for Shipment 4/10/95 | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6 Frontera GenerationMedicineEnergyEnergy

371

WIPP Receives First Remote-Handled Waste Shipment From Sandia Labs |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dry storageMarch| Departmentof Energy

372

Section 08: Approval Process for Waste Shipment From Waste Generator Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2)ScienceScientistsONDelivered |ofSuperCam builds

373

LANL Reaches Waste Shipment Milestone: Waste from Cold War-era weapons  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives ThroughEnergy Kicking the Oil Habit:production

374

EIA Energy Efficiency-Table 3a. Value of Shipments by Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelected Industries,1998, 2002,

375

EIA Energy Efficiency-Table 4a. Value of Shipments by Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelectedand 2002 e Page

376

The First Recovery Act Funded Waste Shipment depart from the Advanced Mixed  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2Different ImpactsTheRollingCompetitionWaste

377

U.S. Department of Energy to Host Press Call on Radioactive Waste Shipment  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe House Committee on EnergyEnergyThe sunCommerce EconomicsDepartmentand

378

FORM EIA-63B ANNUAL PHOTOVOLTAIC CELL/MODULE SHIPMENTS REPORT INSTRUCTIONS  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683DieselValues shown for the current twoForm78961

379

West Valley Demonstration Project Low-Level Waste Shipment | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation | Department ofEnergy Is Everywhere! Webinar: EnergyDRAFT_19507_1

380

Microsoft Word - INL Waste Stream Cleared for Shipment to WIPP.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMappingENVIRONMENTALHYDROPOWERFebruary 2004TH/P3-18 1 TwoALE-AMR: AIdaho

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Moab Mill Tailings Removal Project Plans to Resume Train Shipments in  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 Printing and Mail Managersfor 12 hoursMoab

382

Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends  

SciTech Connect (OSTI)

The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

2012-03-01T23:59:59.000Z

383

Environmental Life-cycle Assessment of Passenger Transportation: A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air  

E-Print Network [OSTI]

Tracks Locomotives & Cars Fuel (Diesel, Electric) RoadwaysVehicles Fuel (Diesel, Electric) Design N K,L,N Production

Chester, Mikhail; Horvath, Arpad

2007-01-01T23:59:59.000Z

384

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

385

Estimating the variable cost for high-volume and long-haul transportation of densified biomass and biofuel  

SciTech Connect (OSTI)

This article analyzes rail transportation costs of products that have similar physical properties as densified biomass and biofuel. The results of this cost analysis are useful to understand the relationship and quantify the impact of a number of factors on rail transportation costs of denisfied biomass and biofuel. These results will be beneficial and help evaluate the economic feasibility of high-volume and long-haul transportation of biomass and biofuel. High-volume and long-haul rail transportation of biomass is a viable transportation option for biofuel plants, and for coal plants which consider biomass co-firing. Using rail optimizes costs, and optimizes greenhouse gas (GHG) emissions due to transportation. Increasing bioenergy production would consequently result in lower GHG emissions due to displacing fossil fuels. To estimate rail transportation costs we use the carload waybill data, provided by Department of Transportation’s Surface Transportation Board for products such as grain and liquid type commodities for 2009 and 2011. We used regression analysis to quantify the relationship between variable transportation unit cost ($/ton) and car type, shipment size, rail movement type, commodity type, etc. The results indicate that: (a) transportation costs for liquid is $2.26/ton–$5.45/ton higher than grain type commodity; (b) transportation costs in 2011 were $1.68/ton–$5.59/ton higher than 2009; (c) transportation costs for single car shipments are $3.6/ton–$6.68/ton higher than transportation costs for multiple car shipments of grains; (d) transportation costs for multiple car shipments are $8.9/ton and $17.15/ton higher than transportation costs for unit train shipments of grains.

Jacob J. Jacobson; Erin Searcy; Md. S. Roni; Sandra D. Eksioglu

2014-06-01T23:59:59.000Z

386

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015 7:00FuelFuelFuel

387

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect (OSTI)

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

388

Non-destructive inspection protocol for reinforced concrete barriers and bridge railings  

SciTech Connect (OSTI)

Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

2014-02-18T23:59:59.000Z

389

Nevada potential repository preliminary transportation strategy: Study 1  

SciTech Connect (OSTI)

Limited feasible options exist when considering the shipment of spent nuclear fuel and high-level radioactive waste. These options are rail or truck; because of the weight associated with transportation casks (68.0 to 113.4 tonnes/75 to 125 tons), heavy-haul trucks are also considered. Yucca Mountain currently lacks rail service or an existing right-of-way for rail; it also lacks a dedicated highway suitable for heavy-haul trucks. Approximately 11,230 shipments by rail are planned from waste producer sites to Nevada, with an additional 1,041 shipments by legal-weight truck from four reactor sites not capable of upgrading for rail shipment. This study identifies the reasonable alternatives for waste transport to the potential repository site, describes the evaluation process performed to identify those alternatives, and discusses the reasons for elimination of transportation routes deemed to be not reasonable. The study concluded that heavy haul truck transportation is feasible-cost is very favorable when compared to rail-but route restrictions must be further evaluated. In addition to restrictions due to seasonal weather conditions, specific routes have additional restrictions, including no travel on holidays or weekends, and travel during daylight hours only. Further restrictions will be imposed by the U.S. Department of Transportation based on routing of radioactive materials by highway. Operation and maintenance costs for heavy-haul over a 24-year period, based on preliminary information, were calculated on an estimated operational cost of $15,000 per trip, with an estimated 468 trips per year average (11,230 total trips), for an estimated cost of $171 million to $173 million, depending on the route used. Because the initial costs and the total system life cycle costs of heavy-haul are approximately 50 percent lower than the lowest rail cost, this option will continue to be evaluated.

NONE

1995-04-01T23:59:59.000Z

390

Effect of Rail Rate Deregulation: The Case of Wheat Exports from the South Plains.  

E-Print Network [OSTI]

Cost 3.398 2.582 Barge Fixed Cost 1.182 .532 Variable Cost 3.938 1.685 Total Cost 5.120 2.217 Loading Grain Truck Fixed Cost .565 1.395 5.251 Variable Cost 2.065 1.058 2.089 Total Cost 2.630 2.453 7.340 Rail Fixed Cost .579 1.171 1... efficiently, although they do occasionally re ceive barge-delivered grain. On the basis of North Texas port elevator characteristics, the unloading cost was estimated at 3.0~ per bushel. Corpus Christi does not have barge unloading facilities. TABLE 3...

Fuller, Stephen; Shanmugham, C. V.

1982-01-01T23:59:59.000Z

391

Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J. [and others

1997-02-01T23:59:59.000Z

392

Upgrading of raw oil into advanced fuel. Task 5  

SciTech Connect (OSTI)

The overall objective of the research effort is the determination of the minimum processing requirements to produce high energy density fuels (HEDF) having acceptable fuel specifications. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. The Phase I Baseline Program is intended to explore the processing alternatives for producing advanced HEDF from two raw synfuel feedstocks, one from Mild Coal Gasification as exemplified by the COALITE process and one from Colorado shale oil. Eight key tasks have been identified as follows: (1) Planning and Environmental Permitting; (2) Transporting and Storage of Raw Fuel Sources and Products; (3) Screening of Processing and Upgrading Schemes; (4) Proposed Upgrading Schemes for Advanced Fuel; (5) Upgrading of Raw Oil into Advanced Fuel (6) Packaging and Shipment of Advanced Fuels; (7) Updated Technical and Economic Assessment; and, (8) Final Report of Phase I Efforts. This topical report summarizes the operations and results of the Phase I Task 5 sample preparation program. The specific objectives of Task 5 were to: Perform laboratory characterization tests on the raw COALITE feed, the intermediate liquids to the required hydroprocessing units and final advanced fuels and byproducts; and produce a minimum of 25-gal of Category I test fuel for evaluation by DOE and its contractors.

Not Available

1991-10-01T23:59:59.000Z

393

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

Coal extraction Rail transport Power plant Elec transmission emissionsCoal extraction Rail transport Power plant Elec transmission emissionsCoal extraction Rail transport Power plant Elec transmission emissions

Wang, Guihua

2008-01-01T23:59:59.000Z

394

Synthetic Fuel  

ScienceCinema (OSTI)

Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

2010-01-08T23:59:59.000Z

395

Fuel Economy  

Broader source: Energy.gov [DOE]

The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

396

Smart Parking Pilot on the Coaster Commuter Rail Line in San Diego, California  

E-Print Network [OSTI]

simulation tool for hydrogen fuel cell vehicles, Journal ofApplication on Direct Hydrogen Fuel Cell Vehicles, 2008. Acsystem for direct hydrogen fuel cell vehicles Fig. 3 Driver

Blake, Tagan; Rodier, Caroline J.; Shaheen, Susan

2008-01-01T23:59:59.000Z

397

Transportation Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-TransmissionLaboratoryFuels

398

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing | ArgonnechallengingFryFuel

399

Stray Current Corrosion in Electrified Rail Systems --Final Report Dr. Thomas J. Barlo, formerly of Northwestern University  

E-Print Network [OSTI]

Stray Current Corrosion in Electrified Rail Systems -- Final Report Dr. Thomas J. Barlo, formerly SUMMARY Despite a relatively mature technology for its control, corrosion caused by stray current from of that cost is the result of corrosion of the electrified rapid-transit system itself, and part is the result

400

See also http://www.umass.edu/loop/content/civil-andenvironmental-engineering-student-wins-fulbright-study-rail-transportation-spain  

E-Print Network [OSTI]

See also http://www.umass.edu/loop/content/civil-andenvironmental-engineering- student-wins-fulbright-study-rail-transportation-spain to study transportation engineering in Madrid, Spain during 2013-2014. I had the good fortune to meet with Radha a short time ago and learned during our conversation that while abroad in Spain, one of her

Massachusetts at Amherst, University of

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Evaluation of Power-Constant Dual-Rail Logic as a Protection of Cryptographic Applications in FPGAs  

E-Print Network [OSTI]

-end applica- tions that require embedded cryptography. These devices must thus be protected against physical attacks. However, unlike ASICs, in which custom and backend-level counter-measures can be devised, FPGAs-rail logic. First of all, we report a CAD methodology for achieving WDDL in FPGA. An experimental security

Boyer, Edmond

402

Understanding the Link Between Bicyclists and Light Rail Survey Results from Bicycle Riders on MAX in Portland, Oregon  

E-Print Network [OSTI]

Understanding the Link Between Bicyclists and Light Rail Survey Results from Bicycle Riders on MAX Introduction 1 Portland Bicycle Master Plan, Section V 2 History of Bicycles on MAX 3 Benefits of the Bicycle is a bicycle friendly city. In 1995 and 1998, Bicycling Magazine named Portland the best city for bicycling

Bertini, Robert L.

403

ANALYSIS OF THE SHEAR BEHAVIOR OF RAIL PAD ASSEMBLIES AS A COMPONENT OF THE CONCRETE SLEEPER FASTENING SYSTEM  

E-Print Network [OSTI]

Fastening System RAIL PAD ASSEMBLY LATERAL DISPLACEMENT FAILURE MODE AND EFFECT ANALYSIS (FMEA) INTRODUCTION life · FMEA is used to define, identify, evaluate and eliminate potential failures from the system · FMEA was used to guide the process of answering questions related to the component behavior and also

Barkan, Christopher P.L.

404

Tools for integrating diagnosis in the design process An application to the Common Rail air and fuel delivery systems  

E-Print Network [OSTI]

in current generation automotive systems. However, the activities related to diagnosis (e.g., FMEA generation such as the diagnosability of the system being designed or the analysis of the FMEA (Failure Modes and Effects Analysis

405

Savannah River Site, Spent Nuclear Fuel Management, Draft Environmental Impact Statement  

SciTech Connect (OSTI)

The proposed DOE action described in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets assigned to the Savannah River Site (SRS), including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel (20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some programmatic material stored at SRS for repackaging and dry storage pending shipment offsite).

N /A

1998-12-24T23:59:59.000Z

406

Biodiesel Fuel  

E-Print Network [OSTI]

publication 442-880 There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel. ASTM standard for biodiesel (ASTM D6751) Biodiesel fuel, hereafter referred to as simply biodiesel,

unknown authors

407

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015

408

Proposed risk evaluation guidelines for use by the DOE-AL Nuclear Explosive Safety Division in evaluating proposed shipments of nuclear components  

SciTech Connect (OSTI)

The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied.

Just, R.A.; Love, A.F.

1997-10-01T23:59:59.000Z

409

Packaging and transportation system for K-Basin spent fuel  

SciTech Connect (OSTI)

This paper describes the cask/transportation system that was designed, procured and delivered to the Hanford K-Basin site at Richland, Washington. The performance requirements and design of the various components -- cask, trailer with cask tie-down system, and the cask operation equipment for the load-out pit -- will be discussed. The presentation will include the details of the factory acceptance testing and its results. The performance requirements for the cask/transportation system was dictated by the constraints imposed by the large number of high priority shipments and the spent fuel pool environment, and the complex interface requirements with other equipment and facility designs. The results of the testing form the basis for the conclusion that the system satisfies the site performance requirements. The cask/transportation system design was driven by the existing facility constraints and the limitations imposed by the large number of shipments over a short two-year period. This system may be useful information for other DOE facilities that may be or will be in a similar situation.

Kee, A.T.

1998-03-03T23:59:59.000Z

410

Transportation costs for new fuel forms produced from low rank US coals  

SciTech Connect (OSTI)

Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

Newcombe, R.J.; McKelvey, D.G. (TMS, Inc., Germantown, MD (USA)); Ruether, J.A. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-09-01T23:59:59.000Z

411

Analyzing policy, land use and zoning characteristics : understanding the potential to build housing near rail in the city of Los Angeles  

E-Print Network [OSTI]

Firstly, the author provides an overview and analysis of the City of Los Angeles political framework and implementation strategies to encourage the housing development near rail stations. Secondly, the author discusses the ...

Camarena, Erin M

2005-01-01T23:59:59.000Z

412

DAMOP BICYCLE EXCURSION Wisconsin led in the Rail to Trail conversion starting in the 1960s. The state now enjoys ~1000 miles of State Park  

E-Print Network [OSTI]

DAMOP BICYCLE EXCURSION Wisconsin led in the Rail to Trail conversion are invited on a bicycle excursion organized by Thad Walker and Jim Lawler. Directions & Costs: The excursion will depart from Machinery Row Bicycles (0.4 mi

Walker, Thad G.

413

Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)  

SciTech Connect (OSTI)

Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been {sup 238}PuO{sub 2}, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the {open_quotes}Pluto Express{close_quotes} mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS). {copyright} {ital 1997 American Institute of Physics.}

Barklay, C.D.; Miller, R.G.; Pugh, B.K.; Howell, E.I. [EGG Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio45343-3000 (United States)

1997-01-01T23:59:59.000Z

414

Logistical concepts associated with international shipments using the USA/9904/B(U)F RTG Transportation System (RTGTS)  

SciTech Connect (OSTI)

Over the last 30 years, radioisotopes have provided heat from which electrical power is generated. For space missions, the isotope of choice has generally been {sup 238}PuO{sub 2}, its long half-life making it ideal for supplying power to remote satellites and spacecraft like the Voyager, Pioneer, and Viking missions, as well as the recently launched Galileo and Ulysses missions, and the presently planned Cassini mission. Electric power for future space missions will be provided by either radioisotopic thermoelectric generators (RTG), radioisotope thermophotovoltaic systems (RTPV), alkali metal thermal to electrical conversion (AMTEC) systems, radioisotope Stirling systems, or a combination of these. The type of electrical power system has yet to be specified for the 'Pluto Express' mission. However, the current plan does incorporate the use of Russian launch platforms for the spacecraft. The implied tasks associated with this plan require obtaining international certification for the transport of the radioisotopic power system, and resolving any logistical issues associated with the actual shipment of the selected radioisotopic power system. This paper presents a conceptual summary of the logistical considerations associated with shipping the selected radioisotopic power system using the USA/9904/B(U)F-85, Radioisotope Thermoelectric Generator Transportation System (RTGTS)

Barklay, Chadwick D.; Miller, Roger G.; Pugh, Barry K.; Howell, Edwin I. [EG and G Mound Applied Technologies P.O. Box 3000 Miamisburg, Ohio 45343-3000 (United States)

1997-01-10T23:59:59.000Z

415

Introduction  

Broader source: Energy.gov (indexed) [DOE]

National Laboratory * LLW shipments by rail to Envirocare completed for this FY - will resume in 2007 * Recently completed 2 Type B shipments of RAM to LANL. * Included three 55-...

416

Smart Parking Pilot on the Coaster Commuter Rail Line in San Diego, California  

E-Print Network [OSTI]

a Direct-Hydrogen, Load-Following Fuel 13. S. Gelfi, A.G.versus a Direct-Hydrogen Load-Following Fuel Cell te d M 22.vehicle model of a load-following direct hydrogen fuel cell

Blake, Tagan; Rodier, Caroline J.; Shaheen, Susan

2008-01-01T23:59:59.000Z

417

TEPP Briefing Update  

Broader source: Energy.gov (indexed) [DOE]

* Comments have been incorporated and final review is in progress. Release date is forecast for early May 04 * Development of two additional MERRTT Modules - Rail Shipments -...

418

Draft  

Broader source: Energy.gov (indexed) [DOE]

commented that legal weight truck shipments by rail is not a concern according to several mechanical and railroad experts that Kevin consulted about this issue. This includes the...

419

Providing Innovative Waste Management Disposition for the DOE...  

Broader source: Energy.gov (indexed) [DOE]

Trains for Waste Shipments to Yucca Mountain." Under this policy DOE will use dedicated train service - train service dedicated to one Commodity - for its rail transport of spent...

420

Unconventional fuel: Tire derived fuel  

SciTech Connect (OSTI)

Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

Hope, M.W. [Waste Recovery, Inc., Portland, OR (United States)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Keeping Climate Change Solutions on Track: The Role of Rail | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach, Florida: EnergyKeasbey, New Jersey:

422

BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly  

National Nuclear Security Administration (NNSA)

BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly PWR Fuel Assembly The PWR 17x17 assembly is approximately 160 inches long (13.3 feet), 8 inches across, and weighs 1,500 lbs....

423

Overview of Aviation Fuel Markets for Biofuels Stakeholders  

SciTech Connect (OSTI)

This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

2014-07-01T23:59:59.000Z

424

"NAICS",,"per Employee","of Value Added","of Shipments"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECSPropaneResidential"Total"2.4 Relative4B1 Relative

425

TMI-2 core shipping preparations  

SciTech Connect (OSTI)

Shipping the damaged core from the Unit 2 reactor of Three Mile Island Nuclear Power Station near Harrisburg, PA, to the Idaho National Engineering Laboratory near Idaho Falls, ID, required development and implementation of a completely new spent fuel transportation system. This paper describes the equipment developed, the planning and activities used to implement the hardware systems into the facilities, and the planning involved in making the rail shipments. It also includes a summary of recommendations resulting from this experience.

Ball, L.J.; (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Barkanic, R.J. (Bechtel North American Power Corporation (United States)); Conaway, W.T. II (GPU Nuclear Corporation, Three Mile Island, Middletown, PA (United States)); Schmoker, D.S. (Nuclear Packaging, Inc., Federal Way, WA (United States))

1988-01-01T23:59:59.000Z

426

QA in the design and fabrication of the TMI-2 rail cask  

SciTech Connect (OSTI)

EGandG Idaho, Inc., acting on behalf of the US Department of Energy, is responsible for transporting core debris from Three Mile Island-Unit 2 to the Idaho National Engineering Laboratory. Transportation of the debris is being accomplished using an NRC licensed container, called the NuPac 125-B. This paper describes the NuPac 125-B Rail Cask and the quality assurance (QA) requirements for that system. Also discussed are the QA roles of the various organizations involved in designing, building, inspecting and testing the NuPac 125-B. The paper presents QA/QC systems implemented during the design, procurement, and fabrication of the cask to assure compliance with all applicable technical codes, standards and regulations. It also goes beyond the requirements aspect and describes unique QA/QC measures employed to assure that the cask was built with minimum QA problems. Finally, the lessons learned from the NuPac 125-B project is discussed. 4 refs., 4 figs.

Hayes, G.R.

1988-01-01T23:59:59.000Z

427

Close-in blasting at the TRI-MET light rail tunnels in Portland, Oregon  

SciTech Connect (OSTI)

Frontier/Traylor Joint Venture is presently constructing a section of the Tri-County Metropolitan Transit District of Oregon`s (TRI-MET) Westside Light Rail System. This new section will extend Portland`s existing transit system to the western suburbs of Beaverton and Hillsboro. The drill-blast excavations at this project include 10,000 feet of 20 foot tunnel, 18 cross passages, three shafts, an underground railway station, and a U-wall open cut. From a blast designer`s perspective, this job has been extremely challenging. Blast vibration is limited to 0.5 ips at 200 feet or at the nearest structure, and airblast is limited to 129 dB--linear peak and 96 dB--C scale. The tunnels pass under heavily built up areas and have top of tunnel to surface cover distances as low as 70 feet. Surface blasting in the 26,000 cubic yard U-wall excavation was limited to five short nighttime periods due to its proximity to the very busy highway 26. This paper describes the techniques that were used to develop safe blasting designs for the TRI-MET Surface blasts and tunnel rounds. It also discusses the measures that were necessary to mitigate noise, vibration, and flyrock.

Revey, G.F.; Painter, D.Z.

1995-12-31T23:59:59.000Z

428

Fossil Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuels A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals...

429

Life-cycle Energy and Emissions Inventories for Motorcycles, Diesel Automobiles, School Buses, Electric Buses, Chicago Rail, and New York City Rail  

E-Print Network [OSTI]

Emissions Inventories for Motorcycles, Diesel Automobiles, Chen, K.S. , et al. , 2003.  Motorcycle Emissions and Fuel On Road  Mopeds and Motorcycles.  Available online at 

Chester, Mikhail; Horvath, Arpad

2009-01-01T23:59:59.000Z

430

Nevada Transportatoion Options Study  

SciTech Connect (OSTI)

This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence of rail is restricted to approximately twelve, without upgrading public highways. There is high uncertainty as to what road upgrades and security/escorts the Nevada Department of Transportation would require to obtain an overweight/overdimensional permit. In addition, the Naval Nuclear Propulsion Program has indicated that a larger cask weight than that analyzed in the Final Environmental Impact Statement may be required for naval shipments, resulting in additional costs for heavy-haul transport. These uncertainties result in a high cost and schedule risk. Option 3 assumes that the start of rail construction will be delayed until after construction authorization is received from the Nuclear Regulatory Commission. Similar to Option 2, Option 3 uses legal-weight truck shipments and limited heavy haul truck shipments to meet the same initial waste receipt rates as Option 1, until rail becomes available. By using heavy-haul truck for two years, Option 3 contains the same uncertainties and resultant high cost and schedule risk as Option 2. The cost and schedule of legal-weight truck transport are not included in this report as that will be evaluated in the report on national transportation.

P. GEHNER; E.M. WEAVER; L. FOSSUM

2006-05-25T23:59:59.000Z

431

Fuel cell-fuel cell hybrid system  

DOE Patents [OSTI]

A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

Geisbrecht, Rodney A.; Williams, Mark C.

2003-09-23T23:59:59.000Z

432

Dry Storage of Research Reactor Spent Nuclear Fuel - 13321  

SciTech Connect (OSTI)

Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)

Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)] [Moore Nuclear Energy, LLC (United States)

2013-07-01T23:59:59.000Z

433

Full-Scale Accident Testing in Support of Used Nuclear Fuel Transportation.  

SciTech Connect (OSTI)

The safe transport of spent nuclear fuel and high-level radioactive waste is an important aspect of the waste management system of the United States. The Nuclear Regulatory Commission (NRC) currently certifies spent nuclear fuel rail cask designs based primarily on numerical modeling of hypothetical accident conditions augmented with some small scale testing. However, NRC initiated a Package Performance Study (PPS) in 2001 to examine the response of full-scale rail casks in extreme transportation accidents. The objectives of PPS were to demonstrate the safety of transportation casks and to provide high-fidelity data for validating the modeling. Although work on the PPS eventually stopped, the Blue Ribbon Commission on America’s Nuclear Future recommended in 2012 that the test plans be re-examined. This recommendation was in recognition of substantial public feedback calling for a full-scale severe accident test of a rail cask to verify evaluations by NRC, which find that risk from the transport of spent fuel in certified casks is extremely low. This report, which serves as the re-assessment, provides a summary of the history of the PPS planning, identifies the objectives and technical issues that drove the scope of the PPS, and presents a possible path for moving forward in planning to conduct a full-scale cask test. Because full-scale testing is expensive, the value of such testing on public perceptions and public acceptance is important. Consequently, the path forward starts with a public perception component followed by two additional components: accident simulation and first responder training. The proposed path forward presents a series of study options with several points where the package performance study could be redirected if warranted.

Durbin, Samuel G.; Lindgren, Eric R.; Rechard, Rob P.; Sorenson, Ken B.

2014-09-01T23:59:59.000Z

434

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network [OSTI]

collectors. In a Polymer Electrolyte Membrane (PEM) fuel cell, which is widely regarded as the most promisingFUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fuel Cells -- is the key to making it happen. Stationary fuel cells can be used for backup power, power for remote loca

435

From PADD 2 to PADD 1 Movements of Crude Oil by Rail  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID4,2,"Alabama","Alabama","Electric PowerStocksSep-14 Oct-14Area: PADD 1

436

From PADD 2 to PADD 1 Movements of Crude Oil by Rail  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID4,2,"Alabama","Alabama","Electric PowerStocksSep-14 Oct-14Area: PADD

437

From PADD 1 to PADD 2 Movements by Tanker, Pipeline, Barge and Rail  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs U.S.WyomingExpansion 5Wellhead PriceB.1. FRCC2009

438

Fact #554: January 19, 2009 Energy Intensity of Light Rail Transit Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report toAnnuAlFaces ofDecisions RM|

439

EIS-0250: Notice of Preferred Nevada Rail Corridor | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:DepartmentExtension of:Department of Energy

440

Microsoft Word - EM SSAB Chairs Rail Transport for Moving Waste Recommendation2011-03.doc  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007NavalMelvinMonday,U.S. Department of Pennsylvania Avenue,EERE

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Development of Enriched Borated Aluminum Alloy for Basket Material of Cask for Spent Nuclear Fuel  

SciTech Connect (OSTI)

Concrete cask system is focused as the candidate one for spent fuel dry storage facilities from economic potential in Japan. Concrete cask consists of a concrete storage cask and a steel canister. A canister containing nuclear spent fuel is shipped by a transportation cask from a nuclear power plant to an interim storage facility. The canister is transferred from the transportation cask to a storage cask by a transfer cask in the storage facility. IHI has developed a concrete cask horizontal transfer system. This transfer system indicates that a canister is transferred to a storage cask horizontally. This transfer system has a merit against canister drop accident in transfer operation, i.e. spent fuel assemblies can be kept safe during the transfer operation. There are guide rails inside of the concrete cask, and the canister is installed into the storage cask with sliding on the rails. To develop the horizontal transfer system, IHI carried out a heat load test and numerical analyses by CFD. Heat load experiment was carried out by using a full-scale prototype canister, storage cask and transfer vessel. The decay heat was simulated by an electric heater installed in the canister. Assuming high burn-up spent fuel storage, heat generation was set between 20.0 kW and 25.0 kW. This experiment was focused on the concrete temperature distribution. We confirmed that the maximum concrete temperature in transfer operation period was lower than 40 deg. C (Heat generation 22.5 kW). Moreover we confirmed the maximum concrete temperature passed 24 hours with horizontal orientation was below 90 deg. C (Heat generation 22.5 kW). We analyzed the thermal performance of the concrete cask with horizontal transfer condition and normal storage condition. Thermal analyses for horizontal transfer operation were carried out based on the experimental conditions. The tendency of the analytical results was in good agreement with experimental results. The purpose of vertical thermal analysis was to estimate the concrete temperature increase in the case a canister contacts with guide rails in normal storage. It has a possibility that a canister contacts with guide rails during storage period after concrete cask is upended from transfer operation. The temperature increase due to this contact was calculated 5 deg. C at small local area. This result implies that the affect of the contact is very small. This paper addresses that the storage cask concrete is kept its integrity in transfer operation period and normal storage period. (authors)

Mikio Sakai; Tadatsugu Sakaya; Hiroaki Fujiwara; Akira Sakai [Ishikawajima-Harima Heavy Industries Company Ltd., 1 Shin-Nakaharacho, Isogoku, Yokohama 235-8501 (Japan)

2002-07-01T23:59:59.000Z

442

Shipments in Idaho  

Broader source: Energy.gov (indexed) [DOE]

for standardizing instrumentation within the regional response structure * Adopted the DOE-MERRTT as the core training for radioactive materials * Assigned Radiation Control...

443

Development of a techno-economic model to optimization DOE spent nuclear fuel disposition  

SciTech Connect (OSTI)

The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

1997-11-01T23:59:59.000Z

444

Market driven strategy for acquisition of waste acceptance and transportation services for commercial spent fuel in the United States  

SciTech Connect (OSTI)

The Department of Energy has the responsibility for the shipment of spent nuclear fuel (SNF) from commercial reactors to a Federal facility for storage and/or disposal. DOE has developed a strategy for a market driven approach for the acquisition of transportation services and equipment which will maximize the participation of private industry. To implement this strategy, DOE is planning to issue a Request for Proposal (RFP) for the provision of the required services and equipment to accept SNF from the utilities and transport the SNF to a Federal facility. The paper discusses this strategy and describes the RFP.

Lemeshewky, W.; Macaluso, C.; Smith, P. [Dept. of Energy, Washington, DC (United States); Teer, B. [JAI Corp., Fairfax, VA (United States)

1998-05-01T23:59:59.000Z

445

DOE to Transport Moab Mill Tailings by Rail | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofTheEnergyWeapons StockpileDepartment

446

Crude Oil Movements by Tanker, Pipeline, Barge and Rail between PAD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-GovNaturalInstituteCrosscuttingImports

447

Crude Oil Movements of Crude of by Rail between PAD Districts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude Oil Period-Unit: Monthly-Thousand Barrels

448

Crude Oil Net Receipts by Pipeline, Tanker, Barge and Rail between PAD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude Oil Period-Unit: Monthly-Thousand

449

Recommendation on Using Rail Transport for Moving Waste (09/19/2011)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |Rebecca Matulka About UsDepartmentDepartment ofDepartment

450

From PADD 1 to PADD 2 Movements by Tanker, Pipeline, Barge and Rail  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,99 Diagram 4.Future ofSep-14

451

From PADD 1 to PADD 2 Movements of Crude Oil by Rail  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA.Missouri Nuclear4 MEMORANDUM FOR:Reserves (Billion Cubic0MB200920090

452

TEC Working Group Topic Groups Rail Key Documents | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned Small BusinessEMPLOYMENT VERIFICATION ATSubgroup | DepartmentDepartmentTEC

453

Crude Oil Movements by Tanker, Pipeline, Barge and Rail between PAD  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0 0 0 0 0 1986-2013

454

Coal-by-Rail: A Business-as-Usual Reference Case | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities ofCellulosic Feedstock - EnergyCoal Fly

455

Microsoft Word - Summary of Rail Comparison for Topic Group 7-1-02.doc  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal ComplianceFORCONFLICTS OFDavidHouseComments7/1/2002 1

456

TEC Working Group Topic Groups Rail Key Documents | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommitteeRenewable Energy, U.S.ArbitraryTask6Manual

457

LIFE vs. LWR: End of the Fuel Cycle  

SciTech Connect (OSTI)

The worldwide energy consumption in 2003 was 421 quadrillion Btu (Quads), and included 162 quads for oil, 99 quads for natural gas, 100 quads for coal, 27 quads for nuclear energy, and 33 quads for renewable sources. The projected worldwide energy consumption for 2030 is 722 quads, corresponding to an increase of 71% over the consumption in 2003. The projected consumption for 2030 includes 239 quads for oil, 190 quads for natural gas, 196 quads for coal, 35 quads for nuclear energy, and 62 quads for renewable sources [International Energy Outlook, DOE/EIA-0484, Table D1 (2006) p. 133]. The current fleet of light water reactors (LRWs) provides about 20% of current U.S. electricity, and about 16% of current world electricity. The demand for electricity is expected to grow steeply in this century, as the developing world increases its standard of living. With the increasing price for oil and gasoline within the United States, as well as fear that our CO2 production may be driving intolerable global warming, there is growing pressure to move away from oil, natural gas, and coal towards nuclear energy. Although there is a clear need for nuclear energy, issues facing waste disposal have not been adequately dealt with, either domestically or internationally. Better technological approaches, with better public acceptance, are needed. Nuclear power has been criticized on both safety and waste disposal bases. The safety issues are based on the potential for plant damage and environmental effects due to either nuclear criticality excursions or loss of cooling. Redundant safety systems are used to reduce the probability and consequences of these risks for LWRs. LIFE engines are inherently subcritical, reducing the need for systems to control the fission reactivity. LIFE engines also have a fuel type that tolerates much higher temperatures than LWR fuel, and has two safety systems to remove decay heat in the event of loss of coolant or loss of coolant flow. These features of LIFE are expected to result in a more straightforward licensing process and are also expected to improve the public perception of risk from nuclear power generation, transportation of nuclear materials, and nuclear waste disposal. Waste disposal is an ongoing issue for LWRs. The conventional (once-through) LWR fuel cycle treats unburned fuel as waste, and results in the current fleet of LWRs producing about twice as much waste in their 60 years of operation as is legally permitted to be disposed of in Yucca Mountain. Advanced LWR fuel cycles would recycle the unused fuel, such that each GWe-yr of electricity generation would produce only a small waste volume compared to the conventional fuel cycle. However, the advanced LWR fuel cycle requires chemical reprocessing plants for the fuel, multiple handling of radioactive materials, and an extensive transportation network for the fuel and waste. In contrast, the LIFE engine requires only one fueling for the plant lifetime, has no chemical reprocessing, and has a single shipment of a small amount of waste per GWe-yr of electricity generation. Public perception of the nuclear option will be improved by the reduction, for LIFE engines, of the number of shipments of radioactive material per GWe-yr and the need to build multiple repositories. In addition, LIFE fuel requires neither enrichment nor reprocessing, eliminating the two most significant pathways to proliferation from commercial nuclear fuel to weapons programs.

Farmer, J C; Blink, J A; Shaw, H F

2008-10-02T23:59:59.000Z

458

Assessment of the use of extended burnup fuel in light water power reactors  

SciTech Connect (OSTI)

This study has been conducted by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission to review the environmental and economic impacts associated with the use of extended burnup nuclear fuel in light water power reactors. It has been proposed that current batch average burnup levels of 33 GWd/t uranium be increased to above 50 GWd/t. The environmental effects of extending fuel burnup during normal operations and during accident events and the economic effects of cost changes on the fuel cycle are discussed in this report. The physical effects of extended burnup on the fuel and the fuel assembly are also presented as a basis for the environmental and economic assessments. Environmentally, this burnup increase would have no significant impact over that of normal burnup. Economically, the increased burnup would have favorable effects, consisting primarily of a reduction: (1) total fuel requirements; (2) reactor downtime for fuel replacement; (3) the number of fuel shipments to and from reactor sites; and (4) repository storage requirements. 61 refs., 4 figs., 27 tabs.

Baker, D.A.; Bailey, W.J.; Beyer, C.E.; Bold, F.C.; Tawil, J.J.

1988-02-01T23:59:59.000Z

459

Development of a Techno-Economic Model to Optimize DOE Spent Nuclear Fuel Disposition  

SciTech Connect (OSTI)

The National Spent Nuclear Fuel (NSNF) Program is evaluating final disposition of spent nuclear fuel (SNE) in the Department of Energy (DOE) complex. Final disposition of SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the EMT process for fuels at several locations. The set of questions addresses all issues associated with design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs can be applied to determine the life cycle cost of each option. This technique can also be applied to other treatment techniques for treating SNF.

Ramer, R. J.; Plum, M. M.; Adams, J. P.; Dahl, C. A.

1998-02-01T23:59:59.000Z

460

"Leveraging University Expertise to Inform Better Policy" Session Two: Advanced Rail and Truck Technology Development and  

E-Print Network [OSTI]

and is co-author of "State of Charge", a report which evaluates the global warming emissions and fuel cost including Zero Emission Fuel Cell and Battery Buses, Hybrid Vehicles and Advanced Bus Rapid Transit Vehicles-Duty Vehicle Program. He is currently doing technical analyses to support ongoing policy development

California at Davis, University of

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fuel Processing Valri Lightner  

E-Print Network [OSTI]

of Hydrogen · Fuel Processors for PEM Fuel Cells Nuvera Fuel Cells, Inc. GE Catalytica ANL PNNL University-Board Fuel Processing Barriers $35/kW Fuel Processor $10/kW Fuel Cell Power Systems $45/kW by 2010 BARRIERS · Fuel processor start-up/ transient operation · Durability · Cost · Emissions and environmental issues

462

Fuel reforming for fuel cell application.  

E-Print Network [OSTI]

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

463

Recent Developments in the Management of Cameco Corporation's Fuel Services Division Waste - 13144  

SciTech Connect (OSTI)

Cameco Corporation is a world leader in uranium production. Headquartered in Saskatoon, Saskatchewan our operations provide 16% of the world uranium mine production and we have approximately 435 million pounds of proven and probable uranium reserves. Cameco mining operations are located in Saskatchewan, Wyoming, Nebraska and Kazakhstan. Cameco is also a major supplier of uranium processing services required to produce fuel for the generation of clean energy. These operations are based in Blind River, Cobourg and Port Hope, Ontario and are collectively referred to as the Fuel Services Division. The Fuel Services Division produces uranium trioxide from uranium ore concentrate at the Blind River Refinery. Cameco produces uranium hexafluoride and uranium dioxide at the Port Hope Conversion Facility. Cameco operates a fuel manufacturing facility in Port Hope, Ontario and a metal fabrication facility located in Cobourg, Ontario. The company manufactures fuel bundles utilized in the Candu reactors. Cameco's Fuel Services Division produces several types of low-level radioactively contaminated wastes. Internal processing capabilities at both the Blind River Refinery and Port Hope Conversion Facility are extensive and allow for the recycling of several types of waste. Notwithstanding these capabilities there are certain wastes that are not amenable to the internal processing capabilities and must be disposed of appropriately. Disposal options for low-level radioactively contaminated wastes in Canada are limited primarily due to cost considerations. In recent years, Cameco has started to ship marginally contaminated wastes (<500 ppm uranium) to the United States for disposal in an appropriate landfill. The landfill is owned by US Ecology Incorporated and is located near Grand View, Idaho 70 miles southeast of Boise in the Owyhee Desert. The facility treats and disposes hazardous waste, non-hazardous industrial waste and low-activity radioactive material. The site's arid climate, deep groundwater and favourable geology help ensure permanent waste isolation. Combined with a state of the art multi-layer landfill liner system, the Grand View facility represents an ideal choice to minimize environmental liability. Marginally contaminated wastes from operations within the Fuel Services Division are typically loaded into PacTec IP-2 rated Intermediary Bulk Containers and then transported by road to a nearby rail siding. The Intermediary Bulk Containers are then loaded in US Ecology owned gondola rail-cars. The gondolas are then transported via Canadian Pacific and Union Pacific railroads to the US Ecology Rail Transfer facility located in Mayfield, Idaho. The Intermediary Bulk Containers are unloaded into trucks for transport to the disposal facility located approximately 32 miles away. (authors)

Smith, Thomas P. [Cameco Corporation, Port Hope, Ontario (Canada)] [Cameco Corporation, Port Hope, Ontario (Canada)

2013-07-01T23:59:59.000Z

464

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

465

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Grants and Rebates The Arkansas Alternative Fuels Development Program (Program) provides grants to alternative fuel producers, feedstock processors, and...

466

Alternative Fuel Implementation Toolkit  

E-Print Network [OSTI]

? Alternative Fuels, the Smart Choice: Alternative fuels ­ biodiesel, electricity, ethanol (E85), natural gas...........................................................................................................................................................................6 Trends and Fleet Examples: Alternative Fuel Decision Table

467

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

468

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

469

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

Delucchi, Mark

1992-01-01T23:59:59.000Z

470

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

471

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

472

Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository  

SciTech Connect (OSTI)

The U.S.Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, “EM shall design and fabricate … DOE SNF canisters for shipment to RW.” (1) It also states, “EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71.” (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

2001-02-01T23:59:59.000Z

473

Transportation analysis for the concept of regional repositories  

SciTech Connect (OSTI)

Over the past several years, planning associated with the National Waste Terminal Storage (NWTS) program assumed the use of one or two large, centrally located repository facilities. Recently, an alternative approach has been proposed which consists of the use of multiple, smaller regional repositories. In this report, several regional concepts were studied and the transportation requirements for the shipment of spent fuel to the regional repositories were estimated. In general, the transportation requirements decrease as the number of repositories increase. However, as far as transportation is concerned, the point of diminishing returns is reached at approximately one repository in each of three to four regions. Additional savings beyond this point are small. A series of sensitivity studies is also included to demonstrate the impact on the total transportation requirements of varying cask capacity, rail speed, or truck speed. Since most of the projected fuel shipments are to be made by rail, varying the capacity of the rail cask or varying average rail transport speed will have a major effect on overall transportation requirements.

Joy, D.S.; Hudson, B.J.

1980-06-01T23:59:59.000Z

474

DIESEL FUEL TANK FOUNDATIONS  

SciTech Connect (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

475

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-EfficientAlternative Fuel

476

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel Vehicle (AFV)Fuel

477

Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & Fueling Infrastructure

478

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDo alternative

479

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDo

480

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDoAnnual Electric

Note: This page contains sample records for the topic "fuel rail shipment" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDoAnnual

482

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,Alternative Fuel Vehicle

483

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,Alternative Fuel

484

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels TaxAlternative Fueling

485

Development and Demonstration of a Fuel-Efficient HD Engine ...  

Broader source: Energy.gov (indexed) [DOE]

turbocharger 2200 bar Common Rail 2-stage EGR cooling DPF Bottoming Cycles Electric Turbo-compound Rankine Cycle, Thermo-electrics Variable Valve Actuation High Efficiency...

486

A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor  

SciTech Connect (OSTI)

The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

Erighin, M. A. [Babcock and Wilcox Company, 109 Ramsey Place, Lynchburg, VA 24502 (United States)

2012-07-01T23:59:59.000Z

487

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November...

488

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

489

Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen andEnzymeAdvancedDepartment

490

California Fuel Cell Partnership: Alternative Fuels Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154: CategoricalDepartmentFuel Cell Partnership -

491

Alternative Fuels Data Center: Ethanol Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics to someone byEthanolFueling

492

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybridHydrogenFueling

493

Alternative Fuels Data Center: Propane Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative Fuels Data Center:Basics toFueling

494

LMFBR fuel component costs  

SciTech Connect (OSTI)

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

495

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuel Inefficient Vehicle

496

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuel Inefficient

497

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuel

498

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuelConnecticut joined

499

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuelConnecticut

500

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuelConnecticutNew