National Library of Energy BETA

Sample records for fuel production tax

  1. Motor Fuel Excise Taxes

    SciTech Connect (OSTI)

    2015-09-01

    A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues creating substantial funding shortfalls that have required supplemental funding sources. While rising infrastructure costs and the decreasing purchasing power of the gas tax are significant factors contributing to the shortfall, the increased use of alternative fuels and more stringent fuel economy standards are also exacerbating revenue shortfalls. The current dynamic places vehicle efficiency and petroleum use reduction polices at direct odds with policies promoting robust transportation infrastructure. Understanding the energy, transportation, and environmental tradeoffs of motor fuel tax policies can be complicated, but recent experiences at the state level are helping policymakers align their energy and environmental priorities with highway funding requirements.

  2. Federal Fuels Taxes and Tax Credits (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Provides a review and update of the handling of federal fuels taxes and tax credits, focusing primarily on areas for which regulations have changed or the handling of taxes or credits has been updated in Annual Energy Outlook 2009.

  3. Liquid Fuels Taxes and Credits (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Provides a review of the treatment of federal fuels taxes and tax credits in Annual Energy Outlook 2010.

  4. Federal Fuel Cell Tax Incentives: An Investment in Clean and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies A brief created by...

  5. Federal Fuels Taxes and Tax Credits (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 (AEO) reference case and alternative cases generally assume compliance with current laws and regulations affecting the energy sector. Some provisions of the U.S. Tax Code are scheduled to expire, or may be subject to adjustment, before the end of the projection period. In general, scheduled expirations and adjustments provided in legislation or regulations are assumed to occur, unless there is significant historical evidence to support an alternative assumption. This section examines the AEO2007 treatment of three provisions that could have significant impacts on U.S. energy markets: the gasoline excise tax, biofuel (ethanol and biodiesel) tax credits, and the production tax credit for electricity generation from certain renewable resources.

  6. Fuel Cell Financing for Tax-Exempt Entities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing for Tax-Exempt Entitities Facilitating deployments by structuring energy service contracts to include the Energy Investment Tax Credit. Introduction The Energy Investment Tax Credit (ITC) 1 can help reduce the cost of installing a fuel cell system. While Department of Treasury regulations prevent tax-exempt entities, e.g., not-for-proft organiza- tions, from directly taking advantage of tax benefts for property that they own, the Internal Revenue Code (IRC) and Treasury regulations

  7. Norwegian carbon taxes and their implication for fossil fuels

    SciTech Connect (OSTI)

    Kaarstad, O.

    1995-12-31

    The Scandinavian countries, and in particular Norway and Sweden, have since 1990/91 taxed CO{sub 2}-emissions with carbon tax of about US $150 per ton of CO{sub 2}. One may therefore say that these countries have placed themselves in a role as {open_quotes}carbon tax laboratories{close_quotes}. These very high CO{sub 2}-taxes have been in place for about four years and the first lessons from this experience are reported. In general it would seem as if the taxation mechanism is less efficient than economists have expected. The CO{sub 2}-emissions are increasing in both Norway and Sweden and the stabilization goal to the year 2000 will not be achieved in spite of the high taxation. The fossil fuel industry will have to learn to live with the climate change question which is inherently hostile to fossil fuels. It is argued that a more informed and active participation by the fossil fuel industry is needed in the climate change discussion. In addition the image of fossil fuels will benefit from showing real and potential improvement in the area of greenhouse gas emissions in the whole energy chain from production to combustion. The R&D effort being done into CO{sub 2}-capture and -disposal is creating such an option for the future. It is argued that the image of the entire fossil fuel industry will benefit from the creation of a {open_quotes}CO{sub 2}-free{close_quote} option or vision for oil, gas and coal. A number of examples are shown where today (or in the near future) actual CO{sub 2}-disposal in underground formations are taking place.

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Clean Energy Production Tax Credit (Corporate) NOTE: The tax credit expired at the end of 2015. This summary here is for informational...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Fuel Cells using Renewable Fuels Clean Energy Production Tax Credit (Corporate) NOTE: The tax credit expired at the end of 2015. This summary here is for informational...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Fuel Cells using Renewable Fuels Clean Energy Production Tax Credit (Personal) NOTE: The tax credit expired at the end of 2015. This summary here is for informational...

  11. Renewable Energy Production Tax Credit

    Office of Energy Efficiency and Renewable Energy (EERE)

    This annual corporate tax credit is equal to $0.01 per kilowatt-hour (kWh) of electricity produced and sold by the taxpayer to an unrelated party during a given tax year. For new facilities (plac...

  12. Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies A brief created by the US Fuel Cell Council that covers federal fuel cell tax incentives PDF icon 200810_itc.pdf More Documents & Publications Fuel Cell Financing for Tax-Exempt Entities Fuel Cell Tax Incentives: How Monetization Lowers the Government Outlay ITC Role in U.S. Fuel Cell Project

  13. Production taxes: stealthy killer of revenue

    SciTech Connect (OSTI)

    Lohrenz, J.; Dougherty, E.L.; Burzlaff, B.H.

    1983-02-07

    A model of the rate of oil and gas production from a given piece of property in terms of the development cost and net operating revenues illustrates that high taxes and royalties diminish the optimal production rate and ultimately render valueless an otherwise potentially valuable productive property. The economic viability of a mineral prospect is much more sensitive to production taxes and royalties than to other factors affecting a prospect's value.

  14. Fuel Cell Financing for Tax-Exempt Entities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Financing for Tax-Exempt Entities Fuel Cell Financing for Tax-Exempt Entities This fact sheet describes how tax-exempt entities can indirectly benefit from the energy investment tax credit for the installation of fuel cell systems. PDF icon Fuel Cell Financing for Tax-Exempt Entities More Documents & Publications ITC Role in U.S. Fuel Cell Projects Model Financing Solicitation for Energy Savings Performance Contracts Tax Issues in Financing Renewable Energy Projects

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    not identified, Wind (Small), Fuel Cells using Renewable Fuels, Microturbines Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Digestion, Fuel Cells using Renewable Fuels, Microturbines Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (Small), Fuel Cells using Renewable Fuels, Microturbines Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric (Small), Fuel Cells using Renewable Fuels Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  20. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    SciTech Connect (OSTI)

    Schroeder, Alex

    2015-08-26

    Motor fuel taxes were established to finance our nation’s transportation infrastructure, yet evolving economic, political, and technological influences are constraining this ability. At the federal level, the Highway Trust Fund (HTF), which is primarily funded by motor fuel taxes, has become increasingly dependent on general fund contributions and short-term reauthorizations to prevent insolvency. As a result, there are discussions at both the federal and state levels in which stakeholders are examining the future of motor fuel excise taxes as well as the role of electric and alternative fuel vehicles in that future. On July 1, 2015, six states increased their motor fuel tax rates.

  1. Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

    Broader source: Energy.gov [DOE]

    Beginning of Construction for Purposes of the Renewable Electricity Production Tax Credit and Energy Investment Tax Credit

  2. Fuel Cell Tax Incentives: How Monetization Lowers the Government Outlay |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tax Incentives: How Monetization Lowers the Government Outlay Fuel Cell Tax Incentives: How Monetization Lowers the Government Outlay Presentation by Lee J. Peterson, Esq., Reznick Group, P.C. Presented at the HTAC meeting on February 19, 2009. Posted on this Web site with permission from the author. PDF icon mt_petersen_htac_presentation.pdf More Documents & Publications QER - Comment of Energy Innovation 7 QER - Comment of Energy Innovation 6 From Cleanup to

  3. Sales Tax Exemption for Hydrogen Fuel Cells

    Broader source: Energy.gov [DOE]

    A sales tax exemption may also be taken on building materials used to construct a new or renovated building or purchases of machinery for a research district. A research district is defined as...

  4. Refundable Clean Heating Fuel Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The value of the tax credit is $0.01/gallon for each percent of biodiesel blended with conventional home heating oil, up to a maximum of $0.20/ gallon. In other words, the purchaser of a mixture ...

  5. Refundable Clean Heating Fuel Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The state of New York began offering a corporate income tax credit for biodiesel purchases used for residential space heating and water heating beginning in 2006. The original credit was authorized...

  6. Motor Fuel Excise Taxes (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Motor Fuel Excise Taxes A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues-creating substantial funding shortfalls that have

  7. Sales Tax Exemption for Energy-Efficient Products (Sales Tax Holiday)

    Broader source: Energy.gov [DOE]

    In the past few years, the Georgia legislature has traditionally allowed an annual state and local sales tax exemption on Energy Star products of $1,500 or less per product, purchased for non...

  8. Clean Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    NOTE: The tax credit expired at the end of 2015. This summary here is for informational purposes only. 

  9. Clean Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    NOTE: The tax credit expired at the end of 2015. This summary here is for informational purposes only. 

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels, Microturbines Zero-Emission Facilities Production Tax Credit Eligible Technologies Eligibility: Commercial, Local...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    not identified, Wind (Small), Fuel Cells using Renewable Fuels Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  12. ENERGY STAR Sales Tax Holiday for Energy-Efficient Products

    Broader source: Energy.gov [DOE]

    Although the eligibility of some products is limited according to their sale price, there are no limitations on the total value or number of products exempt from sales tax.

  13. Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy | Department of Energy 4: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy The "Gas Guzzler Tax" is collected from the public for each new car purchased with fuel economy less than 22.5 miles per gallon (mpg). The Gas Guzzler Tax does not apply to light trucks, only cars. Most of the vehicles on the model year 2011 Gas Guzzler list are high-end performance or luxury

  14. Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    A Primer on Motor Fuel Excise Taxes and the Role of Alternative Fuels and Energy Efficient Vehicles Alex Schroeder National Renewable Energy Laboratory Technical Report NREL/TP-5400-60975 August 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No.

  15. Fact #901: November 30, 2015 States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue

  16. State International Fuel Tax Agreement (IFTA) Data Reporting Procedures

    SciTech Connect (OSTI)

    Schmoyer, R.L.

    2003-04-08

    This report documents a review of State practices of reporting International Fuel Tax Agreement (IFTA) data to the U.S. Federal Highway Administration (FHWA). The purpose of the review is described in a notice published in the Federal Register (Vol. 65, No. 160, August 17, 2000, 50269-50272). The purpose is ''to increase the understanding of States on the importance of reporting adjusted IFTA data to the FHWA'', and ''to develop additional guidance on IFTA reporting''. The purpose is not to critique IFTA or any State. The review includes a survey of the forty eight IFTA member States, which was conducted January-April 2002. The States' responses to the survey are discussed in this report. The organization of the report follows further discussion in the Federal Register notice. Section 2 of the report is a general overview of IFTA. Section 3 describes in more detail how each State collects IFTA revenues. Section 4 is about how States separate out revenues not related to gallons of motor-fuel and direct motor-fuel gallon taxes. Section 5 describes how States calculate net IFTA gallons and the time delay in the processing. Section 6 is about difficulties in processing and reporting IFTA data. Timeliness is discussed further in Section 7, and alternatives for IFTA calculations if complete IFTA data are not available are discussed in Section 8. The IFTA survey questionnaire and instructions are in Appendices A and B. The survey responses of the States and the review of the IFTA system suggest that IFTA collections and data reporting are for the most part working well. Possible exceptions include (1) using off-road fuel use in IFTA mileage-per-gallon (mpg) estimates, (2) inconsistencies among States in definitions of taxable mileage or taxable fuel and consequential reporting differences, and (3) possible misinterpretations of ''net taxable gallons''.

  17. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  18. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Note: The tax credits are fully subscribed. As of February 2015, there are 712 MW (1,400,000 MWh) of projects in the waiting queue for the wind/biomass tax credit and 464 MW (1,212,000 MWh) of...

  19. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  20. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    Note: The tax credits are fully subscribed. As of February 2015, there are 712 MW (1,400,000 MWh) of projects in the waiting queue for the wind/biomass tax credit and 464 MW (1,212,000 MWh) of...

  1. Fuel Ethanol Oxygenate Production

    Gasoline and Diesel Fuel Update (EIA)

    Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 30,256 29,621 28,543 30,139 29,594 31,075 1981-2015 East Coast (PADD 1) 876 854 692 664 664

  2. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    Note: As of April 2015, capacity limits for both 476C and 476B tax credits had been reached or had applications pending approval that would result in the capacity limit being reached. Applications...

  3. Renewable Energy Production Tax Credits (Corporate)

    Broader source: Energy.gov [DOE]

    Note: As of April 2015, capacity limits for both 476C and 476B tax credits had been reached or had applications pending approval that would result in the capacity limit being reached. Applications...

  4. Renewable Electricity Production Tax Credit (PTC)

    Broader source: Energy.gov [DOE]

    Note: In December 2015, the Consolidated Appropriations Act, 2016 extended the expiration date for this tax credit to December 31, 2019, for wind facilities commencing construction, with a phase...

  5. Federal Fuels Taxes and Tax Credits (Update) (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    The Annual Energy Outlook 2008 (AEO) reference case incorporates current regulations that pertain to the energy industry. This section describes the handling of federal taxes and tax credits in AEO2008, focusing primarily on areas where regulations have changed or the handling of taxes or tax credits has been updated.

  6. Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Fuel Cell Tax Incentives; An investment in clean and efficient technologies On October 3 rd , 2008, Congress passed and President Bush signed into law a highly anticipated eight-year extension of the Investment Tax Credit (ITC) for fuel cell technology. The tax credit extension was included in the Emergency Economic Stabilization Act of 2008. A long-term extension of the ITC has been a top priority for the industry, as it is expected to accelerate full-scale commercialization of fuel

  7. Fuel Cell Tax Incentives: How Monetization Lowers the Government Outlay

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Incentives: How Monetization Lowers the Government Outlay By: Lee J. Peterson, Esq. Reznick Group, P.C. February 19, 2009 The Big Picture: Financing with Private Capital Income/Excise Tax Credits Depreciation Deductions - Regular and Accelerated Income Exclusions CREBS Income/Premium State Tax Credits Sales/Property Tax Exemptions Grants/Subsidies Rebates Buy-Downs Loan Guarantees REC Sales Tax-Exempt Debt Financing C F S B R T B R G Building Business Value February 19, 2009 1 § 45

  8. The Production Tax Credit is Key to a Strong U.S. Wind Industry

    Broader source: Energy.gov [DOE]

    New report finds the production tax credit has been critical to the growth of the U.S. wind industry.

  9. Alternative Fuels Data Center: Ethanol Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production on Google Bookmark Alternative Fuels Data Center: Ethanol Production on Delicious Rank Alternative Fuels Data Center: Ethanol Production on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production on AddThis.com... More in this section...

  10. Alternative Fuels Data Center: Natural Gas Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Natural Gas Production on Delicious Rank Alternative Fuels Data Center: Natural Gas Production on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Production on AddThis.com... More

  11. Fuel Cell Technologies Researcher Lightens Green Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Cell Technologies Researcher Lightens Green Fuel Production Fuel Cell Technologies Researcher Lightens Green Fuel Production August 25, 2014 - 9:36am Addthis Research funded by EERE's Fuel Cell Technologies Office has dramatically increased the efficiency of biofuel production by changing certain genes in algae to make them pale green. Dr. Tasios Melis of the University of California, Berkeley is making stable changes to the algae's genes to reduce the size of the

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy and Energy Conservation Patent Income Tax Deduction...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Sales and Use Tax Exemption for Electrical Generating Facilities Electrical...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Local Option- Property Tax Exemption Note: Solar photovoltaic systems of 50 kW or...

  15. Zero-Emission Facilities Production Tax Credit | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Electric Solar Photovoltaics Wind (All) Hydroelectric Wind (Small) Program Info Sector Name State Administrator Oklahoma Tax Commission Expiration Date 12312020 State Oklahoma...

  16. Sales Tax Exemption for Energy-Efficient Products (Sales Tax Holiday)

    Broader source: Energy.gov [DOE]

    Virginia allows a four-day sales tax* exemption for dishwashers, clothes washers, air conditioners, ceiling fans, light bulb, dehumidifiers, programmable thermostat and refrigerators that meet fe...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.14 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor fuel that is typically derived from agricultural products that have been denatured. Methyl alcohol is a motor fuel that is most commonly derived from wood products. (Reference Senate Bill 1, 2015, and South Dakota Statutes 10-47B-3 and 10-47B-4

  18. Cellulosic Liquid Fuels Commercial Production Today

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today DOE Conference Washington DC, Aug 1, 2013 Our Business 2  We produce a renewable liquid fuel from wood and other non-food biomass  Our key product is Renewable Fuel Oil(tm) (RFO(tm))  RFO is a flexible petroleum-replacement with multiple uses including heating and for production of drop-in transportation fuels Commercial Status  Commercial production for over 20 years  Over 35 million gallons produced to date  Five commercial

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy and Energy Conservation Patent Income Tax Deduction (Corporate)...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy and Energy Conservation Patent Income Tax Deduction (Corporate)...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Business Tax Incentives Businesses must first submit an application to the AZ...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Tax Credit Note: This credit expired on December 31, 2014, and is not allowed for...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Systems Sales Tax Exemption "Renewable energy" is defined under 30 V.S.A. 8002 as...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy and Energy Conservation Patent Income Tax Deduction (Corporate) Massachusetts offers a...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion...

  7. Analysis of Alternative Extensions of the Existing Production Tax Credit for Wind Generators

    Reports and Publications (EIA)

    2007-01-01

    Requestor: Ms. Janice Mays, Chief Counsel, Committee on Ways & Means, U.S. House of Representatives This is a letter response requesting analysis of alternative extensions of the existing production tax credit (PTC) that would apply to wind generators only.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Vehicle Production Property Tax Incentive Alternative fuel production facilities, including biodiesel, biomass, biogas, and ethanol production facilities, may qualify for a reduced property tax rate of 3% of market value. Renewable energy manufacturing facilities, including those manufacturing plug-in electric vehicles or hybrid electric vehicles, also qualify. In addition, temporary property tax rate abatements are available for qualified biodiesel, biomass, biogas, and ethanol production

  9. Income Tax Deduction for Energy-Efficient Products | Department...

    Broader source: Energy.gov (indexed) [DOE]

    may deduct from their taxable personal income an amount equal to 20% of the sales taxes paid for certain energy efficient equipment. The incentive is capped at 500. This...

  10. Fuel cell electric power production

    DOE Patents [OSTI]

    Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  11. Supply Chain Based Solution to Prevent Fuel Tax Evasion: Proof of Concept Final Report

    SciTech Connect (OSTI)

    Capps, Gary J; Lascurain, Mary Beth; Franzese, Oscar; Earl, Dennis Duncan; West, David L; McIntyre, Timothy J; Chin, Shih-Miao; Hwang, Ho-Ling; Connatser, Raynella M; Lewis Sr, Samuel Arthur; Moore, Sheila A

    2011-12-01

    The goal of this research was to provide a proof-of-concept (POC) system for preventing non-taxable (non-highway diesel use) or low-taxable (jet fuel) petrochemical products from being blended with taxable fuel products and preventing taxable fuel products from cross-jurisdiction evasion. The research worked to fill the need to validate the legitimacy of individual loads, offloads, and movements by integrating and validating, on a near-real-time basis, information from global positioning system (GPS), valve sensors, level sensors, and fuel-marker sensors.

  12. Los Alamos scientists advance biomass fuel production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos scientists advance biomass fuel production Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Los Alamos scientists advance biomass fuel production Adapting biomass waste molecules for energy production May 1, 2013 Lab research can yield energy from non-food biomass Lab research can yield energy from non-food biomass Contact Editor Linda Anderman Email Community Programs Office Kurt

  13. Composition and methods for improved fuel production

    DOE Patents [OSTI]

    Steele, Philip H.; Tanneru, Sathishkumar; Gajjela, Sanjeev K.

    2015-12-29

    Certain embodiments of the present invention are configured to produce boiler and transportation fuels. A first phase of the method may include oxidation and/or hyper-acidification of bio-oil to produce an intermediate product. A second phase of the method may include catalytic deoxygenation, esterification, or olefination/esterification of the intermediate product under pressurized syngas. The composition of the resulting product--e.g., a boiler fuel--produced by these methods may be used directly or further upgraded to a transportation fuel. Certain embodiments of the present invention also include catalytic compositions configured for use in the method embodiments.

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Property Tax Exemption North Dakota also offers a property tax reduction for centrally-assessed*...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Systems Property Tax Exemption The renewable energy property tax exemption cannot be claimed if another...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering PGE and PacifiCorp Customers Eligibility: Commercial, Industrial,...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Systems Property Tax Exemption The renewable energy property tax exemption cannot be claimed if...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Systems Property Tax Exemption The renewable energy property tax exemption cannot be claimed if...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering PGE and PacifiCorp Customers Eligibility: Commercial, Industrial,...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering NOTE: In Feb 2014, the PUC proposed changes to the State's...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewables Portfolio Standard Eligible Technologies: Eligibility:...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Connecticut Clean Energy Fund Connecticut's 1998 electric restructuring...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Green Power Purchasing Commitment In April 2007, Massachusetts Gov. Deval...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering PGE and PacifiCorp Customers Eligibility: Commercial,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative and Clean Energy Program NOTE: It is important to note that some...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Portfolio Standard NOTE: On November 2nd 2015, Governor Cumo...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Clean Energy Development Fund Vermont's Clean Energy Development Fund (CEDF)...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings City of San Diego- Sustainable Building Policy The City of San Diego's...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Dollar and Energy Savings Loans The Nebraska Dollar and Energy Savings Loan...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Systems Exemption Recognized forms of energy generation include...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewables Portfolio Standard Eligible Technologies: Eligibility: Investor-Owned...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    not identified, Anaerobic Digestion, Fuel Cells using Renewable Fuels Property Tax Abatement for Green Buildings Property tax abatement for new non-residential and...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings City of San Diego- Sustainable Building Policy The City of San Diego's Sustainable...

  16. Tax Incentives

    Office of Environmental Management (EM)

    Qualified wind wind turbines (indexed for inflation). - The federal Renewable Electricity Production Tax Credit (PTC), established by the Energy Policy Act renewable energy ...

  17. Alternative Fuels Data Center: Conventional Natural Gas Production

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center: Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production on Delicious Rank Alternative Fuels Data Center: Conventional Natural Gas Production on Digg Find More

  18. Alternative Fuels Data Center: Hydrogen Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Google Bookmark Alternative Fuels Data Center: Hydrogen Production and Distribution on Delicious Rank Alternative Fuels Data Center: Hydrogen Production and Distribution on Digg Find More places

  19. Alternative Fuels Data Center: Biodiesel Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production and Distribution on Google Bookmark Alternative Fuels Data Center: Biodiesel Production and Distribution on Delicious Rank Alternative Fuels Data Center: Biodiesel Production and Distribution on Digg

  20. Alternative Fuels Data Center: Propane Production and Distribution

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Propane Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Propane Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Google Bookmark Alternative Fuels Data Center: Propane Production and Distribution on Delicious Rank Alternative Fuels Data Center: Propane Production and Distribution on Digg Find More places to

  1. Hydrogen Production and Storage for Fuel Cells: Current Status | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Storage for Fuel Cells: Current Status Hydrogen Production and Storage for Fuel Cells: Current Status Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Hydrogen Production and Storage for Fuel Cells, February 2, 2011. PDF icon infocallfeb11_lipman.pdf More Documents & Publications Fuel Cells for Supermarkets: Cleaner Energy with Fuel Cell Combined Heat and Power Systems Financing Fuel Cells The Department of Energy Hydrogen and Fuel Cells

  2. Photosynthesis for Hydrogen and Fuels Production Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photosynthesis for Hydrogen and Fuels Production Tasios Melis, UC Berkeley 24-Jan-2011 1 UCB-Melis 2 CO 2 H 2 O Photosynthesis Photons H 2 HC O 2 , Biomass Feedstock and products Process offers a renewable fuels supply and mitigation of climate change. UCB-Melis Average US Solar insolation = 5 kWh m -2 d -1 CA household electricity consumption = 15 kWh d -1 Sunlight 3 UCB-Melis Gains upon improving the carbon reactions of photosynthesis: up to 50% 4 "Six potential routes of increasing

  3. Production of chemicals and fuels from biomass

    DOE Patents [OSTI]

    Woods, Elizabeth M.; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  4. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power generation, industrial cogeneration, marine applications and uninterrupted power for military bases. FuelCell Energy operated a 1.8 MW plant at a utility site in 1996-97, the largest fuel cell power plant ever operated in North America. This proof-of-concept power plant demonstrated high efficiency, low emissions, reactive power control, and unattended operation capabilities. Drawing on the manufacture, field test, and post-test experience of the full-size power plant; FuelCell Energy launched the Product Design Improvement (PDI) program sponsored by government and the private-sector cost-share. The PDI efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program was initiated in December 1994. Year 2000 program accomplishments are discussed in this report.

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (All), Biomass, Hydroelectric, Hydrogen, Fuel Cells using Non-Renewable Fuels, Landfill Gas, Anaerobic Digestion, Fuel Cells using Renewable Fuels Sales Tax Exemption for Hydrogen...

  6. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation...

  7. Renewable Motor Fuel Production Capacity Under H.R.4

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes renewable motor fuel production capacity with the assumption that ethanol will be used to meet the renewable fuels standard.

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels, Microturbines Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Landfill Gas, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels, Microturbines Energy Conversion and Thermal Efficiency Sales Tax Exemption...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas, Heat recovery, Anaerobic Digestion, Fuel Cells using Renewable Fuels, Microturbines Renewable Energy Systems Tax Credit (Personal) Residential Systems:......

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Solid Waste Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Product Manufacturers Tax Credit The total amount of the credit is...

  13. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the program period in the areas of technology, manufacturing processes, cost reduction and balance-of-plant equipment designs is discussed in this report.

  14. Tax Credits for Home Energy Improvements: If You Buy an Energy-Efficient Product or Renewable Energy System for Your Home, You May be Eligible for a Federal Tax Credit (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    This two-page fact sheet provides an overview of 2010 federal tax credits for energy efficient products or renewable energy systems in the home.

  15. Fuel Production/Quality Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Production/Quality Resources Fuel Production/Quality Resources Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum reduction path as an alternative to the mandate. Find fuel production/quality resources below. Environmental Protection Agency: State Fuels (Boutique). Back to Transportation Policies and Programs

  16. Corporate Tax Incentives | Open Energy Information

    Open Energy Info (EERE)

    Technologies Active Alternative Fuel Tax Exemption (Idaho) Corporate Exemption Idaho Ethanol Biodiesel No Energy Conversion Facilities Corporate Tax Exemption (Ohio) Corporate...

  17. Corporate Tax Credit | Open Energy Information

    Open Energy Info (EERE)

    Alcohol Fuel Credit (Federal) Corporate Tax Credit United States Commercial Industrial Ethanol Methanol No Alternative Energy Development Incentive (Corporate) (Utah) Corporate Tax...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Renewable Fuels, Other Distributed Generation Technologies Renewable Energy Systems Property Tax Exemption The renewable energy property tax exemption cannot be claimed if...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Energy Trust of Oregon Of the funds collected by the electric utilities, 56.7% must be...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Standard Notes: In July 2015, the Tenth Circuit Court of Appeals upheld the...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings USDA- Rural Energy for America Program (REAP) Loan Guarantees Notably, the 2014 Farm Bill removed...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics,...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Illinois Clean Energy Community Foundation Grants Note: For the Renewable Energy January 21, 2016,...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Connecticut Light & Power- ZREC and LREC Long Term Contracts NOTE: Year 3 of the competitive...

  6. Cellulosic Liquid Fuels Commercial Production Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today Cellulosic Liquid Fuels Commercial Production Today Keynote Success Story Robert Graham, Chairman and CEO, Ensyn Corporation PDF icon b13_graham_ensyn.pdf More Documents & Publications Advanced Cellulosic Biofuels Production of Renewable Fuels from Biomass by FCC Co-processing UOP Pilot-Scale Biorefinery

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Production Facility Tax Exemption Any newly constructed or expanded biomass-to-energy facility is exempt from state property taxes for up to 10 taxable years immediately following the taxable year in which construction or installation is completed. A biomass-to-energy facility includes any industrial process plant that uses biomass to produce at least 500,000 gallons of cellulosic alcohol fuel, liquid or gaseous fuel, or other source of energy in a quantity with energy content at least

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemptions and Reductions Propane, natural gas, electricity, and hydrogen, also known as special fuel, used to operate motor vehicles are exempt from state fuel taxes, but subject to a special fuel tax at the rate of three-nineteenths of the conventional motor fuel tax. A reduction in special fuel tax is permissible if the fuel is already taxed by the Navajo Nation. Retailers, wholesalers, and suppliers of special fuel are eligible for a refund of the special fuel tax if dyed diesel fuel is

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Landfill Gas, Yes; specific technologies not identified, Wind (Small), Fuel Cells using Renewable Fuels Large Scale Renewable Energy Property Tax Abatement...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Non-Renewable Fuels, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion...

  12. The Science | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science The Science The need for a continuous energy supply and energy requirements for transportation necessitates technology for storage of energy from sunlight in fuel, as well as conversion to electricity. Cost-effective technologies for solar fuel production do not exist, prompting the need for new fundamental science. Fuel production requires not only energy, but also a source of electrons and precursor materials suitable for reduction to useful fuels. Given the immense magnitude of the

  13. U.S. Fuel Ethanol Plant Production Capacity

    Gasoline and Diesel Fuel Update (EIA)

    All Petrolem Reports U.S. Fuel Ethanol Plant Production Capacity Release Date: June 23, 2015 | Next Release Date: June 2016 Previous Issues Year: 2015 2014 2013 2012 2011 Go This is the fifth release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January

  14. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  15. Tax Incentives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Incentives of 1992, allows owners of qualified over a 10-year period. Qualified wind wind turbines (indexed for inflation). - The federal Renewable Electricity Production Tax Credit (PTC), established by the Energy Policy Act renewable energy facilities to receive tax credits for each kilowatt-hour (kWh) of electricity generated by the facility power projects are eligible to receive 2.3 cents per kWh for the produc - tion of electricity from utility-scale dsireusa.org/incentives/incentive.

  16. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Santosh Gangwal, Director-Business Development, Energy Technologies, Southern Research Institute PDF icon gangwal_biomass_2014.pdf

  17. Webinar: Photosynthesis for Hydrogen and Fuels Production | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy slides, webinar Q&A, and speaker biography from the Fuel Cell Technologies Office webinar "Photosynthesis for Hydrogen and Fuels Production" held on January 24, 2011. PDF icon Photosynthesis for Hydrogen and Fuels Production Webinar Slides PDF icon Webinar Q&A PDF icon Professional Biography for Tasios Melis More Documents & Publications Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual

  18. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost

    Office of Environmental Management (EM)

    Using Low-Cost Natural Gas | Department of Energy 2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas. PDF icon DOE Hydrogen and Fuel Cells Program Record # 12024 More Documents & Publications Distributed Hydrogen

  19. Biomass gasification for liquid fuel production

    SciTech Connect (OSTI)

    Najser, Jan E-mail: vaclav.peer@vsb.cz; Peer, Vclav E-mail: vaclav.peer@vsb.cz

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they do?t compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  20. Patrick Kwan | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick Kwan Graduate student Subtask 3 project: "Protein Film Electrochemistry for the Investigation of Redox Enzymes" Related links: Patrick Kwan explores solar fuel production

  1. Techno-Economic Analysis of Liquid Fuel Production from Woody...

    Office of Scientific and Technical Information (OSTI)

    ...Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Citation Details In-Document Search Title: Techno-Economic Analysis ...

  2. Production Costs of Alternative Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    ... further results Find Another Tool FIND TRANSPORTATION TOOLS This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil...

  3. Molten carbonate fuel cell product design improvement

    SciTech Connect (OSTI)

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this test confirming the full-height stack basic design and with the completion of SCDP stacks post-test feedback, manufacture of the full-height stack representing the commercial prototype design has been completed and system demonstration is planned to start in the first quarter of 1999. These developments as well as manufacturing advances are discussed in this report.

  4. Fission product release from irradiated LWR fuel under accident conditions

    SciTech Connect (OSTI)

    Strain, R.V.; Sanecki, J.E.; Osborne, M.F.

    1984-01-01

    Fission product release from irradiated LWR fuel is being studied by heating fuel rod segments in flowing steam and an inert carrier gas to simulate accident conditions. Fuels with a range of irradiation histories are being subjected to several steam flow rates over a wide range of temperatures. Fission product release during each test is measured by gamma spectroscopy and by detailed examination of the collection apparatus after the test has been completed. These release results are complemented by a detailed posttest examination of samples of the fuel rod segment. Results of release measurements and fuel rod characterizations for tests at 1400 through 2000/sup 0/C are presented in this paper.

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells using Renewable Fuels Sales and Use Tax Exemption for Renewable Energy Property Nebraska allows for a refund of the sales and use taxes paid for a renewable energy...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells using Renewable Fuels Local Option- Property Tax Exemption Note: Solar PV systems of 10 kW or less are already currently exempt from municipal property taxes...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Net metering is available on a first-come, first-served basis...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings previous 1 2 3 4 5 6 7 next Refine your results Keyword(s) State All Alabama...

  9. Four Days Left to Buy Energy-Efficient Products for a 2009 Tax Credit!

    Broader source: Energy.gov [DOE]

    You may want to see if there are any deals out there for energy-efficient purchasesbut time is running out if you want to get a tax credit when you file your 2009 taxes in April.

  10. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...

    Office of Environmental Management (EM)

    2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record...

  11. ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS

    SciTech Connect (OSTI)

    Fox, E.

    2013-06-17

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  12. Center Objective | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Center Objective Solar Fuel Our objective is to adapt the fundamental principles of natural photosynthesis to the man-made production of hydrogen or other fuels from sunlight A multidisciplinary team of the Center for Bio-Inspired Solar Fuel Production (BISfuel) researches artificial photosynthetic antennas and reaction centers that

  13. Ethanol: Producting Food, Feed, and Fuel

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 joint quarterly Web conference of DOE's Biomass and Clean Cities programs, Todd Sneller (Nebraska Ethanol Board) discussed the food versus fuel issue.

  14. Integrated coke, asphalt and jet fuel production process and apparatus

    DOE Patents [OSTI]

    Shang, Jer Y. (McLean, VA)

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Residential Alternative Energy Tax Deduction Eligible biomass energy devices include a pellet stove or EPA-certified wood stove if: Eligibility:...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Yes; specific technologies not identified, Wind (Small), Fuel Cells using Renewable Fuels Renewable Energy Systems Property Tax Exemption Solar energy devices installed or...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Geothermal Direct-Use, Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Systems Property Tax Exemption Solar energy devices installed or...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Other EE, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Local Option- Renewable Energy Machinery and Tools Property Tax Exemption HB 1297 enacted in March 2015 provides option for local governing body...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Direct-Use, Anaerobic Digestion, Fuel Cells using Renewable Fuels Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Digestion, Fuel Cells using Renewable Fuels City of Cleveland- Residential Property Tax Abatement for Green Buildings The City of Cleveland, in cooperation with the Cuyahoga...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Thermal, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Direct-Use, Anaerobic Digestion, Fuel Cells using Renewable Fuels Sales and Use Tax Exclusion for Advanced Transportation and Alternative Energy Manufacturing Program To...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    identified, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Sales and Use Tax Exemption for Renewable Energy Property Nebraska allows for a refund of the sales and...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Local Option- Property Tax Exemption for Renewable Energy Systems Beginning in October 2013, a municipality may...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric (Small), Fuel Cells using Renewable Fuels Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment in Lieu) Note: According to the Ohio...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Local Option- Property Tax Exemption for Renewable Energy Systems Beginning in October 2013, a municipality may...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Sales and Use Tax Exemption for Electrical Generating Facilities Electrical generating facilities are...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    not identified, Wind (Small), Fuel Cells using Renewable Fuels Alternative Energy and Energy Conservation Patent Exemption (Personal) Massachusetts offers a personal income tax...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Other EE, Wind (Small), Fuel Cells using Renewable Fuels, Tankless Water Heater Energy Conservation Improvements Property Tax Exemption Qualifying...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Other EE, Wind (Small), Fuel Cells using Renewable Fuels, Tankless Water Heater Energy Conservation Installation Credit Use Montana Department of Revenue Tax...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other EE, Wind (Small), Fuel Cells using Renewable Fuels Energy Conservation Improvements Property Tax Exemption Qualifying energy-conservation improvements to homes are exempt...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Systems Property Tax Exemption Solar energy devices installed or constructed on or after January...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Local Option- Property Tax Exemption Note: Solar PV systems of 10 kW or less are already currently...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Local Option- Property Tax Exemption Note: Solar photovoltaic systems of 50 kW or less are already...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Local Option- Property Tax Exemption Note: Solar photovoltaic systems of 50 kW or less are already...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Local Option- Property Tax Exemption Note: Solar photovoltaic systems of 50 kW or less are already...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Geothermal Direct-Use, Anaerobic Digestion, Fuel Cells using Renewable Fuels Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Corporate Property Tax Reduction for NewExpanded Generating Facilities The taxable value varies,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas, Other EE, Anaerobic Digestion, Fuel Cells using Renewable Fuels, Microturbines Property Tax Assessment for Renewable Energy Equipment HB 2403 of 2014 clarified that...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Heat recovery, Windows, Processing and Manufacturing Equipment, Other EE, Wind (Small), Fuel Cells using Renewable Fuels Business Energy Investment Tax Credit (ITC)...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels, Microturbines Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion facilities are those that are used for...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Fuel Cells using Renewable Fuels Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion facilities are those that are used for...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and industrial systems...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Large Scale Renewable Energy Property Tax Abatement (Nevada State Office of Energy) There are several job...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    specific technologies not identified, Wind (Small), Fuel Cells using Renewable Fuels Montgomery County- High Performance Building Property Tax Credit The state of Maryland permits...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Air-Quality Improvement Tax Incentives Qualifying air quality facilities, which can be financed through the...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Fuel Cells using Renewable Fuels Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and industrial systems (meeting the same...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric (Small), Geothermal Direct-Use, Fuel Cells using Renewable Fuels Renewable Energy Tax Credit (Personal) Note: Senate Bill 372, signed in April 2015, provides a...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Systems Sales Tax Exemption "Renewable energy" is defined...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Microturbines Solar Energy Gross Receipts Tax Deduction The seller must have a signed copy of Form...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Systems Sales Tax Exemption "Renewable energy" is defined under 30 V.S.A. ...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric, Landfill Gas, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels, Microturbines Energy Conversion and Thermal Efficiency Sales Tax Exemption...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Property Tax Exemption Note: In May 2015, S.B. 91 was enacted, which limits...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wave, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Digestion, Fuel Cells using Renewable Fuels Local Option- Property Tax Exemption for Renewable Energy Cities and towns may adopt an exemption provision separately for each energy...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Solar and Wind Energy Credit (Corporate) Originally enacted in 1976, the Hawaii Energy Tax...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    CustomOthers pending approval, Yes; specific technologies not identified, Wind (Small), Fuel Cells using Renewable Fuels Renewable Energy Tax Credit (Corporate) Note: Senate Bill...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells using Renewable Fuels, Microturbines Sales and Use Tax Credit for Emerging Clean Energy Industry The taxpayer must submit an application to the Department of Revenue...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Heat Pumps, Other EE, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Alternative Energy Investment Tax Credit (Corporate) This credit is available to...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (Small), Hydroelectric (Small), Geothermal Direct-Use, Fuel Cells using Renewable Fuels Alternative Energy Investment Tax Credit (Corporate) This credit is available to...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Geothermal Direct-Use, Anaerobic Digestion, Fuel Cells using Renewable Fuels Residential Alternative Energy System Tax Credit Recognized non-fossil forms of...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Landfill Gas, Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Alternative Energy Investment Tax Credit (Personal) This credit is available to...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Local Option- Property Tax Exemption Note: Solar...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Systems Sales Tax Exemption...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (All), Biomass, Geothermal Heat Pumps, Wind (Small), Hydroelectric (Small), Geothermal Direct-Use, Fuel Cells using Renewable Fuels Renewable Energy Tax Credit (Personal) Note:...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (Small), Fuel Cells using Renewable Fuels Energy Conservation Improvements Property Tax Exemption Qualifying energy-conservation improvements to homes are exempt from real...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other EE, Wind (Small), Fuel Cells using Renewable Fuels Energy Equipment Property Tax Exemption A "solar energy device" for the purpose of this incentive is defined as "a...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Energy Equipment Property Tax Exemption A "solar energy device" for the purpose of this incentive is defined as "a...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells using Renewable Fuels Air-Quality Improvement Tax Incentives Qualifying air quality facilities, which can be financed through the OAQDA, include: Eligibility:...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Air-Quality Improvement Tax Incentives Qualifying air quality facilities, which can be financed...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EE, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Residential Energy Tax Credit As of January 1, 2011, third-party owned systems are also eligible for...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric, Combined Heat & Power, Landfill Gas, Wind (Small), Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Systems Sales Tax...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cells using Renewable Fuels, Microturbines Business Energy Investment Tax Credit (ITC) Note: IRS Notice 2015-4 included new certification requirements for small wind...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Direct-Use, Fuel Cells using Renewable Fuels Business Energy Investment Tax Credit (ITC) Note: IRS Notice 2015-4 included new certification requirements for small wind...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Digestion, Fuel Cells using Renewable Fuels Business Energy Investment Tax Credit (ITC) Note: IRS Notice 2015-4 included new certification requirements for small wind...

  1. The Hydrogen Tax Incentive Act of 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Hydrogen Tax Incentive Act of 2008 The Hydrogen Tax Incentive Act of 2008 Summary of proposed hydrogen tax credit for bimonthly informational call Dec 17, 2008 PDF icon nha_h2_tax_credit_summary.pdf More Documents & Publications 2008 Fuel Cell Technologies Market Report 2008 Fuel Cell Technologies Market Report Hydrogen and Fuel Cell Activities

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Exemption and Refund for Government Fleet Vehicles State excise tax does not apply to special fuels, including gaseous special fuels, when used in state or federal government owned vehicles. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition, state excise tax paid on special fuels used in state or federal government vehicles is subject to a refund, as long as the tax was

  3. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tax Refund Effective July 1, 2015, any person exporting alternative fuel for which the license tax has been paid is eligible for a refund of the license tax paid. The exporter must...

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Municipal Alternative Fuel Tax Regulation A taxing jurisdiction may not levy a tax or fee, however denominated, on natural gas or propane used to propel a motor vehicle. (Reference Arizona Revised Statutes 42-6004

  5. Microsoft Word - Tax credit document for website GC edits 9-24-2015 accepted clean versio....docx

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    of 2 FACT SHEET Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals: 1 Provide a Tax Credit for the Production of Advanced Technology Vehicles Current Law A tax credit is allowed for plug-in electric drive motor vehicles. A plug-in electric drive motor vehicle is a vehicle that

  6. Subtask 3: Fuel production complex | Center for Bio-Inspired...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3: Fuel production complex All papers by year Subtask 1 Subtask 2 Subtask 3 Subtask 4 Subtask 5 Trovitch, R.J. (2014) Comparing Well-Defined Manganese, Iron, Cobalt, and Nickel...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Landfill Gas Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Biomass Energy Production Incentive In 2007 South Carolina enacted the Energy Freedom and Rural...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Industrial and Agricultural Production Efficiency Program Energy Trust of Oregon offers the Industrial and...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Clean Energy Production Tax Credit (Personal) The tax credit has been in place since 2000, but has been amended several times since the initial enactment. The most recent...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siding Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Industrial and Agricultural Production Efficiency Program Energy Trust of Oregon offers the Industrial and...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Technologies, Microturbines Clean Energy Production Tax Credit (Corporate) NOTE: The tax credit expired at the end of 2015. This summary here is for informational...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Power, Tidal, Wave, Wind (Small) Clean Energy Production Tax Credit (Corporate) NOTE: The tax credit expired at the end of 2015. This summary here is for informational...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric (Small), Anaerobic Digestion Clean Energy Production Tax Credit (Corporate) NOTE: The tax credit expired at the end of 2015. This summary here is for informational...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Distributed Generation Technologies Clean Energy Production Tax Credit (Corporate) NOTE: The tax credit expired at the end of 2015. This summary here is for informational...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Direct-Use, Anaerobic Digestion Clean Energy Production Tax Credit (Personal) NOTE: The tax credit expired at the end of 2015. This summary here is for informational...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Pool Heating, Wind (Small) Clean Energy Production Tax Credit (Corporate) NOTE: The tax credit expired at the end of 2015. This summary here is for informational...

  17. Mission | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Mission The Mission of the Center for Bio-Inspired Solar Fuel Production (BISfuel) is to construct a complete system for solar-powered production of fuels such as hydrogen via water splitting. Design principles will be drawn from the fundamental concepts that underlie photosynthetic energy conversion. A major challenge Center for

  18. Fuel Cell Product Certification/Listing Lessons Learned | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Product Certification/Listing Lessons Learned Fuel Cell Product Certification/Listing Lessons Learned Slides from the U.S. Department of Energy Hydrogen Component and System Qualification Workshop held November 4, 2010 in Livermore, CA. PDF icon csqw_radley.pdf More Documents & Publications Component and System Qualification Workshop Proceedings The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity CSA International Certification Discussion Hydrogen Technology

  19. Solar thermochemical fuel production. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Solar thermochemical fuel production. Citation Details In-Document Search Title: Solar thermochemical fuel production. No abstract prepared. Authors: Siegel, Nathan Phillip Publication Date: 2010-06-01 OSTI Identifier: 1021703 Report Number(s): SAND2010-4307C TRN: US201117%%294 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Proposed for presentation at the CIMTEC Conference held June 14-19, 2010 in Montecatini, Italy. Research Org: Sandia National

  20. Microsoft PowerPoint - Converting Sustainable Forest Products into Fuel

    Office of Environmental Management (EM)

    Converting Sustainable Forest Products into Fuel: What it takes to have a successful wood pellet manufacturing business Presented at The Biomass Renewable Energy Opportunities and Strategies Forum July 9, 2014 Converting Sustainable Forest Products into Fuel: What it takes to have a successful wood pellet manufacturing business Presented at The Biomass Renewable Energy Opportunities and Strategies Forum July 9, 2014 Presented by Dr. William Strauss President, FutureMetrics Director, Maine Energy

  1. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  2. Fuel pins with both target and fuel pellets in an isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target pellets are placed in close contact with fissile fuel pellets in order to increase the tritium production rate.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend must be clearly identified on the retail pump, storage tank, and sales invoice in order to be eligible for the exemption. (Reference Texas Statutes, Tax Code 162.2

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit For tax years beginning before January 1, 2020, a tax credit is available for up to 75% of the cost of installing commercial alternative fueling infrastructure. Eligible alternative fuels include natural gas, propane, and electricity. The infrastructure must be new and must not have been previously installed or used to fuel alternative fuel vehicles. A tax credit is also available for up to 50% of the cost of installing a residential compressed natural gas

  5. EVermont Renewable Hydrogen Production and Transportation Fueling System

    SciTech Connect (OSTI)

    Garabedian, Harold T. Wight, Gregory Dreier, Ken Borland, Nicholas

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable transportation energy capable system. The prime energy for this project comes from an agreement with a wind turbine operator.

  6. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    SciTech Connect (OSTI)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in existing boilers, evaluation of these composite fuels to determine their applicability to the major combustor types, development of preliminary designs and economic projections for commercial facilities producing up to 200,000 tons per year of biomass/waste-containing fuels, and the development of dewatering technologies to reduce the moisture content of high-moisture biomass and waste materials during the pelletization process.

  7. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  8. Mild, Nontoxic Production of Fuels and Chemicals from Biomass - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Mild, Nontoxic Production of Fuels and Chemicals from Biomass Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Fossil fuel resources supply almost 90 percent of the world's energy and the vast majority of its organic chemicals. This dependency is insupportable in light of rising emissions, demand and diminishing access. Abundant, renewable biomass is an emerging alternative. But if biomass is to supplant oil, coal and

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels Renewable Energy Property Tax Exemption North Dakota also offers a property tax reduction for centrally-assessed* wind turbines larger than 100 kilowatts (kW). These systems...

  10. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    SciTech Connect (OSTI)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

  11. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    DOE Patents [OSTI]

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  12. H. R. 804: A Bill to amend the Internal Revenue Code of 1986 to reduce emissions of carbon dioxide by imposing a tax on certain fuels based on their carbon content. Introduced in the House of Representatives, One Hundred Third Congress, First Session, February 3, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    H.R. 804 proposes the imposition of a carbon tax on primary fossil fuels. In general, Chapter 38 of the Internal Revenue Code of 1986 is to be amended by adding at the end thereof the following new subchapter: [open quotes]Subchapter E--Carbon Tax on Primary Fossil Fuels.[close quotes] Section 4691 will be concerned with the tax on coal; Section 4692 with the tax on petroleum; Section 4693 with the tax on natural gas; and Section 4694 will discuss inflation adjustments.

  13. Pilot scale production and combustion of liquid fuels from refuse derived fuel (RDF): Part 2

    SciTech Connect (OSTI)

    Klosky, M.K.

    1996-09-01

    EnerTech is developing a process for producing pumpable slurry fuels, comparable to Coal-Water-Fuels (CWF), from solid Refuse Derived Fuels (RDF). Previous reports have described the characteristics of the enhanced carbonized RDF slurry fuels. This paper summarizes those fuel characteristics and reports on the latest combustion tests performed with the final product fuel. The objective of this research was to determine the boiler and emission performance from the carbonized RDF slurry fuel using statistical screening experiments. Eight combustion tests were performed with a pilot scale pulverized coal/oil boiler simulator, with CO, SO{sub 2}, and NO{sub x} emissions determined on-line. The combustion tests produced simultaneous CO and NO{sub x} emissions well below and SO{sub 2} emissions comparable to the promulgated New Source Performance Standards (NSPS). This research will form the basis for later combustion experiments to be performed with the carbonized RDF slurry fuel, in which dioxin/furan and trace metal emissions will be determined.

  14. Fuel alcohol production from agricultural lignocellulosic feedstocks

    SciTech Connect (OSTI)

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L. )

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa, kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit for Residents Through the Residential Energy Tax Credit program, qualified residents may receive a tax credit for 25% of alternative fuel infrastructure project costs, up to $750. Beginning January 1, 2016, qualified residents may receive a tax credit for 50% of project costs, up to $750. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other fuels that the Oregon Department

  16. Fuel-cycle assessment of selected bioethanol production.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most of the fossil fuel in the life cycle of corn stover-based ethanol.

  17. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost...

  18. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2008 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update This report estimates fuel cell system cost...

  19. State-of-the-art Fuel Cell Voltage Durability Status: 2015 Composite Data Products

    SciTech Connect (OSTI)

    Kurtz, Jennfier; Dinh, Huyen; Ainscough, Chris; Saur, Genevieve

    2015-05-01

    This publication includes 14 composite data products (CDPs) produced in 2015 for fuel cell technology status, focusing on state-of-the-art fuel cell voltage durability.

  20. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Market Production and Deployment Continues Strong Growth Energy Dept. Reports: U.S. Fuel Cell Market ... America's leadership in clean energy innovation and providing ...

  1. Technical and Economic Evaluation of Macroalgae Cultivation for Fuel Production (Draft)

    SciTech Connect (OSTI)

    Feinberg, D. A.; Hock, S. M.

    1985-04-01

    The potential of macroalgae as sources of renewable liquid and gaseous fuels is evaluated. A series of options for production of macroalgae feedstock is considered. Because of their high carbohydrate content, the fuel products for which macroalgae are most suitable are methane and ethanol. Fuel product costs were compared with projected fuel costs in the year 1995.

  2. Feasibility of a digester gas fuel production facility

    SciTech Connect (OSTI)

    Dakes, G.; Greene, D.S.; Sheehan, J.F.

    1982-03-01

    Results of studies on the feasibility of using digester gas produced from wastewater sludge to fuel vehicles are reported. Availability and suitability of digester gas as well as digester gas production records and test analyses on digester gas were reviewed. The feasibility of the project based on economic and environmental considerations is reported and compared to possible alternative uses of the digester gas.

  3. Task Descriptions | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Task Descriptions Center for Bio-Inspired Solar Fuel Production Central to design of a complete system for solar water oxidation and hydrogen production is incorporation of synthetic components inspired by natural systems into one operational unit. The research effort of the Center is naturally divided into the following subtasks: Subtask 1. Total systems analysis, assembly and testing The solar water splitting device consists of four subsystems, each of which is being investigated by one of the

  4. EERE Success Story-Doosan Fuel Cell Takes Closed Plant to Full Production

    Office of Environmental Management (EM)

    | Department of Energy Doosan Fuel Cell Takes Closed Plant to Full Production EERE Success Story-Doosan Fuel Cell Takes Closed Plant to Full Production December 8, 2015 - 12:06pm Addthis Photo Courtesy | Doosan Fuel Cell America, Inc. Photo Courtesy | Doosan Fuel Cell America, Inc. Doosan Fuel Cell, a Connecticut company which designs, engineers and manufactures clean energy fuel cell systems that produce combined heat and power systems, began operations in July 2014 at its corporate

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    tax purposes. Qualifying renewables include solar, geothermal, wind, water, fuel cell or methane gas systems used to heat, cool or generate electricity. This exemption is...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Fuels Large Scale Renewable Energy Property Tax Abatement (Nevada State Office of Energy) There are several job creation and job quality requirements that must be...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    renewable energy system is exempt from assessment of the property's value for property tax purposes. Qualifying renewables include solar, geothermal, wind, water, fuel cell or...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    using Renewable Fuels, Reflective Roofs, Tankless Water Heater Local Option- Property Tax Exemption for Renewable Energy Systems Beginning in October 2013, a municipality may...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Fuels, Other Distributed Generation Technologies Qualified Energy Property Tax Exemption for Projects 250 kW or Less Note: According to the Ohio Development Services...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    using Renewable Fuels, Other Distributed Generation Technologies Local Option- Property Tax Exemption for Renewable Energy Systems Beginning in October 2013, a municipality may...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Sales and Use Tax Abatement The abatement applies to property used to generate electricity from renewable energy resources including solar, wind, biomass*, fuel...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Landfill Gas, Wind (Small), Hydroelectric (Small) Local Option- Property Tax Exemption for Renewable Energy Systems Beginning in October 2013, a municipality may...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Renewable Fuels Solar and Wind Energy Credit (Corporate) Originally enacted in 1976, the Hawaii Energy Tax Credits allow individuals or corporations to claim an income...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Industrial, Residential, Agricultural Savings Category: Wind (All), Wind (Small) Wood Heating Fuel Exemption This statute exempts from the state sales tax all wood or...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    qualifying renewable energy system is exempt from assessment of the property's value for property tax purposes. Qualifying renewables include solar, geothermal, wind, water, fuel...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Cells using Renewable Fuels, Other Distributed Generation Technologies Qualified Energy Property Tax Exemption for Projects 250 kW or Less Note: According to the Ohio Development...

  17. Sales Tax Incentives | Open Energy Information

    Open Energy Info (EERE)

    Govt Systems Integrator Transportation Tribal Government Utility Coal with CCS Natural Gas BiomassBiogas Yes Alcohol Fuels Exemption (Hawaii) Sales Tax Incentive Hawaii...

  18. Sales Tax Incentive | Open Energy Information

    Open Energy Info (EERE)

    Govt Systems Integrator Transportation Tribal Government Utility Coal with CCS Natural Gas BiomassBiogas Yes Alcohol Fuels Exemption (Hawaii) Sales Tax Incentive Hawaii...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Sales and Use Tax Exemption The sales of equipment used to generate electricity using fuel cells, wind, sun, biomass energy, tidal or wave energy, geothermal,...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    value for property tax purposes. Qualifying renewables include solar, geothermal, wind, water, fuel cell or methane gas systems used to heat, cool or generate electricity. This...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels, Other Distributed Generation Technologies Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion facilities are those that are used for...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a sales and use tax exemption for equipment, machinery and fuels used to manufacture solar thermal (active or passive) systems, solar electric systems, wind-power electric...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    of the property's value for property tax purposes. Qualifying renewables include solar, geothermal, wind, water, fuel cell or methane gas systems used to heat, cool or...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in 1987 to exempt the sale of qualifying biomass residues used as fuel for business activity from the state sales and use tax gross receipts.... Eligibility: Commercial,...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Other Distributed Generation Technologies Property Tax Exemption for Renewable Energy Systems Beginning in October 2014, commercial and industrial systems (meeting the same...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tax Exemption The sales of equipment used to generate electricity using fuel cells, wind, sun, biomass energy, tidal or wave energy, geothermal, anaerobic digestion or landfill gas...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels, Other Distributed Generation Technologies Business Energy Investment Tax Credit (ITC) Note: IRS Notice 2015-4 included new certification requirements for small wind...

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit For tax years beginning on or after January 1, 2015, an income tax credit is available for the cost of constructing a qualified alternative fueling station. The credit is 20% of the costs directly associated with the purchase and installation of any alternative fuel storage and dispensing equipment or electric vehicle supply equipment (EVSE), up to $1,500 for individuals or $20,000 for businesses. Tax credits may be carried forward for two years and

  9. U.S. Fuel Cell Market Production and Deployment Continues Strong...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Fuel Cell Market Production and Deployment Continues Strong Growth U.S. Fuel Cell Market Production and Deployment Continues Strong Growth January 8, 2014 - 12:00am Addthis...

  10. Modeling the Effects of Steam-Fuel Reforming Products on Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of n-Heptane Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of...

  11. Contact information | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact information Center Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Director of the Center, Professor Devens Gust: Email: dgust@asu.edu Phone: (480) 965-4547 Fax: (480) 965-5927 Manager, Dr. Alex Melkozernov: Email: alexander.melkozernov@asu.edu Phone: (480) 965-1548 Fax: (480) 965-5927 Mailing address (US mail): Center for Bio-Inspired Solar Fuel Production Arizona State University

  12. Enabling Small-Scale Biomass Gasification for Liquid Fuel Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compensation Committee Report Enabling Small-Scale Biomass Gasification for Liquid Fuel Production Santosh Gangwal Biomass 2014: Growing the Future Bioeconomy Agenda Washington, DC July 29-30, 2014 * Established in 1941 as an independent, not-for-profit (501-c-3) center for scientific research and development * Headquartered in Birmingham, Alabama; 8 locations in Southeastern US; 500 employees * Serves both Government and private industry clients * Revenue ~$80 million from contract

  13. H. R. 1086: A Bill to amend the Internal Revenue code of 1986 to reduce emissions of carbon dioxide by imposing a tax on certain fuels based on their carbon content, introduced in the House of Representatives, One Hundred Second Congress, First Session, February 21, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    A new subchapter would be added to the Internal Revenue Code entitled Carbon Tax on Primary Fossil Fuels. The tax is imposed on coal, petroleum, and natural gas, and is phased in over five years beginning in 1992. The tax on coal is $3.60 per ton in 1992 and climbs to $18.00 per ton in 1996. The tax on petroleum begins at $0.78 per barrel and climbs to $3.90 per barrel in 1996. Natural gas is taxed at $0.096 per MCF in 1992 and $0.48 per MCF in 1996. The bill also describes inflation adjustments.

  14. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    SciTech Connect (OSTI)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  15. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Application | Department of Energy Application Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application This presentation reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems. PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application More Documents & Publications Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive

  16. About the Center for Bio-Inspired Solar Fuel Production | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bio-Inspired Solar Fuel Production About the Center for Bio-Inspired Solar Fuel Production Center Objective The Science Center Publications Graduate Research opportunities Undergraduate research opportunities EFRC-501 graduate class Seminar schedules Mission Research Objective Project Overview Center Logo The Mission of the Center for Bio-Inspired Solar Fuel Production (BISfuel) is to construct a complete system for solar-powered production of fuels such as hydrogen via water splitting.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (Small), Hydroelectric (Small), Anaerobic Digestion Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    technologies not identified, Wind (Small), Anaerobic Digestion Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Municipal Solid Waste, Landfill Gas, Anaerobic Digestion Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Electric, Solar Thermal Process Heat, Solar Photovoltaics Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing...

  1. Biodiesel and Other Renewable Diesel Fuels

    SciTech Connect (OSTI)

    Not Available

    2006-11-01

    Present federal tax incentives apply to certain types of biomass-derived diesel fuels, which in energy policy and tax laws are described either as renewable diesel or biodiesel. To understand the distinctions between these diesel types it is necessary to understand the technologies used to produce them and the properties of the resulting products. This fact sheet contains definitions of renewable and biodiesel and discusses the processes used to convert biomass to diesel fuel and the properties of biodiesel and renewable diesel fuels.

  2. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect (OSTI)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nations dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the growers ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  3. Renewable Energy Sales Tax Exemptions

    Broader source: Energy.gov [DOE]

    The original Wis. Stat. § 77.54(30) was also amended in 1987 to exempt the sale of qualifying biomass residues used as fuel for business activity from the state sales and use tax gross receipts....

  4. Doosan Fuel Cell Takes Closed Plant to Full Production | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Doosan Fuel Cell Takes Closed Plant to Full Production Doosan Fuel Cell Takes Closed Plant to Full Production December 8, 2015 - 12:06pm Addthis Photo Courtesy | Doosan Fuel Cell America, Inc. Photo Courtesy | Doosan Fuel Cell America, Inc. In July 2014, after buying the assets of ClearEdge Power (formerly UTC Power) out of bankruptcy, the Connecticut company, which designs and manufactures clean energy fuel cell systems that produce combined heat and power, began operations at its

  5. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application This presentation reports on the status of mass production cost...

  6. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect (OSTI)

    Dale, Virginia H; Parish, Esther S; Kline, Keith L

    2015-01-01

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  7. Table 5.23 All Sellers Sales Prices for Selected Petroleum Products, 1994-2010 (Dollars per Gallon, Excluding Taxes)

    U.S. Energy Information Administration (EIA) Indexed Site

    3 All Sellers Sales Prices for Selected Petroleum Products, 1994-2010 (Dollars 1 per Gallon, Excluding Taxes) Product 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Sales Prices to Resellers 2 Motor Gasoline 0.602 0.630 0.715 0.703 0.530 0.645 0.966 0.888 0.832 1.001 1.288 1.675 1.973 2.186 2.587 1.773 2.169 Unleaded Regular .571 .599 .689 .677 .504 .621 .946 .868 .813 .982 1.271 1.659 1.956 2.165 2.570 1.753 2.151 Conventional 3 .565 .583 .672 .658 .484

  8. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect (OSTI)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report formed the basis for much of the subsequent work under the grant. An explanation of the process is presented as well as the completed work on the four tasks.

  9. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    SciTech Connect (OSTI)

    Grant Hawkes; James O'Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier.

  10. Production of fuels and chemicals from apple pomace

    SciTech Connect (OSTI)

    Hang, Y.D.

    1987-03-01

    Nearly 36 million tons of apples are produced annually in the US. Approximately 45% of the total US apple production is used for processing purposes. The primary by-product of apple processing is apple pomace. It consists of the presscake resulting from pressing apples for juice or cider, including the presscake obtained in pressing peel and core wastes generated in the manufacture of apple sauce or slices. More than 500 food processing plants in the US produce a total of about 1.3 million metric tons of apple pomace each year, and it is likely that annual disposal fees exceed $10 million. Apple pomace has the potential to be used for the production of fuels (ethanol and biogas containing 60% methane) and food-grade chemicals. These uses will be reviewed in this article.

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Vehicle Tax As of July 1, 2015, alternative fuels used to operate on-road vehicles are taxed at a rate of $0.162 per gasoline gallon equivalent (GGE). Alternative fuels are taxed at the same rate as gasoline and gasohol (5.1% of the statewide average wholesale price of a gallon of self-serve unleaded regular gasoline). Refer to the Virginia Department of Motor Vehicles (DMV) Fuels Tax Rates and Alternative Fuels Conversion website for fuel-specific GGE calculations.

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    DuctAir sealing, Other EE, Wind (Small), Fuel Cells using Renewable Fuels, Tankless Water Heater Business Energy Investment Tax Credit (ITC) Note: IRS Notice 2015-4 included...

  13. Tax Credits and Renewable Generation (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Tax incentives have been an important factor in the growth of renewable generation over the past decade, and they could continue to be important in the future. The Energy Tax Act of 1978 (Public Law 95-618) established ITCs for wind, and EPACT92 established the Renewable Electricity Production Credit (more commonly called the PTC) as an incentive to promote certain kinds of renewable generation beyond wind on the basis of production levels. Specifically, the PTC provided an inflation-adjusted tax credit of 1.5 cents per kilowatthour for generation sold from qualifying facilities during the first 10 years of operation. The credit was available initially to wind plants and facilities that used closed-loop biomass fuels and were placed in service after passage of the Act and before June 1999.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Decal The state motor fuel tax does not apply to passenger vehicles, certain buses, or commercial vehicles that are powered by an alternative fuel, if they obtain an AFV decal. Owners or operators of such vehicles that also own or operate their own personal fueling stations are required to pay an annual alternative fuel decal fee, as listed below. Motor vehicles licensed as historic vehicles that are powered by alternative fuels are exempt from the motor fuels tax

  15. Giovanna Ghirlanda | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ana Moore Anne Jones Devens Gust Don Seo Giovanna Ghirlanda Hao Yan James Allen Kevin Redding Petra Fromme Thomas Moore Yan Liu Giovanna Ghirlanda Principal Investigator Subtask 3 Leader Phone: 480-965-6645 Fax: 480-965-2747 E-mail: gghirlanda@asu.edu Associate Professor Giovanna Ghirlanda serves as a Subtask Leader of Subtask 3- Fuel Production and as a member of Subtask 2 - Water Splitting. Major research efforts are centered on Subtask 3 with a focus on utilizing reducing electrons generated

  16. Production of Renewable Fuels from Biomass by FCC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Renewable Fuels from Biomass by FCC Co-processing Biomass 2014 July 30, 2014 Washington, DC © 2014 UOP LLC. All rights reserved. UOP 5354-01 Raymond G. Wissinger UOP LLC Des Plaines, IL Presentation Outline  Background on UOP  Overview of FCC Co-processing  Implementation and Future Plans  Q&A Who is UOP? Honeywell UOP creates knowledge via invention and innovation and applies it to the energy industry Petroleum Petrochemicals Natural Gas  1,570 scientists and

  17. Fischer-Tropsch slurry catalysts for selective transportation fuel production

    SciTech Connect (OSTI)

    Carroll, W.E.; Cilen, N.; Withers, H.P. Jr.

    1986-01-01

    The future use of coal as a source of conventional transportation fuel will depend on the development of an economical and energy efficient liquefaction process. Technologies that have been commercially proven or that are close to commercialization include the fixed- and fluidized-bed Fischer-Tropsch (FT) synthesis, methanol synthesis (fixed-bed and slurry-phase) and the Mobil methanol-to-gasoline process. Of these technologies, the Fischer-Tropsch hydrocarbon synthesis produces the widest slate of products and has been in operation for the longest period.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Credit NOTE: This incentive was retroactively extended multiple times, most recently through December 31, 2016, by Public Law 114-113, 2015. A tax incentive is available for alternative fuel that is sold for use or used as a fuel to operate a motor vehicle. A tax credit in the amount of $0.50 per gallon is available for the following alternative fuels: compressed natural gas (CNG), liquefied natural gas (LNG), liquefied hydrogen, liquefied petroleum gas (propane),

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced rate is in effect during months ethanol fuel blends must be sold, transferred, or used to operate motor vehicles to reduce carbon monoxide emissions and attain federal or state air quality standards. (Reference Alaska Statutes 43.40.01

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Compressed natural gas motor fuel is subject to the state fuel excise tax at the rate of $0.30 per 120 cubic feet, measured at 14.73 pounds per square inch and 60 degrees Fahrenheit. Propane motor fuel is subject to the excise tax $0.30 per 1.3 gallons at 60 degrees Fahrenheit. (Reference Oregon Revised Statutes 319.530

  1. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals: 1 Provide a Tax Credit for the Production of Advanced Technology Vehicles Current Law A tax credit is allowed for plug-in electric drive motor vehicles. A plug-in electric drive motor vehicle is a vehicle that has at

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Tax Deduction Entities and individuals that receive or manufacture and deliver biodiesel within the state for blending or resale are eligible for a tax deduction for the fuel. (Reference New Mexico Statutes 7-16A-10

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina General Statutes 105-164.13(11)

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Exemption An individual who produces biodiesel for use in that individual's private passenger vehicle is exempt from the state motor fuel excise tax. (Reference North Carolina General Statutes 105-449.88(9

  5. Payroll, Taxes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Payroll, Taxes Payroll, Taxes Payroll processing, payroll direct deposit, tax information and related forms. Contact Payroll (505) 667-4594 Email Payroll, Craft (505) 665-3982 Email Tax (505) 664-0463 Email Treasury (505) 667-4090 Email Benefits Accounting (505) 665-7548 Email Changes of Address Email COMPA contractors (505) 662-2500 Payroll processing The Laboratory Oracle Payroll Team is responsible for processing payment of salary and wages to all LANS non-craft employees based upon each

  6. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies

  7. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  8. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    SciTech Connect (OSTI)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  9. Fuel NOx production during the combustion of low caloric value fuel

    SciTech Connect (OSTI)

    Colaluca, M.A.; Caraway, J.P.

    1997-07-01

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value gases (LCVG) and the formation of NOx pollutants produced form fuel bound nitrogen. Average physical properties of a low caloric value gas were determined from the products of several industrial coal gasifiers. A computer model was developed, utilizing the PHOENICS computational fluid dynamics software to model the combustion of LCVG. The model incorporates a 3-dimensional physical design and is based on typical industrial combustors. Feed stock to the gasifier can be wood, feed stock manure, cotton gin trash, coal, lignite and numerous forms of organic industrial wastes.

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Production Tax Credit (Corporate) Note: The tax credits are fully subscribed. As of February 2015, there are 712 MW (1,400,000 MWh) of projects in the waiting...

  11. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications: 2007 Update | Department of Energy Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis. PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007

  12. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications: 2008 Update | Department of Energy Applications: 2008 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis. PDF icon Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008

  13. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOE Patents [OSTI]

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Road Tax Alternative fuels including, but not limited to, natural gas or propane sold by a licensed alternative fuel dealer and used in on-road vehicles is subject to a...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Alternative fuels subject to the New Mexico excise tax include liquefied petroleum gas (propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The excise tax imposed on propane is $0.12 per gallon, and the excise tax imposed on CNG and LNG is $0.133 and $0.206 per gallon, respectively. A gallon is measured as 3.785 liters of propane, 5.66 pounds (lbs.) of CNG, and 6.06 lbs. of LNG. Alternative fuel purchased for distribution is not subject to the excise tax at the

  16. S. 403: A Bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. Introduced in the Senate of the United States, One Hundred Third Congress, First Session, February 18, 1993

    SciTech Connect (OSTI)

    1993-12-31

    The report S.403 is a bill to amend the Internal Revenue Code of 1986 to allow a tax credit for fuels produced from offshore deep-water projects. The proposed legislative text is included.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MeasuresWhole Building ENERGY STAR Sales Tax Holiday for Energy-Efficient Products Although the eligibility of some products is limited according to their sale price,...

  18. Production of Renewable Fuels from Biomass by FCC Co-processing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Production of Renewable Fuels from Biomass by FCC Co-processing Production of Renewable Fuels from Biomass by FCC Co-processing Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Production of Renewable Fuels from Biomass by FCC Co-processing Raymond Wissinger, Manager, Renewable Energy & Chemicals, Research & Development, UOP PDF icon wissinger_biomass_2014.pdf More Documents

  19. Determination of alternative fuels combustion products: Phase 2 final report

    SciTech Connect (OSTI)

    Whitney, K.A.

    1997-06-01

    This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

  20. Moving bed reactor for solar thermochemical fuel production

    DOE Patents [OSTI]

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  1. Publications by year | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... capable of generating solar fuel, Photosynthesis ... technology for sustainable energy transformation, AIP Conf. ... Photo-induced hydrogen production in a helical peptide ...

  2. Accelerator spallation reactors for breeding of fissile fuel and transmuting fission products. Status and prospects

    SciTech Connect (OSTI)

    Steinberg, M.

    1981-01-01

    This report constitutes a summary review of the status and prospects of the development of accelerator spallation reactors for breeding fissile fuel and for transmuting fission products.

  3. Stationary Fuel Cell System Composite Data Products: Data through Quarter 4 of 2013

    SciTech Connect (OSTI)

    Saur, G.; Kurtz, J.; Ainscough, C.; Peters, M.

    2014-05-01

    This report includes 25 composite data products (CDPs) produced for stationary fuel cell systems, with data through the fourth quarter of 2013.

  4. Stationary Fuel Cell System Composite Data Products: Data through Quarter 2 of 2013

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-11-01

    This report includes 24 composite data products (CDPs) produced for stationary fuel cell systems, with data through the second quarter of 2013.

  5. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Export Tax Exemption Effective July 1, 2015, alternative fuel sold for use in motor vehicles and intended for export from the state by a licensed alternative fuel exporter is exempt from the alternative fuel license tax. (Reference House Bill 0009, 2015, and Wyoming Statutes 39-17-301 and 39-17-305

  6. H. R. 2762: a Bill to amend the Internal Revenue Code of 1954 to increase the energy investment tax credit for conversions to coal-fueled facilities, and for other purposes. Introduced in the House of Representatives, Ninety-Ninth Congress, First Session, June 13, 1985

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    H.R.2762 amends the Internal Revenue Code of 1954 by inserting incentives for investing in coal conversions and the purchase of coal mining equipment. The Bill proposes a 10% investment tax credit for the former and a 5% tax credit for the latter, with an expiration date for both of December 31, 1993. The Text of the Bill defines conversions to coal fuel and coal mining equipment, specifies the procedures for amortizing equipment, offers tax incentives to conduct coal research activities, and specifies the requirements for conversion to coal under the Powerplant and Industrial Fuel Use Act.

  7. Modeling the Effects of Steam-Fuel Reforming Products on Low Temperature Combustion of n-Heptane

    Broader source: Energy.gov [DOE]

    The effects of blends of base fuel (n-heptane) and fuel-reformed products on the low-temperature combustion process were investigated.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Infrastructure Tax Credit Businesses and individuals are eligible for an income tax credit of 50% of the incremental or conversion cost for qualified AFVs, up to $19,000 per vehicle. A tax credit is also available for 50% of the equipment and labor costs for the purchase and installation of alternative fuel infrastructure on qualified AFV fueling property. The maximum credit is $1,000 per residential electric vehicle charging station, and $10,000 per publicly

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit An income tax credit is available for 50% of the cost of alternative fueling infrastructure, up to $5,000. Qualifying infrastructure includes electric vehicle supply equipment and equipment to dispense fuel that is 85% or more natural gas, propane, or hydrogen. Unused credits may be carried over into future tax years. The credit expires December 31, 2017. For additional information, including information on how to claim the credit, please see the New York State

  10. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    SciTech Connect (OSTI)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

  11. Refiner/marketer targets production of transportation fuels and distillates

    SciTech Connect (OSTI)

    Thompson, J.E.

    1997-01-01

    Citgo Petroleum Corp., the wholly owned subsidiary of Petroleos de Venezuela, S.A. (PDVSA), the Venezuelan national oil company, owns two gasoline producing refineries, a 305,000-b/d system in Lake Charles, La., and a 130,000-b/d facility in Corpus Christi, Texas. Each is considered a deep conversion facility capable of converting heavy, sour crudes into a high percentage of transportation fuels and distillates. Two smaller refineries, one in Paulsboro, N.J., and one in Savannah, GA., have the capacity to process 40,000 b/d and 28,000 b/d of crude, respectively, for asphalt products. In the past two years, Citgo`s light oils refineries operated safely and reliably with a minimum of unscheduled shutdowns. An ongoing emphasis to increase reliability has resulted in extended run lengths at the refineries. Citgo has invested $314 million at its facilities in 1995, much of this toward environmental and regulatory projects, such as the new waste water treatment unit at the Lake Charles refinery. Over the next few years, Citgo expects to complete $1.5 billion in capital spending for major processing units such as a 60,000-b/d FCC feed hydrotreater unit at the Lake Charles refinery and crude expansion at the Corpus Christi refinery. Product exchanges and expanded transport agreements are allowing Citgo to extend its marketing reach.

  12. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    SciTech Connect (OSTI)

    James Stubbins

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Excise Tax Distributors who sell or use motor fuel, including special fuels, are subject to an excise tax of $0.26 per gallon. Motor fuels that are not commonly sold or measured by the gallon and are used in motor vehicles on public highways are taxed according to their gasoline gallon equivalent (GGE). The Georgia Department of Revenue may adjust tax rates annually based on vehicle fuel economy and the Consumer Price Index through July 1, 2018. A GGE of compressed natural gas (CNG) must be at

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax Rates A special excise tax rate of 2% is imposed on the sale of propane and an excise tax of $0.23 per gallon is imposed on all special fuels sales and deliveries, including compressed natural gas (CNG) and liquefied natural gas (LNG). One gallon of special fuel is equal to 120 cubic feet of CNG or 1.7 gallons of LNG. Retailers must obtain a license from the Office of the State Tax Commissioner to sell special fuels. Exceptions apply. (Reference House Bill 1133, 2015, and

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) as a motor fuel must report fuel use and remit taxes due to the Kansas Department of Revenue on a monthly basis. The minimum tax imposed on CNG is $0.24 per gasoline gallon equivalent (GGE), LNG is $0.26 per GGE, and propane is $0.23 per gallon. The state imposes a tax rate of $0.24 per gallon on conventional motor fuel. Alternatively,

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit The state offers an income tax credit of 36% of the cost of converting a vehicle to operate on an alternative fuel, the incremental cost of purchasing an original equipment manufacturer AFV, and the cost of alternative fueling equipment. Alternatively, a taxpayer may take a tax credit of 7.2% of the cost of the motor vehicle, up to $1,500. To qualify for the tax credit, vehicles must be dedicated AFVs and registered in

  17. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Application: 2009 Update | Department of Energy Application: 2009 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles. PDF icon Mass Production

  18. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment

    Office of Environmental Management (EM)

    Continues Strong Growth | Department of Energy Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth December 19, 2013 - 11:36am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released three new reports today showcasing strong growth across the U.S. fuel cell and hydrogen technologies market - continuing America's leadership in clean energy

  19. Energy Department Reports: U.S. Fuel Cell Market Production and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continues Strong Growth | Department of Energy Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth Energy Department Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth December 22, 2015 - 10:00am Addthis The three reports released by the Energy Department highlight continued strength, progress and innovation in the U.S. fuel cell hydrogen technologies market. The three reports released by the Energy Department highlight continued

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tax Motor fuel taxes for propane used in vehicles are collected through an annual sticker permit fee based on the vehicles' registered gross vehicle weight rating and the number of miles driven the previous year. Exemptions apply for transit and interstate vehicles. (Reference Texas Statutes, Tax Code 162.305

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  2. Bisfuel Logo | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bisfuel Logo BISfuel is abbreviation of Bio-Inspired Solar Fuels BIS is a prefix or suffix designating the second instance of a thing, which symbolizes bio-inspired solar fuels as an artificial instance of natural photosynthetic catalysts Prefix BIS is used in nomenclature of compounds with two complex ligands coordinating around a central atom which is in line with synthetic nature of the solar fuel catalysts

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) Tax Credit For tax years beginning before January 1, 2020, a one-time income tax credit is available for 45% of the incremental cost of purchasing a new original equipment manufacturer AFV, excluding electric vehicles, or converting a vehicle to operate on an alternative fuel. The state also provides a tax credit in the amount of 10% of the total vehicle cost, up to $1,500, if the incremental cost of a new AFV cannot be determined or when an AFV is resold, as long as a tax

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas and Propane Tax Effective January 1, 2019, propane, compressed natural gas (CNG), and liquefied natural gas (LNG) will be subject to an excise tax at a rate of $0.04 per gasoline gallon equivalent (GGE), plus a $0.01 ninth-cent fuel tax, a $0.01 local option fuel tax, and an additional variable component to be determined by the Florida Department of Revenue (Department) each calendar year for the following 12-month period. To determine this tax, the Department will require each

  5. Solar Thermochemical Fuels Production: Solar Thermochemical Fuel Production via a Novel Lowe Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Florida is developing a windowless high-temperature chemical reactor that converts concentrated solar thermal energy to syngas, which can be used to produce gasoline. The overarching project goal is lowering the cost of the solar thermochemical production of syngas for clean and synthetic hydrocarbon fuels like petroleum. The team will develop processes that rely on water and recycled CO2 as the sole feed-stock, and concentrated solar radiation as the sole energy source, to power the reactor to produce fuel efficiently. Successful large-scale deployment of this solar thermochemical fuel production could substantially improve our national and economic security by replacing imported oil with domestically produced solar fuels.

  6. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.

  7. Determination of alternative fuels combustion products: Phase 3 report

    SciTech Connect (OSTI)

    Whitney, K.A.

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Green Energy Property Tax Assessment TDEC defines and certifies facilities based upon production of electricity using clean energy technology for use and consumption off the...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Generating Facilities Electrical generating facilities are exempt from sales and use taxes. The exemption is granted for the purchase of building materials, production...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Property Tax Assessment TDEC defines and certifies facilities based upon production of electricity using clean energy technology for use and consumption off the premises. Clean...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the state's sales and use tax all sales, storage, and use of components used in the production of alternating current electricity from a renewable energy source for fiscal......

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Property Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing facilities are those that (1) produce materials, components or systems...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    state's sales and use tax. Eligible products include solar electric systems, DC-to-AC inverters that interconnect with utility power lines, solar thermal systems, manufactured...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tax Abatement for Production and Manufacturing Facilities Qualifying renewable energy manufacturing facilities are those that (1) produce materials, components or systems...

  15. End-Use Taxes: Current EIA Practices

    U.S. Energy Information Administration (EIA) Indexed Site

    However, many States levy taxes on aviation fuel, as shown in Table B3 in Appendix B, based on information obtained from State TaxationRevenue Offices. The use of the national...

  16. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2003-10-17

    The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax Compressed natural gas used as a special motor fuel is subject to the state fuel excise tax of $0.31 per gasoline gallon equivalent, measured at 5.66 pounds (lbs.) or 126.67 cubic feet at a base temperature of 60 degrees Fahrenheit and a pressure of 14.73 lbs. per square inch. Liquefied natural gas is subject to the excise tax of $0.325 per diesel gallon equivalent, measured at 6.06 lbs. Liquefied petroleum gas (propane) is subject to the excise tax of $0.30 per gallon. E85

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels Tax The state motor fuel tax on liquefied natural gas (LNG) is imposed based on the diesel gallon equivalent (DGE) and the tax on compressed natural gas (CNG) is based on the gasoline gallon equivalent (GGE). Beginning January 1, 2016, the state motor fuel tax on propane is imposed based on a GGE basis. For taxation purposes, one GGE of propane and CNG is equal to 5.75 pounds (lbs.) and 5.66 lbs., respectively, and one DGE of LNG is equal to 6.06 lbs. The North Carolina

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Excise Taxes All licensed on-road vehicles fueled with compressed natural gas (CNG) or liquefied petroleum gas (propane) are subject to a special fuels tax through the Excise Taxes Division of the Louisiana Department of Revenue (LDR). Vehicle owners or operators must pay either an annual flat rate decal fee in the amount of $120 per vehicle with a gross vehicle weight rating (GVWR) of less than 10,000 pounds (lbs.) or a variable rate of 80% of the current special fuels tax rate. The owners or

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  1. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications: 2010 Update | Department of Energy Applications: 2010 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles. PDF icon Mass

  2. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Applications: 2013 Update | Department of Energy of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update This report is the seventh annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. In this multi-year project, SA estimates the material and

  3. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Transportation Applications: 2012 Update | Department of Energy of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update This report is the sixth annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. This 2012 update will cover current status

  4. U.S. Demonstrates Production of Fuel for Missions to the Solar System and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond | Department of Energy Demonstrates Production of Fuel for Missions to the Solar System and Beyond U.S. Demonstrates Production of Fuel for Missions to the Solar System and Beyond December 22, 2015 - 10:09am Addthis News Media Contact (202) 586-4940 DOENews@hq.doe.gov The first U.S. production in nearly 30 years of a specialized fuel to power future deep space missions has been completed by researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) in Tennessee.

  5. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Arizona, April 19-20, 2012. The conference featured student talks and poster presentations on the broad range of activities in solar fuels, solar electric, and energy policy.

  6. The Hydrogen Tax Incentive Act of 2008

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE HYDROGEN TAX INCENTIVE ACT OF 2008 Establishing the Infrastructure Foundation for the Hydrogen Economy Background The proposed hydrogen tax credit supports the market introduction of hydrogen for use in fuel cells and internal combustion engines in nearer-term applications, including forklifts, stationary power generation, buses, and early automotive field trials. A key challenge for these early commercialization opportunities is the upfront cost of hydrogen fueling infrastructure and the

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Commercial Vehicle Tax Credit Businesses are eligible to receive tax credits for purchasing new alternative fuel commercial vehicles. Qualified commercial vehicles must be powered primarily by natural gas, propane, hydrogen, dimethyl ether, or electricity. Tax credit amounts vary based on gross vehicle weight rating (GVWR) and are up to 50% of the incremental cost, with maximum credit values as follows: GVWR Maximum Credit Amount Per Vehicle Up to 14,000 pounds (lbs.) $5,000

  8. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program August 2010 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Fuel Cell Technologies Program iii Table of Contents Summary ...............................................................................................................................................................................v 1.0 Introduction

  9. Subtask 2.6 - Assessment of Alternative Fuels on CO2 Production

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Darren Naasz

    2009-06-16

    Many coal-based electric generating units use alternative fuels, and this effort assessed the impact of alternative fuels on CO{sub 2} production and other emissions and also assessed the potential impact of changes in emission regulations under the Clean Air Act (CAA) for facilities utilizing alternative fuels that may be categorized as wastes. Information was assembled from publicly available U.S. Department of Energy Energy Information Administration databases that included alternative fuel use for 2004 and 2005. Alternative fuel types were categorized along with information on usage by coal-based electric, number of facilities utilizing each fuel type, and the heating value of solid, liquid, and gaseous alternative fuels. The sulfur dioxide, nitrogen oxide, and carbon dioxide emissions associated with alternative fuels and primary fuels were also evaluated. Carbon dioxide emissions are also associated with the transport of all fuels. A calculation of carbon dioxide emissions associated with the transport of biomass-based fuels that are typically accessed on a regional basis was made. A review of CAA emission regulations for coal-based electric generating facilities from Section 112 (1) and Section 129 (2) for solid waste incinerators was performed with consideration for a potential regulatory change from Section 112 (1) regulation to Section 129 (2). Increased emission controls would be expected to be required if coal-based electric generating facilities using alternative fuels would be recategorized under CAA Section 129 (2) for solid waste incinerators, and if this change were made, it is anticipated that coal-fired electric generating facilities might reduce the use of alternative fuels. Conclusions included information on the use profile for alternative fuels and the impacts to emissions as well as the impact of potential application of emission regulations for solid waste incinerators to electric generating facilities using alternative fuels.

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  11. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  12. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  13. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

  14. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

  15. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

  16. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2011

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  18. Stationary Fuel Cell System Composite Data Products: Data Through Quarter 4 of 2012

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Saur, G.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes stationary fuel cell system composite data products for data through the fourth quarter of 2012.

  19. State-of-the-Art Fuel Cell Voltage Durability Status: Spring 2013 Composite Data Products

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Saur, G.; Peters, M.; Post, M.; Ainscough, C.

    2013-05-01

    This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes composite data products (CDPs) produced in 2013 for state-of-the-art fuel cell voltage durability status.

  20. Assemblies with both target and fuel pins in an isotope-production reactor

    DOE Patents [OSTI]

    Cawley, W.E.; Omberg, R.P.

    1982-08-19

    A method is described for producing tritium in a fast breeder reactor cooled with liquid metal. Lithium target material is placed in pins adjacent to fuel pins in order to increase the tritium production rate.

  1. Analyzing Losses: Transuranics into Waste and Fission Products into Recycled Fuel

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert E. Cherry; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros; Candido Pereira; Denia Djokic

    2010-11-01

    All mass streams from separations and fuel fabrication are products that must meet criteria. Those headed for disposal must meet waste acceptance criteria (WAC) for the eventual disposal sites corresponding to their waste classification. Those headed for reuse must meet fuel or target impurity limits. A loss is any material that ends up where it is undesired. The various types of losses are linked in the sense that as the loss of transuranic (TRU) material into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. We have analyzed four separation options and two fuel fabrication options in a generic fuel cycle. The separation options are aqueous uranium extraction plus (UREX+1), electrochemical, Atomics International reduction oxidation separation (AIROX), and melt refining. UREX+1 and electrochemical are traditional, full separation techniques. AIROX and melt refining are taken as examples of limited separations, also known as minimum fuel treatment. The fuels are oxide and metal. To define a generic fuel cycle, a fuel recycling loop is fed from used light water reactor (LWR) uranium oxide fuel (UOX) at 51 MWth-day/kg-iHM burnup. The recycling loop uses a fast reactor with TRU conversion ratio (CR) of 0.50. Excess recovered uranium is put into storage. Only waste, not used fuel, is disposed unless the impurities accumulate to a level so that it is impossible to make new fuel for the fast reactor. Impurities accumulate as dictated by separation removal and fission product generation. Our model approximates adjustment to fast reactor fuel stream blending of TRU and U products from incoming LWR UOX and recycling FR fuel to compensate for impurity accumulation by adjusting TRU:U ratios. Our mass flow model ignores postulated fuel impurity limits; we compare the calculated impurity values with those limits to identify elements of concern. AIROX and melt refining cannot be used to separate used LWR UOX-51 because they cannot separate U from TRU, it is then impossible to make X% TRU for fast reactors with UOX-51 used fuel with 1.3% TRU. AIROX and melt refining can serve in the recycle loop for about 3 recycles, at which point the accumulated impurities displace fertile uranium and the fuel can no longer be as critical as the original fast reactor fuel recipe. UREX+1 and electrochemical can serve in either capacity; key impurities appear to be lanthanides and several transition metals.

  2. Opportunities for Biomass-Based Fuels and Products in a Refinery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opportunities for Biomass-Based Fuels and Products in a Refinery Opportunities for Biomass-Based Fuels and Products in a Refinery Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Corinne Valkenburg, Staff Engineer, Pacific Northwest National Laboratory PDF icon biomass13_male_2-d.pdf More Documents & Publications FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds

  3. Method for forming nuclear fuel containers of a composite construction and the product thereof

    DOE Patents [OSTI]

    Cheng, Bo-Ching; Rosenbaum, Herman S.; Armijo, Joseph S.

    1984-01-01

    An improved method for producing nuclear fuel containers of a composite construction having components providing therein a barrier system for resisting destructive action by volatile fission products or impurities and also interdiffusion of metal constituents, and the product thereof. The composite nuclear fuel containers of the method comprise a casing of zirconium or alloy thereof with a layer of copper overlying an oxidized surface portion of the zirconium or alloy thereof.

  4. Center for Bio-inspired Solar Fuel Production Personnel | Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bio-Inspired Solar Fuel Production Center for Bio-inspired Solar Fuel Production Personnel Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center Personnel Alex Volosin Graduate student Ana Moore Principal Investigator Subtask 4 Leader Anindya Roy Graduate student Anne Jones Principal Investigator Antaeres' Antoniuk-Pablant Graduate Student Arnab Dutta Graduate student Barun Das Postdoctoral Fellow Ben Sherman Graduate

  5. Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via

    Office of Scientific and Technical Information (OSTI)

    Hydrothermal Liquefaction (HTL) and Upgrading (Journal Article) | SciTech Connect Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Citation Details In-Document Search Title: Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Authors: Zhu, Y. ; Biddy, M. J. ; Jones, S. B. ; Elliott, D. C. ; Schmidt, A. J. Publication Date: 2014-09-15 OSTI Identifier:

  6. Determination of alternative fuels combustion products: Phase 1 report

    SciTech Connect (OSTI)

    Whitney, K.A.

    1997-09-01

    This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

  7. Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects

    SciTech Connect (OSTI)

    1981-08-07

    To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

  8. Residential Renewable Energy Tax Credit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Tax Credit Residential Renewable Energy Tax Credit < Back Eligibility Residential Savings Category Solar Water Heat Solar Photovoltaics Wind (All) Geothermal Heat Pumps Fuel Cells using Non-Renewable Fuels Wind (Small) Fuel Cells using Renewable Fuels Maximum Rebate Solar-electric systems placed in service after 2008: no maximum Solar water heaters placed in service after 2008: no maximum Wind turbines placed in service after 2008: no maximum Geothermal heat pumps placed in

  9. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: Energy.gov [DOE]

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

  10. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  11. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    SciTech Connect (OSTI)

    Douglas W. Marshall

    2014-10-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  12. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  13. Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the U.S. -- An Overview | Department of Energy for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview 2002 DEER Conference Presentation: U.S. Department of Energy PDF icon 2002_deer_shen.pdf More Documents & Publications Coal-Derived Liquids to Enable HCCI Technology WA_99_018_TEXACO_ENERGY_SYSTEMS_Waiver_of_Domestic_and_Forei.pdf Advanced Fuels in HDV Applications

  14. H. R. 93: A Bill to amend the Internal Revenue Code of 1986 to impose a tax on the importation of crude oil and refined petroleum products. Introduced in the House of Representatives, One Hundredth Second Congress, First Session, January 3, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    An excise tax would be imposed on crude oil or petroleum products imported into the US as an incentive to conserve this energy source. Whenever the average international price of crude oil is less than 24 dollars during a 4-week period, the excise tax would be imposed on products coming into the US during the following week. The tax would amount to the difference between the average price of crude oil and 24 dollars.

  15. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    SciTech Connect (OSTI)

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

  16. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  17. Sales and Use Tax Exemption for Electrical Generating Equipment

    Broader source: Energy.gov [DOE]

    Indiana does not have a specific sales and use tax exemption for equipment used in the production of renewable electricity. Therefore, such equipment is presumed to be subject to sales and use tax....

  18. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production and Delivery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production and Delivery Learn how NREL is developing and advancing a number of pathways to renewable hydrogen production. Text Version Most of the hydrogen in the United States is produced by steam reforming of natural gas. For the near term, this production method will continue to dominate. Researchers at NREL are developing advanced processes to produce hydrogen economically from sustainable resources. NREL's hydrogen production and delivery R&D efforts, which are led by Huyen

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Cell Motor Vehicle Tax Credit NOTE: This incentive originally expired on December 31, 2014, but was retroactively extended through December 31, 2016, by H.R. 2029. A tax credit of up to $8,000 is available for the purchase of qualified light-duty fuel cell vehicles, depending on the vehicle's fuel economy. Tax credits are also available for medium- and heavy-duty fuel cell vehicles; credit amounts are based on vehicle weight. Vehicle manufacturers must follow the procedures as published in

  20. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center News 24 Jan 2014 SOFI-funded collaborative project The Solar Fuel Institute has funded a collaborative project between the group of Vincent Artero (CEA, Grenoble, France) and the BISfuel Center. Graduate student from Artero Lab Nicolas Kaeffer has been visiting the Gust Lab to work on application of H2-evolving cathodes designed in Artero group to photoanodes developed at BISFuel. 12 Apr 2013 Bisfuel students win AzSEC 2013 Distinguished Poster Awards Bisfuel Graduate students Ben

  1. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media about Center 5 Jun 2014 Solar energy: Springtime for the artificial leaf by Jessica Marshall: June 6 issue of Nature Magazine in a News Feature article highlights research progress in a field of artificial photosynthesis and presents a broad spectrum of alternative approaches of turning photons into fuel. Devens Gust, Director of the Bisfuel Center comments: "The bottom line is that nobody really knows yet what's going to win out, what's going to be practical." 30 Apr 2014

  2. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subtask 1 Subtask 2 Subtask 3 Subtask 4 Subtask 5 Center News Research Highlights Center Research News Media about Center Center Video Library Bisfuel Picture Gallery 9 Jul 2014 Taking snapshots of different redox states of the water oxidation catalyst in Photosystem II BISfuel, July 9, 2014 - Deciphering the puzzles of the natural photosynthetic water oxidation mechanism empowers designers of artificial photosynthesis with knowledge to construct better water oxidation catalysts for solar fuel

  3. An investigation of synthetic fuel production via chemical looping

    SciTech Connect (OSTI)

    Frank Zeman; Marco Castaldi

    2008-04-15

    Producing liquid hydrocarbon fuels with a reduced greenhouse gas emissions profile would ease the transition to a carbon-neutral energy sector with the transportation industry being the immediate beneficiary followed by the power industry. Revolutionary solutions in transportation, such as electricity and hydrogen, depend on the deployment of carbon capture and storage technologies and/or renewable energy systems. Additionally, high oil prices may increase the development of unconventional sources, such as tar sands, that have a higher emissions profile. One process that is gaining interest is a system for producing reduced carbon fuels though chemical looping technologies. An investigation of the implications of such a process using methane and carbon dioxide that is reformed to yield methanol has been done. An important aspect of the investigation is the use of off-the-shelf technologies to achieve the results. The ability of the process to yield reduced emissions fuels depends on the source for the feed and process heat. For the range of conditions considered, the emissions profile of methanol produced in this method varies from 0.475 to 1.645 moles carbon dioxide per mole methanol. The thermal load can be provided by methane, coal or carbon neutral (biogas). The upper bound can be lowered to 0.750 by applying CCS and/or using nonfossil heat sources for the reforming. The process provides an initial pathway to incorporate CO{sub 2} into fuels independent of electrolytic hydrogen or developments in other sectors of the economy. 22 refs., 1 fig., 3 tabs.

  4. Tax Incentives for Residential Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Incentives for Residential Buildings Tax Incentives for Residential Buildings On this page you'll find information about incentives for: purchasing and installing energy efficient products in existing homes; purchasing and installing renewable energy technologies in new and existing homes; and constructing new energy efficient homes. Purchasing and Installing Energy Efficient Products Energy Efficiency Tax Credits for Existing Homes Homeowners are eligible for a tax credit of 10% of the cost

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Fuel-Efficient Vehicle Tax Credit Through 2016, new electric, natural gas, and propane vehicles registered in Utah are eligible for an income tax credit of 35% of the vehicle purchase price, up to $1,500. Plug-in hybrid electric vehicles (PHEVs) will be eligible for a tax credit of $1,000. Leased electric, natural gas, and propane vehicles are eligible for a tax credit on a prorated basis up to $1,500. Leased plug-in hybrid electric vehicles will be eligible for a prorated

  6. Fuel age impacts on gaseous fission product capture during separations

    SciTech Connect (OSTI)

    Jubin, Robert T.; Soelberg, Nicolas R.; Strachan, Denis M.; Ilas, G.

    2012-09-21

    As a result of fuel reprocessing, volatile radionuclides will be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129 Rosnick 2007 I. The question we attempt to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examine the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012), and they apply to the total radonuclide release and to the dose to a particular organ the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, several cases are studied. These cases consider for the four analyzed radionuclides inventories produced for three fuel typespressurized water reactor uranium oxide (PWR UOX), pressurized water reactor mixed oxide (PWR MOX), and advanced high-temperature gascooled reactor (AHTGR)several burnup values and time out of reactor extending to 200 y. Doses to the maximum exposed individual (MEI) are calculated with the EPA code CAP-88 ( , 1992). Two dose cases are considered. The first case, perhaps unrealistic, assumes that all of the allowable dose is assigned to the volatile radionuclides. In lieu of this, for the second case a value of 10% of the allowable dose is arbitrarily selected to be assigned to the volatile radionuclides. The required decontamination factors (DFs) are calculated for both of these cases, including the case for the thyroid dose for which 14C and 129I are the main contributors. However, for completeness, for one fuel type and burnup, additional cases are provided, allowing 25% and 50% of the allowable dose to be assigned to the volatile radionuclides. Because 3H and 85Kr have relatively short half-lives, 12.3 y and 10.7 y, respectively, the dose decreases with the time from when the fuel is removed from the reactor to the time it is processed (herein fuel age). One possible strategy for limiting the discharges of these short halflife radionuclides is to allow the fuel to age to take advantage of radioactive decay. Therefore, the doses and required DFs are calculated as a function of fuel age. Here we calculate, given the above constraints and assumptions, the minimum ages for each fuel type that would not require additional effluent controls for the shorter half-life volatile radionuclides based on dose considerations. With respect to 129I doses, we find that the highest dose is calculated with iodine as a fine particulate. The dose scales as the fraction of the total 129I that is particulate. Therefore, we assume for all of our calculations that 100% of the 129I is particulate and allow the user of the results given here to scale our calculated doses to their needs. To summarize the data given in the body and appendices of this report, we find that the principal isotopes of concern are 3H and 129I, the latter requiring the highest DFs. The maximum DF value for 129I is 8000 for the illustrated cases. The required DF for 3H could be as high as 720, depending on the age of the fuel processed. The DF for 85Kr could be up to ~60, depending on fuel age. The DF for 14C is in many cases 1 (no treatment required) but could be as high as 30. The DFs required are within the range of DFs that are reported for the capture technologies that are available for the volatile radionuclides. Achieving the required 129I and 3H DFs is more challenging. Variations in stack design and other design factors may also significantly impact the DF requirements.

  7. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  8. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  9. Thomas Moore | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Links: T. A. Moore "Artificial Photosynthesis and Bio-inspired Catalysis: Paradigms For Sustainable Energy Production" Subtask 1 * Subtask 2 * Subtask 3 * Subtask 4 * ...

  10. Dalvin Mendez | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dalvin Mendez Graduate student Subtask 4 project: "Synthesis and characterization of dyes for use as photosensitizers to drive water oxidation and hydrogen production

  11. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Steve Bergin

    2004-10-18

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

  12. H. R. 4828: a bill to amend the Internal Revenue Code of 1954 to impose a tax on the importation of crude oil and petroleum products. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, May 15, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The Energy Independence Act of 1986 amends the Internal Revenue Code of 1954 to impose a tax on the importation of crude oil and petroleum products. The Act would impose an excise tax on the first sale of any imported oil following importation, with the tax rates declining to 20% of the 1986-1987 rate in increments of 20% per year to 1991. Rates for imported petroleum products add an additional adjustment for environmental outlay. The tax does not apply to exports. The bill outlines procedures for determining prices and making adjustments for environmental outlay and inflation. The bill was referred to the Committee on Ways and Means.

  13. Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption

    SciTech Connect (OSTI)

    Korkmaz, S.; Kara-Gulbay, R.; Turan, M.

    2008-07-01

    Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Infrastructure Tax Credit NOTE: This incentive originally expired on December 31, 2013, but was retroactively extended through December 31, 2016, by H.R. 2029. Fueling equipment for natural gas, liquefied petroleum gas (propane), liquefied hydrogen, electricity, E85, or diesel fuel blends containing a minimum of 20% biodiesel installed between January 1, 2015, and December 31, 2016, is eligible for a tax credit of 30% of the cost, not to exceed $30,000. Permitting and inspection

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference West Virginia Code 11-14C-2, 11-14C-5, 11-14C-6a, 11-15A-13a, and 11-15-18b

  16. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  17. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  18. Energy Replacement Generation Tax Exemption

    Broader source: Energy.gov [DOE]

    Under the Energy Replacement Generation Tax Exemption, the following facilities are exempt from the replacement tax:

  19. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production Cost Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Cost Analysis NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11 states across the nation. This analysis included centralized plants producing the Department of Energy (DOE) target of 50,000 kg of hydrogen per day, using both wind and grid electricity. The use of wind and grid electricity can be balanced either by power or cost, including or excluding the purchase of peak summer electricity. Current wind incentives-such

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Renewable Energy Production Incentive Hydro Facility Eligibility Eligibility: Commercial, Industrial,...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ENERGY STAR Sales Tax Holiday for Energy-Efficient Products Although the eligibility of some products is limited according to their sale price, there are no limitations on the...

  2. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  3. Green Energy Tax Credit

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the Green Energy Tax Credit, the Carbon Tax Credit is available. This is the only carbon tax credit in the United States and it provides "certified green energy supply chain...

  4. Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams

    SciTech Connect (OSTI)

    Clifford, C.E.B.; Schobert, H.H.

    2008-07-01

    We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

  5. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 1 2012 Composite Data Products - Deployment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-06-01

    This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). Quarter 1 2012 Composite Data Products - Deployment March 8, 2012.

  6. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); November 2011 Composite Data Products - Deployment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-06-01

    This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). November 2011 Composite Data Products - Deployment November 30, 2011.

  7. Stationary Fuel Cell System Composite Data Products: Data through Quarter 4 of 2014; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Saur, G.; Kurtz, J.; Ainscough, C.; Sprik, S.; Post, M.

    2015-04-01

    This publication includes 33 composite data products (CDPs) produced for stationary fuel cell systems, with data through the fourth quarter of 2014.

  8. Economic Stimulus Act Extends Renewable Energy Tax Credits

    Broader source: Energy.gov [DOE]

    The tax section of the American Recovery and Reinvestment Act of 2009, which President Barack Obama signed on February 17, provides a three-year extension of the production tax credit (PTC) for most renewable energy facilities, while offering expansions on and alternatives for tax credits on renewable energy systems.

  9. Process for the production of fuel gas from coal

    DOE Patents [OSTI]

    Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

    1982-01-01

    An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

  10. Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations

    SciTech Connect (OSTI)

    Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-08-02

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize food versus fuel concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  11. Process for making a martensitic steel alloy fuel cladding product

    DOE Patents [OSTI]

    Johnson, Gerald D. (Kennewick, WA); Lobsinger, Ralph J. (Kennewick, WA); Hamilton, Margaret L. (Richland, WA); Gelles, David S. (West Richland, WA)

    1990-01-01

    This is a very narrowly defined martensitic steel alloy fuel cladding material for liquid metal cooled reactors, and a process for making such a martensitic steel alloy material. The alloy contains about 10.6 wt. % chromium, about 1.5 wt. % molybdenum, about 0.85 wt. % manganese, about 0.2 wt. % niobium, about 0.37 wt. % silicon, about 0.2 wt. % carbon, about 0.2 wt. % vanadium, 0.05 maximum wt. % nickel, about 0.015 wt. % nitrogen, about 0.015 wt. % sulfur, about 0.05 wt. % copper, about 0.007 wt. % boron, about 0.007 wt. % phosphorous, and with the remainder being essentially iron. The process utilizes preparing such an alloy and homogenizing said alloy at about 1000.degree. C. for 16 hours; annealing said homogenized alloy at 1150.degree. C. for 15 minutes; and tempering said annealed alloy at 700.degree. C. for 2 hours. The material exhibits good high temperature strength (especially long stress rupture life) at elevated temperature (500.degree.-760.degree. C.).

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Excise Tax Beginning January 1, 2017, alternative fuels will be taxed equal to the motor fuel tax on a gallon equivalent basis. Alternative fuels include natural gas, propane, hydrogen, and hythane. A gallon equivalent is defined as 5.660 pounds (lbs.) of compressed natural gas, 6.06 lbs. of liquefied natural gas, 480.11 standard cubic feet of hydrogen, and 162.44 standard cubic feet of hydrogen compressed natural gas. A gallon of propane is measured as 4 quarts or 3.785 liters. (Reference House

  13. H.R. 5299: A Bill to amend the Internal Revenue Code of 1986 to phase out the tax subsidies for alcohol fuels involving alcohol produced from feedstocks eligible to receive Federal agricultural subsidies. Introduced in the House of Representatives, One Hundred Third Congress, Second Session, November 29, 1994

    SciTech Connect (OSTI)

    1994-12-31

    The report H.R. 5299 is a bill to amend the Internal Revenue Code of 1986 to phase out the tax subsidies of alcohol fuels involving alcohol produced from feedstocks eligible to receive Federal agriculture subsidies. The proposed legislative text is included.

  14. Production of biomass fuel for resource recovery: Trash recycling in Dade County, Florida

    SciTech Connect (OSTI)

    Mauriello, P.J.; Brooks, K.G.

    1997-12-01

    Dade County, Florida has been in the forefront of resources recovery from municipal solid waste since the early 1980`s. The County completed its 3,000 tons per day (six days per week) refuse derived fuel waste-to-energy facility in 1982. The Resources Recovery facility is operated under a long-term agreement with Montenay-Dade, Ltd. The trash processing capability of this facility was upgraded in 1997 to process 860 tons per day (six days per week) of trash into a biomass fuel which is used off-site to produce electrical energy. Under current Florida law, facilities like trash-to-fuel that produce alternative clean-burning fuels for the production of energy may receive credit for up to one-half of the state`s 30 percent waste reduction goal.

  15. Buildings Energy Data Book: 7.2 Federal Tax Incentives

    Buildings Energy Data Book [EERE]

    2 Tax Incentive of the American Recovery and Reinvestment Act of 2009 Envelope Improvements to Existing Homes (1) --Increases existing tax credit to 30% of costs up to $1,500 to upgrade building envelope to be compliant with codes for new construction. Upgrades to building shell, HVAC system, and windows and doors may qualify. Improvements must be installed between January 1, 2008 and December 31, 2010. Renewable Energy Production Tax Credits --Tax credit to 30% of costs for installation of

  16. MINING PROCESS AND PRODUCT INFORMATION FROM PRESSURE FLUCTUATIONS WITHIN A FUEL PARTICLE COATER

    SciTech Connect (OSTI)

    Douglas W. Marshall; Charles M. Barnes

    2008-09-01

    The Next Generation Nuclear Power (NGNP) Fuel Development and Qualification Program included the design, installation, and testing of a 6-inch diameter nuclear fuel particle coater to demonstrate quality TRISO fuel production on a small industrial scale. Scale-up from the laboratory-scale coater faced challenges associated with an increase in the kernel charge mass, kernel diameter, and a redesign of the gas distributor to achieve adequate fluidization throughout the deposition of the four TRISO coating layers. TRISO coatings are applied at very high temperatures in atmospheres of dense particulate clouds, corrosive gases, and hydrogen concentrations over 45% by volume. The severe environment, stringent product and process requirements, and the fragility of partially-formed coatings limit the insertion of probes or instruments into the coater vessel during operation. Pressure instrumentation were installed on the gas inlet line and exhaust line of the 6-inch coater to monitor the bed differential pressure and internal pressure fluctuations emanating from the fuel bed as a result of bed and gas bubble movement. These instruments are external to the particle bed and provide a glimpse into the dynamics of fuel particle bed during the coating process and data that could be used to help ascertain the adequacy of fluidization and, potentially, the dominant fluidization regimes. Pressure fluctuation and differential pressure data are not presently useful as process control instruments, but data suggest a link between the pressure signal structure and some measurable product attributes that could be exploited to get an early estimate of the attribute values.

  17. | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Video Library 31 Mar 2014 EFRC Creative Potential: Thinking Out of the Box Professor Petra Fromme is one of the Bisfuel Principal Investigators. "...Real advantage of the Center is that we have so many creative people working on different aspects of the process, on the hydrogen production catalysts, water splitting catalysts, on developing artificial antennas and reaction centers ... 17 Mar 2014 Rational Design of Artificial Metal-Based Enzymes Giovanna Ghirlanda is one of the EFRC

  18. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  19. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    SciTech Connect (OSTI)

    Wang, X; Ort, DR; Yuan, JS

    2015-01-28

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  20. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    SciTech Connect (OSTI)

    Dawn M. Scates; John K. Hartwell; John b. Walter

    2010-10-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/Bs) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  1. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    2010-07-12

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  2. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air is heated prior to entering the diffusion tower. Further analytical analysis is required to predict the thermal and mass transport with the air heating configuration.

  3. Energy Saver Tax Tips: Get Money Back for Buying, Charging Plug-in Electric Vehicles

    Broader source: Energy.gov [DOE]

    Find out if your plug-in electric vehicle, charging station, or other alternative fueling infrastructure qualify you for federal or state tax credits.

  4. Integrated production of fuel gas and oxygenated organic compounds from synthesis gas

    DOE Patents [OSTI]

    Moore, Robert B. (Allentown, PA); Hegarty, William P. (State College, PA); Studer, David W. (Wescosville, PA); Tirados, Edward J. (Easton, PA)

    1995-01-01

    An oxygenated organic liquid product and a fuel gas are produced from a portion of synthesis gas comprising hydrogen, carbon monoxide, carbon dioxide, and sulfur-containing compounds in a integrated feed treatment and catalytic reaction system. To prevent catalyst poisoning, the sulfur-containing compounds in the reactor feed are absorbed in a liquid comprising the reactor product, and the resulting sulfur-containing liquid is regenerated by stripping with untreated synthesis gas from the reactor. Stripping offgas is combined with the remaining synthesis gas to provide a fuel gas product. A portion of the regenerated liquid is used as makeup to the absorber and the remainder is withdrawn as a liquid product. The method is particularly useful for integration with a combined cycle coal gasification system utilizing a gas turbine for electric power generation.

  5. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect (OSTI)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  6. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    SciTech Connect (OSTI)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  7. Molten carbonate fuel cell (MCFC) product development test. Annual report, October 1994--September 1995

    SciTech Connect (OSTI)

    1996-01-01

    This report summarizes the technical progress that has occurred in conjunction with Cooperative Agreement No. DE-FC21-92MC28065, Molten Carbonate Fuel Cell Product Development Test (PDT) during the period of October 1, 1994 through September 30, 1995. Information is presented on stack design, manufacturing, stack assembly, procurement, site preparation, and test plan.

  8. Production of Renewable Fuels from Biomass by FCC Co-processing

    Broader source: Energy.gov [DOE]

    Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Production of Renewable Fuels from Biomass by FCC Co-processing Raymond Wissinger, Manager, Renewable Energy & Chemicals, Research & Development, UOP

  9. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    SciTech Connect (OSTI)

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  10. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    SciTech Connect (OSTI)

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  11. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    SciTech Connect (OSTI)

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  12. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  13. The Research Team | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Team Director: Professor Devens Gust Program Manager: Alexander Melkozernov Faculty research teams: Artificial Oxygen Evolving Complex for Water Oxidation Professor James Allen - team leader Professor Petra Fromme Professor Giovanna Ghirlanda Professor Yan Liu Professor Kevin Redding Professor Hao Yan Fuel Production Complex Professor Giovanna Ghirlanda - team leader Professor Anne Jones Professor Kevin Redding Artificial Photosynthetic Reaction Center - Antenna Complex Professor Ana

  14. Large-Scale Production of Marine Microalgae for Fuel and Feeds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office (BETO) 2015 Project Peer Review Large-Scale Production of Marine Microalgae for Fuel and Feeds March 24, 2015 Algae Platform Review Mark Huntley Cornell Marine Algal Biofuels Consortium This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement  BETO MYPP Goals (3) Demonstrate 1. Performance against clear cost goals and technical targets (Q4 2013) 2. Productivity of 1,500 gal/acre/yr algal oil (Q4 2014)

  15. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Hydrogen Production and Delivery Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Advancing Systems and Technologies to Produce Cleaner Fuels Technology Assessments Bioenergy Conversion Biomass Feedstocks and Logistics Gas Hydrates Research and Development Hydrogen Production and Delivery Natural Gas Delivery Infrastructure Offshore Safety and Spill Reduction Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Hydrogen Production and Delivery Chapter 7: Technology Assessments Introduction to the

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) Tax CNG used in motor vehicles is subject to a state motor fuel tax rate of $0.26 per gasoline gallon equivalent (GGE). For taxation purposes, one GGE is equal to 5.66 pounds or 126.67 standard cubic feet of natural gas. (Reference House Bill 5466, 2014, and Special Notice 2014-2

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use CNG and electricity that local agencies or public transit operators use as motor vehicle fuel to operate public transit services is exempt from applicable user taxes a county imposes. (Reference California Revenue and Taxation Code 7284.3

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Mixture Excise Tax Credit NOTE: This incentive was retroactively extended multiple times, most recently through December 31, 2016, by H.R. 2029. An alternative fuel blender that is registered with the Internal Revenue Service (IRS) may be eligible for a tax incentive on the sale or use of the alternative fuel blend (mixture) for use as a fuel in the blender's trade or business. The credit is in the amount of $0.50 per gallon of alternative fuel used to produce a mixture

  19. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    SciTech Connect (OSTI)

    Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  20. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  1. Determination of combustion products from alternative fuels. Part I. LPG and CNG combustion products

    SciTech Connect (OSTI)

    Whitney, K.A.; Bailey, B.K.

    1994-10-01

    This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2 nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. 4 refs., 3 figs., 14 tabs.

  2. Maximizing Efficiency in Two-step Solar-thermochemical Fuel Production

    SciTech Connect (OSTI)

    Ermanoski, I.

    2015-05-01

    Widespread solar fuel production depends on its economic viability, largely driven by the solar-to-fuel conversion efficiency. Herein, the material and energy requirements in two-step solar-thermochemical cyclesare considered.The need for advanced redox active materials is demonstrated, by considering the oxide mass flow requirements at a large scale. Two approaches are also identified for maximizing the efficiency: optimizing reaction temperatures, and minimizing the pressure in the thermal reduction step by staged thermal reduction. The results show that each approach individually, and especially the two in conjunction, result in significant efficiency gains.

  3. Product Recovery from HTGR Reactor Fuel Processing Salt Official Use Only

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration of Fuel and Fission Product Recovery from HTGR Reactor Fuel Processing Salt Official Use Only K. M. L. Taylor-Pashow D. T. Hobbs September 2014 SRNL-TR-2014-00204, Revision 0 SRNL-TR-2014-00204 Revision 0 -- Official Use Only -- ii DISCLAIMER This work was prepared under an agreement with and funded by the U.S. Government. Neither the U.S. Government or its employees, nor any of its contractors, subcontractors or their employees, makes any express or implied: 1. warranty or assumes

  4. EFRC 501 - Fall 2012 | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 This year, the Center for Bio-inspired Solar Fuel Production has instituted a special section of CHM-501 for the graduate students affiliated with the EFRC. This class will give all of the students a chance to get to know their colleagues better, and to learn about the wide variety of research going on in the Center. The class will help each of the students to see how their research fits into the big picture, and learn how their work can benefit from the efforts of others. The BisFuel Center

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    gas (LNG) used in motor vehicles is also subject to a state motor fuel tax of 0.24 on a diesel gallon equivalent (DGE) basis. For taxation purposes, one DGE of LNG is equal ...

  6. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Excise Tax Liquefied petroleum gas (propane) and compressed natural gas are subject to a federal excise tax of $0.183 per gasoline gallon equivalent (GGE). The liquefied natural gas tax rate is $0.243 per diesel gallon equivalent (DGE). For taxation purposes, one GGE is equal to 5.75 pounds (lbs.) of propane and 5.66 lbs. of CNG. One DGE is equal to 6.06 lbs. of LNG. (Reference Public Law 114-41 and 26 U.S. Code 4041 and 4081) Point of Contact Excise Tax Branch U.S. Internal

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Green Jobs Tax Credit Qualified employers are eligible for a $500 tax credit for each new green job created that offers a salary of at least $50,000, for up to 350 jobs per employer. The credit is allowed for the first five years that the job is continuously filled. For the purposes of this tax credit, a green job is defined as employment in industries relating to renewable or alternative energy, including hydrogen and fuel cell technology, landfill gas, and biofuels. The tax credit expires on

  9. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect (OSTI)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did not have the diluent requirements of Prototype-1 and was demonstrated at targeted gas turbine conditions. The TVC combustor, Prototype-2, premixes the syngas with air for low emission performance. The combustor was designed for operation with syngas and no additional diluents. The combustor was successfully operated at targeted gas turbine conditions. Another goal of the program was to advance the status of development tools for syngas systems. In Task 3 a syngas flame evaluation facility was developed. Fundamental data on syngas flame speeds and flame strain were obtained at pressure for a wide range of syngas fuels with preheated air. Several promising reduced order kinetic mechanisms were compared with the results from the evaluation facility. The mechanism with the best agreement was selected for application to syngas combustor modeling studies in Task 6. Prototype-1 was modeled using an advanced LES combustion code. The tools and combustor technology development culminate in a full-scale demonstration of the most promising technology in Task 8. The combustor was operated at engine conditions and evaluated against the various engine performance requirements.

  10. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    SciTech Connect (OSTI)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  11. IMPACT OF FISSION PRODUCTS IMPURITY ON THE PLUTONIUM CONTENT IN PWR MOX FUELS

    SciTech Connect (OSTI)

    Gilles Youinou; Andrea Alfonsi

    2012-03-01

    This report presents the results of a neutronics analysis done in response to the charter IFCA-SAT-2 entitled 'Fuel impurity physics calculations'. This charter specifies that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies (UOX SNF) is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate PWR MOX fuel assemblies. Only non-gaseous FP have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1). This mixture of Pu and FP is called PuFP. Note that, in this preliminary analysis, the FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

  12. A review of recent advances of numerical simulations of microscale fuel processors for hydrogen production

    SciTech Connect (OSTI)

    Holladay, Jamelyn D.; Wang, Yong

    2015-05-01

    Microscale (<5W) reformers for hydrogen production have been investigated for over a decade. These devices are intended to provide hydrogen for small fuel cells. Due to the reformers small size, numerical simulations are critical to understand heat and mass transfer phenomena occurring in the systems. This paper reviews the development of the numerical codes and details the reaction equations used. The majority of the devices utilized methanol as the fuel due to methanols low reforming temperature and high conversion, although, there are several methane fueled systems. As computational power has decreased in cost and increased in availability, the codes increased in complexity and accuracy. Initial models focused on the reformer, while more recently, the simulations began including other unit operations such as vaporizers, inlet manifolds, and combustors. These codes are critical for developing the next generation systems. The systems reviewed included, plate reactors, microchannel reactors, annulus reactors, wash-coated, packed bed systems.

  13. Method and device for fabricating dispersion fuel comprising fission product collection spaces

    DOE Patents [OSTI]

    Shaber, Eric L; Fielding, Randall S

    2015-05-05

    A method of fabricating a nuclear fuel comprising a fissile material, one or more hollow microballoons, a phenolic resin, and metal matrix. The fissile material, phenolic resin and the one or more hollow microballoons are combined. The combined fissile material, phenolic resin and the hollow microballoons are heated sufficiently to form at least some fissile material carbides creating a nuclear fuel particle. The resulting nuclear fuel particle comprises one or more fission product collection spaces. In a preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by forming the fissile material into microspheres. The fissile material microspheres are then overcoated with the phenolic resin and microballoon. In another preferred embodiment, the fissile material, phenolic resin and the one or more hollow microballoons are combined by overcoating the microballoon with the fissile material, and phenolic resin.

  14. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Dealer License Any person who sells natural gas and propane on which the road tax has not been paid and who is not licensed and bonded must become licensed through the New Hampshire Department of Safety. The alternative fuel dealer must collect and remit road taxes and will be subject to a penalty for noncompliance. Failure to obtain a license and demonstrate compliance may result in fines and loss of the license, respectively. (Reference New Hampshire Revised Statutes 260:36,

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax An excise tax rate of 9% of the average wholesale price on a per gallon basis applies to all special fuels, including diesel, natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, hydrogen, and any other combustible gases and liquids, excluding gasoline, used to propel motor vehicles. For taxation purposes, one gasoline gallon equivalent (GGE) of compressed natural gas (CNG) is equal to 5.66 pounds (lbs.) or 126.67 cubic feet. One GGE of liquefied natural gas

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Registration A fee of $75 is required for the registration of an AFV that operates on electricity, solar power, or any other source of energy not otherwise taxed under the state motor fuel tax laws. Compressed natural gas, liquefied natural gas, and liquefied petroleum gas (propane) are not subject to this requirement. (Reference Nebraska Revised Statutes 60-306 and 60-3,191

  18. Determination of combustion products from alternative fuels - part 1. LPG and CNG combustion products

    SciTech Connect (OSTI)

    Whitney, K.A.; Bailey, B.K.

    1994-10-01

    This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. Speciation data showed greater than 87 percent of all LPG and greater than 95 percent of all CNG hydrocarbon exhaust constituents to be composed of C{sub 1} to C{sub 3} compounds. In addition, toxic emissions from the combustion of CNG and LPG were as low as 10 percent of those generated by combustion of gasoline. A comparison of ozone forming potential of the three fuels was made based on the Maximum Incremental Reactivity scale used by the California Air Resources Board. Post-catalyst results from stoichiometric operation indicated that LPG and CNG produced 63 percent and 88 percent less potential ozone than reformulated gasoline, respectively. On average over all equivalence ratios, CNG and LPG exhaust constituents were approximately 65 percent less reactive than those from reformulated gasoline. 4 refs., 3 figs., 14 tabs.

  19. Co-production of electricity and alternate fuels from coal. Final report, August 1995

    SciTech Connect (OSTI)

    1995-12-31

    The Calderon process and its process development unit, PDU, were originally conceived to produce two useful products from a bituminous coal: a desulfurized medium BTU gas containing primarily CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and H{sub 2}O; and a desulfurized low BTU gas containing these same constituents plus N{sub 2} from the air used to provide heat for the process through the combustion of a portion of the fuel. The process was viewed as a means for providing both a synthesis gas for liquid fuel production (perhaps CH{sub 3}OH, alternatively CH{sub 4} or NH{sub 3}) and a pressurized, low BTU fuel gas, for gas turbine based power generation. The Calderon coal process comprises three principle sections which perform the following functions: coal pyrolysis in a continuous, steady flow unit based on coke oven technology; air blown, slagging, coke gasification in a moving bed unit based on a blast furnace technology; and a novel, lime pebble based, product gas processing in which a variety of functions are accomplished including the cracking of hydrocarbons and the removal of sulfur, H{sub 2}S, and of particulates from both the medium and low BTU gases. The product gas processing unit, based on multiple moving beds, has also been conceived to regenerate the lime pebbles and recover sulfur as elemental S.

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the state's sales and use tax all sales, storage, and use of components used in the production of alternating current electricity from a renewable energy source for fiscal......