National Library of Energy BETA

Sample records for fuel pilot plant

  1. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect (OSTI)

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  2. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    SciTech Connect (OSTI)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  3. APS Alternative Fuel (Hydrogen) Pilot Plant - Monitoring System Report

    SciTech Connect (OSTI)

    James Francfort; Dimitri Hochard

    2005-07-01

    The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), along with Electric Transportation Applications and Arizona Pubic Service (APS), is monitoring the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant to determine the costs to produce hydrogen fuels (including 100% hydrogen as well as hydrogen and compressed natural gas blends) for use by fleets and other operators of advanced-technology vehicles. The hydrogen fuel cost data will be used as benchmark data by technology modelers as well as research and development programs. The Pilot Plant can produce up to 18 kilograms (kg) of hydrogen per day by electrolysis. It can store up to 155 kg of hydrogen at various pressures up to 6,000 psi. The dispenser island can fuel vehicles with 100% hydrogen at 5,000 psi and with blends of hydrogen and compressed natural gas at 3,600 psi. The monitoring system was designed to track hydrogen delivery to each of the three storage areas and to monitor the use of electricity on all major equipment in the Pilot Plant, including the fuel dispenser island. In addition, water used for the electrolysis process is monitored to allow calculation of the total cost of plant operations and plant efficiencies. The monitoring system at the Pilot Plant will include about 100 sensors when complete (50 are installed to date), allowing for analysis of component, subsystems, and plant-level costs. The monitoring software is mostly off-the-shelve, with a custom interface. The majority of the sensors input to the Programmable Automation Controller as 4- to 20-mA analog signals. The plant can be monitored over of the Internet, but the control functions are restricted to the control room equipment. Using the APS general service plan E32 electric rate of 2.105 cents per kWh, during a recent eight-month period when 1,200 kg of hydrogen was produced and the plant capacity factor was 26%, the electricity cost to produce one kg of hydrogen was $3.43. However, the

  4. EA-1870: Utah Coal and Biomass Fueled Pilot Plant, Kanab, Kane County, Utah

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an Environmental Assessment to evaluate the potential impacts of providing financial assistance to Viresco Energy, LLC, for its construction and operation of a Coal and Biomass Fueled Pilot Plant, which would be located in Kanab, Utah.

  5. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant AFFIDAVIT FOR SURVIVING RELATIVE STATE ) ) ss: COUNTY OF ) That I, , am the...

  6. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    SciTech Connect (OSTI)

    Demuth, Scott Francis; Sprinkle, James K.

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  7. MBM fuel feeding system design and evaluation for FBG pilot plant

    SciTech Connect (OSTI)

    Campbell, William A.; Fonstad, Terry; Pugsley, Todd; Gerspacher, Regan

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer A 1-5 g/s fuel feeding system for pilot scale FBG was designed, built and tested. Black-Right-Pointing-Pointer Multiple conveying stages improve pressure balancing, flow control and stability. Black-Right-Pointing-Pointer Secondary conveyor stage reduced output irregularity from 47% to 15%. Black-Right-Pointing-Pointer Pneumatic air sparging effective in dealing with poor flow ability of MBM powder. Black-Right-Pointing-Pointer Pneumatic injection port plugs with char at gasification temperature of 850 Degree-Sign C. - Abstract: A biomass fuel feeding system has been designed, constructed and evaluated for a fluidized bed gasifier (FBG) pilot plant at the University of Saskatchewan (Saskatoon, SK, Canada). The system was designed for meat and bone meal (MBM) to be injected into the gasifier at a mass flow-rate range of 1-5 g/s. The designed system consists of two stages of screw conveyors, including a metering stage which controlled the flow-rate of fuel, a rotary airlock and an injection conveyor stage, which delivered that fuel at a consistent rate to the FBG. The rotary airlock which was placed between these conveyors, proved unable to maintain a pressure seal, thus the entire conveying system was sealed and pressurized. A pneumatic injection nozzle was also fabricated, tested and fitted to the end of the injection conveyor for direct injection and dispersal into the fluidized bed. The 150 mm metering screw conveyor was shown to effectively control the mass output rate of the system, across a fuel output range of 1-25 g/s, while the addition of the 50 mm injection screw conveyor reduced the irregularity (error) of the system output rate from 47% to 15%. Although material plugging was found to be an issue in the inlet hopper to the injection conveyor, the addition of air sparging ports and a system to pulse air into those ports was found to successfully eliminate this issue. The addition of the pneumatic injection nozzle

  8. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant - December 2014 Enterprise Assessments Review, Waste Isolation Pilot Plant - December 2014 December, 2014 Review of the Waste Isolation Pilot Plant ...

  9. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4-3542 Site Sustainability Plan Waste Isolation Pilot Plant Fiscal Year 2015 Narrative November 2014 Office of Site Operations Carlsbad Field Office U.S. Department of Energy Approved By: //signature on file// 12/30/14 Jose R. Franco, Date Manager, Carlsbad Field Office Site Sustainability Plan Waste Isolation Pilot Plant, Fiscal Year 2015 Narrative DOE/WIPP-14-3542 Page 2 of 48 TABLE OF CONTENTS I. EXECUTIVE SUMMARY 4 TABLE 1. DOE Goal Summary Table 6 II. PERFORMANCE REVIEW AND PLAN NARRATIVE

  10. Intro to NREL's Thermochemical Pilot Plant

    SciTech Connect (OSTI)

    Magrini, Kim

    2013-09-27

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  11. Intro to NREL's Thermochemical Pilot Plant

    ScienceCinema (OSTI)

    Magrini, Kim

    2014-06-10

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  12. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plans and Reports WIPP Recovery Plan The Waste Isolation Pilot Plant (WIPP) Recovery Plan outlines the necessary steps to resume limited waste disposal operations in the first quarter of calendar year 2016. WIPP operations were suspended following an underground truck fire and a radiological release in February 2014. The recovery plan was issued on Sept. 30, 2014. Key elements of the recovery plan include strengthening safety programs, regulatory compliance, decontamination of the underground,

  13. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protective Actions Actions to Protect Workers, Public and the Environment The February 14 radioactivity release was a watershed event for the Waste Isolation Pilot Plant (WIPP). It was the first accident of its kind in the 15-year operating history of the transuranic nuclear waste repository. No workers were underground when the release occurred. There were 11 workers on the night shift at the time of the release and two additional employees entered the site in response to the accident. These 13

  14. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/25/16 WIPP Home Page About WIPP Contact Us Search About WIPP The nation's only deep geologic repository for nuclear waste The U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) is a deep geologic repository for permanent disposal of a specific type of waste that is the byproduct of the nation's nuclear defense program. CH and RH Waste WIPP is the nation's only repository for the disposal of nuclear waste known as transuranic, or TRU, waste. It consists of clothing, tools,

  15. Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What happened at WIPP in February 2014 Burned Truck Salt hauling truck after the fire Two isolated events took place at the Waste Isolation Pilot Plant (WIPP) in February. On February 5, a salt haul truck caught fire. Workers were evacuated, and the underground portion of WIPP was shut down. Six workers were treated for smoke inhalation. Nine days later, late in the evening of February 14, a second, unrelated event occurred when a continuous air monitor (CAM) alarmed during the night shift. Only

  16. Pilot Application to Nuclear Fuel Cycle Options

    Office of Energy Efficiency and Renewable Energy (EERE)

    A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options

  17. Waste Isolation Pilot Plant Transportation Security | Department...

    Office of Environmental Management (EM)

    Transportation Security Waste Isolation Pilot Plant Transportation Security Waste Isolation Pilot Plant Transportation Security (2.41 MB) More Documents & Publications Enterprise ...

  18. Sandia Energy - Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant Home Analysis A photo of Drum 68660 during the WIPP incident investigation. Permalink Gallery Waste Isolation Pilot Plant Technical Assessment Report...

  19. Biochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

  20. Waste Isolation Pilot Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations Waste Isolation Pilot Plant | June 2007 Salt Disposal Investigations The mission of the Waste Isolation Pilot Plant site is to provide permanent, underground disposal of TRU and TRU-mixed wastes (wastes that also have hazardous chemical components). TRU waste consists of clothing, tools, and debris left from the research and production of nuclear weapons. TRU waste is

  1. Waste Isolation Pilot Plant Activites | Department of Energy

    Office of Environmental Management (EM)

    Isolation Pilot Plant Activites Waste Isolation Pilot Plant Activites Waste Isolation Pilot Plant Activites (1.08 MB) More Documents & Publications EIS-0026: 2010 Annual Mitigation ...

  2. Waste Isolation Pilot Plant | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Waste Isolation Pilot Plant Operators prepare drums of contact-handled transuranic waste for loading into transportation containers Operators prepare drums of contact-handled transuranic waste for loading into transportation containers A transuranic waste shipment travels on an approved shipping route to the Waste Isolation Pilot Plant A transuranic waste shipment travels on an approved shipping route to the Waste Isolation Pilot Plant Operators prepare drums of

  3. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated ... renewable biomass feedstocks to sustainable and fungible transportation fuels * ...

  4. Turbine fuels from tar sands bitumen and heavy oil. Volume 1. Phase 3. Pilot plant testing, final design, and economics. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Carson, T.C.; Magill, L.G.; Swesey, J.R.

    1987-08-01

    Pilot-plant-scale demonstration of an upgrading/refining scheme to convert bitumen or heavy crude oil into high yields of specification-quality aviation turbine fuel was performed. An atmospheric residue from San Ardo (California) crude was converted under hydrovisbreaking conditions to synthetic crude for further refining. Naphtha cuts from the straight run and synthetic crude were combined, catalytically hydrotreated, then hydrocracked. Products from these operations were combined to produce two prototype specification fuels (JP-4 and JP-8) as well as two heavier, variable-quality fuels. An engineering design (Volume II) was developed for a 50,000 BPSD grass-roots refinery, from the pilot-plant operations. Capital investment and operating costs were estimated, and fuel manufacturing costs projected. Conclusions and recommendations for further work are included.

  5. Renewable Acid-hydrolysis Condensation Hydrotreating (REACH) Pilot Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Peer Review Renewable Acid-hydrolysis Condensation Hydrotreating (REACH) Pilot Plant March 23, 2015 Technology Area Review Karl Seck Mercurius Biofuels This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * Design, build, and operate a pilot plant to scale-up the Mercurius REACH TM process. * REACH TM - a novel technology that efficiently converts cellulosic biomass into drop-in hydrocarbon jet fuel and diesel. * Provides an

  6. Waste Isolation Pilot Plant Activites

    Office of Environmental Management (EM)

    DENVER, CO WASTE ISOLATION PILOT PLANT ACTIVITIES ACTIVITIES O.W. EATON MANAGER, EXTERNAL EMERGENCY MANAGEMENT OPENING OF NEW ROUTES COMPLIANCE WITH PUBLIC LAW 102 579 WIPP LANDWITHDRAWL 102-579 WIPP LANDWITHDRAWL ACT OF 1992 1082 EMERGENCY PERSONNEL TRAINED IN 2010 *MERRTT 1082 EMERGENCY PERSONNEL TRAINED IN 2010 MERRTT *INCIDENT COMMAND SYSTEM *HOSPITAL PREPAREDNESS *HOSPITAL PREPAREDNESS *MEDICAL EXAMINER DISPATCHER (BETA) *DISPATCHER (BETA) RADIOLOGICAL TRAINING RADIOLOGICAL TRAINING FOR FOR

  7. Better Plants Supply Chain Pilot Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUPPLY CHAIN PILOT Learn more at energy.goveereamobetter-plants The Department of ... Partners will receive aggregated year-end metrics that demonstrate the energy performance ...

  8. Enterprise Assessments Review, Waste Isolation Pilot Plant -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    December 2014 Review of the Waste Isolation Pilot Plant Recovery Plan for Operating Diesel Equipment with Available Underground Airflows. The Office of Nuclear Safety and...

  9. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  10. ClearFuels-Rentech Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The ClearFuels-Rentech pilot-scale biorefinery will use Fisher-Tropsch gas-to-liquids technology to create diesel and jet fuel.

  11. Waste Isolation Pilot Plant Update | Department of Energy

    Office of Environmental Management (EM)

    Update Waste Isolation Pilot Plant Update Waste Isolation Pilot Plant Update (578.15 KB) More Documents & Publications Transuranic Package Transporter (TRUPACT-III) Content Codes ...

  12. EM Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear...

    Office of Environmental Management (EM)

    Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear Energy Agency EM Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear Energy Agency April 14, 2016 - ...

  13. Waste Isolation Pilot Plant Typifies Optimizing Resources to...

    Office of Environmental Management (EM)

    Typifies Optimizing Resources to Maximize Results Waste Isolation Pilot Plant Typifies ... HalfPACT transportation packages on a Waste Isolation Pilot Plant (WIPP) truck are ...

  14. Waste Isolation Pilot Plant EMHQ Statement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant EMHQ Statement Waste Isolation Pilot Plant EMHQ Statement Topic: Approved Statement for WIPP Recovery Effort. PDF icon WIPP Statement - March 12, 2014...

  15. MHK Technologies/Uldolmok Pilot Tidal Current Power Plant | Open...

    Open Energy Info (EERE)

    Uldolmok Pilot Tidal Current Power Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Uldolmok Pilot Tidal Current Power Plant.jpg...

  16. New Fact Sheet Highlights Waste Isolation Pilot Plant Recovery...

    Office of Environmental Management (EM)

    Fact Sheet Highlights Waste Isolation Pilot Plant Recovery Progress New Fact Sheet Highlights Waste Isolation Pilot Plant Recovery Progress February 25, 2016 - 12:00pm Addthis ...

  17. Summary of Waste Isolation Pilot Plant (WIPP) Hypotheses | Department...

    Office of Environmental Management (EM)

    Summary of Waste Isolation Pilot Plant (WIPP) Hypotheses Summary of Waste Isolation Pilot Plant (WIPP) Hypotheses This document was used to determine facts and conditions during ...

  18. Enterprise Assessments Review of Waste Isolation Pilot Plant...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Engineering and Procurement Processes - November 2015 Enterprise Assessments Review of Waste Isolation Pilot Plant Engineering and Procurement Processes - ...

  19. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  20. Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the...

    Office of Environmental Management (EM)

    Analysis of Waste Isolation Pilot Plant (WIPP) Samples by the Savannah River National ... investigation into the radiological release event at the Waste Isolation Pilot Plant. ...

  1. Biochemical Conversion Pilot Plant (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biochemical Conversion Pilot Plant A pilot-scale conversion plant for researchers, industry partners, and stakeholders to test a variety of biochemical conversion processes and ...

  2. Analysis of Waste Isolation Pilot Plant (WIPP) Underground and...

    Office of Environmental Management (EM)

    Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah ... investigation into the radiological release event at the Waste Isolation Pilot Plant. ...

  3. Independent Oversight Review, Waste Isolation Pilot Plant - April...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2013 Independent Oversight Review, Waste Isolation Pilot Plant - April 2013 April 2013 Review of the Waste Isolation Pilot Plant Work Planning and Control Activities The...

  4. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This ...

  5. EM Cleanup Chief Surveys Progress in Waste Isolation Pilot Plant...

    Office of Environmental Management (EM)

    Surveys Progress in Waste Isolation Pilot Plant Underground EM Cleanup Chief Surveys Progress in Waste Isolation Pilot Plant Underground April 14, 2016 - 12:45pm Addthis Pictured ...

  6. Waste Isolation Pilot Plant Attracts World Interest

    Office of Energy Efficiency and Renewable Energy (EERE)

    CARLSBAD, N.M. – If a picture is worth a thousand words, seeing EM's Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., is invaluable to understanding the service it provides to the nation.

  7. Waste Isolation Pilot Plant Recovery Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Recovery Plan Revision 0 September 30, 2014 [This page left blank.] EXECUTIVE SUMMARY Overview This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to

  8. BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel BIOENERGIZEME INFOGRAPHIC CHALLENGE: Photosynthesis: Plants Making Fuel

  9. Waste Isolation Pilot Plant Technical Assessment Team Report...

    Office of Environmental Management (EM)

    Technical Assessment Team Report Revision 0 Waste Isolation Pilot Plant Technical Assessment Team Report Revision 0 This report provides the results of the Waste Isolation Pilot ...

  10. Independent Oversight Review, Waste Isolation Pilot Plant - November...

    Office of Environmental Management (EM)

    Independent Oversight Review, Waste Isolation Pilot Plant - November 2012 November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot ...

  11. Better Plants Water Pilot - Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Pilot - Overview Better Plants Water Pilot - Overview The Department of Energy (DOE) is expanding the Better Buildings Challenge to help partners demonstrate successful ...

  12. WIPP Status Report Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status Report Waste Isolation Pilot Plant Page 1 of 3 Report Statistics Report Version: 2.4.3 WDS Instance: prd05.wipp.carlsbad.nm.us Generated on: June 24, 2015 7:29 AM Generated by: REPORT, WEEKLY Total Pages: 3 Selection Criteria Reporting Date (As Of): 06/20/2015 Include Detail: No WIPP Status Report REPORT, WEEKLY June 24, 2015 7:29 AM Page 2 of 3 Waste Isolation Pilot Plant As of 06/20/15 SHIPMENTS and VOLUME RECEIVED AT WIPP Site Last Week (06/07/15- 06/13/15) Current Week (06/14/15-

  13. Waste Isolation Pilot Plant Status and Plans - 2010 | Department...

    Office of Environmental Management (EM)

    Status and Plans - 2010 Waste Isolation Pilot Plant Status and Plans - 2010 Overview of WIPP presented by Dr. Dave Moody. Waste Isolation Pilot Plant Status and Plans - 2010 (1.93 ...

  14. EM Waste Isolation Pilot Plant Team's Holiday Spirit Shines ...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Team's Holiday Spirit Shines EM Waste Isolation Pilot Plant Team's Holiday Spirit Shines December 23, 2013 - 12:00pm Addthis Aspen Cass, a relative of ...

  15. Argonne National Laboratory's Recycling Pilot Plant

    SciTech Connect (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2009-01-01

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  16. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  17. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  18. Enterprise Assessments Review, Waste Isolation Pilot Plant - December

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 | Department of Energy Review, Waste Isolation Pilot Plant - December 2014 Enterprise Assessments Review, Waste Isolation Pilot Plant - December 2014 December, 2014 Review of the Waste Isolation Pilot Plant Conduct of Maintenance Recovery Plan The Office of Nuclear Safety and Environmental Assessments, within the U.S. Department of Energy's independent Office of Enterprise Assessments, conducted a limited scope review of the current status of Waste Isolation Pilot Plant (WIPP) plans and

  19. EIS-0026: Waste Isolation Pilot Plant (WIPP), Carlsbad, New Mexico

    Broader source: Energy.gov [DOE]

    The Office of Environmental Restoration and Waste Management prepared this EIS for the Waste Isolation Pilot Plant.

  20. Enterprise Assessments Review, Waste Isolation Pilot Plant – December 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Review of the Waste Isolation Pilot Plant Recovery Plan for Operating Diesel Equipment with Available Underground Airflows

  1. Independent Oversight Review, Waste Isolation Pilot Plant - November 2012 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Isolation Pilot Plant - November 2012 Independent Oversight Review, Waste Isolation Pilot Plant - November 2012 November 2012 Review of Site Preparedness for Severe Natural Phenomena Events at the Waste Isolation Pilot Plant The Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent review of the U.S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) preparedness for severe

  2. Pilot fuel ignited stratified charge rotary combustion engine and fuel injector therefor

    SciTech Connect (OSTI)

    Loyd, R. W.

    1980-02-12

    For a pilot fuel ignited stratified charge rotary, internal combustion engine, the fuel injection system and a fuel injector therefor comprises a fuel injector having plural discharge ports with at least one of the discharge ports located to emit a ''pilot'' fuel charge (relatively rich fuel-air mixture) into a passage in the engine housing, which passage communicates with the engine combustion chambers. An ignition element is located in the passage to ignite the ''pilot'' fuel (a relatively rich fuel-air mixture) flowing through the passage. At least one other discharge port of the fuel injector is in substantially direct communication with the combustion chambers of the engine to emit a main fuel charge into the latter. The ignited ''pilot'' fuelair mixture, when ignited, flashes into the combustion chambers to ignite the main, relatively lean, fuel-air mixture which is in the combustion chambers.

  3. Waste Isolation Pilot Plant (WIPP) Site Cleanup By the Numbers | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (WIPP) Site Cleanup By the Numbers Waste Isolation Pilot Plant (WIPP) Site Cleanup By the Numbers Waste Isolation Pilot Plant (WIPP) Site Cleanup By the Numbers In 2015, EM developed site infographics highlighting each sites history and important metrics including: Decontamination and demolition of facilities and waste sites Secure storage of spent fuel Retrieval of radioactive sludge and saltcake from tanks Treatment of contaminated groundwater Waste safely stored in an

  4. ENVIRONMENTAL ASSESSMENT FOR OTEC PILOT PLANTS

    SciTech Connect (OSTI)

    Wilde, P.

    1980-06-01

    Logical and orderly progression of the OTEC program from conceptual designs through component testing to the goal of commercially viable OTEC plants require that the socio-legal requirements be met and the proper operating permits be obtained and maintained. This function is accomplished in a series of activities including: (1) Development and annual revision of a published OTEC Environmental Development Plan (EDP); (2) Compliance with NEPA/EPA and other regulatory requirements; and (3) Studies and research in support of the above. The Environmental Development Plan (EDP) lists the concerns, outlines the program to consider the effects and validity of such concerns on the OTEC program, and gives the time-table to meet the schedule, integrated with that of the engineering and design programs. The schedules of compliance activities and, to a lesser degree, research also are governed by the development progress of the technology. However, because of the lead time necessary to insure proper review the appropriate regulatory agencies, the environmental assessment program for the OTEC pilot plants (initially starting with the 10/40 MWe unit) is founded on the strategy of progressive improvement of previously accepted documentation. Based on experience with OTEC-1, the procedure for pilot plants will be: (1) Produce generic Environmental Assessment (EA) at the appropriate level of technology in advance of hardware contract; (2) Produce generic Environmental Impact Statement (EIS) at approximately the same time as the hardware procurement; (3) Monitor production of site specific supplement to the generic EIS prepared by the hardware contractor; (4) Assist pilot plant operator in applying and obtaining permits by providing current research and modeling data; (5) Monitor environmental program as required by regulatory agency; and (6) Use new site data for refining models for future pilot plant. assessments.

  5. Melvin Calvin: Fuels from Plants

    SciTech Connect (OSTI)

    Taylor, S.E.; Otvos, J.W.

    1998-11-24

    A logical extension of his early work on the path of carbon during photosynthesis, Calvin's studies on the production of hydrocarbons by plants introduced many in the scientific and agricultural worlds to the potential of renewable fuel and chemical feedstocks. He and his co-workers identified numerous candidate compounds from plants found in tropical and temperate climates from around the world. His travels and lectures concerning the development of alternative fuel supplies inspired laboratories worldwide to take up the investigation of plant-derived energy sources as an alternative to fossil fuels.

  6. Fuel Cell Power Plants Renewable and Waste Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * ...

  7. Better Plants Supply Chain Pilot – Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy (DOE) is working with Better Plants Partners to improve energy efficiency throughout their supply chains. Around 40 to 60 percent of a manufacturing company’s energy and carbon footprint can reside upstream in its supply chain—from raw materials, transport, and packaging to the energy consumed in manufacturing processes—but this number can be as high as 80 percent. Coordinating energy management practices between companies and their supply chains has the potential to significantly improve industrial energy productivity and reduce the amount of energy embedded in manufactured products. Through this Supply Chain Pilot, DOE will work with a select group of Better Plants Partners to extend the benefits of energy efficiency to their suppliers. Partners will leverage existing Better Plants Program resources and encourage suppliers to collectively set, track, and meet energy savings goals.

  8. Enterprise Assessments Assessment of the Waste Isolation Pilot Plant Fire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protection Program - July 2016 | Department of Energy Waste Isolation Pilot Plant Fire Protection Program - July 2016 Enterprise Assessments Assessment of the Waste Isolation Pilot Plant Fire Protection Program - July 2016 July 2016 Assessment of the Fire Protection Program at the Waste Isolation Pilot Plant The U.S. Department of Energy (DOE) Office of Nuclear Safety and Environmental Assessments, within the independent Office of Enterprise Assessments (EA), conducted a targeted assessment

  9. Performance Assessment Updates for Waste Isolation Pilot Plant

    Office of Environmental Management (EM)

    Recertification | Department of Energy

    Updates for Waste Isolation Pilot Plant Recertification Performance Assessment Updates for Waste Isolation Pilot Plant Recertification R. Chris Camphouse Sandia National Laboratories December 12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation Performance Assessment Updates for Waste Isolation Pilot Plant Recertification (3.4 MB) More Documents & Publications WIPP Performance Assessment:

  10. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste

    Office of Environmental Management (EM)

    Analysis Plan | Department of Energy The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release

  11. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    | Department of Energy Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee April 27, 2016 - 12:20pm Addthis Nuclear Waste Partnership received about 86 percent of the available fee for the performance period as the Waste Isolation Pilot Plant management and operations contractor. Nuclear Waste Partnership received about 86 percent of the available fee for the performance period as the Waste

  12. DOE - Office of Legacy Management -- Waste Isolation Pilot Plant - 019

    Office of Legacy Management (LM)

    Waste Isolation Pilot Plant - 019 FUSRAP Considered Sites Site: Waste Isolation Pilot Plant (019) More information at http://energy.gov/em and http://www.wipp.energy.gov Designated Name: Not Designated under FUSRAP Alternate Name: Waste Isolation Pilot Plant and National Transuranic Waste Program Office Location: Eddy County, New Mexico Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Storage of transuranic waste Site Disposition: DOE continuing mission site

  13. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Samples: Integrated Summary Report | Department of Energy Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical Assessment Team (TAT) has undertaken a

  14. DOE Waste Isolation Pilot Plant Receives EPA Recertification | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Waste Isolation Pilot Plant Receives EPA Recertification DOE Waste Isolation Pilot Plant Receives EPA Recertification March 29, 2006 - 9:42am Addthis CARLSBAD, NM - The U.S. Department of Energy's (DOE) Carlsbad Field Office today reached a significant milestone when its Waste Isolation Pilot Plant (WIPP) was recertified by the U.S. Environmental Protection Agency (EPA). This decision indicates that after a thorough evaluation of the physical state and performance of the facility,

  15. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  16. Radiological Release Event at the Waste Isolation Pilot Plant...

    Broader source: Energy.gov (indexed) [DOE]

    radiological release occurred at the Department of Energy Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Because access to the underground was restricted following...

  17. Enterprise Assessments Review of Waste Isolation Pilot Plant...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Engineering and Procurement Processes November 2015 Office of ... NQA Nuclear Quality Assurance NWP Nuclear Waste Partnership, LLC OFI Opportunity for ...

  18. Sandia Energy - Waste Isolation Pilot Plant Accident Investigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Energy Nuclear Energy News News & Events Research & Capabilities Systems Analysis Materials Science Computational Modeling & Simulation Waste Isolation Pilot Plant Accident...

  19. Modeling Tomorrow's Biorefinery--the NREL Biochemical Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    2008-03-01

    Brochure describing the capabilities of NREL's Biochemical Pilot Plant. In this facility, researchers test ideas for creating high-value products from cellulosic biomass.

  20. Waste Isolation Pilot Plant, National Transuranic Program Have...

    Office of Environmental Management (EM)

    Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 Waste ... WIPP has permanently disposed of more than 89,000 cubic meters of TRU waste enough ...

  1. Operation result of 40kW class MCFC pilot plant

    SciTech Connect (OSTI)

    Saitoh, H.; Hatori, S.; Hosaka, M.; Uematsu, H.

    1996-12-31

    Ishikawajima-Harima Heavy Industries Co., Ltd. developed unique Molten Carbonate Fuel Cell (MCFC) system based on our original concept. To demonstrate the possibility of this system, based on MCFC technology of consigned research from New Energy and Industrial Technology Development Organization (NEDO) in Japan, we designed 40kW class MCFC pilot plant which had all equipments required as a power plant and constructed in our TO-2 Technical Center. This paper presents the test results of the plant.

  2. Fuel quantity modulation in pilot ignited engines

    DOE Patents [OSTI]

    May, Andrew

    2006-05-16

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  3. TASK 3: PILOT PLANT GASIFIER TESTING

    SciTech Connect (OSTI)

    Fusselman, Steve

    2015-11-01

    Aerojet Rocketdyne (AR) has developed an innovative gasifier concept incorporating advanced technologies in ultra-dense phase dry feed system, rapid mix injector, and advanced component cooling to significantly improve gasifier performance, life, and cost compared to commercially available state-of-the-art systems. Design, fabrication and initial testing of the pilot plant compact gasifier was completed in 2011 by a development team led by AR. Findings from this initial test program, as well as subsequent gasifier design and pilot plant testing by AR, identified a number of technical aspects to address prior to advancing into a demonstration-scale gasifier design. Key among these were an evaluation of gasifier ability to handle thermal environments with highly reactive coals; ability to handle high ash content, high ash fusion temperature coals with reliable slag discharge; and to develop an understanding of residual properties pertaining to gasification kinetics as carbon conversion approaches 99%. The gasifier did demonstrate the ability to withstand the thermal environments of highly reactive Powder River Basin coal, while achieving high carbon conversion in < 0.15 seconds residence time. Continuous operation with the high ash fusion temperature Xinyuan coal was demonstrated in long duration testing, validating suitability of outlet design as well as downstream slag discharge systems. Surface area and porosity data were obtained for the Xinyuan and Xinjing coals for carbon conversion ranging from 85% to 97%, and showed a pronounced downward trend in surface area per unit mass carbon as conversion increased. Injector faceplate measurements showed no incremental loss of material over the course of these experiments, validating the commercially traceable design approach and supportive of long injector life goals. Hybrid testing of PRB and natural gas was successfully completed over a wide range of natural gas feed content, providing test data to anchor predictions

  4. Carbon Fiber Pilot Plant and Research Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Plant and Research Facilities Carbon Fiber Pilot Plant and Research Facilities 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. lm003_warren_2010_o.pdf (2 MB) More Documents & Publications Lower Cost Carbon Fiber Precursors Carbon Fiber Technology Facility Carbon Fiber Technology Facility

  5. Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant |

    Office of Environmental Management (EM)

    Department of Energy The documents included in this listing are additional references not included in the Phase 2 Radiological Release at the Waste Isolation Pilot Plant, Attachment F: Bibliography and References report. The documents were examined and used to develop the final report. Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOE

  6. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    1995-11-01

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  7. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2008-09-30

    system, was demonstrated. System analyses of 40 MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, were carried out using CHEMCAD simulation software. The analyses included systems for near-term and long-term deployment. A new concept was developed that was based on clusters of one-MW fuel cell modules as the building blocks. The preliminary design of a 40 MW power plant, including the key equipment layout and the site plan, was completed. The process information and operational data from the proof-of-concept tests were used in the design of 40 MW high efficiency DFC/T power plants. A preliminary cost estimate for the 40 MW DFC/T plant was also prepared. Pilot-scale tests of the cascaded fuel cell concept for achieving high fuel utilizations were conducted. The tests demonstrated that the concept has the potential to offer higher power plant efficiency. Alternate stack flow geometries for increased power output and fuel utilization capabilities were also evaluated. Detailed design of the packaged sub-MW DFC/T Alpha Unit was completed, including equipment and piping layouts, instrumentation, electrical, and structural drawings. The lessons learned from the proof-of-concept tests were incorporated in the design of the Alpha Unit. The sub-MW packaged unit was fabricated, including integration of the Direct FuelCell{reg_sign} (DFC{reg_sign}) stack module with the mechanical balance-of-plant and electrical balance-of-plant. Factory acceptance tests of the Alpha DFC/T power plant were conducted at Danbury, CT. The Alpha Unit achieved an unsurpassed electrical efficiency of 58% (LHV natural gas) during the factory tests. The resulting high efficiency in conversion of chemical energy to electricity far exceeded any sub-MW class power generation equipment presently in the market. After successful completion of the factory tests, the unit was shipped to the Billings Clinic in Billings, MT, for field demonstration tests. The DFC/T unit accomplished a major

  8. Integrated Pilot Plant for a Large Cold Crucible Induction Melter

    SciTech Connect (OSTI)

    Do Quang, R.; Jensen, A.; Prod'homme, A.; Fatoux, R.; Lacombe, J.

    2002-02-26

    COGEMA has been vitrifying high-level liquid waste produced during nuclear fuel reprocessing on an industrial scale for over 20 years, with two main objectives: containment of the long lived fission products and reduction of the final volume of waste. Research performed by the French Atomic Energy Commission (CEA) in the 1950s led to the selection of borosilicate glass as the most suitable containment matrix for waste from spent nuclear fuel and to the development of the induction melter technology. This was followed by the commissioning of the Marcoule Vitrification Facility (AVM) in 1978. The process was implemented at a larger scale in the late 1980s in the R7 and T7 facilities of the La Hague reprocessing plant. COGEMA facilities have produced more than 11,000 high level glass canisters, representing more than 4,500 metric tons of glass and 4.5 billion curies. To further improve the performance of the vitrification lines in the R7 and T7 facilities, the CEA and COGEMA have been developing the Cold Crucible Melter (CCM) technology since the 1980s. This technology benefits from the 20 years of COGEMA HLW vitrification experience and ensures a virtually unlimited equipment service life and extensive flexibility in dealing with different types of waste. The high specific power directly transferred by induction to the melt allows high operating temperatures without any impact on the process equipment. In addition, the mechanical stirring of the melter significantly reduces operating constraints. COGEMA is already providing the CCM technology to international customers for nuclear and non-nuclear applications and plans to implement it in the La Hague vitrification plant for the vitrification of highly concentrated and corrosive solutions produced by uranium/molybdenum fuel reprocessing. The paper presents the CCM project that led to the building and start-up of this evolutionary and flexible pilot plant. It also describes the plant's technical characteristics and

  9. Development of 1000kW-class MCFC pilot plant

    SciTech Connect (OSTI)

    Ooue, M.; Yasue, H.; Takasu, K.; Tsuchitori, T.

    1996-12-31

    This pilot plant is a part of the New Sunshine Program which has proceeded by the Agency of Industrial Science and Technology of the Ministry of International Trade and Industry. MCFC Research Association is entrusted with the development of the pilot plant, and constructing it at Kawagoe site. Following items will be verified by this pilot plant operation. (a) Development of 250kW class stack and confirmation of stack performance and decay rate. (b) System verification such as basic process, control system and operation characteristics, toward commercialization. (c) To get design data for demonstration plant.

  10. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol...

    Broader source: Energy.gov (indexed) [DOE]

    pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of cellulosic ethanol from switchgrass and energy sorghum. ICM's pilot plant is ...

  11. WIPP | U.S. Department of Energy | Waste Isolation Pilot Plant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the Waste Isolation Pilot Plant and the NationalTransuranic (TRU) Program. ... Overview opening screen The Waste Isolation Pilot Plant, or WIPP, safely disposes of the ...

  12. From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    From Hydrogen Fuel Cells to High-Altitude-Pilot Protection Suits- Mound Science and Energy Museum Programs Cover a Wide Range of Topics From Hydrogen Fuel Cells to ...

  13. NREL SBV Pilot Fuel Cells Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists, engineers, and analysts, as well as world-class facilities in fuel cells; hydrogen production, delivery, and infrastructure technology; hydrogen storage; safety,...

  14. Fuel burner having a intermittent pilot with pre-ignition testing

    SciTech Connect (OSTI)

    Peterson, S.M.

    1991-07-30

    This patent describes improvement in a fuel burner having a main burner and a pilot burner for lighting the main burner, an electrically-powered igniter for lighting the pilot burner, a source of electric energy, an igniter power supply receiving a demand signal and supplying power to the igniter responsive to the demand signal, a pilot sensor adjacent to the pilot burner and supplying a pilot signal responsive to presence of a pilot flame, and a main burner valve controlling flow of fuel to the main burner and opening responsive to the pilot signal. The improvement comprises: a pilot burner valve controlling flow of fuel to the pilot burner and opening responsive to a pilot valve control signal; igniter sensing means in sensing relation to the igniter for providing an igniter signal responsive to operation of the igniter; and pilot valve control means receiving the igniter signal, for providing the pilot valve control signal responsive to the igniter signal.

  15. DOE - Office of Legacy Management -- Reduction Pilot Plant - WV 01

    Office of Legacy Management (LM)

    Reduction Pilot Plant - WV 01 FUSRAP Considered Sites Site: REDUCTION PILOT PLANT (WV.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: International Nickel Company WV.01-1 Location: Cole Street at Alterizer Ave. , Huntington , West Virginia WV.01-2 Evaluation Year: 1987 WV.01-1 Site Operations: Manufactured powdered Nickel for use at Paducah and Portsmouth gaseous diffusion plants and Nickel plated a small quantity of Uranium slugs. WV.01-2

  16. Fuel control for gas turbine with continuous pilot flame

    DOE Patents [OSTI]

    Swick, Robert M.

    1983-01-01

    An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.

  17. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waste Isolation Pilot Plant (WIPP) Recovery Waste Isolation Pilot Plant (WIPP) Recovery The U.S. Department of Energy’s (DOE) Waste Isolation Pilot Plant (WIPP) is a deep geologic repository for permanent disposal of a specific type of waste that is the byproduct of the nation's nuclear defense program. WIPP is the nation's only repository for the disposal of nuclear waste known as transuranic, or TRU, waste. Two incidents occurred in February 2014 that led to the current shutdown of the

  18. Waste Isolation Pilot Plant (WIPP) Recovery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant (WIPP) Recovery Waste Isolation Pilot Plant (WIPP) Recovery The U.S. Department of Energy’s (DOE) Waste Isolation Pilot Plant (WIPP) is a deep geologic repository for permanent disposal of a specific type of waste that is the byproduct of the nation's nuclear defense program. WIPP is the nation's only repository for the disposal of nuclear waste known as transuranic, or TRU, waste. Two incidents occurred in February 2014 that led to the current shutdown of the

  19. DOE - Office of Legacy Management -- Pasadena Chemical Corp Pilot Plant -

    Office of Legacy Management (LM)

    TX 01 Pasadena Chemical Corp Pilot Plant - TX 01 FUSRAP Considered Sites Site: PASADENA CHEMICAL CORP., PILOT PLANT (TX.01) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Olin Mathieson Chemical Corp. Mobil Mining and Minerals TX.01-2 TX.01-1 Location: Pasadena , Texas TX.01-2 Evaluation Year: 1985 TX.01-1 Site Operations: Process development studies and pilot plant testing of uranium recovery from phosphoric acid during the mid-1950s. TX.01-3 Site

  20. Draft environmental assessment: Ocean Thermal Energy Conversion (OTEC) Pilot Plants

    SciTech Connect (OSTI)

    Sullivan, S.M.; Sands, M.D.; Donat, J.R.; Jepsen, P.; Smookler, M.; Villa, J.F.

    1981-02-01

    This Environmental Assessment (EA) has been prepared, in accordance with the National Environmental Policy Act of 1969, for the deployment and operation of a commercial 40-Megawatt (MW) Ocean Thermal Energy Conversion (OTEC) Pilot Plant (hereafter called the Pilot Plant). A description of the proposed action is presented, and a generic environment typical of the candidate Pilot Plant siting regions is described. An assessment of the potential environmental impacts associated with the proposed action is given, and the risk of credible accidents and mitigating measures to reduce these risks are considered. The Federal and State plans and policies the proposed action will encompass are described. Alternatives to the proposed action are presented. Appendix A presents the navigation and environmental information contained in the US Coast Pilot for each of the candidate sites; Appendix B provides a brief description of the methods and calculations used in the EA. It is concluded that environmental disturbances associated with Pilot Plant activities could potentially cause significant environmental impacts; however, the magnitude of these potential impacts cannot presently be assessed, due to insufficient engineering and environmental information. A site- and design-specific OTEC Pilot Plant Environmental Impact Statement (EIS) is required to resolve the potentially significant environmental effects associated with Pilot Plant deployment and operation. (WHK)

  1. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell

  2. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect (OSTI)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  3. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2008-03-12

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problems; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) explains the rationale and design criteria for the environmental monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document changes in the environmental monitoring program. Guidance for preparation of EMPs is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance.

  4. Waste Isolation Pilot Plant Contractor Receives 86 Percent of...

    Office of Environmental Management (EM)

    Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee April 27, 2016 - 12:20pm Addthis Nuclear Waste Partnership received about 86 percent of the available ...

  5. Independent Oversight Inspection, Waste Isolation Pilot Plant, Summary Report- August 2002

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management at the Waste Isolation Pilot Plant

  6. Waste Isolation Pilot Plant Technical Assessment Team Report Revision 0 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technical Assessment Team Report Revision 0 Waste Isolation Pilot Plant Technical Assessment Team Report Revision 0 This report provides the results of the Waste Isolation Pilot Plant (WIPP) technical assessment led by the Savannah River National Laboratory and conducted by a team of experts in pertinent disciplines from SRNL and Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia

  7. Enterprise Assessments Review of Waste Isolation Pilot Plant Engineering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Procurement Processes - November 2015 | Department of Energy Review of Waste Isolation Pilot Plant Engineering and Procurement Processes - November 2015 Enterprise Assessments Review of Waste Isolation Pilot Plant Engineering and Procurement Processes - November 2015 November 2015 Review of Engineering and Procurement Processes The U.S. Department of Energy (DOE) Office of Environment, Safety and Health Assessments, within the independent Office of Enterprise Assessments (EA), conducted

  8. Waste Isolation Pilot Plant Recovery Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Plan Waste Isolation Pilot Plant Recovery Plan This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to meet that schedule while prioritizing safety, health, and

  9. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant -

    Office of Environmental Management (EM)

    March 2009 | Department of Energy March 2009 Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant - March 2009 March 2009 Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition. The Team conducted its review during March 3-4, 2009 to determine whether Security Walls, LLC is continuing to perform at a level deserving DOE-VPP Star recognition. Voluntary Protection Program Onsite Review, Waste

  10. Waste Isolation Pilot Plant Environmental Monitoring Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-02-19

    U.S. Department of Energy (DOE) Order 450.1, Environmental Protection Program, requires each DOE site to conduct environmental monitoring. Environmental monitoring at the Waste Isolation Pilot Plant (WIPP) is conducted in order to: (a) Verify and support compliance with applicable federal, state, and local environmental laws, regulations, permits, and orders; (b) Establish baselines and characterize trends in the physical, chemical, and biological condition of effluent and environmental media; (c) Identify potential environmental problems and evaluate the need for remedial actions or measures to mitigate the problem; (d) Detect, characterize, and report unplanned releases; (e) Evaluate the effectiveness of effluent treatment and control, and pollution abatement programs; and (f) Determine compliance with commitments made in environmental impact statements, environmental assessments, safety analysis reports, or other official DOE documents. This Environmental Monitoring Plan (EMP) has been written to contain the rationale and design criteria for the monitoring program, extent and frequency of monitoring and measurements, procedures for laboratory analyses, quality assurance (QA) requirements, program implementation procedures, and direction for the preparation and disposition of reports. Changes to the environmental monitoring program may be necessary to allow the use of advanced technology and new data collection techniques. This EMP will document any proposed changes in the environmental monitoring program. Guidance for preparation of Environmental Monitoring Plans is contained in DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance. The plan will be effective when it is approved by the appropriate Head of Field Organization or their designee. The plan discusses major environmental monitoring and hydrology activities at the WIPP and describes the programs established to ensure that WIPP operations do not

  11. New Mexico Natural Gas Plant Fuel Consumption (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) New Mexico Natural Gas Plant Fuel Consumption ... Referring Pages: Natural Gas Plant Fuel Consumption New Mexico Natural Gas Consumption by ...

  12. Pilot-plant automation for catalytic hydrotreating of heavy residua

    SciTech Connect (OSTI)

    Akimoto, O.; Iwamoto, Y.; Kodama, S.; Takeuchi, C.

    1983-08-01

    The research and development center of Chiyoda Chemical Engineering and Construction Co. has been investigating the catalytic hydrotreating of heavy residua via pilot plant technology. Chiyoda's 52 microreactors. bench-scale test units and pilot plants are each used depending on the purpose of the process development for heavy oil upgrading. The microreactors are effective for catalyst screening. Heavier fractions such as asphaltene and sludge materials often disturbed steady state operation. Many unique devices for the test units and improvement of operation procedures make extended operation easy as well as increasing reliability. The computerized data acquisition and data filing systems minimize the work not only for operators but for all research personnel. Currently, about 40 pilot plant units are continuously running while the others are in preparation. Fully automated operation requires only three for data checking at night. In the daytime, seven operators take care of feed supply, product removal and condition changes. For start-up and shut-down, one operator can handle three microreactos, but only one bench-scale unit or pilot plant. Planning is underway for an improved start-up system for the pilot plants using personal computers. This system automatically sets feed rate and raises reactor temperature. (JMT)

  13. ,"Texas Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  14. What Do You Think of Fuel Cell Vehicle Pilot Programs? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Think of Fuel Cell Vehicle Pilot Programs? What Do You Think of Fuel Cell Vehicle Pilot Programs? February 18, 2010 - 5:30am Addthis Yesterday, you read about Todd's experience with a fuel cell vehicle pilot program. What do you think of fuel cell vehicle pilot programs? Would you participate? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. E-mail your responses to the Energy Saver team at

  15. Hanford Shipment Arrives Safely At Waste Isolation Pilot Plant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Shipment Arrives Safely At Waste Isolation Pilot Plant CARLSBAD, N.M., July 14, 2000 - A shipment of defense-generated transuranic radioactive waste from the U.S. Department of Energy's (DOE's) Hanford Site arrived safely today at the Waste Isolation Pilot Plant (WIPP). The shipment left the Richland, Wash. site at about 5 p.m. (Pacific Time) July 12 and arrived at WIPP today at about 2:10 p.m. (MT). Hanford is the fourth DOE site to ship waste to WIPP. Over the next 35-year period,

  16. Waste Isolation Pilot Plant Update for January 2016 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update for January 2016 Waste Isolation Pilot Plant Update for January 2016 Topic: Presentation on the Waste Isolation Pilot Plant Update for January 2016. WIPP Update - January 27, 2016 (1.89

  17. Report for Waste Isolation Pilot Plant (WIPP) UG Sample #3, R15C5...

    Office of Environmental Management (EM)

    for Waste Isolation Pilot Plant (WIPP) UG Sample 3, R15C5 (9314) Report for Waste Isolation Pilot Plant (WIPP) UG Sample 3, R15C5 (9314) This document was used to determine ...

  18. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs October 19, 2015 - 12:38pm Addthis ICM Inc. announced ...

  19. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect (OSTI)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  20. One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August ...

  1. Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report

    SciTech Connect (OSTI)

    Britt, Phillip F

    2015-03-01

    Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report. Summaries of conclusions, analytical processes, and analytical results. Analysis of samples taken from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico in support of the WIPP Technical Assessment Team (TAT) activities to determine to the extent feasible the mechanisms and chemical reactions that may have resulted in the breach of at least one waste drum and release of waste material in WIPP Panel 7 Room 7 on February 14, 2014. This report integrates and summarizes the results contained in three separate reports, described below, and draws conclusions based on those results. Chemical and Radiochemical Analyses of WIPP Samples R-15 C5 SWB and R16 C-4 Lip; PNNL-24003, Pacific Northwest National Laboratory, December 2014 Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL); SRNL-STI-2014-00617; Savannah River National Laboratory, December 2014 Report for WIPP UG Sample #3, R15C5 (9/3/14); LLNL-TR-667015; Lawrence Livermore National Laboratory, January 2015 This report is also contained in the Waste Isolation Pilot Plant Technical Assessment Team Report; SRNL-RP-2015-01198; Savannah River National Laboratory, March 17, 2015, as Appendix C: Analysis Integrated Summary Report.

  2. Pilot-plant automation for catalytic hydrotreating of heavy residua

    SciTech Connect (OSTI)

    Akimoto, O.; Iwamoto, Y.; Kodama, S.; Takeuchi, C.

    1983-08-01

    Chiyoda's 52 microreactors, bench-scale test units and pilot plants are each used depending on the purpose of the process development for heavy oil upgrading. The microreactors are effective for catalyst screening. Heavier fractions such as asphaltene and sludge materials often disturbed steady state operation. Many unique devices for the test units and improvement of operation procedures make extended operation easy as well as increasing reliability. The computerized data acquisition and data filing systems minimize the work not only for operators but for all research personnel. Currently, about 40 pilot plant units are continuously running while the others are in preparation. Fully automated operation requires only three for data checking at night. In the daytime, seven operators take care of feed supply, product removal and condition changes. For start-up and shut-down, one operator can handle three microreactors, but only one bench-scale unit or pilot plant. Planning is underway for an improved start-up system for the pilot plants using personal computers. This system automatically sets feed rate and raises reactor temperature.

  3. Dissolution Studies With Pilot Plant and Actual INTEC Calcines

    SciTech Connect (OSTI)

    Herbst, Ronald Scott; Garn, Troy Gerry

    1999-04-01

    The dissolution of Idaho Nuclear Technology and Engineering Center (INTEC) pilot plant calcines was examined to determine solubility of calcine matrix components in acidic media. Two representatives pilot plant calcine types were studied: Zirconia calcine and Zirconia/ Sodium calcine. Dissolution of these calcines was evaluated using lower initial concentrations of nitric acid than used in previous tests to decrease the [H+] concentration in the final solutions. Lower [H+] concentrations contribute to more favorable TRUEX/SREX solvent extraction flowsheet performance. Dissolution and analytical results were also obtained for radioactive calcines produced using high sodium feeds blended with non-radioactive A1(NO3)3 solutions to dilute the sodium concentration and prevent bed agglomeration during the calcination process. Dissolution tests indicated >95 wt. % of the initial calcine mass can be dissolved using the baseline dissolution procedure, with the exception that higher initial nitric acid concentrations are required. The higher initial acid concentration is required for stoichiometric dissolution of the oxides, primarily aluminum oxide. Statistically designed experiments using pilot plant calcine were performed to determine the effect of mixing rate on dissolution efficiency. Mixing rate was determined to provide minimal effects on wt. % dissolution. The acid/calcine ratio and temperature were the predominate variables affecting the wt. % dissolution, a result consistent with previous studies using other similar types of pilot plant calcines.

  4. New Fact Sheet Highlights Waste Isolation Pilot Plant Recovery Progress

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. – In a new fact sheet, DOE’s Carlsbad Field Office (CBFO) chronicles the significant progress in recovery efforts at the Waste Isolation Pilot Plant (WIPP) in the two years since a truck fire and radiological release at the site.

  5. Panelists Update Workshop Participants on Waste Isolation Pilot Plant Recovery

    Broader source: Energy.gov [DOE]

    A National Cleanup Workshop panel that included a Carlsbad, N.M., official and federal and contractor employees from EM headquarters and field sites provided an update on the Waste Isolation Pilot Plant (WIPP) recovery and transuranic waste generator sites across the DOE complex.

  6. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  7. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Success story about fuel cell power plants using wastewater treatment gas in Tulare, California. Presented by Frank Wolak, Fuel Cell Energy, at the NRELDOE Biogas and Fuel Cells ...

  8. West Virginia Natural Gas Plant Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Plant Fuel Consumption ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  9. Utah Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Consumption (Million Cubic Feet) Utah Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  10. Alabama Natural Gas Plant Fuel Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Plant Fuel Consumption (Million ... Release Date: 06302016 Next Release Date: 07292016 Referring Pages: Natural Gas Plant ...

  11. Pilot scale production and combustion of liquid fuels from refuse derived fuel (RDF): Part 2

    SciTech Connect (OSTI)

    Klosky, M.K.

    1996-09-01

    EnerTech is developing a process for producing pumpable slurry fuels, comparable to Coal-Water-Fuels (CWF), from solid Refuse Derived Fuels (RDF). Previous reports have described the characteristics of the enhanced carbonized RDF slurry fuels. This paper summarizes those fuel characteristics and reports on the latest combustion tests performed with the final product fuel. The objective of this research was to determine the boiler and emission performance from the carbonized RDF slurry fuel using statistical screening experiments. Eight combustion tests were performed with a pilot scale pulverized coal/oil boiler simulator, with CO, SO{sub 2}, and NO{sub x} emissions determined on-line. The combustion tests produced simultaneous CO and NO{sub x} emissions well below and SO{sub 2} emissions comparable to the promulgated New Source Performance Standards (NSPS). This research will form the basis for later combustion experiments to be performed with the carbonized RDF slurry fuel, in which dioxin/furan and trace metal emissions will be determined.

  12. Power Plant and Industrial Fuel Use Act

    Office of Energy Efficiency and Renewable Energy (EERE)

    Self-certification of power plants in acordance with Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended (42 U.S.C. 8301 et seq.).

  13. Direct FuelCell/Turbine Power Plant

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  14. Optimal design of a pilot OTEC power plant in Taiwan

    SciTech Connect (OSTI)

    Tseng, C.H.; Kao, K.Y. ); Yang, J.C. )

    1991-12-01

    In this paper, an optimal design concept has been utilized to find the best designs for a complex and large-scale ocean thermal energy conversion (OTEC) plant. THe OTEC power plant under this study is divided into three major subsystems consisting of power subsystem, seawater pipe subsystem, and containment subsystem. The design optimization model for the entire OTEC plant is integrated from these sub-systems under the considerations of their own various design criteria and constraints. The mathematical formulations of this optimization model for the entire OTEC plant are described. The design variables, objective function, and constraints for a pilot plant under the constraints of the feasible technologies at this stage in Taiwan have been carefully examined and selected.

  15. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container

  16. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  17. Doosan Fuel Cell Takes Closed Plant to Full Production | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Doosan Fuel Cell Takes Closed Plant to Full Production Doosan Fuel Cell Takes Closed Plant to Full Production December 8, 2015 - 12:06pm Addthis Photo Courtesy | Doosan Fuel Cell ...

  18. Power Plant and Industrial Fuel Use Act | Department of Energy

    Office of Environmental Management (EM)

    Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended ...

  19. Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in 2013 | Department of Energy Plant, National Transuranic Program Have Banner Year in 2013 Waste Isolation Pilot Plant, National Transuranic Program Have Banner Year in 2013 December 24, 2013 - 12:00pm Addthis Since WIPP became operational in March 1999, it has surpassed receiving 11,000 shipments, which traveled over 14 million safe loaded miles over the nation’s highways through WIPP’s transportation program — equal to about 29 trips around the moon. WIPP has permanently

  20. Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Plant Contractor Receives 86 Percent of Available Fee Waste Isolation Pilot Plant Contractor Receives 86 Percent of Available Fee April 27, 2016 - 12:20pm Addthis Nuclear Waste Partnership received about 86 percent of the available fee for the performance period as the Waste Isolation Pilot Plant management and operations contractor. Nuclear Waste Partnership received about 86 percent of the available fee for the performance period as the Waste Isolation Pilot Plant

  1. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-23

    In this reporting period, a milestone was achieved by commencement of testing and operation of the sub-scale hybrid direct fuel cell/turbine (DFC/T{reg_sign}) power plant. The operation was initiated subsequent to the completion of the construction of the balance-of-plant (BOP) and implementation of process and control tests of the BOP for the subscale DFC/T hybrid system. The construction efforts consisted of finishing the power plant insulation and completion of the plant instrumentation including the wiring and tubing required for process measurement and control. The preparation work also included the development of procedures for facility shake down, conditioning and load testing of the fuel cell, integration of the microturbine, and fuel cell/gas turbine load tests. At conclusion of the construction, the process and control (PAC) tests of BOP, including the microturbine, were initiated.

  2. Five-megawatt geothermal-power pilot-plant project

    SciTech Connect (OSTI)

    Not Available

    1980-08-29

    This is a report on the Raft River Geothermal-Power Pilot-Plant Project (Geothermal Plant), located near Malta, Idaho; the review took place between July 20 and July 27, 1979. The Geothermal Plant is part of the Department of Energy's (DOE) overall effort to help commercialize the operation of electric power plants using geothermal energy sources. Numerous reasons were found to commend management for its achievements on the project. Some of these are highlighted, including: (a) a well-qualified and professional management team; (b) effective cost control, performance, and project scheduling; and (c) an effective and efficient quality-assurance program. Problem areas delineated, along with recommendations for solution, include: (1) project planning; (2) facility design; (3) facility construction costs; (4) geothermal resource; (5) drilling program; (6) two facility construction safety hazards; and (7) health and safety program. Appendices include comments from the Assistant Secretary for Resource Applications, the Controller, and the Acting Deputy Director, Procurement and Contracts Management.

  3. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    SciTech Connect (OSTI)

    Schuetzle, Dennis; Tamblyn, Greg; Caldwell, Matt; Hanbury, Orion; Schuetzle, Robert; Rodriguez, Ramer; Johnson, Alex; Deichert, Fred; Jorgensen, Roger; Struble, Doug

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  4. Waste Isolation Pilot Plant 2001 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, Inc.

    2002-09-20

    The United States (U.S.) Department of Energy's (DOE) Carlsbad Field Office (CBFO) and Westinghouse TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2001 Site Environmental Report summarizes environmental data from calendar year (CY) 2001 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above Orders and guidance documents require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED). The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2001. WIPP received its first shipment of waste on March 26, 1999. In 2001, no evidence was found of any adverse effects from WIPP on the surrounding environment.

  5. Waste Isolation Pilot Plant CY 2000 Site Environmental Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions, LLC; Environmental Science and Research Foundation, Inc.

    2001-12-31

    The U.S. Department of Energy's (DOE) Carlsbad Field Office and Westinghouse TRU Solutions, LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2000 Site Environmental Report summarizes environmental data from calendar year (CY) 2000 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH-0173T), and the Waste Isolation Pilot Plant Environmental Protect ion Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during CY 2000. The format of this report follows guidance offered in a June 1, 2001 memo from DOE's Office of Policy and Guidance with the subject ''Guidance for the preparation of Department of Energy (DOE) Annual Site Environmental Reports (ASERs) for Calendar Year 2000.'' WIPP received its first shipment of waste on March 26, 1999. In 2000, no evidence was found of any adverse

  6. Waste Isolation Pilot Plant 1999 Site Environmental Report

    SciTech Connect (OSTI)

    Evans, Roy B.; Adams, Amy; Martin, Don; Morris, Randall C.; Reynolds, Timothy D.; Warren, Ronald W.

    2000-09-30

    The U.S. Department of Energy's (DOE)Carlsbad Area Office and the Westinghouse Waste Isolation Division (WID) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environmental, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 1999 Site Environmental Report summarizes environmental data from calendar year 1999 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, the Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance (DOE/EH- 0173T), and the Waste Isolation Pilot Plant Environmental Protection Implementation Plan (DOE/WIPP 96-2199). The above orders and guidance documents require that DOE facilities submit an Annual Site Environmental Report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health. The purpose of this report is to provide a comprehensive description of operational environmental monitoring activities, to provide an abstract of environmental activities conducted to characterize site environmental management performance to confirm compliance with environmental standards and requirements, and to highlight significant programs and efforts of environmental merit at WIPP during calendar year 1999. WIPP received its first shipment of waste on March 26, 1999. In 1999, no evidence was found of any adverse effects from WIPP on the surrounding environment. Radionuclide concentrations in the environment surrounding WIPP were not statistically higher in 1999 than in 1998.

  7. Waste Isolation Pilot Plant Annual Site Environmental Report for 2012

    SciTech Connect (OSTI)

    2013-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2012 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1B, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: Characterize site environmental management performance; Summarize environmental occurrences and responses reported during the calendar year; Confirm compliance with environmental standards and requirements; Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS).

  8. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2004-10-25

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2002, to March 31, 2004. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico.

  9. Fuel Cell Power Plants Biofuel Case Study - Tulare, CA

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean Fuel Cell Power Plants Biofuel Case Study - Tulare, CA DOE-NREL Workshop Golden, CO June 11-13, 2012 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (®) of FuelCell Energy, Inc. Integrated Fuel Cell Company 2 Manufacture Sell (direct & via partners) Install Services 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park

  10. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- February 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  11. Voluntary Protection Program Onsite Review, Waste Isolation Pilot Plant- March 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Waste Isolation Pilot Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  12. Sampling Report for May-June, 2014 Waste Isolation Pilot Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This document corresponds to Appendix B: Sampling Integrated Summary Report of the Technical Assessment Team Report. Sampling Report for May-June, 2014 Waste Isolation Pilot Plant ...

  13. Waste Isolation Pilot Plant Site Environmental Report Calendar Year 2002

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2003-09-17

    The United States (U.S.) Department of Energy (DOE) Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) are dedicated to maintaining high quality management of Waste Isolation Pilot Plant (WIPP) environmental resources. DOE Order 5400.1, General Environmental Protection Program, and DOE Order 231.1, Environment, Safety, and Health Reporting, require that the environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This Waste Isolation Pilot Plant 2002 Site Environmental Report summarizes environmental data from calendar year 2002 that characterize environmental management performance and demonstrate compliance with federal and state regulations. This report was prepared in accordance with DOE Order 5400.1, DOE Order 231.1, and Guidance for the Preparation of DOE Annual Site Environmental Reports (ASERs) for Calendar Year 2002 (DOE Memorandum EH-41: Natoli:6-1336, April 4, 2003). These Orders and the guidance document require that DOE facilities submit an annual site environmental report to DOE Headquarters, Office of the Assistant Secretary for Environment, Safety, and Health; and the New Mexico Environment Department (NMED).

  14. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  15. NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS...

    Office of Scientific and Technical Information (OSTI)

    Title list of documents made publicly available, January 1-31, 1998 NONE 21 NUCLEAR POWER REACTORS AND ASSOCIATED PLANTS; 05 NUCLEAR FUELS; BIBLIOGRAPHIES; NUCLEAR POWER PLANTS;...

  16. Alabama Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update (EIA)

    and Plant Fuel Consumption (Million Cubic Feet) Alabama Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  17. Virginia Natural Gas Lease and Plant Fuel Consumption (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  18. West Virginia Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update (EIA)

    and Plant Fuel Consumption (Million Cubic Feet) West Virginia Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  19. Washington Natural Gas Lease and Plant Fuel Consumption (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease and Plant Fuel Consumption (Million Cubic Feet) Washington Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ...

  20. Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Utah Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 ...

  1. New Mexico Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update (EIA)

    New Mexico Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 ... Natural Gas Lease and Plant Fuel Consumption New Mexico Natural Gas Consumption by End Use ...

  2. New York Natural Gas Lease and Plant Fuel Consumption (Million...

    Gasoline and Diesel Fuel Update (EIA)

    New York Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 ... Natural Gas Lease and Plant Fuel Consumption New York Natural Gas Consumption by End Use ...

  3. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery Operations to Fuel Ethanol Award Number: DE-EE0002875 March 23, 2015 ... to refine cellulosic biomass into fuel ethanol and co-products Create an ...

  4. Fuel Cell Power Plant Experience Naval Applications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Experience Naval Applications Fuel Cell Power Plant Experience Naval Applications Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_8_wolak.pdf (1.51 MB) More Documents & Publications Fuel Cell Power Plants Biofuel Case Study - Tulare, CA Fuel Cell Power Plants Renewable and Waste Fuels Co-production of Hydrogen and Electricity (A Developer's Perspective)

  5. An introduction to the mechanics of performance assessment using examples of calculations done for the Waste Isolation Pilot Plant between 1990 and 1992. Revision

    SciTech Connect (OSTI)

    Rechard, R.P.

    1996-06-01

    This document provides an overview of the processes used to access the performance of the Waste Isolation Pilot Plant (WIPP). The quantitative metrics used in the performance-assessment (PA) process are those put forward in the Environmental Protection Agency`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, HIgh-LEvel and transuranic radioactive Wastes (40 CFR 191).

  6. 10-MWe solar thermal central receiver pilot plant

    SciTech Connect (OSTI)

    Bartel, J.J.; Skvanna, P.E.

    1984-02-01

    The Solar One Project is the world's largest solar electric generating station. This pilot-scale research and development experiment is a cooperative effort of government and private industry to demonstrate technical feasibility, economic potential, and environmental acceptability of the solar thermal central receiver concept. The project, which is formally known as the 10-MW Solar Thermal Central Receiver Pilot Plant, has been constructed in the Mojave Desert on 130 acres of Southern California Edison Company's Cool Water Generating Station near Barstow, California, and will supply 10 MW of electrical power to the Edison grid. Solar One is a joint project of the Department of Energy (DOE), Southern California Edison (SCE), the Los Angeles Department of Water and Power (LADWP), and the California Energy Commission. The solar portion of the facility was designed and constructed under the direction of the DOE, and the turbine-generator facilities, including the control building, were designed and constructed by SCE. This paper presents an overview of the project, discusses the costs and schedule, highlights the planned test program including operation and maintenance, and briefly discusses the experiences through October 1982.

  7. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect (OSTI)

    Hossein Ghezel-Ayagh

    2003-05-22

    Project activities were focused on the design and construction the sub-scale hybrid Direct Fuel Cell/turbine (DFC/T{reg_sign}) power plant and modification of a Capstone Simple Cycle Model 330 microturbine. The power plant design work included preparation of system flow sheet and performing computer simulations based on conservation of mass and energy. The results of the simulation analyses were utilized to prepare data sheets and specifications for balance-of-plant equipment. Process flow diagram (PFD) and piping and instrumentation diagrams (P&ID) were also completed. The steady state simulation results were used to develop design information for modifying the control functions, and for sizing the heat exchangers required for recuperating the waste heat from the power plant. Line and valve sizes for the interconnecting pipes between the microturbine and the heat recuperators were also identified.

  8. Performance analysis and pilot plant test results for the Komorany fluidized bed retrofit project

    SciTech Connect (OSTI)

    Snow, G.C.

    1995-12-01

    Detailed heat and mass balance calculations and emission performance projections are presented for an atmospheric fluidized bed boiler bottom retrofit at the 927 MWt (steam output) Komorany power station and district heating plant in the Czech Republic. Each of the ten existing boilers are traveling grate stoker units firing a local, low-rank brown coal. This fuel, considered to be representative of much of the coal deposits in Central Europe, is characterized by an average gross calorific value of 10.5 MJ/kg (4,530 Btu/lb), an average dry basis ash content of 47 %, and a maximum dry basis sulfur content of 1.8 % (3.4 % on a dry, ash free basis). The same fuel supply, together with limestone supplied from the region will be utilized in the retrofit fluidized bed boilers. The primary objectives of this retrofit program are, (1) reduce emissions to a level at or below the new Czech Clean Air Act, and (2) restore plant capacity to the original specification. As a result of the AFBC retrofit and plant upgrade, the particulate matter emissions will be reduced by over 98 percent, SO{sub 2} emissions will be reduced by 88 percent, and NO{sub x} emissions will be reduced by 38 percent compared to the present grate-fired configuration. The decrease in SO{sub 2} emissions resulting from the fluidized bed retrofit was initially predicted based on fuel sulfur content, including the distribution among organic, pyritic, and sulfate forms; the ash alkalinity; and the estimated limestone calcium utilization efficiency. The methodology and the results of this prediction were confirmed and extended by pilot scale combustion trials at a 1.0 MWt (fuel input), variable configuration test facility in France.

  9. Bentonite as a waste isolation pilot plant shaft sealing material

    SciTech Connect (OSTI)

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  10. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures are given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)

  11. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2002-09-24

    U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program, requires each DOE site to prepare a Groundwater Protection Management Program Plan. This document fulfills the requirement for the Waste Isolation Pilot Plant (WIPP). This document was prepared by the Hydrology Section of the Westinghouse TRU Solutions LLC (WTS) Environmental Compliance Department, and it is the responsibility of this group to review the plan annually and update it every three years. This document is not, nor is it intended to be, an implementing document that sets forth specific details on carrying out field projects or operational policy. Rather, it is intended to give the reader insight to the groundwater protection philosophy at WIPP.

  12. A Pilot Plant: The Fastest Path to Commercial Fusion Energy

    SciTech Connect (OSTI)

    Robert J. Goldston

    2010-03-03

    Considerable effort has been dedicated to determining the possible properties of a magneticconfinement fusion power plant, particularly in the U.S.1, Europe2 and Japan3. There has also been some effort to detail the development path to fusion energy, particularly in the U.S.4 Only limited attention has been given, in Japan5 and in China6, to the options for a specific device to form the bridge from the International Thermonuclear Experimental Reactor, ITER, to commercial fusion energy. Nor has much attention been paid, since 2003, to the synergies between magnetic and inertial fusion energy development. Here we consider, at a very high level, the possibility of a Qeng ? 1 Pilot Plant, with linear dimensions ~ 2/3 the linear dimensions of a commercial fusion power plant, as the needed bridge. As we examine the R&D needs for such a system we find significant synergies between the needs for the development of magnetic and inertial fusion energy.

  13. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Westinghouse TRU Solutions

    2000-12-01

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 1998, to March 31, 2000. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, and amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Area Office's (hereinafter the ''CAO'') compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. An issue was identified in the 1998 BECR relating to a potential cross-connection between the fire-water systems and the site domestic water system. While the CAO and its managing and operating contractor (hereinafter the ''MOC'') believe the site was always in compliance with cross-connection control requirements, hardware and procedural upgrades w ere implemented in March 1999 to strengthen its compliance posture. Further discussion of this issue is presented in section 30.2.2 herein. During this reporting period WIPP received two letters and a compliance order alleging violation of certain requirements outlined in section 9(a)(1) of the LWA. With the exception of one item, pending a final decision by the New Mexico Environment Department (NMED), all alleged violations have been resolved without the assessment of fines or penalties. Non-mixed TRU waste shipments began on March 26, 1999. Shipments continued through November 26, 1999, the effective date of the Waste Isolation Pilot Plant Hazardous Waste Facility Permit (NM4890139088-TSDF). No shipments regulated under the Hazardous Waste Facility Permit were received at WIPP during this BECR reporting period.

  14. EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Runs | Department of Energy Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs EERE Success Story-Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs January 22, 2016 - 11:01am Addthis ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of

  15. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect (OSTI)

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  16. Waste Isolation Pilot Plant Annual Site Enviromental Report for 2008

    SciTech Connect (OSTI)

    Washington Regulatory and Enviromnetal Services

    2009-09-21

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2008 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to characterize site environmental management performance; summarize environmental occurrences and responses reported during the calendar year; confirm compliance with environmental standards and requirements; highlight significant facility programs and efforts; and describe how compliance and environmental improvement is accomplished through the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the Waste Isolation Pilot Plant (WIPP). DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit (HWFP) Number NM4890139088-TSDF (treatment, storage, and disposal facility) further requires that the ASER be provided to the New Mexico Environment Department (NMED). The WIPP mission is to safely dispose of transuranic (TRU) radioactive waste generated by the production of nuclear weapons and other activities related to the national defense of the United States. In 2008, 5,265 cubic meters (m3) of TRU waste were disposed of at the WIPP facility, including 5,216 m3 of contact-handled (CH) TRU waste and 49 m3 of remote-handled (RH) TRU waste. From the first

  17. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOE Patents [OSTI]

    Shafer, Scott F.

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  18. U.S. Fuel Ethanol Plant Production Capacity

    Gasoline and Diesel Fuel Update (EIA)

    All Petrolem Reports U.S. Fuel Ethanol Plant Production Capacity Release Date: June 29, ... This is the sixth release of the U.S. Energy Information Administration data on fuel ...

  19. Sampling Report for August 15, 2014 Waste Isolation Pilot Plant...

    Office of Environmental Management (EM)

    This document corresponds to: Appendix B: Sampling Integrated Summary Report of the Technical Assessment Team Report. Sampling Report for August 15, 2014 Waste Isolation Pilot ...

  20. Waste Isolation Pilot Plant (WIPP) Waste Information System (Public Access)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Waste Isolation Pilot Plant (WIPP) is a DOE facility located in the desert outside Carlsbad, New Mexico. Its mission is to safely dispose of defense-related transuranic radioactive waste. Disposal ôroomsö are carved out of the Permian Salt Formation deep below the desertÆs surface. The WIPP Waste Information Service (WWIS) was established in accordance with an Agreement between the United States Department of Energy and the New Mexico Environment Department, dated February 11, 2005, Docket Number HWB 04-07 (CO). The service provides information the containers emplaced at WIPP and the waste products they hold. The public may query by shipment number, location of waste stream or location of the container after it is placed at WIPP, date placed, and Haz Codes or other information about the waste stream profiles. For example, choosing the waste stream identified as ID-SDA-SLUDGE reveals that it may contain more than 20 chemical waste products, including arsenic, spent halogenated solvents, potassium cyanide, and chloroform. The system then tells you each numbered container that has this kind of sludge. Container data is available within 14 days after the containerÆs emplacement in the WIPP Repository.

  1. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2006-10-12

    This Biennial Environmental Compliance Report (BECR) documents compliance with environmental regulations at the Waste Isolation Pilot Plant (WIPP), a facility designed and authorized for the safe disposal of transuranic (TRU) radioactive waste. This BECR covers the reporting period from April 1, 2004, to March 31, 2006. As required by the WIPP Land Withdrawal Act (LWA) (Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents United States (U.S.) Department of Energy (DOE) compliance with regulations and permits issued pursuant to the following: (1) Title 40 Code of Federal Regulations (CFR) Part 191, Subpart A, "Environmental Standards for Management and Storage"; (2) Clean Air Act (CAA) (42 United States Code [U.S.C.] §7401, et seq.); (3) Solid Waste Disposal Act (SWDA) (42 U.S.C. §§6901-6992, et seq.); (4) Safe Drinking Water Act (SDWA) (42 U.S.C. §§300f, et seq.); (5) Toxic Substances Control Act (TSCA) (15 U.S.C. §§2601, et seq.); (6) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) (42 U.S.C. §§9601, et seq.); and all other federal and state of New Mexico laws pertaining to public health and safety or the environment.

  2. Groundwater monitoring at the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GPM) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water quality sampling and water level monitoring. The WIPP Project is a research and develop facility designed to demonstrate the safe disposal of defense-generated waste in a geologic repository. Water quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. The water quality of a well is sampled while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. Stabilization of serial sampling parameters determined if a representative sample is being obtained, Representative samples are sent to contract laboratories and analyzed for general chemistry, major cations and anions, and radionuclides. 13 refs., 4 figs., 1 tab.

  3. Waste Isolation Pilot Plant Annual Site Environmental Report for 2010

    SciTech Connect (OSTI)

    2011-09-01

    The purpose of the Waste Isolation Pilot Plant (WIPP) Annual Site Environmental Report for 2010 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data to: (1) Characterize site environmental management performance. (2) Summarize environmental occurrences and responses reported during the calendar year. (3) Confirm compliance with environmental standards and requirements. (4) Highlight significant environmental accomplishments, including progress toward the DOE Environmental Sustainability Goals made through implementation of the WIPP Environmental Management System (EMS). The DOE Carlsbad Field Office (CBFO) and the management and operating contractor (MOC), Washington TRU Solutions LLC (WTS), maintain and preserve the environmental resources at the WIPP. DOE Order 231.1A; DOE Order 450.1A, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and the Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and workers, and preservation of the environment. This report was prepared in accordance with DOE Order 231.1A, which requires that DOE facilities submit an ASER to the DOE Headquarters Chief Health, Safety, and Security Officer. The WIPP Hazardous Waste Facility Permit Number NM4890139088-TSDF (Permit) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  4. Key Geomechanics Issues at the Waste Isolation Pilot Plant Geomechanics

    SciTech Connect (OSTI)

    HANSEN,FRANCIS D.

    1999-09-01

    Mechanical and hydrological properties of rock salt provide excellent bases for geological isolation of hazardous materials. Regulatory compliance determinations for the Waste Isolation Pilot Plant (WIPP) stand as testament to the widely held conclusion that salt provides excellent isolation properties. The WIPP saga began in the 1950s when the U.S. National Academy of Sciences (NAS) recommended a salt vault as a promising solution to the national problem of nuclear waste disposal. For over 20 years, the Scientific basis for the NAS recommendation has been fortified by Sandia National Laboratories through a series of large scale field tests and laboratory investigations of salt properties. These scientific investigations helped develop a comprehensive understanding of salt's 4 reformational behavior over an applicable range of stresses and temperatures. Sophisticated constitutive modeling, validated through underground testing, provides the computational ability to model long-term behavior of repository configurations. In concert with advancement of the mechanical models, fluid flow measurements showed not only that the evaporite lithology was essentially impermeable but that the WIPP setting was hydrologically inactive. Favorable mechanical properties ensure isolation of materials placed in a salt geological setting. Key areas of the geomechanics investigations leading to the certification of WIPP are in situ experiments, laboratory tests, and shaft seal design.

  5. Compliance status report for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1994-03-31

    The US Department of Energy (DOE) is responsible for the disposition of transuranic (TRU) waste generated through national defense-related activities. Approximately 53,700 m{sup 2} of these wastes have been generated and are currently stored at government defense installations across the country. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been sited and constructed to meet the criteria established by the scientific and regulatory community for the safe, long-term disposal of TRU and TRU-mixed wastes. This Compliance Status Report (CSR) provides an assessment of the progress of the WIPP Program toward compliance with long-term disposal regulations, set forth in Title 40 CFR 191 (EPA, 1993a), Subparts B and C, and Title 40 CFR {section}268.6 (EPA, 1993b), in order to focus on-going and future experimental and engineering activities. The CSR attempts to identify issues associated with the performance of the WIPP as a long-term repository and to focus on the resolution of these issues. This report will serve as a tool to focus project resources on the areas necessary to ensure complete, accurate, and timely submittal of the compliance application. This document is not intended to constitute a statement of compliance or a demonstration of compliance.

  6. Waste acceptance criteria for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    The Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC), DOE/WIPP-069, was initially developed by a U.S. Department of Energy (DOE) Steering Committee to provide performance requirements to ensure public health and safety as well as the safe handling of transuranic (TRU) waste at the WIPP. This revision updates the criteria and requirements of previous revisions and deletes those which were applicable only to the test phase. The criteria and requirements in this document must be met by participating DOE TRU Waste Generator/Storage Sites (Sites) prior to shipping contact-handled (CH) and remote-handled (RH) TRU waste forms to the WIPP. The WIPP Project will comply with applicable federal and state regulations and requirements, including those in Titles 10, 40, and 49 of the Code of Federal Regulations (CFR). The WAC, DOE/WIPP-069, serves as the primary directive for assuring the safe handling, transportation, and disposal of TRU wastes in the WIPP and for the certification of these wastes. The WAC identifies strict requirements that must be met by participating Sites before these TRU wastes may be shipped for disposal in the WIPP facility. These criteria and requirements will be reviewed and revised as appropriate, based on new technical or regulatory requirements. The WAC is a controlled document. Revised/changed pages will be supplied to all holders of controlled copies.

  7. Waset Isolation Pilot Plant Annual Site Environmental Report for 2006

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2007-09-26

    The purpose of the Waste Isolation Pilot Plant Annual Site Environmental Report for 2006 (ASER) is to provide information required by U.S. Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting. Specifically, the ASER presents summary environmental data that: (a) Characterize site environmental management performance; (b) Summarize environmental occurrences and responses reported during the calendar year; (c) Confirm compliance with environmental standards and requirements; and (d) Highlight significant facility programs and efforts. The DOE Carlsbad Field Office (CBFO) and Washington TRU Solutions LLC (WTS) maintain and preserve the environmental resources at the WIPP site. DOE Order 231.1A; DOE Order 450.1, Environmental Protection Program; and DOE Order 5400.5, Radiation Protection of the Public and Environment, require that the affected environment at and near DOE facilities be monitored to ensure the safety and health of the public and the environment. This report was prepared in accordance with DOE Order 231.1A. This order requires that DOE facilities submit an ASER to the DOE Headquarters Office of the Assistant Secretary for Environment, Safety, and Health. The WIPP Hazardous Waste Facility Permit (HWFP) (No. NM4890139088-TSDF [treatment, storage, and disposal facility]) further requires that the ASER be provided to the New Mexico Environment Department (NMED).

  8. Waste Isolation Pilot Plant No-migration variance petition. Addendum: Volume 7, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    This report describes various aspects of the Waste Isolation Pilot Plant (WIPP) including design data, waste characterization, dissolution features, ground water hydrology, natural resources, monitoring, general geology, and the gas generation/test program.

  9. Head of EM Visits Waste Isolation Pilot Plant for First Underground...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents October 16, 2014 - 12:00pm Addthis CBFO Manager Joe Franco, left, and EM Acting ...

  10. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St....

  11. EM Cleanup Chief Surveys Progress in Waste Isolation Pilot Plant Underground

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. – EM Assistant Secretary Monica Regalbuto recently toured the Waste Isolation Pilot Plant (WIPP) to view progress toward safely resuming waste disposal operations there later this year.

  12. EM Shares Waste Isolation Pilot Plant Lessons Learned with Nuclear Energy Agency

    Broader source: Energy.gov [DOE]

    PARIS – EM officials shared lessons learned from the 2014 Waste Isolation Pilot Plant underground fire and radiological release with the Nuclear Energy Agency (NEA) Division of Radiological Protection and Radioactive Waste Management in a seminar in Paris recently.

  13. Fuel Cell Power Plants Renewable and Waste Fuels | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Frank Wolak, Fuel Cell Energy, at the Waste-to-Energy using Fuel Cells Workshop held Jan. 13, 2011 wastewolak.pdf (1.99 MB) More Documents & Publications Fuel Cell ...

  14. Waste Isolation Pilot Plant Recovery Plan Revision 0 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Plan Revision 0 Waste Isolation Pilot Plant Recovery Plan Revision 0 This Recovery Plan provides a safe and compliant approach to resuming operations at the Waste Isolation Pilot Plant (WIPP), the repository for disposal of the nation's defense transuranic (TRU) waste. The U.S. Department of Energy (DOE) is committed to resuming operations by the first quarter of calendar year 2016, and this Recovery Plan outlines the Department's approach to meet that schedule while prioritizing

  15. Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples

    Office of Environmental Management (EM)

    by the Savannah River National Laboratory (SRNL) | Department of Energy Underground and MgO Samples by the Savannah River National Laboratory (SRNL) Analysis of Waste Isolation Pilot Plant (WIPP) Underground and MgO Samples by the Savannah River National Laboratory (SRNL) This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical

  16. Recommendation 231: Recommendation to EM on the Waste Isolation Pilot Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy 31: Recommendation to EM on the Waste Isolation Pilot Plant Recommendation 231: Recommendation to EM on the Waste Isolation Pilot Plant The EM SSAB Chairs recommend public relations strategies and planning related to resuming operations at WIPP. Recommendation 231 (132.79 KB) Response 231 (2.02 MB) More Documents & Publications EM SSAB Recommendations and Letters - 2015-01 EM SSAB Recommendations and Letters - 2014-02 EM SSAB Recommendations and Letters - 2013

  17. WASHINGTON GROUP TEAM WINS NEW CONTRACT TO MANAGE WASTE ISOLATION PILOT PLANT IN NEW MEXICO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2000 WASHINGTON GROUP TEAM WINS NEW CONTRACT TO MANAGE WASTE ISOLATION PILOT PLANT IN NEW MEXICO Boise, Idaho-Washington Group International, Inc. (NYSE: WNG), announced today that TRU Solutions LLC, a partnership between Washington Group and Roy F. Weston, Inc., has been awarded a five-year contract from the United States Department of Energy (DOE) to manage the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The contract is worth approximately $500 million. The award is the second

  18. Investigation of Incident at Waste Isolation Pilot Plant by Technical Assessment Team

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigation of Incident at Waste Isolation Pilot Plant by Technical Assessment Team March 2015 Overall Findings On February 14, 2014, an incident in Panel 7 Room 7 (P7R7) of the Waste Isolation Pilot Plant (WIPP) underground repository resulted in the release of radioactive material into the environment and contaminated 21 people with low-level radioactivity. The Technical Assessment Team (TAT) concluded that one drum, Drum 68660, was the source of radioactive contamination released during the

  19. DOE Releases Final Request for Proposal for Waste Isolation Pilot Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (WIPP) Transportation Services Procurement | Department of Energy Waste Isolation Pilot Plant (WIPP) Transportation Services Procurement DOE Releases Final Request for Proposal for Waste Isolation Pilot Plant (WIPP) Transportation Services Procurement July 14, 2016 - 1:00pm Addthis Media Contact: Bill Taylor, 575-234-7591 Cincinnati -- The U.S. Department of Energy (DOE) Environmental Management Consolidated Business Center (EMCBC) today issued a Final Request for Proposal (RFP) for Waste

  20. Final Report: RPP-WTP Semi-Integrated Pilot Plant

    SciTech Connect (OSTI)

    Duignan, M. R.; Adamson, D. J.; Calloway, T. B.; Fowley, M. D.; Qureshi, Z. H.; Steimke, J. L.; Williams, M. R.; Zamecnik, J. R.

    2005-06-01

    In August 2004 the last of the SIPP task testing ended--a task that formally began with the issuance of the RPP-WTP Test Specification in June 2003. The planning for the task was a major effort in itself and culminated with the input of all stakeholders, DOE, Bechtel National, Inc., Washington Group International, in October 2003 at Hanford, WA (Appendix A). This report documents the activities carried out as a result of that planning. Campaign IV, the fourth and final step towards the Semi-Integrated Pilot Plant (SIPP) task, conducted by the Savannah River National Laboratory (SRNL) at the Savannah River Site, was to take the several recycle streams produced in Campaign III, the third step of the task, and combine them with other simulated recycle and chosen waste streams. (Campaign III was fed recycles from Campaign II, as Campaign II was fed by Campaign I.) The combined stream was processed in a fashion that mimicked the pretreatment operations of the DOE River Protection Project--Waste Treatment and Immobilization Plant (RPP-WTP) with the exception of the Ion Exchange Process. The SIPP task is considered semi-integrated because it only deals with the pretreatment operations of the RPP-WTP. That is, the pilot plant starts by receiving waste from the tank farm and ends when waste is processed to the point of being sent for vitrification. The resulting pretreated LAW and HLW simulants produced by the SIPP were shipped to VSL (Vitreous State Laboratory) and successfully vitrified in pilot WTP melters. Within the SIPP task these steps are referred to as Campaigns and there were four Campaigns in all. Campaign I, which is completely different than other campaigns, subjected a simulant of Hanford Tank 241-AY-102/C-106 (AY102) waste to cross-flow ultrafiltration only and in that process several important recycle streams were produced as a result of washing the simulant and cleaning the cross-flow filter. These streams were fed to subsequent campaigns and that work was

  1. ,"New Mexico Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  2. ,"New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

  3. Waste Isolation Pilot Plant simulated RH TRU waste experiments: Data and interpretation pilot

    SciTech Connect (OSTI)

    Molecke, M.A.; Argueello, G.J.; Beraun, R.

    1993-04-01

    The simulated, i.e., nonradioactive remote-handled transuranic waste (RH TRU) experiments being conducted underground in the Waste Isolation Pilot Plant (WIPP) were emplaced in mid-1986 and have been in heated test operation since 9/23/86. These experiments involve the in situ, waste package performance testing of eight full-size, reference RH TRU containers emplaced in horizontal, unlined test holes in the rock salt ribs (walls) of WIPP Room T. All of the test containers have internal electrical heaters; four of the test emplacements were filled with bentonite and silica sand backfill materials. We designed test conditions to be ``near-reference`` with respect to anticipated thermal outputs of RH TRU canisters and their geometrical spacing or layout in WIPP repository rooms, with RH TRU waste reference conditions current as of the start date of this test program. We also conducted some thermal overtest evaluations. This paper provides a: detailed test overview; comprehensive data update for the first 5 years of test operations; summary of experiment observations; initial data interpretations; and, several status; experimental objectives -- how these tests support WIPP TRU waste acceptance, performance assessment studies, underground operations, and the overall WIPP mission; and, in situ performance evaluations of RH TRU waste package materials plus design details and options. We provide instrument data and results for in situ waste container and borehole temperatures, pressures exerted on test containers through the backfill materials, and vertical and horizontal borehole-closure measurements and rates. The effects of heat on borehole closure, fracturing, and near-field materials (metals, backfills, rock salt, and intruding brine) interactions were closely monitored and are summarized, as are assorted test observations. Predictive 3-dimensional thermal and structural modeling studies of borehole and room closures and temperature fields were also performed.

  4. Waste Isolation Pilot Plant Groundwater Protection Management Program Plan

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    2005-07-01

    The DOE established the Groundwater Monitoring Program (GMP) (WP 02-1) to monitor groundwater resources at WIPP. In the past, the GMP was conducted to establish background data of existing conditions of groundwater quality and quantity in the WIPP vicinity, and to develop and maintain a water quality database as required by regulation. Today the GMP is conducted consistent with 204.1.500 NMAC (New MexicoAdministrative Code), "Adoption of 40 CFR [Code of Federal Regulations] Part 264,"specifically 40 CFR §264.90 through §264.101. These sections of 20.4.1 NMAC provide guidance for detection monitoring of groundwater that is, or could be, affected by waste management activities at WIPP. Detection monitoring at WIPP is designed to detect contaminants in the groundwater long before the general population is exposed. Early detection will allow cleanup efforts to be accomplished before any exposure to the general population can occur. Title 40 CFR Part 264, Subpart F, stipulates minimum requirements of Resource Conservation and Recovery Act of 1976 (42 United States Code [U.S.C.] §6901 et seq.) (RCRA) groundwater monitoring programs including the number and location of monitoring wells; sampling and reporting schedules; analytical methods and accuracy requirements; monitoring parameters; and statistical treatment of monitoring data. This document outlines how WIPP intends to protect and preserve groundwater within the WIPP Land Withdrawal Area (WLWA). Groundwater protection is just one aspect of the WIPP environmental protection effort. An overview of the entire environmental protection effort can be found in DOE/WIPP 99-2194, Waste Isolation Pilot Plant Environmental Monitoring Plan. The WIPP GMP is designed to statistically determine if any changes are occurring in groundwater characteristics within and surrounding the WIPP facility. If a change is noted, the cause will then be determined and the appropriate corrective action(s) initiated.

  5. Waste Isolation Pilot Plant Biennial Environmental Compliance Report

    SciTech Connect (OSTI)

    Washinton TRU Solutions LLC

    2002-09-30

    This Biennial Environmental Compliance Report (BECR) documents environmental regulatory compliance at the Waste Isolation Pilot Plant (WIPP), a facility designed for the safe disposal of transuranic (TRU) radioactive waste, for the reporting period of April 1, 2000, to March 31, 2002. As required by the WIPP Land Withdrawal Act (LWA)(Public Law [Pub. L.] 102-579, as amended by Pub. L. 104-201), the BECR documents U.S. Department of Energy (DOE) Carlsbad Field Office's (CBFO) compliance with applicable environmental protection laws and regulations implemented by agencies of the federal government and the state of New Mexico. In the prior BECR, the CBFO and the management and operating contractor (MOC)committed to discuss resolution of a Letter of Violation that had been issued by the New Mexico Environment Department (NMED) in August 1999, which was during the previous BECR reporting period. This Letter of Violation alleged noncompliance with hazardous waste aisle spacing, labeling, a nd tank requirements. At the time of publication of the prior BECR, resolution of the Letter of Violation was pending. On July 7, 2000, the NMED issued a letter noting that the aisle spacing and labeling concerns had been adequately addressed and that they were rescinding the violation alleging that the Exhaust Shaft Catch Basin failed to comply with the requirements for a hazardous waste tank. During the current reporting period, WIPP received a Notice of Violation and a compliance order alleging the violation of the New Mexico Hazardous Waste Regulations and the WIPP Hazardous Waste Facility Permit (HWFP).

  6. Final environmental impact statement. Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    In accordance with the National Environmental Policy Act (NEPA) of 1969, the US Department of Energy (DOE) has prepared this document as environmental input to future decisions regarding the Waste Isolation Pilot Plant (WIPP), which would include the disposal of transuranic waste, as currently authorized. The alternatives covered in this document are the following: (1) Continue storing transuranic (TRU) waste at the Idaho National Engineering Laboratory (INEL) as it is now or with improved confinement. (2) Proceed with WIPP at the Los Medanos site in southeastern New Mexico, as currently authorized. (3) Dispose of TRU waste in the first available repository for high-level waste. The Los Medanos site would be investigated for its potential suitability as a candidate site. This is administration policy and is the alternative preferred by the DOE. (4) Delay the WIPP to allow other candidate sites to be evaluated for TRU-waste disposal. This environmental impact statement is arranged in the following manner: Chapter 1 is an overall summary of the analysis contained in the document. Chapters 2 and 4 set forth the objectives of the national waste-management program and analyze the full spectrum of reasonable alternatives for meeting these objectives, including the WIPP. Chapter 5 presents the interim waste-acceptance criteria and waste-form alternatives for the WIPP. Chapters 6 through 13 provide a detailed description and environmental analysis of the WIPP repository and its site. Chapter 14 describes the permits and approvals necessary for the WIPP and the interactions that have taken place with Federal, State, and local authorities, and with the general public in connection with the repository. Chapter 15 analyzes the many comments received on the DEIS and tells what has been done in this FEIS in response. The appendices contain data and discussions in support of the material in the text.

  7. Equipment specifications for an electrochemical fuel reprocessing plant

    SciTech Connect (OSTI)

    Hemphill, Kevin P

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  8. MHK Projects/bioWAVE Pilot Plant | Open Energy Information

    Open Energy Info (EERE)

    Project Phase Phase 1 Project Details A 250kW pilot project is being developed at Port Fairy Victoria, Australia,which will be connected to the national power distribution...

  9. NREL Ignites New Renewable Fuels Heating Plant - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignites New Renewable Fuels Heating Plant Innovative DOE Contract Helps Lab Reduce Fuel Use, Carbon Emissions November 20, 2008 Golden, Colo. - With the spark from a high intensity road flare, engineers at the U.S. Department of Energy's National Renewable Energy Laboratory lit its new, smoke-free Renewable Fuels Heating Plant today. The $3.3 million project is the Laboratory's latest step toward operating as a net-zero energy facility. The RFHP will heat NREL's South Table Mountain Campus

  10. Results of the plant maintenance optimization (PMO) pilot-project at an ENEL Fossil Power Plant

    SciTech Connect (OSTI)

    Falco, F. de; Paratore, A.; Moscotti, L.

    1996-07-01

    ENEL S.p.A. operates about sixty fossil power plants in Italy for a total installed power of more than 37,000 MW. This paper describes the pilot-project to apply Reliability Centered Maintenance (RCM) methodology at the {open_quotes}La Casella{close_quotes} Fossil Power Plant (4 x 320 MW units, oil fired). The project was performed by an ENEL working group (Generation and R&D Divisions) with assistance from ERIN, Engineering and Research, Inc. The first phase of the project confirmed the application and validity of the streamlined RCM method called Plant Maintenance Optimization (PMO) on the Condensate and Feedwater Systems. The second phase evaluated the effectiveness of the PMO method as used to developed an optimized maintenance program for five systems - Vent & Drain and Chemical Reagents, Boiler Start-Up, Boiler Auxiliaries, Blowing Compressors, and Air & Flue Gas. The conclusions of the project are consistent with other successful streamlined RCM applications (1) The PMO method is valid and applicable to fossil power plants; (2) Streamlined RCM approaches allow significant reduction in the time spent to perform an RCM analysis, without sacrificing the quality of the results; (3) PMO is effective in defining an optimized maintenance program; (4) The maintenance program developed through the analysis can be easily updated when the criticality criteria and/or maintenance history change.

  11. Vitrification of plutonium at Rocky Flats the argument for a pilot plant

    SciTech Connect (OSTI)

    Moore, L.

    1996-05-01

    Current plans for stabilizing and storing the plutonium at Rocky Flats Plant fail to put the material in a form suitable for disposition and resistant to proliferation. Vitrification should be considered as an alternate technology. The vitrification should begin with a small-scale pilot plant.

  12. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect (OSTI)

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease

  13. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect (OSTI)

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  14. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    ... modification to the current design of Panels 9 and 10. ALTERNATIVES COMMENT ... in DOE programs for managing spent nuclear fuel for civilian power reactors and ...

  15. Waste Isolation Pilot Plant 2003 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... When all of WIPP's panels have been filled, at the conclusion of WIPP operations, ... Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes." ...

  16. Waste Isolation Pilot Plant 2002 Site Environmental Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive ... other agencies, committees, and panels monitor progress at WIPP and ...

  17. EIS-0026; Waste Isolation Pilot Plant Disposal Phase Final Supplementa...

    Office of Environmental Management (EM)

    ... Integrated Data Base Report-1994: U.S. Spent Nuclear Fuel and Radioactive Waste Inventories, ... As a result, waste would escape into the panels resulting in an additional ...

  18. South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    South Dakota Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Plant Fuel Consumption South Dakota Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  19. TRU waste acceptance criteria for the Waste Isolation Pilot Plant: Revision 3

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This document is intended to delineate the criteria by which unclassified waste will be accepted for emplacement at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and describe the bases upon which these criteria were established. These criteria are not intended to be specifications but rather limits that will allow waste generating and shipping sites to develop their own procedures and specifications for preparation of TRU waste for shipment to the WIPP. These criteria will also allow waste generating sites to plan future facilities for waste preparation that will produce TRU waste forms compatible with WIPP waste emplacement and isolation requirements. These criteria only apply to contract-handled (CH) and remote-handled (RH) transuranic (TRU) waste forms and are not intended to apply to beta-gamma wastes, spent fuel, high-level waste (HLW), low-level waste (LLW), low specific activity (LSA) waste, or forms of radioactive waste for experimental purposes. Specifications for receipt of experimental waste forms will be prepared by the responsible projects in conjunction with the staff of the WIPP project at a later date. In addition, these criteria only apply to waste emplaced in bedded rock salt. Technical bases for these criteria may differ significantly from those for other host rocks. 25 refs. 4 figs., 1 tab.

  20. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 2, Technical basis

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume, Volume 2, contains the technical basis for the 1992 PA. Specifically, it describes the conceptual basis for consequence modeling and the PA methodology, including the selection of scenarios for analysis, the determination of scenario probabilities, and the estimation of scenario consequences using a Monte Carlo technique and a linked system of computational models. Additional information about the 1992 PA is provided in other volumes. Volume I contains an overview of WIPP PA and results of a preliminary comparison with the long-term requirements of the EPA`s Environmental Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses related to the preliminary comparison with 40 CFR 191B. Volume 5 contains uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance. Finally, guidance derived from the entire 1992 PA is presented in Volume 6.

  1. Environmental readiness pilot study at the Badger Army Ammunition Plant, Baraboo, Wisconsin

    SciTech Connect (OSTI)

    Mays, D.; Bhinge, D.; Patel, J.; Jones-Bateman, L.; Resnick, E.

    1994-12-31

    The Badger Army Ammunition Plant (BAAP) has been on standby status since the mid-1970s, prior to the enactment of the majority of Federal environmental regulations. As a result, BAAP is unprepared to begin production without the implementation of pollution prevention and treatment measures. The Army contracted SAIC to conduct a pilot study to develop an environmental readiness plan for BAAP in the event that the plant is reactivated to produce explosives and propellants for ammunition requirements during mobilization. This paper describes the process developed by SAIC to conduct this pilot study at BAAP and the relationship between this effort and the Army`s overall environmental mission.

  2. Arsenic pilot plant operation and results:Weatherford, Oklahoma.

    SciTech Connect (OSTI)

    Aragon, Malynda Jo; Arora, H. (Narasimhan Consulting Services Inc., Phoenix, Arizona); Karori, Saqib (Narasimhan Consulting Services Inc., Phoenix, Arizona); Pathan, Sakib

    2007-05-01

    Narasimhan Consulting Services, Inc. (NCS), under a contract with the Sandia National Laboratories (SNL), designed and operated pilot scale evaluations of the adsorption and coagulation/filtration treatment technologies aimed at meeting the recently revised arsenic maximum contaminant level (MCL) for drinking water. The standard of 10 {micro}g/L (10 ppb) is effective as of January 2006. The pilot demonstration is a project of the Arsenic Water Technology Partnership program, a partnership between the American Water Works Association Research Foundation (AwwaRF), SNL and WERC (A Consortium for Environmental Education and Technology Development). The pilot evaluation was conducted at Well 30 of the City of Weatherford, OK, which supplies drinking water to a population of more than 10,400. Well water contained arsenic in the range of 16 to 29 ppb during the study. Four commercially available adsorption media were evaluated side by side for a period of three months. Both adsorption and coagulation/filtration effectively reduced arsenic from Well No.30. A preliminary economic analysis indicated that adsorption using an iron oxide media was more cost effective than the coagulation/ filtration technology.

  3. Cost and quality of fuels for electric plants 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  4. Central receiver solar thermal power system, Phase 1: CDRL Item 2, pilot plant preliminary design report. Volume VII. Pilot plant cost and commercial plant cost and performance

    SciTech Connect (OSTI)

    Hallet, Jr., R. W.; Gervais, R. L.

    1980-05-01

    Detailed cost and performance data for the proposed tower focus pilot plant and commercial plant are given. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) an external receiver mounted on a tower, and located in a 360/sup 0/ array of sun-tracking heliostats which comprise the collector subsystem. (B) feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes. (WHK)

  5. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, March 1--May 31, 1995

    SciTech Connect (OSTI)

    Crelling, J.C.

    1995-12-31

    A new use for Illinois coal is as fuel injected into a blast furnace to produce molten iron as first step in steel production. Because of cost and decreasing availability, metallurgical coke is being replaced by coal injected at the tuyere area of the furnace where the blast air enters. Purpose of this study is to evaluate combustion of Illinois coal in the blast furnace injection process in a pilot plant test facility. (Limited research to date suggests that coals of low fluidity and moderate to high S and Cl contents are suitable for blast furnace injection.) This proposal is intended to complete the study under way with Armco and Inland and to demonstrate quantitatively the suitability of Herrin No. 6 and Springfield No. 5 coals for injection. Main feature of current work is testing of Illinois coals at CANMET`s pilot plant coal combustion facility. During this quarter, two additional 300-pound samples of coal (IBCSP-110 Springfield No. 5 and an Appalachian coal) were delivered. Six Illinois Basin coals were analyzed with the CANMET model and compared with other bituminous coals from the Appalachians, France, Poland, South Africa, and Colombia. Based on computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in injection with a variety of other bituminous coals.

  6. Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Nebraska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 34 35 30 19 31 21 13 1990's 0 14 9 0 3 2 3 7 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Plant Fuel

  7. Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Tennessee Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 0 0 0 1990's 6 3 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 148 145 150 142 128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Plant Fuel Consumption

  8. Waste Isolation Pilot Plant Transuranic Waste Baseline inventory report. Volume 2. Revision 1

    SciTech Connect (OSTI)

    1995-02-01

    This document is the Baseline Inventory Report for the transuranic (alpha-bearing) wastes stored at the Waste Isolation Pilot Plant (WIPP) in New Mexico. Waste stream profiles including origin, applicable EPA codes, typical isotopic composition, typical waste densities, and typical rates of waste generation for each facility are presented for wastes stored at the WIPP.

  9. Waste Isolation Pilot Plant Geotechnical Analysis Report for July 2005 - June 2006, Volume 2, Supporting Data

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-03-25

    This report is a compilation of geotechnical data presented as plots for each active instrument installed in the underground at the Waste Isolation Pilot Plant (WIPP) through June 30, 2006. A summary of the geotechnical analyses that were performed using the enclosed data is provided in Volume 1 of the Geotechnical Analysis Report (GAR).

  10. Enterprise Assessments Assessment of Conduct of Maintenance at the Waste Isolation Pilot Plant … June 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conduct of Maintenance at the Waste Isolation Pilot Plant June 2016 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  11. Enterprise Assessments Assessment of the Waste Isolation Pilot Plant Fire Protection Program … July 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Isolation Pilot Plant Fire Protection Program July 2016 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  12. Enterprise Assessments Emergency Management Assessment of the Waste Isolation Pilot Plant … April 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emergency Management Assessment of the Waste Isolation Pilot Plant April 2016 Office of Emergency Management Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  13. DOE Awards Small Business Contract for Support to the Waste Isolation Pilot Plant

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order to Southwestern Public Service Company, of Amarillo, TX to supply on a daily basis the required quantity of electric energy required for the customer’s operation at the Waste Isolation Pilot Plant (WIPP) facilities pursuant to the terms of the areawide contract.

  14. EM, N.M. Officials Celebrate New Emergency Center for Waste Isolation Pilot Plant

    Broader source: Energy.gov [DOE]

    CARLSBAD, N.M. – Principal Deputy Assistant Secretary Mark Whitney joined New Mexico officials and others to mark the completion of a new state-of-the-art Waste Isolation Pilot Plant (WIPP) Emergency Operations Center in a ribbon-cutting ceremony recently.

  15. Technical Assessment Team Report on Cause of Breached Drum at Waste Isolation Pilot Plant Released

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – The U.S. Department of Energy today released a report by an independent team of technical experts that evaluated the mechanisms and chemical reactions contributing to the failure of a waste drum at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, N.M.

  16. Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents

    Broader source: Energy.gov [DOE]

    CARLBAD, N.M. – EM Acting Assistant Secretary Mark Whitney today visited the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., where he became the first non-WIPP employee to tour the underground facility since a truck fire and unrelated radiological release temporarily closed the facility in February.

  17. Waste Isolation Pilot Plant's Excavated Salt Agreement Supports Conservation Education, Other Public Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE)

    CARLSBAD, N.M. – Proceeds from a unique arrangement that turned excavated salt from EM’s Waste Isolation Pilot Plant (WIPP) into a usable commodity have supported an array of public projects, including field trips focusing on conservation education for about 600 elementary-age students.

  18. Pilot Plant Completes Two 1,000-Hour Ethanol Performance Runs

    Broader source: Energy.gov [DOE]

    ICM Inc. announced successful completion of two 1,000-hour performance runs of its patent-pending Generation 2.0 Co-Located Cellulosic Ethanol process at its cellulosic ethanol pilot plant in St. Joseph, Missouri. This is an important step toward the commercialization of cellulosic ethanol from switchgrass and energy sorghum.

  19. The design of future central receiver power plants based on lessons learned from the Solar One Pilot Plant

    SciTech Connect (OSTI)

    Kolb, G.J.

    1991-01-01

    The 10-MW{sub e} Solar One Pilot Plant was the world's largest solar central receiver power plant. During its power production years it delivered over 37,000 MWhrs (net) to the utility grid. In this type of electric power generating plant, large sun-tracking mirrors called heliostats reflect and concentrate sunlight onto a receiver mounted on top a of a tower. The receiver transforms the solar energy into thermal energy that heats water, turning it into superheated steam that drives a turbine to generate electricity. The Solar One Pilot Plant successfully demonstrated the feasibility of generating electricity with a solar central receiver power plant. During the initial 2 years the plant was tested and 4 years the plant was operated as a power plant, a great deal of data was collected relating to the efficiency and reliability of the plant's various systems. This paper summarizes these statistics and compares them to goals developed by the US Department of Energy. Based on this comparison, improvements in the design and operation of future central receiver plants are recommended. Research at Sandia National Laboratories and the US utility industry suggests that the next generation of central receiver power plants will use a molten salt heat transfer fluid rather than water/steam. Sandia has recently completed the development of the hardware needed in a molten salt power plant. Use of this new technology is expected to solve many of the performance problems encountered at Solar One. Projections for the energy costs from these future central receiver plants are also presented. For reference, these projections are compared to the current energy costs from the SEGS parabolic trough plants now operating in Southern California.

  20. Enterprise Assessments Operational Awareness Record of the Follow-up Review of Engineeing Configuration Management Processes at the Waste Isolation Pilot Plant- June 2015

    Broader source: Energy.gov [DOE]

    Operational Awareness Record of the Follow-up Review of Engineering Configuration Management Processes at the Waste Isolation Pilot Plant

  1. EERE Success Story-One Man's Trash, Another Man's Fuel: BMW Plant...

    Energy Savers [EERE]

    Plant Converts Landfill Gas to Hydrogen Fuel EERE Success Story-One Man's Trash, Another Man's Fuel: BMW Plant Converts Landfill Gas to Hydrogen Fuel August 25, 2015 - 3:08pm ...

  2. Recommended guidelines for solid fuel use in cement plants

    SciTech Connect (OSTI)

    Young, G.L.; Jayaraman, H.; Tseng, H.

    2007-07-01

    Pulverized solid fuel use at cement plants in North America is universal and includes bituminous and sub-bituminous coal, petroleum coke, and any combination of these materials. Provided are guidelines for the safe use of pulverized solid fuel systems in cement plants, including discussion of the National Fire Protection Association and FM Global fire and explosion prevention standards. Addressed are fire and explosion hazards related to solid fuel use in the cement industry, fuel handling and fuel system descriptions, engineering design theory, kiln system operations, electrical equipment, instrumentation and safety interlock issues, maintenance and training, and a brief review of code issues. New technology on fire and explosion prevention including deflagration venting is also presented.

  3. NO{sub x} Abatement Pilot Plant 90-day test results report

    SciTech Connect (OSTI)

    McCray, J.A.; Boardman, R.D.

    1991-08-30

    High-level radioactive liquid wastes produced during nuclear fuel reprocessing at the Idaho Chemical Processing Plant are calcined in the New Waste Calcining Facility (NWCF) to provide both volume reduction and a more stable waste form. Because a large component of the HLW is nitric acid, high levels of oxides of nitrogen (NO{sub x}) are produced in the process and discharged to the environment via the calciner off-gas. The NO{sub x} abatement program is required by the new Fuel Processing Restoration (FPR) project permit to construct to reduce NO{sub x} emissions from the NWCF. Extensive research and development has indicated that the selective catalytic reduction (SCR) process is the most promising technology for treating the NWCF off-gas. Pilot plant tests were performed to determine the compatibility of the SCR process with actual NWCF off-gas. Test results indicate that the SCR process is a viable method for abating the NO{sub x} from the NWCF off-gas. Reduction efficiencies over 95% can be obtained, with minimal amounts of ammonia slip, provided favorable operating conditions exist. Two reactors operated with series flow will provide optimum reduction capabilities. Typical operation should be performed with a first reactor stage gas space velocity of 20,000 hr{sup {minus}1} and an inlet temperature of 320{degrees}C. The first stage exhaust NO{sub x} concentration will then dictate the parameter settings for the second stage. Operation should always strive for a peak reactor temperature of 520{degrees}C in both reactors, with minimal NH{sub 3} slip from the second reactor. Frequent fluctuations in the NWCF off-gas NO{sub x} concentration will require a full-scale reduction facility that is versatile and quick-responding. Sudden changes in NWCF off-gas NO{sub x} concentrations will require quick detection and immediate response to avoid reactor bed over-heating and/or excessive ammonia slip.

  4. Waste fuel, EMS may save plant $1M yearly

    SciTech Connect (OSTI)

    Barber, J.

    1982-05-24

    A mixture of paper trash and coal ash fueling an Erie, Pa. General Electric plant and a Network 90 microprocessor-based energy-management system (EMS) to optimize boiler efficiency will cost about $3 million and have a three-to-four-year payback. Over half the savings will come from the avoided costs of burning plant-generated trash. The EMS system will monitor fuel requirements in the boiler and compensate for changes in steam demand. It will also monitor plant electrical needs and control the steam diverted for cogeneration. (DCK)

  5. N.R. 20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS...

    Office of Scientific and Technical Information (OSTI)

    20 FOSSIL-FUELED POWER PLANTS; 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 14 SOLAR ENERGY; 15 GEOTHERMAL ENERGY; GEOTHERMAL POWER PLANTS; COMPUTERIZED SIMULATION; HEAT...

  6. Design for a small-scale fuel alcohol plant

    SciTech Connect (OSTI)

    Berglund, G.R.; Richardson, J.G.

    1982-08-01

    The fuel alcohol plant described in this article was designed, constructed and is being operated for the US DOE by EG and G Idaho. The plant can be operated by a single owner and produces 100 L of ethanol per hour and wet stillage for animal feed using corn as the primary feedstock. Existing technology and off-the-shelf equipment have been used whenever possible. The operation of the plant and microprocessor control of the process are described. (Refs. 1).

  7. Design report: small-scale fuel alcohol plant

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The objectives of the report are to (a) provide potential alcohol producers with a reference design and (b) provide a complete, demonstrated design of a small-scale fuel alcohol plant. This report describes a small-scale fuel alcohol plant designed and constructed for the DOE by EG and G Idaho, Inc., an operating contractor at the Idaho National Engineering Laboratory. The plant is reasonably complete, having the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention. Where possible, this document follows the design requirements established in the DOE publication Fuel From Farms, which was published in February 1980. For instance, critical requirements such as using corn as the primary feedstock, production of 25 gallons of 190 proof ethanol per hour, and using batch fermentation were taken from Fuel From Farms. One significant deviation is alcohol dehydration. Fuel From Farms recommends the use of a molecular sieve for dehydration, but a preliminary design raised significant questions about the cost effectiveness of this approach. A cost trade-off study is currently under way to establish the best alcohol dehydration method and will be the subject of a later report. Volume one contains background information and a general description of the plant and process.

  8. DOE small scale fuel alcohol plant design

    SciTech Connect (OSTI)

    LaRue, D.M.; Richardson, J.G.

    1980-01-01

    The Department of Energy, in an effort to facilitate the deployment of rural-based ethanol production capability, has undertaken this effort to develop a basic small-scale plant design capable of producing anhydrous ethanol. The design, when completed, will contain all necessary specifications and diagrams sufficient for the construction of a plant. The design concept is modular; that is, sections of the plant can stand alone or be integrated into other designs with comparable throughput rates. The plant design will be easily scaled up or down from the designed flow rate of 25 gallons of ethanol per hour. Conversion factors will be provided with the final design package to explain scale-up and scale-down procedures. The intent of this program is to provide potential small-scale producers with sound information about the size, engineering requirements, costs and level of effort in building such a system.

  9. Cost and Quality of Fuels for Electric Utility Plants

    Gasoline and Diesel Fuel Update (EIA)

    1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the

  10. Economic analysis of small-scale fuel alcohol plants

    SciTech Connect (OSTI)

    Schafer, J.J. Jr.

    1980-01-01

    To plan Department of Energy support programs, it is essential to understand the fundamental economics of both the large industrial size plants and the small on-farm size alcohol plants. EG and G Idaho, Inc., has designed a 25 gallon per hour anhydrous ethanol plant for the Department of Energy's Alcohol Fuels Office. This is a state-of-the-art reference plant, which will demonstrate the cost and performance of currently available equipment. The objective of this report is to examine the economics of the EG and G small-scale alcohol plant design and to determine the conditions under which a farm plant is a financially sound investment. The reference EG and G Small-Scale Plant is estimated to cost $400,000. Given the baseline conditions defined in this report, it is calculated that this plant will provide an annual after-tax of return on equity of 15%, with alcohol selling at $1.62 per gallon. It is concluded that this plant is an excellent investment in today's market, where 200 proof ethanol sells for between $1.80 and $2.00 per gallon. The baseline conditions which have a significant effect on the economics include plant design parameters, cost estimates, financial assumptions and economic forecasts. Uncertainty associated with operational variables will be eliminated when EG and G's reference plant begins operation in the fall of 1980. Plant operation will verify alcohol yield per bushel of corn, labor costs, maintenance costs, plant availability and by-product value.