National Library of Energy BETA

Sample records for fuel oil united

  1. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  2. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  3. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  5. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  6. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  7. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  8. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  9. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal

  10. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  11. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  12. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  13. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  14. Vegetable oil fuel

    SciTech Connect (OSTI)

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  15. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  16. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  17. Vegetable oil as fuel

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  18. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ...tchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ...

  19. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

  20. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate ...

  1. Oil Shale Research in the United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies Oil Shale Research in the United States (7.2 MB) More Documents & Publications Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Applicability of a Hybrid Retorting Technology in the Green River Formation National Strategic Unconventional Resource Model

  2. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  3. Fuel oil quality task force

    SciTech Connect (OSTI)

    Laisy, J.; Turk, V.

    1997-09-01

    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  4. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...

    U.S. Energy Information Administration (EIA) Indexed Site

    Unit: Percents." ,,,"Distillate",,,"Coal" ,,,"Fuel Oil",,,"(excluding Coal" ,"Net Demand","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)" ,"for Electricity(a)","Fuel ...

  5. Fuel Oil and Kerosene Sales 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Oil and Kerosene Sales 2014 December 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2014 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States

  6. United Oil Company | Open Energy Information

    Open Energy Info (EERE)

    Oil Company Jump to: navigation, search Name: United Oil Company Place: Pittsburgh, Pennsylvania Product: Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA...

  7. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","...

  8. Oil Shale and Other Unconventional Fuels Activities | Department...

    Office of Environmental Management (EM)

    Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on ...

  9. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands...

    Office of Environmental Management (EM)

    Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Profiles of Companies Engaged in Domestic Oil Shale ...

  10. Fuel oil and kerosene sales 1997

    SciTech Connect (OSTI)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  11. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery to Fuel Future Oil Demands Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  12. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  13. Fuel oil and kerosene sales 1996

    SciTech Connect (OSTI)

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  14. United States Fuel Resiliency: US Fuels Supply Infrastructure | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy United States Fuel Resiliency: US Fuels Supply Infrastructure United States Fuel Resiliency: US Fuels Supply Infrastructure Report: United States Fuel Resiliency - U.S. Fuels Supply Infrastructure Study: (1) Infrastructure Characterization; (II) Vulnerability to Natural and Physical Threats; and (III) Vulnerability and Resilience This report assesses the U.S. fuels supply transportation, storage, and distribution (TS&D) infrastructure, its vulnerabilities (natural and physical

  15. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect (OSTI)

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  16. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Reasons that Made Distillate Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Distillate Fuel Oil Unswitchable Distillate Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  17. Table 10.25 Reasons that Made Residual Fuel Oil Unswitchable, 2006;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Reasons that Made Residual Fuel Oil Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Residual Fuel Oil Unswitchable ResiduaCapable of Using Adversely Affects Alternative Environmental Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a Fue Fuel Oil Fuel Use

  18. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  19. Adjusted Distillate Fuel Oil Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate ...

  20. ,"U.S. Residual Fuel Oil Prices by Sales Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","52016","115... AM" "Back to Contents","Data 1: Residual Fuel Oil Average" "Sourcekey","EMAEPPRPTANUS...

  1. Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  2. Fuel oil and kerosene sales 1995

    SciTech Connect (OSTI)

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  3. Fuel oil and kerosene sales 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  4. Fuel Oil and Kerosene Sales 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    national level are provided in summary tables. For Fuel Oil and Kerosene Sales on the Internet, access EIA's home page at http:www.eia.doe.gov. Internet Addresses: E-Mail:...

  5. Fuel oil and kerosene sales 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-03

    This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  6. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur <= 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day Sales Type: Sales to End Users Sales for Resale Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 4,103.1 3,860.0 4,053.4 4,238.4 3,888.8 3,799.0

  7. Fuel oil and kerosene sales 1994

    SciTech Connect (OSTI)

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  8. Oil Shale and Other Unconventional Fuels Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reserves » Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. It is generally agreed that worldwide petroleum supply will eventually reach its productive limit, peak, and begin a

  9. Peanut varieties: potential for fuel oil

    SciTech Connect (OSTI)

    Hammons, R.O.

    1981-01-01

    Research is beginning in farm crushing of peanuts into fuel oil, the high-protein residue being used as livestock feed. Thirty peanut genotypes were investigated for oil and protein yields in field trials in Georgia. For 11 varieties in an irrigated test, mean oil contents (dry base) were in the 49.7-52.7% range, and the level of protein was in the 22.60-26.70% range. Wider variations in oil and protein contents were found in 19 other genotypes selected for possible use as an oil crop. Breeding for high oil yield has not been practiced in US peanut breeding programs. Convergent improvement to attain higher levels of oil content, shell-out percentage, and stable yield will require 6-10 generations of crossing, backcrossing, selection, and testing.

  10. Table 4b. Relative Standard Errors for Total Fuel Oil Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil...

  11. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion...

  12. ,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales ... "Back to Contents","Data 1: Residual Fuel Oil Sales to End Users Refiner Sales Volumes" ...

  13. ,"U.S. Residual Fuel Oil Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","5... "Back to Contents","Data 1: U.S. Residual Fuel Oil Refiner Sales Volumes" ...

  14. Fuel oil and kerosene sales, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

  15. Vegetable oils as fuel alternatives - symposium overview

    SciTech Connect (OSTI)

    Pryde, E.H.

    1984-10-01

    Several encouraging statements can be made about the use of vegetable oil products as fuel as a result of the information presented in these symposium papers. Vegetable oil ester fuels have the greatest promise, but further engine endurance tests will be required. These can be carried out best by the engine manufacturers. Microemulsions appear to have promise, but more research and engine testing will be necessary before performance equivalent to the ester fuels can be developed. Such research effort can be justified because microemulsification is a rather uncomplicated physical process and might be adaptable to on-farm operations, which would be doubtful for the more involved transesterfication process. Although some answers have been provided by this symposium, others are still not available; engine testing is continuing throughout the world particularly in those countries that do not have access to petroleum. 9 references.

  16. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  17. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  18. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  19. Straw pellets as fuel in biomass combustion units

    SciTech Connect (OSTI)

    Andreasen, P.; Larsen, M.G.

    1996-12-31

    In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

  20. Four different shale oils processed into jet fuel

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    Crude shale oils produced by (a) Geokinetics, (b) Occidental, (c) Paraho, and (d) Tosco II processes have each been catalytically hydroprocessed to produce jet fuel fractions. The shale oil hydroprocessing was performed at low, medium and high hydroprocessing severities. Hydroprocessing severity was changed mainly by varying the temperature. Full boiling range (121-300/sup 0/C) jet fuel was produced from the hydroprocessed product of the raw oil distillates boiling below 343/sup 0/C. This paper describes the shale oil properties and hydroprocessing, gives the results of sulfur removal and hydrogenated shale oil distillation, and lists the physical and chemical properties of the jet fuels. 2 figures, 3 tables.

  1. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  2. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  3. Comparing liquid fuel costs: grain alcohol versus sunflower oil

    SciTech Connect (OSTI)

    Reining, R.C.; Tyner, W.E.

    1983-08-01

    This paper compares the technical and economic feasibility of small-scale production of fuel grade grain alcohol with sunflower oil. Three scales of ethanol and sunflower oil production are modeled, and sensitivity analysis is conducted for various operating conditions and costs. The general conclusion is that sunflower oil costs less to produce than alcohol. Government subsidies for alcohol, but not sunflower oil, could cause adoption of more expensive alcohol in place of cheaper sunflower oil. However, neither sunflower oil nor alcohol are competitive with diesel fuel. 7 references.

  4. Unit radiological doses for fuel retrieval preliminary safety evaluation

    SciTech Connect (OSTI)

    Huang, C.H.

    1996-04-23

    This document provides the atmospheric dispersion and the unit dose calculations for K West liquid, a fuel element, and gaseous release from a fuel canister.

  5. Combined process for heavy oil, upgrading and synthetic fuel production

    SciTech Connect (OSTI)

    Polomski, R.E.

    1984-06-05

    A process for upgrading heavy oil to fuel products comprises deasphalting the heavy oil with an oxygenated solvent and simultaneously converting the oxygenated solvent and deasphalted oil over a ZSM-5 type catalyst to produce gasoline and distillate boiling range hydrocarbons.

  6. Deliveries of fuel oil and kerosene in 1980

    SciTech Connect (OSTI)

    Not Available

    1982-02-11

    This report contains numerical data on deliveries of distillate fuel oil, residual fuel oil, and kerosene which will be helpful to federal and state agencies, industry, and trade associations in trend analysis, policy/decision making, and forecasting. The data for 1979 and 1980 are tabulated under the following headings: all uses, residential, commercial, industrial, oil companies, electric utilities, transportation, military, and farm use. The appendix contains product and end-use descriptions. (DMC)

  7. Process for Converting Algal Oil to Alternative Aviation Fuel - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Process for Converting Algal Oil to Alternative Aviation Fuel Los Alamos National Laboratory Contact LANL About This Technology The conversion process uses a Kolbe-based method of converting the fatty acids from the algal lipid triglycerides to fuel. The conversion process uses a Kolbe-based method of converting the fatty acids from the algal lipid triglycerides to fuel. Technology Marketing Summary Conversion of triglyceride oils extracted from algae-derived lipids into

  8. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration ...

  9. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  10. ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 10.24;" " Unit: Percents." ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Distillate Fuel Oil","Unswitchable

  11. ,,,,"Reasons that Made Residual Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable

  12. Consider upgrading pyrolysis oils into renewable fuels

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Holmgren, Jennifer; Marinangelli, Richard; nair, Prabhakar; Bain, Richard

    2008-09-01

    New research is identifying processing routes to convert cellulosic biomass into transportation fuels

  13. Distillate Fuel Oil Assessment for Winter 1996-1997

    Reports and Publications (EIA)

    1997-01-01

    This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.

  14. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  15. Verifying a Simplified Fuel Oil Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, Hugh; Dentz, Jordan; Doty, Chris

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  16. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  17. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect (OSTI)

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  18. Design of heavy oil upgrading units

    SciTech Connect (OSTI)

    Farrell, W.D.; Phodes, R.P.; Zeno, D.Y.

    1985-01-01

    Heavy oil upgrading has become an increasingly important aspect of ER and E's research. Due to high costs of experimental catalysts, small catalyst charges are used (20-150cc). Tubular design and tree-stage stirred design are discussed with emphasis on the techniques and equipment used to handle heavy oil. Mechanical design and fluid mechanics are discussed.

  19. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  20. Fuel quality issues in the oil heat industry

    SciTech Connect (OSTI)

    Litzke, Wai-Lin

    1992-12-01

    The quality of fuel oil plays an essential role in combustion performance and efficient operation of residential heating equipment. With the present concerns by the oil-heat industry of declining fuel-oil quality, a study was initiated to identify the factors that have brought about changes in the quality of distillate fuel. A background of information will be provided to the industry, which is necessary to deal with the problems relating to the fuel. The high needs for servicing heating equipment are usually the result of the poor handling characteristics of the fuel during cold weather, the buildup of dirt and water in storage tanks, and microbial growth. A discussion of how to deal with these problems is presented in this paper. The effectiveness of fuel additives to control these problems of quality is also covered to help users better understand the functions and limitations of chemical treatment. Test data have been collected which measure and compare changes in the properties of fuel using selected additives.

  1. Fuel Oil and Kerosene Sales - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    ‹ See All Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2014 | Release Date: December 22, 2015 | Next Release Date: November 2016 Previous Issues Year: 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go EIA is considering changes to the survey Form EIA-821, "Annual Fuel Oil and Kerosene Sales Report," such as deleting kerosene and adding propane. If you would like to participate in a discussion on these proposed changes

  2. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect (OSTI)

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  3. Miscible, multi-component, diesel fuels and methods of bio-oil transformation

    DOE Patents [OSTI]

    Adams, Thomas; Garcia, Manuel; Geller, Dan; Goodrum, John W.; Pendergrass, Joshua T.

    2010-10-26

    Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

  4. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 1 U.S...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    21, Annual Fuel Oil and Kerosene Sales Report Page 1 U.S. DEPARTMENT OF ENERGY U.S. ENERGY ... No.: 2015.01 FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT INSTRUCTIONS 1. ...

  5. EERE Success Story-Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award EERE Success Story-Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - ...

  6. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis...

  7. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries Transportation Total (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Military ...

  8. RECS Fuel Oil Usage Form_v1 (Draft).xps

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil usage for this delivery address between September 2008 and April 2010. Delivery ... Form EIA 457G OMB No. 1905-0092 Expires 13113 2009 RECS Fuel Oil and Kerosene Usage Form ...

  9. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis ...

  10. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect (OSTI)

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  11. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Units Greater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Than 100 kW Achieve 2015 Target for Electrical Efficiency Stationary Fuel Cell Units Greater Than 100 kW Achieve 2015 Target for Electrical Efficiency Project Technology Validation: Stationary Fuel Cell Evaluation Contact Genevieve Saur Related Publications Stationary Fuel Cell System Composite Data Products Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities In a newly released composite data product (CDP), NREL's National Fuel Cell Technology Evaluation Center (NFCTEC)

  12. ?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  13. Compatibility Assessment of Fuel System Elastomers with Bio-oil and Diesel Fuel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kass, Michael D.; Janke, Christopher J.; Connatser, Raynella M.; Lewis, Samuel A.; Keiser, James R.; Gaston, Katherine

    2016-07-12

    Here we report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with six elastomer types was evaluated against the elastomer performance in neat diesel fuel, which served as the baseline. The elastomers included two fluorocarbons, six acrylonitrile butadiene rubbers (NBRs), and one type each of fluorosilicone, silicone, styrene butadiene rubber (SBR), polyurethane, and neoprene. Specimens of each material were exposed to the liquid and gaseous phases of the test fuels for 4 weeks at 60 °C, and properties in the wetted and dried states were measured.more » Exposure to bio-oil produced significant volume expansion in the fluorocarbons, NBRs, and fluorosilicone; however, excessive swelling (over 80%) was only observed for the two fluorocarbons and two NBR grades. The polyurethane specimens were completely degraded by the bio-oil. In contrast, both silicone and SBR exhibited lower swelling levels in bio-oil compared to neat diesel fuel. The implication is that, while polyurethane and fluorocarbon may not be acceptable seal materials for bio-oils, silicone may offer a lower cost alternative.« less

  14. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this

  15. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  16. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  17. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  18. CONVERTING PYROLYSIS OILS TO RENEWABLE TRANSPORT FUELS: PROCESSING CHALLENGES & OPPORTUNITIES

    SciTech Connect (OSTI)

    Holmgren, Jennifer; Nair, Prabhakar N.; Elliott, Douglas C.; Bain, Richard; Marinangelli, Richard

    2008-03-11

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. UOP, in partnership with U.S. Government labs, NREL and PNNL, is developing an alternate route using cellulosic feedstocks. The waste biomass is first subjected to a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  19. U.S. Residual Fuel Oil Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Residual Fuel Oil Residual F.O., Sulfur <= 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Sales to End Users 4,103.1 3,860.0 4,053.4 4,238.4 3,888.8 3,799.0 1983-2016 Sales for Resale 9,292.6 9,338.0 9,180.7 8,984.8 9,875.7 8,936.2

  20. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  1. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  2. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award

    Broader source: Energy.gov [DOE]

    Developed jointly by Da Vinci Emissions Services Ltd., Cummins Inc., and Oak Ridge National Laboratory (ORNL), the Da Vinci Fuel-in-Oil (DAFIO) technology uses a fiber optic probe to obtain real-time measurements of oil in an operating engine to quantify the fuel dissolved in the lubricant oil.

  3. Experimental plan for the fuel-oil study

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  4. Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    M. Namazian, S. Sethuraman and G. Venkataraman

    2004-12-31

    Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

  5. Magnetic survey of D-Area oil basin waste unit

    SciTech Connect (OSTI)

    Cumbest, R.J.; Marcy, D.; Hango, J.; Bently, S.; Hunter, B.; Cain, B.

    1994-10-01

    The D-Area Oil Basin RCRA Waste Unit is located north of D-Area on Savannah River Site. This Waste Unit was known, based on aerial photography and other historical data, to be the location for one or more trenches used for disposal of oil in steel drums and other refuse. In order to define the location of possible trenches on the site and to assess the possibility of the presence of additional buried objects a magnetic survey was conducted by the Environmental Monitoring Section/Groundwater Group during July, 1993, at the request of the Environmental Restoration Department. Prior to the conduct of the magnetic survey a Ground Penetrating Radar survey of the site consisting of several lines identified several areas of disturbed soil. Based on these data and other historical information the general orientation of the trenches could be inferred. The magnetic survey consists of a rectangular grid over the waste unit designed to maximize resolution of the trench edges. This report describes the magnetic survey of the D-Area Oil Basin Waste Unit.

  6. Vegetable oils as an on the farm diesel fuel substitute: the North Carolina situation. Final report

    SciTech Connect (OSTI)

    Harwood, H.J.

    1981-06-01

    The state-of-the-art of using vegetable oil as a diesel fuel alternative is reviewed. Particular emphasis has been placed on using vegetable oil in farm vehicles as an emergency fuel which may be produced on-farm. The following are reviewed: the mechanical feasibility, on-farm fuel production, and economic analysis.

  7. On-farm production of soybean oil and its properties as a fuel

    SciTech Connect (OSTI)

    Suh, S.R.

    1983-01-01

    This study presents the design of a system for on-farm production of soybean oil for use as a fuel in compression ignition engines. The soybean oil production system consists of a heat exchanger to heat the beans with the exhaust gas of an engine, a screw press and a system for water degumming and drying the expressed crude oil. Optimum parameters of the oil production system were found. The rheological properties of soybean oil, ester of soybean oil and blends of the above with diesel fuel and diesel fuel additives are given. Data on soybean temperature, outlet gas temperature and thermal efficiency were obtained from a developed mathematical model of the heat exchanger. Chemical analyses show that crude oil from the press is similar to that of commercially degummed oil. The degumming process is not needed for the crude oil to be used as a fuel in compression ignition engines. Rheological properties of the soybean oil and soybean oil diesel fuel mixture show that the fluids have viscosities of time independent characteristics and are Newtonian fluids. Diesel fuel additives having low viscosities can be used to lower the viscosity of soybean oil and blends with diesel fuel but the effect is insignificant.

  8. Fuel Cell Based Auxiliary Power Unit for Refrigerated Trucks

    SciTech Connect (OSTI)

    Brooks, Kriston P.

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing fuel-cell powered Transport Refrigeration Units for Reefer Trucks. It describes the progress that has been made by Nuvera and Plug Power as they develop and ultimately demonstrate this technology in real world application.

  9. United States Fuel Resiliency Volume II U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Resiliency Volume II U.S. Fuels Supply Infrastructure Vulnerability to Natural and Physical Threats FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. . Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes

  10. Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations Using a Davison Criculating Riser Presentatio for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations Using a Davison Circulating Riser (DCR) 2.4.2.402 March 25, 2015 Bio-Oil Technology Area Alan Zacher Pacific Northwest National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Develop a process to produce sustainable bio-fuels through co- processing biomass into a petroleum refinery unit operation. There is a need to know: How much stabilization is

  11. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 245 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  12. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  13. U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales

    U.S. Energy Information Administration (EIA) Indexed Site

    Volumes 4,103.1 3,860.0 4,053.4 4,238.4 3,888.8 3,799.0 1983-2016 Sulfur Less Than or Equal to 1% W NA NA W W W 1983-2016 Sulfur Greater Than 1% W 3,372.2 3,311.6 W W W 1983-2016 No. 4 Fuel Oil W - - W - W

  14. Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel

    DOE Patents [OSTI]

    Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

    2010-11-23

    Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

  15. Diesel-fueled solid oxide fuel cell auxiliary power units for heavy-duty vehicles

    SciTech Connect (OSTI)

    Krause, T.; Kumar, R.; Krumpelt, M.

    2000-05-15

    This paper explores the potential of solid oxide fuel cells (SOFCS) as 3--10 kW auxiliary power units for trucks and military vehicles operating on diesel fuel. It discusses the requirements and specifications for such units, and the advantages, challenges, and development issues for SOFCS used in this application. Based on system design and analysis, such systems should achieve efficiencies approaching 40% (lower heating value), with a relatively simple system configuration. The major components of such a system are the fuel cell stack, a catalytic autothermal reformer, and a spent gas burner/air preheater. Building an SOFC-based auxiliary power unit is not straightforward, however, and the tasks needed to develop a 3--10 kW brassboard demonstration unit are outlined.

  16. Examining new fuel economy standards for the United States.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-01-01

    After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with

  17. Floating oil production unit slated in small field off Gabon

    SciTech Connect (OSTI)

    Not Available

    1991-10-14

    This paper reports on the first U.S. tanker converted to a floating production, storage, and offloading (FPSO) unit which takes up station in Gombe-Beta field off Gabon by Dec. 1. FPSO Ocean Producer will work under a 3 year, day rate contract let late in 1990 by Amoco-Gabon Bombe Marin co., a unit of Amoco Production Co. (OGJ, Dec. 24, 1990, p. 27). Gombe-Beta field is in the Atlantic Ocean about 70 miles south of Port Gentil, Gabon. Ocean Producer will be moored in 50 ft of water 3.7 miles off Gabon, with Bombe-Beta's unmanned production platform about 820 ft astern. The vessel will be held in position by a disconnectable, asymmetric, six point, spread mooring system, It is owned and operated by Oceaneering International Services Ltd. (OISL). Affiliate Oceaneering Production Systems (OPS) converted the 78,061 dwt oil tanker MT Baltimore Sea at a capital cost of $25 million at Gulf Copper Manufacturing Corp.'s Port Arthur, Tex., shipyard. Both companies are units of Oceaneering International Inc., Houston. OPS the Ocean Producer's use in Gombe-Beta field is the shallowest water FPSO application in the world. Amoco-Gabon chose an FPSO production system for Gombe-Beta because it expects the remote field to have a short economic life, and the oil requires extensive processing.

  18. Gross Input to Atmospheric Crude Oil Distillation Units

    U.S. Energy Information Administration (EIA) Indexed Site

    Day) Process: Gross Input to Atmospheric Crude Oil Dist. Units Operable Capacity (Calendar Day) Operating Capacity Idle Operable Capacity Operable Utilization Rate Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 16,365 16,167 16,261 16,222 16,477 16,803 1985-2016 PADD 1 1,136 1,080 1,052 1,148 1,174 1,155 1985-2016 East

  19. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns

  20. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Relative Standard Errors for Table 5.8;" " Unit: Percents." ,,,"Distillate" ,,,"Fuel Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze

  1. Table 5.6 End Uses of Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil ...

  2. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ,"

  3. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in Barrels per Day) " ,,,,," Input for Heat,",,," Primary" " ",," Consumption for All Purposes",,,"Power, and Generation of Electricity",,," Consumption for Nonfuel Purposes ",,,"RSE" "SIC",,"

  4. United States Fuel Resiliency Volume III U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Volume III U.S. Fuels Supply Infrastructure Vulnerabilities and Resiliency FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes any legal liability or

  5. Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dwellings Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Google Bookmark

  6. U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales

    U.S. Energy Information Administration (EIA) Indexed Site

    Volumes 9,292.6 9,338.0 9,180.7 8,984.8 9,875.7 8,936.2 1983-2016 Sulfur Less Than or Equal to 1% 977.1 1,152.2 725.0 1,176.1 1,267.5 632.8 1983-2016 Sulfur Greater Than 1% 8,315.6 8,185.7 8,455.8 7,808.7 8,608.2 8,303.5 1983-2016 No. 4 Fuel Oil 166.0 W 199.2 150.6 111.9 106.0

  7. Utilization of refuse derived fuels by the United States Navy

    SciTech Connect (OSTI)

    Lehr, D.L.

    1983-07-01

    The Resource Conservation and Recovery Act and the Safe Drinking Water Act are forcing those in charge of landfills to adhere to more stringent operating standards. This, along with the growing scarcity of landfill availability, makes the use of landfills less desirable for solid waste disposal. As such, new disposal methods that are environmentally safe and economically practical must be found. One alternative, that is not really new but which has gained renewed interest, is incineration. The Resource Conservation and Recovery Act also requires that government agencies should direct their installations to recover as many resources as possible. Therefore if incineration is to be implemented, heat recovery should be incorporated into the system. There are several processes available to convert raw refuse into a fuel for use in a heat recovery system. Refuse derived fuels (RDF) can be in the form of raw refuse, densified refuse, powdered refuse, gas, or pyrolytic oil. The only form of RDF that is economically feasible for systems designed to process less than 200 TPD (tons per day) is raw refuse. Most Navy bases generate far less than 200 TPD of solid waste and therefore the Navy has focused most of its attention on modular heat recovery incinerator (HRI) systems that utilize raw refuse as fuel.

  8. Encapsulated fuel unit and method of forming same

    DOE Patents [OSTI]

    Groh, Edward F.; Cassidy, Dale A.; Lewandowski, Edward F.

    1985-01-01

    This invention teaches an encapsulated fuel unit for a nuclear reactor, such as for an enriched uranium fuel plate of thin cross section of the order of 1/64 or 1/8 of an inch and otherwise of rectangular shape 1-2 inches wide and 2-4 inches long. The case is formed from (a) two similar channel-shaped half sections extended lengthwise of the elongated plate and having side edges butted and welded together to define an open ended tube-like structure and from (b) porous end caps welded across the open ends of the tube-like structure. The half sections are preferably of stainless steel between 0.002 and 0.01 of an inch thick, and are beam welded together over and within machined and hardened tool steel chill blocks. The porous end caps preferably are of T-316-L stainless steel having pores of approximately 3-10 microns size.

  9. Improved encapsulated fuel unit and method of forming same

    DOE Patents [OSTI]

    Groh, E.F.; Cassidy, D.A.; Lewandowski, E.

    1982-09-07

    This invention teaches an encapsulated fuel unit for a nuclear reactor, such as for an enriched uranium fuel plate of thin cross section of the order of 1/64 or 1/8 of an inch and otherwise of rectangular shape 1 to 2 inches wide and 2 to 4 inches long. The case is formed from (a) two similar channel-shaped half sections extended lengthwise of the elongated plate and having side edges butted and welded together to define an open ended tube-like structure and from (b) porous end caps welded across the open ends of the tube-like structure. The half sections are preferably of stainless steel between 0.002 and 0.01 of an inch thick, and are beam welded together over and within machined and hardened tool steel chill blocks. The porous end caps preferably are of T-316-L stainless steel having pores of approximately 3 to 10 microns size.

  10. Conversion of crop seed oils to jet fuel and associated methods

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Petkovic, Lucia M.; Thompson, David N.

    2010-05-18

    Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.

  11. Table 42. Residual Fuel Oil Prices by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  12. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    45.5 49.2 W W 44.5 45.4 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

  13. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  15. Liquid fuels from co-processing coal with bitumen or heavy oil: A review

    SciTech Connect (OSTI)

    Moschopedis, S.E.; Hepler, L.G.

    1987-01-01

    Coal, bitumen and heavy oil (and various pitches, resids, etc.) are similar in that they require more substantial treatment than does conventional light oil to yield useful liquid fuels. The authors provide a brief and selective review of technologies for liquefying coal, followed by consideration of co-processing coal with bitumen/heavy oil. Such co-processing may be considered as use of bitumen/heavy oil as a solvent and/or hydrogen donor in liquefaction of coal, or as the use of coal to aid upgrading bitumen/heavy oil.

  16. Lightweight pressure vessels and unitized regenerative fuel cells

    SciTech Connect (OSTI)

    Mitlitsky, F.; Myers, B.; Weisberg, A.H.

    1996-12-31

    High specific energy (>400 Wh/kg) energy storage systems have been designed using lightweight pressure vessels in conjunction with unitized regenerative fuel cells (URFCs). URFCs produce power and electrolytically regenerate their reactants using a single stack of reversible cells. Although a rechargeable energy storage system with such high specific energy has not yet been fabricated, we have made progress towards this goal. A primary fuel cell (FC) test rig with a single cell (0.05 ft{sup 2} active area) has been modified and operated reversibly as a URFC. This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the oxygen side of the cell). Lightweight pressure vessels with state-of-the-art performance factors (burst pressure * internal volume/tank weight = Pb V/W) have been designed and fabricated. These vessels provide a lightweight means of storing reactant gases required for fuel cells (FCs) or URFCs. The vessels use lightweight bladder liners that act as inflatable mandrels for composite overwrap and provide the permeation barrier for gas storage. The bladders are fabricated using materials that are compatible with humidified gases which may be created by the electrolysis of water and are compatible with elevated temperatures that occur during fast fills.

  17. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Unconventional Oil and Gas Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Offshore Safety and Spill Prevention Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Unconventional Oil and Gas Chapter 7: Technology Assessments Executive Summary The United States will, for the foreseeable future, continue to rely heavily upon oil and natural gas to support our economy, national security, and energy security. Given the increasing reliance on unconventional oil and gas (UOG) resources,

  18. EERE Success Story—Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award

    Office of Energy Efficiency and Renewable Energy (EERE)

    Developed jointly by Da Vinci Emissions Services Ltd., Cummins Inc., and Oak Ridge National Laboratory (ORNL), the Da Vinci Fuel-in-Oil (DAFIO™) technology uses a fiber optic probe to obtain real-time measurements of oil in an operating engine to quantify the fuel dissolved in the lubricant oil.

  19. United States Fuel Resiliency Volume III U.S. Fuels Supply Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    The global and U.S. oil, natural gas, and refined products markets, supply patterns, and .........7 A. Crude Oil ......

  20. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  1. Sandia Energy - Portable Hydrogen Fuel-Cell Unit to Provide Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port Home Infrastructure Security Energy Surety Energy Transportation Energy Facilities Partnership...

  2. Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region

    SciTech Connect (OSTI)

    Poyer, D.A.; Teotia, A.P.S.

    1994-08-01

    The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

  3. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect (OSTI)

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  4. "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural

  5. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  6. Used oil and its regulation in the United States. Master's thesis

    SciTech Connect (OSTI)

    Ledbetter, G.H.

    1988-09-30

    The Environmental Protection Agency (EPA) took the first significant steps toward the federal regulation of waste and used oil by: (1) promulgating the final rule for the Burning of Waste Fuel and Used Oil Fuel in Boilers and Industrial Furnaces; (2) proposing a rule to establish standards for used oil which is recycled; and (3) proposing a rule to amend the regulations for hazardous waste management under Subtitle C of the Resource Conservation and Recovery Act (hereafter referred to as RCRA) by listing used oil as a hazardous waste. These efforts by EPA are particularly interesting because of both the nature of the prodding from Congress it took to obtain EPA action and the unprecedented volume, degree, and breadth of public opposition these actions generated once taken.

  7. Economics of on-farm production and use of vegetable oils for fuel

    SciTech Connect (OSTI)

    McIntosh, C.S.; Withers, R.V.; Smith, S.M.

    1982-01-01

    The technology of oilseed processing, on a small scale, is much simpler than that for ethanol production. This, coupled with the fact that most energy intensive farm operations use diesel powered equipment, has created substantial interest in vegetable oils as an alternative source of liquid fuel for agriculture. The purpose of this study was to estimate the impact on gross margins resulting from vegetable oil production and utilization in two case study areas, Latah and Power Counties, in Iadho. The results indicate that winter rape oil became a feasible alternative to diesel when the price of diesel reached $0.84 per liter in the Latah County model. A diesel price of $0.85 per liter was required in the Power County model before it became feasible to produce sunflower oil for fuel. 5 tables.

  8. Impacts of the Weatherization Assistance Program in fuel-oil heated houses

    SciTech Connect (OSTI)

    Levins, W.P.; Ternes, M.P.

    1994-10-01

    In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

  9. More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports on the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.

  10. Response of Oil Sands Derived Fuels in Diesel HCCI Operation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Response of Oil Sands Derived Fuels in Diesel HCCI Operation Response of Oil Sands Derived Fuels in Diesel HCCI Operation Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_bunting.pdf (3.17 MB) More Documents & Publications APBF Effects on Combustion Statistical Overview of

  11. Hydrogen Fuel Cell Performance as Telecommunications Backup Power in the United States

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Saur, Genevieve; Sprik, Sam

    2015-03-01

    Working in collaboration with the U.S. Department of Energy (DOE) and industry project partners, the National Renewable Energy Laboratory (NREL) acts as the central data repository for the data collected from real-world operation of fuel cell backup power systems. With American Recovery and Reinvestment Act of 2009 (ARRA) co-funding awarded through DOE's Fuel Cell Technologies Office, more than 1,300 fuel cell units were deployed over a three-plus-year period in stationary, material handling equipment, auxiliary power, and backup power applications. This surpassed a Fuel Cell Technologies Office ARRA objective to spur commercialization of an early market technology by installing 1,000 fuel cell units across several different applications, including backup power. By December 2013, 852 backup power units out of 1,330 fuel cell units deployed were providing backup service, mainly for telecommunications towers. For 136 of the fuel cell backup units, project participants provided detailed operational data to the National Fuel Cell Technology Evaluation Center for analysis by NREL's technology validation team. NREL analyzed operational data collected from these government co-funded demonstration projects to characterize key fuel cell backup power performance metrics, including reliability and operation trends, and to highlight the business case for using fuel cells in these early market applications. NREL's analyses include these critical metrics, along with deployment, U.S. grid outage statistics, and infrastructure operation.

  12. Oil spill response capabilities in the United States

    SciTech Connect (OSTI)

    Westermeyer, W.E. )

    1991-02-01

    The Exxon Valdez incident has been a catalyst for the US to reexamine its technology and policies for fighting oil spills. Many organizations are now at work on the problems highlighted by this sill, including federal and state agencies and the oil industry. It is hoped that the attention generated by the Exxon Valdez will result in fewer spills and a greatly improved capability to fight the ones that will still occur. Cleaning up a discharge of millions of gallons of oil at sea under even moderate environmental conditions is an extraordinary problem. Current national capabilities to respond effectively to such an accident are marginal at best. Response technologies must and will improve, but in addition and perhaps more importantly, many improvements can be made in the way the country has organized itself to fight major spills. Nonetheless, prevention is still the best medicine.

  13. Crude oil resource appraisal in the United States

    SciTech Connect (OSTI)

    Uri, N.D.

    1980-07-01

    Past experience supported an optimistic view of US oil resources prior to the Arab embargo of 1973, although some were aware that exploration and production were declining. An approach to estimating producible reserves, combining the engineering and econometric techniques, uses geologic estimates and a structural model to project when production will peak, the quantity that will be produced, and the time distribution of production. The results indicate that aggregate production will increase with the real price of oil. At $45 per barrel, 20 to 30 billion more barrels will be produced. 18 references. (DCK)

  14. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect (OSTI)

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  15. Overview of the United States spent nuclear fuel program

    SciTech Connect (OSTI)

    Hurt, W.L.

    1997-12-01

    As a result of the end of the Cold War, the mission of the US Department of Energy (DOE) has shifted from an emphasis on nuclear weapons development and production to an emphasis on the safe management and disposal of excess nuclear materials including spent nuclear fuel from both production and research reactors. Within the US, there are two groups managing spent nuclear fuel. Commercial nuclear power plants are managing their spent nuclear fuel at the individual reactor sites until the planned repository is opened. All other spent nuclear fuel, including research reactors, university reactors, naval reactors, and legacy material from the Cold War is managed by DOE. DOE`s mission is to safely and efficiently manage its spent nuclear fuel and prepare it for disposal. This mission involves correcting existing vulnerabilities in spent fuel storage; moving spent fuel from wet basins to dry storage; processing at-risk spent fuel; and preparing spent fuel in road-ready condition for repository disposal. Most of DOE`s spent nuclear fuel is stored in underwater basins (wet storage). Many of these basins are outdated, and spent fuel is to be removed and transferred to more modern basins or to new dry storage facilities. In 1995, DOE completed a complex-wide environmental impact analysis that resulted in spent fuel being sent to one of three principal DOE sites for interim storage (up to 40 years) prior to shipment to a repository. This regionalization by fuel type will allow for economies of scale yet minimize unnecessary transportation. This paper discusses the national SNF program, ultimate disposition of SNF, and the technical challenges that have yet to be resolved, namely, release rate testing, non-destructive assay, alternative treatments, drying, and chemical reactivity.

  16. Oil Shale RD&D Leases in the United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending

  17. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect (OSTI)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  18. Confirmatory Survey of the Fuel Oil Tank Area - Humboldt Bay Power Plant, Eureka, California

    SciTech Connect (OSTI)

    ADAMS, WADE C

    2012-04-09

    During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

  19. Table 5.15 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons)

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand Gallons) Year Distillate Fuel Oil Residential Commercial Industrial Oil Company Farm Electric Power 1 Railroad Vessel Bunkering On-Highway Diesel Military Off-Highway Diesel Other Total 1984 8,215,722 5,538,184 2,555,898 848,083 3,201,600 648,665 2,944,694 1,763,782 16,797,423 700,788 1,756,077 700,864 45,671,779 1985 7,728,057 4,463,226 2,440,661 684,227 3,102,106 523,010 2,786,479 1,698,985 17,279,650 661,644 1,522,041 168,625 43,058,711 1986

  20. The united kingdom's changing requirements for spent fuel storage

    SciTech Connect (OSTI)

    Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N.

    2013-07-01

    The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK.

  1. Fuel cell repeater unit including frame and separator plate

    DOE Patents [OSTI]

    Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

    2013-11-05

    An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

  2. "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Relative Standard Errors for Table 5.2;" " Unit: Percents." ,,,,,"Distillate" ,,,,,"Fuel Oil",,,"Coal" "NAICS",,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)&

  3. Method to upgrade bio-oils to fuel and bio-crude

    DOE Patents [OSTI]

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  4. Transient Testing of Nuclear Fuels and Materials in United States

    SciTech Connect (OSTI)

    Daniel M. Wachs

    2012-12-01

    The US Department of Energy (DOE) has been engaged in an effort to develop and qualify next generation LWR fuel with enhanced performance and safety and reduced waste generation since 2010. This program, which has emphasized collaboration between the DOE, U.S. national laboratories and nuclear industry, was refocused from enhanced performance to enhanced accident tolerance following the events at Fukushima in 2011. Accident tolerant fuels have been specifically described as fuels that, in comparison with standard UO2-Zircaloy, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events. The program maintains an ambitious goal to insert a lead test assembly (LTA) of the new design into a commercial power reactor by 2022 .

  5. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  6. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003" ,"All Buildings*",,"Total Energy Consumption (trillion Btu)" ,"Number of Buildings (thousand)","Floorspace...

  7. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  8. ,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Fuel Sales Volumes",4,"Monthly","22016","1151983" ,"Release Date:","522016" ,"Next Release Date:","612016" ,"Excel File Name:","petconsrefresdnusvwrmgalpdm.xls" ...

  9. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect (OSTI)

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  10. Economics of sunflower oil as an extender or substitute for diesel fuel

    SciTech Connect (OSTI)

    Helgeson, D.L.; Schaffner, L.W.

    1982-05-01

    The economics of sunflower oil as an extender or substitute for diesel fuel in US agriculture, with particular emphasis on North Dakota, is examined. A study of the spot market prices indicates that crude sunflower oil has moved closer competitively with bulk diesel prices. On the question of energy efficiency, it is estimated, that using current production and processing estimates, there is a positive net energy ratio of 5.78 to 1. Processing can take place at the commercial leveL, in intermediate sized plants or on-farm. Costs were analyzed for three sizes of farm presses. (Refs. 6).

  11. High performance internal reforming unit for high temperature fuel cells

    DOE Patents [OSTI]

    Ma, Zhiwen; Venkataraman, Ramakrishnan; Novacco, Lawrence J.

    2008-10-07

    A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

  12. Impacts of the Weatherization Assistance Program in Fuel-Oil Heated Houses

    SciTech Connect (OSTI)

    Levins, W.P.

    1994-01-01

    In 1990, the U.S. Department of Energy (DOE) initiated a national evaluation of its low-income Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental). Total average costs were $1819 per house ($1192 for

  13. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  14. Alabama Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    987,571 1,038,133 1,094,359 1,132,711 1,047,981 1,027,777 1984-2014 Residential 3,971 4,895 432 750 639 722 1984-2014 Commercial 39,802 46,009 48,475 46,654 30,536 27,874 1984-2014 Industrial 90,659 77,542 81,120 120,347 77,119 65,322 1984-2014 Oil Company 0 328 1,035 2,640 2,929 2,985 1984-2014 Farm 17,882 19,881 24,518 24,503 24,651 20,459 1984-2014 Electric Power 8,276 10,372 22,490 9,375 6,514 10,071 1984-2014 Railroad 44,546 42,465 97,177 125,439 63,570 56,873 1984-2014 Vessel Bunkering

  15. Louisiana Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  16. Mississippi Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  17. New Mexico Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    09,709 554,352 574,557 608,490 621,430 669,923 1984-2014 Residential 55 46 37 27 72 53 1984-2014 Commercial 11,030 9,435 9,609 9,145 9,112 12,114 1984-2014 Industrial 33,804 24,429 27,110 31,316 32,029 32,917 1984-2014 Oil Company 9,871 1,705 2,127 5,857 11,218 27,016 1984-2014 Farm 11,278 14,821 10,955 12,816 15,784 11,752 1984-2014 Electric Power 4,321 4,000 1,689 5,155 4,816 3,826 1984-2014 Railroad 245 1,780 1,707 19,123 38,543 45,446 1984-2014 Vessel Bunkering 0 0 0 0 0 0 1984-2014

  18. High temperature solid oxide fuel cell: Customer test units

    SciTech Connect (OSTI)

    Ray, E.R.; Veyo, S.E.

    1993-11-01

    There are three 25-kW class SOFC customer test unit programs; two are in Japan (utility joint ventures), one for Southern California Edison Co. The two in Japan are described: Startup, testing, modifications, and operational performance are discussed.

  19. United States Fuel Resiliency Volume I U.S. Fuels Supply Infrastructur...

    Broader source: Energy.gov (indexed) [DOE]

    ... gas by cryogenically reducing its temperature, store ... base-load generation to coal-fired, hydro-electric, and ... "Shale-related U.S. Gas Plants," Oil & Gas Journal, ...

  20. DISTRIBUTED GENERATION POWER UNITS AT MARGINAL OIL WELL SITES

    SciTech Connect (OSTI)

    Mark A. Carl

    2003-10-29

    The CEC approved funding on April 9, 2003 for $1,000,000.00 instead of the $1,500,000.00 COPE requested for the project. A kickoff meeting with the California Energy Commission (CEC) was held on Monday, April 14, 2003, in their Sacramento, CA offices. Mark Carl, IOGCC project manager for the DOE grant, attended this meeting, along with Bob Fickes with COPE, Edan Prabhu, Mike Merlo and CEC officials. The change in funding by the CEC required a modification in the scope of work and an amended form DOE F 4600.1. The modifications were completed and the IOGCC received approval to commence work on the project on May 9, 2003. On May 29, 2003, Virginia Weyland with DOE/NETL, Mark Carl with IOGCC, and Bob Fickes with COPE, Edan Prabhu and Mike Merlo, consultants with COPE, participated in a teleconference kick-off meeting. During May, 2003, COPE canvassed its membership for potential locations for the four test sites. They received a very good response and have identified at least two potential sites for each of the four test sites. COPE has been obtaining gas samples from the various potential lease sites for analyses to verify the chemical properties analyses which the oil and gas producers provided during the initial contact period. The St. James project located at 814 W. 23 rd Street in Los Angeles, California, was selected as the first test site for the project. A Project Advisory Committee (PAC) was established in May, 2003. The following representatives from each of the following areas of expertise comprise the PAC membership. Acquisition of permits for the initial test site has required drawn out negotiations with CEC which has hindered progress on the technical aspects of the project. The technical aspects will begin aggressively beginning in October, 2003. The Southern California Air Quality Management District (SCAQMD) donated three Capstone micro-turbines to the project. These micro-turbines will be utilized at the St. James Project site located in Los Angeles

  1. AEO Early Release 2013 - oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Growing U.S. oil output and rising vehicle fuel economy to cut U.S. reliance on foreign oil The United States is expected to continue cutting its dependence on petroleum and liquid fuels imports over the rest of this decade because of growing domestic crude oil production and more fuel-efficient vehicles on America's highways. The new long-term outlook from the U.S. Energy Information Administration shows America's dependence on imported petroleum and liquid fuels will decline from 45 percent of

  2. Decision guide to farm fuel production: ethanol, methanol, or vegetable oils

    SciTech Connect (OSTI)

    Kerstetter, J.D.

    1984-09-01

    The purpose of this paper is to inform farmers of the choices they have today regarding production of motor vehicle fuels. Its intent is to inform farmers of what is involved in producing an alternative fuel, its compatibility with existing engines, the costs involved, and the markets for the fuel and any by-products. This paper is not a how-to-do-it manual or a policy document. Some of the data has been developed from the Appropriate Technology Small Grants Program managed by the Washington State Energy Office. Part One provides background information on Washington's fuel use patterns, highlighting the agricultural sector. In Part Two, general considerations common to all alternative fuels are covered. Part Three contains three detailed discussions of the alternative fuels most favored by Washington farmers for production and use - ethanol, vegetable oils, and methanol. The Appendix contains a brief summary of the 11 ethanol projects in Washington funded as a result of the Appropriate Technology Small Grants Program. 5 references, 12 figures, 2 tables.

  3. Experimental plan for the fuel-oil study. Weatherization Assistance Program: Volume 2

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  4. Crude Oil Movements of Crude of by Rail between PAD Districts

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil Fuel Ethanol Biodiesel Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes ...

  5. D1 Fuel Crops Ltd | Open Energy Information

    Open Energy Info (EERE)

    D1 Fuel Crops Ltd Jump to: navigation, search Name: D1 Fuel Crops Ltd Place: London, United Kingdom Zip: SE1 2RE Product: London-based JV between BP and D1 oils focusing on the...

  6. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOE Patents [OSTI]

    Bauman, Richard F.; Ryan, Daniel F.

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  7. "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Relative Standard Errors for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel

  8. "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Relative Standard Errors for Table 5.6;" " Unit: Percents." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel

  9. Study of the competitive viability of minority fuel oil marketers. Final report

    SciTech Connect (OSTI)

    1981-09-30

    Previous studies on the competitive viability of the fuel oil heating market had addressed some of the unique problems facing minority fuel oil marketers (MFMs) within the total market sector (TMS). This study focused on identifying and developing quantitative information on MFMs in the TMS. The specific objective was to determine whether the business problems experienced by MFMs were directly related to their minority status or were characterstic of any firm in the TMS operating under comparable conditions. As an overall conclusion, thorough investigation of the MFMs considered to constitute the universe of minoriy firms within the TMS did not reveal any evidence of overt discrimination affecting the competitive viability of MFMs. Upon analysis, the problems reported by MFMs could not be reasonably ascribed to discrimination on the basis of their minority business status. The study, however, did point up problems unique to MFMs as the result of typical operational and financial characteristics. For example, MFMs, compared to the TMS norm, have not been in the market as long and are smaller in terms of total assets, number of employees, number of trucks, number of accounts and annual volume of oil delivered. Their primary customers are low-income families in urban areas. Financial indicators suggest that the average MFM does not have long-term financial stability. The basis for this overall conclusion, derived by analyses of information from MFMs, as well as many independent sources, is summarized in three parts: (1) MFM industry profile; (2) financial analyses; and (3) problem analyses.

  10. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  11. "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End

  12. Methods of refining natural oils and methods of producing fuel compositions

    SciTech Connect (OSTI)

    Firth, Bruce E; Kirk, Sharon E; Gavaskar, Vasudeo S

    2015-11-04

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent selected from the group consisting of phosphorous acid, phosphinic acid, and a combination thereof; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  13. Methods of refining natural oils, and methods of producing fuel compositions

    SciTech Connect (OSTI)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  14. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  15. Recovery Act. Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration

    SciTech Connect (OSTI)

    Geiger, Gail E.

    2013-09-30

    Solid Oxide Fuel Cell Diesel Auxilliary Power Unit Demonstration Project. Summarizing development of Delphi’s next generation SOFC system as the core power plant to prove the viability of the market opportunity for a 3-5 kW diesel SOFC system. Report includes test and demonstration results from testing the diesel APU in a high visibility fleet customer vehicle application.

  16. CLIMATE CHANGE FUEL CELL PROGRAM UNITED STATES COAST GUARD AIR STATION CAPE COD BOURNE, MASSACHUSETTS

    SciTech Connect (OSTI)

    John K. Steckel Jr

    2004-06-30

    This report covers the first year of operation of a fuel cell power plant, installed by PPL Spectrum, Inc. (PPL) under contract with the United States Coast Guard (USCG), Research and Development Center (RDC). The fuel cell was installed at Air Station Cape Cod in Bourne, MA. The project had the support of the Massachusetts Technology Collaborative (MTC), the Department of Energy (DOE), and Keyspan Energy. PPL selected FuelCell Energy, Inc. (FCE) and its fuel cell model DFC{reg_sign}300 for the contract. Grant contributions were finalized and a contract between PPL and the USCG for the manufacture, installation, and first year's maintenance of the fuel cell was executed on September 24, 2001. As the prime contractor, PPL was responsible for all facets of the project. All the work was completed by PPL through various subcontracts, including the primary subcontract with FCE for the manufacture, delivery, and installation of the fuel cell. The manufacturing and design phases proceeded in a relatively timely manner for the first half of the project. However, during latter stages of manufacture and fuel cell testing, a variety of issues were encountered that ultimately resulted in several delivery delays, and a number of contract modifications. Final installation and field testing was completed in April and May 2003. Final acceptance of the fuel cell was completed on May 16, 2003. The fuel cell has operated successfully for more than one year. The unit achieved an availability rate of 96%, which exceeded expectations. The capacity factor was limited because the unit was set at 155 kW (versus a nameplate of 250 kW) due to the interconnection with the electric utility. There were 18 shutdowns during the first year and most were brief. The ability of this plant to operate in the island mode improved availability by 3 to 4%. Events that would normally be shutdowns were simply island mode events. The mean time between failure was calculated at 239 hours, or slightly less

  17. Monitoring of Olympic National Park Beaches to determine fate and effects of spilled bunker C fuel oil

    SciTech Connect (OSTI)

    Strand, J.A.; Cullinan, V.I.; Crecelius, E.A.; Fortman, T.J.; Citterman, R.J.; Fleischmann, M.L.

    1990-10-01

    On December 23, 1988, the barge Nestucca was accidentally struck by its tow, a Souse Brothers Towing Company tug, releasing approximately 230,000 gallons of Bunker C fuel oil and fouling beaches from Grays Harbor north to Vancouver Island. Affected beaches in Washington included a 40-mile-long strip that has been recently added to Olympic National Park. The purpose of the monitoring program documented in this report was to determine the fate of spilled Bunker C fuel oil on selected Washington coastal beaches. We sought to determine (1) how much oil remained in intertidal and shallow subtidal habitats following clean-up and weathering, (2) to what extent intertidal and/or shallow subtidal biotic assemblages have been contaminated, and (3) how rapidly the oil has left the ecosystem. 45 refs., 18 figs., 8 tabs.

  18. Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

  19. Fuel cell collaboration in the United States. A report to the Danish Partnership for Hydrogen and Fuel Cells

    SciTech Connect (OSTI)

    Not Available

    2011-08-15

    The purpose of this report is to provide members of the Danish Partnership for Hydrogen and Fuel Cells with information regarding collaborative opportunities in the United States. The report is designed to provide an overview of key issues and activities and to provide guidance on strategies for finding U.S. research and commercial partners and gaining access to the U.S. market. Section 1 of this report provides an overview of the key drivers of policy at the federal and state government levels regarding hydrogen and fuel cell technologies and provides a perspective of the U.S. industry and key players. It also suggests three general pathways for accessing U.S. opportunities: enhancing visibility; developing vendor relationships; and establishing a formal presence in the U.S. The next sections summarize focus areas for commercial and research activity that currently are of the greatest interest in the U.S. Section 2 describes major programs within the federal government and national laboratories, and discusses various methods for identifying R and D funding opportunities, with an overview of federal acquisition regulations. Section 3 reviews the efforts of several state governments engaging the fuel cell industry as an economic driver and presents an overview of acquisition at the state level. Section 4 discusses university research and development (R and D) and university-industry partnerships. There are 12 appendices attached to the report. These appendices provide more detailed information regarding the key federal government agencies involved in fuel cells and hydrogen, state-specific policies and activities, national laboratories and universities, and other information regarding the fuel cell and hydrogen industry in the U.S. (Author)

  20. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect (OSTI)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  1. Effects of Aroclor 1254 and No. 2 fuel oil, singly and in combination, on predator-prey interactions in coho salmon (Oncorhynchus kisutch)

    SciTech Connect (OSTI)

    Folmar, L.C.; Hodgins, H.O.

    1982-07-01

    The effects of No. 2 fuel oil on predator-prey interactions of coho salmon were examined. Since aquatic organisms under natural conditions are simultaneously exposed to more than one toxicant, the effects of fuel oil plus polychlorinated biphenyls (PCBs) were also evaluated. Experimental fish were either injected with a single intraperitoneal dose of 150 g/kg Aroclor 1254, exposed to fuel oil in seawater, or injected with PCB and then exposed to fuel oil. Most of the fish subjected to the fuel oil or PCB treatment began to show behavioral modifications after 5 days of exposure. Those fish were, in general, lethargic and did not attempt to capture the prey presented to them. PCB content of the livers from fish sacrificed at the termination of the predator-prey evaluations were as follows: PCB injected, 329 +/- 98 ..mu..g/kg: oil exposed, 58 +/- 21 ..mu..g/kg; PCB injected plus oil exposed 309 +/- 83 ..mu..g/kg. Concentrations of all hydrocarbons detected by gas chromatography were significantly higher in the livers of the fish exposed to fuel oil only then in the fish which were injected with PCB seven days prior to the fuel oil exposure. The highest hydrocarbon concentrations detected were those of the naphthalenic compounds. (JMT)

  2. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-15

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  3. Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor

    SciTech Connect (OSTI)

    Kelley; Dana A. , Farooque; Mohammad , Davis; Keith

    2007-10-02

    A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.

  4. MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit 4

    SciTech Connect (OSTI)

    Carbajo, Juan J

    2012-01-01

    Unit 4 of the Fukushima Dai-ichi Nuclear Power Plant suffered a hydrogen explosion at 6:00 am on March 15, 2011, exactly 3.64 days after the earthquake hit the plant and the off-site power was lost. The earthquake occurred on March 11 at 2:47 pm. Since the reactor of this Unit 4 was defueled on November 29, 2010, and all its fuel was stored in the spent fuel pool (SFP4), it was first believed that the explosion was caused by hydrogen generated by the spent fuel, in particular, by the recently discharged core. The hypothetical scenario was: power was lost, cooling to the SFP4 water was lost, pool water heated/boiled, water level decreased, fuel was uncovered, hot Zircaloy reacted with steam, hydrogen was generated and accumulated above the pool, and the explosion occurred. Recent analyses of the radioisotopes present in the water of the SFP4 and underwater video indicated that this scenario did not occur - the fuel in this pool was not damaged and was never uncovered the hydrogen of the explosion was apparently generated in Unit 3 and transported through exhaust ducts that shared the same chimney with Unit 4. This paper will try to answer the following questions: Could that hypothetical scenario in the SFP4 had occurred? Could the spent fuel in the SPF4 generate enough hydrogen to produce the explosion that occurred 3.64 days after the earthquake? Given the magnitude of the explosion, it was estimated that at least 150 kg of hydrogen had to be generated. As part of the investigations of this accident, MELCOR models of the SFP4 were prepared and a series of calculations were completed. The latest version of MELCOR, version 2.1 (Ref. 1), was employed in these calculations. The spent fuel pool option for BWR fuel was selected in MELCOR. The MELCOR model of the SFP4 consists of a total of 1535 fuel assemblies out of which 548 assemblies are from the core defueled on Nov. 29, 2010, 783 assemblies are older assemblies, and 204 are new/fresh assemblies. The total decay

  5. Oil

    Broader source: Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  6. Nondestructive techniques for assaying fuel debris in piping at Three Mile Island Unit 2

    SciTech Connect (OSTI)

    Vinjamuri, K.; McIsaac, C.V.; Beller, L.S.; Isaacson, L.; Mandler, J.W.; Hobbins, R.R. Jr.

    1981-11-01

    Four major categories of nondestructive techniques - ultrasonic, passive gamma ray, infrared detection, and remote video examination - have been determined to be feasible for assaying fuel debris in the primary coolant system of the Three Mile Island Unit 2 (TMI-2) Reactor. Passive gamma ray detection is the most suitable technique for the TMI-2 piping; however, further development of this technique is needed for specific application to TMI-2.

  7. Mechanisms of particulate matter formation in spark-ignition engines. 2: Effect of fuel, oil, and catalyst parameters

    SciTech Connect (OSTI)

    Kayes, D.; Hochgreb, S.

    1999-11-15

    A combined experimental and modeling effort was performed in order to understand how particulate matter (PM) is formed in spark-ignition (SI) internal combustion engines. Fuel type and fuel/air ratio strongly affect particle concentrations. PM emissions vary by up to 6 orders of magnitude between fuels at the same fuel/air ratio. Minimum PM concentrations are emitted at a global fuel/air ratio within 10% of stoichiometric, with the exact value depending on the particular fuel. Concentrations can increase by more than 3 orders of magnitude when the fuel/air ratio is either increased or decreased 30% from stoichiometric. Particles derived from oil consumption were found to be between 0 and 40% of the PM concentration for the oils used in the present experiments. Differences in PM emissions with and without the catalytic converter are not statistically significant. Particulate number and mass concentrations plus particle sizes are addressed in this paper, as is the correlation between PM and hydrocarbon (HC) emissions.

  8. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOE Patents [OSTI]

    McPheeters, Charles C.; Dees, Dennis W.; Myles, Kevin M.

    1999-01-01

    A single cell unit of a solid oxide fuel cell that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units.

  9. Solid oxide fuel cell with multi-unit construction and prismatic design

    DOE Patents [OSTI]

    McPheeters, C.C.; Dees, D.W.; Myles, K.M.

    1999-03-16

    A single cell unit of a solid oxide fuel cell is described that is individually fabricated and sintered prior to being connected to adjacent cells to form a solid oxide fuel cell. The single cell unit is comprised of a shaped anode sheet positioned between a flat anode sheet and an anode-electrolyte-cathode (A/E/C) sheet, and a shaped cathode sheet positioned between the A/E/C sheet and a cathode-interconnect-anode (C/I/A) sheet. An alternate embodiment comprises a shaped cathode sheet positioned between an A/E/C sheet and a C/I/A sheet. The shaped sheets form channels for conducting reactant gases. Each single cell unit is individually sintered to form a finished sub-assembly. The finished sub-assemblies are connected in electrical series by interposing connective material between the end surfaces of adjacent cells, whereby individual cells may be inspected for defects and interchanged with non-defective single cell units. 7 figs.

  10. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    F8: Distillate Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures ... Where shown, (s) Expenditure value less than 0.05. Notes: Distillate fuel oil estimates ...

  11. INVENTORY AND DESCRIPTION OF COMMERCIAL REACTOR FUELS WITHIN THE UNITED STATES

    SciTech Connect (OSTI)

    Vinson, D.

    2011-03-31

    There are currently 104 nuclear reactors in 31 states, operated by 51 different utilities. Operation of these reactors generates used fuel assemblies that require storage prior to final disposition. The regulatory framework within the United States (U.S.) allows for the licensing of used nuclear fuel storage facilities for an initial licensing period of up to 40 years with potential for license extensions in 40 years increments. Extended storage, for periods of up to 300 years, is being considered within the U.S. Therefore, there is an emerging need to develop the technical bases to support the licensing for long-term storage. In support of the Research and Development (R&D) activities required to support the technical bases, a comprehensive assessment of the current inventory of used nuclear fuel based upon publicly available resources has been completed that includes the most current projections of used fuel discharges from operating reactors. Negotiations with the nuclear power industry are ongoing concerning the willingness of individual utilities to provide information and material needed to complete the R&D activities required to develop the technical bases for used fuel storage for up to 300 years. This report includes a status of negotiations between DOE and industry in these regards. These negotiations are expected to result in a framework for cooperation between the Department and industry in which industry will provide and specific information on used fuel inventory and the Department will compensate industry for the material required for Research and Development and Testing and Evaluation Facility activities.

  12. Oil and power: an analysis of United States economic interests and strategies in the Middle East. Study project

    SciTech Connect (OSTI)

    Poche, C.D.

    1988-05-31

    The United States met virtually all of its oil needs from domestic sources until the early 1970s. This self-sufficiency gradually eroded as our internal production failed to keep pace with rising levels of energy consumption. As a result, our new energy needs have been satisfied primarily by petroleum imports. The 1973 Arab oil embargo and supply curtailments associated with the Iranian Revolution in 1979 were painful experiences for the nation. By 1980, the United States was importing 8.5 million barrels of oil per day at a cost many times higher than the going rate in earlier years. Dependence on Middle East oil had become a frightening reality. During the same period, trade deficits, inflation, interest rates, and balance of payment problems were increasing at an alarming rate. Since that point in time, the United States has made progress in building a strong foundation for energy security. Despite these gains the United States is rapidly approaching another critical juncture in its battle to reduce dependency on imported oil. It also suggests national economic strategies that could be employed to improve America's energy prospects for the future.

  13. Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and compatibility, and operational issues, then prioritized next steps for expanding use of pyrolysis oil as a replacement for home heating oil in the Northeast

  14. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

  15. Geography of Existing and Potential Alternative Fuel Markets in the United States

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Geography of Existing and Potential Alternative Fuel Markets in the United States Caley Johnson and Dylan Hettinger Technical Report NREL/TP-5400-60891 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  16. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  17. MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit...

    Office of Scientific and Technical Information (OSTI)

    ALUMINIUM; BOILING; DIMENSIONS; EARTHQUAKES; EXPLOSIONS; FUEL ASSEMBLIES; FUEL RACKS; HYDROGEN; NUCLEAR POWER PLANTS; OXIDATION; OXYGEN; RADIOISOTOPES; REACTOR ACCIDENTS;...

  18. The Modeling of a Standalone Solid-Oxide Fuel Cell Auxiliary Power Unit

    SciTech Connect (OSTI)

    Lu, Ning; Li, Qinghe; Sun, Xin; Khaleel, Mohammad A.

    2006-10-27

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module; two heat exchanger modules; and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will benefit design engineers to adjust design parameters to optimize the performance. The modeling results of the heat-up stage of an SOFC APU and the output voltage response to a sudden load change are presented in the paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  19. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H.

    1996-12-31

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  20. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H. )

    1996-01-01

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  1. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  2. Study of trajectories and combustion of fuel-oil droplets in the combustion chamber of a power-plant boiler with the use of a mathematical model

    SciTech Connect (OSTI)

    Enyakin, Yu.P.; Usman, Yu.M.

    1988-03-01

    A mathematical model was developed to permit study of the behavior of fuel-oil droplets in a combustion chamber, and results are presented from a computer calculation performed for the 300-MW model TGMP-314P boiler of a power plant. The program written to perform the calculations was organized so that the first stage would entail calculation of the combustion (vaporization) of a droplet of liquid fuel. The program then provided for a sudden decrease in the mass of the fuel particle, simulating rupture of the coke shell and ejection of some of the liquid. The program then considered the combustion of a hollow coke particle. Physicochemical parameters characteristic of fuel oil M-100 were introduced in the program in the first stage of computations, while parameters characteristic of the coke particle associated with an unburned fuel-oil droplet were included in the second stage.

  3. Oil and Gas Development in the United States in the Early 1990's

    Reports and Publications (EIA)

    1995-01-01

    An analysis of the growing prominence of smaller energy companies in U.S. oil and natural gas production.

  4. United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004

    Reports and Publications (EIA)

    2006-01-01

    This report discusses the regional and temporal trends in producing and nonproducing crude oil and natural gas reserves using the Energy Information Administration's (EIA) categorization of reserves. The report first focuses on EIA's collection and reporting of crude oil and natural gas reserves data, followed by a discussion of the natural gas reserve trends, and then the crude oil reserve trends.

  5. An evaluation of known remaining oil resources in the United States: Appendix. Volume 10

    SciTech Connect (OSTI)

    1993-11-01

    Volume ten contains the following appendices: overview of improved oil recovery methods which covers enhanced oil recovery methods and advanced secondary recovery methods; the benefits of improved oil recovery, selected data for the analyzed states; and list of TORIS fields and reservoirs.

  6. The examination of pretreatment and end use technologies for dirty fuels produced from coal gasification, coal pyrolysis, oil shale processing, and heavy oil recovery: Final technology status report

    SciTech Connect (OSTI)

    Raden, D.P.; Page, G.C.

    1987-01-01

    The objective of this study was to identify pretreatment (upgrading) and end use technologies which: (1) reduce environmental, health and safety impacts, (2) reduce pollution control costs, or (3) reduce upgrading costs of ''dirty fuels'' while producing higher value energy products. A comprehensive list of technologies was developed for upgrading the various dirty fuels to higher value and products. Fifty-two process flow concepts were examined and from these four process flow concepts were chosen for further development. These are: heavy oil recovery and in situ hydrotreating; wet air oxidation in a downhole reactor; total raw gas shift; and high density fuels via vacuum devolatilization. Each of these four process flow concepts described exhibit the potential for reducing environmental, health and safety impacts and/or pollution control costs. In addition these concepts utilize dirty fuels to produce an upgraded or higher value energy product. These concepts should be developed and evaluated in greater detail to assess their technical and economical viability. Therefore, it is recommended that a program plan be formulated and a proof-of-concept research program be performed for each process concept. 3 refs., 5 figs., 11 tabs.

  7. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  8. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    DOE Patents [OSTI]

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  9. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  10. Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) March 22, 2015 Bio-Oil Technology Area Review Principal Investigator : Zia Abdullah Organization: Battelle Memorial Institute 1 Goal Statement * 1,000 hrs. TOS * H/C product 30% blendable with ASTM petroleum fuels * Compatibility with petroleum refining unit operations * Fast Pyrolysis * In-situ catalytic fast pyrolysis * Ex-situ catalytic fast pyrolysis * Hydropyrolysis * Hydrothermal liquefaction * Solvent liquefaction Addresses all FOA-

  11. Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition

    SciTech Connect (OSTI)

    Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

    1995-12-31

    A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

  12. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    The report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; (2) propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; (3) natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; (4) residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the United States and selected cities; and (6) US total heating degree-days by city.

  13. Postirradiation examination of light water reactor fuel: a United States perspective

    SciTech Connect (OSTI)

    Neimark, L.A.; Ocken, H.

    1980-01-01

    Poolside and hot-cell postirradiation examination (PIE) have played and will continue to play a significant role in the US LWR program. The principal uses of PIE are in fuel surveillance, fuel improvement, and failure analysis programs and in the postmortem analysis of safety-related tests. Institutional problems associated with fuel shipping, waste disposal, and fuel disposal can be expected to pose obstacles to hot-cell examinations and likely result in more sophisticated poolside examinations.

  14. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  15. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

  16. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...117,52,8,117,43,"Q","Q" "District Chilled Water ......",50,50,50,21,3,43,50,"Q","Q" ...

  17. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ...,1839,5891,2354,"Q","Q" "District Chilled Water ......",2750,2750,2750,1316,749,2354,2750...

  18. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  19. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  20. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  1. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  2. Geography of Existing and Potential Alternative Fuel Markets in the United States

    SciTech Connect (OSTI)

    Johnson, C.; Hettinger, D.

    2014-11-01

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  3. Evaluation of dense-phase ultrafine coal (DUC) as a fuel alternative for oil- and gas-designed boilers and heaters. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Utility and industrial firms currently using oil- and gas-fired boilers have an interest in substitution of coal for oil and gas as the primary boiler fuel. This interest stems from coal`s two main advantages over oil and gas-lower cost and security of supply. Recent efforts in the area of coal conversion have been directed to converting oil- and gas- fired boilers which were originally designed for coal-firing or were designed with some coal-firing capability. Boilers designed exclusively for oil- or gas-firing have not been considered viable candidates for coal conversion because they generally require a significant capacity derating and extensive and costly modifications. As a result, conversion of boilers in this class to coal-firing has generally been considered unattractive. Renewed interest in the prospects for converting boilers designed exclusively for oil- and gas-firing to coal firing has centered around the concept of using ``ultra fine`` coal as opposed to ``conventional grind`` pulverized coal. The main distinction being the finer particle size to which the former is ground. This fuel type may have characteristics which ameliorate many of the boiler problems normally associated with pulverized coal-firing. The overall concept for ultrafine coal utilization is based on a regional large preparation plant with distribution of a ready to fire fuel directly to many small users. This differs from normal practice in which final coal sizing is performed in pulverizers at the user`s site.

  4. EIA: High Oil Prices, GHG Controls Would Help Clean Energy Grow

    Broader source: Energy.gov [DOE]

    The growth of renewable energy and renewable fuels in the United States will be significantly greater under scenarios involving high oil prices and stricter controls on greenhouse gas (GHG) emissions, according to DOE's Energy Information Administration (EIA).

  5. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils

  6. Oil atlas: National Petroleum Technology Office activities across the United States

    SciTech Connect (OSTI)

    Tiedemann, H.A.

    1998-03-01

    Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

  7. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Early products de- rived from shale oil included kerosene and lamp oil, paraffin, fuel oil, lubricating oil and grease, naphtha, illuminating gas, and ammonium sulfate fertilizer. ...

  8. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2002-02-01

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  9. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation (2005)

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  10. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island - Unit 2 Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Gregory G. Hall

    2003-02-01

    This report presents the results of the 2002 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  11. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham

    2001-02-01

    This report presents the results of the 2000 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  12. Annual Radiological Environmental Monitoring Program Report for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    G. G. Hall

    2000-02-01

    This report presents the results of the 1999 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Three Mile Island, Unit 2, Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the two predominant radiation exposure pathways, potential airborne radioactivity releases and direct radiation exposure, indicate facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  13. Examining the potential for voluntary fuel economy standards in the United States and Canada.

    SciTech Connect (OSTI)

    Plotkin, S.; Greene, D.; Duleep, K.

    2003-03-19

    This report is designed to assist the U.S. Department of Energy, the U.S. government in general, and Natural Resources Canada with understanding the potential for voluntary fuel economy standards designed to increase the fuel economy of the North American fleet of light-duty vehicles (LDVs-passenger cars and light trucks) within a 10-15-year timeframe. The approach of this study has been: First, to examine and evaluate recent fuel economy initiatives taken in Japan and Europe; Second, to review the technologies available to improve fuel economy in the U.S. (and Canadian) fleets, focusing on their costs and fuel economy improvement potential; Third, to identify and broadly evaluate some alternatives to the current U.S. and Canadian Corporate Average Fuel Economy system of specifying uniform fuel economy targets (27.5 mpg for cars, 20.7 mpg for light trucks) for individual companies; and Fourth, to try to determine an approximate level of fuel economy increase and form of company agreements that would be conducive to a voluntary agreement, based on the assumption that an acceptable voluntary standard would impose an equitable burden on each manufacturer and would be approximately cost-effective from consumers' private perspectives.

  14. Thermal upgrading of residual oil to light product and heavy residual fuel

    SciTech Connect (OSTI)

    Yan, T.Y.; Shu, P.

    1986-08-05

    The method is described of upgrading residual oil boiling in the range of 1050/sup 0/F+ comprising: thermally cracking the residual oil at a temperature of 650/sup 0/-900/sup 0/F, a pressure of 0-100 psig, and a residence time of 0.1 to 5 hours at the highest severity in the range between about 1,000-18,000 seconds, as expressed in equivalent reaction time at 800/sup 0/F, sufficient to convert at least about 50 wt% of the residual oil to light products, substantially without the formation of solid coke; recovering separate fractions of light product and emulsifiable heavy bottom product which has a fusion temperature below about 150/sup 0/C and a quinoline-insoluble content between about 10 wt% and 30 wt% and wherein the highest severity is determined by a functional relationship between the asphaltene content of the residual oil feedstock and the heavy bottom product yield and quinoline-insoluble content.

  15. "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)"

    U.S. Energy Information Administration (EIA) Indexed Site

    2.3 Relative Standard Errors for Table 2.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," " " "," "," "," ",," "," ",," " "Economic",,"Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel

  16. Fuel cell programs in the United States for stationary power applications

    SciTech Connect (OSTI)

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued government and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.

  17. Table 4.3 Offsite-Produced Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Residual Distillate Natural LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,038 314 6 53 445 14 25 Q 181 20-49 918 296 11 19 381 10 97 5 97 50-99 1,018 308 7 13 440 5 130 6 110

  18. Establishing a reliable source of fuel for Department of Defense requirements: Effective petroleum, oil, and lubricant financial managment. Final report

    SciTech Connect (OSTI)

    Scherer, T.F.

    1981-12-01

    The Defense Fuel Supply Center (DFSC) is the management and procurement agency for petroleum for the Department of Defense. Its mission is to procure refined petroleum products to meet military service requirements worldwide and federal requirements within the United States. The procurement options analyzed are divided into two categories -- direct and indirect methods of acquiring products. Through the analysis discussed, it will be shown that the only viable solution to DFSC's problem lies in purchasing the desired quantities using direct acquisition methods by reducing the cost incurred to a refiner for supplying military products.

  19. Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss and Catherine Birney

    2011-05-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.

  20. HOW MANY DID YOU SAY? HISTORICAL AND PROJECTED SPENT NUCLEAR FUEL SHIPMENTS IN THE UNITED STATES, 1964 - 2048

    SciTech Connect (OSTI)

    Halstead, Robert J.; Dilger, Fred

    2003-02-27

    No comprehensive, up-to-date, official database exists for spent nuclear fuel shipments in the United States. The authors review the available data sources, and conclude that the absence of such a database can only be rectified by a major research effort, similar to that carried out by Oak Ridge National Laboratory (ORNL) in the early 1990s. Based on a variety of published references, and unpublished data from the U.S. Nuclear Regulatory Commission (NRC), the authors estimate cumulative U.S. shipments of commercial spent fuel for the period 1964-2001. The cumulative estimates include quantity shipped, number of cask-shipments, and shipment-miles, by truck and by rail. The authors review previous estimates of future spent fuel shipments, including contractor reports prepared for the U.S. Department of Energy (DOE), NRC, and the State of Nevada. The DOE Final Environmental Impact Statement (FEIS) for Yucca Mountain includes projections of spent nuclear fuel and high-level radioactive was te shipments for two inventory disposal scenarios (24 years and 38 years) and two national transportation modal scenarios (''mostly legal-weight truck'' and ''mostly rail''). Commercial spent fuel would compromise about 90 percent of the wastes shipped to the repository. The authors estimate potential shipments to Yucca Mountain over 38 years (2010-2048) for the DOE ''mostly legal-weight truck'' and ''mostly rail'' scenarios, and for an alternative modal mix scenario based on current shipping capabilities of the 72 commercial reactor sites. The cumulative estimates of future spent fuel shipments include quantity shipped, number of cask-shipments, and shipment-miles, by legal-weight truck, heavy-haul truck, rail and barge.

  1. Fuel Summary for Peach Bottom Unit 1 High-Temperature Gas-Cooled Reactor Cores 1 and 2

    SciTech Connect (OSTI)

    Karel I. Kingrey

    2003-04-01

    This fuel summary report contains background and summary information for the Peach Bottom Unit 1, High-Temperature, Gas-Cooled Reactor Cores 1 and 2. This report contains detailed information about the fuel in the two cores, the Peach Bottom Unit 1 operating history, nuclear parameters, physical and chemical characteristics, and shipping and storage canister related data. The data in this document have been compiled from a large number of sources and are not qualified beyond the qualification of the source documents. This report is intended to provide an overview of the existing data pertaining to spent fuel management and point to pertinent reference source documents. For design applications, the original source documentation must be used. While all referenced sources are available as records or controlled documents at the Idaho National Engineering and Environmental Laboratory (INEEL), some of the sources were marked as informal or draft reports. This is noted where applicable. In some instances, source documents are not consistent. Where they are known, this document identifies those instances and provides clarification where possible. However, as stated above, this document has not been independently qualified and such clarifications are only included for information purposes. Some of the information in this summary is available in multiple source documents. An effort has been made to clearly identify at least one record document as the source for the information included in this report.

  2. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect (OSTI)

    Forsberg, Charles W.

    2006-07-01

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  3. Table 3. Annual commercial spent fuel discharges and burnup

    Gasoline and Diesel Fuel Update (EIA)

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and

  4. A practical strategy for reducing the future security risk of United States spent nuclear fuel

    SciTech Connect (OSTI)

    Chodak, P. III; Buksa, J.J.

    1997-06-01

    Depletion calculations show that advanced oxide (AOX) fuels can be used in existing light water reactors (LWRs) to achieve and maintain virtually any desired level of US (US) reactor-grade plutonium (R-Pu) inventory. AOX fuels are composed of a neutronically inert matrix loaded with R-Pu and erbium. A 1/2 core load of 100% nonfertile, 7w% R-Pu AOX and 3.9 w% UO{sub 2} has a net total plutonium ({sup TOT}Pu) destruction rate of 310 kg/yr. The 20% residual {sup TOT}Pu in discharged AOX contains > 55% {sup 242}Pu making it unattractive for nuclear explosive use. A three-phase fuel-cycle development program sequentially loading 60 LWRs with 100% mixed oxide, 50% AOX with a nonfertile component displacing only some of the {sup 238}U, and 50% AOX, which is 100% nonfertile, could reduce the US plutonium inventory to near zero by 2050.

  5. Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States

    SciTech Connect (OSTI)

    Milbrandt, A.; Kinchin, C.; McCormick, R.

    2013-12-01

    The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.

  6. Can industry`s `fourth` fossil fuel establish presence in US?

    SciTech Connect (OSTI)

    Armor, A.F.; Dene, C.E.

    1996-09-01

    After five years of commercial experience burning Orimulsion overseas, US utilities are now evaluating the new fuel as a serious alternative to oil. In their relentless drive to remain competitive, electric utilities with oil-fired generating units are searching for lower cost fuel alternatives. Because of high fuel prices, oil-fired units have low capacity factors. Only 23 out of 142 oil-capable units in the US had capacity factors greater than 50% in 1993; the average was a mere 24%. Utility consumption of fuel oil slid from over 600,000 barrels (bbl)/day in 1989 to less than 200,000 bbl/day last year. Orimulsion now fuels nearly 3,000 MW/yr worldwide. The UK`s PowerGen Ltd, currently the world`s largest consumer of Orimulsion, fires some 10-million bbl/yr at two 500-MW units at its Ince plant and three 120-MW units at its Richborough plant. Both plants formerly burned fuel oil, and have been using Orimulsion since 1991. Canada`s New Brunswick Power Corp has fired Orimulsion in two units at its Dalhousie plant since 1994 (Power, April 1995, p 27); one 105-MW unit was originally designed for fuel oil, the other 212-MW unit was designed for coal. Last year, Denmark`s SK Power converted its coal-fired, 700-MW Asnaes Unit 5 to Orimulsion firing. And in the US, Florida Power and Light Co. (FP and L) has signed a 20-yr fuel supply contract with Bitor America Corp (Boca Raton, Fla.), for two 800-MW units at the oil-fired Manatee plant, contingent on securing necessary permits. The Manatee installation (Power, September 1994, p 57) would be the first in the US to burn the fuel. Today, five years after Orimulsion begun to be used commercially, many of the lingering questions involving the new fuel`s handling, transportation, combustion, emissions control, spill control, and waste utilization have been settled. Several US utilities have expressed serious interest in the fuel as an alternative to oil.

  7. Effect of a sudden fuel shortage on freight transport in the United States: an overview

    SciTech Connect (OSTI)

    Hooker, J N

    1980-01-01

    A survey was made of the potential effects of a sudden reduction of fuel supplies on freight transport via truck, rail, water, and pipeline. After a brief discussion of the energy characteristics of each of these modes of transport, short-term strategies for making better use of fuel in a crisis are investigated. Short-term is taken to mean something on the order of six months, and a crisis is taken to be the result of something on the order of a 20% drop in available fuel. Although no succinct or well-established conclusions are drawn, the gist of the paper is that the potential for short-term conservation, without a serious disruption of service, exists but does not appear to be large. It is remarked that it is possible, through further study, to obtain a fairly accurate reckoning of the physical ability of the freight transport network to weather a fuel crisis, but that it is impossible to say in advance what freight carriers will in fact do with the network.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biomass-based diesel is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel, such as biodiesel or non-ester renewable diesel, and ...

  9. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway

    SciTech Connect (OSTI)

    Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K.

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  10. Turbine fuels from tar sands bitumen and heavy oil. Phase I. Preliminary process analysis. Interim report, 8 July 1983-9 April 1984

    SciTech Connect (OSTI)

    Talbot, A.F.; Elanchenny, V.; Macris, A.; Schwedock, J.P.

    1985-04-09

    The strategic potential of domestic bitumens and heavy crude oils as substitutes for imported crude rests with their efficient conversion into aviation turbine fuels. In this Phase I study, preliminary analyses of several processing schemes were performed. The comparison included both hydrogen-addition and carbon-rejection upgrading processes. Projected JP-4 yields, costs, and thermal efficiencies suggest further exploration of the hydrovisbreaking process. For Phase II, laboratory-scale demonstration of the recommended process is proposed.

  11. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger Manager, Renewable Energy & Chemicals Development UOP, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information © Copyright 2015 UOP LLC, a Honeywell Company 2 File Number Goal Statement * Demonstrate a technically and economically viable approach for converting

  12. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway

    SciTech Connect (OSTI)

    Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  13. Global Alternative Fuels | Open Energy Information

    Open Energy Info (EERE)

    Alternative Fuels Jump to: navigation, search Name: Global Alternative Fuels Place: El Paso, Texas Zip: 79922 Product: Global Alternative Fuels processes virgin oils (palm,...

  14. Environmental benefits of replacing fuel oil by natural gas in the metropolitan region of Sao Paulo, Brazil

    SciTech Connect (OSTI)

    Kondo, S.; Assuncao, J.V. de

    1998-12-31

    The Metropolitan Region of Sao Paulo (Brazil) has a population 16.322 million people (1995 estimate) living in an area of 8,051 km2 with most of them concentrated in the city of Sao Paulo with 9.8 million people and 4.6 million cars. Although with an air quality better than some other Latin American megacities such as Mexico and Santiago do Chile, the air quality still exceeds the national air quality standards. In 2/17/1993 Brazilian Petroleum Company (PETROBRAS) and the Bolivian Petroleum Company (Yacimientos Petroliferos Fiscales Bolivianos -- YPFB) signed an agreement to bring natural gas from Bolivia to the south and southeast of Brazil. The end of the construction of the gas pipeline will be in 1999, and it will deliver 4 million Nm3/day of natural gas to COMGAS Sao Paulo State Gas Company. This amount will increase to 8.1 million Nm3/day by the year 2006, that will be sufficient to supply the Sao Paulo Metropolitan Region market need at that time. In this study an estimate of the influence in the air quality was performed supposing the substitution of fuel oil by natural gas in industry and also in diesel buses. The results showed that there will be benefits in relation to sulfur dioxide, PM10, greenhouse gases and trace elements, and negligible effects in relation to NO{sub x}, NMTOC and carbon monoxide.

  15. Oil shale technology. Final report

    SciTech Connect (OSTI)

    NONE

    1995-03-01

    This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

  16. Crude oil as refinery feed stock

    SciTech Connect (OSTI)

    Boduszynski, M.M.; Farrell, T.R.

    1995-12-31

    This paper gives a brief overview of the integrated oil refinery. It illustrates that crude oil refining involves {open_quotes}molecular tailoring,{close_quotes} where feed stock molecules are {open_quotes}tailored{close_quotes} through catalytic processing to make products with the most desirable composition. Chemical composition of crude oil as refinery feed stock is discussed. The emphasis is on the understanding of molecular transformations which occur in refinery processes to manufacture light transportation fuels. Diesel fuel manufacturing is used as an example. Recent environmental legislation in the United States has necessitated a significant upgrade in the quality of diesel fuel used for highway transportation. Examples are given to illustrate the impact that petroleum chemistry may have on the industry`s response to government regulations.

  17. Heating Oil and Propane Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  18. Proceedings of the 1998 oil heat technology conference

    SciTech Connect (OSTI)

    McDonald, R.J.

    1998-04-01

    The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

  19. The United States remains unprepared for oil import disruptions. Volume I. summary: includes conclusions and recommendations. Report to the Congress

    SciTech Connect (OSTI)

    Not Available

    1981-09-29

    The U.S. Government is almost totally unprepared to deal with disruptions in oil imports. Oil import disruptions--such as the 1973 oil embargo and the 1979 Iranian shortfall--pose a significant threat to national security, and the lack of effective contingency planning and program development to data is serious and requires immediate attention. The Government must make a determined commitment to emergency preparedness now, while oil markets are slack, to prepare for any future disruption.

  20. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect (OSTI)

    Krishna, C.R.; McDonald, R.

    2009-05-01

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in

  1. Recent experience in planning, packaging and preparing noncommercial spent fuel for shipment in the United States

    SciTech Connect (OSTI)

    Shappert, L.B.; Parks, C.V.; Turner, D.W.; Aramayo, G.A.

    1998-05-01

    The US Department of Energy-Headquarters (DOE-HQ) has issued a Record of Decision (ROD) which identified the plan to be followed in managing spent nuclear fuel (SNF) belonging to the Department. As a result, the aluminum-clad fuels stored at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, were directed to be shipped to the Savannah River Site (SRS) near Aiken, South Carolina. The BMI-1 cask was chosen to make the shipments of SNF from dry storage that had to be placed in canisters. However, the Certificate of Compliance (COC) for the BMI-1 cask limited the fissile material loading to 800 g of unirradiated fissile material for the cask configuration chosen. Because about half of the canisters were already filled and sealed with more fissile material than was permitted by the COC, approval to make these shipments in the BMI-1 was requested from the Nuclear Regulatory Commission (NRC). A safety analysis showed that the shipments could be made safely under the conditions identified. The waiver was granted in September 1997 and the three shipments were successfully completed in January 1998.

  2. Fuel cell assembly unit for promoting fluid service and electrical conductivity

    DOE Patents [OSTI]

    Jones, Daniel O.

    1999-01-01

    Fluid service and/or electrical conductivity for a fuel cell assembly is promoted. Open-faced flow channel(s) are formed in a flow field plate face, and extend in the flow field plate face between entry and exit fluid manifolds. A resilient gas diffusion layer is located between the flow field plate face and a membrane electrode assembly, fluidly serviced with the open-faced flow channel(s). The resilient gas diffusion layer is restrained against entering the open-faced flow channel(s) under a compressive force applied to the fuel cell assembly. In particular, a first side of a support member abuts the flow field plate face, and a second side of the support member abuts the resilient gas diffusion layer. The support member is formed with a plurality of openings extending between the first and second sides of the support member. In addition, a clamping pressure is maintained for an interface between the resilient gas diffusion layer and a portion of the membrane electrode assembly. Preferably, the support member is spikeless and/or substantially flat. Further, the support member is formed with an electrical path for conducting current between the resilient gas diffusion layer and position(s) on the flow field plate face.

  3. Hydrogen Fuel-Cell Unit to Provide Renewable Power to Honolulu Port

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unit to Provide Renewable Power to Honolulu Port - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  4. Advancing strategic environmental assessment in the offshore oil and gas sector: Lessons from Norway, Canada, and the United Kingdom

    SciTech Connect (OSTI)

    Fidler, Courtney; Noble, Bram

    2012-04-15

    Abstract: Strategic environmental assessment (SEA) for offshore oil and gas planning and development is utilized in select international jurisdictions, but the sector has received limited attention in the SEA literature. While the potential benefits of and rationale for SEA are well argued, there have been few empirical studies of SEA processes for the offshore sector. Hence, little is known about the efficacy of SEA offshore, in particular its influence on planning and development decisions. This paper examines SEA practice and influence in three international offshore systems: Norway, Atlantic Canada and the United Kingdom, with the intent to identify the challenges, lessons and opportunities for advancing SEA in offshore planning and impact assessment. Results demonstrate that SEA can help inform and improve the efficacy and efficiency of project-based assessment in the offshore sector, however weak coordination between higher and lower tiers limit SEA's ability to influence planning and development decisions in a broad regional environmental and socioeconomic context. - Highlights: Black-Right-Pointing-Pointer SEA can inform and improve the efficacy and efficiency of project EA offshore Black-Right-Pointing-Pointer Scope and deliverables of SEA offshore often differ from stakeholder expectations Black-Right-Pointing-Pointer Considerable variability in influence of SEA output beyond licensing decisions Black-Right-Pointing-Pointer Sector-based SEA offshore is often too restrictive to generate expected benefits.

  5. Cost-effectiveness of emission control at fossil-fuel units for different cumulative load patterns

    SciTech Connect (OSTI)

    Roy, S.

    1997-02-01

    This paper describes a method to recommend allocation of generating units, with a view to achieve cost-effective control of particulate and gaseous emissions over an energy scenario. Definition of relative cost and relative emission, with respect to corresponding base-case values, allows one to develop a model that describes cost and emission aspects of the chosen scenario. Optimization of this model, by any appropriate linear-programming software, yields the allocation levels to be recommended. The emphasis of this paper is on the way in which results of the said optimization model reflect the effect of demand patterns on the allocation levels. Depending on the demands, required generation levels from each individual unit may differ. This affects the overall generation cost, and simultaneously the emissions from the thermal units, both relative to respective base values. Since the optimization algorithm attempts to reduce both the relative quantities, its results always reflect the changing generation vs. emission tradeoff for utilities vis-a-vis different demand patterns.

  6. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect (OSTI)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  7. Deepwater Oil & Gas Resources | Department of Energy

    Office of Environmental Management (EM)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  8. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  9. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect (OSTI)

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding.

  10. Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  11. Table 1.2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    2 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments NAICS Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 1,162 257 12 23 583 8 182 2 96 * 3112 Grain and Oilseed Milling 355 56 * 1 123 Q

  12. Table 1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1.3 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources and Shipments; Unit: Trillion Btu. Shipments Economic Net Residual Distillate LPG and Coke and of Energy Sources Characteristic(a) Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,169 314 6

  13. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  14. Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    Denholm, P.

    2007-03-01

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

  15. Winter fuels report

    SciTech Connect (OSTI)

    Not Available

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  16. Planet Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Jump to: navigation, search Name: Planet Fuels Place: Brighton, United Kingdom Product: A UK based producer and supplier of biodiesel. References: Planet Fuels1 This...

  17. Biomass Derivatives Competitive with Heating Oil Costs.

    Energy Savers [EERE]

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average * ...

  18. Winter Fuels Report week ending: November 8, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-14

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's 1, 2, and 3; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  19. Winter fuels report, week ending October 12, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-18

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  20. Winter fuels report, week ending November 30, 1990. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1990-12-06

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cites; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 27 figs., 12 tabs.

  1. Winter fuels report, week ending January 11, 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-17

    The Winter Fuels Report is intended to provide concise, timely information on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/ State Heating Oil and Propane Program; crude oil petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  2. Winter fuels report, week ending December 7, 1990. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-12-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 27 figs., 12 tabs.

  3. Winter fuels report, week ending November 16, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-21

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs., 12 tabs.

  4. Winter fuels report, week ending January 4, 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-01-10

    The Winter Fuels Report is intended to provide concise, timely information on the following: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD), I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  5. Winter fuels report, week ending November 9, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-15

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs., 12 tabs.

  6. Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030

    SciTech Connect (OSTI)

    L. M. Dittmer

    2006-08-10

    The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Entities regulated by RFS include oil refiners and gasoline and diesel importers. The ... This may include sugarcane or sugar beet-based fuels; biodiesel made from vegetable oil or ...

  8. MECS Fuel Oil Figures

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry...

  9. fuel_oil.pdf

    Gasoline and Diesel Fuel Update (EIA)

    (toll free) at 1-888-861-0464. For general information about the survey, visit our Web site at http:www.eia.doe.govemeucbecs. 6. Please use the enclosed self-addre ssed, ...

  10. MECS Fuel Oil Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    202-586-0018 URL: http:www.eia.govemeuconsumptionbriefsmecsmecsfueloiltables.html For questions about content, please contact the National Energy Information Center:...

  11. December 2015 Most Viewed Documents for Fossil Fuels | OSTI, US Dept of

    Office of Scientific and Technical Information (OSTI)

    Energy Office of Scientific and Technical Information December 2015 Most Viewed Documents for Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 213 Bamboo: An Overlooked Biomass Resource? Scurlock, J.M.O. (2000) 159 Practical hot oiling and hot watering for paraffin control Mansure, A.J. [Sandia National Labs., Albuquerque, NM (United States)]; Barker, K.M. [Petrolite Corp. (United States)]

  12. June 2015 Most Viewed Documents for Fossil Fuels | OSTI, US Dept of Energy

    Office of Scientific and Technical Information (OSTI)

    Office of Scientific and Technical Information June 2015 Most Viewed Documents for Fossil Fuels EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS Dr. Jorge Gabitto; Maria Barrufet (2003) 134 Practical hot oiling and hot watering for paraffin control Mansure, A.J. [Sandia National Labs., Albuquerque, NM (United States)]; Barker, K.M. [Petrolite Corp. (United States)] (1994) 94 Fluid Dynamics in Sucker Rod Pumps Cutler, R.P.; Mansure, A.J. (1999) 92

  13. Alternatives to traditional transportation fuels 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    In recent years, gasoline and diesel fuel have accounted for about 80 percent of total transportation fuel and nearly all of the fuel used in on-road vehicles. Growing concerns about the environmental effects of fossil fuel use and the Nation`s high level of dependence on foreign oil are providing impetus for the development of replacements or alternatives for these traditional transportation fuels. (The Energy Policy Act of 1992 definitions of {open_quotes}replacement{close_quotes} and {open_quotes}alternative{close_quotes} fuels are presented in the following box.) The Alternative Motor Fuels Act of 1988, the Clean Air Act Amendments of 1990 (CAAA90) and the Energy Policy Act of 1992 (EPACT) are significant legislative forces behind the growth of replacement fuel use. Alternatives to Traditional Transportation Fuels 1993 provides the number of on-road alternative fueled vehicles in use in the United States, alternative and replacement fuel consumption, and information on greenhouse gas emissions resulting from the production, delivery, and use of replacement fuels for 1992, 1993, and 1995.

  14. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  15. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  16. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    F9: Residual Fuel Oil Consumption Estimates, 2014 State Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation Electric Power Total Thousand ...

  17. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    0: Residual Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation ...

  18. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which assigns a RIN to each gallon of renewable fuel. Entities regulated by RFS include oil refiners, blenders, and gasoline and diesel importers. The volumes required of each...

  19. Technical Information Exchange on Pyrolysis Oil: Potential for...

    Energy Savers [EERE]

    Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This ...

  20. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  1. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  2. Liquid phase Fischer-Tropsch (II) demonstration in the LaPorte Alternative Fuels Development Unit. Volume 1/2, Main Report. Final report

    SciTech Connect (OSTI)

    Bhatt, B.L.

    1995-09-01

    This report presents results from a demonstration of Liquid Phase Fischer-Tropsch (LPFT) technology in DOE`s Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. The run was conducted in a bubble column at the AFDU in May--June 1994. The 10-day run demonstrated a very high level of reactor productivity for LPFT, more than five times the previously demonstrated productivity. The productivity was constrained by mass transfer limitations, perhaps due to slurry thickening as a result of carbon formation on the catalyst. With a cobalt catalyst or an improved iron catalyst, if the carbon formation can be avoided, there is significant room for further improvements. The reactor was operated with 0.7 H{sub 2}/CO synthesis gas in the range of 2400--11700 sl/hr-kg Fe, 175--750 psig and 270--300C. The inlet gas velocity ranged from 0.19 to 0.36 ft/sec. The demonstration was conducted at a pilot scale of 5 T/D. Catalyst activation with CO/N{sub 2} proceeded well. Initial catalyst activity was close to the expectations from the CAER autoclave runs. CO conversion of about 85% was obtained at the baseline condition. The catalyst also showed good water-gas shift activity and a low {alpha}. At high productivity conditions, reactor productivity of 136 grams of HC/hr -- liter of slurry volume was demonstrated, which was within the target of 120--150. However, mass transfer limitations were observed at these conditions. To alleviate these limitations and prevent excessive thickening, the slurry was diluted during the run. This enabled operations under kinetic control later in the run. But, the dilution resulted in lower conversion and reactor productivity. A new reactor internal heat exchanger, installed for high productivity conditions, performed well above design,and the system never limited the performance. The control can expected, the reactor temperature control needed manual intervention. The control can be improved by realigning the utility oil system.

  3. Vehicle Technologies Office: Fuel Efficiency and Emissions | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Efficiency and Emissions Vehicle Technologies Office: Fuel Efficiency and Emissions Substantially improving vehicle efficiency has the potential to drastically increase the United States' economic, energy, and environmental security. On-road vehicles account for nearly 60 percent of total U.S. oil consumption and more than a quarter of the country's greenhouse gas emissions, the major contributor to climate change. The Vehicle Technologies Office is supporting research to greatly

  4. Alternative Fuels Data Center: Renewable Hydrocarbon Biofuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Hydrogenated esters and fatty acids (HEFA) fuels derived from used cooking oil, animal ... or liquefaction of biomass to bio-oil with hydroprocessing Currently, ...

  5. Qualification of Alternative Fuels | Department of Energy

    Energy Savers [EERE]

    Oil Workshop on the qualification of alternative fuels. pyrolysisbutcher.pdf (1.23 MB) More Documents & Publications Technical Information Exchange on Pyrolysis Oil: ...

  6. Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution

    Broader source: Energy.gov [DOE]

    Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England.

  7. Oil and gas development in the United States in the early 1990`s: An expanded role for independent producers

    SciTech Connect (OSTI)

    1995-10-01

    Since 1991, the major petroleum companies` foreign exploration and development expenditures have exceeded their US exploration and development expenditures. The increasing dependence of US oil and gas development on the typically much smaller nonmajor companies raises a number of issues. Did those companies gain increased prominence largely through the reduced commitments of the majors or have they been significantly adding to the US reserve base? What are the characteristics of surviving and growing producers compared with companies exiting the US oil and gas business? Differences between majors` development strategies and those of other US oil and gas producers appear considerable. As the mix of exploration and development strategies in US oil and gas increasingly reflects the decisions of smaller, typically more specialized producers, what consequences can be seen regarding the costs of adding to US reserves? How are capital markets accessed? Are US oil and gas investments by the nonmajors likely to be undertaken only with higher costs of capital? This report analyzes these issues. 20 figs., 6 tabs.

  8. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action

  9. Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

  10. Refinery & Blenders Net Input of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils,

  11. United States Energy Information Administration | Open Energy...

    Open Energy Info (EERE)

    and Sumer Fuels Outlook report is a monthly release projecting outlooks for global crude oil and liquid fuels, natural gas, electricity, coal, and carbon dioxide emissions. EIA...

  12. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Vacant housing units, seasonal units, second homes, military housing, and group quarters are excluded. 2Cooking includes fuels used by the major cooking equipment (ovens, cooktops, ...

  13. Alternative Fuels Data Center: Natural Gas Vehicle Maintenance...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Oil-Change Intervals Clean-burning fuels have a direct impact on extending the useful life of the engine's lubricating oil. In conventionally fueled vehicles, engine oil degrades ...

  14. Oil-futures markets

    SciTech Connect (OSTI)

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  15. United_Cool_Air.pdf

    Office of Environmental Management (EM)

    of Energy United States Fuel Resiliency: US Fuels Supply Infrastructure United States Fuel Resiliency: US Fuels Supply Infrastructure Report: United States Fuel Resiliency - U.S. Fuels Supply Infrastructure Study: (1) Infrastructure Characterization; (II) Vulnerability to Natural and Physical Threats; and (III) Vulnerability and Resilience This report assesses the U.S. fuels supply transportation, storage, and distribution (TS&D) infrastructure, its vulnerabilities (natural and physical

  16. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  17. AgriFuel Company | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: AgriFuel Company Place: Cranford, New Jersey Sector: Biofuels Product: AgriFuel produces and markets biofuels refined from waste vegetable oil,...

  18. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  19. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect (OSTI)

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  20. A Holistic, rapid-deployment, solution for safe used nuclear fuel management in the United States of America

    SciTech Connect (OSTI)

    Eriksson, L.G.

    2007-07-01

    Recent political initiatives and increased willingness in the United States of America (U.S. or USA) to consider federal storage and recycling of used nuclear fuel (UNF), augmented by expressed private interest in developing 31 new nuclear power plants, strongly suggest that the U.S. is on the brink of a nuclear-energy renaissance. Unfortunately, the related UNF-management and -disposition research, technology, and facility developments have been virtually dormant for 25 years. Fortunately, other countries have pursued safe UNF-management and -disposition solutions during this period that the U.S. now can take advantage of to develop the required UNF-management technologies and facilities in a timely and cost-effective manner. The following criteria/concepts for the timely and cost-effective development of safe and secure nuclear facilities were applied to current and planned UNF-management in the U.S. to formulate a potential, holistic, 'rapid-deployment' UNF-management solution at the Nevada Test Site (NTS), referred to as the Nevada National Nuclear Fuel Management Center (3NFMC): - Locate pending UNF-storage and -recycling facilities on the NTS in the vicinity of the Nation's candidate deep geological disposal system (repository) for UNF and other high level radioactive waste (HLW) at the Yucca Mountain (YM) site; - Locate all main UNF-management facilities underground; and - Use best-available technology to site, design, and construct the pending facilities. Three main challenges to the timely and cost-effective development of the 3NFMC are: (1) Statutory restrictions preventing the UNF-storage and -disposal facilities from being co-located and co-developed by federal and civilian/private parties; (2) Long-standing, scientific, local-political, key-Congressional, and national-ideological opposition to the YM UNF/HLW repository; and (3) The discouraging track record, and the related lack of trust in, and credibility of the organization currently responsible for

  1. Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Performance of SVO Research has shown that there are sev- eral technical barriers to widespread use of SVO as a vehicle fuel. The published engineering literature strongly indicates that the use of SVO leads to reduced engine life, 1 caused by the buildup of carbon deposits inside the engine and the buildup of SVO in the engine lubricant. These issues are attributable to SVO's high viscosity and high boiling point relative to the required boiling range for diesel fuel. The carbon buildup doesn't

  2. U.S. oil imports to decline with rising oil production through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil imports to decline with rising oil production through 2014 The United States will need fewer oil imports over the next two years because of rising U.S. oil production. The new ...

  3. South American oil

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  5. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  6. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  7. Winter Heating Fuels - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Click on map above to view state-specific heating fuel data Propane Heating oil Natural gas Electricity For more data on: Heating oil and propane prices - Heating Oil and Propane ...

  8. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  9. Assessment of environmental problems associated with increased enhanced oil recovery in the United States: 1980-2000

    SciTech Connect (OSTI)

    Kaplan, E.; Garrell, M.; Royce, B.; Riedel, E.F.; Sathaye, J.

    1983-01-01

    Water requirements and uncontrolled air emissions from well vents and steam generators were estimated for each technology based upon available literature. Estimates of best air emission control technologies were made using data for EOR steam generators actually in use, as well as control technologies presently available but used by other industries. Amounts of solid wastes were calculated for each air emission control technology. Estimates were also made of the heavy metal content of these solid wastes. The study also included environmental residuals which may be expected should coal be used instead of lean crude to produce steam for thermal EOR. It was concluded that from an environmental prospective tertiary oil is preferable in many respects to shale oil, coal and synfuels. Alternative sources of oil such as syncrude, new exploration, and primary production could cause far more environmental damage than incremental EOR. Future EOR in specific regions may be constrained because of environmental issues: air emissions, solid waste disposal, water availability, and aquifer contaminators. Competition for water and the scarcity of surface water or groundwater which are low in total diminutive solids will impede some EOR projects. Risks of groundwater contamination should be minimized particularly because of requirements of the Environmental Protection Agency's new underground injection control program. A quantitative environmental assessment will require a complete and consistent data base for all fields for which EOR is planned out in which tertiary production is taking place. This is particularly true for EOR which will occur in Alaska or in offshore areas, where environments are fragile and where operating conditions are severe. 147 references, 29 figures, 46 tables.

  10. Alternatives to Traditional Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. References Retrieved from...

  11. Fuel Cell Power | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Power Place: United Kingdom Product: Information provider of fuel cells and their supporting infrastructure. References: Fuel Cell Power1 This article is a stub. You...

  12. RE fuel Technology Ltd | Open Energy Information

    Open Energy Info (EERE)

    fuel Technology Ltd Jump to: navigation, search Name: RE-fuel Technology Ltd Place: Wiltshire, United Kingdom Sector: Efficiency Product: RE-Fuel is developing high efficiency...

  13. Technical Options for Processing Additional Light Tight Oil Volumes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Technical Options for Processing Additional Light Tight Oil Volumes within the United ... for Processing Additional Light Tight Oil Volumes within the United States i This ...

  14. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  15. Alternative Fuels Data Center: CNG Fuel System and Tank Maintenance

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technicians should regularly inspect and replace the fuel filter, which removes any oil or ... Many garages provide reminder stickers for oil changes that list the date and mileage when ...

  16. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14

    which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

  17. Summary report : universal fuel processor.

    SciTech Connect (OSTI)

    Coker, Eric Nicholas; Rice, Steven F.; Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M.

    2008-01-01

    The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

  18. Winter fuels report week ending February 1, 1991. [Contains Glossary

    SciTech Connect (OSTI)

    Not Available

    1991-02-07

    This Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) 1, 2 and 3; natural gas supply and disposition and underground storage for the United states and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United states and selected cities; and US total heating degree-days by city. 34 figs., 12 tabs.

  19. Winter fuels report, week ending September 27, 1991. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1991-10-03

    This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's 1, 2, 3; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 37 figs., 13 tabs.

  20. Winter fuels report, week ending November 15, 1991. [CONTAINS GLOSSARY

    SciTech Connect (OSTI)

    Not Available

    1991-11-21

    This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks for PADD's I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 37 figs., 13 tabs.

  1. Winter Fuels Report for the week ending November 2, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-11-08

    The report is to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADDs) and product supplied on a US level; propane net production, imports and stocks for PADD I, II, and III;natural gas supply and disposition and underground storage for the United States and consumption for all PADDs; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

  2. Winter fuels report, week ending December 14, 1990. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-12-20

    This report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. 34 figs., 12 tabs.

  3. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    1998-03-01

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  4. Effect of Exhaust Gas Recirculation (EGR) on Diesel Engine Oil...

    Office of Environmental Management (EM)

    on diesel engine oil during standard test with an API Cummins M-11 engine. ... Fuel Economy and Engine Wear AVTA: Oil Bypass Filter Specifications and Test Procedures

  5. Providential Energy Corp formerly Providential Oil Gas Inc |...

    Open Energy Info (EERE)

    (formerly Providential Oil & Gas Inc) Place: California Sector: Hydro Product: Focused on natural gas and crude oil; expanding into hydropower, fuel cells, and ethanol. References:...

  6. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    Sharma, G.D.

    1995-07-01

    Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

  7. oil1987.xls

    Gasoline and Diesel Fuel Update (EIA)

    ... Average Fuel OilKerosene Consumption Expenditures Below Poverty Line 100 Percent 2.0 1.4 ... for 1987. (3) Below 150 percent of poverty line or 60 percent of median State ...

  8. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter Kerosene and

  9. Turbine fuels from tar sands bitumen and heavy oil. Volume 1. Phase 3. Pilot plant testing, final design, and economics. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Carson, T.C.; Magill, L.G.; Swesey, J.R.

    1987-08-01

    Pilot-plant-scale demonstration of an upgrading/refining scheme to convert bitumen or heavy crude oil into high yields of specification-quality aviation turbine fuel was performed. An atmospheric residue from San Ardo (California) crude was converted under hydrovisbreaking conditions to synthetic crude for further refining. Naphtha cuts from the straight run and synthetic crude were combined, catalytically hydrotreated, then hydrocracked. Products from these operations were combined to produce two prototype specification fuels (JP-4 and JP-8) as well as two heavier, variable-quality fuels. An engineering design (Volume II) was developed for a 50,000 BPSD grass-roots refinery, from the pilot-plant operations. Capital investment and operating costs were estimated, and fuel manufacturing costs projected. Conclusions and recommendations for further work are included.

  10. World oil - An essay on its spectacular 120-year rise (1859-1979), recent decline, and uncertain future

    SciTech Connect (OSTI)

    Linden, H.R.

    1987-01-01

    An analysis of the evolution of the oil security problems of import-dependent industrialized countries and of the rise and recent erosion of the market power of the major oil exporting countries, particularly those located in the Persian Gulf area. The counterproductive reaction of the United States and other large oil importers to the resulting oil supply and price instability, especially since the 1973-74 oil embargo, is critiqued. In addition, the synergism between the early commercialization of crude oil production and refining in the United States and the development of the automobile industry is discussed, and the long-term outlook for oil-base transportation fuels is assessed. OPEC's role in destabilizing the world oil market during the 1970s and its current efforts to restabilize it are evaluated, as is the likely future course of world oil prices and of U.S. and other non-OPEC production. An important finding of this study is that the share of oil in the world energy mix has peaked and will continue its downward trend and that recurring expectations for a sharp escalation of world oil prices and shortages are based on erroneous assessments of the fundamentals governing the oil business.

  11. Rheology and stability of SRC residual fuel oils - storage evaluation. SRC-1 quarterly technical report, October-December 1982. Supplement

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    In Air Products ongoing study to characterize the rheology and stability of various SRC residual oils, single-phase blends of 50 wt % HSRC and TSL SRC in 1:1 mixtures of 1st- and 2nd-stage process solvents were subjected to storage stability tests at 150/sup 0/F in nitrogen and air atmospheres. Using viscosity as an indicator, it was observed that the blends studied increased in viscosity with storage time in an air atmosphere; the viscosity increase began after a 4-week storage period. The increase in HSRC blend viscosity was significantly greater than that of the TSL SRC blend. A 60-day air-stored blend will require a pumping temperature about 10/sup 0/F higher than that specified for an unaged blend in order to have the same viscosity. The viscosity increase under nitrogen storage was relatively insignificant. Nitrogen blanketing appears to be important in maintaining the specified viscosity characteristics of the blends during storage in the 150/sup 0/F storage condition tested. A loss of volatiles undoubtedly occurs during high-temperature storage under laboratory conditions. Such losses contribute to an increase in the viscosity of the blend. In commercial practice, volatile losses are expected to be significantly lower. Solvent extraction data and analysis of separated fractions suggest that during storage under the above conditions, some oxidative polymerization of pentane-soluble oil components forms higher molecular weight pentane insolubles (asphaltenes and benzene insolubles). Asphaltenes are also involved in the increase in viscosity and do chemically change. 1 reference, 8 figures, 27 tables.

  12. Shale oil dearsenation process

    SciTech Connect (OSTI)

    Brickman, F.E.; Degnan, T.F.; Weiss, C.S.

    1984-10-29

    This invention relates to processing shale oil and in particular to processing shale oil to reduce the arsenic content. Specifically, the invention relates to treating shale oil by a combination of processes - coking and water washing. Many shale oils produced by conventional retorting processes contain inorganic materials, such as arsenic, which interfere with subsequent refining or catalytic hydroprocessing operations. Examples of these hydroprocessing operations are hydrogenation, denitrogenation, and desulfurization. From an environmental standpoint, removal of such contaminants may be desirable even if the shale oil is to be used directly as a fuel. Hence, it is desirable that contaminants such as arsenic be removed, or reduced to low levels, prior to further processing of the shale oil or prior to its use as a fuel.

  13. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; Hu, Jianwei; Ilas, Germina; Haverlock, T. J.; Romano, Catherine E.

    2016-01-01

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via highmore » performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.« less

  14. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation

    SciTech Connect (OSTI)

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; Hu, Jianwei; Ilas, Germina; Haverlock, T. J.; Romano, Catherine E.

    2016-01-01

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via high performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.

  15. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    SciTech Connect (OSTI)

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  16. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  17. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  18. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  19. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  20. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  1. Fuel Additive Strategies for Enhancing the Performance of Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additive Strategies for Enhancing the Performance of Engines and Engine Oils Fuel Additive Strategies for Enhancing the Performance of Engines and Engine Oils 2003 DEER Conference ...

  2. Estimated United States Residential Energy Use in 2005

    SciTech Connect (OSTI)

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  3. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is $2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.35 per gallon. This is Marcela Rourk with EIA, in Washington.

  4. Combustion and fuel characterization of coal-water fuels

    SciTech Connect (OSTI)

    Chow, O.K.; Gralton, G.W.; Lachowicz, Y.V.; Laflesh, R.C.; Levasseur, A.A.; Liljedahl, G.N.

    1989-02-01

    This five-year research project was established to provide sufficient data on coal-water fuel (CWF) chemical, physical, and combustion properties to assess the potential for commercial firing in furnaces designed for gas or oil firing. Extensive laboratory testing was performed at bench-scale, pilot-scale (4 {times} 10{sup 6}Btu/hr) and commercial-scale (25 {times} 10{sup 6} to 50 {times} 10{sup 6}Btu/hr) on a cross-section of CWFs. Fuel performance characteristics were assessed with respect to coal properties, level of coal beneficiation, and slurry formulation. The performance of four generic burner designs was also assessed. Boiler performance design models were applied to analyze the impacts associated with conversion of seven different generic unit designs to CWF firing. Equipment modifications, operating limitations, and retrofit costs were determined for each design when utilizing several CWFs. Unit performance analyses showed significantly better load capacity for utility and industrial boilers as the CWF feed coal ash content is reduced to 5% or 2.6%. In general, utility units had more attractive capacity limits and retrofit costs than the industrial boilers and process heaters studied. Economic analyses indicated that conversion to CWF firing generally becomes feasible when differential fuel costs are above $1.00/10{sup 6}Btu. 60 figs., 24 tabs.

  5. Iran Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Name: Iran Oil and Gas Address: Unit 16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. Place:...

  6. Feedstock Supply System Design and Economics for Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels Conversion Pathway: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway "The 2017 Design Case"

    SciTech Connect (OSTI)

    Kevin L. Kenney; Kara G. Cafferty; Jacob J. Jacobson; Ian J. Bonner; Garold L. Gresham; J. Richard Hess; William A. Smith; David N. Thompson; Vicki S. Thompson; Jaya Shankar Tumuluru; Neal Yancey

    2014-01-01

    The U.S. Department of Energy promotes the production of liquid fuels from lignocellulosic biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass sustainable supply, logistics, conversion, and overall system sustainability. As part of its involvement in this program, Idaho National Laboratory (INL) investigates the feedstock logistics economics and sustainability of these fuels. Between 2000 and 2012, INL quantified and the economics and sustainability of moving biomass from the field or stand to the throat of the conversion process using conventional equipment and processes. All previous work to 2012 was designed to improve the efficiency and decrease costs under conventional supply systems. The 2012 programmatic target was to demonstrate a biomass logistics cost of $55/dry Ton for woody biomass delivered to fast pyrolysis conversion facility. The goal was achieved by applying field and process demonstration unit-scale data from harvest, collection, storage, preprocessing, handling, and transportation operations into INL’s biomass logistics model.

  7. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  8. Western Hemisphere Oil Products Balance

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Hemisphere Oil Products Balance Ramn Espinasa, Ph.D. Lead Specialist July 2014 ... non-commercial purposes. 4 United States Oil Products Balance 5 Energy Matrix - USA 6 ...

  9. Field performance of a premium heating oil

    SciTech Connect (OSTI)

    Santa, T.; Jetter, S.

    1997-01-01

    As part of ongoing research to provide quality improvements to heating oil, Mobil Oil together with Santa Fuel conducted a field trial to investigate the performance of a new premium heating oil. This premium heating oil contains an additive system designed to minimize sludge related problems in the fuel delivery system of residential home heating systems. The additive used was similar to others reported at this and earlier BNL conferences, but was further developed to enhance its performance in oil heat systems. The premium heating oil was bulk additized and delivered to a subset of the customer base. The performance of this premium heating oil is discussed.

  10. Displacing oil and gas with coal: Constraints and opportunities

    SciTech Connect (OSTI)

    Langley, V.E.

    1982-01-01

    It is obvious that a major result of the oil supply interruptions of the 1970s was to dramatically increase the competitiveness of coal as an industrial and utility fuel. In fact, between 1973 and 1981, coal's share of the energy feed to the electric utility industry did increase from 43 to 52 percent. However, given the actual market place incentives, this increase is not a remarkable improvement, and reflects the fact that disappointingly few existing units have been converted from oil to coal. In the wake of the 1973 embargo, the passage of the Energy Supply and Coordination Act of 1974 (''ENSECA'') and the Power Plant and Industrial Fuel Use Act (''FUA'') provided the Executive Branch with the power to mandate the conversion of oil and gas units to coal. However, ENSECA lacked strong enforcement provisions and there resulted few conversions other than those which were made voluntarily on purely economic grounds. As a result, in 1978, Congress enacted the Fuel Use Act which placed the burden of proof upon owners to demonstrate that a specified coal convertible unit could not be converted.

  11. Native Village of Teller Addresses Heating Fuel Shortage, Improves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    utility, which runs its own diesel fuel bulk storage facility for the diesel generators. However, residential heating oil and fuel for all public buildings except the...

  12. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

  13. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  14. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  15. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  16. Effects of Fuel Dilution with Biodiesel on Lubricant Acidity...

    Broader source: Energy.gov (indexed) [DOE]

    In-cylinder fuel injection to produce rich exhaust for regeneration of lean NOx trap catalyst and diesel particulate filter results in substantial fuel dilution of lubricating oil ...

  17. The Naval Petroleum and Oil Shale Reserves | Department of Energy

    Energy Savers [EERE]

    The Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserves To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel is defined as a fuel that is comprised of mono-alkyl esters of long chain fatty acids derived from vegetable oil or animal fats and that meets ASTM D6751. Green diesel is ...

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    For the purpose of this mandate, biodiesel is defined as a motor vehicle fuel derived from vegetable oil, animal fat, or other non-petroleum resources, that is designated as B100 ...

  20. Qualification of Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    seal materials common; Fuels Considered Biodiesel o soy o palm o tallow o algae SVO - ... GTL- Gas-to-liquids Pyrolysis oil Biodiesel Blends - One Success Story Beginning in ...

  1. The Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States

    SciTech Connect (OSTI)

    2009-01-18

    Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH,

  2. An Evaluation of the Proliferation Resistant Characteristics of Light Water Reactor Fuel with the Potential for Recycle in the United States

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Advanced Fuel Cycle Initiative (AFCI) of the Department of Energy has been formulated to perform research leading to advanced fuels and fuel cycles for advanced nuclear power systems. One of...

  3. Emergency fuels utilization guidebook. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

  4. Final Report for NFE-07-00912: Development of Model Fuels Experimental...

    Office of Scientific and Technical Information (OSTI)

    New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil ...

  5. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion...

    Office of Scientific and Technical Information (OSTI)

    Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, ...

  6. Alvan Blanch Green Fuels joint venture | Open Energy Information

    Open Energy Info (EERE)

    to extract oil from rape and Green Fuels provides the equipment to turn the oil into biodiesel, to allow farmers to produce their own fuel. References: Alvan Blanch - Green...

  7. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Multi-Year Research, Development and Demonstration Plan Page ES - 1 Executive Summary The United States pioneered the development of hydrogen and fuel cell technologies, and we continue to lead the way as these technologies emerge from the laboratory and into commercial markets. A tremendous opportunity exists for the United States to capitalize on this leadership role and apply these technologies to reducing greenhouse gas emissions, reducing our dependence on oil, and

  8. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  9. Capacity utilization and fuel consumption in the electric power industry, 1970-1981

    SciTech Connect (OSTI)

    Lewis, E.W.

    1982-07-01

    This report updates the 1980 Energy Information Administration (EIA) publication entitled Trends in the Capacity Utilization and Fuel Consumption of Electric Utility Powerplants, 1970-1978, DOE/EIA-184/32. The analysis covers the period from 1970 through 1981, and examines trends during the period prior to the 1973 Arab oil embargo (1970-1973), after the embargo (1974-1977), and during the immediate past (1978-1981). The report also addresses other factors affecting the electric utility industry since the oil embargo: the reduction in foreign oil supplies as a result of the 1979 Iranian crisis, the 1977 drought in the western United States, the 1978 coal strike by the United Mine Workers Union, and the shutdown of nuclear plants in response to the accident at Three Mile Island. Annual data on electric utility generating capacity, net generation, and fuel consumption are provided to identify changes in patterns of power plant capacity utilization and dispatching.

  10. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous

  11. Biodiesel Fuel Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuel Basics Biodiesel Fuel Basics July 30, 2013 - 2:43pm Addthis Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal fats, or recycled restaurant greases. What Is Biodiesel? Biodiesel is a liquid fuel produced from renewable sources such as new and used vegetable oils and animal fats and is a cleaner-burning replacement for petroleum-based diesel fuel. It is nontoxic and biodegradable. Like petroleum-derived diesel, biodiesel is

  12. H. R. 5916: A Bill to require the President of the United States to use the Strategic Petroleum Reserve in the event of a domestic energy supply shortage, to amend the Energy Policy and Conservation Act and the Export Administration Act of 1979 to prohibit the exportation of refined petroleum products except under certain circumstances, and for other purposes, introduced in the House of Representatives, One Hundred First Congress, Second Session, October 24, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    The bill amends the Energy Policy and Conservation Act by making mandatory the use of the Strategic Petroleum Reserve in the event of a domestic energy supply shortage. The restriction on the export of refined petroleum products refers to gasoline, kerosene, heating oils, jet fuel, diesel fuel, residual fuel oil, propane, butane, and any natural liquid or natural gas liquid product refined within the US or entered for consumption within the US. The bill also describes the appointment of special investigator to investigate possible gouging and market manipulation by oil companies and the sense of Congress concerning the cost of deployment and maintenance of United States troops in Saudi Arabia.

  13. State of the States: Fuel Cells in America 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report from Fuel Cells 2000 describes the state of fuel cell technologies across the United States.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  15. Opportunities with Fuel Cells

    Reports and Publications (EIA)

    1994-01-01

    The concept for fuel cells was discovered in the nineteenth century. Today, units incorporating this technology are becoming commercially available for cogeneration applications.

  16. Alternative Fueling Station Locator

    Broader source: Energy.gov [DOE]

    Find alternative fueling stations near an address or ZIP code or along a route in the United States. Enter a state to see a station count.

  17. Alternative Fueling Station Locator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    19,710 alternative fuel stations in the United States Excluding private stations Location details are subject to change. We recommend calling the stations to verify location, hours...

  18. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  19. Our addiction to foreign oil and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addiction to foreign oil and fossil fuels puts our economy, our environment, and ultimately our national security at risk. Furthermore, there is a growing recognition of the...

  20. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  1. S. 1461: Oil Tanker Navigation Safety Act of 1989. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, August 1, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This bill would enhance the navigation safety of oil tankers. Title I, Provisions applicable to nationally licensed personnel, explains provisions relating to motor vehicle driving records of vessel personnel; dangerous drugs and other grounds for suspension or revocation; alcohol testing and alcohol rehabilitation; prohibition on service; vessel traffic services; oil tanker construction and size; oil spill contingency plans and approval; international inventory of equipment and contractors; national council on oil spill technology research and development; oil spill disaster assistance; impact on other laws; penalties; and a report on user fees. Title II, Provisions applicable with respect to Alaska pilotage at Port of Valdez, includes explanations of Bligh reef light; Prince William Sound VTS; oil spill recovery institute; and the Trans-Alaska pipeline liability fund. Title III, Provisions applicable to Mississippi River radio communications on Mississippi River, is also included.

  2. fuels | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Fuels Gasoline & Diesel Volatile fuel costs and a desire for energy independence have revived interest in another market for coal gasification technology: the production of liquid transportation fuels, chiefly gasoline and diesel fuel. For the United States, routes to synthesis of liquid fuels from coal add substantial diversity in fuel supply capability, a large capacity for fuels production considering the great extent of domestic coal reserves, and increased energy security that

  3. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book [EERE]

    4 Average Annual Carbon Dioxide Emissions for Various Functions Stock Refrigerator (1) kWh - Electricity Stock Electric Water Heater kWh - Electricity Stock Gas Water Heater million Btu - Natural Gas Stock Oil Water Heater million Btu - Fuel Oil Single-Family Home million Btu Mobile Home million Btu Multi-Family Unit in Large Building million Btu Multi-Family Unit in Small Building million Btu School Building million Btu Office Building million Btu Hospital, In-Patient million Btu Stock Vehicles

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fueling Station Regulations The Colorado Department of Labor and Employment, Division of Oil and Public Safety (Division), must create rules concerning retail hydrogen fueling stations. The rules must include information regarding inspections, specifications, shipment notification, record keeping, labeling of containers, use of meters or mechanical devices for measurement, submittal of installation plans, and minimum standards for the design, construction, location, installation, and

  5. Ceramic Fuel Cells Europe Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ceramic Fuel Cells Europe Ltd Jump to: navigation, search Name: Ceramic Fuel Cells (Europe) Ltd Place: United Kingdom Product: A wholly owned subsidiary of Ceramic Fuel Cells Ltd,...

  6. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2010-07-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 544, Cellars, Mud Pits, and Oil Spills, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 544 comprises the following 20 corrective action sites (CASs) located in Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada Test Site (NTS): • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 544 using the SAFER process. Using the approach approved for previous mud pit investigations (CAUs 530–535), 14 mud pits have been identified that • are either a single mud pit or a system of mud pits, • are not located in a radiologically posted area, and • have no evident biasing factors based on visual inspections. These 14 mud pits are recommended for no further action (NFA), and further field investigations will not be conducted. For the sites that do not meet the previously approved closure criteria, additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible

  7. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  8. Radiological consequences of ship collisions that might occur in U.S. Ports during the shipment of foreign research reactor spent nuclear fuel to the United States in break-bulk freighters

    SciTech Connect (OSTI)

    Sprung, J.L.; Bespalko, S.J.; Massey, C.D.; Yoshimura, R.; Johnson, J.D.; Reardon, P.C.; Ebert, M.W.; Gallagher D.W.

    1996-08-01

    Accident source terms, source term probabilities, consequences, and risks are developed for ship collisions that might occur in U.S. ports during the shipment of spent fuel from foreign research reactors to the United States in break-bulk freighters.

  9. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  10. Decontamination performance of selected in situ technologies for jet fuel contamination. Master's thesis

    SciTech Connect (OSTI)

    Chesley, G.D.

    1993-01-01

    Specific study of jet fuel is warranted because of the quantitive and qualitative component differences between jet fuel and other hydrocarbon fuels. Quantitatively, jet fuel contains a larger aliphatic or saturate fraction and a smaller aromatic fraction than other fuels (i.e. heating oil and diesel oil) in the medium-boiling-point-distillate class of fuels. Since the aliphatic and aromatic fractions of fuel are not equally susceptible to biodegradation, jet fuel decontamination using biodegradation may be different from other fuels.

  11. Synthetic fuels handbook: properties, process and performance

    SciTech Connect (OSTI)

    Speight, J.

    2008-07-01

    The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

  12. Crude Oil Movements of Crude Oil by Rail

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil Fuel Ethanol Biodiesel Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Areas Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Summary Total 18,421 16,159 17,552 14,150 16,711 12,134 2010-2016 Intra-U.S. Movements 15,661 13,187 14,712 11,470 13,928 10,885 2010-2016 U.S. Exports to Canada 0 0 0 0 0 0 2010-2016 U.S. Imports

  13. 1985 fuel supply seminar: proceedings

    SciTech Connect (OSTI)

    Prast, W.G.

    1986-09-01

    The major topics were utility fuel demand uncertainty (featuring uncertainty in electricity demand growth prospects), fuel forecasts and assumptions, residual fuel oil and natural gas markets, coal in environmental planning, coal market conditions and implications for procurement, and Canadian energy purchases. Individual papers are processed separately for the data bases. (PSB)

  14. United States Energy Information Administration | Open Energy...

    Open Energy Info (EERE)

    projecting outlooks for global crude oil and liquid fuels, natural gas, electricity, coal, and carbon dioxide emissions. EIA Datasets on OpenEI Dataset URL Date Electric Power...

  15. Unconventional Oil and Gas Projects Help Reduce Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Since the first commercial oil well was drilled in the United States in 1859, most of the ...

  16. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally safe manner requires the development and application of new technologies that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL) research projects are designed to help catalyze the development of these new technologies, provide objective data to help quantify the environmental and safety risks

  17. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  18. Imports of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    93 96 184 92 224 128 1982-2016 East Coast (PADD 1) 83 89 169 64 159 113 2004-2016 Midwest (PADD 2) 0 0 2 3 2 1 2004-2016 Gulf Coast (PADD 3) 0 0 0 0 0 0 2004-2016 Rocky Mountain (PADD 4) 0 0 0 0 0 0 2004-2016 West Coast (PADD 5) 10 7 14 25 63 13

  19. Stocks of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    153,155 151,196 153,135 153,257 154,753 158,135 1982-2016 PADD 1 58,175 60,720 61,919 61,846 63,491 63,077 1990-2016 New England 10,627 11,547 11,412 11,329 11,828 11,763 1990-2016 Central Atlantic 34,602 35,869 37,219 37,396 37,908 37,951 1990-2016 Lower Atlantic 12,946 13,304 13,288 13,122 13,754 13,363 1990-2016 PADD 2 30,637 30,058 29,641 29,668 30,209 31,542 1990-2016 PADD 3 46,763 43,491 44,527 44,536 43,558 45,155 1990-2016 PADD 4 3,515 3,565 3,342 3,267 3,076 3,256 1990-2016 PADD 5

  20. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is

  1. Goat Industries Fuels | Open Energy Information

    Open Energy Info (EERE)

    Industries Fuels Jump to: navigation, search Name: Goat Industries Fuels Place: Gwynedd, Wales, United Kingdom Zip: LL56 4PZ Product: Welsh manufacturer of biodiesel equipment that...

  2. V Fuels Biodiesel Limited | Open Energy Information

    Open Energy Info (EERE)

    Biodiesel Limited Jump to: navigation, search Name: V-Fuels Biodiesel Limited Place: United Kingdom Product: UK-based biodiesel producers. References: V-Fuels Biodiesel Limited1...

  3. Forever Fuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Forever Fuels Ltd Place: Maidenhead, United Kingdom Zip: SL6 8RT Product: Forever Fuels specialises in the distribution and supply of wood pellets for sustainable heating systems....

  4. Green Spirit Fuels | Open Energy Information

    Open Energy Info (EERE)

    Spirit Fuels Jump to: navigation, search Name: Green Spirit Fuels Place: Somerset, United Kingdom Zip: BA8 OTN Sector: Biofuels Product: The company was founded to produce and...

  5. Renewable Fuels Limited RFL | Open Energy Information

    Open Energy Info (EERE)

    Limited RFL Jump to: navigation, search Name: Renewable Fuels Limited (RFL) Place: York, United Kingdom Zip: YO19 6ET Sector: Biomass Product: Supplies various biomass fuels and...

  6. Fuel Economy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Fuel Economy Ltd. Place: United Kingdom Product: Fuel Economy Ltd is perhaps better known by their core product 'Savastat', the highly...

  7. Greenhouse Gas Emissions and Fuel Use

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 1: Natural gas flaring associated with crude oil production ......as "lease and plant fuel" and for "pipeline and distribution use." 1 * Venting: The ...

  8. Energy 101: Algae-to-Fuel

    Broader source: Energy.gov [DOE]

    Learn about algae, a fast-growing, renewable resource that holds great promise to become a reliable, homegrown fuel source to reduce our nation's reliance on foreign oil.

  9. Winter Fuels Outlook Presentation 2014- 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    October 8, 2014 State Heating Oil and Propane Program (SHOPP) Importance Importance to heating fuel stakeholders * Timely, credible price information * Information is used ...

  10. End of FY10 report - used fuel disposition technical bases and lessons learned : legal and regulatory framework for high-level waste disposition in the United States.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Blink, James A.; Rechard, Robert Paul; Perry, Frank; Jenkins-Smith, Hank C.; Carter, Joe; Nutt, Mark; Cotton, Tom

    2010-09-01

    This report examines the current policy, legal, and regulatory framework pertaining to used nuclear fuel and high level waste management in the United States. The goal is to identify potential changes that if made could add flexibility and possibly improve the chances of successfully implementing technical aspects of a nuclear waste policy. Experience suggests that the regulatory framework should be established prior to initiating future repository development. Concerning specifics of the regulatory framework, reasonable expectation as the standard of proof was successfully implemented and could be retained in the future; yet, the current classification system for radioactive waste, including hazardous constituents, warrants reexamination. Whether or not consideration of multiple sites are considered simultaneously in the future, inclusion of mechanisms such as deliberate use of performance assessment to manage site characterization would be wise. Because of experience gained here and abroad, diversity of geologic media is not particularly necessary as a criterion in site selection guidelines for multiple sites. Stepwise development of the repository program that includes flexibility also warrants serious consideration. Furthermore, integration of the waste management system from storage, transportation, and disposition, should be examined and would be facilitated by integration of the legal and regulatory framework. Finally, in order to enhance acceptability of future repository development, the national policy should be cognizant of those policy and technical attributes that enhance initial acceptance, and those policy and technical attributes that maintain and broaden credibility.

  11. AltAir Fuels | Open Energy Information

    Open Energy Info (EERE)

    Renewable Energy Product: Seattle-based developer of projects for the production of jet fuel from renewable and sustainable oils. References: AltAir Fuels1 This article is a...

  12. Development of a gas-promoted oil agglomeration process: Air-promoted oil agglomeration of moderately hydrophobic coals. 2: Effect of air dosage in a model mixing system

    SciTech Connect (OSTI)

    Drzymala, J.; Wheelock, T.D.

    1996-07-01

    In a selective oil agglomeration process for cleaning coal, fine-size particles are suspended in water and treated with a water-immiscible hydrocarbon which can range from pentane to heavy fuel oil. Vigorous agitation is applied to disperse the oil and to produce frequent contacts between oil-coated particles. In Part 1 of this series of papers, it was shown that a definite amount of air had to be present in a laboratory mixing unit which produced a moderate shear rate in order to form compact, spherical agglomerates in an aqueous suspension of moderately hydrophobic coal using heptane or hexadecane as an agglomerate. In this paper, the effects of different amounts of air including dissolved air are discussed. The results indicate that a small amount of air will trigger the process of agglomeration, and even the air dissolved in water under equilibrium conditions at room temperature and pressure is sufficient to promote agglomeration provided it is released from solution.

  13. fuels and lubricants | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels and Lubricants The DOE Vehicle Technologies Office supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement. Transportation fuels are anticipated to be produced from future refinery feedstocks that may increasingly be from non-conventional sources including, but not milted to, heavy crude, oil sands, shale oil, and coal, as well as

  14. Winter fuels report: Week ending October 19, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-25

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on the US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 pm on Thursday during the heating season through the EIA Electronic Publication System (EPUB).

  15. Winter fuels report, week ending December 21, 1990. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-12-28

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD), I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 34 figs., 12 tabs.

  16. Winter fuels report, week ending October 5, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-11

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage, for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). See page ii for details. 12 tabs.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Fuel Economy and Greenhouse Gas Emissions Standards Vehicle manufacturers must meet fuel economy and greenhouse gas (GHG) emissions standards for vehicles sold in the United States. The U.S. Department of Transportation's (DOT) National Highway Traffic Safety Administration (NHTSA) regulates fuel economy standards, while the U.S. Environmental Protection Agency (EPA) regulates GHG emissions. NHTSA's Corporate Average Fuel Economy (CAFE) program and EPA's light-duty vehicle GHG emissions

  18. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells can provide clean power for applications ranging from less than a watt to multiple megawatts. Our transportation-including personal vehicles, trucks, buses, marine vessels, and other specialty vehicles such as lift trucks and ground support equipment, as well as auxiliary power units for traditional

  19. Spent Nuclear Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Spent Nuclear Fuel Release date: December 7, 2015 Next release date: Late 2018 Spent nuclear fuel data are collected by the U.S. Energy Information Administration (EIA) for the Department of Energy's Office of Standard Contract Management (Office of the General Counsel) on the Form GC-859, "Nuclear Fuel Data Survey." The data include detailed characteristics of spent nuclear fuel discharged from commercial U.S. nuclear power plants and currently stored at commercial sites in the United

  20. Conversion of heavy hydrocarbon oils

    SciTech Connect (OSTI)

    Chen, N.Y.; Pelrine, B.P.; Yan, T.Y.

    1982-12-14

    This invention provides a process for upgrading a heavy hydrocarbon oil to motor fuel products. The heavy hydrocarbon oil is admixed with a metal halide catalyst and a solvent component under supercritical conditions to form (1) a dense-gas solvent phase which contains refined hydrocarbon crackate, and which is substantially free of metal halide catalyst content; and (2) a residual asphaltic phase.

  1. Table N1.1. First Use of Energy for All Purposes (Fuel and...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... oil converted to residual and distillate" "fuel oils) are excluded." " NFNo applicable ... for any table cell, multiply the cell's" "corresponding RSE column and RSE row factors. ...

  2. DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion...

    Office of Scientific and Technical Information (OSTI)

    (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. ...

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.18 per gallon. That's down 79 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.13 per gallon, unchanged from last week, and down 88

  4. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $2.16 per gallon. That's down 75 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.11 per gallon, down 2.8 cents from last week, and down 77

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5.1 cents from a week ago to $2.11 per gallon. That's down 72 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.05 per gallon, down 5.3 cents from last week, and down 75

  6. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5 cents from a week ago to $2.06 per gallon. That's down 75 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.01 per gallon, down 4.1 cents from last week, and down 78

  7. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to $2.82 per gallon. That's down $1.36 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.79 per gallon, down 1.5 cents from last week, and down $1.34

  8. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 1.8 cents from a week ago to $2.08 per gallon. That's down 72 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 3-tenths of a cent from last week, and down 76

  9. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $2.80 per gallon. That's down $1.44 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.78 per gallon, down 1.2 cents from last week, and down $1.40

  10. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.09 per gallon. That's down 82 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 8-tenths of a cent from last week, and down 85

  11. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  12. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  14. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  15. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  16. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.13 per gallon. That's down 80 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.07 per gallon, up 9-tenths of a cent from last week, and down 83

  17. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to $2.93 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.90 per gallon, down 10.4 cents from last week. This is Marcela Rourk

  18. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2.3 cents from a week ago to $2.38 per gallon. That's down 99 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.32 per gallon, down 3.1 cents from last week, and down $1.00

  19. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.5 cents from a week ago to $2.36 per gallon. That's down 97 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.31 per gallon, down 2-tenths of a cent from last week, and down 96

  20. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3 cents from a week ago to $2.33 per gallon. That's down 89 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.28 per gallon, down 3.5 cents from last week, and down 9

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.26 per gallon. That's down 89 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.19 per gallon, down 8.9 cents from last week, and down 92

  2. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.5 cents from a week ago to $2.21 per gallon. That's down 87 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.15 per gallon, down 3.6 cents from last week, and down 89

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.5 cents from a week ago to $2.18 per gallon. That's down 87 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.13 per gallon, down 2.2 cents from last week, and down 88

  4. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $3.43 per gallon. That's down 39 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.38 per gallon, down 2.6 cents from last week, and down 38.7

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to $3.14 per gallon. That's down 81.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.12 per gallon, down 6.5 cents from last week, and down 79.9

  6. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is $3.52 per gallon. That's down 32.7 cents from a year ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England region are at $3.48 per gallon, down 29.1 cents from a year ago. This is Marcela Rourk, with EIA, in Washington

  7. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to $3.36 per gallon. That's down 52.5 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.31 per gallon, down 1.3 cents from last week, and down 52.6

  8. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $3.08 per gallon. That's down 90.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.05 per gallon, down 6.8 cents from last week, and down 91.6

  9. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is $3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $3.43 per gallon, down 5.7 cents from last week. This is Amerine Woodyard

  10. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to $4.02 per gallon. That's up 1.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.01 per gallon, down 6-tenths of a cent from last week, and up 5.8

  11. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to $3.45 per gallon. That's down 36.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.41 per gallon, down 3 cents from last week, and down 35

  12. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to $4.04 per gallon. That's up 4.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.02 per gallon, up 5.6 cents from last week, and up 8

  13. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to $4.06 per gallon. That's up 4.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.03 per gallon, up 2.5 cents from last week, and up 6

  14. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to $4.18 per gallon. That's up 13 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.13 per gallon, up 9.8 cents from last week, and up 12.9 cents from a

  15. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to $3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.92 per gallon, up 5.2 cents from last week, and 1.7

  16. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to $3.98 per gallon. That's up 6-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 3.96 per gallon, up 4.1 cents from last week, and up 4.8

  17. Addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the August 2001, Corrective Action Decision Document / Closure Report for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 22-99-05, Fuel Storage Area. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because

  18. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  19. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  20. Oil and Gas

    Office of Environmental Management (EM)

    RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending