National Library of Energy BETA

Sample records for fuel oil united

  1. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  2. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  3. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  5. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  6. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  7. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  8. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  9. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  10. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  11. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  12. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  13. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  14. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  15. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day ...

  16. fuel_oil.pdf

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company.

  17. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

  18. Oil Shale Research in the United States | Department of Energy

    Energy Savers [EERE]

    Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies PDF icon Oil Shale Research in the United States More Documents & Publications Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Applicability of a Hybrid Retorting Technology in the Green River Formation National Strategic Unconventional Resource Model

  19. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  20. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG...

  1. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG...

  2. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  3. United Oil Company | Open Energy Information

    Open Energy Info (EERE)

    Oil Company Jump to: navigation, search Name: United Oil Company Place: Pittsburgh, Pennsylvania Product: Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA...

  4. United States Fuel Resiliency: US Fuels Supply Infrastructure

    Broader source: Energy.gov [DOE]

    Report: United States Fuel Resiliency – U.S. Fuels Supply Infrastructure Study: (1) Infrastructure Characterization; (II) Vulnerability to Natural and Physical Threats; and (III) Vulnerability and Resilience This report assesses the U.S. fuels supply transportation, storage, and distribution (TS&D) infrastructure, its vulnerabilities (natural and physical threats), and its resiliency. The analysis employs a region-by-region perspective of U.S. fuels supply infrastructure, mirroring the Petroleum Administration for Defense Districts (PADDs) system that underpins liquid fuels commerce. The report also assesses the TS&D networks for crude oil and condensates, petroleum products (gasoline, diesel, natural gas liquids, biofuels, and natural gas. Key findings include:

  5. Fuel Oil and Kerosene Sales 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Oil and Kerosene Sales 2014 December 2015 Independent ... DC 20585 U.S. Energy Information Administration | Fuel ... An energy-consuming sector that consists of electricity only ...

  6. Oil Shale and Other Unconventional Fuels Activities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on ...

  7. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Relative Standard Errors for Table 5.7;" " Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG...

  8. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for...

  9. Fuel oil and kerosene sales 1997

    SciTech Connect (OSTI)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  10. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands | Department

    Energy Savers [EERE]

    of Energy Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development PDF icon Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development More Documents & Publications Oil Shale RD&D Leases in the United States National Strategic Unconventional Resource Model Oil Shale

  11. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  12. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal"...

  13. Fuel oil and kerosene sales 1996

    SciTech Connect (OSTI)

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  14. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect (OSTI)

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  15. ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know" ,,,"Total United States" ...

  16. ,,,,"Reasons that Made Residual Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know" ,,,"Total United States" ...

  17. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  18. Adjusted Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2

  19. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  20. Table 10.25 Reasons that Made Residual Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Reasons that Made Residual Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Residual Fuel Oil Unswitchable ResiduaCapable of Using Adversely Affects Alternative Environmental Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  1. Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  2. Fuel oil and kerosene sales 1995

    SciTech Connect (OSTI)

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  3. Fuel oil and kerosene sales 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  4. Fuel oil and kerosene sales 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-03

    This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  5. Fuel Oil and Kerosene Sales 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    national level are provided in summary tables. For Fuel Oil and Kerosene Sales on the Internet, access EIA's home page at http:www.eia.doe.gov. Internet Addresses: E-Mail:...

  6. Fuel oil and kerosene sales 1994

    SciTech Connect (OSTI)

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  7. Oil Shale and Other Unconventional Fuels Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reserves » Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. It is generally agreed that worldwide petroleum supply will eventually reach its productive limit, peak, and begin a

  8. Table 4b. Relative Standard Errors for Total Fuel Oil Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil...

  9. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion...

  10. Fuel Oil and Kerosene Sales - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    See All Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2014 | Release ... EIA is considering changes to the survey Form EIA-821, "Annual Fuel Oil and Kerosene Sales ...

  11. Response of Oil Sands Derived Fuels in Diesel HCCI Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Response of Oil Sands Derived Fuels in Diesel HCCI Operation Response of Oil Sands Derived Fuels in Diesel HCCI Operation Presentation given at the 2007 Diesel Engine-Efficiency & ...

  12. ,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales ... "Back to Contents","Data 1: Residual Fuel Oil Sales to End Users Refiner Sales Volumes" ...

  13. U.S. Residual Fuel Oil Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes ...

  14. Fuel oil and kerosene sales, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

  15. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  16. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  17. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  18. Process for Converting Algal Oil to Alternative Aviation Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process for Converting Algal Oil to Alternative Aviation Fuel Los Alamos National Laboratory Contact LANL About This Technology The conversion process uses a Kolbe-based method of...

  19. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  20. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  1. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  2. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  3. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  4. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  5. Verifying a Simplified Fuel Oil Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, Hugh; Dentz, Jordan; Doty, Chris

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  6. Distillate Fuel Oil Assessment for Winter 1996-1997

    Reports and Publications (EIA)

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  7. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect (OSTI)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  8. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  9. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  10. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the fascinating things of my job is contemplating questions like: What will the future energy mix look like? This is difficult to predict but it is fair to argue that oil will...

  11. ,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4...

    U.S. Energy Information Administration (EIA) Indexed Site

    Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","102015","1151983" ,"Release Date:","142016" ,"Next Release Date:","212016" ,"Excel File...

  12. Miscible, multi-component, diesel fuels and methods of bio-oil transformation

    DOE Patents [OSTI]

    Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

    2010-10-26

    Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

  13. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis...

  14. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis ...

  15. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect (OSTI)

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  16. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and

  17. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and

  18. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and

  19. ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Distillate",,,"and" "Code(a)","Subsector and

  20. ?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  1. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  2. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  3. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  4. Total Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 6,908,028 7,233,765 6,358,120 6,022,115 5,283,350 4,919,255 1984-2014 East Coast (PADD 1) 2,972,575 2,994,245 2,397,932 2,019,294 1,839,237 1,724,167 1984-2014 New England (PADD 1A) 281,895

  5. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  6. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu

  7. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  8. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  9. Experimental plan for the fuel-oil study

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  10. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  11. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis Developed jointly by Da Vinci Emissions Services Ltd., Cummins Inc., and Oak Ridge National Laboratory (ORNL), the Da Vinci Fuel-in-Oil (DAFIO(tm)) technology uses a fiber optic probe to obtain real-time measurements of oil in an operating engine to quantify the fuel dissolved in the lubricant

  12. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 245 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  13. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  14. Gross Input to Atmospheric Crude Oil Distillation Units

    Gasoline and Diesel Fuel Update (EIA)

    Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 17,178 16,963 16,394 15,690 16,673 16,848 1985-2015 PADD 1 1,192 1,196 1,063 1,133 1,190 1,136 1985-2015 East

  15. United States Fuel Resiliency Volume II U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Resiliency Volume II U.S. Fuels Supply Infrastructure Vulnerability to Natural and Physical Threats FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. . Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes

  16. Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel

    DOE Patents [OSTI]

    Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

    2010-11-23

    Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

  17. Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations Using a Davison Circulating Riser (DCR) 2.4.2.402 March 25, 2015 Bio-Oil Technology Area Alan Zacher Pacific ...

  18. U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales

    Gasoline and Diesel Fuel Update (EIA)

    Volumes Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Residual Fuel Oil 8,310.7 9,142.9 8,143.0 8,165.8 8,005.5 8,734.3 1983-2015 Sulfur Less Than or Equal to 1% 1,211.0 721.8 899.6 1,177.6 1,165.0 557.6 1983-2015 Sulfur Greater Than 1% 7,099.7 8,421.2 7,243.4 6,988.2 6,840.5 8,176.7 1983-2015 No. 4 Fuel Oil 163.2 141.9 141.3 W W 128.8 1983-2015

  19. U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales

    Gasoline and Diesel Fuel Update (EIA)

    Volumes Sales Type: Sales to End Users Sales for Resale Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Residual Fuel Oil 3,594.0 4,309.7 4,546.1 3,741.4 4,403.1 3,994.1 1983-2015 Sulfur Less Than or Equal to 1% W W W NA W W 1983-2015 Sulfur Greater Than 1% W W W 2,878.7 W W 1983-2015 No. 4 Fuel Oil W W W - - -

  20. Examining new fuel economy standards for the United States.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-01-01

    After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

  1. EERE Success Story-Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions,

    Office of Environmental Management (EM)

    Wins R&D 100 Award | Department of Energy Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award EERE Success Story-Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis Developed jointly by Da Vinci Emissions Services Ltd., Cummins Inc., and Oak Ridge National Laboratory (ORNL), the Da Vinci Fuel-in-Oil (DAFIO(tm)) technology uses a fiber optic probe to obtain real-time measurements of oil in an operating engine to

  2. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  3. ,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","12/2015","1/15/1983" ,"Release Date:","3/1/2016" ,"Next Release

  4. Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dwellings Electric Vehicle Charging for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Delicious Rank

  5. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ,"

  6. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  7. U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Volumes 9,792.0 10,714.0 12,200.6 8,833.1 9,020.9 8,044.4 1983-2014 Sulfur Less Than or Equal to 1% 2,860.6 2,583.8 3,410.3 2,073.8 2,296.2 2,427.5 1983-2014 Sulfur Greater Than 1% 6,931.4 8,130.3 8,790.3 6,759.3 6,724.7 5,616.9 1983-2014 No. 4 Fuel Oil 121.3 W 103.7 W 104.8 100.8

  8. U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Volumes 8,544.1 7,556.6 6,422.8 5,516.8 5,179.4 4,602.6 1983-2014 Sulfur Less Than or Equal to 1% 2,810.5 2,357.5 1,936.9 1,485.9 1,258.0 1,012.3 1983-2014 Sulfur Greater Than 1% 5,733.6 5,199.1 4,485.9 4,030.9 3,921.5 3,590.4 1983-2014 No. 4 Fuel Oil W W W W W W

  9. United States Fuel Resiliency Volume I U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Volume I U.S. Fuels Supply Infrastructure Infrastructure Characterization FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes any legal liability or

  10. United States Fuel Resiliency Volume III U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Volume III U.S. Fuels Supply Infrastructure Vulnerabilities and Resiliency FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes any legal liability or

  11. Utilization of refuse derived fuels by the United States Navy

    SciTech Connect (OSTI)

    Lehr, D.L.

    1983-07-01

    The Resource Conservation and Recovery Act and the Safe Drinking Water Act are forcing those in charge of landfills to adhere to more stringent operating standards. This, along with the growing scarcity of landfill availability, makes the use of landfills less desirable for solid waste disposal. As such, new disposal methods that are environmentally safe and economically practical must be found. One alternative, that is not really new but which has gained renewed interest, is incineration. The Resource Conservation and Recovery Act also requires that government agencies should direct their installations to recover as many resources as possible. Therefore if incineration is to be implemented, heat recovery should be incorporated into the system. There are several processes available to convert raw refuse into a fuel for use in a heat recovery system. Refuse derived fuels (RDF) can be in the form of raw refuse, densified refuse, powdered refuse, gas, or pyrolytic oil. The only form of RDF that is economically feasible for systems designed to process less than 200 TPD (tons per day) is raw refuse. Most Navy bases generate far less than 200 TPD of solid waste and therefore the Navy has focused most of its attention on modular heat recovery incinerator (HRI) systems that utilize raw refuse as fuel.

  12. Improved encapsulated fuel unit and method of forming same

    DOE Patents [OSTI]

    Groh, E.F.; Cassidy, D.A.; Lewandowski, E.

    1982-09-07

    This invention teaches an encapsulated fuel unit for a nuclear reactor, such as for an enriched uranium fuel plate of thin cross section of the order of 1/64 or 1/8 of an inch and otherwise of rectangular shape 1 to 2 inches wide and 2 to 4 inches long. The case is formed from (a) two similar channel-shaped half sections extended lengthwise of the elongated plate and having side edges butted and welded together to define an open ended tube-like structure and from (b) porous end caps welded across the open ends of the tube-like structure. The half sections are preferably of stainless steel between 0.002 and 0.01 of an inch thick, and are beam welded together over and within machined and hardened tool steel chill blocks. The porous end caps preferably are of T-316-L stainless steel having pores of approximately 3 to 10 microns size.

  13. Encapsulated fuel unit and method of forming same

    DOE Patents [OSTI]

    Groh, Edward F. (Naperville, IL); Cassidy, Dale A. (Valparaiso, IN); Lewandowski, Edward F. (Westmont, IL)

    1985-01-01

    This invention teaches an encapsulated fuel unit for a nuclear reactor, such as for an enriched uranium fuel plate of thin cross section of the order of 1/64 or 1/8 of an inch and otherwise of rectangular shape 1-2 inches wide and 2-4 inches long. The case is formed from (a) two similar channel-shaped half sections extended lengthwise of the elongated plate and having side edges butted and welded together to define an open ended tube-like structure and from (b) porous end caps welded across the open ends of the tube-like structure. The half sections are preferably of stainless steel between 0.002 and 0.01 of an inch thick, and are beam welded together over and within machined and hardened tool steel chill blocks. The porous end caps preferably are of T-316-L stainless steel having pores of approximately 3-10 microns size.

  14. Conversion of crop seed oils to jet fuel and associated methods

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Petkovic, Lucia M.; Thompson, David N.

    2010-05-18

    Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.

  15. EERE Success Story-Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-in-Oil (DAFIO(tm)) technology uses a fiber optic probe to obtain real-time ... National Laboratory Optimizes Carbon Fiber Production, Reduces Carbon Fiber Costs by ...

  16. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  17. RECS Fuel Oil Usage Form_v1 (Draft).xps

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

  18. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  19. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    45.5 49.2 W W 44.5 45.4 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  20. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. RECS Fuel Oil Usage Form_v1 (Draft).xps

    Gasoline and Diesel Fuel Update (EIA)

    fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / /

  2. Used oil and its regulation in the United States. Master's thesis

    SciTech Connect (OSTI)

    Ledbetter, G.H.

    1988-09-30

    The Environmental Protection Agency (EPA) took the first significant steps toward the federal regulation of waste and used oil by: (1) promulgating the final rule for the Burning of Waste Fuel and Used Oil Fuel in Boilers and Industrial Furnaces; (2) proposing a rule to establish standards for used oil which is recycled; and (3) proposing a rule to amend the regulations for hazardous waste management under Subtitle C of the Resource Conservation and Recovery Act (hereafter referred to as RCRA) by listing used oil as a hazardous waste. These efforts by EPA are particularly interesting because of both the nature of the prodding from Congress it took to obtain EPA action and the unprecedented volume, degree, and breadth of public opposition these actions generated once taken.

  3. New Technology for Hydroprocessing Bio-oils to Fuels Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalytic Upgrading of Biomass Pyrolysis Oils In A.V. Bridgwater (Ed.), Research in Thermochemical Biomass Conversion (p 893). Netherlands: Springer. Quad Chart Overview 3 Award: ...

  4. Oil spill response capabilities in the United States

    SciTech Connect (OSTI)

    Westermeyer, W.E. )

    1991-02-01

    The Exxon Valdez incident has been a catalyst for the US to reexamine its technology and policies for fighting oil spills. Many organizations are now at work on the problems highlighted by this sill, including federal and state agencies and the oil industry. It is hoped that the attention generated by the Exxon Valdez will result in fewer spills and a greatly improved capability to fight the ones that will still occur. Cleaning up a discharge of millions of gallons of oil at sea under even moderate environmental conditions is an extraordinary problem. Current national capabilities to respond effectively to such an accident are marginal at best. Response technologies must and will improve, but in addition and perhaps more importantly, many improvements can be made in the way the country has organized itself to fight major spills. Nonetheless, prevention is still the best medicine.

  5. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect (OSTI)

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  6. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  7. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  8. Sandia Energy - Portable Hydrogen Fuel-Cell Unit to Provide Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port Home Infrastructure Security Energy Surety Energy Transportation Energy Facilities Partnership...

  9. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural

  10. Oil Shale RD&D Leases in the United States | Department of Energy

    Energy Savers [EERE]

    RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending

  11. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  12. Economics of on-farm production and use of vegetable oils for fuel

    SciTech Connect (OSTI)

    McIntosh, C.S.; Withers, R.V.; Smith, S.M.

    1982-01-01

    The technology of oilseed processing, on a small scale, is much simpler than that for ethanol production. This, coupled with the fact that most energy intensive farm operations use diesel powered equipment, has created substantial interest in vegetable oils as an alternative source of liquid fuel for agriculture. The purpose of this study was to estimate the impact on gross margins resulting from vegetable oil production and utilization in two case study areas, Latah and Power Counties, in Iadho. The results indicate that winter rape oil became a feasible alternative to diesel when the price of diesel reached $0.84 per liter in the Latah County model. A diesel price of $0.85 per liter was required in the Power County model before it became feasible to produce sunflower oil for fuel. 5 tables.

  13. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  14. ,"New Mexico Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales of Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel

  15. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  16. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2014,"6/30/1984" ,"Release Date:","12/22/2015" ,"Next Release Date:","Last Week of November 2016" ,"Excel File

  17. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect (OSTI)

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  18. More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports on the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.

  19. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect (OSTI)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170C and 405C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  20. CONFIRMATORY SURVEY OF THE FUEL OIL TANK AREA HUMBOLDT BAY POWER PLANT EUREKA, CALIFORNIA

    SciTech Connect (OSTI)

    WADE C. ADAMS

    2012-04-09

    During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

  1. Table 5.15 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons)

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons) Year Distillate Fuel Oil Residential Commercial Industrial Oil Company Farm Electric Power 1 Railroad Vessel Bunkering On-Highway Diesel Military Off-Highway Diesel Other Total 1984 8,215,722 5,538,184 2,555,898 848,083 3,201,600 648,665 2,944,694 1,763,782 16,797,423 700,788 1,756,077 700,864 45,671,779 1985 7,728,057 4,463,226 2,440,661 684,227 3,102,106 523,010 2,786,479 1,698,985 17,279,650 661,644 1,522,041 168,625 43,058,711 1986

  2. Method to upgrade bio-oils to fuel and bio-crude

    DOE Patents [OSTI]

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  3. The united kingdom's changing requirements for spent fuel storage

    SciTech Connect (OSTI)

    Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N.

    2013-07-01

    The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK.

  4. Fuel cell repeater unit including frame and separator plate

    DOE Patents [OSTI]

    Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

    2013-11-05

    An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

  5. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 1 U.S. DEPARTMENT OF ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    DC 20585 OMB No. 1905-0174 Expiration Date: 09/30/2017 Version No.: 2015.01 FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT INSTRUCTIONS 1. QUESTIONS? If you have any questions about Form EIA-821 after reading the instructions, please call our toll-free number 1-800-638- 8812. 2. PURPOSE The U.S. Energy Information Administration (EIA) Form EIA- 821, "Annual Fuel Oil and Kerosene Sales Report," is used to collect annual data on the sales of distillate and residual fuel oils,

  6. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 1 U.S. DEPARTMENT OF ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    D. C. 20585 OMB No. 1905-0174 Expiration Date: 09/30/2017 Version No.: 2016.01 FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT INSTRUCTIONS 1. QUESTIONS? If you have any questions about Form EIA-821 after reading the instructions, please call our toll-free number 1-800-638- 8812. 2. PURPOSE The U.S. Energy Information Administration (EIA) Form EIA- 821, "Annual Fuel Oil and Kerosene Sales Report," is used to collect annual data on the sales of distillate and residual fuel oils,

  7. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect (OSTI)

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  8. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003" ,"All Buildings*",,"Total Energy Consumption (trillion Btu)" ,"Number of Buildings (thousand)","Floorspace...

  9. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  10. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  11. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  12. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect (OSTI)

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for installation labor and materials, and $627 for overhead and management), and the benefit-to-cost ratio was 1.48. A general trend toward higher-than-average fuel-oil savings was observed in houses with high pre-weatherization fuel-oil consumption. Program savings could likely be increased by targeting higher energy consumers for weatherization, although equity issues would have to be considered. Weatherization measures associated with higher-than-average savings were use of a blower door for air-sealing, attic and wall insulation, and replacement space-heating systems. Space-heating system tune-ups were not particularly effective at improving the steady-state efficiency of systems, although other benefits such as improved seasonal efficiency, and system safety and reliability may have resulted. The Program should investigate methods of improving the selection and/or application of space-heating system tune-ups and actively promote improved tune-up procedures that have been developed as a primary technology transfer activity. Houses were more air-tight following weatherization, but still leakier than what is achievable. Additional technology transfer effort is recommended to increase the use of blower doors considering that only half the weatherized houses used a blower door during air sealing. A guidebook developed by a committee of experts and covering a full range of blower-door topics might be a useful technology transfer and training document. Weatherization appeared to make occupants feel better about their house and house environment.

  13. AEO Early Release 2013 - oil

    Gasoline and Diesel Fuel Update (EIA)

    Growing U.S. oil output and rising vehicle fuel economy to cut U.S. reliance on foreign oil The United States is expected to continue cutting its dependence on petroleum and liquid fuels imports over the rest of this decade because of growing domestic crude oil production and more fuel-efficient vehicles on America's highways. The new long-term outlook from the U.S. Energy Information Administration shows America's dependence on imported petroleum and liquid fuels will decline from 45 percent of

  14. New Mexico Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    09,709 554,352 574,557 608,490 621,430 669,923 1984-2014 Residential 55 46 37 27 72 53 1984-2014 Commercial 11,030 9,435 9,609 9,145 9,112 12,114 1984-2014 Industrial 33,804 24,429 27,110 31,316 32,029 32,917 1984-2014 Oil Company 9,871 1,705 2,127 5,857 11,218 27,016 1984-2014 Farm 11,278 14,821 10,955 12,816 15,784 11,752 1984-2014 Electric Power 4,321 4,000 1,689 5,155 4,816 3,826 1984-2014 Railroad 245 1,780 1,707 19,123 38,543 45,446 1984-2014 Vessel Bunkering 0 0 0 0 0 0 1984-2014

  15. Alabama Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    987,571 1,038,133 1,094,359 1,132,711 1,047,981 1,027,777 1984-2014 Residential 3,971 4,895 432 750 639 722 1984-2014 Commercial 39,802 46,009 48,475 46,654 30,536 27,874 1984-2014 Industrial 90,659 77,542 81,120 120,347 77,119 65,322 1984-2014 Oil Company 0 328 1,035 2,640 2,929 2,985 1984-2014 Farm 17,882 19,881 24,518 24,503 24,651 20,459 1984-2014 Electric Power 8,276 10,372 22,490 9,375 6,514 10,071 1984-2014 Railroad 44,546 42,465 97,177 125,439 63,570 56,873 1984-2014 Vessel Bunkering

  16. Texas Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    ,329,790 5,693,270 6,373,078 6,688,629 6,914,481 7,837,118 1984-2014 Residential 67 28 127 102 16 59 1984-2014 Commercial 136,419 100,886 184,312 173,303 142,268 132,601 1984-2014 Industrial 189,981 197,024 233,292 241,601 240,179 270,760 1984-2014 Oil Company 210,865 316,523 541,640 736,186 679,737 886,957 1984-2014 Farm 201,769 207,183 243,170 216,915 190,572 222,849 1984-2014 Electric Power 19,495 15,646 23,156 20,022 20,706 24,700 1984-2014 Railroad 429,026 467,128 498,006 483,096 504,823

  17. Florida Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    840,100 2,027,012 1,914,621 1,918,039 2,023,650 2,038,923 1984-2014 Residential 1,551 1,820 1,085 572 451 728 1984-2014 Commercial 126,292 113,313 100,791 104,860 113,873 110,082 1984-2014 Industrial 36,512 43,088 35,652 32,087 31,458 42,894 1984-2014 Oil Company 236 2,255 4,038 4,359 4,427 3,802 1984-2014 Farm 86,642 204,866 109,177 103,325 122,563 98,418 1984-2014 Electric Power 31,161 43,675 35,577 16,137 16,244 12,182 1984-2014 Railroad 33,651 42,353 46,461 66,711 93,844 92,435 1984-2014

  18. Louisiana Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  19. Mississippi Sales of Distillate Fuel Oil by End Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  20. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  1. High temperature solid oxide fuel cell: Customer test units

    SciTech Connect (OSTI)

    Ray, E.R.; Veyo, S.E.

    1993-11-01

    There are three 25-kW class SOFC customer test unit programs; two are in Japan (utility joint ventures), one for Southern California Edison Co. The two in Japan are described: Startup, testing, modifications, and operational performance are discussed.

  2. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  3. East Coast (PADD 1) Distillate Fuel Oil Imports

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History All Countries 104 104 76 92 133 130 1981-2015 Persian Gulf 1995-2015 OPEC* 10 1993-2015 Algeria 1994-2010 Angola 1995-2003 Kuwait 1995-2012 Libya 2013-2013 Nigeria 10 1993-2015 Qatar 1995-2015 Saudi Arabia 1995-2015 United Arab Emirates 1995-2014 Venezuela 1993-2014 Non OPEC* 104 104 76 92 133 120 1993-2015 Argentina 1995-2015 Aruba 2005-2012 Bahamas 1994-2014 Bahrain 1995-2007 Belarus 2006-2009 Belgium 1995-2015 Brazil 1994-2014 Cameroon

  4. United States Fuel Resiliency Volume II U.S. Fuels Supply Infrastructu...

    Broader source: Energy.gov (indexed) [DOE]

    ... to 2005) NOAA has recorded several small earthquake generated tsunamis in ... their fuels while hydroelectric plants rely on sustained water levels to generate electricity. ...

  5. Experimental plan for the fuel-oil study. Weatherization Assistance Program: Volume 2

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  6. Study of the competitive viability of minority fuel oil marketers. Final report

    SciTech Connect (OSTI)

    1981-09-30

    Previous studies on the competitive viability of the fuel oil heating market had addressed some of the unique problems facing minority fuel oil marketers (MFMs) within the total market sector (TMS). This study focused on identifying and developing quantitative information on MFMs in the TMS. The specific objective was to determine whether the business problems experienced by MFMs were directly related to their minority status or were characterstic of any firm in the TMS operating under comparable conditions. As an overall conclusion, thorough investigation of the MFMs considered to constitute the universe of minoriy firms within the TMS did not reveal any evidence of overt discrimination affecting the competitive viability of MFMs. Upon analysis, the problems reported by MFMs could not be reasonably ascribed to discrimination on the basis of their minority business status. The study, however, did point up problems unique to MFMs as the result of typical operational and financial characteristics. For example, MFMs, compared to the TMS norm, have not been in the market as long and are smaller in terms of total assets, number of employees, number of trucks, number of accounts and annual volume of oil delivered. Their primary customers are low-income families in urban areas. Financial indicators suggest that the average MFM does not have long-term financial stability. The basis for this overall conclusion, derived by analyses of information from MFMs, as well as many independent sources, is summarized in three parts: (1) MFM industry profile; (2) financial analyses; and (3) problem analyses.

  7. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect (OSTI)

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC???????¢????????????????s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot???????¢????????????????s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5% of the injected CO2 was stored at the Bald Unit Field after nine months of post-CO2 injection monitoring. Project improved oil recovery (IOR) was estimated at 412 m3 (2,590 bbl) and CO2 EOR as 325 m3 (2,045 bbl), although estimation of an EOR baseline was difficult because recovery was also increased by preproject well work. These figures would have been higher if not for variations in oil production rate due to winter weather. Oil production rates did not return to preshut-in level after the lengthy winter injection hiatuses, but remained elevated relative to production rates immediately before the pilot. The pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model of the Clore sandstone to project the EOR potential of a larger-scale project at the Bald Unit. A model calibrated to field data (including geologic data and oil and water production) was used to assess the full-field EOR potential of the Field. Projections based on these models indicated that full-field CO2 injection for 20 years could have 12% oil recovery or 27,000 scm (170,000 stb) with a CO2 net utilization of 4,900 scm/scm (31,000 scf/stb). The potential CO2 storage is estimated to be 193,600 to 277,450 tonnes (213,000 to 305,200 tons).

  8. D1 Fuel Crops Ltd | Open Energy Information

    Open Energy Info (EERE)

    D1 Fuel Crops Ltd Jump to: navigation, search Name: D1 Fuel Crops Ltd Place: London, United Kingdom Zip: SE1 2RE Product: London-based JV between BP and D1 oils focusing on the...

  9. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOE Patents [OSTI]

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  10. Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

  11. Methods of refining natural oils, and methods of producing fuel compositions

    DOE Patents [OSTI]

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  12. Methods of refining natural oils and methods of producing fuel compositions

    DOE Patents [OSTI]

    Firth, Bruce E; Kirk, Sharon E; Gavaskar, Vasudeo S

    2015-11-04

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent selected from the group consisting of phosphorous acid, phosphinic acid, and a combination thereof; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  13. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  14. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2014,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2014,"6/30/1984" ,"Data

  15. ,"U.S. Residual Fuel Oil Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","12/2015","1/15/1983" ,"Release Date:","3/1/2016" ,"Next Release Date:","4/1/2016" ,"Excel File

  16. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-15

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  17. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  18. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect (OSTI)

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphis next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  19. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  20. Fuel cell collaboration in the United States. A report to the Danish Partnership for Hydrogen and Fuel Cells

    SciTech Connect (OSTI)

    Not Available

    2011-08-15

    The purpose of this report is to provide members of the Danish Partnership for Hydrogen and Fuel Cells with information regarding collaborative opportunities in the United States. The report is designed to provide an overview of key issues and activities and to provide guidance on strategies for finding U.S. research and commercial partners and gaining access to the U.S. market. Section 1 of this report provides an overview of the key drivers of policy at the federal and state government levels regarding hydrogen and fuel cell technologies and provides a perspective of the U.S. industry and key players. It also suggests three general pathways for accessing U.S. opportunities: enhancing visibility; developing vendor relationships; and establishing a formal presence in the U.S. The next sections summarize focus areas for commercial and research activity that currently are of the greatest interest in the U.S. Section 2 describes major programs within the federal government and national laboratories, and discusses various methods for identifying R and D funding opportunities, with an overview of federal acquisition regulations. Section 3 reviews the efforts of several state governments engaging the fuel cell industry as an economic driver and presents an overview of acquisition at the state level. Section 4 discusses university research and development (R and D) and university-industry partnerships. There are 12 appendices attached to the report. These appendices provide more detailed information regarding the key federal government agencies involved in fuel cells and hydrogen, state-specific policies and activities, national laboratories and universities, and other information regarding the fuel cell and hydrogen industry in the U.S. (Author)

  1. Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor

    DOE Patents [OSTI]

    Kelley; Dana A. (New Milford, CT), Farooque; Mohammad (Danbury, CT), Davis; Keith (Southbury, CT)

    2007-10-02

    A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.

  2. MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit 4

    SciTech Connect (OSTI)

    Carbajo, Juan J

    2012-01-01

    Unit 4 of the Fukushima Dai-ichi Nuclear Power Plant suffered a hydrogen explosion at 6:00 am on March 15, 2011, exactly 3.64 days after the earthquake hit the plant and the off-site power was lost. The earthquake occurred on March 11 at 2:47 pm. Since the reactor of this Unit 4 was defueled on November 29, 2010, and all its fuel was stored in the spent fuel pool (SFP4), it was first believed that the explosion was caused by hydrogen generated by the spent fuel, in particular, by the recently discharged core. The hypothetical scenario was: power was lost, cooling to the SFP4 water was lost, pool water heated/boiled, water level decreased, fuel was uncovered, hot Zircaloy reacted with steam, hydrogen was generated and accumulated above the pool, and the explosion occurred. Recent analyses of the radioisotopes present in the water of the SFP4 and underwater video indicated that this scenario did not occur - the fuel in this pool was not damaged and was never uncovered the hydrogen of the explosion was apparently generated in Unit 3 and transported through exhaust ducts that shared the same chimney with Unit 4. This paper will try to answer the following questions: Could that hypothetical scenario in the SFP4 had occurred? Could the spent fuel in the SPF4 generate enough hydrogen to produce the explosion that occurred 3.64 days after the earthquake? Given the magnitude of the explosion, it was estimated that at least 150 kg of hydrogen had to be generated. As part of the investigations of this accident, MELCOR models of the SFP4 were prepared and a series of calculations were completed. The latest version of MELCOR, version 2.1 (Ref. 1), was employed in these calculations. The spent fuel pool option for BWR fuel was selected in MELCOR. The MELCOR model of the SFP4 consists of a total of 1535 fuel assemblies out of which 548 assemblies are from the core defueled on Nov. 29, 2010, 783 assemblies are older assemblies, and 204 are new/fresh assemblies. The total decay heat of the fuel in the pool was, at the time of the accident, 2.284 MWt, of which 1.872 MWt were from the 548 assemblies of the last core discharged and 0.412 MWt were from the older 783 assemblies. These decay heat values were calculated at Oak Ridge National Laboratory using the ORIGEN2.2 code (Ref. 2) - they agree with values reported elsewhere (Ref. 3). The pool dimensions are 9.9 m x 12.2 m x 11.8 m (height), and with the water level at 11.5 m, the pool volume is 1389 m3, of which only 1240 m3 is water, as some volume is taken by the fuel and by the fuel racks. The initial water temperature of the SFP4 was assumed to be 301 K. The fuel racks are made of an aluminum alloy but are modeled in MELCOR with stainless steel and B4C. MELCOR calculations were completed for different initial water levels: 11.5 m (pool almost full, water is only 0.3 m below the top rim), 4.4577 m (top of the racks), 4.2 m, and 4.026 m (top of the active fuel). A calculation was also completed for a rapid loss of water due to a leak at the bottom of the pool, with the fuel rapidly uncovered and oxidized in air. Results of these calculations are shown in the enclosed Table I. The calculation with the initial water level at 11.5 m (full pool) takes 11 days for the water to boil down to the top of the fuel racks, 11.5 days for the fuel to be uncovered, 14.65 days to generate 150 kg of hydrogen and 19 days for the pool to be completely dry. The calculation with the initial water level at 4.4577 m, takes 1.1 days to uncover the fuel and 4.17 days to generate 150 kg of hydrogen. The calculation with the initial water level at 4.02 m takes 3.63 days to generate 150 kg of hydrogen this is exactly the time when the actual explosion occurred in Unit 4. Finally, fuel oxidation in air after the pool drained the water in 20 minutes, generates only 10 kg of hydrogen this is because very little steam is available and Zircaloy (Zr) oxidation with the oxygen of the air does not generate hydrogen. MELCOR calculated water levels and hydrogen generated in the SFP4 as a function of time for initial water levels of 4.457 m, 4.2 m and 4.02 m are shown in Figs. 1 and 2. Water levels increase at the beginning due to the expansion of the water during the heat-up from 301 K to 373 K. Boiling occurs after the water temperature reaches 373 K. The total amount of hydrogen generated is ~2000 kg, this amount includes hydrogen generated from Zr, which is the largest amount (~1580 kg), from stainless steel (~360 kg), and from B4C (~60 kg). In theory, it is possible to generate up to 3.4 kg of hydrogen per assembly (from oxidation of Zr in the fuel cladding and box), or a total of 4,525 kg from the hot 1331 assemblies stored in the SFP4. The hydrogen generated from oxidation of steel and B4C will be additional. So the answers to the questions are YES according to these MELCOR calculations, enough hydrogen (150 kg) could be generated in the SFP4 3.64 days after the earthquake to produce ...

  3. Mechanisms of particulate matter formation in spark-ignition engines. 2: Effect of fuel, oil, and catalyst parameters

    SciTech Connect (OSTI)

    Kayes, D.; Hochgreb, S.

    1999-11-15

    A combined experimental and modeling effort was performed in order to understand how particulate matter (PM) is formed in spark-ignition (SI) internal combustion engines. Fuel type and fuel/air ratio strongly affect particle concentrations. PM emissions vary by up to 6 orders of magnitude between fuels at the same fuel/air ratio. Minimum PM concentrations are emitted at a global fuel/air ratio within 10% of stoichiometric, with the exact value depending on the particular fuel. Concentrations can increase by more than 3 orders of magnitude when the fuel/air ratio is either increased or decreased 30% from stoichiometric. Particles derived from oil consumption were found to be between 0 and 40% of the PM concentration for the oils used in the present experiments. Differences in PM emissions with and without the catalytic converter are not statistically significant. Particulate number and mass concentrations plus particle sizes are addressed in this paper, as is the correlation between PM and hydrocarbon (HC) emissions.

  4. Nondestructive techniques for assaying fuel debris in piping at Three Mile Island Unit 2

    SciTech Connect (OSTI)

    Vinjamuri, K.; McIsaac, C.V.; Beller, L.S.; Isaacson, L.; Mandler, J.W.; Hobbins, R.R. Jr.

    1981-11-01

    Four major categories of nondestructive techniques - ultrasonic, passive gamma ray, infrared detection, and remote video examination - have been determined to be feasible for assaying fuel debris in the primary coolant system of the Three Mile Island Unit 2 (TMI-2) Reactor. Passive gamma ray detection is the most suitable technique for the TMI-2 piping; however, further development of this technique is needed for specific application to TMI-2.

  5. Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu Port

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unit to Provide Renewable Power to Honolulu Port - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  6. Table 5.5 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  7. Table 5.7 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18

  8. Table 5.2 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27

  9. Table 5.4 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19

  10. Table 5.6 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733

  11. Table 5.8 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    8 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Demand Residual and LPG and (excluding Coal End Use for Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Total United States TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP

  12. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOE Patents [OSTI]

    McPheeters, Charles C.; Dees, Dennis W.; Myles, Kevin M.

    1999-01-01

    A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.

  13. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOE Patents [OSTI]

    McPheeters, C.C.; Dees, D.W.; Myles, K.M.

    1999-03-16

    A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.

  14. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H.

    1996-12-31

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  15. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H. )

    1996-01-01

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  16. INVENTORY AND DESCRIPTION OF COMMERCIAL REACTOR FUELS WITHIN THE UNITED STATES

    SciTech Connect (OSTI)

    Vinson, D.

    2011-03-31

    There are currently 104 nuclear reactors in 31 states, operated by 51 different utilities. Operation of these reactors generates used fuel assemblies that require storage prior to final disposition. The regulatory framework within the United States (U.S.) allows for the licensing of used nuclear fuel storage facilities for an initial licensing period of up to 40 years with potential for license extensions in 40 years increments. Extended storage, for periods of up to 300 years, is being considered within the U.S. Therefore, there is an emerging need to develop the technical bases to support the licensing for long-term storage. In support of the Research and Development (R&D) activities required to support the technical bases, a comprehensive assessment of the current inventory of used nuclear fuel based upon publicly available resources has been completed that includes the most current projections of used fuel discharges from operating reactors. Negotiations with the nuclear power industry are ongoing concerning the willingness of individual utilities to provide information and material needed to complete the R&D activities required to develop the technical bases for used fuel storage for up to 300 years. This report includes a status of negotiations between DOE and industry in these regards. These negotiations are expected to result in a framework for cooperation between the Department and industry in which industry will provide and specific information on used fuel inventory and the Department will compensate industry for the material required for Research and Development and Testing and Evaluation Facility activities.

  17. Oil and Gas Development in the United States in the Early 1990's

    Reports and Publications (EIA)

    1995-01-01

    An analysis of the growing prominence of smaller energy companies in U.S. oil and natural gas production.

  18. United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004

    Reports and Publications (EIA)

    2006-01-01

    This report discusses the regional and temporal trends in producing and nonproducing crude oil and natural gas reserves using the Energy Information Administration's (EIA) categorization of reserves. The report first focuses on EIA's collection and reporting of crude oil and natural gas reserves data, followed by a discussion of the natural gas reserve trends, and then the crude oil reserve trends.

  19. An evaluation of known remaining oil resources in the United States: Appendix. Volume 10

    SciTech Connect (OSTI)

    1993-11-01

    Volume ten contains the following appendices: overview of improved oil recovery methods which covers enhanced oil recovery methods and advanced secondary recovery methods; the benefits of improved oil recovery, selected data for the analyzed states; and list of TORIS fields and reservoirs.

  20. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established reburning chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  1. Geography of Existing and Potential Alternative Fuel Markets in the United States

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Geography of Existing and Potential Alternative Fuel Markets in the United States Caley Johnson and Dylan Hettinger Technical Report NREL/TP-5400-60891 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  2. Table 3.1 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  3. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  4. Study of trajectories and combustion of fuel-oil droplets in the combustion chamber of a power-plant boiler with the use of a mathematical model

    SciTech Connect (OSTI)

    Enyakin, Yu.P.; Usman, Yu.M.

    1988-03-01

    A mathematical model was developed to permit study of the behavior of fuel-oil droplets in a combustion chamber, and results are presented from a computer calculation performed for the 300-MW model TGMP-314P boiler of a power plant. The program written to perform the calculations was organized so that the first stage would entail calculation of the combustion (vaporization) of a droplet of liquid fuel. The program then provided for a sudden decrease in the mass of the fuel particle, simulating rupture of the coke shell and ejection of some of the liquid. The program then considered the combustion of a hollow coke particle. Physicochemical parameters characteristic of fuel oil M-100 were introduced in the program in the first stage of computations, while parameters characteristic of the coke particle associated with an unburned fuel-oil droplet were included in the second stage.

  5. The Modeling of a Standalone Solid-Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2006-10-27

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module; two heat exchanger modules; and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will benefit design engineers to adjust design parameters to optimize the performance. The modeling results of the heat-up stage of an SOFC APU and the output voltage response to a sudden load change are presented in the paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  6. MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit...

    Office of Scientific and Technical Information (OSTI)

    ALUMINIUM; BOILING; DIMENSIONS; EARTHQUAKES; EXPLOSIONS; FUEL ASSEMBLIES; FUEL RACKS; HYDROGEN; NUCLEAR POWER PLANTS; OXIDATION; OXYGEN; RADIOISOTOPES; REACTOR ACCIDENTS;...

  7. Table 5.1 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  8. Table 5.3 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States 311 - 339 ALL

  9. Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) March 22, 2015 Bio-Oil Technology Area Review Principal Investigator : Zia Abdullah Organization: Battelle Memorial Institute 1 Goal Statement * 1,000 hrs. TOS * H/C product 30% blendable with ASTM petroleum fuels * Compatibility with petroleum refining unit operations * Fast Pyrolysis * In-situ catalytic fast pyrolysis * Ex-situ catalytic fast pyrolysis * Hydropyrolysis * Hydrothermal liquefaction * Solvent liquefaction Addresses all FOA-

  10. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    SciTech Connect (OSTI)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  11. Crude Oil | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCrude Oil content top National Transportation Fuels Model Posted by tmanzan on Oct 3, 2012 in | Comments 0 comments National Transportation Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system represented by the network model (see figure) spans from oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries,

  12. Production and Upgrading of Infrastructure Compatible Bio-Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for stabilization of heavy fuel oil Minimal upgrading for fuel oil blending - ... pathways Home Heating Oil: * Minimal upgrading by hydrotreating using either ...

  13. Table 3.2 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,158 257 12 22 579 6 182 2 99 3112 Grain and Oilseed Milling 350 56 * 1 121 * 126 0 45 311221 Wet Corn Milling 214 25 * * 53 * 110 0 25 31131 Sugar Manufacturing 107 4 1 1 15 * 49 2 36

  14. Table 3.3 Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,148 314 6 53 446 14 25 Q 291 20-49 1,018 297 13 22 381 18 97 5 185 50-99 1,095 305 7 13 440 6 130 9 186 100-249

  15. Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss and Catherine Birney

    2011-05-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: 02-37-08, Cellar & Mud Pit 02-37-09, Cellar & Mud Pit 07-09-01, Mud Pit 09-09-46, U-9itsx20 PS #1A Mud Pit 10-09-01, Mud Pit 12-09-03, Mud Pit 19-09-01, Mud Pits (2) 19-09-03, Mud Pit 19-09-04, Mud Pit 19-25-01, Oil Spill 19-99-06, Waste Spill 20-09-01, Mud Pits (2) 20-09-02, Mud Pit 20-09-03, Mud Pit 20-09-04, Mud Pits (2) 20-09-06, Mud Pit 20-09-07, Mud Pit 20-09-10, Mud Pit 20-25-04, Oil Spills 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: Review the current site conditions, including the concentration and extent of contamination. Implement any corrective actions necessary to protect human health and the environment. Properly dispose of corrective action and investigation wastes. Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.

  16. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2009 2010 2011 2012 2013 2014 View History U.S. 0 0 0 0 0 0 1986-2014 East Coast (PADD 1) 0 0 0 0

  17. Oil atlas: National Petroleum Technology Office activities across the United States

    SciTech Connect (OSTI)

    Tiedemann, H.A.

    1998-03-01

    Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

  18. Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

    SciTech Connect (OSTI)

    Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

    1995-12-31

    A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

  19. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...117,52,8,117,43,"Q","Q" "District Chilled Water ......",50,50,50,21,3,43,50,"Q","Q" ...

  20. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...,1839,5891,2354,"Q","Q" "District Chilled Water ......",2750,2750,2750,1316,749,2354,2750...

  1. Table 4.1 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4

  2. EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow

    Broader source: Energy.gov [DOE]

    The growth of renewable energy and renewable fuels in the United States will be significantly greater under scenarios involving high oil prices and stricter controls on greenhouse gas (GHG) emissions, according to DOE's Energy Information Administration (EIA).

  3. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  4. Postirradiation examination of light water reactor fuel: a United States perspective

    SciTech Connect (OSTI)

    Neimark, L.A.; Ocken, H.

    1980-01-01

    Poolside and hot-cell postirradiation examination (PIE) have played and will continue to play a significant role in the US LWR program. The principal uses of PIE are in fuel surveillance, fuel improvement, and failure analysis programs and in the postmortem analysis of safety-related tests. Institutional problems associated with fuel shipping, waste disposal, and fuel disposal can be expected to pose obstacles to hot-cell examinations and likely result in more sophisticated poolside examinations.

  5. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

  6. Geography of Existing and Potential Alternative Fuel Markets in the United States

    SciTech Connect (OSTI)

    Johnson, C.; Hettinger, D.

    2014-11-01

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  7. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  8. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect (OSTI)

    Forsberg, Charles W.

    2006-07-01

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  9. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    G. G. Hall

    2000-02-01

    This report presents the results of the 1999 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  10. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2002-02-01

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  11. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation (2005)

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  12. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island - Unit 2 Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Gregory G. Hall

    2003-02-01

    This report presents the results of the 2002 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  13. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  14. "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.3 Relative Standard Errors for Table 2.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel

  15. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  16. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  17. Examining the potential for voluntary fuel economy standards in the United States and Canada.

    SciTech Connect (OSTI)

    Plotkin, S.; Greene, D.; Duleep, K.

    2003-03-19

    This report is designed to assist the U.S. Department of Energy, the U.S. government in general, and Natural Resources Canada with understanding the potential for voluntary fuel economy standards designed to increase the fuel economy of the North American fleet of light-duty vehicles (LDVs-passenger cars and light trucks) within a 10-15-year timeframe. The approach of this study has been: First, to examine and evaluate recent fuel economy initiatives taken in Japan and Europe; Second, to review the technologies available to improve fuel economy in the U.S. (and Canadian) fleets, focusing on their costs and fuel economy improvement potential; Third, to identify and broadly evaluate some alternatives to the current U.S. and Canadian Corporate Average Fuel Economy system of specifying uniform fuel economy targets (27.5 mpg for cars, 20.7 mpg for light trucks) for individual companies; and Fourth, to try to determine an approximate level of fuel economy increase and form of company agreements that would be conducive to a voluntary agreement, based on the assumption that an acceptable voluntary standard would impose an equitable burden on each manufacturer and would be approximately cost-effective from consumers' private perspectives.

  18. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  19. Table 4.2 Offsite-Produced Fuel Consumption, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,113 258 12 22 579 5 182 2 54 3112 Grain and Oilseed Milling 346 57 * 1 121 * 126 0 41 311221 Wet Corn Milling 214 26 * * 53 * 110 0 25 31131 Sugar Manufacturing 72 4 1

  20. Table 4.3 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Residual Distillate Natural LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,038 314 6 53 445 14 25 Q 181 20-49 918 296 11 19 381 10 97 5 97 50-99 1,018 308 7 13 440 5 130 6 110

  1. HOW MANY DID YOU SAY? HISTORICAL AND PROJECTED SPENT NUCLEAR FUEL SHIPMENTS IN THE UNITED STATES, 1964 - 2048

    SciTech Connect (OSTI)

    Halstead, Robert J.; Dilger, Fred

    2003-02-27

    No comprehensive, up-to-date, official database exists for spent nuclear fuel shipments in the United States. The authors review the available data sources, and conclude that the absence of such a database can only be rectified by a major research effort, similar to that carried out by Oak Ridge National Laboratory (ORNL) in the early 1990s. Based on a variety of published references, and unpublished data from the U.S. Nuclear Regulatory Commission (NRC), the authors estimate cumulative U.S. shipments of commercial spent fuel for the period 1964-2001. The cumulative estimates include quantity shipped, number of cask-shipments, and shipment-miles, by truck and by rail. The authors review previous estimates of future spent fuel shipments, including contractor reports prepared for the U.S. Department of Energy (DOE), NRC, and the State of Nevada. The DOE Final Environmental Impact Statement (FEIS) for Yucca Mountain includes projections of spent nuclear fuel and high-level radioactive was te shipments for two inventory disposal scenarios (24 years and 38 years) and two national transportation modal scenarios (''mostly legal-weight truck'' and ''mostly rail''). Commercial spent fuel would compromise about 90 percent of the wastes shipped to the repository. The authors estimate potential shipments to Yucca Mountain over 38 years (2010-2048) for the DOE ''mostly legal-weight truck'' and ''mostly rail'' scenarios, and for an alternative modal mix scenario based on current shipping capabilities of the 72 commercial reactor sites. The cumulative estimates of future spent fuel shipments include quantity shipped, number of cask-shipments, and shipment-miles, by legal-weight truck, heavy-haul truck, rail and barge.

  2. Oil shale technology. Final report

    SciTech Connect (OSTI)

    NONE

    1995-03-01

    This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

  3. A practical strategy for reducing the future security risk of United States spent nuclear fuel

    SciTech Connect (OSTI)

    Chodak, P. III; Buksa, J.J.

    1997-06-01

    Depletion calculations show that advanced oxide (AOX) fuels can be used in existing light water reactors (LWRs) to achieve and maintain virtually any desired level of US (US) reactor-grade plutonium (R-Pu) inventory. AOX fuels are composed of a neutronically inert matrix loaded with R-Pu and erbium. A 1/2 core load of 100% nonfertile, 7w% R-Pu AOX and 3.9 w% UO{sub 2} has a net total plutonium ({sup TOT}Pu) destruction rate of 310 kg/yr. The 20% residual {sup TOT}Pu in discharged AOX contains > 55% {sup 242}Pu making it unattractive for nuclear explosive use. A three-phase fuel-cycle development program sequentially loading 60 LWRs with 100% mixed oxide, 50% AOX with a nonfertile component displacing only some of the {sup 238}U, and 50% AOX, which is 100% nonfertile, could reduce the US plutonium inventory to near zero by 2050.

  4. Can industry`s `fourth` fossil fuel establish presence in US?

    SciTech Connect (OSTI)

    Armor, A.F.; Dene, C.E.

    1996-09-01

    After five years of commercial experience burning Orimulsion overseas, US utilities are now evaluating the new fuel as a serious alternative to oil. In their relentless drive to remain competitive, electric utilities with oil-fired generating units are searching for lower cost fuel alternatives. Because of high fuel prices, oil-fired units have low capacity factors. Only 23 out of 142 oil-capable units in the US had capacity factors greater than 50% in 1993; the average was a mere 24%. Utility consumption of fuel oil slid from over 600,000 barrels (bbl)/day in 1989 to less than 200,000 bbl/day last year. Orimulsion now fuels nearly 3,000 MW/yr worldwide. The UK`s PowerGen Ltd, currently the world`s largest consumer of Orimulsion, fires some 10-million bbl/yr at two 500-MW units at its Ince plant and three 120-MW units at its Richborough plant. Both plants formerly burned fuel oil, and have been using Orimulsion since 1991. Canada`s New Brunswick Power Corp has fired Orimulsion in two units at its Dalhousie plant since 1994 (Power, April 1995, p 27); one 105-MW unit was originally designed for fuel oil, the other 212-MW unit was designed for coal. Last year, Denmark`s SK Power converted its coal-fired, 700-MW Asnaes Unit 5 to Orimulsion firing. And in the US, Florida Power and Light Co. (FP and L) has signed a 20-yr fuel supply contract with Bitor America Corp (Boca Raton, Fla.), for two 800-MW units at the oil-fired Manatee plant, contingent on securing necessary permits. The Manatee installation (Power, September 1994, p 57) would be the first in the US to burn the fuel. Today, five years after Orimulsion begun to be used commercially, many of the lingering questions involving the new fuel`s handling, transportation, combustion, emissions control, spill control, and waste utilization have been settled. Several US utilities have expressed serious interest in the fuel as an alternative to oil.

  5. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  6. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  7. Effect of a sudden fuel shortage on freight transport in the United States: an overview

    SciTech Connect (OSTI)

    Hooker, J N

    1980-01-01

    A survey was made of the potential effects of a sudden reduction of fuel supplies on freight transport via truck, rail, water, and pipeline. After a brief discussion of the energy characteristics of each of these modes of transport, short-term strategies for making better use of fuel in a crisis are investigated. Short-term is taken to mean something on the order of six months, and a crisis is taken to be the result of something on the order of a 20% drop in available fuel. Although no succinct or well-established conclusions are drawn, the gist of the paper is that the potential for short-term conservation, without a serious disruption of service, exists but does not appear to be large. It is remarked that it is possible, through further study, to obtain a fairly accurate reckoning of the physical ability of the freight transport network to weather a fuel crisis, but that it is impossible to say in advance what freight carriers will in fact do with the network.

  8. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect (OSTI)

    Krishna, C.R.; McDonald, R.

    2009-05-01

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

  9. Advancing strategic environmental assessment in the offshore oil and gas sector: Lessons from Norway, Canada, and the United Kingdom

    SciTech Connect (OSTI)

    Fidler, Courtney; Noble, Bram

    2012-04-15

    Abstract: Strategic environmental assessment (SEA) for offshore oil and gas planning and development is utilized in select international jurisdictions, but the sector has received limited attention in the SEA literature. While the potential benefits of and rationale for SEA are well argued, there have been few empirical studies of SEA processes for the offshore sector. Hence, little is known about the efficacy of SEA offshore, in particular its influence on planning and development decisions. This paper examines SEA practice and influence in three international offshore systems: Norway, Atlantic Canada and the United Kingdom, with the intent to identify the challenges, lessons and opportunities for advancing SEA in offshore planning and impact assessment. Results demonstrate that SEA can help inform and improve the efficacy and efficiency of project-based assessment in the offshore sector, however weak coordination between higher and lower tiers limit SEA's ability to influence planning and development decisions in a broad regional environmental and socioeconomic context. - Highlights: Black-Right-Pointing-Pointer SEA can inform and improve the efficacy and efficiency of project EA offshore Black-Right-Pointing-Pointer Scope and deliverables of SEA offshore often differ from stakeholder expectations Black-Right-Pointing-Pointer Considerable variability in influence of SEA output beyond licensing decisions Black-Right-Pointing-Pointer Sector-based SEA offshore is often too restrictive to generate expected benefits.

  10. U.S. Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 Residential 4,103,881 3,930,517 3,625,747 3,473,310 3,536,111 3,802,848 1984-2014 Commercial 2,785,246 2,738,304 2,715,335 2,557,543 2,471,897 2,543,778 1984-2014 Industrial 2,159,428 2,045,164 2,179,953 2,325,503 2,271,056 2,417,898 1984-2014 Oil Company 760,877 951,322 1,381,127 1,710,513 1,751,162 2,105,058 1984-2014 Farm 2,660,024 2,928,175 2,942,436 3,031,878 3,026,611 3,209,391 1984-2014 Electric Power 581,386

  11. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway

    SciTech Connect (OSTI)

    Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  12. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    SciTech Connect (OSTI)

    Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K.

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  13. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger Manager, Renewable Energy & Chemicals Development UOP, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information © Copyright 2015 UOP LLC, a Honeywell Company 2 File Number Goal Statement * Demonstrate a technically and economically viable approach for converting

  14. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  15. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  16. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to 2.89 per gallon, based on the residential heating fuel survey by the...

  17. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  18. Department of Energy Helping Americans Find Alternative Fuel Stations |

    Office of Environmental Management (EM)

    Department of Energy Helping Americans Find Alternative Fuel Stations Department of Energy Helping Americans Find Alternative Fuel Stations May 29, 2013 - 2:14pm Addthis Helping Americans explore and adopt alternative energy sources beyond oil and gasoline has become easier. The Department of Energy's (DOE) National Renewable Energy Laboratory and DOE Clean Cities have made it a snap to find the location of alternative fuel stations across the United States by making that information

  19. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential for a renewable heating oil substitution fuel in New England - Agenda Time ... background information on the heating oil industry and their efforts at pyrolysis oil ...

  20. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  1. Global Alternative Fuels | Open Energy Information

    Open Energy Info (EERE)

    Alternative Fuels Jump to: navigation, search Name: Global Alternative Fuels Place: El Paso, Texas Zip: 79922 Product: Global Alternative Fuels processes virgin oils (palm,...

  2. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    DOE Patents [OSTI]

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.

  3. Cost-effectiveness of emission control at fossil-fuel units for different cumulative load patterns

    SciTech Connect (OSTI)

    Roy, S.

    1997-02-01

    This paper describes a method to recommend allocation of generating units, with a view to achieve cost-effective control of particulate and gaseous emissions over an energy scenario. Definition of relative cost and relative emission, with respect to corresponding base-case values, allows one to develop a model that describes cost and emission aspects of the chosen scenario. Optimization of this model, by any appropriate linear-programming software, yields the allocation levels to be recommended. The emphasis of this paper is on the way in which results of the said optimization model reflect the effect of demand patterns on the allocation levels. Depending on the demands, required generation levels from each individual unit may differ. This affects the overall generation cost, and simultaneously the emissions from the thermal units, both relative to respective base values. Since the optimization algorithm attempts to reduce both the relative quantities, its results always reflect the changing generation vs. emission tradeoff for utilities vis-a-vis different demand patterns.

  4. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect (OSTI)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  5. Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  6. Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,162 257 12 23 583 8 182 2 96 * 3112 Grain and Oilseed Milling 355 56 * 1 123 Q

  7. Table 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments Economic Net Residual Distillate LPG and Coke and of Energy Sources Characteristic(a) Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,169 314 6

  8. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  9. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  10. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  11. MECS Fuel Oil Figures

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry...

  12. MECS Fuel Oil Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    202-586-0018 URL: http:www.eia.govemeuconsumptionbriefsmecsmecsfueloiltables.html For questions about content, please contact the National Energy Information Center:...

  13. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This ...

  14. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  15. Winter fuels report, week ending January 4, 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-10

    The Winter Fuels Report is intended to provide concise, timely information on the following: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD), I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  16. Winter fuels report, week ending October 12, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-18

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  17. Winter Fuels Report week ending: November 8, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-14

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's 1, 2, and 3; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  18. Winter fuels report, week ending January 11, 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-17

    The Winter Fuels Report is intended to provide concise, timely information on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/ State Heating Oil and Propane Program; crude oil petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  19. Winter fuels report, week ending November 30, 1990. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1990-12-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cites; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 27 figs., 12 tabs.

  20. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    to account for 91% of the growth in world oil production in 2015 The United States is expected to provide nine out of every 10 barrels of new global oil supplies in 2015. In its new forecast, the U.S. Energy Information Administration said it expects world oil production to rise by 1.3 million barrels per day next year....with U.S. daily oil output alone increasing by 1.2 million barrels. Rising U.S. oil production, along with more fuel-efficient vehicles on America's highways, is expected to

  1. December 2015 Most Viewed Documents for Fossil Fuels | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 213 Bamboo: An Overlooked Biomass Resource? Scurlock, J.M.O. (2000) 159 Practical hot oiling and hot watering for paraffin control Mansure, A.J. [Sandia National Labs., Albuquerque, NM (United States)]; Barker, K.M. [Petrolite Corp. (United States)] (1994) 134 ADVANCED TECHNIQUES FOR RESERVOIR

  2. June 2015 Most Viewed Documents for Fossil Fuels | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Scientific and Technical Information June 2015 Most Viewed Documents for Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 134 Practical hot oiling and hot watering for paraffin control Mansure, A.J. [Sandia National Labs., Albuquerque, NM (United States)]; Barker, K.M. [Petrolite Corp. (United States)] (1994) 94 Fluid Dynamics in Sucker Rod Pumps Cutler, R.P.; Mansure, A.J. (1999) 92

  3. U.S. Crude Oil and Petroleum Products Stocks by Type

    Gasoline and Diesel Fuel Update (EIA)

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils,

  4. Planet Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Jump to: navigation, search Name: Planet Fuels Place: Brighton, United Kingdom Product: A UK based producer and supplier of biodiesel. References: Planet Fuels1 This...

  5. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

  6. Liquid phase Fischer-Tropsch (II) demonstration in the LaPorte Alternative Fuels Development Unit. Volume 1/2, Main Report. Final report

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1995-09-01

    This report presents results from a demonstration of Liquid Phase Fischer-Tropsch (LPFT) technology in DOE`s Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. The run was conducted in a bubble column at the AFDU in May--June 1994. The 10-day run demonstrated a very high level of reactor productivity for LPFT, more than five times the previously demonstrated productivity. The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening as a result of carbon formation on the catalyst. With a cobalt catalyst or an improved iron catalyst, if the carbon formation can be avoided, there is significant room for further improvements. The reactor was operated with 0.7 H{sub 2}/CO synthesis gas in the range of 2400--11700 sl/hr-kg Fe, 175--750 psig and 270--300C. The inlet gas velocity ranged from 0.19 to 0.36 ft/sec. The demonstration was conducted at a pilot scale of 5 T/D. Catalyst activation with CO/N{sub 2} proceeded well. Initial catalyst activity was close to the expectations from the CAER autoclave runs. CO conversion of about 85% was obtained at the baseline condition. The catalyst also showed good water-gas shift activity and a low {alpha}. At high productivity conditions, reactor productivity of 136 grams of HC/hr -- liter of slurry volume was demonstrated, which was within the target of 120--150. However, mass transfer limitations were observed at these conditions. To alleviate these limitations and prevent excessive thickening, the slurry was diluted during the run. This enabled operations under kinetic control later in the run. But, the dilution resulted in lower conversion and reactor productivity. A new reactor internal heat exchanger, installed for high productivity conditions, performed well above design,and the system never limited the performance. The control can expected, the reactor temperature control needed manual intervention. The control can be improved by realigning the utility oil system.

  7. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  8. Refinery Stocks of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils

  9. Alternatives to traditional transportation fuels 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  10. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which assigns a RIN to each gallon of renewable fuel. Entities regulated by RFS include oil refiners, blenders, and gasoline and diesel importers. The volumes required of each...

  11. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to 2.93 per gallon, based on the residential heating fuel survey by the...

  12. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is 2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information...

  13. Qualification of Alternative Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels Qualification of Alternative Fuels Thomas Butcher presentation on May 8, 2012 at the Pyrolysis Oil Workshop on the qualification of alternative fuels. PDF icon pyrolysis_butcher.pdf More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England Biodiesel_Fuel_Management_Best_Practices_Report.pdf Technical Information Exchange on Pyrolysis Oil: Potential for a renewable

  14. United States Energy Information Administration | Open Energy...

    Open Energy Info (EERE)

    and Sumer Fuels Outlook report is a monthly release projecting outlooks for global crude oil and liquid fuels, natural gas, electricity, coal, and carbon dioxide emissions. EIA...

  15. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  16. U.S. oil imports to decline with rising oil production through...

    U.S. Energy Information Administration (EIA) Indexed Site

    oil imports to decline with rising oil production through 2014 The United States will need fewer oil imports over the next two years because of rising U.S. oil production. The new ...

  17. Vehicle Technologies Office: Fuel Efficiency and Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vehicle Technologies Office: Fuel Efficiency and Emissions Vehicle Technologies Office: Fuel Efficiency and Emissions Substantially improving vehicle efficiency has the potential to drastically increase the United States' economic, energy, and environmental security. On-road vehicles account for nearly 60 percent of total U.S. oil consumption and more than a quarter of the country's greenhouse gas emissions, the major contributor to climate change. The Vehicle Technologies Office is

  18. National Transportation Fuels Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCapabilitiesNational Transportation Fuels Model content top National Transportation Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system represented by the network model (see figure) spans from oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries, transmission pipelines, and tank farms) can be disrupted,

  19. Assessment of environmental problems associated with increased enhanced oil recovery in the United States: 1980-2000

    SciTech Connect (OSTI)

    Kaplan, E.; Garrell, M.; Royce, B.; Riedel, E.F.; Sathaye, J.

    1983-01-01

    Water requirements and uncontrolled air emissions from well vents and steam generators were estimated for each technology based upon available literature. Estimates of best air emission control technologies were made using data for EOR steam generators actually in use, as well as control technologies presently available but used by other industries. Amounts of solid wastes were calculated for each air emission control technology. Estimates were also made of the heavy metal content of these solid wastes. The study also included environmental residuals which may be expected should coal be used instead of lean crude to produce steam for thermal EOR. It was concluded that from an environmental prospective tertiary oil is preferable in many respects to shale oil, coal and synfuels. Alternative sources of oil such as syncrude, new exploration, and primary production could cause far more environmental damage than incremental EOR. Future EOR in specific regions may be constrained because of environmental issues: air emissions, solid waste disposal, water availability, and aquifer contaminators. Competition for water and the scarcity of surface water or groundwater which are low in total diminutive solids will impede some EOR projects. Risks of groundwater contamination should be minimized particularly because of requirements of the Environmental Protection Agency's new underground injection control program. A quantitative environmental assessment will require a complete and consistent data base for all fields for which EOR is planned out in which tertiary production is taking place. This is particularly true for EOR which will occur in Alaska or in offshore areas, where environments are fragile and where operating conditions are severe. 147 references, 29 figures, 46 tables.

  20. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  1. Higher U.S. oil production in 2013 and 2014 means lower oil imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Higher crude oil production means America will need less imported oil. U.S. net imports of crude oil and liquid fuels are forecast to drop to 6.0 million barrels per day in 2014, ...

  2. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect (OSTI)

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  3. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

  4. AgriFuel Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: AgriFuel Company Place: Cranford, New Jersey Sector: Biofuels Product: AgriFuel produces and markets biofuels refined from waste vegetable oil,...

  5. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  6. Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Performance of SVO Research has shown that there are sev- eral technical barriers to widespread use of SVO as a vehicle fuel. The published engineering literature strongly indicates that the use of SVO leads to reduced engine life, 1 caused by the buildup of carbon deposits inside the engine and the buildup of SVO in the engine lubricant. These issues are attributable to SVO's high viscosity and high boiling point relative to the required boiling range for diesel fuel. The carbon buildup doesn't

  7. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  8. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  9. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  10. Oil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Oil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our <a href="node/770751">interactive chart</a>. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence

  11. Providential Energy Corp formerly Providential Oil Gas Inc |...

    Open Energy Info (EERE)

    (formerly Providential Oil & Gas Inc) Place: California Sector: Hydro Product: Focused on natural gas and crude oil; expanding into hydropower, fuel cells, and ethanol. References:...

  12. Collaborative Lubricating Oil Study on Emissions (CLOSE) Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLOSE) Project Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Extensive ... to evaluate relative contributions of fuel and lubricating oil on tailpipe emissions. ...

  13. oil1987.xls

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Average Fuel OilKerosene Consumption Expenditures Below Poverty Line 100 Percent 2.0 1.4 ... for 1987. (3) Below 150 percent of poverty line or 60 percent of median State ...

  14. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  15. Technical Information Exchange on Pyrolysis Oil: Potential for a renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heating oil substitution | Department of Energy renewable heating oil substitution Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England. PDF icon pyrolysis_oil_agenda.pdf More Documents & Publications Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil

  16. Memorandum of Understanding between the Department of Energy of the United States of America and the National Company of Radioactive Waste of Spain Concerning Cooperation in the Field of Used Nuclear Fuel and Radioactive Waste Management

    Broader source: Energy.gov [DOE]

    Memorandum of Understanding between the Department of Energy of the United States of America and the National Company of Radioactive Waste of Spain Concerning Cooperation in the Field of Used Nuclear Fuel and Radioactive Waste Management

  17. Total Crude Oil and Petroleum Products Exports

    Gasoline and Diesel Fuel Update (EIA)

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  18. Refinery & Blenders Net Input of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished

  19. Winter fuels report, week ending September 27, 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-10-03

    This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's 1, 2, 3; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 37 figs., 13 tabs.

  20. Winter fuels report, week ending December 14, 1990. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-12-20

    This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 34 figs., 12 tabs.

  1. Winter Fuels Report for the week ending November 2, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-08

    The report is to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADDs) and product supplied on a US level; propane net production, imports and stocks for PADD I, II, and III;natural gas supply and disposition and underground storage for the United States and consumption for all PADDs; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  2. Winter fuels report, week ending November 15, 1991. [CONTAINS GLOSSARY

    SciTech Connect (OSTI)

    Not Available

    1991-11-21

    This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 37 figs., 13 tabs.

  3. Winter fuels report week ending February 1, 1991. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1991-02-07

    This Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) 1, 2 and 3; natural gas supply and disposition and underground storage for the United states and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United states and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  4. Iran Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Name: Iran Oil and Gas Address: Unit 16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. Place:...

  5. Qualification of Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels May 8, 2012 Pyrolysis Oil Workshop Thomas Butcher Sustainable Energy Technologies Department Applications Baseline - Residential and Light Commercial Pressure-atomized burners with 100-150 psi fuel pressure, no fuel heating; Cyclic operation - to 12,000 cycles per year; Fuel filtration to 90 microns or finer; Storage for periods of 1 year, possibly longer; Storage temperature varied; Visible range flame detection for safety; Nitrile seal materials common; Fuels

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  7. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    1998-03-01

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  8. Rheology and stability of SRC residual fuel oils - storage evaluation. SRC-1 quarterly technical report, October-December 1982. Supplement

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    In Air Products ongoing study to characterize the rheology and stability of various SRC residual oils, single-phase blends of 50 wt % HSRC and TSL SRC in 1:1 mixtures of 1st- and 2nd-stage process solvents were subjected to storage stability tests at 150/sup 0/F in nitrogen and air atmospheres. Using viscosity as an indicator, it was observed that the blends studied increased in viscosity with storage time in an air atmosphere; the viscosity increase began after a 4-week storage period. The increase in HSRC blend viscosity was significantly greater than that of the TSL SRC blend. A 60-day air-stored blend will require a pumping temperature about 10/sup 0/F higher than that specified for an unaged blend in order to have the same viscosity. The viscosity increase under nitrogen storage was relatively insignificant. Nitrogen blanketing appears to be important in maintaining the specified viscosity characteristics of the blends during storage in the 150/sup 0/F storage condition tested. A loss of volatiles undoubtedly occurs during high-temperature storage under laboratory conditions. Such losses contribute to an increase in the viscosity of the blend. In commercial practice, volatile losses are expected to be significantly lower. Solvent extraction data and analysis of separated fractions suggest that during storage under the above conditions, some oxidative polymerization of pentane-soluble oil components forms higher molecular weight pentane insolubles (asphaltenes and benzene insolubles). Asphaltenes are also involved in the increase in viscosity and do chemically change. 1 reference, 8 figures, 27 tables.

  9. Fuel Cell Power | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Power Place: United Kingdom Product: Information provider of fuel cells and their supporting infrastructure. References: Fuel Cell Power1 This article is a stub. You...

  10. Alternatives to Traditional Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. References Retrieved from...

  11. RE fuel Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    fuel Technology Ltd Jump to: navigation, search Name: RE-fuel Technology Ltd Place: Wiltshire, United Kingdom Sector: Efficiency Product: RE-Fuel is developing high efficiency...

  12. Summary report : universal fuel processor.

    SciTech Connect (OSTI)

    Coker, Eric Nicholas; Rice, Steven F.; Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M.

    2008-01-01

    The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

  13. Estimated United States Residential Energy Use in 2005

    SciTech Connect (OSTI)

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  14. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation

    SciTech Connect (OSTI)

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; Hu, Jianwei; Ilas, Germina; Haverlock, T. J.; Romano, Catherine E.

    2016-01-01

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via high performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.

  15. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; Hu, Jianwei; Ilas, Germina; Haverlock, T. J.; Romano, Catherine E.

    2016-01-01

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via highmore » performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.« less

  16. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    SciTech Connect (OSTI)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  17. Fuel Additive Strategies for Enhancing the Performance of Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Strategies for Enhancing the Performance of Engines and Engine Oils Fuel Additive Strategies for Enhancing the Performance of Engines and Engine Oils 2003 DEER Conference ...

  18. Oil Sands Feedstocks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sands Feedstocks Oil Sands Feedstocks Presentation given at DEER 2006, August 20-24, 2006, ... Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels The Influence of ...

  19. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  20. Winter Heating Fuels - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane Update Propane stocks - Weekly Petroleum Status Report Heating oil/distillate stocks - Weekly Petroleum Status Report Natural gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural

  1. Winter Heating Fuels - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Winter Heating Fuels Click on the map to view state specific heating fuels data below | click to reset to U.S. values Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane Update Propane stocks - Weekly Petroleum Status Report Heating oil/distillate stocks - Weekly Petroleum Status Report Natural gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural

  2. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the United States to contain a minimum volume of renewable fuels. The RFS originated with the Energy Policy Act of 2005 and was expanded and extended by the Energy Independence and Security Act of 2007 (EISA). The RFS requires renewable fuel to be blended into transportation fuel in increasing amounts each year, escalating to 36 billion

  4. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  5. Our addiction to foreign oil and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addiction to foreign oil and fossil fuels puts our economy, our environment, and ultimately our national security at risk. Furthermore, there is a growing recognition of the...

  6. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2010-07-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 544, Cellars, Mud Pits, and Oil Spills, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 544 comprises the following 20 corrective action sites (CASs) located in Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada Test Site (NTS): 02-37-08, Cellar & Mud Pit 02-37-09, Cellar & Mud Pit 07-09-01, Mud Pit 09-09-46, U-9itsx20 PS #1A Mud Pit 10-09-01, Mud Pit 12-09-03, Mud Pit 19-09-01, Mud Pits (2) 19-09-03, Mud Pit 19-09-04, Mud Pit 19-25-01, Oil Spill 19-99-06, Waste Spill 20-09-01, Mud Pits (2) 20-09-02, Mud Pit 20-09-03, Mud Pit 20-09-04, Mud Pits (2) 20-09-06, Mud Pit 20-09-07, Mud Pit 20-09-10, Mud Pit 20-25-04, Oil Spills 20-25-05, Oil Spills This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 544 using the SAFER process. Using the approach approved for previous mud pit investigations (CAUs 530535), 14 mud pits have been identified that are either a single mud pit or a system of mud pits, are not located in a radiologically posted area, and have no evident biasing factors based on visual inspections. These 14 mud pits are recommended for no further action (NFA), and further field investigations will not be conducted. For the sites that do not meet the previously approved closure criteria, additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation for closure of the remaining CASs in CAU 544. This will be presented in a closure report (CR) that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on April 27, 2010, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 544. The DQO process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels (FALs) leading to an NFA declaration, (2) characterization of the nature and extent of contamination leading to closure in place with use restrictions, (3) clean closure by remediation and verification, (4) closure in place with use restrictions with no investigation if CASs are in crater areas that have been determined to be unsafe to enter, or (5) NFA if the mud pit CAS meets the criteria established during the CAUs 530535 SAFER investigation. The following summarizes the SAFER activities that will support the closure of CAU 544: Perform visual inspection of all CASs. Perform site preparation activities (e.g., utilities clearances, construction of temporary site exclusion zones). Removal of easily managed, nonhazardous, and nonradioactive debris, including vegetation (e.g., tumbleweeds), at various CASs that interfere with sampling, if required to inspect soil surface or collect soil sample. Collect environmental samples from designated target populations (e.g., mud pits, cellars, stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. If no COCs are present at a CAS, establish NFA as the corrective action. If COCs exist, collect environmental samples f

  7. The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    2009-01-18

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH,

  8. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

  9. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  10. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  11. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  12. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utility, which runs its own diesel fuel bulk storage facility for the diesel generators. However, residential heating oil and fuel for all public buildings except the...

  13. H. R. 5916: A Bill to require the President of the United States to use the Strategic Petroleum Reserve in the event of a domestic energy supply shortage, to amend the Energy Policy and Conservation Act and the Export Administration Act of 1979 to prohibit the exportation of refined petroleum products except under certain circumstances, and for other purposes, introduced in the House of Representatives, One Hundred First Congress, Second Session, October 24, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The bill amends the Energy Policy and Conservation Act by making mandatory the use of the Strategic Petroleum Reserve in the event of a domestic energy supply shortage. The restriction on the export of refined petroleum products refers to gasoline, kerosene, heating oils, jet fuel, diesel fuel, residual fuel oil, propane, butane, and any natural liquid or natural gas liquid product refined within the US or entered for consumption within the US. The bill also describes the appointment of special investigator to investigate possible gouging and market manipulation by oil companies and the sense of Congress concerning the cost of deployment and maintenance of United States troops in Saudi Arabia.

  14. An Evaluation of the Proliferation Resistant Characteristics of Light Water Reactor Fuel with the Potential for Recycle in the United States

    Broader source: Energy.gov [DOE]

    The Advanced Fuel Cycle Initiative (AFCI) of the Department of Energy has been formulated to perform research leading to advanced fuels and fuel cycles for advanced nuclear power systems. One of...

  15. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion...

    Office of Scientific and Technical Information (OSTI)

    Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, ...

  16. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Multi-Year Research, Development and Demonstration Plan Page ES - 1 Executive Summary The United States pioneered the development of hydrogen and fuel cell technologies, and we continue to lead the way as these technologies emerge from the laboratory and into commercial markets. A tremendous opportunity exists for the United States to capitalize on this leadership role and apply these technologies to reducing greenhouse gas emissions, reducing our dependence on oil, and

  17. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading |

    Office of Environmental Management (EM)

    Department of Energy Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. PDF icon ctab_webinar_bio_oils_upgrading.pdf More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Production Thermochemical Conversion Proceeses to Aviation Fuels

  18. Alvan Blanch Green Fuels joint venture | Open Energy Information

    Open Energy Info (EERE)

    to extract oil from rape and Green Fuels provides the equipment to turn the oil into biodiesel, to allow farmers to produce their own fuel. References: Alvan Blanch - Green...

  19. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

  20. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  1. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business Development Executive John Russell Business Development Executive Richard P. Feynman Center for Innovation (505) 665-3941 Email thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Los Alamos' efforts in fossil energy R&D

  2. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally safe manner requires the development and application of new technologies that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL) research projects are designed to help catalyze the development of these new technologies, provide objective data to help quantify the environmental and safety risks

  3. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  4. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  5. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book [EERE]

    4 Average Annual Carbon Dioxide Emissions for Various Functions Stock Refrigerator (1) kWh - Electricity Stock Electric Water Heater kWh - Electricity Stock Gas Water Heater million Btu - Natural Gas Stock Oil Water Heater million Btu - Fuel Oil Single-Family Home million Btu Mobile Home million Btu Multi-Family Unit in Large Building million Btu Multi-Family Unit in Small Building million Btu School Building million Btu Office Building million Btu Hospital, In-Patient million Btu Stock Vehicles

  6. Biodiesel Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuel Basics Biodiesel Fuel Basics July 30, 2013 - 2:43pm Addthis Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. WHAT IS BIODIESEL? Biodiesel is a liquid fuel produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum diesel, biodiesel is used to

  7. United States Energy Information Administration | Open Energy...

    Open Energy Info (EERE)

    projecting outlooks for global crude oil and liquid fuels, natural gas, electricity, coal, and carbon dioxide emissions. EIA Datasets on OpenEI Dataset URL Date Electric Power...

  8. Opportunities with Fuel Cells

    Reports and Publications (EIA)

    1994-01-01

    The concept for fuel cells was discovered in the nineteenth century. Today, units incorporating this technology are becoming commercially available for cogeneration applications.

  9. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    19,710 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours...

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  11. Stocks of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    162,375 160,715 163,597 162,478 161,343 162,260 1982-2016 PADD 1 60,190 59,942 60,204 59,399 58,136 56,642 1990-2016 New England 11,575 11,397 10,756 10,699 10,851 11,119 1990-2016 ...

  12. Imports of Distillate Fuel Oil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    191 201 232 242 306 133 1982-2016 East Coast (PADD 1) 130 158 187 198 302 125 2004-2016 Midwest (PADD 2) 6 1 1 1 2 3 2004-2016 Gulf Coast (PADD 3) 53 34 0 41 0 0 2004-2016 Rocky Mountain (PADD 4) 0 0 0 0 0 0 2004-2016 West Coast (PADD 5) 2 7 44 2 2 5

  13. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  14. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.09 per gallon. That's down 82 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 8-tenths of a cent from last week, and down 85

  15. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  16. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  17. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  18. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  19. Residential heating oil price decreases

    Gasoline and Diesel Fuel Update (EIA)

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  20. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to $3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.92 per gallon, up 5.2 cents from last week, and 1.7

  1. fuels | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Fuels Gasoline & Diesel Volatile fuel costs and a desire for energy independence have revived interest in another market for coal gasification technology: the production of liquid transportation fuels, chiefly gasoline and diesel fuel. For the United States, routes to synthesis of liquid fuels from coal add substantial diversity in fuel supply capability, a large capacity for fuels production considering the great extent of domestic coal reserves, and increased energy security that

  2. Ceramic Fuel Cells Europe Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ceramic Fuel Cells Europe Ltd Jump to: navigation, search Name: Ceramic Fuel Cells (Europe) Ltd Place: United Kingdom Product: A wholly owned subsidiary of Ceramic Fuel Cells Ltd,...

  3. Decontamination performance of selected in situ technologies for jet fuel contamination. Master's thesis

    SciTech Connect (OSTI)

    Chesley, G.D.

    1993-01-01

    Specific study of jet fuel is warranted because of the quantitive and qualitative component differences between jet fuel and other hydrocarbon fuels. Quantitatively, jet fuel contains a larger aliphatic or saturate fraction and a smaller aromatic fraction than other fuels (i.e. heating oil and diesel oil) in the medium-boiling-point-distillate class of fuels. Since the aliphatic and aromatic fractions of fuel are not equally susceptible to biodegradation, jet fuel decontamination using biodegradation may be different from other fuels.

  4. Synthetic fuels handbook: properties, process and performance

    SciTech Connect (OSTI)

    Speight, J.

    2008-07-01

    The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

  5. S.32: A Bill to amend the Internal Revenue Code of 1986 to provide a tax credit for the production of oil and gas from existing marginal oil and gas wells and from new oil and gas wells. Introduced in the Senate of the United States, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    1995-12-31

    This bill would establish tax credits for the production of oil and natural gas from existing marginal oil or gas wells, and from new oil and gas wells. It does so by adding a section to the Internal Revenue Code of 1986 which spells out the rules, the credit amounts, the scope of the terms used to define such facilities, and other rules.

  6. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul; Perry, Frank; Jenkins-Smith, Hank C.; Carter, Joe; Nutt, Mark; Cotton, Tom

    2010-09-01

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

  7. Research on Fuels & Lubricants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon 2003deerperez.pdf More Documents & Publications Alternative Fuels lDimethyl Ether Rheology and Materials Studies Natural Oils - The Next Generation of Diesel Engine ...

  8. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference Presentation: ...

  9. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  10. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical Overview of 5 Years of HCCI Fuel and Engine Data from ORNL Response of Oil Sands Derived Fuels in Diesel HCCI Operation Combustion, Efficiency, and Fuel Effects in a ...

  11. Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Heating Oil Reserve The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies occur. The Northeast Home Heating Oil Reserve is a one million barrel supply of ultra low sulfur distillate (diesel) that provides protection for homes and businesses in the northeastern United States should a disruption in supplies

  12. AltAir Fuels | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Product: Seattle-based developer of projects for the production of jet fuel from renewable and sustainable oils. References: AltAir Fuels1 This article is a...

  13. Winter fuels report, week ending December 21, 1990. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-12-28

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD), I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 34 figs., 12 tabs.

  14. Winter fuels report, week ending October 5, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-11

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage, for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). See page ii for details. 12 tabs.

  15. Goat Industries Fuels | Open Energy Information

    Open Energy Info (EERE)

    Industries Fuels Jump to: navigation, search Name: Goat Industries Fuels Place: Gwynedd, Wales, United Kingdom Zip: LL56 4PZ Product: Welsh manufacturer of biodiesel equipment that...

  16. V Fuels Biodiesel Limited | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Limited Jump to: navigation, search Name: V-Fuels Biodiesel Limited Place: United Kingdom Product: UK-based biodiesel producers. References: V-Fuels Biodiesel Limited1...

  17. Green Spirit Fuels | Open Energy Information

    Open Energy Info (EERE)

    Spirit Fuels Jump to: navigation, search Name: Green Spirit Fuels Place: Somerset, United Kingdom Zip: BA8 OTN Sector: Biofuels Product: The company was founded to produce and...

  18. Forever Fuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Forever Fuels Ltd Place: Maidenhead, United Kingdom Zip: SL6 8RT Product: Forever Fuels specialises in the distribution and supply of wood pellets for sustainable heating systems....

  19. Renewable Fuels Limited RFL | Open Energy Information

    Open Energy Info (EERE)

    Limited RFL Jump to: navigation, search Name: Renewable Fuels Limited (RFL) Place: York, United Kingdom Zip: YO19 6ET Sector: Biomass Product: Supplies various biomass fuels and...

  20. Fuel Economy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Fuel Economy Ltd. Place: United Kingdom Product: Fuel Economy Ltd is perhaps better known by their core product 'Savastat', the highly...

  1. Enhanced Oil Recovery | Department of Energy

    Office of Environmental Management (EM)

    Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years, the United States is a world leader in the number of EOR projects and volume of oil production from this method. PDF icon Fossil Energy Research Benefits - Enhanced Oil Recovery More Documents & Publications Oil Study Guide - High School Fossil Energy Today - Fourth Quarter, 2011 Fossil Energy Today - First Quarter,

  2. fuels and lubricants | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels and Lubricants The DOE Vehicle Technologies Office supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement. Transportation fuels are anticipated to be produced from future refinery feedstocks that may increasingly be from non-conventional sources including, but not milted to, heavy crude, oil sands, shale oil, and coal, as well as

  3. Development of More Effective Biosurfactants for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

    2003-01-24

    The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

  4. Biomass Derivatives Competitive with Heating Oil Costs. | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Derivatives Competitive with Heating Oil Costs. Biomass Derivatives Competitive with Heating Oil Costs. Presentation at the May 9, 2012, Pyrolysis Oil Workship on biomass derivatives competitive with heating oil costs. PDF icon pyrolysis_levine.pdf More Documents & Publications Challenge # 1. Feedstock & Production Thermochemical Conversion Proceeses to Aviation Fuels A Review of DOE Biofuels Program

  5. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  6. Cameron synthetic fuels report

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The increasing scarcity of conventional crude oil resources, as well as the sharply higher prices of crude oil, will generate increased interest in heavy oil, tar sands, and oil shale as potential substitutes. For all of these unconventional oil resources, extraction will be much more difficult, time consuming, and costly than for conventional crude oil. Although the inplace resources are vast and exist in many areas including the United States, the USSR, western Europe, Canada, and Latin America, probably only a small fraction of the inplace resources will prove to be economically extractable. These unconventional oil resources are now being developed in several locations around the world, and depending upon the exact definition probably account for less than 1 percent of current world oil supplies. The major current developments include: Canadian tar sands. Heavy oil production at Yarega in the Komi Autonomous Republic in the Soviet Union. The USSR also burns shale for power generation in Estonia. Venezuelan production of heavy oil in the Orinoco Heavy Oil Belt is currently about 15,000 b/d. Oil shale is likely to prove much less important than heavy oil and tar sands over the next 20 years. Further development of these unconventional resources is planned, and many projects are under way or under study. On the basis of current planning, world output of heavy oils and oil from tar sands and shale will be unlikely to exceed 2 million b/d by 1990, roughly five time today's level. However, both of these resources will require the development of new technologies for any large increases in output above what is now planned. The bulk of Canada's tar sands exists at great depths and will require the development of in situ processes for extraction. In the Orinoco, heavy metals contained in the oil make it difficult to refine with existing technology.

  7. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells can provide clean power for applications ranging from less than a watt to multiple megawatts. Our transportation-including personal vehicles, trucks, buses, marine vessels, and other specialty vehicles such as lift trucks and ground support equipment, as well as auxiliary power units for traditional

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Acquisition and Fuel Use Requirements for State and Alternative Fuel Provider Fleets Under the Energy Policy Act (EPAct) of 1992, as amended, certain state government and alternative fuel provider fleets are required to acquire alternative fuel vehicles (AFVs) as a portion of their annual light-duty vehicle acquisitions. Compliance is required by fleets that operate, lease, or control 50 or more light-duty vehicles within the United States. Of those 50 vehicles, at least 20 must be used

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Fuel Economy and Greenhouse Gas Emissions Standards Vehicle manufacturers must meet fuel economy and greenhouse gas (GHG) emissions standards for vehicles sold in the United States. The U.S. Department of Transportation's (DOT) National Highway Traffic Safety Administration (NHTSA) regulates fuel economy standards, while the U.S. Environmental Protection Agency (EPA) regulates GHG emissions. NHTSA's Corporate Average Fuel Economy (CAFE) program and EPA's light-duty vehicle GHG emissions

  10. Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)

    SciTech Connect (OSTI)

    Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

    2014-09-01

    Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

  11. EIS-0083: Final Northeast Regional Environmental Impact Statement; The Potential Conversion of Forty-Two Powerplants From Oil to Coal or Alternate Fuels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Economic Regulatory Administration statement assesses the potential for cumulative and interactive environmental impacts resulting from conversion of up to 42 northeastern power plants from oil to coal and from an alternative “Voluntary Conversion” scenario for 27 power plants.

  12. Closure Report for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2003-04-01

    This Closure Report (CR) documents the activities performed to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996, and the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration (SA4FER) Plan for CAU 398: Area 25 Spill Sites, Nevada Test Site, Nevada (U.S. Department of Energy, Nevada Operations Office [DOEN], 2001). CAU 398 consists of the following thirteen Corrective Action Sites (CASs) all located in Area 25 of the Nevada Test Site (NTS) (Figure 1): CAS 25-25-02, Oil Spills, CAS 25-25-03, Oil Spills, CAS 25-25-04, Oil Spills, CAS 25-25-05, Oil Spills, CAS 25-25-06, Oil Spills, CAS 25-25-07, Hydraulic Oil Spill(s), CAS 25-25-08, Hydraulic Oil Spill(s), CAS 25-25-16, Diesel Spill (from CAS 25-01-02), CAS 25-25-17, Subsurface Hydraulic Oil Spill, CAS 25-44-0 1, Fuel Spill, CAS 25-44-04, Acid Spill (from CAS 25-01-01), CAS 25-44-02, Spill, and CAS 25-44-03, Spill. Copies of the analytical results for the site verification samples are included in Appendix B. Copies of the CAU Use Restriction Information forms are included in Appendix C.

  13. U.S. crude oil production expected to exceed oil imports later...

    U.S. Energy Information Administration (EIA) Indexed Site

    The United States will still need to import crude oil to help meet domestic demand. However, total crude oil imports this year are on track to fall to their lowest level since ...

  14. Proceedings of the 1995 SAE alternative fuels conference. P-294

    SciTech Connect (OSTI)

    1995-12-31

    This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.

  15. U.S. Department of Energy Fuel Cell Technologies Office Overview

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Sources * Domestic & Renewable Sustainable Transportation Sector 50% by 2020 Net Oil Imports GHG Emissions 17% by 2020 >80% by 2050 Fuel Cell Technologies Office | 6 47...

  16. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-02-17

    The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

  17. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1995-02-03

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  18. OXIDATION OF FUELS IN THE COOL FLAME REGIME FOR COMBUSTION AND REFORMING FOR FUEL CELLS.

    SciTech Connect (OSTI)

    NAIDJA,A.; KRISHNA,C.R.; BUTCHER,T.; MAHAJAN,D.

    2002-08-01

    THE REVIEW INTEGRATES RECENT INVESTIGATIONS ON AUTO OXIDATION OF FUEL OILS AND THEIR REFORMING INTO HYDROGEN RICH GAS THAT COULD SERVE AS A FEED FOR FUEL CELLS AND COMBUSTION SYSTEMS.

  19. Winters fuels report

    SciTech Connect (OSTI)

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  20. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  1. Demonstrated Petroleum Reduction Using Oil Bypass Filter Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Bypass Filter Specifications and Test Procedures Idaho National Laboratory Needs Assessment Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status...

  2. Energy & Financial Markets: What Drives Crude Oil Prices? - Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Markets - U.S. Energy Information Administration (EIA) ... Electricity Sales, revenue and prices, power plants, fuel ... spread Quarterly 12312015 Spot Prices World crude oil ...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    School Bus Pilot Program The Vermont Department of Motor Vehicles will approve up to three participants for a pilot program to operate Type II school buses that are retrofitted with an auxiliary fuel tank to enable the use of biodiesel, waste vegetable oil, or straight vegetable oil. Eligible buses must pass inspection in accordance with the state School Bus Periodic Inspection Manual and comply with the Federal Motor Vehicle Safety Standards. A Type II school bus is defined as a school bus with

  4. CMR Fuel Cells Ltd | Open Energy Information

    Open Energy Info (EERE)

    CMR Fuel Cells Ltd Jump to: navigation, search Name: CMR Fuel Cells Ltd Place: Cambridge, England, United Kingdom Zip: CB2 5GG Product: Cambridge-based firm developing fuel cell...

  5. Fuel Cell Today | Open Energy Information

    Open Energy Info (EERE)

    Today Jump to: navigation, search Name: Fuel Cell Today Place: London, United Kingdom Zip: EC1N 8EE Product: Fuel Cell Today is a online information service for the global fuel...

  6. Alternative Fueling Station Locator | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fueling Station Locator Alternative Fueling Station Locator Find alternative fueling stations near an address or ZIP code or along a route in the United States. Enter a state to see a station count

  7. March 2015 Most Viewed Documents for Fossil Fuels | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information 5 Most Viewed Documents for Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 184 A kinetic study of methanol synthesis in a slurry reactor using a CuO/ZnO/Al sub 2 O sub 3 catalyst Al-Adwani, H.A. (1992) 97 Practical hot oiling and hot watering for paraffin control Mansure, A.J. [Sandia National Labs., Albuquerque, NM (United States)];

  8. Renewable Fuel Standard Schedule | Open Energy Information

    Open Energy Info (EERE)

    National Geographic Scope United States Temporal Resolution Annual The United States Environmental Protection Agency, under the National Renewable Fuel Standard program and as...

  9. Phoenix Fuels | Open Energy Information

    Open Energy Info (EERE)

    Phoenix Fuels Place: Notts, United Kingdom Zip: NG22 9HB Product: Ethanol project developer based in Newark, Nottingham. References: Phoenix Fuels1 This article is a stub. You...

  10. Vivergo Fuels | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Vivergo Fuels Place: United Kingdom Product: Vivergo Fuels is a joint venture formed to build and operate a world-scale biofuel plant in the UK....

  11. Fuel Cell Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  12. Middle East oil and gas

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    The following subjects are covered in this publication: (1) position of preeminence of the Middle East; (2) history of area's oil operations for Iran, Iraq, Bahrain, Kuwait, Saudi Arabia, neutral zone, Qatar, United Arab Emirates, Oman and Egypt; (3) gas operations of Saudi Arabia, Iran, Kuwait, Qatar, Iraq and United Arab Emirates; (4) changing relationships with producing countries; (5) a new oil pricing environment; (6) refining and other industrial activities; and (7) change and progress. 10 figs., 12 tabs.

  13. Orimulsion conversion boosts prospects of `fourth` fossil fuel

    SciTech Connect (OSTI)

    1995-04-01

    This article describes how, by retrofitting a 100-MW oil-fired and a 215-MW coal-fired unit, one utility turned a plant destined for peaking service into a base-load asset with a predictable fuel bill and manageable emissions-even in environmentally sensitive Atlantic Canada. Six years ago, New Brunswick Power Corp (NB Power) found itself on the horns of a dilemma. For years, the utility had been searching for a powerplant fuel with a more stable price than oil, which at the time was fueling one-third of its generating capacity. Buying and burning more domestic coal-even at twice the price of offshore supplies-was the preferred option, because that would also help keep New Brunswick`s coal mines open. But by 1989, federal and provincial legislation had begun to plan for stringent limits on SO{sub 2} emissions that would take the local-coal card out of NB Power`s hand. Containing up to 8% sulfur, New Brunswick coal would be too dirty to burn by itself; emissions from a 200-MW unit would alone use up nearly half of the utility`s system-wide annual quota for SO{sub 2} emissions schedules for imposition in 1994. Enter Bitor America Corp, the Boca Raton (Fla) marketing subsidiary of the world`s third-largest oil company, Petroleos de Venezuela SA (PdVSA). Looking to further the fortunes of Orimulsion, a liquid emulsion of bitumen and water from the Orinoco region of Venezuela, Bitor funded and provided technical support for the first large-scale test burn of the fuel in the 100-MW Unit 1 of NB Power`s Dalhousie station in northern New Brunswick. After making the required modifications, NB Power burned Orimulsion in Unit 1 for two years. By 1991, the utility had cleanly converted more than a million barrels of the fuel to nearly half a million megawatt-hours of electricity-in the process finding few reasons not to commit to permanently converting Dalhousie`s Unit 1, as well as coal fired 215-MW Unit 2, to burn Orimulsion.

  14. Total Crude Oil and Petroleum Products Imports by Area of Entry

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under ...

  15. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  16. Preface for small-molecule activation: Carbon-containing fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fujita, Etsuko; Goldman, Alan S.

    2015-06-01

    For millennia, human transportation was fueled largely through the consumption of biomass (by humans or domestic animals) and to a lesser extent by wind. The 19th century saw a major shift to coal-fueled transportation, with trains and ships powered by steam engines. A second major shift in the fueling of transportation occurred in the 20th century, this time to petroleum. Thus, this transition was not driven by the cost or ease of obtaining energy from oil wells vs. coal mines – indeed, the cost of petroleum has always been higher than coal on a per-unit-energy basis – but rather bymore » the tremendous technical advantages of powering engines with liquids, specifically liquid hydrocarbons.« less

  17. Preface for small-molecule activation: Carbon-containing fuels

    SciTech Connect (OSTI)

    Fujita, Etsuko; Goldman, Alan S.

    2015-06-01

    For millennia, human transportation was fueled largely through the consumption of biomass (by humans or domestic animals) and to a lesser extent by wind. The 19th century saw a major shift to coal-fueled transportation, with trains and ships powered by steam engines. A second major shift in the fueling of transportation occurred in the 20th century, this time to petroleum. Thus, this transition was not driven by the cost or ease of obtaining energy from oil wells vs. coal mines – indeed, the cost of petroleum has always been higher than coal on a per-unit-energy basis – but rather by the tremendous technical advantages of powering engines with liquids, specifically liquid hydrocarbons.

  18. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  19. Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumptio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting Information World Oil Reserves, Production, and Consumption, 2007 Crude oil ... United Arab Emirates, Algeria, Libya, Nigeria, Indonesia, Gabon, and Ecuador. OPEC ...

  20. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOE Patents [OSTI]

    Tiernan, Joan E.

    1991-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and l BACKGROUND OF THE INVENTION The invention described herein arose in the course of, or under, Contract No. DE-AC03-76SF00098 between the U.S. Department of Energy and the University of California.

  1. Evaluation of a Method for Remote Detection of Fuel Relocation Outside the Original Core Volumes of Fukushima Reactor Units 1-3

    SciTech Connect (OSTI)

    Douglas W. Akers; Edwin A. Harvego

    2012-08-01

    This paper presents the results of a study to evaluate the feasibility of remotely detecting and quantifying fuel relocation from the core to the lower head, and to regions outside the reactor vessel primary containment of the Fukushima 1-3 reactors. The goals of this study were to determine measurement conditions and requirements, and to perform initial radiation transport sensitivity analyses for several potential measurement locations inside the reactor building. The radiation transport sensitivity analyses were performed based on reactor design information for boiling water reactors (BWRs) similar to the Fukushima reactors, ORIGEN2 analyses of 3-cycle BWR fuel inventories, and data on previously molten fuel characteristics from TMI- 2. A 100 kg mass of previously molten fuel material located on the lower head of the reactor vessel was chosen as a fuel interrogation sensitivity target. Two measurement locations were chosen for the transport analyses, one inside the drywell and one outside the concrete biological shield surrounding the drywell. Results of these initial radiation transport analyses indicate that the 100 kg of previously molten fuel material may be detectable at the measurement location inside the drywell, but that it is highly unlikely that any amount of fuel material inside the RPV will be detectable from a location outside the concrete biological shield surrounding the drywell. Three additional fuel relocation scenarios were also analyzed to assess detection sensitivity for varying amount of relocated material in the lower head of the reactor vessel, in the control rods perpendicular to the detector system, and on the lower head of the drywell. Results of these analyses along with an assessment of background radiation effects and a discussion of measurement issues, such as the detector/collimator design, are included in the paper.

  2. User`s guide to REVERT. A CDC 7600 program for converting Spent Fuel Test - Climax data to engineering units, with corrections

    SciTech Connect (OSTI)

    Hage, G.

    1984-10-01

    A CDC 7600 computer program, REVERT, can revise Spent Fuel Test - Climax data files using one of several algorithms, depending on the type of data. The algorithms use coefficients from a separate file organized by data type identifiers. REVERT can also make that file of coefficients, using data from tapes made by Hewlett-Packard equipment employed for data acquisition on the spent Fuel Test - Climax at NTS. 12 references.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel and Green Diesel Definitions Biodiesel is defined as a fuel that is comprised of mono-alkyl esters of long chain fatty acids derived from vegetable oil or animal fats and that meets ASTM D6751. Green diesel is defined as a fuel produced from non-fossil renewable resources, including agricultural or silvicultural plants, animal fats, residue, and waste generated from the production, processing, and marketing of agricultural products, silvicultural products, and other renewable

  4. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  5. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Poe, R.L.; Morrison, J.L.; Xie, Jianyang; Walsh, P.M.; Schobert, H.H.; Scaroni, A.W.

    1992-05-29

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in an oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels.

  6. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Users Q1: Why are data not collected over the summer? The residential pricing data collected on heating oil and propane prices are for the Winter Heating Fuels Survey. The purpose of this survey is to collect prices for these fuels as they are used for heating purposes. For the purposes of the survey, the winter heating season extends from October through March. However, EIA does publish spot prices for heating oil and propane throughout the year. In addition, some State Energy Offices

  7. Net Imports of Total Crude Oil and Products into the U.S. by Country

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500

  8. Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Substation Fuel in New England | Department of Energy Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and

  9. renewable sources of power. Demand for fossil fuels surely will overrun supply s

    Broader source: Energy.gov (indexed) [DOE]

    renewable sources of power. Demand for fossil fuels surely will overrun supply sooner or later, as indeed it already has in the casc of United States domestic oil drilling. Recognition also is growing that our air and land can no longer absorb unlimited quantities of waste from fossil fuel extraction and combustion. As that day draws nearer, policymakers will have no realistic alternative but to turn to sources of power that today make up a viable but small part of America's energy picture. And

  10. Cost of Ownership and Well-to-Wheels Carbon Emissions/Oil Use of Alternative Fuels and Advanced Light-Duty Vehicle Technologies

    SciTech Connect (OSTI)

    Elgowainy, Mr. Amgad; Rousseau, Mr. Aymeric; Wang, Mr. Michael; Ruth, Mr. Mark; Andress, Mr. David; Ward, Jacob; Joseck, Fred; Nguyen, Tien; Das, Sujit

    2013-01-01

    The U.S. Department of Energy (DOE), Argonne National Laboratory (Argonne), and the National Renewable Energy Laboratory (NREL) updated their analysis of the well-to-wheels (WTW) greenhouse gases (GHG) emissions, petroleum use, and the cost of ownership (excluding insurance, maintenance, and miscellaneous fees) of vehicle technologies that have the potential to significantly reduce GHG emissions and petroleum consumption. The analyses focused on advanced light-duty vehicle (LDV) technologies such as plug-in hybrid, battery electric, and fuel cell electric vehicles. Besides gasoline and diesel, alternative fuels considered include natural gas, advanced biofuels, electricity, and hydrogen. The Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) and Autonomie models were used along with the Argonne and NREL H2A models.

  11. Thermally-enhanced oil recovery method and apparatus

    DOE Patents [OSTI]

    Stahl, Charles R. (Scotia, NY); Gibson, Michael A. (Houston, TX); Knudsen, Christian W. (Houston, TX)

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  12. How Fuel Cells Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Work How Energy Works 30 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and propane. This clean energy technology can provide power for virtually any application -- from cars and buses to commercial buildings -- while helping reduce carbon pollution and oil consumption. As part of How Energy Works, we'll cover everything from how fuel cells work and why to their important to current uses and the

  13. NREL: Transportation Research - Fuel Chemistry Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Research Photo of a hand holding a beaker containing a clear yellow liquid. NREL evaluates a broad range of renewable gasoline and diesel fuels-ranging from currently available ethanol and biodiesel to future products such as dimethyl furan and hydrotreated biomass pyrolysis oils. Photo by Dennis Schroeder, NREL NREL's fuel chemistry research explores how biofuels, advanced petroleum-based fuels, fuel blends, and natural gas perform in vehicles as well as in fuel pumps, storage tanks,

  14. Sustainable Oils Inc | Open Energy Information

    Open Energy Info (EERE)

    producer and marketer of renewable, environmentally clean, and high-value Camelina-based biodiesel fuel. References: Sustainable Oils Inc.1 This article is a stub. You can help...

  15. Eielson Air Force Base Operable Unit 2 baseline risk assessment

    SciTech Connect (OSTI)

    Lewis, R.E.; Jarvis, T.T.; Jarvis, M.R.; Whelan, G.

    1994-10-01

    Operable Unit 2 at Eielson Air Force Base (AFB) near Fairbanks, is one of several operable units characterized by petroleum, oil, and lubricant contamination, and by the presence of organic products floating at the water table, as a result of Air Force operations since the 1940s. The base is approximately 19,270 acres in size, and comprises the areas for military operations and a residential neighborhood for military dependents. Within Operable Unit 2, there are seven source areas. These source areas were grouped together primarily because of the contaminants released and hence are not necessarily in geographical proximity. Source area ST10 includes a surface water body (Hardfill Lake) next to a fuel spill area. The primary constituents of concern for human health include benzene, toluene, ethylbenzene, and xylenes (BTEX). Monitored data showed these volatile constituents to be present in groundwater wells. The data also showed an elevated level of trace metals in groundwater.

  16. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    4, 2013 Residential heating oil prices increase The average retail price for home heating oil rose 2.9 cents from last week to $3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.87 per gallon, up 2.5 cents from last week, but down 7.1 cents from a year earlier. This is Marlana Anderson

  17. Homeowners: Respond to Fuel Shortages | Department of Energy

    Energy Savers [EERE]

    Fuel Shortages Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Natural disasters and other hazards can impact the energy industry's ability to produce and distribute petroleum products, including gasoline, diesel fuel, and heating oil. At the same time, the demand for fuel may spike due to evacuations, or because consumers are buying more fuel to power backup generators during electrical outages. All these factors may lead to fuel shortages, which will prompt local

  18. LPG fuel shutoff system

    SciTech Connect (OSTI)

    Watanabe, T.; Miyata, K.

    1988-01-26

    An LPG fuel shutoff system for use with a vehicle having an LPG fuel engine and having a solenoid valve to supply and shut off LPG fuel is described including: a relay having a relay contact which is closed when an electric current is fed to a coil of the relay; a pressure switch having a first position and a second position and adapted to be in the first position when engine oil pressure rises above a predetermined level; and an oil lamp adapted to light when the engine oil pressure is below the predetermined level, and wherein a solenoid coil of the solenoid valve is connected at one side to a battery through an ignition switch and a fuel switch. The solenoid coil also is connected, at another side of the solenoid coil, in series to the relay contact and the pressure switch in the second position respectively, the coil of the relay is connected to the solenoid valve side of the ignition switch through a starting switch, the oil lamp is connected between the ignition switch and the pressure switch.

  19. Third international symposium on alcohol fuels technology

    SciTech Connect (OSTI)

    1980-04-01

    At the opening of the Symposium, Dr. Sharrah, Senior Vice President of Continental Oil Company, addressed the attendees, and his remarks are included in this volume. The Symposium was concluded by workshops which addressed specific topics. The topical titles are as follows: alcohol uses; production; environment and safety; and socio-economic. The workshops reflected a growing confidence among the attendees that the alcohols from coal, remote natural gas and biomass do offer alternatives to petroleum fuels. Further, they may, in the long run, prove to be equal or superior to the petroleum fuels when the aspects of performance, environment, health and safety are combined with the renewable aspect of the biomass derived alcohols. Although considerable activity in the production and use of alcohols is now appearing in many parts of the world, the absence of strong, broad scale assessment and support for these fuels by the United States Federal Government was a noted point of concern by the attendees. The environmental consequence of using alcohols continues to be more benign in general than the petroleum based fuels. The exception is the family of aldehydes. Although the aldehydes are easily suppressed by catalysts, it is important to understand their production in the combustion process. Progress is being made in this regard. Of course, the goal is to burn the alcohols so cleanly that catalytic equipment can be eliminated. Separate abstracts are prepared for the Energy Data Base for individual presentations.

  20. Hydrogen Fuel Cell Demonstration ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brothers, Ltd., at their facility in the Port of Honolulu. The pilot hydrogen fuel cell unit will be used in place of a diesel generator currently used to provide power for...

  1. Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  2. Wear mechanism and wear prevention in coal-fueled diesel engines

    SciTech Connect (OSTI)

    Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

    1991-07-01

    Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities The mission of Clean Cities is to advance the energy, economic, and environmental security of the United States by supporting local initiatives to adopt practices that reduce the use of petroleum in the transportation sector. Clean Cities carries out this mission through a network of nearly 100 volunteer coalitions, which develop public/private partnerships to promote alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean

  4. Fuel Additive Strategies for Enhancing the Performance of Engines and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Oils | Department of Energy Additive Strategies for Enhancing the Performance of Engines and Engine Oils Fuel Additive Strategies for Enhancing the Performance of Engines and Engine Oils 2003 DEER Conference Presentation: ChevronTexaco Technology PDF icon 2003_deer_kaufman.pdf More Documents & Publications Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D Annual Progress Report Vehicle Technologies Office: 2013 Fuel and Lubricant Technologies R&D Annual

  5. High capacity oil burner

    SciTech Connect (OSTI)

    Pedrosa, O.A. Jr.; Couto, N.C.; Fanqueiro, R.C.C.

    1983-11-01

    The present invention relates to a high capacity oil burner comprising a cylindrical atomizer completely surrounded by a protective cylindrical housing having a diameter from 2 to 3 times greater than the diameter of said atomizer; liquid fuels being injected under pressure into said atomizer and accumulating within said atomizer in a chamber for the accumulation of liquid fuels, and compressed air being injected into a chamber for the accumulation of air; cylindrical holes communicating said chamber for the accumulation of liquid fuels with the outside and cylindrical holes communicating said chamber for the accumulation of air with said cylindrical holes communicating the chamber for the accumulation of liquids with the outside so that the injection of compressed air into said liquid fuel discharge holes atomizes said fuel which is expelled to the outside through the end portions of said discharge holes which are circumferentially positioned to be burnt by a pilot flame; said protecting cylindrical housing having at its ends perforated circular rings into which water is injected under pressure to form a protecting fan-like water curtain at the rear end of the housing and a fan-like water curtain at the flame to reduce the formation of soot; the burning efficiency of said burner being superior to 30 barrels of liquid fuel per day/kg of the apparatus.

  6. 2009 Fuel Cell Market Report

    SciTech Connect (OSTI)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  7. Fuel and Lubricant Effects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Lubricant Effects Fuel and Lubricant Effects 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ft001_bunting_2011_o.pdf More Documents & Publications APBF Effects on Combustion APBF Effects on Combustion Response of Oil Sands Derived Fuels in Diesel HCCI Operation

  8. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  9. Energy Information Administration - Table 2. End Uses of Fuel...

    Gasoline and Diesel Fuel Update (EIA)

    -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry...

  10. Production Costs of Alternative Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    ... further results Find Another Tool FIND TRANSPORTATION TOOLS This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil...

  11. National labs team to develop better, cheaper fuel cells | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel cell technologies can significantly benefit the nation's energy security, the environment and economy - offering reduced oil consumption and highly reliable grid-support,...

  12. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  13. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  14. Compact fuel cell

    DOE Patents [OSTI]

    Jacobson, Craig (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA); Lu, Chun (Richland, WA)

    2010-10-19

    A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

  15. Method for cold stable biojet fuel

    DOE Patents [OSTI]

    Seames, Wayne S.; Aulich, Ted

    2015-12-08

    Plant or animal oils are processed to produce a fuel that operates at very cold temperatures and is suitable as an aviation turbine fuel, a diesel fuel, a fuel blendstock, or any fuel having a low cloud point, pour point or freeze point. The process is based on the cracking of plant or animal oils or their associated esters, known as biodiesel, to generate lighter chemical compounds that have substantially lower cloud, pour, and/or freeze points than the original oil or biodiesel. Cracked oil is processed using separation steps together with analysis to collect fractions with desired low temperature properties by removing undesirable compounds that do not possess the desired temperature properties.

  16. Filamentous Carbon Particles for Cleaning Oil Spills - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Industrial Technologies Industrial Technologies Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Filamentous Carbon Particles for Cleaning Oil Spills DOE Grant Recipients Contact GRANT About This Technology Technology Marketing Summary The invention provides methods and apparatus for the creation of carbon filaments used for cleaning oil spills. Crude oil and other petroleum products can cause severe damage to the environment and wildlife when spilled

  17. Development of High Performance Heavy Duty Engine Oils | Department of

    Office of Environmental Management (EM)

    Energy of High Performance Heavy Duty Engine Oils Development of High Performance Heavy Duty Engine Oils FAME biodiesel will likely remain a part of the global diesel pool for the coming years and the use of biodiesel can lead to lubrication issues. PDF icon deer09_lauterwasser.pdf More Documents & Publications The Road to Improved Heavy Duty Fuel Economy Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion Biodiesel Impact on Engine Lubricant Oil

  18. Eastman, AP start on coal unit

    SciTech Connect (OSTI)

    1995-10-25

    Eastman Chemical and Air Products and Chemicals (AP) have started construction of a $214-million, coal-to-methanol demonstration unit at Eastmans site in Kingsport, TN. The project is part of the Department of Energy`s clean coal technology program and is receiving $93 million in federal support. The demonstration unit-which will have a methanol capacity of 260 tons/day-will use novel catalyst technology for converting coal-derived synthesis gas (syngas) to methanol. Unlike conventional technology that processes syngas through a fixed bed of dry catalyst particles, the liquid-phase methanol process converts the syngas in a single vessel containing catalysts suspended in mineral oil. The companies say the innovation allows the process to better able handle the gases from coal gasifiers and is more stable and reliable than existing processes. Eastman says it will use the methanol produced by the plant as a chemical feedstock. It currently uses methanol as an intermediate in making acetic anhydride and dimethyl terephthalate. In addition, the companies say the methanol will be evaluated as a feedstock in making methyl tert-butyl ether for reformulated fuels. Eastman also says it will evaluate coproducing dimethyl ether (DME) with the methanol. DME can be used as a fuel additive or blended with methanol for a chemical feedstock, according to Eastman.

  19. D1 Williamson Magor Bio Fuel | Open Energy Information

    Open Energy Info (EERE)

    Magor Bio Fuel Jump to: navigation, search Name: D1 Williamson Magor Bio Fuel Place: Kolkata, West Bengal, India Zip: 700 001 Product: Joint venture between D1 Oils and Williamson...

  20. Houston BioFuels Consultants | Open Energy Information

    Open Energy Info (EERE)

    BioFuels Consultants Jump to: navigation, search Name: Houston BioFuels Consultants Place: Kingwood, Texas Zip: 77345 Product: A Houston-based consultancy run by oil industry...

  1. EPA-Fuel Economy Guide | Open Energy Information

    Open Energy Info (EERE)

    EPA-Fuel Economy Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy Guide AgencyCompany Organization: United States Environmental Protection Agency...

  2. Current Status of the Spent Nuclear Fuel Management Program in...

    Office of Scientific and Technical Information (OSTI)

    Current Status of the Spent Nuclear Fuel Management Program in the United States. Citation Details In-Document Search Title: Current Status of the Spent Nuclear Fuel Management...

  3. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies E. Thomas (Tom) Habib, Jr., Director, Customer Research Partnerships, W.R. Grace & Co. PDF icon biomass13_habib_2-d.pdf More Documents & Publications Opportunities for Biomass-Based Fuels and Products

  4. Brushing up on oil recovery

    SciTech Connect (OSTI)

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  5. RTP Green Fuel: A Proven Path to Renewable Heat and Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Envergent Technologies 2009 © Envergent Technologies 2009 Renewable Fuel Oil - A Commercial Perspective Steve Lupton Technical Information Exchange on Pyrolysis Oil: Potential for a Renewable Heating Oil Substitution Fuel in New England May 9 - 10, 2012, Manchester, New Hampshire © Envergent Technologies 2009 Envergent Technologies LLC - UOP / Ensyn Joint Venture * Formed in October 2008 * Provides pyrolysis technology for fuel oil substitution and electricity generation * Development of

  6. Reprocessing RERTR silicide fuels

    SciTech Connect (OSTI)

    Rodrigues, G.C.; Gouge, A.P.

    1983-05-01

    The Reduced Enrichment Research and Test Reactor Program is one element of the United States Government's nonproliferation effort. High-density, low-enrichment, aluminum-clad uranium silicide fuels may be substituted for the highly enriched aluminum-clad alloy fuels now in use. Savannah River Laboratory has performed studies which demonstrate reprocessability of spent RERTR silicide fuels at Savannah River Plant. Results of dissolution and feed preparation tests and solvent extraction processing demonstrations with both unirradiated and irradiated uranium silicide fuels are presented.

  7. Biodegradation of biodiesel fuels

    SciTech Connect (OSTI)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.

  8. 2007 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUEL CELL TECHNOLOGIES MARKET REPORT JULY 2009 Table of Contents Introduction 1 Worldwide Fuel Cell Shipments Increased 70% from 2006 to 2007 3 Percent Production Increase Highest in North America in 2007 4 North American Units Shipped Increased Three-Fold 6 Commercial Viability of Stationary Units Accompanied by Fewer Demonstrations 7 Large Stationary Units Continue to Increase in Size 8 Small Stationary Shipments Increase Led by Increases in PEM Units Manufactured in North America 9 Fuel

  9. Annular feed air breathing fuel cell stack

    DOE Patents [OSTI]

    Wilson, Mahlon S. (Los Alamos, NM)

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  10. Total Crude Oil and Petroleum Products Imports by Processing Area

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History

  11. Unconventional Oil and Gas Projects Help Reduce Environmental Impact of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17, 2014 - 11:30am Addthis Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Since the first commercial oil well was drilled in the United States in 1859, most of the nation's oil and natural gas has come from reservoirs from which the resources are

  12. Western Hemisphere Oil Products Balance

    Gasoline and Diesel Fuel Update (EIA)

    Western Hemisphere Oil Products Balance Ramón Espinasa, Ph.D. / Lead Specialist July 2014 The Energy Innovation Center Energy Division 3 The views expressed by the author do not reflect the views of the Inter- American Development Bank, its Management, its Board of Executive Directors or its member Governments. DISCLAIMER www.iadb.org Copyright © 2014 Interamerican Development Bank. All rights reserved; This document may be freely reproduced for non-commercial purposes. 4 United States Oil

  13. International fuel cycle and waste management technology exchange activities sponsored by the United States Department of Energy: FY 1982 evaluation report

    SciTech Connect (OSTI)

    Lakey, L.T.; Harmon, K.M.

    1983-02-01

    In FY 1982, DOE and DOE contractor personnel attended 40 international symposia and conferences on fuel reprocessing and waste management subjects. The treatment of high-level waste was the topic most often covered in the visits, with geologic disposal and general waste management also being covered in numerous visits. Topics discussed less frequently inlcude TRU/LLW treatment, airborne waste treatment, D and D, spent fuel handling, and transportation. The benefits accuring to the US from technology exchange activities with other countries are both tangible, e.g., design of equipment, and intangible, e.g., improved foreign relations. New concepts initiated in other countries, particularly those with sizable nuclear programs, are beginning to appear in US efforts in growing numbers. The spent fuel dry storage concept originating in the FRG is being considered at numerous sites. Similarly, the German handling and draining concepts for the joule-heated ceramic melter used to vitrify wastes are being incorporated in US designs. Other foreigh technologies applicable in the US include the slagging incinerator (Belgium), the SYNROC waste form (Australia), the decontamination experience gained in decommissioning the Eurochemic reprocessing plant (Belgium), the engineered surface storage of low- and intermediate-level waste (Belgium, FRG, France), the air-cooled storage of vitrified high-level waste (France, UK), waste packaging (Canada, FRG, Sweden), disposal in salt (FRG), disposal in granite (Canada, Sweden), and sea dumping (UK, Belgium, The Netherlands, Switzerland). These technologies did not necessarily originated or have been tried in the US but for various reasons are now being applied and extended in other countries. This growing nuclear technological base in other countires reduces the number of technology avenues the US need follow to develop a solid nuclear power program.

  14. Fuel Cells & Renewable Portfolio Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells & Renewable Portfolio Standards Webinar - Jun 9 th , 2011 Ohio Fuel Cell Coalition Ohio Fuel Cell Coalition * Mission - The Ohio Fuel Cell Coalition is a united group of industry, academic, and government leaders working collectively to strengthen Ohio's fuel cell industry and to accelerate the transformation of industry to global leadership in fuel cell technology and applications * Activities - Networking and Collaboration - Education - Marketing and Communications - Advocacy

  15. How Fuel Cells Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    0 likes How Fuel Cells Work Fuel cells produce electrical power without any combustion and operate on fuels like hydrogen, natural gas and propane. This clean energy technology can provide power for virtually any application -- from cars and buses to commercial buildings -- while helping reduce carbon pollution and oil consumption. As part of How Energy Works, we'll cover everything from how fuel cells work and why to their important to current uses and the future of the technology. Learn more

  16. Collaborative Lubricating Oil Study on Emissions (CLOSE) Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CLOSE) Project Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Extensive chemical and physical characterization performed on emissions from normal and high emitting light-, medium-, and heavy-duty vehicles to evaluate relative contributions of fuel and lubricating oil on tailpipe emissions. PDF icon deer08_lawson.pdf More Documents & Publications Collaborative Lubricating Oil Study on Emissions (CLOSE Project) Collaborative Lubricating Oil Study on

  17. Producing liquid fuels from coal: prospects and policy issues

    SciTech Connect (OSTI)

    James T. Bartis; Frank Camm; David S. Ortiz

    2008-07-01

    The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

  18. Midwest (PADD 2) Total Crude Oil and Products Imports

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  19. Midwest (PADD 2) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  20. Growing attraction of refuse-derived fuels

    SciTech Connect (OSTI)

    Singh, R.

    1981-09-08

    A review of Dr. Andrew Porteous' book, Refuse Derived Fuels is presented. The escalating price of fossil fuel, particularily oil, together with the high cost of handling and transporting refuse makes the idea of refuse-derived fuel production an attractive and economic proposition. Refuse-derived fuel production is discussed and the various manufacturing processes in the UK and the USA are described. The pyrolysis of refuse for the production of gas, oil or heat and the production of methane and ethyl alcohol or other possibilities for refuse conversion.