Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"...

2

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

3

Vegetable oil fuel  

SciTech Connect (OSTI)

In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

Bartholomew, D.

1981-04-01T23:59:59.000Z

4

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

5

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

6

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

7

Compare All CBECS Activities: Fuel Oil Use  

Gasoline and Diesel Fuel Update (EIA)

of fuel oil in 1999. Only six building types had any statistically significant fuel oil usage, with education buildings using the most total fuel oil. Figure showing total fuel oil...

8

Diesel fuel oils, 1980  

SciTech Connect (OSTI)

Properties of diesel fuels produced during 1980 were submitted for study and compilation under a cooperative agreement between the Department of Energy, Bartlesville Energy Technology Center, Bartlesville, Oklahoma and the American Petroleum Institute. Tests of 192 samples of diesel fuel oils from 95 refineries throughout the country were made by 28 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960-1980. Summaries of the results of the 1980 survey, compared with similar data for 1979, are shown.

Shelton, E.M.

1980-12-01T23:59:59.000Z

9

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

U.S. Energy Information Administration (EIA) Indexed Site

No. 2 Distillate No. 4 Fuel a Total Distillate and Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel No. 2 Distillate Low-Sulfur High-Sulfur Total United States January...

10

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

11

fuel_oil.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Usage Form Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

12

Diesel fuel oils, 1982  

SciTech Connect (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

13

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

14

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

15

Diesel fuel oils, 1981  

SciTech Connect (OSTI)

Properties of diesel fuels produced during 1981 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 160 samples of diesel fuel oils from 77 refineries throughout the country were made by 26 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1981. Summaries of the results of the 1981 survey, compared with similar data for 1980, are shown.

Shelton, E.M.

1981-12-01T23:59:59.000Z

16

Soybean Oil as Diesel Fuel  

Science Journals Connector (OSTI)

Soybean Oil as Diesel Fuel ... TESTS are reported from Japan on the use of soybean oil as Diesel fuel in a 12-horsepower engine of 150-mm. ... This trouble was overcome by passing through some of the Diesel cooling water to heat the fuel tank and supply line. ...

C.H.S. TUPHOLME

1940-10-10T23:59:59.000Z

17

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

18

Fuel Oil and Kerosene Sales 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil and Kerosene Sales Fuel Oil and Kerosene Sales 2012 November 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies. U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 1

19

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal"...

20

Marine Fuel Oil on a Mixed Base  

Science Journals Connector (OSTI)

Three grades of high–viscosity marine fuel oil are manufactured according to TU 38. ... developing the composition and technology for production of marine fuel oils [1– 4].

S. V. Kotov; A. G. Oltyrev; I. N. Kankaeva…

2001-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

22

Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Fuel Future Oil Demands Enhanced Oil Recovery to Fuel Future Oil Demands Trevor Kirsten 2013.10.02 I'm Trevor Kirsten and I lead a team of GE researchers that investigate a...

23

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

24

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

25

United Oil Company | Open Energy Information  

Open Energy Info (EERE)

Company Jump to: navigation, search Name: United Oil Company Place: Pittsburgh, Pennsylvania Product: Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA References:...

26

Straight Vegetable Oil as a Diesel Fuel?  

SciTech Connect (OSTI)

Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

Not Available

2006-04-01T23:59:59.000Z

27

Used oil disposal and recycling in the United States  

SciTech Connect (OSTI)

Used oil represents an important energy resource, which, if properly managed and reused, could lessen US dependence on imported fuels. About 1.4 million gallons of used oil is generated annually in the United States. Of that total, about 70% is recycled: 57% is used as fuel and 12% is refined. In August 1992, the US Environmental Protection Agency adopted standards for recycling of used oil, and many states also regulate used oil (six states list used oil as hazardous waste). This report reviews the sources of used oil and methods of disposition, focusing on reprocessing and re-refining. About 83% of the recycled used oil is reprocessed for use as fuel. However, concern about the level of lead in such fuel is increasing. Re-refining used oil is an environmentally friendly process that yields higher energy savings than reprocessing; however, it is more capital-intensive. Reprocessing used oil for use as fuel yields an energy savings (over disposal) of 131,130 Btu/gal, while re-refining the oil for reuse as lube oil saves 180,000 Btu/gal, an advantage of 48,870 Btu/gal. However, further research is needed to enhance re- refining and to demonstrate the quality and competitiveness of its products.

Karvelas, D.E.; Daniels, E.J.

1993-07-01T23:59:59.000Z

28

Oil Shale and Other Unconventional Fuels Activities | Department...  

Broader source: Energy.gov (indexed) [DOE]

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

29

Fuel oil and kerosene sales 1997  

SciTech Connect (OSTI)

The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

NONE

1998-08-01T23:59:59.000Z

30

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents [OSTI]

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

31

Fuel oil and kerosene sales 1996  

SciTech Connect (OSTI)

The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

NONE

1997-08-01T23:59:59.000Z

32

Fuel Cell Distributed Power Package Unit: Fuel Processing Based On  

E-Print Network [OSTI]

Gas or Biogas or Biomass derived Pyrolysis oil In-situ heat generation on catalyst lowers capital cost is burnt off during regenerationDiesel, NG, Propane, Biogas, Biomass Pyrolysis Oil Fuel Flexibility ·In

33

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

34

Availability of heavy fuel oils by sulfur level, September 1981  

SciTech Connect (OSTI)

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held, refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 2 figures, 13 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

35

Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)  

SciTech Connect (OSTI)

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-05-01T23:59:59.000Z

36

The producer surplus associated with gasoline fuel use in the United States1  

E-Print Network [OSTI]

The producer surplus associated with gasoline fuel use in the United States1 Yongling Sun, Mark A. This paper estimates the producer surplus associated with changes in gasoline fuel use in the United States that affect oil use and oil imports to the US, and (2) comparing the actual average cost of gasoline

Lin, C.-Y. Cynthia

37

Fuel oil and kerosene sales 1995  

SciTech Connect (OSTI)

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

38

Fuel oil and kerosene sales 1993  

SciTech Connect (OSTI)

This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1994-10-03T23:59:59.000Z

39

Fuel oil and kerosene sales 1994  

SciTech Connect (OSTI)

This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

NONE

1995-09-27T23:59:59.000Z

40

Primary and Secondary Distillates as Marine Fuel Oil  

Science Journals Connector (OSTI)

The component compositions of marine fuel oils satisfying the requirements of TU 38. ... were developed. Light gasoils replace standard diesel fuel in marine fuel oil. The demulsifiability of light and heavy ... ...

T. N. Mitusova; I. A. Pugach; N. P. Averina…

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Response of Oil Sands Derived Fuels in Diesel HCCI Operation  

Broader source: Energy.gov (indexed) [DOE]

Response of Oil Sands Derived Fuels in Diesel HCCI Operation Bruce G. Bunting senior staff scientist Fuels, Engines, and Emissions Research Center 2007 DOE DEER Conference...

42

Response of Oil Sands Derived Fuels in Diesel HCCI Operation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Response of Oil Sands Derived Fuels in Diesel HCCI Operation Response of Oil Sands Derived Fuels in Diesel HCCI Operation Presentation given at the 2007 Diesel Engine-Efficiency &...

43

,,,,"Reasons that Made Residual Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.25;" 5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable Residual","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","Consumed as a Fuel","Fuel Oil Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

44

"Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel...

45

Availability of heavy fuel oils by sulfur levels, February 1981  

SciTech Connect (OSTI)

This monthly report includes a narrative analysis of the status of the United States' total new supply of heavy fuel oils, with an emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country or origin, and by importing state. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. The December issue repeats the seven major tables with final data in all categories for the previous calendar year. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. 2 figs., 13 tabs.

Wolfrey, J.

1981-10-15T23:59:59.000Z

46

Availability of heavy fuel oils by sulfur levels, March 1981  

SciTech Connect (OSTI)

This monthly report includes a narrative analysis of the status of the United States' total new supply of heavy fuel oils, with an emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country of origin, and by importing state. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. The December issue repeats the seven major tables with final data in all categories for the previous calendar year. This report was previously published by the Bureau of Mines in the Minerals Industries Survey Series under the same title. 2 figs., 13 tabs.

Wolfrey, J.

1981-10-15T23:59:59.000Z

47

Availability of heavy fuel oils by sulfur level, August 1981  

SciTech Connect (OSTI)

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 1 figure, 14 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

48

Availability of heavy fuel oils by sulfur level, October 1981  

SciTech Connect (OSTI)

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterbone movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 1 figure, 14 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

49

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

50

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

51

Chapter 8 - Algae Oils as Fuels  

Science Journals Connector (OSTI)

Abstract Biologically produced fuels are considered potential and viable alternatives to meet the world’s fuel requirements. In this context, algal-based oil is of significant importance due to its renewable and carbon-neutral nature. Biosynthesis of triglycerides by utilizing CO2 (by biofixation) or wastewater under stress conditions via photoautotrophic, heterotrophic (photo/dark), or mixotrophic mechanisms enumerates the potential of microalgae for generation of renewable biodiesel. In addition to the algal cultivation, the conversion of the accumulated lipids to biodiesel is gaining considerable interest. Though there exist some constraints, the process of harnessing biofuel from microalgae is both economically viable and environmentally sustainable compared to the other oil-producing terrestrial crops. This chapter explores biofuel production using microalgae. Concerted efforts are made in this chapter to discuss the biochemistry pertaining to algal lipid synthesis, nutritional modes of algae, cultivation systems used for algal oil production, and the cascade of steps involved, from biomass cultivation to transesterification of the fuel. The ability of microalgae to capture CO2 and its survivability in wastewater is also elaborated in the context of lipid synthesis.

S. Venkata Mohan; M. Prathima Devi; G. Venkata Subhash; Rashmi Chandra

2014-01-01T23:59:59.000Z

52

Chemical-Looping Combustion with Fuel Oil in a 10 kW Pilot Plant  

Science Journals Connector (OSTI)

Chemical-Looping Combustion with Fuel Oil in a 10 kW Pilot Plant ... The unit is based on interconnected fluidized beds and is similar to the design originally presented by Lyngfelt et al.(12) In the riser section there is a fast-fluidized regime, whereas in the loop-seals and the fuel reactor there is a bubbling regime. ... Energy Combust. ...

Patrick Moldenhauer; Magnus Rydén; Tobias Mattisson; Ali Hoteit; Aqil Jamal; Anders Lyngfelt

2014-08-29T23:59:59.000Z

53

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect (OSTI)

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

54

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we have raised expected peak prices this winter for residential heating oil deliveries to $1.55 per gallon (January) compared to $1.43 per gallon in last month's projections. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. Primary distillate inventories in the United States failed to rise significantly in November despite some speculation that previous distributions into secondary and tertiary storage would back up burgeoning production and import volumes into primary storage that month. Average

55

Choline for neutralizing naphthenic acid in fuel and lubricating oils  

SciTech Connect (OSTI)

A method is described of neutralizing at least a portion of the naphthenic acids present in fuel and lubricating oils which contain naphthenic acids which comprises treating these oils with a neutralizing amount of choline.

Ries, D.G.; Roof, G.L.

1986-07-15T23:59:59.000Z

56

Table 19. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Prices," source for backcast estimates prior to January 1983. 19. U.S. Refiner Residual Fuel Oil Prices 36 Energy Information Administration Petroleum Marketing Annual 1996...

57

Table 19. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Prices," source for backcast estimates prior to January 1983. 19. U.S. Refiner Residual Fuel Oil Prices 36 Energy Information Administration Petroleum Marketing Annual 1997...

58

Process for Converting Algal Oil to Alternative Aviation Fuel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process for Converting Algal Oil to Alternative Aviation Fuel Los Alamos National Laboratory Contact LANL About This Technology The conversion process uses a Kolbe-based method of...

59

Thermal Effects by Firing Oil Shale Fuel in CFB Boilers  

Science Journals Connector (OSTI)

It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mine...

D. Neshumayev; A. Ots; T. Parve; T Pihu…

2010-01-01T23:59:59.000Z

60

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline  

Science Journals Connector (OSTI)

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline ... (11) Another analysis suggests that a transition to hydrogen- and natural-gas-fueled vehicles—and the associated climate benefits—will partly be driven by dwindling oil supplies. ... Within each class, we do not attempt to predict the exact substitute that will dominate (for example, whether electricity, hydrogen fuel cells, or natural gas will prevail in the passenger car market), but rather model the aggregate contribution of alternatives to conventional oil. ...

Adam R. Brandt; Adam Millard-Ball; Matthew Ganser; Steven M. Gorelick

2013-05-22T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Final report  

SciTech Connect (OSTI)

The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. Current methods of oil extraction and refining were considered, as well as the products of those processes. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. No modification of process design or equipment is required. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons.

Not Available

1981-11-01T23:59:59.000Z

62

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

0.9 Relative Standard Errors for Table 10.9;" 0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

63

Fuel Consumption for Electricity Generation, All Sectors United States  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption for Electricity Generation, All Sectors Fuel Consumption for Electricity Generation, All Sectors United States Coal (thousand st/d) .................... 2,361 2,207 2,586 2,287 2,421 2,237 2,720 2,365 2,391 2,174 2,622 2,286 2,361 2,437 2,369 Natural Gas (million cf/d) ............. 20,952 21,902 28,751 21,535 20,291 22,193 28,174 20,227 20,829 22,857 29,506 21,248 23,302 22,736 23,627 Petroleum (thousand b/d) ........... 128 127 144 127 135 128 135 119 131 124 134 117 131 129 127 Residual Fuel Oil ...................... 38 28 36 29 30 31 33 29 31 30 34 27 33 31 30 Distillate Fuel Oil ....................... 26 24 27 28 35 30 30 26 31 26 28 25 26 30 28 Petroleum Coke (a) .................. 59 72 78 66 63 63 66 59 62 63 67 60 69 63 63 Other Petroleum Liquids (b) ..... 5 3 4 4 7 5 5 5 7 5 5 5 4 6 6 Northeast Census Region Coal (thousand st/d) ....................

64

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

65

Tea Oil Camellia: a New Edible Oil Crop for the United States John M. Ruter  

E-Print Network [OSTI]

1 Tea Oil Camellia: a New Edible Oil Crop for the United States© John M. Ruter The University@uga.edu INTRODUCTION Camellia oleifera has been cultivated in China as a source of edible oil. oleifera as a commercial oil seed crop for the southeast (Ruter, 2002). Considerable research is being

Radcliffe, David

66

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

67

Saving diesel fuel in the oil field  

SciTech Connect (OSTI)

Describes how diesel electric SCR (silicon controlled rectifier) drilling rigs are helping drillers save fuel expense in the oil fields, along with other energy conservation methods. Compares SCR to conventional drilling rigs. Points out that on conventional rigs, diesel engines drive rig components directly, while on the SCR electric rigs, diesel engines turn a.c. electric generators which supply energy to d.c. electric motors for rig component power. Components of the SCR rigs include drawworks, mud pumps, rotary table, compressors, shakers, blenders and the camp load. Recommends economic principles such as supplying generators large enough to handle the low p.f. (power factor) as well as peak power requirements; and keeping the work load on diesel engines as high as possible for fuel economy. Presents tables of fuel consumed per 100 kW at various load factors; effect of power factor on engine hp required; electric drilling rig power modules; and engine and generator selection guide. Emphasizes consideration of the competitive difference in diesel engine economy.

Elder, B.

1982-11-01T23:59:59.000Z

68

Microbial Degradation in Soil Microcosms of Fuel Oil Hydrocarbons from Drilling Cuttings  

Science Journals Connector (OSTI)

Microbial Degradation in Soil Microcosms of Fuel Oil Hydrocarbons from Drilling Cuttings ... Relation between Bioavailability and Fuel Oil Hydrocarbon Composition in Contaminated Soils ...

Claude-Henri. ChaIneau; Jean-Louis. Morel; Jean. Oudot

1995-06-01T23:59:59.000Z

69

Effects of No. 2 Fuel Oil, Nigerian Crude Oil, and Used Crankcase Oil on Attached Algal Communities: Acute and Chronic Toxicity of Water-Soluble Constituents  

Science Journals Connector (OSTI)

...EXTRACTS OF OILS ON ALGAE 677 (Chlorophyta...Exposure to no. 2 fuel oil extract led to domi...products such as no. 2 fuel oil are usually toxic to algae, invertebrates, and...EXTRACTS OF OILS ON ALGAE 681 2 fuel oil extracts decreased...

Thomas L. Bott; Kurt Rogenmuser

1978-11-01T23:59:59.000Z

70

Oil Shale Research in the United States  

Broader source: Energy.gov [DOE]

Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies

71

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

72

UNIT NAME: C-751 Fuel Facility REGULATORY STATUS: AOC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

,93 186 UNIT NUMBER : UNIT NAME: C-751 Fuel Facility REGULATORY STATUS: AOC LOCATION: Inside plant security fence, immediately south of C-720 building. APPROXIMATE DIMENSION: Two...

73

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

74

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

75

Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization  

Broader source: Energy.gov (indexed) [DOE]

Wells: Rules Relating to Spacing, Pooling, and Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting The Department of Natural Resources is given the authority to create and promulgate regulations related to spacing, pooling, and utilization of oil

76

Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel  

Science Journals Connector (OSTI)

Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil bio petroleum fuel and diesel which can be an energy source.

Mustafa Hamid Al-abbas; Wan Aini Wan Ibrahim; Mohd. Marsin Sanagi

2012-01-01T23:59:59.000Z

77

NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

Hall, Julian

78

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

79

Behavior of shale oil jet fuels at variable severities  

SciTech Connect (OSTI)

Catalytic hydroprocessed shale oil jet fuels in the USA were characterized and compared with petroleum jet fuel to demonstrate their possibility as a conventional jet fuel substitute. The shale oils (Geokinetics, Occidental, Paraho and Tosco II) were hydrotreated in a 0.058m ID by 1.52m long reactor containing Ni/MO/Al/sub 2/O/sub 3/ catalyst. The fractionated hydrogenated shale oils at jet fuel ranges (120-300/sup 0/C) were analyzed for composition and physical properties. The increasing hydroprocessing severity proportionally decreased nitrogen, sulfur, olefins, and aromatics, and increased hydrogen content. The nitrogen content even at high severity conditions was considerably higher than that of conventional jet fuel. Sulfur and olefin contents were lower at all severities. The heat of combustion and the physical properties, except the freezing point, were comparable to petroleum jet fuels. The yields of jet fuels increased proportionally to increased severity. The study showed that high severity hydroprocessing gave better performance in processing shale oils to jet fuels.

Mukherjee, N.L.

1988-01-01T23:59:59.000Z

80

Verifying a Simplified Fuel Oil Flow Field Measurement Protocol  

SciTech Connect (OSTI)

The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

Henderson, H.; Dentz, J.; Doty, C.

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

A methodical study of reliability analysis of the crude oil unit in processing heavy oil  

Science Journals Connector (OSTI)

This paper presents a novel approach to analyse the safety and reliability issues on the crude oil unit in processing heavy oil. Based on the discussions of the corrosion mechanism, it uses fault tree analysis to identify the key factors that may lead to failure of crude oil unit when processing heavy oil. It has found that factors such as temperature, consistence, relatively move speed and material, critically affect the corrosion rate of the naphthenic acid. In order to explore the relationships between the identified factors and the corrosion rate of the naphthenic acid, this paper uses artificial neural networks to identify such normally non-linear relationships. Laboratory experiments have been conducted to collect data of the corrosion rate using different materials in different temperatures, consistence and velocity. The analyses show that the proposed research method is sound and can be used in safety and reliability analysis of crude oil unit in processing heavy oil.

Qingyou Liu; Guorong Wang; Yan Yang

2009-01-01T23:59:59.000Z

82

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

83

Improving operational efficiency of fuel oil facilities used at gas-and-oil-fired power stations  

Science Journals Connector (OSTI)

Results obtained from experimental investigations of energy consumption are described, and ways for considerably reducing it are proposed taking as an example the fuel oil facility at the 2400-MW Lukoml District ...

A. K. Vnukov; F. A. Rozanova; A. A. Bazylenko; V. L. Zhurbilo…

2009-09-01T23:59:59.000Z

84

Effect of severity on catalytic hydroprocessed shale oil jet fuels  

SciTech Connect (OSTI)

Catalytic hydroprocessed shale oil jet fuels in the USA were characterized and compared with petroleum jet fuel to demonstrate their possibility as a conventional jet fuel substitute. The shale oils (Geokinetics, Occidental, Paraho and Tosco II) were hydrotreated in a 0.0508m ID by K1.524m long reactor containing Ni/Mo/Al/sub 2/O/sub 3/ catalyst. The fractionated hydrogenated shale oils at jet fuel ranges (120-300/degree/C) were analyzed for composition and physical properties. The increasing hydroprocessing severity proportionally decreased nitrogen, sulfur, olefins, aromatics and increased hydrogen content. The nitrogen content was considerable higher even at high severity conditions. Sulfur and olefin contents were lower at all severities. The heat of combustion and the physical properties, except the freezing point, were comparable to petroleum jet fuels. The yields of jet fuels increased proportionally to increased severity. The study showed that high severity hydroprocessing gave better performance in processing shale oils to jet fuels.

Mukherjee, N.L.

1987-01-01T23:59:59.000Z

85

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

86

Sandia National Laboratories: Portable Hydrogen Fuel-Cell Unit...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Green, Sustainable Power to Honolulu Port Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port Solar Glare Hazard Analysis Tool Available for...

87

Unit root properties of crude oil spot and futures prices  

Science Journals Connector (OSTI)

In this article, we examine whether WTI and Brent crude oil spot and futures prices (at 1, 3 and 6 months to maturity) contain a unit root with one and two structural breaks, employing weekly data over the period 1991–2004. To realise this objective we employ Lagrange multiplier (LM) unit root tests with one and two endogenous structural breaks proposed by Lee and Strazicich [2003. Minimum Lagrange multiplier unit root test with two structural breaks. Review of Economics and Statistics, 85, 1082–1089; 2004. Minimum LM unit root test with one structural break. Working Paper no. 04–17, Department of Economics, Appalachian State University]. We find that each of the oil price series can be characterised as a random walk process and that the endogenous structural breaks are significant and meaningful in terms of events that have impacted on world oil markets.

Svetlana Maslyuk; Russell Smyth

2008-01-01T23:59:59.000Z

88

The future of oil: unconventional fossil fuels  

Science Journals Connector (OSTI)

...revolutionizing the energy outlook in...revolutionizing the energy outlook in...estimate what the price of oil will...terminals in the USA to meet projected...and its history is instructive...domestic oil prices that followed...and for the USA as a whole...are used. -Energy return on...geological history, which could...

2014-01-01T23:59:59.000Z

89

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

Because of the higher projected crude oil prices and because of Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

90

Some physiochemical tests of sunflower oil and no. 2 diesel oil as fuels  

SciTech Connect (OSTI)

The suitability of sunflower oil as a fuel for diesel engines was evaluated by determining the physiochemical properties of sunflower oil, No. 2 diesel and blends of both. This evaluation was accomplished by determining the American Petroleum Institute (API) gravity, cetane rating, heat of combustion, kinematic viscosity, pour point, cloud point, and water content of these fuels using methods specified by the American Society of Testing Materials (ASTM) for diesel fuels. These tests for petroleum products are designed to standardize results so comparisons can be made from one laboratory to another.

Ramdeen, P.; Backer, L.F.; Kaufman, K.R.; Kucera, H.L.; Moilanen, C.W.

1982-05-01T23:59:59.000Z

91

,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

fuels is not available due to the potential" "environmental impact of storage tanks." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " WWithheld...

92

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at about $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

93

The future of oil: unconventional fossil fuels  

Science Journals Connector (OSTI)

...groundwater contamination. Nevertheless, innovative solutions have been found to many of...long project lead times, environmental remediation and the future oil price. Canadian...operations, being cheaper than mining; -innovative technology; -co-generation to reduce...

2014-01-01T23:59:59.000Z

94

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

DOE Patents [OSTI]

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

95

Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis Developed jointly...

96

An empirical analysis of the price discovery function of Shanghai fuel oil futures market  

Science Journals Connector (OSTI)

This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such ... there exists a strong relationship between the spot price of Huangpu fuel oil spot market and the fut...

Zhen Wang; Zhenhai Liu; Chao Chen

2007-08-01T23:59:59.000Z

97

Simulation of Fuel Oil System in Marine Engine Simulator Based on Finite Element Method  

Science Journals Connector (OSTI)

This paper focuses on the simulation research to fuel oil system. Hydrodynamic analysis to fuel oil system pipelines network is done and the modeling method is using finite element theory. A relative accepted ...

Diyang Li; Yuan Jiang; Boyang Li

2012-01-01T23:59:59.000Z

98

E-Print Network 3.0 - ammonium nitrate-fuel oil Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nitrate-fuel oil Search Powered by Explorit Topic List Advanced Search Sample search results for: ammonium nitrate-fuel oil Page: << < 1 2 3 4 5 > >> 1 ORNL 2010-G01068jcn UT-B ID...

99

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

100

Letter to the editor The bio-fuel debate and fossil energy use in palm oil  

E-Print Network [OSTI]

Letter to the editor The bio-fuel debate and fossil energy use in palm oil production: a critique-fuels based on palm oil to re- duce greenhouse gas emissions, due account should be taken of carbon emissions fuel use in palm oil pro- duction, making a number of assumptions that I believe to be incorrect

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)  

SciTech Connect (OSTI)

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-06-01T23:59:59.000Z

102

New lube oil for stationary heavy fuel engines  

SciTech Connect (OSTI)

An extensively field-tested diesel engine lubricating oil for medium speed, heavy fuel stationary engine applications has been introduced by Caltex Petroleum, in Dallas, Texas. The new oil is similar to a product developed and marketed for marine medium speed heavy fuel propulsion and auxillary engine applications by one of its two parent companies, Chevron. Detailed are results of two field evaluations in Caterpillar 3600 series engines installed at Kimberly Clark (KCPI) and Sime Darby (SDPI), both in the Philippines. Both were one year, 7000-plus hour field evaluations of a new, 40 BN trunk piston engine oil (TPEO), identified as Caltex Delo 3400, SAE 40 engine lube oil. The oil uses the new Phenalate additive technology developed by Chevron Chemical Company`s Oronite Additives Division. This technology is designed to improve engine cleanliness in regard to soft black sludge and piston deposits. The focus of the field evaluations was the performance of the lubricating oil. During controlled tests at Sime Darby, the most noticeable improvement over another technology was in the control of sludge deposits. This improvement was seen in all areas where black sludge forms, such as the rocker cover, crankcase cover and valve assemblies. 4 figs.

NONE

1996-12-01T23:59:59.000Z

103

Refiner options for converting and utilizing heavy fuel oil  

SciTech Connect (OSTI)

Ongoing advances in established technologies, together with recent commercial applications of residue fluid catalytic cracking (RFCC), automated residue demetallization, solvent deasphalting and gasification of pitch and coke, have markedly enhanced options for processing and economically using residues. Key long-term driving forces for processing strategies are: the need for flexibility to handle heavy, high-metals crude oils, and the economic benefit of being able to convert low-value residues to high-value light transportation fuels, hydrogen and electric power. Narrowing light/heavy crude oil price differentials and relatively low crude oil price levels since the early 1990s until the first quarter of 1996 have slowed the addition of new bottom-of-the-barrel conversion projects over the past two years. At the same time, world crude oil demand has increased at an annual average rate of nearly one million barrels/day (MMbpd) since 1985. Some major producer/refining companies forecast this rate of increase to continue well into the next decade. The inevitable net result will be the increased production of heavier crude oils. The authors project that this will be accompanied by flat or declining markets for heavy fuel oil and a resultant need for additional residue conversion/utilization capacity. The paper discusses technology application and status, economic observations, and technology outlook.

Dickenson, R.L.; Biasca, F.E.; Schulman, B.L.; Johnson, H.E. [SFA Pacific, Inc., Mountain View, CA (United States)

1997-02-01T23:59:59.000Z

104

Fuel prices and new vehicle fuel economy—Comparing the United States and Western Europe  

Science Journals Connector (OSTI)

Abstract Several recent papers have documented an effect of fuel prices on new vehicle fuel economy in the United States. This paper estimates the effect of fuel prices on average new vehicle fuel economy for the eight largest European markets. The analysis spans the years 2002–2007 and uses detailed vehicle registration and specification data to control for policies, consumer preferences, and other potentially confounding factors. We find fuel prices to have a statistically significant effect on average new vehicle fuel economy in Europe. The effect estimated for Europe is much smaller than comparable estimates for the United States.

Thomas Klier; Joshua Linn

2013-01-01T23:59:59.000Z

105

VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.  

SciTech Connect (OSTI)

The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

2004-10-01T23:59:59.000Z

106

Oil Shale and Other Unconventional Fuels Activities  

Broader source: Energy.gov [DOE]

It is generally agreed that worldwide petroleum supply will eventually reach its productive limit, peak, and begin a long term decline. What should the United States do to prepare for this event?...

107

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

108

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

109

Indexes of pumps for oil field pumping units  

SciTech Connect (OSTI)

As reported previously, a series of oil field pumping units has been developed with power outputs of 125, 250, 500, and 1000 kW, designed for injecting working fluids in cementing operations in oil and gas wells, hydraulic fracturing of formations, washing out sand plugs, and other production operations. The units are designed for the use of three-plunger pumps with individual power outputs of 125 or 500 kW. In the 250- and 1000-kW units, two such pumps are used. The 1000-kW pumping unit serves mainly for deep-penetration hydraulic fracturing of formations, and also for fracturing deep formations. The hydraulic fracturing process does not require the use of units with two pumps; this has been demonstrated by experience, both here and in other countries. All units intended for use in hydraulic fracturing are built with a single pump, transmission, and drive. Pumping units for well cementing must have two pumps that will give a high delivery rate. At the start of the operation, a single pump can be used to feed water into the cement mixer, with the second pump used to transfer the cement slurry to the well. Then both pumps are connected to the slurry injection line. The operation of these pumps is described.

Ibragimov, E.S.

1995-07-01T23:59:59.000Z

110

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

111

Lube oil for medium-speed, heavy-fuel engines  

SciTech Connect (OSTI)

A new generation of trunk-piston engine lube oils has been introduced by Chevron International Marine Lubricants for medium-speed, heavy-fuel, four-stroke engines. The new Chevron Delo 1000, 2000, 3000, and 3400 marine lubricants are specially designed for the demands of medium-speed diesel engines in today`s marine and stationary power markets. The new lube oil has been formulated to provide high levels of engine cleanliness, with low levels of wear. Testing by Chevron engineers shows that the new oils prevent the buildup of black sludge, a sticky, viscous deposit that can accumulate on the surfaces of medium-speed engines that run on heavy residual fuel. The performance of the new lube oils has been thoroughly evaluated by Chevron in a number of ongoing field tests. Results from 5000 hour teardown of a 6600 kW, model 6 MaK 601C engine in the cargo ship MV Germania serve as a good example of the field testing. 3 figs.

NONE

1995-09-01T23:59:59.000Z

112

MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu  

Gasoline and Diesel Fuel Update (EIA)

MSN YYYYMM Value Column Order Description Unit MSN YYYYMM Value Column Order Description Unit FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu FFPRBUS Total Fossil Fuels Production Quadrillion Btu

113

Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Developed jointly by Da Vinci Emissions Services Ltd., Cummins Inc., and Oak Ridge National Laboratory (ORNL), the Da Vinci Fuel-in-Oil (DAFIO™) technology uses a fiber optic probe to obtain real-time measurements of oil in an operating engine to quantify the fuel dissolved in the lubricant oil.

114

Producer gas from citrus wood fuels irrigation power unit  

SciTech Connect (OSTI)

A 90-hp diesel engine operating a citrus irrigation system was converted to run on a dual-fuel mixture utilizing producer gas from citrus wood chips as the main fuel source. A chip feeder mechanism, gasifier, filter system and control unit were designed to meet typical irrigation power requirements. Blighted, unproductive and dead trees removed near the irrigation site were used for chipping. Data on chip moisture content, fuel analysis, drying rate and fuel/tree weight are presented but labour and equipment costs were not determined. 14 references.

Churchill, D.B.; Hedden, S.L.; Whitney, J.D.; Shaw, L.N.

1985-01-01T23:59:59.000Z

115

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect (OSTI)

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

116

Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit  

SciTech Connect (OSTI)

Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

M. Namazian, S. Sethuraman and G. Venkataraman

2004-12-31T23:59:59.000Z

117

Crude oil and finished fuel storage stability: an annotated review  

SciTech Connect (OSTI)

The Bartlesville Energy Technology Center (BETC) of the Deopartment of Energy (DOE) and the US Army Fuels and Lubricants Research laboratory (AFLRL) at Southwest Research Institute (SwRI) have been working together on a support effort for the Strategic Petroleum Reserve Office (SPRO) of DOE. One task within this effort was a detailed literature survey of previous experiences in long-term storage of crude oil and finished fuels with an emphasis on underground storage. Based on the discussion presented in this review, in the limited number of cases reported, the refinability of crude oil was not significantly affected by prolonged storage. It was found that most crudes will deposit a sludge during storage which may interfere with withdrawal pumping. This sludge is probably composed of wax, sediment, water, and possibly asphaltenes. Emulsions of the water-oil interface have been reported after prolonged storage which have been attributed to action of centrifugal pumps used to remove accumulated seepage water. It is possible that these emulsions resulted from biological activity, such as the anaerobic activity reported, but no hydrogen sulfide production was observed.

Brinkman, D.W.; Bowden, J.N.; Giles, H.N.

1980-02-01T23:59:59.000Z

118

Floating oil production unit slated in small field off Gabon  

SciTech Connect (OSTI)

This paper reports on the first U.S. tanker converted to a floating production, storage, and offloading (FPSO) unit which takes up station in Gombe-Beta field off Gabon by Dec. 1. FPSO Ocean Producer will work under a 3 year, day rate contract let late in 1990 by Amoco-Gabon Bombe Marin co., a unit of Amoco Production Co. (OGJ, Dec. 24, 1990, p. 27). Gombe-Beta field is in the Atlantic Ocean about 70 miles south of Port Gentil, Gabon. Ocean Producer will be moored in 50 ft of water 3.7 miles off Gabon, with Bombe-Beta's unmanned production platform about 820 ft astern. The vessel will be held in position by a disconnectable, asymmetric, six point, spread mooring system, It is owned and operated by Oceaneering International Services Ltd. (OISL). Affiliate Oceaneering Production Systems (OPS) converted the 78,061 dwt oil tanker MT Baltimore Sea at a capital cost of $25 million at Gulf Copper Manufacturing Corp.'s Port Arthur, Tex., shipyard. Both companies are units of Oceaneering International Inc., Houston. OPS the Ocean Producer's use in Gombe-Beta field is the shallowest water FPSO application in the world. Amoco-Gabon chose an FPSO production system for Gombe-Beta because it expects the remote field to have a short economic life, and the oil requires extensive processing.

Not Available

1991-10-14T23:59:59.000Z

119

NMR Sensor for Onboard Ship Detection of Catalytic Fines in Marine Fuel Oils  

Science Journals Connector (OSTI)

NMR Sensor for Onboard Ship Detection of Catalytic Fines in Marine Fuel Oils ... Vermeire, M. B. Everything You Need to Know About Marine Fuels; Chevron Global Marine Products: Ghent, Belgium, 2007. ...

Morten K. Sørensen; Mads S. Vinding; Oleg N. Bakharev; Tomas Nesgaard; Ole Jensen; Niels Chr. Nielsen

2014-07-02T23:59:59.000Z

120

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect (OSTI)

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Distillate Fuel Oil Assessment for Winter 1996-1997  

Gasoline and Diesel Fuel Update (EIA)

following Energy Information Administration sources: Weekly following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208(96-39); Petroleum Supply Monthly, September 1996, DOE/EIA-0109(96/09); Petroleum Supply Annual 1995, DOE/EIA-0340(95); Petroleum Marketing Monthly, September 1996, DOE/EIA-0380(96/09); Short-Term Energy Outlook, DOE/EIA-0202(96/4Q) and 4th Quarter 1996 Short-Term Integrated Forecasting System; and an address by EIA Administrator Jay E. Hakes on the Fall 1996 Heating Fuel Assessment before the National Association of State Energy Officials, September 16, 1996. Table FE1. Distillate Fuel Oil Demand and Supply Factors, Winter (October - March) 1993-94 Through 1996-97 History STEO Mid Case Factor Winter Winter Winter Winter 1993-94

122

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

123

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

124

Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel  

DOE Patents [OSTI]

Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

2010-11-23T23:59:59.000Z

125

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Enter the Amount Delivered in Gallons XXXX Type of Fuel Sold was: 1=Fuel Oil #1 2=Fuel Oil #2 3=Kerosene 4=Other Enter the Price per Gallon $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ XXX.XX $ X.XX (select one) 1 2 3 4 MM/DD/YY Page 1 of 2 U.S. Energy Information Administration Independent Statistics & Analysis

126

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria 83.0 96.4 146.4 153.3 182.2 226.1 220.3 342.3 248.3 Barbados NA NA NA NA NA NA NA NA NA Belgium 155.1 160.4 - - - - - - - - - - - - - - Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 115.7 117.8 180.4 141.5 198.4 222.4 NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) NA NA NA NA NA NA NA NA NA Colombia NA NA NA NA NA NA NA NA NA Cuba NA NA NA 183.4 NA NA NA NA NA

127

,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

128

,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vwr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

129

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

SciTech Connect (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

130

Examining new fuel economy standards for the United States.  

SciTech Connect (OSTI)

After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

Plotkin, S. E.; Energy Systems

2007-01-01T23:59:59.000Z

131

Exchange Rate Effects on Excess Demand in the United States for Canadian Oil .  

E-Print Network [OSTI]

??This paper examines a model of excess supply and excess demand for Canadian oil in the United States utilizing an error correction model and time… (more)

Dickey, James

2011-01-01T23:59:59.000Z

132

Concentration measurements of biodiesel in engine oil and in diesel fuel  

Science Journals Connector (OSTI)

This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

A Mäder; M Eskiner; C Burger; W Ruck; M Rossner; J Krahl

2012-01-01T23:59:59.000Z

133

Effects of no. 2 fuel oil on hatchability of marine and estuarine bird eggs  

Science Journals Connector (OSTI)

Eggs of Louisiana herons, sandwich terns, and laughing gulls were oiled with either 0, 5, or 20 ?l of No. 2 fuel oil in the field and in the laboratory. After 5 days of natural incubation, field-oiled and cont...

Donald H. White; Kirke A. King…

134

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

135

The pass through of oil prices into euro area consumer liquid fuel prices in an environment of high and volatile oil prices  

Science Journals Connector (OSTI)

Crude and refined oil prices have been relatively high and volatile on a sustained basis since 1999. This paper considers the pass through of oil prices into consumer liquid (i.e. petrol, diesel and heating) fuel prices in such an environment. The pass through of oil prices into consumer liquid fuel prices has already been addressed extensively in the literature. Nonetheless much of this literature has either focused on the United States or on a time period when oil prices were relatively stable, or has used monthly data. The main contribution of this paper is a comprehensive combination of many features that have been considered before but rarely jointly. These features include: (1) the analysis of the euro area as an aggregate and a large number of countries (the initial 12 member states); (2) the consideration of different time periods; (3) the modelling of the data in raw levels rather than in log levels. This turns out to have important implications for our findings; (4) the use of high frequency (weekly) data, which, as results will suggest, are the lowest frequency one should consider; (5) the investigation of the different stages of the production chain from crude oil prices to retail distribution — refining costs and margins, distribution and retailing costs and margins; (6) the examination of prices including and excluding taxes — excise and value-added; (7) the modelling of prices for three fuel types — passenger car petrol and diesel separately and home heating fuel oil; (8) lastly we also address the issue of possible asymmetries, allowing for the pass through to vary according to (a) whether price are increasing or decreasing and (b) whether price levels are above or below their equilibrium level. The main findings are as follows: First, as distribution and retailing costs and margins have been broadly stable on average, the modelling of the relationship between consumer prices excluding taxes and upstream prices in raw levels rather than in logarithms has important implications for the stability of estimates of pass through when oil price levels rise significantly. Second, considering spot prices for refined prices improves significantly the fit of the estimated models relative to using crude oil prices. It also results in more economically meaningful results concerning the extent of pass through. Third, oil price pass through occurs quickly, with 90% occurring within three to five weeks. Fourth, using a relatively broad specification allowing for asymmetry in the pass through from upstream to downstream prices, there is little evidence of statistically significant asymmetries. Furthermore, even where asymmetry is found to be statistically significant, it is generally not economically significant. Lastly, these results generally hold across most euro area countries with few exceptions.

Aidan Meyler

2009-01-01T23:59:59.000Z

136

Production of Fish Oil UNITED STATES DEPART MENT OF THE INTERIOR  

E-Print Network [OSTI]

Production of Fish Oil UNITED STATES DEPART MENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU. Crowther, Director Production of Fish Oil By GEORGE M. PIGOTT Assistant Professor, Food Science Departm RENDERING METHOD The relationship between the tmee basic products (meal, oil, and stick water) from

137

Table 5.3 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand...

138

Rerefined Oil: An Option that Saves Oil, Minimizes Pollution  

Science Journals Connector (OSTI)

...of the annual oil consumption of the United States...desirably, burned as a fuel under carefully...percent of U.S. consumption of petroleum. About...oil was burned as fuel. Another 200 million...from gasoline and diesel fuel, carbon...me-tallic particles from engine wear, and metals...

THOMAS H. MAUGH II

1976-09-17T23:59:59.000Z

139

Oil Shale RD&D Leases in the United States | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil Shale RD&D Leases in the United States Oil Shale RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending leases to Exxon, Natural Soda, and AuraSource, that were offered in 2010. The outcomes associated with these projects are expected to have global applicability. Assessment of Plans and Progress on BLM Oil Shale RD&D Leases in the United States More Documents & Publications

140

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

142

,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsda_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsda_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

143

Chemical fate of Bunker C fuel oil in a subtropical marine environment  

SciTech Connect (OSTI)

On August 10, 1993, a major oil spill occurred when approximately 1.2 million liters of Bunker C (No. 6) fuel oil spilled from the fuel tanker Bouchard 155 after it collided with the phosphate freighter Balsa 37 in a shipping channel at the entrance to Tampa Bay, Florida. Although early hydrodynamic conditions with ebbing tides caused most of the oil to be carried several kilometers out of Tampa Bay and into the Gulf of Mexico, subsequent onshore winds and spring tides caused significant quantities of the oil to be deposited on nearby beaches and in mangrove, seagrass and estuarine habitats north of the mouth of Tampa Bay.

Wetzel, D.L.; Van Vleet, E.S. [Univ. of South Florida, St. Petersburg, FL (United States)

1996-12-31T23:59:59.000Z

144

Testing Waste Olive Oil Methyl Ester as a Fuel in a Diesel Engine  

Science Journals Connector (OSTI)

In this sense, to gain knowledge about the implications of its use, waste olive oil methyl ester was evaluated as a fuel for diesel engines during a 50-h short-term performance test in a diesel direct-injection Perkins engine. ... At the beginning of the last century, Rudolph Diesel fueled a diesel engine with the oil of an African groundnut (peanut), thus demonstrating the idea of using vegetable oil as a substitute for No. 2 diesel fuel. ... In this way, we obtained a volume value for each trio of working values, making a brake-specific fuel consumption comparison between different tests or fuels possible, as shown in Table 2, where Vi is the volume value for each test and V50 corresponds to that of No. 2 diesel fuel after 50 h (the test that showed the minimum value). ...

M. P. Dorado; E. Ballesteros; J. M. Arnal; J. Gómez; F. J. López Giménez

2003-10-02T23:59:59.000Z

145

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Broader source: Energy.gov [DOE]

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

146

Gross Input to Atmospheric Crude Oil Distillation Units  

U.S. Energy Information Administration (EIA) Indexed Site

Day) Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 15,283 15,709 16,327 16,490 16,306 16,162 1985-2013 PADD 1 1,134 1,188 1,178 1,142 1,122 1,130 1985-2013 East Coast 1,077 1,103 1,080 1,058 1,031 1,032 1985-2013 Appalachian No. 1 57 85 98 84 90 97 1985-2013 PADD 2 3,151 3,087 3,336 3,572 3,538 3,420 1985-2013 Ind., Ill. and Ky. 2,044 1,947 2,069 2,299 2,330 2,266 1985-2013

147

RECS Fuel Oil Usage Form_v1 (Draft).xps  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

148

Characterization by photoacoustic spectroscopy of the photosynthetic Scenedesmus armatus system affected by fuel oil contamination  

Science Journals Connector (OSTI)

The effect of aqueous fuel oil extract (AFOE)1 on the photosynthetic system in green algae Scenedesmus armatus...cultures was examined by photoacoustic spectroscopy. After a 24-h culture growth, the photosyntheti...

J. Szurkowski; Z. Tukaj

1995-10-01T23:59:59.000Z

149

Table 42. Residual Fuel Oil Prices by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

150

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

"KD0VABNUS1","KPRVABNUS1" "Date","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Vessel...

151

Toxicity of Fuel Oil Water Accommodated Fractions on Two Marine Microalgae, Skeletonema costatum and Chlorela spp  

Science Journals Connector (OSTI)

In this paper, the acute toxicity of four fuel oils including F120, F180, F380 and No.-20 was evaluated by exposing the marine microalgae Chlorela spp. (Chlorophyta) and Skeletonema costatum (Bacillariophyta) in ...

Min Chao; Xinqiang Shen; Fengxia Lun…

2012-05-01T23:59:59.000Z

152

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network [OSTI]

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

2012-06-07T23:59:59.000Z

153

Distillate Fuel Oil Imports Could Be Available - For A Price  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So it wasn't demand and production explains only part of the reason we got through last winter with enough stocks. The mystery is solved when you look at net imports of distillate fuel last winter. As we found out, while imports are a small contributor to supply, they are sometimes crucial. Last winter, imports were the main source of supply increase following the price spike. Previous record levels were shattered as imports came pouring into the country. The fact that Europe was enjoying a warmer-than-normal winter also encouraged exports to the United States. It was massive amounts of imports, particularly from Russia, that helped us get through last winter in as good a shape as we did. Imports are expected to be relatively normal this winter. Added imports

154

Alvan Blanch Green Fuels joint venture | Open Energy Information  

Open Energy Info (EERE)

venture Place: United Kingdom Product: A partnership in which Alvan Blanch provides an oil press to extract oil from rape and Green Fuels provides the equipment to turn the oil...

155

Lightweight pressure vessels and unitized regenerative fuel cells  

SciTech Connect (OSTI)

Energy storage systems have been designed using lightweight pressure vessels with unitized regenerative fuel cells (URFCs). The vessels provide a means of storing reactant gases required for URFCs; they use lightweight bladder liners that act as inflatable mandrels for composite overwrap and provide a permeation barrier. URFC systems have been designed for zero emission vehicles (ZEVs); they are cost competitive with primary FC powered vehicles that operate on H/air with capacitors or batteries for power peaking and regenerative braking. URFCs are capable of regenerative braking via electrolysis and power peaking using low volume/low pressure accumulated oxygen for supercharging the power stack. URFC ZEVs can be safely and rapidly (<5 min.) refueled using home electrolysis units. Reversible operation of cell membrane catalyst is feasible without significant degradation. Such systems would have a rechargeable specific energy > 400 Wh/kg.

Mitlitsky, F.; Myers, B.; Weisberg, A.H.

1996-09-06T23:59:59.000Z

156

NOISE CONTROL METHODS FOR A RECIPROCATING AIR COMPRESSOR USED IN FUEL CELL AUXILIARY POWER UNIT (APU)  

E-Print Network [OSTI]

NOISE CONTROL METHODS FOR A RECIPROCATING AIR COMPRESSOR USED IN FUEL CELL AUXILIARY POWER UNIT Air pollution Noise pollution Engine life Remedy Fuel cell APU Quieter Low emissions Exhaust Heat, Case History: Noise control approaches for an air-compressor in a fuel-cell auxiliary power unit, Noise

Carver, Jeffrey C.

157

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network [OSTI]

a small impact on the average price of jet fuel and carbon dioxide emissions. We also find thatMarket Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester

158

Clark and Clegg 1 ASSESSING THE IMPACT OF UNITED KINGDOM FUEL PRICE  

E-Print Network [OSTI]

Clark and Clegg 1 ASSESSING THE IMPACT OF UNITED KINGDOM FUEL PRICE PROTEST ACTIONS IN THE CITY of dissatisfaction amongst the haulier and farming communities in Europe over the price of fuel was shown In early September 2000 protests about high levels of taxation on fuel took place in Europe. In the United

Clegg, Richard G.

159

Evaluation of soy based heavy fuel oil emulsifiers for energy efficiency and environmental improvement  

SciTech Connect (OSTI)

It is known that the emulsification of water into heavy fuel oil (No. 6) can result in improved atomization of the fuel in a combustion chamber, which results in several benefits. In this study, two soybean lecithin based emulsifiers were evaluated. The emulsifiers were added to the No. 6 fuel at 0.5% and 1 % levels and emulsions of 10% and 15% water were prepared and burned in a pilot scale combustion chamber. The results showed a significant decrease in NO{sub x} emissions, and a reduction in carbon particulates, as well as a decrease in the excess oxygen requirement when the emulsions were burned when compared to fuel oil alone and a fuel oil/water mixture without the emulsifier. It was concluded that the use of a soybean lecithin based emulsifier may be used to increase the burning efficiency of heavy fuel oils, reduce emissions and particulates, and reduce down time for cleaning. This can be very important in utility plants which burn large volumes of heavy fuel oil and are located near urban areas.

Lee, P.K.; Szuhaj, B.F. [Central Soya Company, Inc., Fort Wayne, IN (United States); Diego, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

1996-12-31T23:59:59.000Z

160

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment  

E-Print Network [OSTI]

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area  

Science Journals Connector (OSTI)

Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area ... Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. ...

Ling Tao; David Fairley; Michael J. Kleeman; Robert A. Harley

2013-08-14T23:59:59.000Z

162

Oil market power and United States national security  

Science Journals Connector (OSTI)

...cooperation to defend against some future price collapse. The cooperation challenge...in its Who Gets What from Imported Oil campaign: OPEC is perceived as being...responsible for high gasoline or heating oil prices. Nothing could be further from the...

Roger Stern

2006-01-01T23:59:59.000Z

163

Oil market power and United States national security  

Science Journals Connector (OSTI)

...Organization of the Petroleum Exporting...occupation of China (8). Unlike...Moreover, U.S. exports were 80% of...protection from imports (ref. 1...Relationship of Oil Imports to the National...Force on Oil Import Control, Washington...History of Petroleum (I. B. Tauris...suspension of Iraqi exports to punish the...

Roger Stern

2006-01-01T23:59:59.000Z

164

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

165

Hydrogen Generation from Dimethyl Ether for Fuel Cell Auxiliary Power Units  

Science Journals Connector (OSTI)

Hydrogen Generation from Dimethyl Ether for Fuel Cell Auxiliary Power Units ... Vehicle manufacturers are rushing ahead with research into alternative fuels such as dimethyl ether (DME), biodiesel, methanol, ethanol, and hydrogen. ...

Marita Nilsson; Lars J. Pettersson; Bård Lindström

2006-07-29T23:59:59.000Z

166

Thermo economic evaluation of oxy fuel combustion cycle in Kazeroon power plant considering enhanced oil recovery revenues  

Science Journals Connector (OSTI)

Oxy fuel combustion and conventional cycle (currently working cycle ... for enhanced oil recovery in the various oil price indices is conducted and indices net present ... models reveal that gross efficiency of t...

Ehsan Torabnejad; Ramin Haghighi-Khoshkhoo…

2014-03-01T23:59:59.000Z

167

Oil and Fuel Spills EHS Contact: Lysa Holland (ljh17@psu.edu) 814-865-6391  

E-Print Network [OSTI]

Oil and Fuel Spills EHS Contact: Lysa Holland (ljh17@psu.edu) 814-865-6391 Procedures implemented. Other spills/releases of oil containing materials must be reported if they exceed 1 quart

Maroncelli, Mark

168

Oil Shale RD&D Leases in the United States | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

RD&D Leases in the United States RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending leases to Exxon, Natural Soda, and AuraSource, that were offered in 2010. The outcomes associated with these projects are expected to have global applicability. Assessment of Plans and Progress on BLM Oil Shale RD&D Leases in the United States More Documents & Publications

169

Evidence of randomness in United States spot oil prices  

SciTech Connect (OSTI)

This study investigates U.S. crude oil spot-market prices to determine if they were cyclical, autoregressive, or random in nature. The fact that oil-price volatility emerged only with the rise of spot markets meant that data for this type of an analysis were not previously available. The hypothesis tested was that U.S. crude oil price changes are neither cyclical nor autocorrelated, and are, therefore, random. Daily data on U.S. crude oil spot market prices (for the period of December 3, 1984 to November 4, 1988) were analyzed using spectral analysis; this converts time-series data into a frequency series, where it can be analyzed using more-powerful statistical methods. The spectral results of the price series gave a maximum power spectrum of 0.026, which is considerably smaller than the significance level of 0.052, considered acceptable using a 99% confidence level. The conclusion reached was that there was no significant cyclicality or autocorrelation in the data. This indicated that the U.S. crude oil prices are efficient, and that it would not be possible to predict crude oil price changes by using historical price data, seasonality, or business cycles.

Howard, B.W.

1989-01-01T23:59:59.000Z

170

Quantifying Avoided Fuel Use and Emissions from Solar Photovoltaic Generation in the Western United States  

Science Journals Connector (OSTI)

Quantifying Avoided Fuel Use and Emissions from Solar Photovoltaic Generation in the Western United States ... National Renewable Energy Laboratory, 1617 Cole Blvd, Golden, Colorado 80401 ...

Paul Denholm; Robert M. Margolis; James M. Milford

2008-11-17T23:59:59.000Z

171

Microsoft Word - Oil Shale Research in the United States 2011_Draft2.doc  

Broader source: Energy.gov (indexed) [DOE]

Oil Shale Research in the United States Oil Shale Research in the United States ______________________________________________________________________________ Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies Prepared by INTEK, Inc. For the U.S. Department of Energy * Office of Petroleum Reserves Naval Petroleum and Oil Shale Reserves Third Edition: September 2011 3 rd Edition Acknowledgements This report was prepared by INTEK, Inc. for the Department of Energy (DOE), Office of Naval Petroleum and Oil Shale Reserves (DOE/NPOSR) as a part of the AOC Petroleum Support Services, LLC (AOC-PSS) Contract Number DE-FE0000175 (Task 30). Mr. James C. Killen of DOE served as Technical Monitor and Mr. Khosrow Biglarbigi of INTEK, Inc. served as the Project Manager.

172

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect (OSTI)

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

173

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

4b. Relative Standard Errors for Total Fuel Oil Consumption per 4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion Btu) Fuel Oil Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 10 14 13 13 Building Floorspace (Square Feet) 1,001 to 5,000 10 16 11 11 5,001 to 10,000 15 22 18 18 10,001 to 25,000 15 24 19 19 25,001 to 50,000 13 25 29 29 50,001 to 100,000 14 27 21 22 100,001 to 200,000 13 36 34 34 200,001 to 500,000 13 37 33 33 Over 500,000 17 51 50 50 Principal Building Activity Education 17 17 16 17 Food Sales and Service 25 36 16 16 Health Care 29 48 47 47 Lodging 27 37 32 32 Mercantile and Service 14 25 26 26 Office 14 19 21 21 Public Assembly 23 46 35 34 Public Order and Safety 28 48 46 46 Religious Worship

174

Risk-Cost Tradeoff Analysis of Oil vs. Coal Fuels for Power Generation  

Science Journals Connector (OSTI)

This study examines the economic requirements and health consequences of converting an electrical power generating unit from oil to coal combustion at the West Springfield, MA Generating Station. Three alterna...

Lawrence B. Gratt; Gregory S. Kowalczyk

1991-01-01T23:59:59.000Z

175

Assessment of bio-fuel options for solid oxide fuel cell applications.  

E-Print Network [OSTI]

??Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote… (more)

Lin, Jiefeng

2013-01-01T23:59:59.000Z

176

United States Producing and Nonproducting Crude Oil and Natural Gas Reserves From 1985 Through 2004  

Gasoline and Diesel Fuel Update (EIA)

United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004 By Philip M. Budzik Abstract The Form EIA-23 survey of crude oil and natural gas producer reserves permits reserves to be differentiated into producing reserves, i.e., those reserves which are available to the crude oil and natural gas markets, and nonproducing reserves, i.e., those reserves which are unavailable to the crude oil and natural gas markets. The proportion of nonproducing reserves relative to total reserves grew for both crude oil and natural gas from 1985 through 2004, and this growth is apparent in almost every major domestic production region. However, the growth patterns in nonproducing crude oil and natural gas reserves are

177

A naphthenic jet fuel produced from an Australian marine oil shale  

SciTech Connect (OSTI)

CSR Limited holds title to an Authority to Prospect covering the Cretaceous Julia Creek oil shale deposit, located in Queensland, Australia, approximately 600 km inland from the eastern seaboard. The shale is of marine origin, having been deposited as an anaerobic sediment in a restricted epicontinental sea. Algae are the predominant source of organic matter. Resources are estimated at 20 billion barrels of oil, approximately half in shale deposits suitable for open cut mining. Typical oil shale analyses are given. Average oil yields are 70 liters per ton. The oil has several deleterious characteristics which necessitate its upgrading at higher severity than is conventional at existing refineries. Heteroatom levels are in total significantly higher than values for petroleum crudes and the aromaticity and metal content of the oil add to its complexity and unusual nature. Two processing routes have been proposed for this oil - either the production of a syncrude by hydrostabilization of the whole oil, or alternatively, upgrading separate fractions to marketable fuels. Pilot plant studies were carried out to simulate refinery processes options. During these investigations, they were successful in the first Australian production of shale-derived jet and diesel synfuels which met all specifications. In this paper, they present details of the jet fuel production and describe its unusual naphthenic character.

Stephenson, L.C.; Muradian, A. (CSR Ltd., Sydney (Australia)); Fookes, C.J.R.; Atkins, A.R. (CSIRO Div. of Energy Chemistry, Sutherland (Australia)); Batts, B.D. (Macquarie Univ., North Ryde (Australia))

1987-04-01T23:59:59.000Z

178

Reservoir heterogeneity in Carter Sandstone, North Blowhorn Creek oil unit and vicinity, Black Warrior Basin, Alabama  

SciTech Connect (OSTI)

This report presents accomplishments made in completing Task 3 of this project which involves development of criteria for recognizing reservoir heterogeneity in the Black Warrior basin. The report focuses on characterization of the Upper Mississippian Carter sandstone reservoir in North Blowhorn Creek and adjacent oil units in Lamar County, Alabama. This oil unit has produced more than 60 percent of total oil extracted from the Black Warrior basin of Alabama. The Carter sandstone in North Blowhorn Creek oil unit is typical of the most productive Carter oil reservoirs in the Black Warrior basin of Alabama. The first part of the report synthesizes data derived from geophysical well logs and cores from North Blowhorn Creek oil unit to develop a depositional model for the Carter sandstone reservoir. The second part of the report describes the detrital and diagenetic character of Carter sandstone utilizing data from petrographic and scanning electron microscopes and the electron microprobe. The third part synthesizes porosity and pore-throat-size-distribution data determined by high-pressure mercury porosimetry and commercial core analyses with results of the sedimentologic and petrographic studies. The final section of the report discusses reservoir heterogeneity within the context of the five-fold classification of Moore and Kugler (1990).

Kugler, R.L.; Pashin, J.C.

1992-05-01T23:59:59.000Z

179

Oil market power and United States national security  

Science Journals Connector (OSTI)

...assuming cOPEC demand growth of 2% (2004 cOPEC demand is unavailable...that importer demand reduction might...power, not oil per se, creates...military spending per capita (38). Iran's...However, Iran's energy consumption equals...domestic product (GDP) (39...

Roger Stern

2006-01-01T23:59:59.000Z

180

Oil market power and United States national security  

Science Journals Connector (OSTI)

...not oil per se, that...Countries (OPEC) exerts...restrain production. Cartel...to it. In 1973, James Akins...policy to this day. Akins...transfer; OPEC, Organization...cOPEC, core OPEC states; b/d, barrels per day; lrmc...price; q, production or quantity; r...

Roger Stern

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

many vehicle owners and fleet managers seek- ing to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with...

182

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect (OSTI)

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

183

Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks  

E-Print Network [OSTI]

Solid Oxide Fuel Cell Auxiliary Power Units for Long-Haul Trucks Modeling and Control Mohammad and maintenance of the truck engine. While still in the research phase, Solid Oxide Fuel Cell (SOFC) based APUs are used to provide this power, rather than idling the engine, because they use less fuel and reduce wear

184

Oil Shale: A Huge Resource of Low-Grade Fuel  

Science Journals Connector (OSTI)

...barrel of oil. With coal, only about 0...the technology for coal liquefaction were...shale would require mining, transporting...same condition as Appalachia. There is no doubt...cornered for surface coal mining. One would think...

William D. Metz

1974-06-21T23:59:59.000Z

185

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

186

Case Study of the Emissions from a Heavy-Oil-Fueled Hungarian Power Plant  

Science Journals Connector (OSTI)

Case Study of the Emissions from a Heavy-Oil-Fueled Hungarian Power Plant ... More than 50% of the electric power in Hungary is produced by fossil-fuel-burning power plants. ... 15 The concentration of the pollutant at a location is described by an explicit function in Descartes coordinate system, where the origin is the source; the direction of the abscissa is the same as the wind direction. ...

János Osán; Szabina Török; Jenõ Fekete; Anders Rindby

2000-08-26T23:59:59.000Z

187

Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential  

Science Journals Connector (OSTI)

A laboratory experiment was conducted to identify key hydrocarbon degraders from a marine oil spill sample (Prestige fuel oil), to ascertain their role in ... . After a 17-month enrichment in weathered fuel, the ...

Núria Jiménez; Marc Viñas; Cèlia Guiu-Aragonés…

2011-08-01T23:59:59.000Z

188

EIA Data: 2011 United States Oil and Gas Supply | OpenEI  

Open Energy Info (EERE)

Oil and Gas Supply Oil and Gas Supply Dataset Summary Description This dataset is the 2011 United States Oil and Gas Supply, part of the Annual Energy Outlook that highlights changes in the AEO Reference case projections for key energy topics. Source EIA Date Released December 16th, 2010 (3 years ago) Date Updated Unknown Keywords AEO EIA energy gas oil Supply Data application/vnd.ms-excel icon Oil and Gas Supply (xls, 32.3 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment http://www.eia.gov/abouteia/copyrights_reuse.cfm Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote

189

More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)  

SciTech Connect (OSTI)

This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports on the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.

Not Available

2012-07-01T23:59:59.000Z

190

Actions of Mycobacterium sp. Strain AP1 on the Saturated- and Aromatic-Hydrocarbon Fractions of Fuel Oil in a Marine Medium  

Science Journals Connector (OSTI)

...Aromatic-Hydrocarbon Fractions of Fuel Oil in a Marine Medium Published ahead...Biodegradation of TPHs of fuel oil by Mycobacterium sp. strain AP1 in marine medium. Strain AP1...aromatic-hydrocarbon fractions of fuel oil in a marine medium. | The pyrene-degrading...

Joaquim Vila; Magdalena Grifoll

2009-08-07T23:59:59.000Z

191

ExxonMobil Fuels Venter's Efforts To Run Vehicles on Algae-Based Oil  

Science Journals Connector (OSTI)

...engineered Escherichia coli instead of algae to make fuel, hopes to open a large-scale...California, expects to have a commercial algae biodiesel facility online in 2012, and Algenol...Venter's efforts to run vehicles on algae-based oil. | News | 0 Hydrocarbons...

Robert F. Service

2009-07-24T23:59:59.000Z

192

AEO Early Release 2013 - oil  

U.S. Energy Information Administration (EIA) Indexed Site

Growing U.S. oil output and rising vehicle fuel economy to cut Growing U.S. oil output and rising vehicle fuel economy to cut U.S. reliance on foreign oil The United States is expected to continue cutting its dependence on petroleum and liquid fuels imports over the rest of this decade because of growing domestic crude oil production and more fuel-efficient vehicles on America's highways. The new long-term outlook from the U.S. Energy Information Administration shows America's dependence on imported petroleum and liquid fuels will decline from 45 percent of domestic demand last year to 34 percent by 2019. U.S. dependence on imported oil had reached 60 percent as recently as 2005. EIA Administrator Adam Sieminski explains: "The United States will be able to meet more of its own energy needs because of two key

193

Development of gas turbine combustor fed with bio-fuel oil  

SciTech Connect (OSTI)

Considering the increasing interest in the utilization of biofuels derived from biomass pyrolysis, ENEL/CRT carried out some experimental investigations on feasibility of biofuels utilization in the electricity production systems. The paper considers the experimental activity for the development and the design optimization of a gas turbine combustor suitable to be fed with biofuel oil, on the basis of the pressurized combustion performance obtained in a small gas turbine combustor fed with bio-fuel oil and ethanol/bio-fuel oil mixtures. Combustion tests were performed using the combustion chamber of a 40 kWe gas turbine. A small pressurized rig has been constructed including a nozzle for pressurization and a heat recovering combustion air preheating system, together with a proper injection system consisting of two dual fuel atomizers. Compressed air allowed a good spray quality and a satisfactory flame instability, without the need of a pilot frame, also when firing crude bio-fuel only. A parametric investigation on the combustion performance has been performed in order to evaluate the effect of fuel properties, operating conditions and injection system geometry, especially as regards CO and NO{sub x} emissions and smoke index.

Ardy, P.L.; Barbucci, P.; Benelli, G. [ENEL SpA R& D Dept., Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

194

Distillate Fuel Oil Assessment for Winter 1995-1996  

Gasoline and Diesel Fuel Update (EIA)

U.S. Refining Capacity Utilization U.S. Refining Capacity Utilization by Tancred Lidderdale, Nancy Masterson, and Nicholas Dazzo* U.S. crude oil refinery utilization rates have steadily increased since oil price and allocation decontrol in 1981. The annual average atmospheric distillation utilization rate has increased from 68.6 percent of operable capacity in 1981 to 92.6 percent in 1994. The distillation utilization rate reached a peak of 96.4 percent in August 1994, the highest one-month average rate in over 20 years. This dramatic increase in refining capacity utilization has stimulated a growing interest in the ability of U.S. refineries to supply domestic requirements for finished petroleum products. This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in

195

Method to upgrade bio-oils to fuel and bio-crude  

DOE Patents [OSTI]

This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

2013-12-10T23:59:59.000Z

196

The impact of crude-oil price volatility on agricultural employment in the United States  

SciTech Connect (OSTI)

This study focuses on the impact of fluctuations in the price of crude oil on agricultural employment in the United States. After reviewing previous assessments of the issue, the existence of an empirical relationship between agricultural employment and crude oil price volatility is established using Granger causality. Subsequently, the nature of the relationship is estimated with the results suggesting that at least three full years are required before the measurable impacts of a percentage change in the real price of crude oil on the change in agricultural employment are exhausted. Finally, the structural stability of the functional relationship between the change in agricultural employment and the volatility of the price of crude oil, the percentage changes in expected net farm income, realized technological innovation, and the wage rate is examined.

Uri, N.D. [Dept. of Agriculture, Washington, DC (United States)

1995-12-31T23:59:59.000Z

197

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

198

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

199

The united kingdom's changing requirements for spent fuel storage  

SciTech Connect (OSTI)

The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK.

Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N. [National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, Cheshire WA3 6AE (United Kingdom)

2013-07-01T23:59:59.000Z

200

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel cell repeater unit including frame and separator plate  

DOE Patents [OSTI]

An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

2013-11-05T23:59:59.000Z

202

Quantitative Analysis of Constituents in Heavy Fuel Oil by 1H Nuclear Magnetic Resonance (NMR) Spectroscopy and Multivariate Data Analysis  

Science Journals Connector (OSTI)

This applies in particular to the shipping industry. ... The fuel oil samples were collected during the bunkering of the oil in various ports around the world and sent to Lloyd’s Register’s Fuel Oil Bunker Analysis and Advisory Service (FOBAS) for detailed physicochemical characterization. ... The mixture of two incompatible fuels leads to extensive formation of solid material, with devastating effects in the case where the precipitation takes place in the engine or tank of a HFO-powered ship or power plant. ...

Katrine Ellemann Nielsen; Jens Dittmer; Anders Malmendal; Niels Chr. Nielsen

2008-11-05T23:59:59.000Z

203

Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)  

SciTech Connect (OSTI)

Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

Brinkman, G.; Lew, D.; Denholm, P.

2012-09-01T23:59:59.000Z

204

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

205

1. What are positive economical impacts of improving the fuel mileage standards? 2. What is the current fuel mileage standard for the United States?  

E-Print Network [OSTI]

Bowen's money saved = $1091 * 0.90 = $982 A4. Assumptions: Fuel Price is $2.00 per gallon Fuel cost1. What are positive economical impacts of improving the fuel mileage standards? 2. What is the current fuel mileage standard for the United States? 3. If Dr Bowen rides his bike 90% of the year, how

Bowen, James D.

206

Evaluation of a zirconium additive for the mitigation of molten ash formation during combustion of residual fuel oil  

SciTech Connect (OSTI)

Florida Power & Light Company (FP&L) currently fires a residual fuel oil (RFO) containing catalyst fines, which results in a troublesome black aluminosilicate liquid phase that forms on heat-transfer surfaces, remains molten, and flows to the bottom of the boiler. When the unit is shut down for a scheduled outage, this liquid phase freezes to a hard black glass that damages the contracting waterwalls of the boiler. Cleaning the boiler bottom and repairing damaged surfaces increase the boiler downtime, at a significant cost to FP&L. The Energy & Environmental Research Center (EERC) proposed to perform a series of tests for FP&L to evaluate the effectiveness of a zirconium additive to modify the mechanism that forms this liquid phase, resulting in the formation of a dry refractory phase that may be easily handled during cleanup of the boiler.

NONE

1996-12-01T23:59:59.000Z

207

Production of Fuels for Marine Engines. The Vanino Port Unit  

Science Journals Connector (OSTI)

A crude oil refining plant with a capacity of 500,000 tons/year was started up in April 2002 at Vanino port on the shore of the Tartar Strait. This plant is designed for production of a wide assortment (14 items)...

K. V. Baklashov; Yu. N. Lebedev…

2002-07-01T23:59:59.000Z

208

Modification of the feeding behavior of marine copepods by sub-lethal concentrations of water-accommodated fuel oil  

Science Journals Connector (OSTI)

The feeding behaviors of Acartia clausi and A. tonsa were measured in samples of water containing low levels of a water-accommodated fraction of No. 2 fuel oil. The copepods fed normally at a hydrocarbon concentr...

M. S. Berman; D. R. Heinle

209

Safety and Regulatory Structure for CNG/Hydrogen Vehicles and Fuels in the United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CNG/H2 Vehicles and Fuels in the CNG/H2 Vehicles and Fuels in the United States Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for Safe Deployment of Vehicles Workshop December 2009 2 Overview DOT/NHTSA Mission Federal Motor Vehicle Safety Standards (FMVSS) FMVSS covering alternative fuel vehicles Research supporting new/improved FMVSS for alternative fuel vehicles International Harmonization - Global Technical Regulations 3 Mission Statements DOT Mission Statement Serve the United States by ensuring a safe transportation system that furthers our vital national interests and enhances the quality of life of the American people * Safety - Promote the public health and safety by working toward the elimination of transportation-related deaths and injuries NHTSA Mission Statement To reduce deaths, injuries and economic losses resulting from

210

STATEMENT OF CONSIDERATIONS REQUEST BY UNITED TECHNOLOGY CORPORATION FUEL  

Broader source: Energy.gov (indexed) [DOE]

TECHNOLOGY CORPORATION FUEL TECHNOLOGY CORPORATION FUEL CELLS (UTCFC) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-02AL67608, DOE WAIVER NO. W(A) 03-040. The Petitioner, UTCFC, has requested a waiver of all domestic and foreign patent rights to inventions that may be conceived or first actually reduced to practice in the course of UTCFC's work under Cooperative Agreement Number DE-FC04-02AL67608 entitled "Development of High-Temperature Polymeric Membranes and Improved Cathode Structures" with the U.S. Department of Energy (DOE). This waiver will not apply to any inventions conceived by subcontractors. The work to be done will be the design, development and delivery of two fuel cell stacks. The first stack will be a conventional PEM stack with platinum-alloy catalysts. The

211

High performance internal reforming unit for high temperature fuel cells  

DOE Patents [OSTI]

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

212

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

213

Evaluation of artificially-weathered standard fuel oil toxicity by marine invertebrate embryogenesis bioassays  

Science Journals Connector (OSTI)

Weathering of petroleum spilled in the marine environment may not only change its physical and chemical properties but also its effects on the marine ecosystem. The objective of this study was to evaluate the toxicity of the water-accommodated fraction (WAF) obtained from a standard fuel oil following an environmentally realistic simulated weathering process for a period of 80 d. Experimental flasks with 40 g L?1 of fuel oil were incubated at 18 °C with a 14 h light:10 h dark photoperiod and a photosynthetically active radiation (PAR) intensity of 70 ?E m?2 s?1. Samples were taken at four weathering periods: 24 h, 7, 21 and 80 d. WAF toxicity was tested using the sea urchin (Paracentrotus lividus) and mussel (Mytilus galloprovincialis) embryo–larval bioassays and the aromatic hydrocarbons levels (AH) in the WAF were measured by gas chromatography/mass spectrometry. In contrast with the classic assumption of toxicity decrease with oil weathering, the present study shows a progressive increase in WAF toxicity with weathering, being the EC50 after 80 d eightfold lower than the EC50 at day 1, whereas AH concentration slightly decreased. In the long term, inoculation of WAF with bacteria from a hydrocarbon chronically-polluted harbor slightly reduced toxicity. The differences in toxicity between fresh and weathered fuels could not be explained on the basis of the total AH content and the formation of oxidized derivatives is suggested to explain this toxicity increase.

Juan Bellas; Liliana Saco-Álvarez; Óscar Nieto; Josep María Bayona; Joan Albaigés; Ricardo Beiras

2013-01-01T23:59:59.000Z

214

D1 Fuel Crops Ltd | Open Energy Information  

Open Energy Info (EERE)

D1 Fuel Crops Ltd Jump to: navigation, search Name: D1 Fuel Crops Ltd Place: London, United Kingdom Zip: SE1 2RE Product: London-based JV between BP and D1 oils focusing on the...

215

SUPPLEMENT 1 The procedure for calculating the SOx emission factor from fuel sulphur content is given  

E-Print Network [OSTI]

is given below. The units are given in parenthesis. SFOC = Specific Fuel Oil Consumption (g/kWh) SC in parenthesis. SFOC = Specific Fuel Oil Consumption (g/kWh) CC = Carbon content of fuel (mass-%) M(C) = MolarSUPPLEMENT 1 The procedure for calculating the SOx emission factor from fuel sulphur content

Meskhidze, Nicholas

216

Batteries, Fuel Cells, and Flywheels  

Science Journals Connector (OSTI)

Cars and trucks are responsible for using almost 30 percent of the fossil fuel energy consumed in the United States. Almost all of this energy comes from petroleum products. When gasoline and diesel oil is bur...

Sidney Borowitz

1999-01-01T23:59:59.000Z

217

A two-component heavy fuel oil evaporation model for CFD studies in marine Diesel engines  

Science Journals Connector (OSTI)

Abstract The paper presents an evaporation model for Heavy Fuel Oil (HFO) combustion studies. In the present work, HFO is considered as a mixture of a heavy and a light fuel component, with the thermophysical properties of the heavy component calculated from the recently introduced model of Kyriakides et al. (2009) [1]. The model proposes a proper treatment of convective heat transfer to the evaporating fuel droplets. Computational Fluid Dynamics (CFD) simulations of HFO spray combustion in constant volume chambers are performed, utilizing a modified characteristic time combustion model. The results are in good agreement with literature experimental data. Computational results for a two-stroke marine Diesel engine also compare favorably against experiments. The present development yields a basis for detailed CFD studies of HFO combustion in large marine Diesel engines.

Nikolaos Stamoudis; Christos Chryssakis; Lambros Kaiktsis

2014-01-01T23:59:59.000Z

218

Soil remediation demonstration project: Biodegradation of heavy fuel oils. Special report  

SciTech Connect (OSTI)

Treatment of oil-contaminated soils is necessary to protect water supplies, human health, and environmental quality; but because of limited funds, cleanup costs are often prohibitive. High costs are exacerbated in cold regions such as Alaska, where spills are often in areas inaccessible to heavy equipment and where there is limited infrastructure. Owing to the lack of infrastructure, widespread fuel distribution systems, and the need for heating in the cold climate, there are numerous small-scale oil spills. Low-cost treatments applicable to small-scale spills are needed. The object of this CPAR project was to examine using cost-effective, on-site bioremediation techniques for heavy-oil-contaminated soil in cold regions. Both heavy-oil and diesel-contaminated soils were used to compare landfarming, a low-intensity treatment, to pile bioventing, a costlier treatment. For each soil-contaminant combination, we compared nutrient additions to a control with no nutrient additions. Under the conditions of this study, landfarming with nutrient additions was as effective for treating diesel-contaminated soil as was bioventing with nutrient additions. For heavy oils, landfarming with nutrients resulted in lower soil concentrations after one year, but differences among treatments were not statistically significant. Because landfarming does not require pumps, electricity, or plumbing, all costs are less than for bioventing. The minimal requirements for infrastructure also make landfarming attractive in remote sites typical of cold regions.

Reynolds, C.M.; Bhunia, P.; Koenen, B.A.

1997-08-01T23:59:59.000Z

219

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2012,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2012,"6/30/1984" ,"Data 3","Industrial",9,"Annual",2012,"6/30/1984" ,"Data 4","Farm",4,"Annual",2012,"6/30/1984" ,"Data 5","Electric Power",2,"Annual",2012,"6/30/1984" ,"Data 6","Oil Company",2,"Annual",2012,"6/30/1984"

220

Delayed Coking of Decant Oil and Coal in a Laboratory-Scale Coking Unit  

Science Journals Connector (OSTI)

The fact that coke quality varies with the chemical composition of the precursor feedstock creates a significant incentive to examine the process of coking and how it relates to the composition of the feedstock. ... (7)?Derbyshire, F. J.; Odoerfer, G. A.; Rudnick, L. R.; Varghese, P.; Whitehurst, D. D. Fundamental studies in the conversion of coals to fuels of increased hydrogen content. ... Bituminous coal/petroleum co-cokes were produced by coking 4:1 blends of vacuum resid (VR)/coal and decant oil (DO)/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 h, under autogenous pressure in microautoclave reactors. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2006-05-18T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chapter 2: BACKGROUND (I) Description of the coal Conversion and Oil Shale Retorting Fuel Cycles 2  

E-Print Network [OSTI]

oil shale 2.2 Coal and Oil Shale Resources energy systems retorting. Coal and oil shale resources are

unknown authors

222

DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used with all oil burner installations. The other possible failure mode had been attributed to fuel degradation and this became the main focus of the evaluation. The degradation of fuel usually occurs faster under higher temperature conditions. To preclude this as much as possible controls that provided for a post-purge of combustion airflow after burner shut down were selected. This provided a short period of time where the burner's combustion air blower continues to operate after the flame has gone out. This tends to cool the nozzle and in turn the fuel inside the small flow pathways inside the nozzle components. This study concludes that the use of low capacity nozzles is possible but only when the temperature and thermal mass environment of the combustion chamber result in a relatively ''cool'' condition. This was accomplished in one long-term experiment that essentially operated for a full heating season equivalent with no evidence of nozzle plugging or failure. The nozzle body surface temperature was kept at or below 150 F during the duration of the trial. On the other hand, a second system was studied that ended in a partial nozzle blockage and a system failure. In this ''hot environment'' system the nozzle body temperature reached 210 F. This occurred at close to a full heating season equivalent, yet it still would have resulted in a no-heat complaint by the homeowner.

MCDONALD,R.J.

2007-05-01T23:59:59.000Z

223

Extended end-point distillate fuels from shale oil by hydrotreating coupled with catalytic dewaxing  

SciTech Connect (OSTI)

It is generally accepted that shale oils derived by either surface or in situ retorting of western oil shale require relatively severe hydrotreatment as a consequence of their high oxygen, nitrogen and olefin contents. However, the hydrotreated syn crudes so produced typically possess pour points on the order of 20-30/sup 0/C which may require transport in heated pipelines. In addition distillates derived from the hydrotreated shale oil may also be unacceptable as jet and diesel fuels as a consequence of their poor low temperature fluidity characteristics. The authors report here a relatively simple process modification which overcomes these problems, i.e., addition of a shape-selective ZSM-5 dewaxing reactor in series with the conventional hydrotreating reactor. This process scheme is shown to be operative without interstage separation of light products from the hydrotreater including ammonia. Processing conditions for the dewaxing reactor are compatible with those of the hydrotreater. Surprisingly low levels of zeolite acidity are required for substantial pour point reduction. As a result of such processing, naphthas with octanes higher than those typically obtained by hydrocracking are produced in addition to a high yield of extended end point distillate which meets essentially all requirements for acceptable diesel fuel.

LaPierre, R.B.; Gorring, R.L.; Smith, R.L.

1986-03-01T23:59:59.000Z

224

Air Pollution Control Regulations: No. 13- Particulate Emissions from Fossil Fuel Fired Steam or Hot Water Generating Units (Rhode Island)  

Broader source: Energy.gov [DOE]

The purpose of this regulation is to limit emissions of particulate matter from fossil fuel fired and wood-fired steam or hot water generating units.

225

Cost evaluation of a novel 5-kW diesel-powered solid oxide fuel cell auxiliary power unit (APU).  

E-Print Network [OSTI]

??Idling heavy-duty trucks result in poor fuel consumption and harmful emissions. The Auxiliary Power Unit (APU) is one of the methods to reduce idling. The… (more)

Pillala, Chakradhar.

2009-01-01T23:59:59.000Z

226

Proposal for the Award of a Contract for the Supply of about 8000 Tonnes of Heavy Fuel Oil per Year over a Period of Three Years  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply of about 8000 Tonnes of Heavy Fuel Oil per Year over a Period of Three Years

1989-01-01T23:59:59.000Z

227

Coal liquefaction process wherein jet fuel, diesel fuel and/or astm no. 2 fuel oil is recovered  

SciTech Connect (OSTI)

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, R.F.; Ryan, D.F.

1982-06-01T23:59:59.000Z

228

Distributed Bio-Oil Reforming - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Stefan Czernik (Primary Contact), Richard French, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6135 Email: Stefan.Czernik@nrel.gov DOE Manager Sara Dillich Phone: (202) 586-1623 Email: Sara.Dillich@ee.doe.gov Subcontractor: University of Minnesota, Minneapolis, MN Project Start Date: October 1, 2004 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives By 2012, develop and demonstrate distributed reforming * technology for producing hydrogen from bio-oil at $4.10/ kilogram (kg) purified hydrogen. Demonstrate integrated performance at bench scale * including bio-oil vaporization, partial-oxidation (POX)

229

Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States  

SciTech Connect (OSTI)

In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

Not Available

1984-01-01T23:59:59.000Z

230

Reductions of NO{sub x} emissions on oil and gas firing at Bowline Unit 1  

SciTech Connect (OSTI)

In response to the NYSDEC, Part 227 regulations for the emissions of nitrogen oxides (NO{sub x}), Orange and Rockland Utilities, Inc. (ORU) and Burns & Roe Company (BRC) evaluated the options available to reduce the NO{sub x} emissions at two oil and gas fired units at Bowline Point Generating Station. Replacement of all of the existing burners with new low NO{sub x} burners and possibly overfire air ports presents the most costly method of achieving this goal. Therefore, other methods of NO{sub x} reduction were considered including utilizing some form of off-stoichiometric, burners out of service (BOOS), firing. It was determined that the stringent emission limits could be met utilizing off-stoichiometric firing techniques. New oil gun atomizer tips allowing off-stoichiometric firing with mechanical atomization and swirlers of a new design are replacing the existing atomizers. The new hardware eliminates the problems of opacity while operating with off-stoichiometric firing.

Paschedag, A.E.; Martinsen, R.A.; O`Sullivan, R.C.; Schmidt, D.W. [and others

1996-01-01T23:59:59.000Z

231

,"U.S. Residual Fuel Oil Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Sales Volumes" Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_c_nus_eppr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_c_nus_eppr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

232

Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report  

SciTech Connect (OSTI)

The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

Not Available

1993-10-15T23:59:59.000Z

233

Emission characteristics of GTL fuel as an alternative to conventional marine gas oil  

Science Journals Connector (OSTI)

The study examine the gaseous, smoke and particulate matter emission characteristics of a turbocharged heavy-duty diesel engine operated on conventional marine gas oil and gas-to-liquid Fischer–Tropsch fuel under modes of propulsion and generator operation. The gas-to-liquid showed average reductions up to 19% in nitrogen oxides, 25% in carbon monoxide, 4% in carbon dioxide and 30% in smoke with slight increase in unburned hydrocarbon emissions. Particulate number concentrations for gas-to-liquid were up to 21% higher, whereas particulates mass showed a 16% decrease at medium and high loads, while increasing by 12–15% under lower load conditions. Very low aromatic content of gas-to-liquid fuel and nearly zero sulfur level are responsible for particulate reduction.

Sergey Ushakov; Nadine G.M. Halvorsen; Harald Valland; Dag H. Williksen; Vilmar Æsøy

2013-01-01T23:59:59.000Z

234

Heating with energy saving alternatives to prevent biodeterioration of marine fuel oil  

Science Journals Connector (OSTI)

This study examined how alternative handling practices, including heat shock, can facilitate the prevention of biodeterioration of fuel oil onboard ships. At temperatures exceeding 50 °C, no microbes were observed after incubation for 2 days. Under 30 °C incubation, the total number of viable aerobic bacteria, Escherichia coli and Pseudomonas maltophilia, decreased gradually during the incubation period. Conversely, most fungi were destroyed after incubation for 5 days. Fungi generally had a better tolerance in marine fuel than E. coli after heat shock treatment. After incubation starting at ?45 °C, followed by different heat shock patterns, the total number of viable fungi and E. coli increased steadily during the 10-h incubation period. In contrast to fungi, heat shock effectively controlled E. coli growth. Heat shock treatment can control the growth of certain types of microbes at temperatures of up to 10 °C lower than commonly used.

J. Hua

2012-01-01T23:59:59.000Z

235

Straight Vegetable Oil as a Diesel Fuel? Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Performance of SVO Performance of SVO While straight vegetable oil or mixtures of SVO and diesel fuel have been used by some over the years, research has shown that SVO has technical issues that pose barriers to widespread acceptance. The published engineering literature strongly indicates that the use of SVO will lead to reduced engine life. This reduced engine life is caused by the buildup of carbon deposits inside the engine, as well as negative impacts of SVO on the engine lubricant. Both carbon deposits and excessive buildup of SVO in the lubricant are caused by the very high boiling point and viscosity of SVO relative to the required boiling range for diesel fuel. The carbon buildup doesn't necessarily happen quickly but instead over a longer period. These conclusions are

236

oil1990.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(dollars) (dollars) (dollars) (dollars) Table 1. Consumption and Expenditures in U.S. Households that Use Fuel OilKerosene, 1990 Residential Buildings Average Fuel Oil...

237

Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States  

SciTech Connect (OSTI)

A critical examination of the potential and the technical constraint that inhibit the application of enhanced oil recovery techniques in the United States has been initiated and is expected to continue. The examination is based on the results of extensive laboratory and field applications now underway under various forms of Department of Energy support. This interim report will be amplified as data become available and as progress is made toward resolving technical constraints. Comments on the approach and substance of the information contained herein are welcome.

Not Available

1980-05-01T23:59:59.000Z

238

Monitoring of Olympic National Park Beaches to determine fate and effects of spilled bunker C fuel oil  

SciTech Connect (OSTI)

On December 23, 1988, the barge Nestucca was accidentally struck by its tow, a Souse Brothers Towing Company tug, releasing approximately 230,000 gallons of Bunker C fuel oil and fouling beaches from Grays Harbor north to Vancouver Island. Affected beaches in Washington included a 40-mile-long strip that has been recently added to Olympic National Park. The purpose of the monitoring program documented in this report was to determine the fate of spilled Bunker C fuel oil on selected Washington coastal beaches. We sought to determine (1) how much oil remained in intertidal and shallow subtidal habitats following clean-up and weathering, (2) to what extent intertidal and/or shallow subtidal biotic assemblages have been contaminated, and (3) how rapidly the oil has left the ecosystem. 45 refs., 18 figs., 8 tabs.

Strand, J.A.; Cullinan, V.I.; Crecelius, E.A.; Fortman, T.J.; Citterman, R.J.; Fleischmann, M.L.

1990-10-01T23:59:59.000Z

239

HTGR Unit Fuel Pebble k-infinity Results Using Chord Length Sampling, invited T.J. Donovan  

E-Print Network [OSTI]

HTGR Unit Fuel Pebble k-infinity Results Using Chord Length Sampling, invited T.J. Donovan Lockheed) fuel pebble element. This paper presents comparison results of k calculations performed on a LEUPRO-1 where the TRISO fuel particles within the pebble are randomly distributed. Finally, the heterogeneous

Danon, Yaron

240

The economics of alternative fuel reduction treatments in western United States dry forests: Financial and policy implications  

E-Print Network [OSTI]

The economics of alternative fuel reduction treatments in western United States dry forests information on alternative fuel reduction methods. With support from the USDI/USDA Joint Fire Science Program We collected data at seven sites in the western US, on the costs of fuel reduction operations

Stephens, Scott L.

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Risk based corrective action: An application to closure of a fuel oil bunker site  

SciTech Connect (OSTI)

An evaluation of the potential risk of adversely impacting the site ground water was conducted at a food processing facility in California. The facility stored fuel oil in a 50,000-gallon concrete bunker in addition to gasoline and kerosene tanks onsite. In response to an environmental impact assessment, a site remediation plan was implemented which consisted of removal of the concrete bunker and majority of the impacted soils to a depth of about 45 ft (13.72 m) below ground surface (bgs). Some of the soil samples collected at depths between 45 and 50 ft (13.72 and 15.24 m) indicated TPH levels as high as 5,275 mg/kg. A risk evaluation was conducted for a worst case scenario to document the fate and transport of the residual compounds reaching the shallow ground water flow system. It was demonstrated that the residual fuel oil present in the overlying soil did not impact the ground water at the time of investigation, and is not likely to have adverse impact on the shallow ground water beneath the site. Therefore, no further corrective action was needed and the site was closed.

Panigrahi, B.K.; Acharya, B.P.

1999-07-01T23:59:59.000Z

242

Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of  

E-Print Network [OSTI]

#12;Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of this report, the other people in the Peak Oil Netherlands Foundation for their work, peakoil.com & the oildrum

Keeling, Stephen L.

243

Essays on the dynamics of alternative fuel vehicle adoption : insights from the market for hybrid-electric vehicles in the United States  

E-Print Network [OSTI]

Despite growing energy security and environmental concerns about dependence on oil as a transportation fuel, gasoline remains the overwhelmingly dominant fuel used by the US automotive fleet. Numerous previous efforts to ...

Keith, David Ross

2012-01-01T23:59:59.000Z

244

An evaluation of known remaining oil resources in the United States: Project on advanced oil recovery and the states. Volume 1  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic, social, and political benefits of improved oil recovery to the nation as a whole. Individual reports for major oil producing states have been separately published. The individual state reports include California, Illinois, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and Wyoming. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, domestic oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit the nation as a whole.

NONE

1993-11-01T23:59:59.000Z

245

Carcinogenicity Studies of Estonian Oil Shale Soots  

E-Print Network [OSTI]

determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

A. Vosamae

246

Evaluating fuel complexes for fire hazard mitigation planning in the southeastern United States.  

SciTech Connect (OSTI)

Fire hazard mitigation planning requires an accurate accounting of fuel complexes to predict potential fire behavior and effects of treatment alternatives. In the southeastern United States, rapid vegetation growth coupled with complex land use history and forest management options requires a dynamic approach to fuel characterization. In this study we assessed potential surface fire behavior with the Fuel Characteristic Classification System (FCCS), a tool which uses inventoried fuelbed inputs to predict fire behavior. Using inventory data from 629 plots established in the upper Atlantic Coastal Plain, South Carolina, we constructed FCCS fuelbeds representing median fuel characteristics by major forest type and age class. With a dry fuel moisture scenario and 6.4 km h{sub 1} midflame wind speed, the FCCS predicted moderate to high potential fire hazard for the majority of the fuelbeds under study. To explore fire hazard under potential future fuel conditions, we developed fuelbeds representing the range of quantitative inventorydata for fuelbed components that drive surface fire behavior algorithms and adjusted shrub species composition to represent 30% and 60% relative cover of highly flammable shrub species. Results indicate that the primary drivers of surface fire behavior vary by forest type, age and surface fire behavior rating. Litter tends to be a primary or secondary driver in most forest types. In comparison to other surface fire contributors, reducing shrub loading results in reduced flame lengths most consistently across forest types. FCCS fuelbeds and the results from this project can be used for fire hazard mitigation planning throughout the southern Atlantic Coastal Plain where similar forest types occur. The approach of building simulated fuelbeds across the range of available surface fuel data produces sets of incrementally different fuel characteristics that can be applied to any dynamic forest types in which surface fuel conditions change rapidly.

Andreu, Anne G.; Shea, Dan; Parresol, Bernard, R.; Ottmar, Roger, D.

2012-01-01T23:59:59.000Z

247

Literature review of United States utilities computer codes for calculating actinide isotope content in irradiated fuel  

SciTech Connect (OSTI)

This paper reviews the accuracy and precision of methods used by United States electric utilities to determine the actinide isotopic and element content of irradiated fuel. After an extensive literature search, three key code suites were selected for review. Two suites of computer codes, CASMO and ARMP, are used for reactor physics calculations; the ORIGEN code is used for spent fuel calculations. They are also the most widely used codes in the nuclear industry throughout the world. Although none of these codes calculate actinide isotopics as their primary variables intended for safeguards applications, accurate calculation of actinide isotopic content is necessary to fulfill their function.

Horak, W.C.; Lu, Ming-Shih

1991-12-01T23:59:59.000Z

248

Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers  

E-Print Network [OSTI]

· Flash pyrolysis on biomass [1] · Short residence times and flexible feed · Bio-oils produced are close to dissociate hydrogen Goal: synthesize metal free, sulfur free, catalysts for HDO Biomass Pyrolysis OilSynthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah

Das, Suman

249

AEO2011: Renewable Energy Generation by Fuel - United States | OpenEI  

Open Energy Info (EERE)

United States United States Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 120, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation United States Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - United States- Reference Case (xls, 119.5 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

250

More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

359 * July 2012 359 * July 2012 More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding Team: Jennifer Kurtz, Keith Wipke, Sam Sprik, Todd Ramsden, Chris Ainscough Accomplishment: Early market end users are operating 1,111 fuel cell units at 301 sites in 20 states funded by the U.S. Department of Energy (DOE) Fuel Cell Technologies (FCT) Program and with analysis by the National Renewable Energy Laboratory (NREL). Context: The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and

251

Heating oils, 1980  

SciTech Connect (OSTI)

Properties of 247 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The fuels were manufactured by 26 petroleum refining companies in 87 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuel are defined by the American Society for Testing and Materials Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1980 compared with data for 1979 are shown in tables. Analyses of grades 2, 5(light), and 6 foreign import oils are presented.

Shelton, E.M.

1980-10-01T23:59:59.000Z

252

Heating oils, 1981  

SciTech Connect (OSTI)

Properties of 249 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 28 petroleum refining companies in 92 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1981 compared with data for 1980 are shown in Tables 1 through 6. Analyses of grade 6 foreign import oils are presented in Table 13.

Shelton, E.M.

1981-08-01T23:59:59.000Z

253

An evaluation of known remaining oil resources in the United States: Project on advanced oil recovery and the states. Volume 1  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic, social, and political benefits of improved oil recovery to the nation as a whole. Individual reports for major oil producing states have been separately published. The individual state reports include California, Illinois, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and Wyoming. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). TORIS is a tested and verified system maintained and operated by the Department of Energy`s Bartlesville Project Office. The TORTS system was used to evaluate over 2,300 major reservoirs in a consistent manner and on an individual basis, the results of which have been aggregated to arrive at the national total.

Not Available

1994-10-01T23:59:59.000Z

254

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

255

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

256

Idle catalytic reformer can be converted to isomerization unit or jet-fuel treater  

SciTech Connect (OSTI)

This article discusses the economic advantages in conversion of catalytic reformers idled by reduced demand or rendered obsolete by replacement with modern technology. An older semi-regenerative reformer can be converted to a modern C4 or C5/C6 isomerization unit or to a kerosene hydrotreater to meet jet fuel specifications. Reactor design parameters operating conditions, and equipment sizing required for the highly endothermic reforming process are discussed.

Cobb, D.D.; Chapel, D.G.

1985-06-03T23:59:59.000Z

257

,"U.S. Residual Fuel Oil Prices by Sales Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Prices by Sales Type" Prices by Sales Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","9/2013","1/15/1983" ,"Data 2","Sulfur Less Than or Equal to 1%",2,"Monthly","9/2013","1/15/1983" ,"Data 3","Sulfur Greater Than 1%",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_resid_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm"

258

,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales Volumes",9,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_a_eppr_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_a_eppr_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

259

MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit 4  

SciTech Connect (OSTI)

Unit 4 of the Fukushima Dai-ichi Nuclear Power Plant suffered a hydrogen explosion at 6:00 am on March 15, 2011, exactly 3.64 days after the earthquake hit the plant and the off-site power was lost. The earthquake occurred on March 11 at 2:47 pm. Since the reactor of this Unit 4 was defueled on November 29, 2010, and all its fuel was stored in the spent fuel pool (SFP4), it was first believed that the explosion was caused by hydrogen generated by the spent fuel, in particular, by the recently discharged core. The hypothetical scenario was: power was lost, cooling to the SFP4 water was lost, pool water heated/boiled, water level decreased, fuel was uncovered, hot Zircaloy reacted with steam, hydrogen was generated and accumulated above the pool, and the explosion occurred. Recent analyses of the radioisotopes present in the water of the SFP4 and underwater video indicated that this scenario did not occur - the fuel in this pool was not damaged and was never uncovered the hydrogen of the explosion was apparently generated in Unit 3 and transported through exhaust ducts that shared the same chimney with Unit 4. This paper will try to answer the following questions: Could that hypothetical scenario in the SFP4 had occurred? Could the spent fuel in the SPF4 generate enough hydrogen to produce the explosion that occurred 3.64 days after the earthquake? Given the magnitude of the explosion, it was estimated that at least 150 kg of hydrogen had to be generated. As part of the investigations of this accident, MELCOR models of the SFP4 were prepared and a series of calculations were completed. The latest version of MELCOR, version 2.1 (Ref. 1), was employed in these calculations. The spent fuel pool option for BWR fuel was selected in MELCOR. The MELCOR model of the SFP4 consists of a total of 1535 fuel assemblies out of which 548 assemblies are from the core defueled on Nov. 29, 2010, 783 assemblies are older assemblies, and 204 are new/fresh assemblies. The total decay heat of the fuel in the pool was, at the time of the accident, 2.284 MWt, of which 1.872 MWt were from the 548 assemblies of the last core discharged and 0.412 MWt were from the older 783 assemblies. These decay heat values were calculated at Oak Ridge National Laboratory using the ORIGEN2.2 code (Ref. 2) - they agree with values reported elsewhere (Ref. 3). The pool dimensions are 9.9 m x 12.2 m x 11.8 m (height), and with the water level at 11.5 m, the pool volume is 1389 m3, of which only 1240 m3 is water, as some volume is taken by the fuel and by the fuel racks. The initial water temperature of the SFP4 was assumed to be 301 K. The fuel racks are made of an aluminum alloy but are modeled in MELCOR with stainless steel and B4C. MELCOR calculations were completed for different initial water levels: 11.5 m (pool almost full, water is only 0.3 m below the top rim), 4.4577 m (top of the racks), 4.2 m, and 4.026 m (top of the active fuel). A calculation was also completed for a rapid loss of water due to a leak at the bottom of the pool, with the fuel rapidly uncovered and oxidized in air. Results of these calculations are shown in the enclosed Table I. The calculation with the initial water level at 11.5 m (full pool) takes 11 days for the water to boil down to the top of the fuel racks, 11.5 days for the fuel to be uncovered, 14.65 days to generate 150 kg of hydrogen and 19 days for the pool to be completely dry. The calculation with the initial water level at 4.4577 m, takes 1.1 days to uncover the fuel and 4.17 days to generate 150 kg of hydrogen. The calculation with the initial water level at 4.02 m takes 3.63 days to generate 150 kg of hydrogen this is exactly the time when the actual explosion occurred in Unit 4. Finally, fuel oxidation in air after the pool drained the water in 20 minutes, generates only 10 kg of hydrogen this is because very little steam is available and Zircaloy (Zr) oxidation with the oxygen of the air does not generate hydrogen. MELCOR calculated water levels and hydrogen generated in the SFP4 as a function of time for initial water le

Carbajo, Juan J [ORNL] [ORNL

2012-01-01T23:59:59.000Z

260

Size distribution of metals in particulate matter formed during combustion of residual fuel oil  

SciTech Connect (OSTI)

Between July 1992 and January 1993 three full-scale test programs were performed by Carnot for the Electric Power Research Institute and the Fuel Oil Users` Support (FOUS) Group, as part of a program for development and testing of various stack emissions models. One of the components of the program was determination of the concentrations of individual elements as a function of the size of particles suspended in flue gas. The size distributions of species are important because several aspects of system performance depend upon particulate matter size and composition: (1) the rate of ash deposition in the convection section, and activity of deposits for high temperature corrosion and SO{sub 3} formation, (2) the efficiency of precipitators for collection of individual elements, and (3) scattering of visible light and contribution of particles to stack plume opacity. Size distributions of major ash constituents were measured at the entrance and exit of the dust collectors during each of the field tests. To the authors` knowledge, these are the first reports of such measurements in residual oil-fired utility boilers. The focus, in the present paper, is on the composition of the particles entering the dust collectors.

Walsh, P. [Pennsylvania State Univ., University Park, PA (United States); Rovesti, W.C. [Electric Power Research Institute, Washington, DC (United States); Freeman, R.F. [Niagara Mohawk Power Corp., Oswego, NY (United States); Olen, K.R.; Washington, K.T.; Patrick, S.T.; Campbell, G.L.; Harper, D.S. [Florida Power & Light Co., West Palm Beach, FL (United States); Teetz, R.D.; Bennett, T.E. [Long Island Lighting Co., Glenwood Landing, NY (United States)] [and others

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Effect of CO2 Pricing on Conventional and Non- Conventional Oil Supply and Demand  

E-Print Network [OSTI]

if conventional oil production was no longer able to satisfy demand? Fuels from non-conventional oil resources would then become the backstop fuel. These resources involve higher CO2 emissions per unit of energy produced than conventional oil as they require... ?EMUC ? GDPgrowth ?POPgrowth? ? (13) r is the consumption discount rate (% per year) EMUC is the elasticity of marginal utility of consumption (no unit) ptp is the pure time preference rate (% per year) GDPgrowth is the growth of GDP (% per year...

Méjean, Aurélie; Hope, Chris

262

Solid oxide fuel cell with multi-unit construction and prismatic design  

DOE Patents [OSTI]

A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.

McPheeters, C.C.; Dees, D.W.; Myles, K.M.

1999-03-16T23:59:59.000Z

263

Solid oxide fuel cell with multi-unit construction and prismatic design  

DOE Patents [OSTI]

A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.

McPheeters, Charles C. (Naperville, IL); Dees, Dennis W. (Downers Grove, IL); Myles, Kevin M. (Downers Grove, IL)

1999-01-01T23:59:59.000Z

264

Properties and performance of cotton seed oil–diesel blends as a fuel for compression ignition engines  

Science Journals Connector (OSTI)

This paper presents the evaluation of properties of straight vegetable cotton seed oil (CSO) and its blends with diesel fuel in various proportions to evaluate the performance and emission characteristics of a single cylinder compression ignition (CI) engine at constant speed of 1500 rev ? min . Diesel and CSO oil fuel blends (10% 30% 50% and 70%) were used to conduct engine performance and smoke emission tests at varying loads of 0% 20% 40% 60% 80% and 100% of full load in addition to their straight CSO and diesel fuel. The performance parameters of brake specific energy consumption (BSFC) brake thermal efficiency (BTE) mechanical efficiency (ME) exhaust gas temperature (EGT) and exhaust emission (smoke) were evaluated to find the optimum CSO and diesel fuel blend. From the experimental results the CSO10D90 blend fuel showed 3.7% reduction in BSFC 1.7% increase in BTE 6.7% increase in ME and 21.7% reduction in the smoke emissions in comparison with conventional diesel operated engine. Finally it is concluded that CSO10D90 can be used straight away in CI engines without any major modifications to the engine as it showed good performance and improved emission compared to all other fuels tested for the entire range of engine operation in comparison with diesel.

B. Murali Krishna; J. M. Mallikarjuna

2009-01-01T23:59:59.000Z

265

Survey of tar sand deposits, heavy oil fields, and shallow light oil fields of the United States for underground coal gasification applications  

SciTech Connect (OSTI)

A literature survey was conducted to identify areas of the United States where tar sand deposits, heavy oil fields, or shallow light oil fields might be suitably associated with coal deposits for production of oil by in situ thermal recovery methods using heat derived from underground coal gasification (UCG) processes. The survey is part of a Department of Energy-sponsored program to develop new applications for UCG technology in utilizing coal resources that are unattractive for mining. Results from the survey indicate tar sand deposits, heavy oil fields, or light oil fields are probably or possibly located within 5 miles of suitable coal in 17 states (Table 1). Especially promising areas are in the Uinta Basin of Utah; the North Slope of Alaska; the San Miguel deposit in southwest Texas; the Illinois-Eastern Interior Basin area of western Kentucky, southwestern Indiana and Illinois; the tri-state area of Missouri, Kansas and Oklahoma; and the northern Appalachian Basin in eastern Ohio and northwestern Pennsylvania. The deposits in these areas warrant further evaluation. 30 refs., 4 figs., 1 tab.

Trudell, L.G.

1986-06-01T23:59:59.000Z

266

Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis  

Science Journals Connector (OSTI)

Abstract Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment.

I. López; C.E. Quintana; J.J. Ruiz; F. Cruz-Peragón; M.P. Dorado

2014-01-01T23:59:59.000Z

267

Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England  

Broader source: Energy.gov [DOE]

This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and compatibility, and operational issues, then prioritized next steps for expanding use of pyrolysis oil as a replacement for home heating oil in the Northeast

268

INVENTORY AND DESCRIPTION OF COMMERCIAL REACTOR FUELS WITHIN THE UNITED STATES  

SciTech Connect (OSTI)

There are currently 104 nuclear reactors in 31 states, operated by 51 different utilities. Operation of these reactors generates used fuel assemblies that require storage prior to final disposition. The regulatory framework within the United States (U.S.) allows for the licensing of used nuclear fuel storage facilities for an initial licensing period of up to 40 years with potential for license extensions in 40 years increments. Extended storage, for periods of up to 300 years, is being considered within the U.S. Therefore, there is an emerging need to develop the technical bases to support the licensing for long-term storage. In support of the Research and Development (R&D) activities required to support the technical bases, a comprehensive assessment of the current inventory of used nuclear fuel based upon publicly available resources has been completed that includes the most current projections of used fuel discharges from operating reactors. Negotiations with the nuclear power industry are ongoing concerning the willingness of individual utilities to provide information and material needed to complete the R&D activities required to develop the technical bases for used fuel storage for up to 300 years. This report includes a status of negotiations between DOE and industry in these regards. These negotiations are expected to result in a framework for cooperation between the Department and industry in which industry will provide and specific information on used fuel inventory and the Department will compensate industry for the material required for Research and Development and Testing and Evaluation Facility activities.

Vinson, D.

2011-03-31T23:59:59.000Z

269

Reduction of fuel consumption  

Science Journals Connector (OSTI)

Replacing standard oil pumps with bypass control by regulated oil pumps with variable oil pressure which adapt their variable oil pumping quantity to the engine oil pressure requirements promises reductions in fuel

Dieter Voigt

2003-12-01T23:59:59.000Z

270

Heating oils, 1982  

SciTech Connect (OSTI)

Properties of 235 heating oils marketed in the United States were submitted for study and compilation under agreement between BETC and API. The fuels were manufactured by 25 petroleum refining companies in 88 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1982 compared with data for 1981 are tabulated. Analyses of grade 6 foreign import oils are presented.

Shelton, E.M.

1982-08-01T23:59:59.000Z

271

An evaluation of known remaining oil resources in the United States: Appendix. Volume 10  

SciTech Connect (OSTI)

Volume ten contains the following appendices: overview of improved oil recovery methods which covers enhanced oil recovery methods and advanced secondary recovery methods; the benefits of improved oil recovery, selected data for the analyzed states; and list of TORIS fields and reservoirs.

NONE

1993-11-01T23:59:59.000Z

272

Industrial Use of Fish Oils UNITED STATES DEPART MENT OF THE INTERIOR  

E-Print Network [OSTI]

of commerce are obtained as by-products from fish-meal production or from food fish wastes. vVorld fish-oil production was an estimated 865,000 tons in 1966. Production has increased 2S.Sjr since 1961. All other oils, selectively hydrogenated, and de- odorized for these applications. Fish oils in food products were discontin

273

" Million Housing Units, Final"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" Fuels Used and End Uses in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1 (millions)" ,," Detached"," Attached"," 2 to 4 Units","5 or More Units","Mobile Homes" "Fuels Used and End Uses" "Total Homes",113.6,71.8,6.7,9,19.1,6.9 "Fuels Used for Any Use" "Electricity",113.6,71.8,6.7,9,19.1,6.9 "Natural Gas",69.2,45.6,4.7,6.1,11,1.8 "Propane/LPG",48.9,39.6,2.4,1.7,2,3.2 "Wood",13.1,11.4,0.3,0.2,0.5,0.7 "Fuel Oil",7.7,5.1,0.4,0.7,1.3,0.1

274

Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control  

SciTech Connect (OSTI)

Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

Robert A. Carrington; William C. Hecker; Reed Clayson

2008-06-01T23:59:59.000Z

275

Utah Heavy Oil Program  

SciTech Connect (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

276

Changes in nesting behavior and lipid content of a marine amphipod (Amphithoe valida) to the toxicity of a no. 2 fuel oil  

Science Journals Connector (OSTI)

Laboratory cultured amphipods, Amphithoe valida, were exposed to the water soluble fractions (WSF) of a No. 2 fuel oil for 6 days, and then transferred to clean sea water for one week. Survival and nesting behavi...

W.Y. Lee; S.A. Macko; J.A.C. Nicol

1981-02-01T23:59:59.000Z

277

Petroleum hydrocarbon resistance in the marine wormNeanthes arenaceodentata (polychaeta: Annelida), induced by chronic exposure to no. 2 fuel oil  

Science Journals Connector (OSTI)

Three successive generations of the marine polychaetous annelidNeanthes arenaceodentata...taken from a laboratory population, were continuously exposed to one of three sublethal concentrations of No. 2 Fuel Oil w...

S. S. Rossi; J. W. Anderson

1978-07-01T23:59:59.000Z

278

Oil shale fueled FBC power plant – Ash deposits and fouling problems  

Science Journals Connector (OSTI)

A 41 MWth oil shale fired demonstration power plant was built in 1989 by PAMA in Mishor Rotem, Negev, Israel. The raw material for the plant is the local “oil shale”, which is in fact organic-rich marl. Since then, and until today, the unit is operated at high reliability and availability. At first, heavy soft fouling occurred due to the Circulating Fluidized Bed Combustion (CFBC) mode of operation, which caused a considerable reduction in the heat transfer coefficient of the heat exchangers. By going over to the Fluidized Bed Combustion (FBC) mode of operation the soft fouling phenomenon stopped at once, the heat transfer coefficient improved, and the power plant could be operated at its designed values. After five months of operation at the FBC mode the boiler had to be shut down because Hard Deposits (HD) blocked physically the passes in the boiler. These deposits could be removed only with the help of mechanical devices. During the first two years the boiler had to be stopped, at least, three times a year for deposit cleaning purposes. Research conducted at the plant and in the laboratories of the Geological Survey of Israel enabled us to understand the mechanism of formation of these deposits. The results showed that the HD are formed in two stages: (1) Deposition of very fine ash particles on the pipes of the boiler, as a result of the impact of larger particles on the pipes. The fine particles adhere to the pipes and to each other, and step by step build the deposit. The growth of the deposit on the pipe surface is always perpendicular to the particles flow direction. (2) The deposits harden due to chemical reactions. The joint experiments at the plant and at the laboratories of the Geological Survey showed:(A) The rate of deposition depends mainly on the lime concentration in the fly ash. (B) The lime concentration in the fly ash is a function of the clays concentration in the oil shale. (C) The increase and hardening of the deposit with time is due to solid–gas reactions within the deposit. At first recarbonation occurs, reaction between CaO in the deposit and CO2 (produced by the combustion) in the flue gas to form CaCO3 (bonded deposits), and then sulfatization; the reactions of the sulfatization are: (1) SO2 in the flue gas with CaO and CaCO3 in the deposit, leading to the formation of anhydrite CaSO4; and (2) SO2 in the flue gas with the amorphous silicates in the deposit forming hydroxylellestadite Ca10(SiO4)3(SO4)3(OH)2. These minerals are the hard deposits. The conclusions following these findings for the combustion of oil shales with a significant Ca-carbonate content are:(A) The FBC is the preferred mode of combustion. (B) The rate of deposition in the boiler depends mainly on the lime (free CaO) concentration in the Fly \\{ASh\\} (FAS). (C) The ratio Ca-carbonates to silicates (Al, Fe, etc.), in the oil shale feed, determines the concentration of lime in the FAS. (D) The rate of deposition in the boiler depends also on the geometry of the boiler and on the particles aerodynamic conditions in it. Following these conclusions, the plant was able to reduce the shutdowns to twice a year. Furthermore, based on the understanding of the deposit formation mechanism, it will be possible to minimize shutdowns, for deposit cleaning, to only once a year in future similar oil shale fuelled power plants.

O. Yoffe; A. Wohlfarth; Y. Nathan; S. Cohen; T. Minster

2007-01-01T23:59:59.000Z

279

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

280

Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels  

E-Print Network [OSTI]

DEVELOPMENT, APPLICATION AND PERFORMANCE OF VENTURI REGISTER L. E. A. BURNER SYSTEM FOR FIRING OIL AND GAS FUELS A. D. Cawte CEA Combustion, Inc. Stamford, Connecticut INTRODUCTION The effect of reducing excess air as a means of curtailing..., extensive investigation work was undertaken us ing the water analog model techniques developed by Associated British Combustion for burner design. The development work resulted in the burner design known today as the Venturi Register, LEA (low excess air...

Cawte, A. D.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Competitiveness of Wind Power with the Conventional Thermal Power Plants Using Oil and Natural Gas as Fuel in Pakistan  

Science Journals Connector (OSTI)

Abstract The fossil fuels mainly imported oil and natural gas are major sources of electricity generation in Pakistan. The combustion of fossil fuels in thermal power plants has greater environmental impacts like air pollution and global warming. Additionally, the import of oil is a heavy burden on the poor economy of the country. Pakistan is a country with huge renewable sources; wind energy being the major one. This paper elucidate the cost-competitiveness of wind power with the conventional thermal power plants. In this regard, Levelized estimated cost of a 15MW wind power plant is compared with three types of conventional thermal power plants, namely (i) Oil-fired thermal power plant (ii) Natural gas-fire combine cycle power plant (iii) Diesel oil- fired gas turbine cycle 100MW each. The results show that the cost of wind energy is lowest with Rs. 3/kWh. It is concluded that the wind power is cost-competitive to the conventional thermal power plants in Pakistan. The cost estimation for wind energy is lowest of all others with Rs. 3/kWh.

A. Mengal; M.A. Uqaili; K. Harijan; Abdul Ghafoor Memon

2014-01-01T23:59:59.000Z

282

Simulation of detonation of ammonium nitrate fuel oil mixture confined by aluminum: edge angles for DSD  

SciTech Connect (OSTI)

Non-ideal high explosives are typically porous, low-density materials with a low detonation velocity (3--5 km/s) and long detonation reaction zone ({approx} cms). As a result, the interaction of a non-ideal high explosive with an inert confiner can be markedly different than for a conventional high explosive. Issues arise, for example, with light stiff confiners where the confiner can drive the high explosive (HE) through a Prandtl-Meyer fan at the HE/confiner interface rather than the HE driving the confiner. For a non-ideal high explosive confined by a high sound speed inert such that the detonation velocity is lower than the inert sound speed, the flow is subsonic and thus shockless in the confiner. In such cases, the standard detonation shock dynamics methodology, which requires a positive edge-angle be specified at the HE/confiner interface in order that the detonation shape be divergent, cannot be directly utilized. In order to study how detonation shock dynamics can be utilized in such cases, numerical simulations of the detonation of ammonium nitrate-fuel oil (ANFO) confined by aluminum 6061 are conducted.

Short, Mark [Los Alamos National Laboratory; Quirk, James J [Los Alamos National Laboratory; Kiyanda, Charles B [Los Alamos National Laboratory; Jackson, Scott I [Los Alamos National Laboratory; Briggs, Matthew E [Los Alamos National Laboratory; Shinas, Micheal A [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

283

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

284

Chemical Kinetic Modeling of Fuels  

Broader source: Energy.gov (indexed) [DOE]

petroleum based fuels * Non-petroleum based fuels: - Biodiesel and new generation biofuels - Fischer-Tropsch (F-T) fuels - Oil sand derived fuels Reduce mechanisms for...

285

Pilot-scale testing of a fuel oil-explosives cofiring process for recovering energy from waste explosives: Final report  

SciTech Connect (OSTI)

The US Army generates and stores a significant quantity of explosives and explosive-related materials that do not meet specifications for their primary use. Current explosives disposal processes do not recover any resources from these materials. The heat of combustion of these materials is typically 9 to 15 kJ/g (4000 to 6500 Btu/lb), which is 21 to 33% of the high heating value of No. 2 fuel oil. One secondary use for explosives is to cofire them with other fuels to recover their energy content. Bench-scale testing has shown that cofiring is feasible and safe within certain guidelines. To further evaluate cofiring, a proof-of-principle test was conducted in a 300-kW (10/sup 6/ Btu/h) combustion chamber. The test program was discontinued before completion because of failures largely unrelated to the explosives contained in the fuel. This report presents the results of the proof-of-principle tests, as well as design and operational changes that would eliminate problems encountered during the course of the test program. It is clearly feasible to cofire explosives and fuel oil. However, more data are needed before the process can be tested in a production boiler, furnace, or incinerator. 20 refs., 14 figs., 9 tabs.

Bradshaw, W.M.

1988-08-01T23:59:59.000Z

286

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel that meets the definition of either biodiesel or non-ester renewable...

287

Secure Fuels from Domestic Resources The Continuing Evolution of America’s Oil Shale and Tar  

E-Print Network [OSTI]

domestic oil shale and tar sands industries since the first release and to include profiles of additional

Sands Industries

288

A BREAF OVERVIEW OF MOTOR FUELS FROM SHALE OIL OF KUKERSITE  

E-Print Network [OSTI]

conventional oil) have existed since before World War II. While long-term full-scale applications had in most

V. Oja

289

Offshore Outsourcing Practices of United Kingdom Engineering Services Companies: Focused on Oil and Gas Sector.  

E-Print Network [OSTI]

??This investigate an important options of cost reductions, offshore outsourcing is found interesting, these days phenomenon of economic downturn, decreasing oil prices and credit crunch… (more)

Ahsan, Kamran

2010-01-01T23:59:59.000Z

290

Heavy fuel oil fired CHP plant -- Impact on environment: Case Germany  

SciTech Connect (OSTI)

In 1995 Waertsilae NSD Finland Oy got the order to build a 14 MWe CHP (simultaneous heat and power) diesel power plant for Cerestar GMBH in Germany. The order consisted of a complete delivery, installation and commissioning of the fuel treatment system, the diesel engine with alternator, the process control system, the exhaust gas cleaning system (SCR and DESOX) and the heat recovery system. The factory producing starch is situated in the city of Krefeld close to Dusseldorf. The process integration of the diesel power plant into the existing factory was done in a close cooperation between the client and Waertsilae and the result is a CHP-plant suiting well into the existing factory. The diesel power plant went into operation in January 1996. The operating experience has been very encouraging, the annual running time is above 8,000 h and by the end of December 1997 about 16,300 running hours had been accumulated. The power plant is fulfilling the strict TA-LUFT emission limits and even half TA-LUFT values regarding NO{sub x} and SO{sub x}. The measured total efficiency of the power plant is above 90%. The choice of the most economical DESOX-method is dependent on several factors: investment and running cost, plant size, environmental legislation requirements, commercially available heavy fuel oil brands, etc. In small diesel plants the NaOH-scrubber is the most competitive desulfurization (DESOX) method, due to the lower investment cost compared to other DESOX-systems. A wet NaOH scrubbers system is installed. The used reagent is an about 50 wt-% aqueous NaOH solution. Low SO{sub x}-emissions of the flue gas is easily achieved by adjusting the pH of the scrubber liquid. The dissolved salt in the generated liquid end-product consists mainly of Na{sub 2}SO{sub 4}, due to the high oxygen content of the diesel flue gas. Running experiences have shown that the installed wet NaOH scrubber is easy to operate and suits the factory in Krefeld well.

Boij, J.

1998-07-01T23:59:59.000Z

291

Fuel Poverty as an Outcome Measure: A Comparative Study of Energy Policies in Norway and the United Kingdom  

Science Journals Connector (OSTI)

ABSTRACT Whether low income families have difficulty in being warm at home or not can be considered as an outcome measure of the effectiveness of policies for housing, energy, and income maintenance. This study aims to compare such policies in Norway and the United Kingdom. As background, evidence of fuel poverty in a wider international context is presented. To conclude, policies from Norway which might help to relieve fuel poverty in Britain are set out.

S. Hutton; T. Braend; L. Warren

1988-01-01T23:59:59.000Z

292

Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory  

E-Print Network [OSTI]

achieving low CoE for hydrogen production. Although other WEfor competitive hydrogen production, such advanced targetsElectricity and Hydrogen Fuel Production from Multi-Unit

Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

1994-01-01T23:59:59.000Z

293

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

where K 0 is the cost of the fuel cell stack, fuel storagefuel cell stack, plumbing, inverter, fuel storage tank, and accessories), fuel cost,costs of about $700 per kW for the basic solid oxide fuel cell stack

2002-01-01T23:59:59.000Z

294

Heating oils, 1983  

SciTech Connect (OSTI)

Properties of 195 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 25 petroleum refining companies in 83 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1983 are compared with data for 1982. 7 figures, 12 tables.

Shelton, E.M.

1983-08-01T23:59:59.000Z

295

United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management  

SciTech Connect (OSTI)

The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

Stewart, L.

2004-10-03T23:59:59.000Z

296

Oil price shocks and stock market returns: New evidence from the United States and China  

Science Journals Connector (OSTI)

Abstract This study examines the time-varying correlations between oil prices shocks of different types (supply-side, aggregate demand and oil-market specific demand as per Kilian (2009) who highlighted that “Not all oil shocks are alike”) and stock market returns, using a Scalar-BEKK model. For this study we consider the aggregate stock market indices from two countries, China and the US, reflecting the most important developing and developed financial markets in the world. In addition to the whole market, we also consider correlations from key selected industrial sectors, namely Metals & Mining, Oil & Gas, Retail, Technology and Banking. The sample period runs from 1995 until 2013. We highlight several key points: (i) correlations between oil price shocks and stock returns are clearly and systematically time-varying; (ii) oil shocks of different types show substantial variation in their impact upon stock market returns; (iii) these effects differ widely across industrial sectors; and finally (iv) China is seemingly more resilient to oil price shocks than the US.

David C. Broadstock; George Filis

2014-01-01T23:59:59.000Z

297

Urban form and long-term fuel supply decline: A method to investigate the peak oil risks to essential activities  

Science Journals Connector (OSTI)

The issue of a peak in world oil supply has become a mainstream concern over the past several years. The petroleum geology models of post-peak oil production indicate supply declines from 1.5% to 6% per year. Travel requires fuel energy, but current transportation planning models do not include the impacts of constrained fuel supply on private travel demand. This research presents a method to assess the risk to activities due to a constrained fuel supply relative to projected unconstrained travel demand. The method assesses the probability of different levels of fuel supply over a given planning horizon, then calculates impact due to the energy supply not meeting the planning expectations. A new travel demand metric which characterizes trips as essential, necessary, and optional to wellbeing is used in the calculation. A case study explores four different urban forms developed from different future growth options for the urban development strategy of Christchurch, New Zealand to 2041. Probable fuel supply availability was calculated, and the risk to transport activities in the 2041 transport model was assessed. The results showed all the urban forms had significantly reduced trip numbers and lower energy mode distributions from the current planning projections, but the risk to activities differed among the planning options. Density is clearly one of the mitigating factors, but density alone does not provide a solution to reduced energy demand. The method clearly shows how risk to participation in activities is lower for an urban form which has a high degree of human powered and public transport access to multiple options between residential and commercial/industrial/service destinations. This analysis has led to new thinking about adaptation and reorganization of urban forms as a strategy for energy demand reduction rather than just densification.

Susan Krumdieck; Shannon Page; André Dantas

2010-01-01T23:59:59.000Z

298

Performance, emission and combustion characteristics of DI diesel engine running on blends of calophyllum inophyllum linn oil (honne oil)/diesel fuel/kerosene  

Science Journals Connector (OSTI)

Kerosene (K)/diesel fuel (D)/honne oil (H) blends have a potential to improve the performance and emissions and to be alternatives to neat diesel fuel (ND) and has not been reported in the literature. Experiments have been conducted on DI diesel engine when fuelled with ND, H10 (10%H + 90%D, by volume) to H30, HK10 (10%H + 45%K + 45%D), HK20 (20%H + 40%K + 40%D) and HK30 (30%H + 35%K + 35%D). The emissions [CO, HC and smoke density (SD)] of fuel blend HK20 are found to be lowest, with CO and HC dropping significantly. The NOx level is higher with HK10 to HK30 compared to ND and H10 to H30. The brake thermal efficiency of HK10 to HK30 is almost the same and it is higher as compared to ND and H10 to H30. There is a good trade off between NOx and SD. Peak cylinder pressure and premixed combustion phase increases as kerosene content increases.

B.K. Venkanna; C. Venkataramana Reddy

2011-01-01T23:59:59.000Z

299

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cellsmanufacturing costs of automotive PEM fuel cell systems incosts of di?erent sizes of direct-hydrogen PEM fuel cell

2002-01-01T23:59:59.000Z

300

Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils  

SciTech Connect (OSTI)

Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

2014-06-03T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Effect of Fuel Injection Timing on the Emissions of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester?Diesel Fuel Blends  

Science Journals Connector (OSTI)

(3, 4) A lot of researchers have reported that using biodiesel as a fuel in diesel engines causes a diminution in harmful exhaust emissions as well as equivalent engine performance with diesel fuel. ... Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke d. and NOx to evaluate and compute the behavior of the diesel engine running on the above-mentioned fuels. ... Ma, Z.; Huang, Z. H.; Li, C.; Wang, X. B.; Miao, H.Effects of fuel injection timing on combustion and emission characteristics of a diesel engine fueled with diesel?propane blends Energy Fuels 2007, 21 ( 3) 1504– 1510 ...

Cenk Sayin; Metin Gumus; Mustafa Canakci

2010-03-11T23:59:59.000Z

302

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

303

Usage of Fuel Mixtures Containing Ethanol and Rapeseed Oil Methyl Esters in a Diesel Engine  

Science Journals Connector (OSTI)

However, its use in the diesel engine cycle is hampered by the poor motor-fueling characteristics of lower alcohols and, primarily, the limited solubility of ethanol in fossil diesel fuel and its low self-ignition characteristics. ... Coefficient ? = Gair/(GfL0) estimates air supply into a diesel engine cylinder (indicator process), taking into account the differences of stoichiometric ratio L0 of the tested fuels, caused by the increase of the E portion in the RME?E mixture (Gair is air consumption, and Gf is fuel consumption). ... Future research will concentrate on the analysis of fuel injection and heat release rate characteristics in a cylinder, while a diesel engine is running on biodiesel fuels RME?E, and also on the operational parameters of diesel engines when fossil diesel fuel is replaced with three-component fuels D?RME?E. ...

Sergejus Lebedevas; Galina Lebedeva; Violeta Makareviciene; Prutenis Janulis; Egle Sendzikiene

2008-11-12T23:59:59.000Z

304

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

diesel fuel consumption, lubricant changes, and enginefuel consumption, and costs associated with diesel engineDiesel Idling diesel consumption Diesel fuel cost Lubricant cost Engine

2002-01-01T23:59:59.000Z

305

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network [OSTI]

diesel fuel consumption, lubricant changes, and enginefuel consumption, and costs associated with diesel enginediesel consumption Diesel fuel cost Lubricant cost Engine

2002-01-01T23:59:59.000Z

306

A reexamination of the crude oil price-unemployment relationship in the United States  

SciTech Connect (OSTI)

This study begins by asking whether fluctuations in the price of crude oil have affected employment and the rate of unemployment in the US. After reviewing previous assessments of the issue, the existence of an empirical relationship between the rate of unemployment and crude oil price volatility is established using Granger causality. Subsequently, the nature of the relationship is estimated with the results suggesting that at least three full years are required before the measurable impact of a percentage change in the real price of crude oil on the change in unemployment is exhausted. Finally, the structural stability of the functional relationship between the change in unemployment and the volatility of the price of crude oil and the percentage change in gross national product is examined.

Uri, N.D. [Economic Research Service, Washington, DC (United States). Natural Resources and Environment Div.; Boyd, R. [Ohio Univ., Athens, OH (United States). Dept. of Economics

1996-04-01T23:59:59.000Z

307

EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow  

Broader source: Energy.gov [DOE]

The growth of renewable energy and renewable fuels in the United States will be significantly greater under scenarios involving high oil prices and stricter controls on greenhouse gas (GHG) emissions, according to DOE's Energy Information Administration (EIA).

308

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

Adam R. 2008. “Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. In

Coughlin, Katie

2013-01-01T23:59:59.000Z

309

Characteristics of the performance and emissions of a HSDI diesel engine running with cottonseed oil or its methyl ester and their blends with diesel fuel  

Science Journals Connector (OSTI)

An experimental study has been conducted to evaluate the use of various blends of cottonseed oil or its methyl ester (bio-diesel) with diesel fuel, in blend ratios from 10/90 up to 100/0, in a fully instrumented, four-stroke, High Speed Direct Injection (HSDI), Ricardo/Cussons 'Hydra' diesel engine. The tests were conducted using each of the above fuel blends or neat fuels, with the engine working at a medium and a high load. Volumetric fuel consumption, exhaust smokiness and exhaust-regulated gas emissions such as nitrogen oxides, carbon monoxide and unburnt hydrocarbons were measured. The differences in the performance and exhaust emissions from the baseline operation of the engine, that is, when working with neat diesel fuel, were determined and compared, as well as the differences between cottonseed oil or its methyl ester and their blends. Theoretical aspects of diesel engine combustion were used to aid the correct interpretation of the engine behaviour.

Constantine D. Rakopoulos; Kimon A. Antonopoulos; Dimitrios C. Rakopoulos; Emmanuel C. Kakaras; Efthimios G. Pariotis

2007-01-01T23:59:59.000Z

310

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

311

Table 5.7 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2010; 7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18 39 Indirect Uses-Boiler Fuel 12,979 7 3 2,074 3 26 Conventional Boiler Use 12,979 3 1 712 1 3 CHP and/or Cogeneration Process -- 4 3 1,362 2 23 Direct Uses-Total Process 675,152 4 9 2,549 7 13 Process Heating

312

Table 5.5 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010; 5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process -- 0 4 3 1,362 2 23 -- Direct Uses-Total Process

313

Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.

Mark Krauss and Catherine Birney

2011-05-01T23:59:59.000Z

314

The effect of low-temperature oxidation on the fuel and produced oil during in situ combustion  

SciTech Connect (OSTI)

Combustion tube experiments using 10.2{degrees} API crude oil were performed, in which a different sample matrix was used in each run. Three matrix types were tested: sand, sand and clay, and sand and sand fines. As a result of the low fuel concentration, low-temperature oxidation (LTO) was observed in the run where the matrix consisted of sand only. High-temperature oxidation (HTO) was observed in runs where either clay or sand fines were part of the matrix. Ignition was not obtained in the LTO run, which had a reaction front temperature of only 350{degrees}C (662{degrees}F), compared to a combustion front temperature of 500{degrees}C (932{degrees}F) for the HTO runs. From elemental analysis, the fuel during the LTO run was determined to be an oxygenated hydrocarbon with an atomic oxygen-carbon ratio of 0.3.

Mamora, D.D. [Texas A& M Univ., College Station, TX (United States); Brigham, W.E. [Stanford Univ., CA (United States)

1995-02-01T23:59:59.000Z

315

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network [OSTI]

2 Jet fuel and crude oil price history. From IATA website:oil discovery and fuel production………………………. ……..4 Figure.2: Jet fuel and crude oil price history……………………………. …………

Hu, Sangran

2012-01-01T23:59:59.000Z

316

Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition  

SciTech Connect (OSTI)

A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

1995-12-31T23:59:59.000Z

317

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

318

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

319

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

320

Environmental assessment for the manufacture and shipment of nuclear reactor fuel from the United States to Canada  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has declared 41.9 tons (38 metric tons) of weapons-usable plutonium surplus to the United States` defense needs. A DOE Programmatic Environmental Impact Statement analyzed strategies for plutonium storage and dispositioning. In one alternative, plutonium as a mixed oxide (MOX) fuel would be irradiated (burned) in a reengineered heavy-water-moderated reactor, such as the Canadian CANDU design. In an Environmental Assessment (EA), DOE proposes to fabricate and transport to Canada a limited amount of MOX fuel as part of the Parallex (parallel experiment) Project. MOX fuel from the US and Russia would be used by Canada to conduct performance tests at Chalk River Laboratories. MOX fuel would be fabricated at Los Alamos National Laboratory and transported in approved container(s) to a Canadian port(s) of entry on one to three approved routes. The EA analyzes the environmental and human health effects from MOX fuel fabrication and transportation. Under the Proposed Action, MOX fuel fabrication would not result in adverse effects to the involved workers or public. Analysis showed that the shipment(s) of MOX fuel would not adversely affect the public, truck crew, and environment along the transportation routes.

Rangel, R.C.

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Biodegradation of Fuel Oil Hydrocarbons in Soil Contaminated by Oily Wastes Produced During Onshore Drilling Operations  

Science Journals Connector (OSTI)

The petroleum industry generates high amount of oily wastes during drilling, storage and refining operations. Onshore drilling operations produce oil based wastes, typically 100–150m-3 well. The drilling cuttings...

Qaude-Henri Chaîneau; Jean-Louis Morel; Jean Oudot

1995-01-01T23:59:59.000Z

322

Fuel-containing masses of Chernobyl Unit 4: Multiplying properties and neutron characteristics  

SciTech Connect (OSTI)

The results are presented of an investigation of the multiplying properties of lava-formed fuel-containing masses (LFCM); also, the possibility of developing ignition and dynamics of a self-sustaining chain reaction (SCR) in the LFCM of the destroyed Unit 4 of the Chernobyl nuclear power plant (the so-called Shelter) is discussed. The SCALE 4.3 computer code was used to calculate the multiplication factor, the neutron energy spectrum, the spatial distribution of the neutron flux density, etc., as functions of the water content in the LFCM for different system models. These results can help to determine the optimum placement of detectors in the rooms under the reactor. In addition, the dynamic of an SCR under the hypothetical condition that the filling of the LFCM by water leads to an excess multiplication factor over unity was considered. Such a treatment was performed for a simple model that takes into account the evaporation of water and an increase in temperature due to an energy release in the LFCM. The different modes of the LFCM behavior depending on the velocity of water filling are discussed.

Babenko, V.A.; Jenkovszky, L.L.; Romanov, V.A.; Pavlovych, V.N.; Vertsimakha, O.Y.

1999-11-01T23:59:59.000Z

323

Postirradiation examination of light water reactor fuel: a United States perspective  

SciTech Connect (OSTI)

Poolside and hot-cell postirradiation examination (PIE) have played and will continue to play a significant role in the US LWR program. The principal uses of PIE are in fuel surveillance, fuel improvement, and failure analysis programs and in the postmortem analysis of safety-related tests. Institutional problems associated with fuel shipping, waste disposal, and fuel disposal can be expected to pose obstacles to hot-cell examinations and likely result in more sophisticated poolside examinations.

Neimark, L.A.; Ocken, H.

1980-01-01T23:59:59.000Z

324

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

retrofitted with an auxiliary fuel tank to enable the use of biodiesel, waste vegetable oil, or straight vegetable oil. Eligible buses must pass inspection in accordance with the...

325

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Tax Exemption Biodiesel producers that produce biodiesel from waste vegetable oil feedstock are exempt from the state special fuel tax. Waste vegetable oil is used...

326

Geography of Existing and Potential Alternative Fuel Markets in the United States  

SciTech Connect (OSTI)

When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

Johnson, C.; Hettinger, D.

2014-11-01T23:59:59.000Z

327

High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale  

SciTech Connect (OSTI)

The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

328

Preparation of liquid motor fuel components from oil shale gasification products  

Science Journals Connector (OSTI)

The gasification of shale from two domestic deposits (Kashpirskoe and Leningradskoe) and the subsequent transformation of the products of this process into the components of liquid motor fuels were studied.

B. I. Katorgin; A. L. Lapidus

2011-04-01T23:59:59.000Z

329

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

330

Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blend. Components (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

331

Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Tanker and Barge between PAD Districts Tanker and Barge between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Residual FO - Less than 0.31% Sulfur Residual FO - 0.31 to 1.00% Sulfur Residual FO - Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

332

Table 5.2 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010; 2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280

333

Table 5.6 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010; 6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280 -- Process Cooling and Refrigeration -- 182 * Q 25

334

Table 5.4 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010; 4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP and/or Cogeneration Process -- 26 15 1,401 7 500 Direct Uses-Total Process 2,304 26 54 2,623 29 289 Process Heating 318 25 14 2,362 24 280 Process Cooling and Refrigeration

335

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

336

Effects of alternate fuels report No. 8: analysis of degradiation of magnesia-based refractory bricks from a residual oil-fired rotary cement kiln  

SciTech Connect (OSTI)

Residual oil was used as an alternate fuel to natural gas to supply heat in a rotary cement kiln. Principal impurities in the residual oil were Ca, Fe, Mg, Na, Ni, P.S. and V. the kiln operators were concerned about the effects of these oil impurities on observed degradation of the magnesia-based bricks used as a liner in the burning zone of the kiln. Two degraded bricks, which had been in service for six to nine months, were analyzed to determine the role of fuel impurities on the observed degradation. The maximum hot-face temperature of the refractory during service was about 1500/sup 0/C. One brick had decreased in thickness about 45%, the about 15%. Various analytical measurements on these samples failed to reveal the presence of fuel impurities at or near the hot face of the bricks, and therefore it is concluded that the relatively short service life of these refractories was not due to use of residual oil as the fuel in the kiln. The observed degradation, therefore, was attributed to other reactions and to thermal mechanical conditions in the kiln, which inevitably resulted in extensive erosion of the bricks.

Federer, J.I.; Tennery, V.J.

1980-05-01T23:59:59.000Z

337

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

338

Devonian oil shale of the eastern United States: a major American energy resource  

SciTech Connect (OSTI)

The eastern Devonian oil shale resource can yield 400 billion (400 X 10/sup 9/) bbl of synthetic oil, if all surface and near-surface shales were strip or deep mined for above-ground hydroretorting. Experimental work, in equipment capable of processing up to 1 ton/h of shale, has confirmed the technical and economic feasibility of aboveground hydroretorting of oil shales. Work done to date on nearly 500 samples from 12 states indicates that the HYTORT Process can give organic carbon recoveries from 2 to 2.5 times those of conventional retorting of the Devonian shales, so that the HYTORT Process yields 25 to 30 gallons per ton on syncrude at many localities, compared with 10 to 15 gallons per ton using Fischer Assay retort methods. Criteria for inclusion of shale in estimates of recoverable resources for the HYTORT Process are: (1) organic carbon of at least 10% by weight; (2) overburden of less than 200 feet (59 meters); (3) volumetric stripping ratios of less than 2.5 to 1; and (4) stratigraphic thickness of 10 feet (3 meters) or more. Resource estimates include: Kentucky (Ohio, New Albany, and Sunbury shales), 190 billion (190 X 10/sup 9/) barrels (bbl); Ohio (Ohio and Sunbury shales), 140 billion bbl; Tennessee (Chattanooga shale), 44 billion bbl; Indiana (New Albany shale), 40 billion bbl; Michigan (Antrim shale), 5 billion bbl; and Alabama (Chattanooga shale), 4 billion bbl. Recoverable resources have not been identified in West Virginia, Georgia, Oklahoma, Illinois, Arkansas, or Missouri outcrops. Co-production of uranium and metals is a possibility in the areas favorable for syncrude production.

Matthews, R.D.; Janka, J.C.; Dennison, J.M.

1980-01-01T23:59:59.000Z

339

Performance Evaluation of Fuel Blends Containing Croton Oil, Butanol, and Diesel in a Compression Ignition Engine  

Science Journals Connector (OSTI)

† Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa ... (2) The use of vegetable oils in diesel engines is as old as the diesel engine itself. ... The results indicate a general increase in NOx emissions as the load increases at a steady engine speed. ...

Frank Lujaji; Akos Bereczky; Makame Mbarawa

2010-07-15T23:59:59.000Z

340

Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions  

Science Journals Connector (OSTI)

Abstract Regarding the global warming due to CO2 emissions, the crude oil depletion and its corresponding rising prices, \\{OEMs\\} are exploring different solutions to increase the internal combustion engine efficiency, among which, the use of Low Viscosity Oils (LVO) represents one attractive cost-effective way to accomplish this goal. Reported in terms of fuel consumption, the effect of LVO is round 2%, depending on the test conditions, especially if the test has taken place in laboratory or “on road” conditions. This study presents the fuel consumption benefits of a commercial 5W20, compared against higher SAE grade oils, on a light duty diesel engine, when it is running under motored test, stationary fired test and the New European Driving Cycle (NEDC).

Vicente Macián; Bernardo Tormos; Vicente Bermúdez; Leonardo Ramírez

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

Adam R. 2008. “Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. Inunconventional (tar sands or shale oil) being more energy

Coughlin, Katie

2013-01-01T23:59:59.000Z

342

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

from Conventional Oil Production and Oil Sands. ” Environ.6 Forecasts of Canadian oil production published in 2006 andPetroleum Fuels The oil production chain is similar to

Coughlin, Katie

2013-01-01T23:59:59.000Z

343

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

344

PEM fuel cell and energy storage unit configuration for vehicle applications.  

E-Print Network [OSTI]

??In the current “future” automobile market; fuel cells have shown to be an alternative to the classic power sources like internal combustion engines. But in… (more)

Thota, Kalpana.

2007-01-01T23:59:59.000Z

345

Biodiesel production from Stauntonia chinensis seed oil (waste from food processing): Heterogeneous catalysis by modified calcite, biodiesel purification, and fuel properties  

Science Journals Connector (OSTI)

Abstract In the present research, the potential of Stauntonia chinensis (SC) seed oil obtained from processing waste was investigated for the first time as biodiesel feedstock, including physicochemical properties of the oil, the heterogeneous catalysis process, purification, and fuel properties. A 29.37 ± 0.64 wt.% of oil content and 2.41 mg KOH/g of acid value was found. Under the optimised reaction conditions in the presence of modified calcite, an 88.02% of yield and a 98.90 wt.% of FAME content were achieved. According to EN 14124 (2012), SC biodiesel exhibited superior fuel properties compared to the most of other feedstock oils since it had an ideal fatty acid composition (low Cn:0 (8.06 wt.%), high Cn:1 (80.16 wt.%), and low Cn:2,3 (8.45 wt.%)). It was absolutely vital that the use of SC seed oil as a biodiesel feedstock would not compete with its use in food. In summary, SC seed oil should be recommended as a promising feedstock for biodiesel.

Rui Wang; Lili Sun; Xiaolin Xie; Lizhi Ma; Zhigang Liu; Xiaoyan Liu; Ning Ji; Guofang Xie

2014-01-01T23:59:59.000Z

346

Fuel Cell Technologies Overview  

Broader source: Energy.gov (indexed) [DOE]

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * 40 - 60% (electrical) * > 70% (electrical, hybrid fuel...

347

Delayed coking of decant oil and coal in a laboratory-scale coking unit  

SciTech Connect (OSTI)

In this paper, we describe the development of a laboratory-scale delayed coker and present results of an investigation on the recovered liquid from the coking of decant oil and decant oil/coal mixtures. Using quantitative gas chromatography/mass spectroscopy (GC/MS) and {sup 1}H and {sup 13}C NMR, a study was made of the chemical composition of the distillate liquids isolated from the overheads collected during the coking and co-coking process. {sup 1}H and {sup 13}C NMR analyses of combined liquids from coking and co-coking did not show any substantial differences. These NMR results of coking and co-coking liquids agree with those of GC/MS. In these studies, it was observed that co-coking with coal resulted in a decrease in the paraffins contents of the liquid. The percentage of cycloparaffins, indenes, naphthalenes, and tetralins did not change significantly. In contrast, alkyl benzenes and polycyclic aromatic hydrocarbons in the distillate were higher in the co-coking experiments which may have resulted from the distillation of thermally cracked coal macromolecules and the contribution of these molecules to the overall liquid composition. 40 refs., 3 figs., 13 tabs.

Oemer Guel; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University Park, PA (United States). Energy Institute, C205 Coal Utilization Laboratory

2006-08-15T23:59:59.000Z

348

Total Crude Oil and Products Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

349

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

350

At-sea test and demonstration of coal-oil mixture as a marine boiler fuel. part I: shoreside testing. Final report Nov 81-Mar 82  

SciTech Connect (OSTI)

This report documents laboratory and wear-loop experimental evaluations and a combustion test using a full-scale Marine burner and fuel-supply equipment using a coal/oil mixture (COM). Laboratory work led to selection of a fuel acceptable for use in a shipboard demonstration from six candidate COMs. Significant variations were discovered among these samples, and an appropriate final selection was made for the shipboard tests. This COM was further evaluated during a land-based combustion test using a Marine burner (30 million-Btu/hr scale) installed in an industrial package boiler. Comparative tests using No. 6 fuel oil and the selected COM were performed along with a general shakedown and test run of the pump and heating set designed for the at-sea demonstration. Combustion tests indicated that the replacement of No. 6 fuel oil with the proper COM is quite feasible. However, close attention must be given to the handling and atomization of this fuel. A modified T-jet atomizer performed with acceptable levels of wear, plugging, and ash disposition problems. It was concluded that an at-sea demonstration of the COM should be pursued.

Wagoner, C.L.; Eckhart, C.F.; Clark, G.A.

1982-04-01T23:59:59.000Z

351

Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15--August 15, 1996  

SciTech Connect (OSTI)

The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers is also evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) was conducted with a proven coal-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrind circuit was recently installed and was evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and was used to generate baseline data firing No. 6 fuel oil and fire CWSF. A temporary storage system for No. 6 fuel oil was installed and modifications to the existing CWSF handling and preheating system were made to accommodate No. 6 oil.

Miller, B.G.; Scaroni, A.W.

1997-06-03T23:59:59.000Z

352

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

353

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

354

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

355

A Contrast Between Distillate Fuel Oil Markets in Autumn 1996 and 1997  

Gasoline and Diesel Fuel Update (EIA)

Cheryl Cheryl J. Trench, an independent petroleum analyst, contributed to this article. Unless otherwise referenced, data in this article are taken from the following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208; Petroleum Supply Monthly, DOE/EIA-0109; Petroleum Supply Annual, DOE/EIA-0340; Petroleum Marketing Monthly, DOE/EIA-0380; Short-Term Energy Outlook, DOE/EIA-0202; and Short-Term Integrated Forecasting System. 1996 Factor 1997 Record low Previous end-winter stocks In the historical range High Prevailing prices $5/barrel lower (WTI) Falling prices Price expectations (overall) Stable prices Falling prices Price expectations (heating oil) Seasonally higher prices Strong growth Off-season demand Weaker growth Europe out-bidding US World competition for heating oil Europe's markets calm Untested; Trainor

356

Operator Trainer System for the Petrobras P-26 Semi-Submersible Oil and Gas Production Unit  

Science Journals Connector (OSTI)

Abstract Operator trainer systems aim to improve operator performance, by simulating scenarios such as emergency conditions, thus reducing accidents and increasing processes economical results. In this paper, we present PETROBRAS' Oil & Gas Production Process and Utilities Simulator Environment called AMBTREI (Training Environment) that mimics the actual Control Room of an E&P semi-submersible Platform at a very high fidelity level. This training environment was created utilizing Soteica's Operator Training System solution (S-OTS). The dynamic process model will be described as well as the Process Control Interface that was implemented. The software used will be explained in detail and the conclusions that have been reached in almost 2 years of use will be presented.

A.C. Pereira; A. Riera; G. Padilla; E. Musulin; N.J. Nakamura

2009-01-01T23:59:59.000Z

357

Development of a micro-cogeneration laboratory and testing of a natural gas CHP unit based on PEM fuel cells  

Science Journals Connector (OSTI)

Abstract This work discusses the design and the development of a Laboratory of Micro-Cogeneration (LMC) at Politecnico di Milano. The LMC laboratory is a unique structure devoted to small-scale power generation, with the main goals of testing and improving the performance of systems that produce or utilize electric and thermal (hot and/or cold) power in a very general sense, spanning from combined heat and power (CHP) units to heaters, from absorption chillers to heat pumps, but also able to perform tests on fuel processors and electrolyzers. The laboratory features a supply of natural gas as well as H2 and O2 from a high pressure electrolyzer and of CO, CO2 and N2 from bottles, permitting to carry out experiments with simulated synthesis fuels. The maximum allowable electrical power produced, exported to the grid or to an electronic loadbank, or consumed by the system under test is 100 kW; maximum allowable thermal power is roughly 200 kW with variable temperature water circuits (from chilled water up to a 150 °C at 8 bar superheated water loop). This work outlines also the instruments used for on-line recording of thermodynamic properties, emissions and power, aiming at monitoring and reconstructing mass and energy balances. One of the first experimental campaign has been carried out on a CHP system based on polymer electrolyte membrane fuel cells (PEM), a promising candidate for distributed CHP thanks to low pollutant emissions and good efficiency, rapid startup and flexibility, although affected by a rather complex fuel processing section to provide the appropriate fuel to the PEM. This work presents the experimental analysis of a 20 kW prototype PEM CHP system complete of natural gas processor. The prototype is operated at LMC to characterize the processing section and the thermodynamic performances of the overall system. Despite its non-optimized layout, the unit has shown encouraging total efficiency (76%) and primary energy saving index (6%).

S. Campanari; G. Valenti; E. Macchi; G. Lozza; N. Ravidà

2014-01-01T23:59:59.000Z

358

Investigation on combustion characteristics of crude rice bran oil methyl ester blend as a heavy duty automotive engine fuel  

Science Journals Connector (OSTI)

In the present work, an attempt was made to test the suitability of crude rice bran oil methyl ester (CRBME) blend as a heavy duty automotive engine fuel. A four stroke, six cylinder direct injection 117.6 kW turbo-charged compression ignition (CI) engine was used for the work. The operation of the engine with CRBME blend showed that the peak pressure increased with lower maximum rate of pressure rise and maximum heat release rate with shorter delay period. Burning rate of the CRBME blend was slower and required a higher crank angle to complete the combustion cycle when compared to diesel. The brake thermal efficiency of the CRBME blend was lower than that of diesel at all speeds except at 2300rpm. As the measured combustion and performance parameters for CRBME blend differs only by a smaller magnitude when compared with diesel, this investigation ensures the suitability of the CRBME blend as fuel for heavy duty automotive engine without any design modifications [Received: August 12, 2010; Accepted: August 29, 2010

S. Saravanan; G. Nagarajan; S. Sampath

2011-01-01T23:59:59.000Z

359

Fuel consumption rate in a heat-powered unit analyzed as a function of the temperature and consumption ratio of the air  

Science Journals Connector (OSTI)

An analysis of fuel consumption for a heat-powered unit in the ... of ceramic materials is given. The heat consumption rate is analyzed as a function of ... generating the working medium, and of the consumption r...

N. A. Tyutin

2006-01-01T23:59:59.000Z

360

Comparison of the combustion behavior of Orimulsion{trademark} and heavy fuel oil in 70 MW flames  

SciTech Connect (OSTI)

Results of an experimental study are shown in this publication to compare the combustion behavior of heavy fuel oil (HFO) and Orimulsion in 70 MW flames. The investigation was carried out with the use of the combustion test rig at the International Combustion Limited in Derby, UK. The main objective of this test work was to quantify the extent of differences in flame properties, particulate and gaseous emissions of Orimulsion and HFO. Under identical combustion conditions, axial profiles of flame temperature and radiation heat flux were determined at 70 MW thermal input and 1% O{sub 2} for both fuels. Gas compositions at flame tail and furnace exit were obtained to estimate flame length and emission of gaseous pollutants. Stack concentration, carbon content, size and chemical composition of fly ash were also measured. The effect of excess air level on exit NOx and CO concentration were studied. Results of detailed flame measurements and the parametric study have shown that orimulsion fuel can be burnt with 99.97% efficiency at 1% exit O{sub 2} with a modified burner system of Dunamenti Power Station. However, significant implications of Orimulsion firing were observed. Gas temperature data and CO concentrations at flame tail have indicated a 1.5--2 m longer flame for Orimulsion. At flame tail, gas temperature in the Orimulsion flame was higher by 100 C than that for HFO. Lower radiant heat flux was measured in the near burner region for Orimulsion. Higher SO{sub 3}, SO{sub 2} and lower NOx emission were found when firing Orimulsion. Despite the higher ash content of Orimulsion, its combustion resulted in smaller particulate emission, which might be due to fly ash deposition in the furnace.

Barta, L.E. [Inst. for Energy, Budapest (Hungary); Horvath, G. [Hungarian Power Companies, Ltd., Budapest (Hungary); Allen, J.W.; Darar, J.S.; Wright, J.A. [International Combustion Ltd., Derby (United Kingdom). Rolls Royce Industrial Power Group; Szederkenyi, S.

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

blends must comply with ASTM specification D7467-10. Biodiesel produced from palm oil is not considered biodiesel fuel unless the palm oil is waste oil or grease collected...

362

An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste  

SciTech Connect (OSTI)

This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

Garg, A.; Smith, R. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Hill, D. [DPH Environment and Energy Ltd., c/o Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, P.J.; Pollard, S.J.T. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Simms, N.J. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)], E-mail: n.j.simms@cranfield.ac.uk

2009-08-15T23:59:59.000Z

363

A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting  

Science Journals Connector (OSTI)

In existing researches, the investigations of oil price volatility are always performed based on daily data and squared daily return is always taken as the proxy of actual volatility. However, it is widely accepted that the popular realized volatility (RV) based on high frequency data is a more robust measure of actual volatility than squared return. Due to this motivation, we investigate dynamics of daily volatility of Shanghai fuel oil futures prices employing 5-minute high frequency data. First, using a nonparametric method, we find that RV displays strong long-range dependence and recent financial crisis can cause a lower degree of long-range dependence. Second, we model daily volatility using RV models and GARCH-class models. Our results indicate that RV models for intraday data overwhelmingly outperform GARCH-class models for daily data in forecasting fuel oil price volatility, regardless the proxy of actual volatility. Finally, we investigate the major source of such volatile prices and found that trader activity has major contribution to fierce variations of fuel oil prices.

Li Liu; Jieqiu Wan

2012-01-01T23:59:59.000Z

364

Oil shale technology. Final report  

SciTech Connect (OSTI)

This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

NONE

1995-03-01T23:59:59.000Z

365

Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Dan Hennessy (Primary Contact), Jim Banna Delphi Automotive Systems, LLC 300 University Drive m/c 480-300-385 Auburn Hills, MI 48326 Phone: (248) 732-0656 Email: daniel.t.hennessy@delphi.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000478 Subcontractors: * Electricore, Inc., Valencia, CA * PACCAR, Inc., Bellevue, WA * TDA Research, Inc., Wheat Ridge, CO Project Start Date: August 1, 2009 Project End Date: April 30, 2013 Objectives

366

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

367

Thermal-Hydraulic Analysis of Seed-Blanket Unit Duplex Fuel Assemblies with VIPRE-01  

E-Print Network [OSTI]

nucleate boiling ratio EFIT European Facility for Industrial Transmutation EMT Effective Medium Theory EOL end-of-life EURO-TRANS EUROpean research program for the TRANSmutation of high level nuclear waste in ADS EPRI Electric Power Research... MA minor actinides ME Maxwell-Eucken viii MDNBR minimum departure from nucleate boiling ratio MNFI modified Nuclear Fuels Industries Mo molybdenum MOX mixed-oxide M-R multi-recycling NFI Nuclear Fuels Industries Np neptunium NPP nuclear...

McDermott, Patrick 1987-

2012-11-15T23:59:59.000Z

368

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

369

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 UNIT NUMBER UNIT NAME Rubble oile 41 REGULATORY STATUS: AOC LOCATION: Butler Lake Dam, West end of Butler Lake top 20 ft wide, 10 ft APPROXIMATE DIMENSIONS: 200 ft long, base 30...

370

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map...

371

of oil yields from enhanced oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

372

Deepwater Oil & Gas Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

373

Process evaluation - steam reforming of diesel fuel oil. Final technical report 24 Apr-24 Dec 79 on phases 1-4  

SciTech Connect (OSTI)

This project is an evaluation of a proprietary catalyst as a means of steam-reforming diesel fuel oil (Fed. Spec. VV-F-800B, symbol DF-2). A system for testing the catalyst has been designed, built and successfully used to screen operating conditions of temperature, space velocity, and H2O/C ratio. A duration test has been conducted showing the catalyst capable of steam reforming diesel fuel, but with the production of naphthalene after 30 hours. Hydrogen production remained stable through the 86 hours of the test.

Jarvi, G.A.; Bowman, R.M.; Camara, E.H.; Lee, A.L.

1980-02-15T23:59:59.000Z

374

A practical strategy for reducing the future security risk of United States spent nuclear fuel  

SciTech Connect (OSTI)

Depletion calculations show that advanced oxide (AOX) fuels can be used in existing light water reactors (LWRs) to achieve and maintain virtually any desired level of US (US) reactor-grade plutonium (R-Pu) inventory. AOX fuels are composed of a neutronically inert matrix loaded with R-Pu and erbium. A 1/2 core load of 100% nonfertile, 7w% R-Pu AOX and 3.9 w% UO{sub 2} has a net total plutonium ({sup TOT}Pu) destruction rate of 310 kg/yr. The 20% residual {sup TOT}Pu in discharged AOX contains > 55% {sup 242}Pu making it unattractive for nuclear explosive use. A three-phase fuel-cycle development program sequentially loading 60 LWRs with 100% mixed oxide, 50% AOX with a nonfertile component displacing only some of the {sup 238}U, and 50% AOX, which is 100% nonfertile, could reduce the US plutonium inventory to near zero by 2050.

Chodak, P. III; Buksa, J.J. [Los Alamos National Lab., NM (United States). Nuclear Systems Design and Analysis Group

1997-06-01T23:59:59.000Z

375

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

SciTech Connect (OSTI)

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

2009-03-19T23:59:59.000Z

376

Potential Benefits of Utilizing Fuel Cell Auxiliary Power Units in Lieu of Heavy-Duty Truck Engine Idling  

E-Print Network [OSTI]

Cost Estimates for Polymer Electrolyte Membrane (PEM) Fuel Cellsmanufacturing costs of automotive PEM fuel cell systems incosts of different sizes of direct-hydrogen PEM fuel cell

2001-01-01T23:59:59.000Z

377

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect (OSTI)

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

378

Scenarios for multi?unit inertial fusion energy plants producing hydrogen fuel  

Science Journals Connector (OSTI)

It is presented an extended summary for a paper describing: a) the motivation of the inertial fusion in general and particularly for the production of the hydrogen fuel powering low?emission vehicles b) the general requirements for fusion electric plants c) a comparative economic analysis concerning the design of drivers and target chambers. (AIP)

B. Grant Logan

1994-01-01T23:59:59.000Z

379

Effect of a sudden fuel shortage on freight transport in the United States: an overview  

SciTech Connect (OSTI)

A survey was made of the potential effects of a sudden reduction of fuel supplies on freight transport via truck, rail, water, and pipeline. After a brief discussion of the energy characteristics of each of these modes of transport, short-term strategies for making better use of fuel in a crisis are investigated. Short-term is taken to mean something on the order of six months, and a crisis is taken to be the result of something on the order of a 20% drop in available fuel. Although no succinct or well-established conclusions are drawn, the gist of the paper is that the potential for short-term conservation, without a serious disruption of service, exists but does not appear to be large. It is remarked that it is possible, through further study, to obtain a fairly accurate reckoning of the physical ability of the freight transport network to weather a fuel crisis, but that it is impossible to say in advance what freight carriers will in fact do with the network.

Hooker, J N

1980-01-01T23:59:59.000Z

380

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

Anthony R. Kovscek; William E. Brigham

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Statistical Overview of 5 Years of HCCI Fuel and Engine Data...  

Broader source: Energy.gov (indexed) [DOE]

series of fuels, covering 2005 to 2009 - Conventional, biodiesel, oil sands, oil shale, surrogate, primary and secondary reference, FACE - 95 fuels total, 18 fuel related...

382

Hydrotreating of oil from eastern oil shale  

SciTech Connect (OSTI)

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

383

NETL: Oil & Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Gas Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Efficient recovery of our nation's fossil fuel resources...

384

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

385

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

386

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

387

Determinants of alternative fuel vehicle choice in the continental United States.  

SciTech Connect (OSTI)

This paper describes the ongoing investigation into the determinants of alternative fuel vehicle choice. A stated preference vehicle choice survey was conducted for the 47 of the continental U.S. states, excluding California. The national survey is based on and is an extension of previous studies on alternative fuel vehicle choice for the State of California conducted by the University of California's Institute of Transportation Studies (UC ITS). Researchers at UC ITS have used the stated-preference national survey to produce a series of estimates for new vehicle choice models. Three of these models are presented in this paper. The first two of the models were estimated using only the data from the national survey. The third model presented in this paper pools information from the national and California surveys to estimate a true national model for new vehicle choice.

Tompkins, M.

1997-12-18T23:59:59.000Z

388

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

389

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

390

Global Fuel Economy Initiative | Open Energy Information  

Open Energy Info (EERE)

Global Fuel Economy Initiative Global Fuel Economy Initiative Jump to: navigation, search Tool Summary Name: Global Fuel Economy Initiative Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.globalfueleconomy.org/ The Global Fuel Economy Initiative has launched the 50by50 challenge to facilitate large reductions of greenhouse gas emissions and oil use through improvements in automotive fuel economy. The website provides access to working papers, a map showing countries with fuel economy standards, and other related information. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel

391

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Byproducts in Fuel Consumption, 1998;" 1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

392

Considerations for increasing unit 1 spent fuel pool capacity at the Laguna Verde station  

SciTech Connect (OSTI)

To increase the spent fuel storage capacity at the Laguna Verde Station in a safe and economical manner and assure a continuous operation of the first Mexican Nuclear Plant, Comision Federal de Electricidad (CFE), the Nation's Utility, seeked alternatives considering the overall world situation, the safety and licensing aspects, as well as the economics and the extent of the nuclear program of Mexico. This paper describes the alternatives considered, their evaluation and how the decision taken by CFE in this field, provides the Laguna Verde Station with a maximum of 37 years storage capacity plus full core reserve.

Vera, A. (Comision Federal de Electricidad, Veracruz, Ver. (Mexico))

1992-01-01T23:59:59.000Z

393

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

394

Development of a Fuel Containing Material Removal and Waste Management Strategy for the Chernobyl Unit 4 Shelter  

SciTech Connect (OSTI)

A study was performed to develop a strategy for the removal of fuel-containing material (FCM) from the Chernobyl Unit 4 Shelter and for the related waste management. This study was performed during Phase 1 of the Shelter Implementation Plan (SIP) and was funded by the Chernobyl Shelter Fund. The main objective for Phase 2 of the SIP is to stabilize the Shelter and to construct a New Confinement (NC) by the year 2007. In addition, the SIP includes studies on the strategy and on the conceptual design implications of the removal of FCM from the Shelter. This is considered essential for the ultimate goal, the transformation of the Shelter into an environmentally safe system.

Tokarevsky, V. V.; Shibetsky, Y. A.; Leister, P.; Davison, W. R.; Follin, J. F.; McNair, J.; Lins, W.; Edler, G.

2002-02-27T23:59:59.000Z

395

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

396

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

397

U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data  

E-Print Network [OSTI]

United States and the Persian Gulf Conflict, Policy Analysisof land forces allocated to Persian Gulf. Uses this ratio tobut did not consume Persian- Gulf oil oilc 5. Motor vehicles

Delucchi, Mark; Murphy, James

2006-01-01T23:59:59.000Z

398

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

399

Impact of thermal barrier coating application on the combustion, performance and emissions of a diesel engine fueled with waste cooking oil biodiesel–diesel blends  

Science Journals Connector (OSTI)

Abstract Biodiesel fuel was produced from waste cooking oil by transesterification process. B20 and B50 blends of biodiesel–petroleum diesel were prepared. These blends and D2 fuels were tested in a single cylinder CI engine. Performance, combustion and emission values of the engine running with the mentioned fuels were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with layers of ceramic materials. The mentioned parts were coated with 100 ?m of NiCrAl as lining layer. Later the same parts were coated with 400 ?m material of coating that was the mixture of 88% of ZrO2, 4% of MgO and 8% of Al2O3. After the engine coating process, the same fuels were tested in the coated engine at the same operation condition. Finally, the same engine out parameters were obtained and compared with those of uncoated engine parameters in order to find out how this modification would change the combustion, performance and emission parameters. Results showed that the modification of the engine with coating process resulted in better performance, especially in considerably lower brake specific fuel consumption (Bsfc) values. Besides, emissions of the engine were lowered both through coating process and biodiesel usage excluding the nitrogen oxides (NOx) emission. In addition, the results of the coated engine are better than the uncoated one in terms of cylinder gas pressure, heat release rate (HRR) and heat release (HR).

Selman Ayd?n; Cenk Say?n

2014-01-01T23:59:59.000Z

400

Life Cycle Assessment of Potential Biojet Fuel Production in the United States  

Science Journals Connector (OSTI)

†System-of-Systems Laboratory, College of Engineering, ‡School of Mechanical Engineering and Division of Environmental and Ecological Engineering, §School of Agricultural and Biological Engineering, and ?School of Aeronautics and Astronautics, Purdue University 701 West Stadium Avenue, West Lafayette, Indiana 47907, United States ... (48) Air travel demand is commonly represented as revenue-passenger-kilometer (RPK), which equals the number of passengers multiplied by the flight distance, a counterpart of the vehicle-miles-traveled (VMT) measure for road transport. ... Light-duty vehicles are fundamental to our economy and will continue to be for the indefinite future. ...

Datu B. Agusdinata; Fu Zhao; Klein Ileleji; Dan DeLaurentis

2011-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Winter fuels report, week ending November 30, 1990. [Contains Glossary  

SciTech Connect (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cites; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 27 figs., 12 tabs.

Not Available

1990-12-06T23:59:59.000Z

402

Oil vulnerability in the greater Toronto area: impacts of high fuel prices on urban form and environment  

Science Journals Connector (OSTI)

The rising cost of fossil fuel is a recognized phenomenon, but its impact ... . Understanding how the socioeconomic impacts of rising fuel prices might be distributed across urban areas is...2007...)] by incorpor...

S. Akbari; K. Nurul Habib

2014-08-01T23:59:59.000Z

403

Evaluate past and ongoing enhanced oil-recovery projects in the United States and Venezuela, annex III. Venezuela-MEM/USA-DOE fossil-energy report III-1  

SciTech Connect (OSTI)

The Agreement between the United States and Venezuela was designed to further energy research and development in six areas. This report focuses on Annex III - Evaluate Past and Ongoing Enhanced Oil Recovery Projects in the United States and Venezuela. Annex III has separated this portion of the coopertive energy research and development effort into four tasks for study. Energy research and development in the area of Enhanced Oil Recovery has as its goal the more efficient and complete production of the third crop of oil. Methods and techniques must be developed to assist the decision maker in the best timing and method for his EOR project. If a method can be developed to predict production based on certain known reservoir parameters, the producer will be able to make more accurate decisions. Accurate predictive models can be developed if a larger data base with enough data on varied reservoirs and processes is compiled. Statistical algorithms can be developed, tested, and verified with actual production data. New data can be used to recalibrate the models for improved accuracy. The developed models can then be used to evaluate current or anticipated EOR projects.

Ward, D.C.; Garcia, J.

1983-04-01T23:59:59.000Z

404

Winter fuels report  

SciTech Connect (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

Not Available

1990-10-04T23:59:59.000Z

405

Hydrocarbon analysis of shrimp from oil polluted waters  

E-Print Network [OSTI]

), serious pollution problems are caused by crude oils, residual fuel oils, lubricating oils and miscel- laneous tank washings, sludges and tarsi known collectively as persis- tant oils, to distinguish them from light fuel oils such as gasoline, kerosene... obtained from crude oil, die- sel oil and lubricating oil. These "fingerprints" were compared to "fingerprints" from shrimp to obtain parameters for assessing pollution of shrimp by crude oil and its derivatives. Using these parameters, contaminated...

DeWitt, Bernard John

1982-01-01T23:59:59.000Z

406

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Broader source: Energy.gov (indexed) [DOE]

Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This...

407

NREL: Learning - Advanced Vehicles and Fuels Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Vehicles and Fuels Basics Advanced Vehicles and Fuels Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of the Center for Transportation Technologies and Systems and its research. Video produced for NREL by Fireside Production. Text Version We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. And we can help to reduce our nation's growing reliance on imported oil by running our vehicles on renewable and alternative fuels. Advanced vehicles and fuels can also put the brakes on air pollution and improve our environment. At least 250 million vehicles are in use in the United States today. They include all kinds of passenger cars, trucks, vans, buses, and large

408

Hazardous air pollutants from the combustion of an emulsified heavy fuel oil in a firetube boiler. Final report, May-November 1995  

SciTech Connect (OSTI)

The report gives results of measuring emissions of hazardous air pollutants (HAPS) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose determining the impacts of the emulsifier on HAP emissions. The boiler flue gases were sampled and analyzed for both metal and organic HAPs, and the effects of the emulsification on criteria emissions such as carbon dioxide (CO), nitrogen oxides (NOx), and particulate matter (PM) were also measured.

Miller, C.A.

1996-02-01T23:59:59.000Z

409

Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030  

SciTech Connect (OSTI)

The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-10T23:59:59.000Z

410

Environmental Impact Evaluation of Conventional Fossil Fuel Production (Oil and Natural Gas) and Enhanced Resource Recovery with Potential CO2 Sequestration  

Science Journals Connector (OSTI)

The first set of results presented were the inventory of air emissions (CO, CO2, CH4, SOx, NOx, NH3, Pb, Hg, etc.), wastewater-containing acids and sulfides, and solid wastes released because of both fossil fuel production and energy usage from the power plant. ... Gases of SO2 and NOx are reported to pollute the air because of conventional oil production activities,16 but these contributions, as displayed by cases I and II, are less compared to the accumulated impacts coming from the CO2 sequestration chain. ... (1)?McKee, B. Solutions for the 21st Century:? Zero Emissions Technology for Fossil Fuels; Technology Status Report, International Energy Agency, Committee for Energy Research Technology, OECD/IEA:? France, 2002. ...

Hsien H. Khoo; Reginald B. H. Tan

2006-07-26T23:59:59.000Z

411

Importance of algae oil as a source of biodiesel  

Science Journals Connector (OSTI)

Algae are the fastest-growing plants in the world. Industrial reactors for algal culture are open ponds, photobioreactors and closed systems. Algae are very important as a biomass source. Algae will some day be competitive as a source for biofuel. Different species of algae may be better suited for different types of fuel. Algae can be grown almost anywhere, even on sewage or salt water, and does not require fertile land or food crops, and processing requires less energy than the algae provides. Algae can be a replacement for oil based fuels, one that is more effective and has no disadvantages. Algae are among the fastest-growing plants in the world, and about 50% of their weight is oil. This lipid oil can be used to make biodiesel for cars, trucks, and airplanes. Microalgae have much faster growth-rates than terrestrial crops. the per unit area yield of oil from algae is estimated to be from 20,000 to 80,000 l per acre, per year; this is 7–31 times greater than the next best crop, palm oil. The lipid and fatty acid contents of microalgae vary in accordance with culture conditions. Most current research on oil extraction is focused on microalgae to produce biodiesel from algal oil. Algal-oil processes into biodiesel as easily as oil derived from land-based crops.

Ayhan Demirbas; M. Fatih Demirbas

2011-01-01T23:59:59.000Z

412

UNIT NUMBER  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 UNIT NAME Rubble oile 45 REGULATORY STATUS AOC LOCATION: West end of Mitche Lake APPROXIMATE DIMENSIONS: 2000 ft long, ft thick 4 ft wide FUNCTION: Control erosion on face of dam...

413

Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution  

Broader source: Energy.gov [DOE]

Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England.

414

Reforming Brazil?s offshore oil and gas safety regulatory framework: Lessons from Norway, the United Kingdom and the United States  

Science Journals Connector (OSTI)

Abstract We propose reforming the Brazilian regulatory safety framework (BRSF) for offshore oil and gas production and drilling operations. Brazil has emerged as a leading offshore producer with extensive proven reserves yet to be exploited. However, the BRSF has not been updated since 2007, and there are now major concerns about the industry?s safety, particularly after the BP Deepwater Horizon accident, along with the technical challenges due to extreme conditions under which Brazil?s resources are located. Drawing on experiences from three leading offshore oil and gas producers (Norway, the UK, and the US), we recommend the adoption of three best practices: the UK?s ‘safety case’ approach (where operators are expected to provide convincing and valid arguments that a system is sufficiently safe for a given application in a specific environment), Norway?s ‘barrier management’ (evidence that there are at least two tested and independent barriers to avoid accidents) and greater investment in safety research and development, as suggested by the US?s National Commission on the BP Deepwater Horizon Oil Spill and Offshore Drilling. We discuss implications for policy reform and how best practices can be applied within the Brazilian context.

Pietro A.S. Mendes; Jeremy Hall; Stelvia Matos; Bruno Silvestre

2014-01-01T23:59:59.000Z

415

Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

Not Available

2012-03-01T23:59:59.000Z

416

POLYVINYLCHLORIDE WASTE WITH OIL SHALE ASH TO CAPTURE  

E-Print Network [OSTI]

alkaline oil shale ash. Solid heat carrier (Galoter process)-type oil shale retorting units, where the

V. Oja; A. Elenurm; I. Rohtla; E. Tearo; E. Tali

417

Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. Total Energy Source First Use Total United States Coal 1,328 Natural Gas 5,725 Net Electricity 2,437 Purchases 2,510 Transfers In 33 Onsite Generation from Noncombustible Renewable Energy 7 Sales and Transfers Offsite 113 Coke and Breeze 374 Residual Fuel Oil 170 Distillate Fuel Oil 135 Liquefied Petroleum Gases and Natural Gas Liquids 2,057 Other 7,381 Asphalt and Road Oil (a) 946 Lubricants (a) 386

418

Performance and Emissions of a Compression-Ignition Engine Fueled with Dimethyl Ether and Rapeseed Oil Blends  

Science Journals Connector (OSTI)

Sorenson and Mikkelsen2 had studied DME in a modified diesel engine, and their results showed that the engine could achieve ultralow-emission prospects without a fundamental change in combustion systems. ... Meanwhile, these parameters are compared with those of pure diesel fuel in order to clarify the effect of blends on the combustion and emission of engines (a CI engine cannot run for much longer of a period with pure DME fuel, so a comparison is only made with pure diesel fuel). ... Moreover, owing to the lower calorific value of the blend compared to diesel fuel, the fuel supply amount per cycle for blend operation is enlarged by increasing the plunger stroke of the fuel pump in order to make the power and torque output of the blends approach those of the corresponding diesel engine. ...

Wang Ying; Zhou Longbao

2007-04-20T23:59:59.000Z

419

Life-cycle analysis of alternative aviation fuels in GREET  

SciTech Connect (OSTI)

The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

2012-07-23T23:59:59.000Z

420

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - active oil producing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

making distillate- based fuels such as diesel and jet fuel. The cost of producing oil shale remains... and produce gasoline. The South African oil company Sasol later developed...

422

Oil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

423

Effect of fuel oil and dispersant on cell cycle and macromolecular synthesis in the chlorococcal alga Scenedesmus armatus  

Science Journals Connector (OSTI)

Growth and reproductive processes in synchronous cultures of the alga Scenedesmus armatus...(isolated from Baltic phytoplankton) were followed in the presence of various concentrations of dispersant DP-105, oil, ...

V. Zachleder; Z. Tukaj

1993-10-01T23:59:59.000Z

424

Cobalt-cement catalysts for the synthesis of motor fuel components from synthesis gas obtained from oil shale  

Science Journals Connector (OSTI)

Highly effective cobalt-cement catalysts for the synthesis of aliphatic hydrocarbons from CO and H2, which are formed upon the thermolysis or gasification of oil shale or coals, are considered. The formation of t...

A. L. Lapidus; E. Z. Golosman; Yu. A. Strizhakova

2011-06-01T23:59:59.000Z

425

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

100 million for an alternative fuel or gasification facility that uses coal, oil shale, or tar sands as the primary feedstock; 25 million for an energy-efficient...

426

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

0: Residual Fuel Oil Price and Expenditure Estimates, 2012 State Prices Expenditures Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation...

427

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

F8: Distillate Fuel Oil Price and Expenditure Estimates, 2012 State Prices Expenditures Residential Commercial Industrial Transportation Electric Power Total Residential Commercial...

428

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

to take actions to promote the growth of domestic alternative fuel sources, such as natural gas, and reduce dependence on foreign oil. (Reference House Concurrent Resolution 132...

429

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Station Regulations The Colorado Department of Labor and Employment, Division of Oil and Public Safety, enforces regulations concerning the design, construction, siting,...

430

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

431

1 What is Oil ? General information  

E-Print Network [OSTI]

of petroleum products manufactured from crude oil. Many are for specific purposes, for example motor gasoline gasoline to heavier ones such as fuel oil. Oil #12;Crude oil Natural gas liquids Other hydrocarbons Aviation gasoline White spirit + SBP Gasoline type jet fuel Lubricants Unleaded gasoline Bitumen Leaded

Kammen, Daniel M.

432

Identifying Bio-Diesel Production Facility Locations for Home Heating Fuel Applications Within the Midwest Region of the United States.  

E-Print Network [OSTI]

?? Amid concerns of rising oil prices, interest into researching alternative renewable energy sources has increased in recent years. A great deal of research has… (more)

Schafer, Guy M.

2011-01-01T23:59:59.000Z

433

Hydrogenated soy ethyl ester (HySEE) from ethanol and waste vegetable oil  

SciTech Connect (OSTI)

Biodiesel is gaining recognition in the United States as a renewable fuel which may be used as an alternative to diesel fuel without any modifications to the engine. Currently the cost of this fuel is the factor that limits its use. One way to reduce the cost of biodiesel is to use a less expensive form of vegetable oil such as waste oil from a processing plant. These operations use mainly hydrogenated soybean oil, some tallow and some Canola as their frying oils. It is estimated that there are several million pounds of waste vegetable oil from these operations. Additional waste frying oil is available from smaller processors, off-grade oil seeds and restaurants. This paper reports on developing a process to produce the first 945 liters (250 gallons) of HySEE using recipes developed at the University of Idaho; fuel characterization tests on the HySEE according to the ASAE proposed Engineering Practice for Testing of Fuels from Biological Materials, X552; short term injector coking tests and performance tests in a turbocharged, DI, CI engine; and a 300 hour screening test in a single cylinder, IDI, CI engine.

Peterson, C.; Reece, D.; Thompson, J. [Univ. of Idaho, Moscow, ID (United States)] [and others

1995-11-01T23:59:59.000Z

434

Modelling transport fuel demand  

Science Journals Connector (OSTI)

Transport fuels account for an increasing share of oil ... interest to study the economics of the transport fuel market and thereby to evaluate the efficiency of the price mechanism as an instrument of policy in ...

Thomas Sterner; Carol A. Dahl

1992-01-01T23:59:59.000Z

435

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel comprised of mono-alkyl esters of long chain fatty acids from biologically derived oil and fats. A biodiesel blend is defined as a fuel comprised of a specified ratio of...

436

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by...

437

E-Print Network 3.0 - assisted thermal oil Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that produced synthetic fuel from coal, oil... the CRS Web Order Code RL33359 Oil Shale: History, Incentives, and Policy April 13, 2006 Anthony Andrews... ;Oil Shale:...

438

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

of residual fuel oil are identical in the inventory and inCARB SEDS inventory fuel use Residual fuel oil Distillatein their oil and gas extraction processes. In its inventory,

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

439

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

440

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Operation of the Wilsonville solvent-refined coal pilot plant: startup, calibration, and initial operation of the H-oil ebullated-bed hydrotreater unit. Technical evaluation  

SciTech Connect (OSTI)

This report presents initial operating data and analyses for the H-Oil Ebullated-Bed Hydrotreater (HTR) unit at the Wilsonville Solvent Refined Coal Pilot Plant in Wilsonville, Alabama. The focus of the report is on the initial period when the HTR unit operated with catalyst (May to June 1981). Additional data relates to the problems and adjustments during pre-operational testing (December 1980 to April 1981), solvent-SRC circulation testing (April to May 1981), and equipment repairs (July 1981). During the first two runs with catalyst (American Cyanamid HDS-1442B), the R1235 Reactor was operated at 756/sup 0/F and 825/sup 0/F. Equal amounts of hydrotreater solvent and deashed SRC were blended to make up the HTR unit feed. At these conditions, SRC conversion was 30 and 53%, respectively, and 82 and 88% of the sulfur was removed from the SRC feed. The total solvent yield was 26 and 39% of the SRC for the two temperatures, 756 and 825/sup 0/F, respectively. Most of the preasphaltenes were converted (less than 0.5% in the solid product). Hydrogen consumption was estimated to be 3 to 4% of the feed SRC. The quality of the HTR solvent was evaluated in short and long microautoclave tests (80% and 80 to 88% THF conversion, respectively) and the values obtained were consistently higher than those for SRC unit solvent. It was noted that the HTR unit solvent gave higher results by the long test than the short test, whereas the opposite is true for SRC unit solvent.

Not Available

1982-07-01T23:59:59.000Z

442

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,162 75,407 2 4 567 2 8 * 96 * 3112 Grain and Oilseed Milling 355 16,479 * * 119 Q 6 0 47 * 311221 Wet Corn Milling 215 7,467 * * 51 * 5 0 26 0 31131 Sugar Manufacturing

443

Department of Energy Helping Americans Find Alternative Fuel Stations |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Department of Energy Helping Americans Find Alternative Fuel Department of Energy Helping Americans Find Alternative Fuel Stations Department of Energy Helping Americans Find Alternative Fuel Stations May 29, 2013 - 2:14pm Addthis Helping Americans explore and adopt alternative energy sources beyond oil and gasoline has become easier. The Department of Energy's (DOE) National Renewable Energy Laboratory and DOE Clean Cities have made it a snap to find the location of alternative fuel stations across the United States by making that information available online in a variety of formats, including web applications, mobile applications, widgets, APIs, and raw data files on the Alternative Fuels Data Center (AFDC) site. These tools enable users to leverage the data to find fuel stations, post custom fueling location maps on their own websites, or access data for web

444

Diesel fuel qualities  

SciTech Connect (OSTI)

As a result of rising fuel costs, many ship operators are turning to less expensive, heavier grade fuels for their diesel engines. Use of these lower quality fuels without adequate preparation can cause increased engine wear and damage to fuel systems. The oil properties which affect pretreatment and cleaning requirements, specifications that should be used when purchasing these fuels, and procedures for confirming that bought fuels meet purchase specifications are discussed. (LCL)

Blenkey, N.

1981-02-01T23:59:59.000Z

445

Process Balances of Vegetable Oil Hydrogenation and Coprocessing Investigations with Middle-Distillates  

Science Journals Connector (OSTI)

The hydrogenation of vegetable oil is a promising technology for the production of highly valuable diesel components. ... Finding a sustainable energy supplement as well as the need for carbon dioxide reduction leads to the necessity to integrate more and more renewable energy sources into the transportation fuel markets. ... A possibility for introduction of hydrogenated vegetable oils on the market is the coprocessing in conventional hydrotreater and hydrocracker units in a refinery. ...

Matthias Endisch; Thomas Kuchling; Jan Roscher

2013-03-19T23:59:59.000Z

446

Performance and Exhaust Emissions of an Indirect-Injection (IDI) Diesel Engine When Using Waste Cooking Oil as Fuel  

Science Journals Connector (OSTI)

In addition, measurements were taken of the basic engine operational parameters such as engine speed, engine load, fuel consumption, pressure and temperature in the intake and exhaust systems, and the concentration of gaseous components and particulates in the exhaust gases. ... As can be seen, the torque and, consequently, the power of the engine are almost identical for both fuels WCO75 and D2, which is surprising, because the calorific value of the WCO is approximately 13% lower than that of D2 fuel. ... A series of engine tests provided adequate and relevant information that the biodiesel can be used as an alternative, environment friendly fuel in existing diesel engines without substantial hardware modification. ...

Ales Hribernik; Breda Kegl

2009-02-11T23:59:59.000Z

447

TURKISH OIL SHALES POTENTIAL FOR SYNTHETIC CRUDE OIL and CARBON MATERIALS PRODUCTION  

E-Print Network [OSTI]

research activities on solid fuels. In order to make a new start, research work on Turkish oil shales that

Ekrem Ekinci

448

Global Alternative Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternative Fuels Place: El Paso, Texas Zip: 79922 Product: Global Alternative Fuels processes virgin oils (palm, soybean, cottonseed, and canola), yellow and brown greases, and...

449

National Fuel Cell and Hydrogen Energy Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * > 60% (electrical) * > 70% (electrical, hybrid fuel cell...

450

Qualification of Alternative Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Alternative Fuels Thomas Butcher presentation on May 8, 2012 at the Pyrolysis Oil Workshop on the qualification of alternative fuels. pyrolysisbutcher.pdf More...

451

Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors  

SciTech Connect (OSTI)

Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

2014-02-01T23:59:59.000Z

452

HS_Oil_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

Oil Oil Fossil Energy Study Guide: Oil Pet roleum-or cr ude oil-is a fossil fuel that is found in large quantities beneath the Earth's sur face and is often used as a fuel or raw material in the chemical indust r y. It is a smelly, yellow-to-black liquid and is usually found in underg round areas called reser voirs. If you could look down an oil well and see oil where Nature created it, you might be surprised. You wouldn't see a big underground lake, as a lot of people think. Oil doesn't exist in deep, black pools. In fact, an underground oil formation-an "oil reservoir"-looks very much like any other rock formation. Oil exists in this underground formation as tiny droplets trapped inside the open spaces, called "pores," inside rocks. Th

453

Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.  

E-Print Network [OSTI]

billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

454

Synthetic fuels from US oil shales: a technical and economic verification of the HYTORT Process. Project 61040 quarterly report, April 1-June 30, 1980  

SciTech Connect (OSTI)

Progress is reported on the HYTORT Process development work conducted from April 1 through June 30, 1980. Thermobalance tests have been conducted on samples of shale from each large multiton sample prior to large-scale tests and these test results have been fit with specific kinetic expressions. Approximately 80% of the instrumentation for the laboratory-scale reactor has been received. Fabrication of the reactor, feed hopper, and residue receiver is about 95% complete. Two successful moving-bed tests were conducted in the bench-scale reactor during this quarter. A large, 50-ton sample of the Lower Huron member of the Ohio Shale was mined and readied for shipment to IGT. Modification of the bench-scale steam-oxygen unit was completed. Spent shale from PDU tests was prepared for use in these tests. A set of five screening runs on New Albany shale oil and a set of four screening runs on Sunbury shale oil were conducted during this quarter. The nitrogen content of these oils was reduced to the 0.16 to 0.30 weight percent range in the bench-scale hydrotreating unit. Design of the laboratory test system for mist-size control studies was completed. Methods are being studied for measuring mist particle size. Shakedown and initial testing of the liquid-sealed lockhopper were performed during this quarter. Two runs were made in the PDU with Kentucky shales using a sample of the Cleveland member of the Ohio shale and a sample of New Albany shale. Samples for environmental analysis were taken during the PDU runs discussed above. On-line sampling equipment was installed prior to the PDU run with New Albany shale and samples were taken of the Stage 2 raw product gases.

None

1980-11-01T23:59:59.000Z

455

2013 Fuel Cell Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

cell (GFC), a modified solid oxide fuel cell, to test in extraction of oil from oil shale. 83 The 4.5 kW natural gas-fueled GFC was designed and built by Delphi for IEP...

456

Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries  

Science Journals Connector (OSTI)

...ERCB) (2009) Alberta's energy reserves 2008 and supply/demand outlook...Oil Sands coke and coke ash . Fuel 58 : 589 – 594 . 17 Jang H Etsell...decay constant indicating the rate that deposition per unit...in aqueous samples from the Florida Everglades. Fresenius J Anal...

Erin N. Kelly; David W. Schindler; Peter V. Hodson; Jeffrey W. Short; Roseanna Radmanovich; Charlene C. Nielsen

2010-01-01T23:59:59.000Z

457

Utilization of pyrolysis oil in industrial scale boilers.  

E-Print Network [OSTI]

??The performance of pyrolysis oil in a large-scale combustion system is investigated to determine the feasibility of displacing fuel oil or natural gas in current… (more)

Redfern, Kyle D.

2013-01-01T23:59:59.000Z

458

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuels Used and End Uses in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings...

459

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

energy security: Can the united states achieve oil indepen-Measuring energy security: Can the united states achieve oilthe energy security bene?ts of reduced u.s. oil imports.

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

460

Memorandum of Understanding between the Department of Energy of the United States of America and the National Company of Radioactive Waste of Spain Concerning Cooperation in the Field of Used Nuclear Fuel and Radioactive Waste Management  

Broader source: Energy.gov [DOE]

Memorandum of Understanding between the Department of Energy of the United States of America and the National Company of Radioactive Waste of Spain Concerning Cooperation in the Field of Used Nuclear Fuel and Radioactive Waste Management

Note: This page contains sample records for the topic "fuel oil united" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Statement of Intent by The United States Department of Energy and Atomic Energy of Canada Limited in the Field of Used Fuel and Radioactive Waste Management, Decommissioning and Environmental Restoration  

Broader source: Energy.gov [DOE]

Statement of Intent by The United States Department of Energy and Atomic Energy of Canada Limited in the Field of Used Fuel and Radioactive Waste Management, Decommissioning and Environmental Restoration.

462

Alternative Fuels Data Center - Fuel Properties Comparison  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Data Center - Fuel Properties Comparison Fuels Data Center - Fuel Properties Comparison www.afdc.energy.gov 1 2/27/2013 Gasoline Diesel (No. 2) Biodiesel Propane (LPG) Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) Ethanol Methanol Hydrogen Electricity Chemical Structure C 4 to C 12 C 8 to C 25 Methyl esters of C 12 to C 22 fatty acids C 3 H 8 (majority) and C 4 H 10 (minority) CH 4 (83-99%), C 2 H 6 (1-13%) CH 4 CH 3 CH 2 OH CH 3 OH H 2 N/A Fuel Material (feedstocks) Crude Oil Crude Oil Fats and oils from sources such as soy beans, waste cooking oil, animal fats, and rapeseed A by-product of petroleum refining or natural gas processing Underground reserves Underground reserves Corn, grains, or

463

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

464

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

465

Assessment of the impacts on health due to the emissions of Cuban power plants that use fossil fuel oils with high content of sulfur. Estimation of external costs  

Science Journals Connector (OSTI)

Fossil fuel electricity generation has been demonstrated to be a main source of atmospheric pollution. The necessity of finding out a balance between the costs of achieving a lower level of environmental and health injury and the benefits of providing electricity at a reasonable cost have lead to the process of estimating the external costs derived from these impacts and not included in the electricity prices as a quantitative measure of it that, even when there are large uncertainties involved, can be used by decision makers in the process of achieving a global sustainable development. The external costs of the electricity generation in three Cuban power plants that use fossil fuel oils with high sulfur content have been assessed. With that purpose a specific implementation of the Impact Pathways Methodology for atmospheric emissions was developed. Dispersion of atmospheric pollutants is modeled at local and regional scales in a detailed way. Health impacts include mortality and those morbidity effects that showed relation with the increment of selected pollutant concentration in national studies. The external cost assessed for the three plants was 40,588,309 USD yr?1 (min./max.: 10,194,833/169,013,252), representing 1.06 USD Cent kWh?1. Costs derived from sulfur species (SO2 and sulfate aerosol) stand for 93% of the total costs.

L. Turtós Carbonell; E. Meneses Ruiz; M. Sánchez Gácita; J. Rivero Oliva; N. Díaz Rivero

2007-01-01T23:59:59.000Z

466

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

467

Fuels - Biodiesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

468

Winter fuels report, week ending October 4, 1991. [CONTAINS GLOSSARY  

SciTech Connect (OSTI)

This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's 1, 2, and 3; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 37 figs., 13 tabs.

Not Available

1991-10-10T23:59:59.000Z

469

Winter fuels report week ending February 1, 1991. [Contains Glossary  

SciTech Connect (OSTI)

This Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) 1, 2 and 3; natural gas supply and disposition and underground storage for the United states and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United states and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

Not Available

1991-02-07T23:59:59.000Z

470

Microsoft PowerPoint - 2012_summer_fuels.pptx  

Gasoline and Diesel Fuel Update (EIA)

Summer Transportation Fuels Summer Transportation Fuels O tl k Outlook April 10, 2012 www.eia.gov U.S