National Library of Energy BETA

Sample records for fuel oil sulfur

  1. Stocks of Distillate Fuel Oil 15 ppm Sulfur and Under

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Oil10:Price27,84320,354

  2. Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment

    E-Print Network [OSTI]

    Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

  3. Stocks of Distillate Fuel Oil Greater Than 500 ppm Sulfur

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG

  4. Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment

    E-Print Network [OSTI]

    by switching to LNG instead of continuing to burn low-sulfur fuel oil and installing new emission controls that stands to benefit if regulators approve LNG shipments to the state. "Beyond payment for this study, FGE will receive no compensation whatsoever whether the state decides to import LNG or not, and no matter under

  5. Stocks of Distillate Fuel Oil Greater Than 15 ppm to 500 ppm Sulfur

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Oil10:Price27,84320,3548,679

  6. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  7. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  8. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  9. Refiner and Blender Net Production of Distillate Fuel Oil 15 ppm Sulfur and

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168 5,228 5,107

  10. Refiner and Blender Net Production of Distillate Fuel Oil > 500 ppm Sulfur

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168 5,228 5,107ppm

  11. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  12. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  13. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  14. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  15. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  16. Ultra Low Sulfur Home Heating Oil Demonstration Project

    SciTech Connect (OSTI)

    Batey, John E.; McDonald, Roger

    2015-09-30

    This Ultra Low Sulfur (ULS) Home Heating Oil Demonstration Project was funded by the New York State Energy Research and Development Authority (NYSERDA) and has successfully quantified the environmental and economic benefits of switching to ULS (15 PPM sulfur) heating oil. It advances a prior field study of Low Sulfur (500 ppm sulfur) heating oil funded by NYSERDA and laboratory research conducted by Brookhaven National Laboratory (BNL) and Canadian researchers. The sulfur oxide and particulate matter (PM) emissions are greatly reduced as are boiler cleaning costs through extending cleaning intervals. Both the sulfur oxide and PM emission rates are directly related to the fuel oil sulfur content. The sulfur oxide and PM emission rates approach near-zero levels by switching heating equipment to ULS fuel oil, and these emissions become comparable to heating equipment fired by natural gas. This demonstration project included an in-depth review and analysis of service records for both the ULS and control groups to determine any difference in the service needs for the two groups. The detailed service records for both groups were collected and analyzed and the results were entered into two spreadsheets that enabled a quantitative side-by-side comparison of equipment service for the entire duration of the ULS test project. The service frequency for the ULS and control group were very similar and did indicate increased service frequency for the ULS group. In fact, the service frequency with the ULS group was slightly less (7.5 percent) than the control group. The only exception was that three burner fuel pump required replacement for the ULS group and none were required for the control group.

  17. LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.

    SciTech Connect (OSTI)

    BATEY, J.E.; MCDONALD, R.J.

    2005-06-01

    This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important red

  18. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  19. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  20. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  1. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  2. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  3. More Economical Sulfur Removal for Fuel Processing Plants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    crude oil it is present in sulfur-containing organic compounds which are converted into hydrocarbons and H 2 S during the removal process (hydrodesulfurization). In both cases,...

  4. fuel_oil.pdf

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 Cooling Degree-DaysATTN: EIA-191Fuel Oil

  5. Sulfur capture by oil shale ashes under atmospheric and pressurized FBC conditions

    SciTech Connect (OSTI)

    Yrjas, K.P.; Hupa, M. [Aabo Akademi Univ., Turku (Finland). Dept. of Chemical Engineering; Kuelaots, I.; Ots, A. [Tallinn Technical Univ. (Estonia). Thermal Engineering Dept.

    1995-12-31

    When oil shale contains large quantities of limestone, a significant auto-absorption of sulfur is possible under suitable conditions. The sulfur capture by oil shale ashes has been studied using a pressurized thermogravimetric apparatus. The chosen experimental conditions were typical for atmospheric and pressurized fluidized bed combustion. The Ca/S molar ratios in the two oil shales studied were 8 (Estonian) and 10 (Israeli). The samples were first burned in a gas atmosphere containing O{sub 2} and N{sub 2} (and CO{sub 2} if pressurized). After the combustion step, SO{sub 2} was added and sulfation started. The results with the oil shales were compared to those obtained with an oil shale cyclone ash from the Narva power plant in Estonia. In general, the results from the sulfur capture experiments under both atmospheric and pressurized conditions showed that the oil shale cannot only capture its own sulfur but also significant amounts of additional sulfur of another fuel if the fuels are mixed together. For example from the runs at atmospheric pressure, the conversion of CaO to CaSO{sub 4} was about 70% for Israeli oil shale and about 55% for Estonian oil shale (850 C). For the cyclone ash the corresponding conversion was about 20%. In comparison it could be mentioned that under the same conditions the conversions of natural limestones are about 30%. The reason the cyclone ash was a poor sulfur absorbent was probably due to its temperature history. In Narva the oil shale was burned at a significantly higher temperature (1,400 C) than was used in the experiments (750 C and 850 C). This caused the ash to sinter and the reactive surface area of the cyclone ash was therefore decreased.

  6. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect (OSTI)

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  7. Fuel-rich sulfur capture in a combustion environment

    SciTech Connect (OSTI)

    Lindgren, E.R.; Pershing, D.W.; Kirchgessner, D.A.; Drehmel, D.C.

    1992-01-01

    The paper discusses the use of a refactory-lined, natural gas furnace to study the fuel-rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel-rich sulfur species hydrogen sulfide and carbonyl sulfide were monitored in a nearly continuous fashion using a gas chromatograph equiped with a flame photometric detector and an automatic system that sampled every 30 seconds. Below the fuel-rich zone, 25% excess air was added, and the ultimate fuel-lean capture was simultaneously measured using a continuous sulfur dioxide monitor. Under fuel-rich conditions, high levels of sulfur capture were obtained, and calcium utilization increased with sulfur concentration. The ultimate lean capture was found to be weakly dependent on sulfur concentration and independent of the sulfur capture level obtained in the fuel-rich zone.

  8. Removal of nitrogen and sulfur from oil-shale

    SciTech Connect (OSTI)

    Olmstead, W.N.

    1986-01-28

    This patent describes a process for enhancing the removal of nitrogen and sulfur from oil-shale. The process consists of: (a) contacting the oil-shale with a sufficient amount of an aqueous base solution comprised of at least a stoichiometric amount of one or more alkali metal or alkaline-earth metal hydroxides based on the total amount of nitrogen and sulfur present in the oil-shale. Also necessary is an amount sufficient to form a two-phase liquid, solid system, a temperature from about 50/sup 0/C to about 350/sup 0/C., and pressures sufficient to maintain the solution in liquid form; (b) separating the effluents from the treated oil-shale, wherein the resulting liquid effluent contains nitrogen moieties and sulfur moieties from the oil-shale and any resulting gaseous effluent contains nitrogen moieties from the oil-shale, and (c) converting organic material of the treated oil-shale to shale-oil at a temperature from about 450/sup 0/C to about 550/sup 0/C.

  9. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish; Haltiner, Jr., Karl J; Weissman, Jeffrey G

    2013-08-13

    A system for adding sulfur to a reformate stream feeding a fuel cell stack, having a sulfur source for providing sulfur to the reformate stream and a metering device in fluid connection with the sulfur source and the reformate stream. The metering device injects sulfur from the sulfur source to the reformate stream at a predetermined rate, thereby providing a conditioned reformate stream to the fuel cell stack. The system provides a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  10. Sulfur removal from diesel fuel-contaminated methanol.

    SciTech Connect (OSTI)

    Lee, S. H. D.; Kumar, R.; Krumpelt, M.; Chemical Engineering

    2002-03-01

    Methanol is considered to be a potential on-board fuel for fuel cell-powered vehicles. In current distribution systems for liquid fuels used in the transportation sector, commodity methanol can occasionally become contaminated with the sulfur in diesel fuel or gasoline. This sulfur would poison the catalytic materials used in fuel reformers for fuel cells. We tested the removal of this sulfur by means of ten activated carbons (AC) that are commercially available. Tests were conducted with methanol doped with 1 vol.% grade D-2 diesel fuel containing 0.29% sulfur, which was present essentially as 33-35 wt.% benzothiophenes (BTs) and 65-67 wt.% dibenzothiophenes (DBT). In general, coconut shell-based carbons activated by high-temperature steam were more effective at sulfur removal than coal-based carbons. Equilibrium sorption data showed linear increase in sulfur capture with the increase of sulfur concentration in methanol. Both types of carbons had similar breakthrough characteristics, with the dynamic sorption capacity of each being about one-third of its equilibrium sorption capacity. Results of this study suggest that a fixed-bed sorber of granular AC can be used, such as in refueling stations, for the removal of sulfur in diesel fuel-contaminated methanol.

  11. System for adding sulfur to a fuel cell stack system for improved fuel cell stability

    DOE Patents [OSTI]

    Mukerjee, Subhasish (Pittsford, NY); Haltiner, Jr., Karl J (Fairport, NY); Weissman, Jeffrey G. (West Henrietta, NY)

    2012-03-06

    A system for adding sulfur to a fuel cell stack, having a reformer adapted to reform a hydrocarbon fuel stream containing sulfur contaminants, thereby providing a reformate stream having sulfur; a sulfur trap fluidly coupled downstream of the reformer for removing sulfur from the reformate stream, thereby providing a desulfurized reformate stream; and a metering device in fluid communication with the reformate stream upstream of the sulfur trap and with the desulfurized reformate stream downstream of the sulfur trap. The metering device is adapted to bypass a portion of the reformate stream to mix with the desulfurized reformate stream, thereby producing a conditioned reformate stream having a predetermined sulfur concentration that gives an acceptable balance of minimal drop in initial power with the desired maximum stability of operation over prolonged periods for the fuel cell stack.

  12. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    in this table do not include enclosed malls and strip malls. In the 1999 CBECS, total fuel oil consumption in malls was not statistically significant. (*)Value rounds to zero...

  13. Fueling the oil and gas industry

    E-Print Network [OSTI]

    Saskatchewan, University of

    Autumn2004 Fueling the oil and gas industry Fueling the oil and gas industry #12;College Editor Fueling the oil and gas Industry 12 Building a tradition of tomorrow 13 Planning your gift 14 VCom

  14. Sulfur tolerant molten carbonate fuel cell anode and process

    DOE Patents [OSTI]

    Remick, Robert J. (Naperville, IL)

    1990-01-01

    Molten carbonate fuel cell anodes incorporating a sulfur tolerant carbon monoxide to hydrogen water-gas-shift catalyst provide in situ conversion of carbon monoxide to hydrogen for improved fuel cell operation using fuel gas mixtures of over about 10 volume percent carbon monoxide and up to about 10 ppm hydrogen sulfide.

  15. SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS

    SciTech Connect (OSTI)

    King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

    2003-11-21

    Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

  16. Visbreaker hardware has alternate uses in low-sulfur fuel era

    SciTech Connect (OSTI)

    Toman, J.J.; Beckman, R.F. (Fluor Daniel Inc., Irvine, CA (United States))

    1993-03-22

    Several possible alternate uses for visbreaker equipment are available to refiners who must significantly increase the degree of residue processing to meet future fuel oil sulfur requirements. In both the U.S. and the European Economic Community (EEC), specifications for the sulfur content of residual fuels will likely be difficult to achieve for refiners who process high-sulfur crudes. Those refiners will have to curtail fuel oil production unless they have a significant fuel oil export market. To meet the coming specifications, residue streams will have to be either directly desulfurized or partially or totally destroyed in more-severe conversion processes such as coking, fluid-bed hydrocracking, or gasification. Under this scenario, normal operation of the visbreaker will not serve a useful purpose for the refiner. But revamping the visbreaker furnace and tower-as well as utilizing existing vessels, pumps, heat-exchange equipment, and piping-for alternative uses will require significantly less capital than would building an entirely new facility. The paper describes regulations; the role of visbreaker; integration of the visbreaker to form a new hydrotreating fractionator; and the use of the visbreaker as a preflash system.

  17. MECS Fuel Oil Figures

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020CubicCubic(Million:

  18. MECS Fuel Oil Tables

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear5,020CubicCubic(Million:: Actual,

  19. Process for removal of sulfur compounds from fuel gases

    DOE Patents [OSTI]

    Moore, Raymond H. (Richland, WA); Stegen, Gary E. (Richland, WA)

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  20. Sulfur distribution in the oil fractions obtained by thermal cracking of Jordanian El-Lajjun oil Shale

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    by the thermal cracking process of the El-Lujjan oil shale showed that the yield of oil was around 12 wt of the boiling point for different distillate fractions. Sulfur in Jordanian oil shale was found to be mainly the dominant phases in these fractions. q 2005 Published by Elsevier Ltd. 1. Introduction Oil shale

  1. Stocks of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Prices Brent crudeEnvironment144,415

  2. Energy accounting for eleven vegetable oil fuels

    SciTech Connect (OSTI)

    Goering, C.E.; Daugherty, M.J.

    1982-09-01

    Energy inputs and outputs were comparatively analyzed for 11 vegetable oil fuels. Three-year average prices and production quantities were also compared. All nonirrigated oil crops had favorable energy ratios. Soybean, peanut and sunflower oils were the most promising as domestic fuel sources. Rapeseed oil would also be promising if significant domestic production can be established.

  3. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

  4. Peanut oil as an emergency diesel fuel

    SciTech Connect (OSTI)

    Goodrum, J.W.

    1983-06-01

    Two elements of an emergency fuel system are discussed. A CeCoCo mechanical oil expeller's efficiency is related to temperature, moisture, and pressure conditions. Durability test on 20:80 and 80:20 peanut oil: diesel blends show injector coking and effects on exhaust temperature, specific fuel, and crankcase oil.

  5. Comparative analysis of plant oil based fuels

    SciTech Connect (OSTI)

    Ziejewski, M.; Goettler, H.J.; Haines, H.; Huong, C.

    1995-12-31

    This paper presents the evaluation results from the analysis of different blends of fuels using the 13-mode standard SAE testing method. Six high oleic safflower oil blends, six ester blends, six high oleic sunflower oil blends, and six sunflower oil blends were used in this portion of the investigation. Additionally, the results from the repeated 13-mode tests for all the 25/75% mixtures with a complete diesel fuel test before and after each alternative fuel are presented.

  6. Fuel and fuel blending components from biomass derived pyrolysis oil

    DOE Patents [OSTI]

    McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

    2012-12-11

    A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

  7. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  8. Degradation of solid oxide fuel cell metallic interconnects in fuels containing sulfur

    SciTech Connect (OSTI)

    Ziomek-Moroz, M.; Hawk, Jeffrey A.

    2005-01-01

    Hydrogen is the main fuel for all types of fuel cells except direct methanol fuel cells. Hydrogen can be generated from all manner of fossil fuels, including coal, natural gas, diesel, gasoline, other hydrocarbons, and oxygenates (e.g., methanol, ethanol, butanol, etc.). Impurities in the fuel can cause significant performance problems and sulfur, in particular, can decrease the cell performance of fuel cells, including solid oxide fuel cells (SOFC). In the SOFC, the high (800-1000°C) operating temperature yields advantages (e.g., internal fuel reforming) and disadvantages (e.g., material selection and degradation problems). Significant progress in reducing the operating temperature of the SOFC from ~1000 ºC to ~750 ºC may allow less expensive metallic materials to be used for interconnects and as balance of plant (BOP) materials. This paper provides insight on the material performance of nickel, ferritic steels, and nickel-based alloys in fuels containing sulfur, primarily in the form of H2S, and seeks to quantify the extent of possible degradation due to sulfur in the gas stream.

  9. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon Excluding...

  10. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon Excluding...

  11. Removal of sulfur contaminants in methanol for fuel cell applications

    SciTech Connect (OSTI)

    Lee, S.H.D.; Kumar, R. [Argonne National Lab., IL (United States); Sederquist, R. [International Fuel Cells Corp., South Windsor, CT (United States)

    1996-12-31

    Equilibrium adsorption isotherm and breakthrough data were used to assess feasibility of developing a granular activated carbon (GAC) adsorber for use as a sulfur removal subsystem in transportation fuel cell systems. Results suggest that an on-board GAC adsorber may not be attractive due to size and weight constraints. However, it may be feasible to install this GAC adsorber at methanol distribution stations, where space and weight are not a critical concern. Preliminary economic analysis indicated that the GAC adsorber concept will be attractive if the spent AC can be regenerated for reuse. These preliminary analyses were made on basis of very limited breakthrough data obtained from the bench-scale testing. Optimization on dynamic testing parameters and study on regeneration of spent AC are needed.

  12. Fuel oil and kerosene sales 1995

    SciTech Connect (OSTI)

    NONE

    1996-09-01

    This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

  13. Method of burning sulfur-containing fuels in a fluidized bed boiler

    DOE Patents [OSTI]

    Jones, Brian C. (Windsor, CT)

    1982-01-01

    A method of burning a sulfur-containing fuel in a fluidized bed of sulfur oxide sorbent wherein the overall utilization of sulfur oxide sorbent is increased by comminuting the bed drain solids to a smaller average particle size, preferably on the order of 50 microns, and reinjecting the comminuted bed drain solids into the bed. In comminuting the bed drain solids, particles of spent sulfur sorbent contained therein are fractured thereby exposing unreacted sorbent surface. Upon reinjecting the comminuted bed drain solids into the bed, the newly-exposed unreacted sorbent surface is available for sulfur oxide sorption, thereby increasing overall sorbent utilization.

  14. Peanut varieties: potential for fuel oil

    SciTech Connect (OSTI)

    Hammons, R.O.

    1981-01-01

    Research is beginning in farm crushing of peanuts into fuel oil, the high-protein residue being used as livestock feed. Thirty peanut genotypes were investigated for oil and protein yields in field trials in Georgia. For 11 varieties in an irrigated test, mean oil contents (dry base) were in the 49.7-52.7% range, and the level of protein was in the 22.60-26.70% range. Wider variations in oil and protein contents were found in 19 other genotypes selected for possible use as an oil crop. Breeding for high oil yield has not been practiced in US peanut breeding programs. Convergent improvement to attain higher levels of oil content, shell-out percentage, and stable yield will require 6-10 generations of crossing, backcrossing, selection, and testing.

  15. Fuel oil and kerosene sales 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-03

    This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

  16. Fuel Oil and Kerosene Sales 2007

    U.S. Energy Information Administration (EIA) Indexed Site

    national level are provided in summary tables. For Fuel Oil and Kerosene Sales on the Internet, access EIA's home page at http:www.eia.doe.gov. Internet Addresses: E-Mail:...

  17. Oil Shale and Other Unconventional Fuels Activities | Department...

    Energy Savers [EERE]

    Services Petroleum Reserves Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy...

  18. Fuel oil and kerosene sales 1994

    SciTech Connect (OSTI)

    NONE

    1995-09-27

    This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

  19. Fuel Oil Use in Manufacturing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved ReservesYearper

  20. Imports of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Hydrocarbon7,747 8,021 8,312218

  1. Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  2. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep3,118,592Number ofByFuel Oil Use

  3. Fuel Oil and Kerosene Sales 2014

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9,WhyConsumption6Fuel Oil and Kerosene

  4. Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel is a critical path for the use of jet fuels in powering the commercial growth of fuel cell systems for air the fuel through adsorptive methods is not practical for long term operations. The current work describes

  5. Near-frictionless carbon coatings for use in fuel injectors and pump systems operating with low-sulfur diesel fuels

    SciTech Connect (OSTI)

    Erdemir, A.; Ozturk, O.; Alzoubi, M.; Woodford, J.; Ajayi, L.; Fenske, G.

    2000-01-19

    While sulfur in diesel fuels helps reduce friction and prevents wear and galling in fuel pump and injector systems, it also creates environmental pollution in the form of hazardous particulates and SO{sub 2} emissions. The environmental concern is the driving force behind industry's efforts to come up with new alternative approaches to this problem. One such approach is to replace sulfur in diesel fuels with other chemicals that would maintain the antifriction and antiwear properties provided by sulfur in diesel fuels while at the same time reducing particulate emissions. A second alternative might be to surface-treat fuel injection parts (i.e., nitriding, carburizing, or coating the surfaces) to reduce or eliminate failures associated with the use of low-sulfur diesel fuels. This research explores the potential usefulness of a near-frictionless carbon (NFC) film developed at Argonne National Laboratory in alleviating the aforementioned problems. The lubricity of various diesel fuels (i.e., high-sulfur, 500 ppm; low sulfur, 140 ppm; ultra-clean, 3 ppm; and synthetic diesel or Fischer-Tropsch, zero sulfur) were tested by using both uncoated and NFC-coated 52100 steel specimens in a ball-on-three-disks and a high-frequency reciprocating wear-test rig. The test program was expanded to include some gasoline fuels as well (i.e., regular gasoline and indolene) to further substantiate the usefulness of the NFC coatings in low-sulfur gasoline environments. The results showed that the NFC coating was extremely effective in reducing wear and providing lubricity in low-sulfur or sulfur-free diesel and gasoline fuels. Specifically, depending on the wear test rig, test pair, and test media, the NFC films were able to reduce wear rates of balls and flats by factors of 8 to 83. These remarkable reductions in wear rates raise the prospect for using the ultra slick carbon coatings to alleviate problems that will be caused by the use of low sulfur diesel and gasoline fuels. Surfaces of the wear scars and tracks were characterized by optical and scanning electron microscopy, and by Raman spectroscopy.

  6. Cost-benefit analysis of ultra-low sulfur jet fuel

    E-Print Network [OSTI]

    Kuhn, Stephen (Stephen Richard)

    2010-01-01

    The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

  7. Update on Transition to Ultra-Low-Sulfur Diesel Fuel (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    On November 8, 2005, the Environmental Protection Agency (EPA) Administrator signed a direct final rule that will shift the retail compliance date for offering ultra-low sulfur diesel (ULSD) for highway use from September 1, 2006, to October 15, 2006. The change will allow more time for retail outlets and terminals to comply with the new 15 parts per million (ppm) sulfur standard, providing time for entities in the diesel fuel distribution system to flush higher sulfur fuel out of the system during the transition. Terminals will have until September 1, 2006, to complete their transitions to ULSD. The previous deadline was July 15, 2006.

  8. Consider Upgrading Pyrolysis Oils Into Renewale Fuels

    SciTech Connect (OSTI)

    Holmgren, J.; Marinangeli, R.; Nair, P.; Elliott, D.; Bain, R.

    2008-09-01

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. An alternate route being pursued involves using a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  9. Fuel oil and kerosene sales, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

  10. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M. ); Gidaspow, D.; Gupta, R.; Wasan, D.T. ); Pfister, R.M.: Krieger, E.J. )

    1992-05-01

    This topical report on Sulfur Control'' presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT's electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  11. ULTRA-LOW SULFUR REDUCTION EMISSION CONTROL DEVICE/DEVELOPMENT OF AN ON-BOARD FUEL SULFUR TRAP

    SciTech Connect (OSTI)

    Ron Rohrbach; Gary Zulauf; Tim Gavin

    2003-04-01

    Honeywell is actively working on a 3-year program to develop and demonstrate proof-of-concept for an ''on-vehicle'' desulfurization fuel filter for heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NO{sub x} adsorbers. The NO{sub x} adsorber may be required to meet the proposed new EPA Tier II and ''2007-Rule'' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters will also be examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. It is anticipated that the technology developed for heavy-duty applications will be applicable to light-duty as well. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consists of four phases. Phase I will focus on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II we will concentrate on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III will study life cycle and regeneration options for the spent filter. Phase IV will focus on efficacy and life testing and component integration. The project team will include a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Mack Trucks Inc.), a filter recycler (American Wastes Industries), and a low-sulfur fuel supplier (Equilon, a joint venture between Shell and Texaco).

  12. Sulfur dioxide capture in the combustion of mixtures of lime, refuse-derived fuel, and coal

    SciTech Connect (OSTI)

    Churney, K.L.; Buckley, T.J. . Center for Chemical Technology)

    1990-06-01

    Chlorine and sulfur mass balance studies have been carried out in the combustion of mixtures of lime, refuse-derived fuel, and coal in the NIST multikilogram capacity batch combustor. The catalytic effect of manganese dioxide on the trapping of sulfur dioxide by lime was examined. Under our conditions, only 4% of the chlorine was trapped in the ash and no effect of manganese dioxide was observed. Between 42 and 14% of the total sulfur was trapped in the ash, depending upon the lime concentration. The effect of manganese dioxide on sulfur capture was not detectable. The temperature of the ash was estimated to be near 1200{degrees}C, which was in agreement with that calculated from sulfur dioxide capture thermodynamics. 10 refs., 12 figs., 10 tabs.

  13. Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AG Weekly Download35 35 35Global

  14. Ultra-low Sulfur Reduction Emission Control Device/Development of an On-board Fuel Sulfur Trap

    SciTech Connect (OSTI)

    Rohrbach, Ron; Barron, Ann

    2008-07-31

    Honeywell has completed working on a multiyear program to develop and demonstrate proof-of-concept for an 'on-vehicle' desulfurization fuel filter for both light duty and heavy-duty diesel engines. Integration of the filter into the vehicle fuel system will reduce the adverse effects sulfur has on post combustion emission control devices such as NOx adsorbers. The NOx adsorber may be required to meet the proposed new EPA Tier II and '2007-Rule' emission standards. The proposed filter concept is based on Honeywell's reactive filtration technology and experience in liquids handling and conditioning. A regeneration and recycling plan for the spent filters was also examined. We have chosen to develop and demonstrate this technology based on criteria set forth for a heavy duty CIDI engine system because it represents a more challenging set of conditions of service intervals and overall fuel usage over light duty systems. In the second phase of the program a light duty diesel engine test was also demonstrated. Further, technology developed under this proposal would also have application for the use of liquid based fuels for fuel cell power generation. The program consisted of four phases. Phase I focused on developing a concept design and analysis and resolution of technical barriers concerning removal of sulfur-containing species in low sulfur fuels. In Phase II concentrated on prototype filter design and preparation followed by qualification testing of this component in a fuel line application. Phase III studied life cycle and regeneration options for the spent filter. Phase IV focused on efficacy and benefits in the desulfation steps of a NOx adsorber on both a heavy and light duty engine. The project team included a number of partners, with Honeywell International as the prime contractor. The partners include an emission control technology developer (Honeywell International), a fuel technology developer (Marathon Ashland Petroleum), a catalyst technology developer (Johnson Matthey), a CIDI engine manufacturer (Navistar Inc. (formerly International Truck & Engine Corporation) and Mack Trucks Inc.), and filter recycler (American Wastes Industries).

  15. More Economical Sulfur Removal for Fuel Processing Plants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Case study covering TDA Research, Inc and its direct oxidation process, which is economical enough for smaller fuel processing plants to use.

  16. Method to improve lubricity of low-sulfur diesel and gasoline fuels

    DOE Patents [OSTI]

    Erdemir, Ali

    2004-08-31

    A method for providing lubricity in fuels and lubricants includes adding a boron compound to a fuel or lubricant to provide a boron-containing fuel or lubricant. The fuel or lubricant may contain a boron compound at a concentration between about 30 ppm and about 3,000 ppm and a sulfur concentration of less than about 500 ppm. A method of powering an engine to minimize wear, by burning a fuel containing boron compounds. The boron compounds include compound that provide boric acid and/or BO.sub.3 ions or monomers to the fuel or lubricant.

  17. Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics

    SciTech Connect (OSTI)

    McDonald, R.

    2009-12-01

    This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

  18. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  19. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  20. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  1. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  2. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect (OSTI)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  3. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  4. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1998 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  5. Peanut, soybean and cottonseed oil as diesel fuels

    SciTech Connect (OSTI)

    Mazed, M.A.; Summers, J.D.; Batchelder, D.G.

    1985-09-01

    Two single cylinder diesel engines burning three vegetable oils, and their blends with diesel fuel, were evaluated and compared to engines burning a reference diesel fuel (Phillips No. 2). Tests were conducted determining power output, fuel consumption, thermal efficiency and exhaust smoke. Using the three vegetable oils and their blends with No. 2 diesel fuel, maximum changes of 5%, 14%, 10%, and 40% were observed in power, fuel consumption by mass, thermal efficiency, and exhaust smoke, respectively. 41 references.

  6. SULFUR HEXAFLUORIDE TREATMENT OF USED NUCLEAR FUEL TO ENHANCE SEPARATIONS

    SciTech Connect (OSTI)

    Gray, J.; Torres, R.; Korinko, P.; Martinez-Rodriguez, M.; Becnel, J.; Garcia-Diaz, B.; Adams, T.

    2012-09-25

    Reactive Gas Recycling (RGR) technology development has been initiated at Savannah River National Laboratory (SRNL), with a stretch-goal to develop a fully dry recycling technology for Used Nuclear Fuel (UNF). This approach is attractive due to the potential of targeted gas-phase treatment steps to reduce footprint and secondary waste volumes associated with separations relying primarily on traditional technologies, so long as the fluorinators employed in the reaction are recycled for use in the reactors or are optimized for conversion of fluorinator reactant. The developed fluorination via SF{sub 6}, similar to the case for other fluorinators such as NF{sub 3}, can be used to address multiple fuel forms and downstream cycles including continued processing for LWR via fluorination or incorporation into a aqueous process (e.g. modified FLUOREX) or for subsequent pyro treatment to be used in advanced gas reactor designs such metal- or gas-cooled reactors. This report details the most recent experimental results on the reaction of SF{sub 6} with various fission product surrogate materials in the form of oxides and metals, including uranium oxides using a high-temperature DTA apparatus capable of temperatures in excess of 1000{deg}C . The experimental results indicate that the majority of the fission products form stable solid fluorides and sulfides, while a subset of the fission products form volatile fluorides such as molybdenum fluoride and niobium fluoride, as predicted thermodynamically. Additional kinetic analysis has been performed on additional fission products. A key result is the verification that SF{sub 6} requires high temperatures for direct fluorination and subsequent volatilization of uranium oxides to UF{sub 6}, and thus is well positioned as a head-end treatment for other separations technologies, such as the volatilization of uranium oxide by NF{sub 3} as reported by colleagues at PNNL, advanced pyrochemical separations or traditional full recycle approaches. Based on current results of the research at SRNL on SF{sub 6} fluoride volatility for UNF separations, SF{sub 6} treatment renders all anticipated volatile fluorides studied to be volatile, and all non-volatile fluorides studied to be non-volatile, with the notable exception of uranium oxides. This offers an excellent opportunity to use this as a head-end separations treatment process because: 1. SF{sub 6} can be used to remove volatile fluorides from a UNF matrix while leaving behind uranium oxides. Therefore an agent such as NF{sub 3} should be able to very cleanly separate a pure UF{sub 6} stream, leaving compounds in the bottoms such as PuF{sub 4}, SrF{sub 2} and CsF after the UNF matrix has been pre-treated with SF{sub 6}. 2. Due to the fact that the uranium oxide is not separated in the volatilization step upon direct contact with SF{sub 6} at moderately high temperatures (? 1000{deg}C), this fluoride approach may be wellsuited for head-end processing for Gen IV reactor designs where the LWR is treated as a fuel stock, and it is not desired to separate the uranium from plutonium, but it is desired to separate many of the volatile fission products. 3. It is likely that removal of the volatile fission products from the uranium oxide should simplify both traditional and next generation pyroprocessing techniques. 4. SF{sub 6} treatment to remove volatile fission products, with or without treatment with additional fluorinators, could be used to simplify the separations of traditional aqueous processes in similar fashion to the FLUOREX process. Further research should be conducted to determine the separations efficiency of a combined SF{sub 6}/NF{sub 3} separations approach which could be used as a stand-alone separations technology or a head-end process.

  7. New routes -- Processes and uses -- For minimizing heavy fuel oil production

    SciTech Connect (OSTI)

    Schulman, B.L.; Biasca, F.E.; Johnson, H.E.; Dickenson, R.L. (SFA Pacific, Inc., Mountain View, CA (United States))

    1994-01-01

    The continuing tightening of environmental regulations poses large challenges to refiners, planning of future strategies. The primary focus is on the progressively higher quality requirements for gasoline and diesel fuels. The technologies for achieving these ends are well defined. However, the cost of producing the hydrogen required is substantial. This need for hydrogen has provided an impetus for improving hydrogen manufacture and also for novel business opportunities for the merchant gas suppliers. The regulations also continue to tighten on the sulfur in heavy fuel oils--particularly in Europe. The progressively lower levels specified generally means that the volume of heavy fuel oil must be decreased sharply. There is a worldwide focus on how best to minimize the amount of heavy fuel oil produced from refineries. Three approaches are evolving to aid the refiners to meet this goal: advances in technology to convert residues--particularly by hydrocracking; advances in hydrogen manufacturing technologies and in innovative marketing of merchant hydrogen to provide cheaper hydrogen; and improvement in gasification technology together with deregulation of power generation offer good opportunities for a refiner to convert the heaviest liquids to electric power--essentially a new product for refiners. SFA Pacific has recently completed a comprehensive analysis of these aspects of residue conversion. This paper highlights some of the major activities worldwide to illustrate the variety of options being considered for substantial reduction in heavy fuel oil production.

  8. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the fascinating things of my job is contemplating questions like: What will the future energy mix look like? This is difficult to predict but it is fair to argue that oil will...

  9. Co-firing high sulfur coal with refuse derived fuels. Quarterly report, October - December 1996

    SciTech Connect (OSTI)

    Pan, W.-P.; Riley, J.T.; Lloyd, W.G.

    1996-12-01

    The objectives of this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the effect of S0{sub 2} on the formation of chlorine during combustion processes was examined. To simulate the conditions used in the AFBC system, experiments were conducted in a quartz tube in an electrically heated furnace. The principle analytical technique used for identification of the products from this study was GC/MS. The evolved gas was trapped by an absorbent and analyzed with a GC/MS system. The preliminary results indicate an inhibiting effect of S0{sub 2} on the Deacon Reaction. Secondly, information on the evolution of chlorine, sulfur and organic compounds from coals 95031 and 95011 were studied with the AFBC system. 2 figs., 1 tab.

  10. Recycled waste oil: A fuel for medium speed diesel engines?

    SciTech Connect (OSTI)

    Cheng, A.B.L.; Poynton, W.A.; Howard, J.G.

    1996-12-31

    This paper describes the exploratory engine trials that Mirrlees Blackstone has undertaken to investigate the effect of fueling an engine using waste oil derived from used lubricants. The effect on the engine`s mechanical components, and thermal performance are examined, and the steps taken to overcome problems are discussed. The proposed engine is sited within the Research and Development facilities, housed separately from the manufacturing plant. The unit is already capable of operating on two different types of fuel with single engine set up. It is a 3 cylinder, 4-stroke turbocharged direct injection engine mounted on an underbase and it operates at 600 rpm, 15.0 bar B.M.E.P. (Brake Mean Effective Pressure). It is a mature engine, built {approximately} 20 years previously, and used for emergency stand-by duties in the company`s powerhouse. The test engine is coupled to an alternator and the electricity generated is fed to the national grid. Initial samples of treated fuel oil, analyzed by an independent oil analysis consultant, indicated that the fuel oil does not correspond to a normal fuel oil. They contained high concentrations of trace elements (i.e. calcium, phosphorus, lead, aluminum and silicon) which was consistent with sourcing from waste lubricating oils. The fuel oil was considered to be too severe for use in an engine.

  11. Vegetable oils: Precombustion characteristics and performance as diesel fuels

    SciTech Connect (OSTI)

    Bagby, M.O.

    1986-03-01

    Vegetable oils show technical promise as alternative fuels for diesel engines and have good potential as emergency fuels. Realistically, vegetable oils cause a number of problems when used in direct-injection diesel engines, generally attributable to inefficient combustion. At least partially responsible for poor combustion of neat vegetable oils are their high viscosity and non-volatility. To improve combustion several somewhat empirical approaches involving both chemical and physical modifications have been investigated by endurance tests in a variety of engines. Using the EMA 200 h engine screening test, several fuels show technical promise. These include methyl, ethyl, and butyl esters; high-oleic oils:diesel blend (1:3); diesel:soybean oil:butanol:cetane improver (33:33:33:1); and microemulsion fuels (diesel:soybean oil:190 proff ethanol:butanol, 50:25:5:20) and (soybean oil:methanol:2-octanol:cetane improver, 53:13:33:1). Using a pressure vessel, fuel injection system, and high speed motion picture camera, fuel injection characteristics of vegetable oils, e.g., soybean, sunflower, cottonseed, and peanut, have been observed in a quiescent nitrogen atmosphere at 480/sup 0/C and 4.1MPa. Their injection and atomization characteristics are markedly different from those of petroleum derived diesel fuels. Heating the vegetable oils to lower their viscosities increased spray penetration rate, reduced spray cone angles, and resulted in spray characteristics resembling those of diesel fuel. Significant chemical changes occurred following injection. Samples collected at about 400 microseconds after the injection event consisted of appreciable quantities of C/sub 4/-C/sub 16/ hydrocarbons, and free carboxyl groups were present.

  12. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    measurements of oil in an operating engine to quantify the fuel dissolved in the lubricant oil. During advanced combustion techniques for improved fuel efficiency and...

  13. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  14. Verifying a Simplified Fuel Oil Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, Hugh; Dentz, Jordan; Doty, Chris

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  15. Distillate Fuel Oil Sales for Oil Company Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,696 146,356760,877

  16. Residual Fuel Oil Sales for Oil Company Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011 2012

  17. Comprehensive study of a heavy fuel oil spill : modeling and analytical approaches to understanding environmental weathering

    E-Print Network [OSTI]

    Lemkau, Karin Lydia

    2012-01-01

    Driven by increasingly heavy oil reserves and more efficient refining technologies, use of heavy fuel oils for power generation is rising. Unlike other refined products and crude oils, a large portion of these heavy oils ...

  18. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  19. NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. To produce these products, Margaret purchases crude oil at a price of £11 per barrel. Each day to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

  20. NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating oil. To produce these products, Margaret can purchase two types of crude oil: crude 1 (at £12 per

  1. Distillate Fuel Oil Sales for Commercial Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand9)%YearD

  2. Distillate Fuel Oil Sales for Farm Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand9)%YearD660,024

  3. Distillate Fuel Oil Sales for Industrial Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic

  4. Distillate Fuel Oil Sales for Military Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,696 146,356 220,601

  5. Distillate Fuel Oil Sales for Railroad Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,696

  6. Distillate Fuel Oil Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,6964,103,881

  7. Residual Fuel Oil Sales for Industrial Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011 2012 2013

  8. Residual Fuel Oil Sales for Military Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011 2012 201314,609

  9. Residual Fuel Oil for All Other Uses

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011

  10. Residual Fuel Oil for Commercial Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011415,107 356,343

  11. Total Adjusted Sales of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8, 2015

  12. Total Adjusted Sales of Residual Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8, 2015End Use: TotalEnd

  13. Total Sales of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product:

  14. Total Sales of Residual Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988Prices,Flight Paths30,2,8,Product:269,010

  15. Distillate Fuel Oil Days of Supply

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim714 b Weekly Download

  16. Distillate Fuel Oil Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim714 b WeeklyEnd Use/

  17. Product Supplied for Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160 OctoberFeet)22,108.15,452.333,646

  18. Determination of oil/water and octanol/water distribution coefficients from aqueous solutions from four fossil fuels. [MS thesis; in oil-water and octanol-water

    SciTech Connect (OSTI)

    Thomas, B.L.

    1984-07-01

    Liquid fossil fuels, both petroleum and synthetically derived oils, are exceedingly complex mixtures of thousands of components. The effect of many of these energy-related components on the environment is largely unknown. Octanol/water distribution coefficients relate both to toxicity and to the bioaccumulation potential of chemical components. Use of these partition data in conjunction with component concentrations in the oils in environmental models provides important information on the fate of fossil fuel components when released to the environment. Octanol/water distribution data are not available for many energy-related organic compounds, and those data that are available have been determined for individual components in simple, one-component octanol/water equilibrium mixtures. In this study, methods for determining many octanol/water distribution coefficients from aqueous extracts of oil products were developed. Sample aqueous mixtures were made by equilibrating liquid fossil fuels with distilled water. This approach has the advantage of detecting interactions between components of interest and other sample components. Compound types studied included phenols, nitrogen bases, hydrocarbons, sulfur heterocyclic compounds, and carboxylic acids. Octanol/water distribution coefficients that were determined in this study ranged from 9.12 for aniline to 67,600 for 1,2-dimethylnaphthalene. Within a compound type, distribution coefficients increased logarithmically with increasing alkyl substitution and molecular weight. Additionally, oil/water distribution data were determined for oil components. These data are useful in predicting maximum environmental concentrations in water columns. 96 references, 26 figures, and 40 tables.

  19. Identification of sulfur heterocycles in coal liquids and shale oils. Technical progress report, August 1, 1980-May 1, 1981

    SciTech Connect (OSTI)

    Lee, M. L.; Castle, R. N.

    1981-01-01

    The sulfur heterocycle separation scheme which was described in the last progress report was evaluated for quantitative recovery of individual components. The results indicate that recoveries can range from 10% to approx. 30% depending on the structure of the compound. During this period, 23 unsubstituted sulfur-containing heterocyclic ring systems were synthesized in oder to confirm GC/MS identifications and for biological testing. The four possible 3-ring heterocycles and the thirteen possible 4-ring heterocycles were tested for mutagenic activity in the histidine reversion (Ames assay) system. One of the 3-ring isomers, naphtho(1,2-b)-thiophene, and six of the 4-ring isomers induced mutations in Salmonella test strains. One of these compounds, phenanthro(3,4-b)thiophene, displayed approximately the same mutagenic activity as benzo(a)pyrene. A two-step adsorption chromatographic procedure was developed in order to fractionate synthetic fuels into various chemical-type classes for studying the relative concentrations and mutagenic activities of the various types. An SRC-II Heavy Distillate was fractionated into aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, sulfur heterocycles, indoles and carbazoles, azaarenes, and amino polycyclic aromatic hydrocarbons. It was found that the amino-PAH fraction contained most of the mutagenic activity. A survey was made for compounds containing both nitrogen and sulfur heteroatoms in their structures. A number of these compounds were detected by GC using nitrogen- and sulfur-selective detection.

  20. Crude oil and finished fuel storage stability: An annotated review

    SciTech Connect (OSTI)

    Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

    1991-01-01

    A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

  1. Oil Shale and Other Unconventional Fuels Activities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing853926 NewsORMAT NEVADAEnergyAFour RegionalOil

  2. Fuel Oil and Kerosene Sales - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers 2015ValuesEFuel Oil and Kerosene

  3. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect (OSTI)

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  4. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 6, January--March 1996

    SciTech Connect (OSTI)

    Pan, W.P.; Riley, J.T.; Lloyd, W.G.

    1996-02-29

    The objectives for this quarter of study on the co-firing of high sulfur coals with refuse derived fuels were two-fold. First, the effects of different experimental parameters such as temperature, flow rates and reaction times on the formation of chlorinated organic compounds were studied using the tubular furnace as a reactor followed by GC/MS analysis. Secondly, the effect of fuel/air ratio on the flue gas composition and combustion efficiency were studied with the AFBC system.

  5. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  6. Process for producing low-sulfur boiler fuel by hydrotreatment of solvent deashed SRC

    DOE Patents [OSTI]

    Roberts, George W. (Emmaus, PA); Tao, John C. (Perkiomenville, PA)

    1985-01-01

    In this invention, a process is disclosed characterized by heating a slurry of coal in the presence of a process-derived recycle solvent and passing same to a dissolver zone, separating the resultant gases and liquid/solid products therefrom, vacuum distilling the liquid/solids products, separating the portions of the liquid/solids vacuum distillation effluent into a solid ash, unconverted coal particles and SRC material having a boiling point above 850.degree. F. and subjecting same to a critical solvent deashing step to provide an ash-free SRC product. The lighter liquid products from the vacuum distillation possess a boiling point below 850.degree. F. and are passed through a distillation tower, from which recycled solvent is recovered in addition to light distillate boiling below 400.degree. F. (overhead). The ash-free SRC product in accompanyment with at least a portion of the process derived solvent is passed in combination to a hydrotreating zone containing a hydrogenation catalyst and in the presence of hydrogen is hydroprocessed to produce a desulfurized and denitrogenized low-sulfur, low-ash boiler fuel and a process derived recycle solvent which is recycled to slurry the coal in the beginning of the process before heating.

  7. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis...

  8. Letter to the editor The bio-fuel debate and fossil energy use in palm oil

    E-Print Network [OSTI]

    Letter to the editor The bio-fuel debate and fossil energy use in palm oil production: a critique-fuels based on palm oil to re- duce greenhouse gas emissions, due account should be taken of carbon emissions fuel use in palm oil pro- duction, making a number of assumptions that I believe to be incorrect

  9. Experimental plan for the fuel-oil study

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  10. Miscible, multi-component, diesel fuels and methods of bio-oil transformation

    DOE Patents [OSTI]

    Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

    2010-10-26

    Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

  11. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    SciTech Connect (OSTI)

    Roberts, M.J.; Abbasian, J.; Akin, C.; Lau, F.S.; Maka, A.; Mensinger, M.C.; Punwani, D.V.; Rue, D.M.; Gidaspow, D.; Gupta, R.; Wasan, D.T.; Pfister, R.M.: Krieger, E.J.

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite) for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.

  12. Rheological properties of peanut oil-diesel fuel blends

    SciTech Connect (OSTI)

    Goodrum, J.W.; Law, S.E.

    1982-07-01

    Basic physical properties of peanut oil-diesel fuel blends were experimentally determined to help establish suitability for use in compression-ignition engines. For volumetric proportions of peanut oil ranging in 20 percent increments from 0 percent to 100 percent, the continuously varying properties at 21/sup 0/C were found to range as follows: heating value - 45.8 to 40.3 MJ/kg; specific gravity - 0.848 to 0.915; surface tension - 28.3 to 35.6 mN/m; and kinematic viscosity - 3.8 to 7.0 cSt. Dynamic viscosity measured as a function of shear rate over a 0/sup 0/C to 80/sup 0/C temperature range indicated nonNewtonian flow properties at shear rates less than 3/s.

  13. Fuel and lubricant additives from acid treated mixtures of vegetable oil derived amides and esters

    SciTech Connect (OSTI)

    Bonazza, B.R.; Devault, A.N.

    1981-05-26

    Vegetable oils such as corn oil, peanut oil, and soy oil are reacted with polyamines to form a mixture containing amides, imides, half esters, and glycerol with subsequent treatment with a strong acid such as sulfonic acid to produce a product mix that has good detergent properties in fuels and lubricants.

  14. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9. TechnologyDOE Web Managers

  15. Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel

    DOE Patents [OSTI]

    Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

    2010-11-23

    Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

  16. ?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  17. ,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015" ,"ReleaseVolumeMonthly","10/2015"NaturalMonthly","10/2015"

  18. Coal-firing sulfur coal with refuse derived fuels. Technical progress report {number_sign}7, [April--June 1996

    SciTech Connect (OSTI)

    Pan, Wei-Ping, Riley, J.T.; Lloyd, W.G.

    1996-05-31

    The objectives for this quarter of study on the co-firing of high sulfur coal with refuse derived fuels project were two-fold. First, the organic compounds tentatively identified as combustion products in the previous report were confirmed by comparing retention times with pure samples. Secondly, a reduced amount of unburned carbon in the fly ash and an oxygen concentration at about 3--6% in the flue gases were achieved by the addition of removable heat exchange tubes in the AFBC system.

  19. Vegetable oils as an on the farm diesel fuel substitute: the North Carolina situation. Final report

    SciTech Connect (OSTI)

    Harwood, H.J.

    1981-06-01

    The state-of-the-art of using vegetable oil as a diesel fuel alternative is reviewed. Particular emphasis has been placed on using vegetable oil in farm vehicles as an emergency fuel which may be produced on-farm. The following are reviewed: the mechanical feasibility, on-farm fuel production, and economic analysis.

  20. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  1. Table 42. Residual Fuel Oil Prices by PAD District and State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information AdministrationPetroleum Marketing Annual 1998 203 Table 42. Residual Fuel Oil Prices by PAD District and State (Cents per Gallon Excluding Taxes) - Continued...

  2. VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.

    SciTech Connect (OSTI)

    KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

    2004-10-01

    The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

  3. Transition to Ultra-Low-Sulfur Diesel Fuel: Effects on Prices and Supply, The

    Reports and Publications (EIA)

    2001-01-01

    This report discusses the implications of the new regulations for vehicle fuel efficiency and examines the technology, production, distribution, and cost implications of supplying diesel fuel to meet the new standards.

  4. Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel

    SciTech Connect (OSTI)

    Xie, Chao; Chen, Yongsheng; Engelhard, Mark H.; Song, Chunshan

    2012-04-18

    This work was conducted to clarify the influence of the type of metal and support on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbons. Al2O3-supported noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalysts on different supports (Al2O3, CeO2, SiO2, and MgO), and Pt catalyst supported on CeO2 and Al2O3, were examined for steam reforming of a liquid hydrocarbon fuel (Norpar13 from Exxon Mobil) at 800 C for 55 h. The results indicate that (1) Rh/Al2O3 shows higher sulfur tolerance than the Ru, Pt, and Pd catalysts on the same support; (2) both Al2O3 and CeO2 are promising supports for Rh catalyst to process sulfur-containing hydrocarbons; and (3) Pt/CeO2 exhibits better catalytic performance than Pt/Al2O3 in the reaction with sulfur. TEM results demonstrate that the metal particles in Rh/Al2O3 were better dispersed (mostly in 1-3 nm) compared with the other catalysts after reforming the sulfur-containing feed. As revealed by XPS, the binding energy of Rh 3d for Rh/Al2O3 is notably higher than that for Rh/CeO2, implying the formation of electron-deficient Rh particles in the former. The strong sulfur tolerance of Rh/Al2O3 may be related to the formation of well-dispersed electron-deficient Rh particles on the Al2O3 support. Sulfur K-edge XANES illustrates the preferential formation of sulfonate and sulfate on Rh/Al2O3, which is believed to be beneficial for improving its sulfur tolerance as their oxygen-shielded sulfur structure may hinder direct Rh-S interaction. Due to its strong sulfur tolerance, the carbon deposition on Rh/Al2O3 was significantly lower than that on the Al2O3-supported Ru, Pt, and Pd catalysts after the reaction with sulfur. The superior catalytic performance of CeO2-supported Rh and Pt catalysts in the presence of sulfur can be ascribed mainly to the promotion effect of CeO2 on carbon gasification, leading to much lower carbon deposition compared with the Rh/Al2O3, Rh/MgO, Rh/SiO2 and Pt/Al2O3 catalysts.

  5. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13

  6. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13

  7. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13

  8. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1996

  9. Table 17. U.S. No. 2 Diesel Fuel Prices by Sulfur Content and Sales Type

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13

  10. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7 84.156.9 63.4

  11. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7 84.156.9

  12. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7 84.156.976.6

  13. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.7

  14. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.2 48.3 51.7

  15. Demand, Supply, and Price Outlook for Low-Sulfur Diesel Fuel

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim714 CreatedDemand and

  16. Energy Department Provides Additional Emergency Fuel Loan to...

    Office of Environmental Management (EM)

    of Defense with additional ultra-low sulfur diesel fuel from the Northeast Home Heating Oil Reserve in response to a request from the State of Connecticut. The Energy Department...

  17. Coal-oil slurry preparation

    DOE Patents [OSTI]

    Tao, John C. (Perkiomenville, PA)

    1983-01-01

    A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

  18. Lubricant oil consumption effects on diesel exhaust ash emissions using a sulfur dioxide trace technique and thermogravimetry

    E-Print Network [OSTI]

    Plumley, Michael J

    2005-01-01

    A detailed experimental study was conducted targeting lubricant consumption effects on ,diesel exhaust ash levels using a model year 2002 5.9L diesel engine, high and low Sulfur commercial lubricants, and clean diesel ...

  19. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  20. "Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil, and Residual

  1. "Table A2. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981"0. Total Consumption of LPG, Distillate Fuel Oil, and6.. Total

  2. Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2006-02-14

    The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

  3. Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

    SciTech Connect (OSTI)

    Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

    2009-08-01

    Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

  4. Conversion of crop seed oils to jet fuel and associated methods

    DOE Patents [OSTI]

    Ginosar, Daniel M.; Petkovic, Lucia M.; Thompson, David N.

    2010-05-18

    Aspects of the invention include methods to produce jet fuel from biological oil sources. The method may be comprised of two steps: hydrocracking and reforming. The process may be self-sufficient in heat and hydrogen.

  5. RECS Fuel Oil Usage Form_v1 (Draft).xps

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

  6. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    n.e. RFG n.e. dist. n.e. ULSD n.e. fuel oil n.e. LPG n.e.dist. = distillate fuel; ULSD = ultra-low-sulfur distillateultra-low-sulfur diesel (ULSD) with 5 ppm S, then weights

  8. Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine 

    E-Print Network [OSTI]

    Yarbrough, Charles Michael

    1984-01-01

    OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

  9. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  10. THE FINAL SERIES OF OILS TESTED AS A POTENTIAL SOLUTION TO THE GALVESTON FERRY

    E-Print Network [OSTI]

    Texas at Austin, University of

    DOT) began using an ultra-low sulfur diesel fuel, Texas Low Emission Diesel (TxLED), in all of its diesel dithiophosphate (ZDP). This oil was chosen to examine the effects of a synthetic oil with a low ash content. EMD low-cost solution. Additionally, none of the GFO engines is still under warranty. Also, the oil

  11. Oil and Fuel Spills EHS Contact: Lysa Holland (ljh17@psu.edu) 814-865-6391

    E-Print Network [OSTI]

    Maroncelli, Mark

    Oil and Fuel Spills EHS Contact: Lysa Holland (ljh17@psu.edu) 814-865-6391 Procedures implemented. Other spills/releases of oil containing materials must be reported if they exceed 1 quart

  12. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1993

  13. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1993

  14. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1993

  15. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1993

  16. Table 19. U.S. Refiner Residual Fuel Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 January13 1993

  17. Table 20. U.S. Refiner Residual Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 January

  18. Table 20. U.S. Refiner Residual Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 January

  19. Table 20. U.S. Refiner Residual Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 January

  20. Table 20. U.S. Refiner Residual Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 January

  1. Table 20. U.S. Refiner Residual Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,137 4,9743Number63 1993 January

  2. East Coast (PADD 1) Distillate Fuel Oil Imports

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReporting Guidelines VoluntaryStatement 1

  3. Distillate Fuel Oil Sales for All Other Uses

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet)Cubic1992Thousand9)%YearD eDiscussion0

  4. Distillate Fuel Oil Sales for Off-Highway Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,696 146,356

  5. Distillate Fuel Oil Sales for Vessel Bunkering Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242 246,243 142,6964,103,8811,912,984

  6. Residual Fuel Oil Prices, Average - Sales to End Users

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011 2012 2013 2014

  7. Residual Fuel Oil Sales for Vessel Bunkering Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand Cubic2009 2010 2011 20124,589,049

  8. Process for Converting Algal Oil to Alternative Aviation Fuel - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptions | National NuclearProbingProbingxx by ASMEPlasma

  9. U.S. Residual Fuel Oil Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan FebFeet)YearCrude

  10. Adjusted Distillate Fuel Oil Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.10 CoolingNotes &*GinaSpring 2008

  11. Distillate Fuel Oil Assessment for Winter 1995-1996

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim714 b

  12. U.S. Residual Fuel Oil Prices by Sales Type

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area: U.S. East Coast

  13. Prime Supplier Sales Volumes of Residual Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160 OctoberFeet)22,108.1

  14. Refiner and Blender Net Production of Distillate Fuel Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168 5,228 5,107 4,938

  15. Residual Fuel Oil Prices, Average - Sales to End Users

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016 East Coast (PADD 1)

  16. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016 East Coast (PADD 1)May-15

  17. Residual Fuel Oil Sales to End Users Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model8)3

  18. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect (OSTI)

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  19. Economics of on-farm production and use of vegetable oils for fuel

    SciTech Connect (OSTI)

    McIntosh, C.S.; Withers, R.V.; Smith, S.M.

    1982-01-01

    The technology of oilseed processing, on a small scale, is much simpler than that for ethanol production. This, coupled with the fact that most energy intensive farm operations use diesel powered equipment, has created substantial interest in vegetable oils as an alternative source of liquid fuel for agriculture. The purpose of this study was to estimate the impact on gross margins resulting from vegetable oil production and utilization in two case study areas, Latah and Power Counties, in Iadho. The results indicate that winter rape oil became a feasible alternative to diesel when the price of diesel reached $0.84 per liter in the Latah County model. A diesel price of $0.85 per liter was required in the Power County model before it became feasible to produce sunflower oil for fuel. 5 tables.

  20. Characterization of vegetable oils for use as fuels in diesel engines

    SciTech Connect (OSTI)

    Ryan, T.W. III.; Callahan, T.J.; Dodge, L.G.

    1982-01-01

    The current specifications for petroleum fuels have evolved over the history of the petroleum industry and the development of the internal combustion engine. Present day fuel specifications are based on a wealth of empirical data and practical experience. A similar data base is only now being developed for the specification of vegetable oil fuels for diesel engines. Four different types of vegetable oil (soy, sunflower, cottonseed and peanut) have been obtained, each in at least three different stages of processing. All of the oils (14) have been characterized with respect to their physical and chemical properties. The spray characteristics of five of the oils have been determined at a variety of fuel temperatures using a high-pressure, high-temperature injection bomb and high-speed motion picture camera. These same oils have been tested in a direct injection farm tractor engine. The engine data consists of the normal performance measurements as well as the determination of heat release rates from cylinder pressure data. 3 figures, 7 tables.

  1. RECS Fuel Oil Usage Form_v1 (Draft).xps

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015 Alcohol. TheData - U.S.fuel oil usage

  2. U.S. Distillate Fuel Oil and Kerosene Sales by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil Generaldiesel fuel priceArea: U.S.

  3. Full Useful Life (120,000 miles) Exhaust Emission Performance of a NOx Adsorber and Diesel Particle Filter Equipped Passenger Car and Medium-duty Engine in Conjunction with Ultra Low Sulfur Fuel (Presentation)

    SciTech Connect (OSTI)

    Thornton, M.; Tatur, M.; Tomazic, D.; Weber, P.; Webb, C.

    2005-08-25

    Discusses the full useful life exhaust emission performance of a NOx (nitrogen oxides) adsorber and diesel particle filter equipped light-duty and medium-duty engine using ultra low sulfur diesel fuel.

  4. A Damage Model for Degradation in the Electrodes of solid oxide fuel cells: Modeling the effects of sulfur and antimony in the anode

    SciTech Connect (OSTI)

    Ryan, Emily M.; Xu, Wei; Sun, Xin; Khaleel, Mohammad A.

    2012-07-15

    Over their designed lifetime, high temperature electrochemical devices, such as solid oxide fuel cells (SOFCs), can experience degradation in their electrochemical performance due to environmental conditions, operating conditions, contaminants, and other factors. Understanding the different degradation mechanisms in SOFCs and other electrochemical devices is essential to reducing performance degradation and increasing the lifetime of these devices. In this paper SOFC degradation mechanisms are discussed and a damage model is presented which describes performance degradation in SOFCs due to damage or degradation in the electrodes of the SOFC. A degradation classification scheme is presented that divides the various SOFC electrode degradation mechanisms into categories based on their physical effects on the SOFC. The application of the damage model and the classification method is applied to sulfur poisoning and antimony poisoning which occur in the anode of SOFCs. For sulfur poisoning the model is able to predict the degradation in SOFC performance based on the operating temperature and voltage of the fuel cell and the concentration of gaseous sulfur species in the anode. For antimony poisoning the effects of nickel removal from the anode matrix is investigated.

  5. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  6. Method to upgrade bio-oils to fuel and bio-crude

    DOE Patents [OSTI]

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  7. Rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels

    SciTech Connect (OSTI)

    Korus, R.A.; Jaiduk, J.; Peterson, C.L.

    1985-11-01

    Short engine tests were used to determine the rate of carbon deposition on direct injection diesel nozzles. Winter rape, high-oleic and high-linoleic safflower blends with 50% diesel were tested for carbon deposit and compared to that with D-2 Diesel Control Fuel. Deposits were greatest with the most unsaturated fuel, high-linoleic safflower, and least with winter rape. All vegetable oil blends developed power similar to diesel fueled engines with a 6 to 8% greater fuel consumption. 8 references.

  8. U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries and TBD OMB

  9. U.S. Adjusted Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries and TBD OMBArea:

  10. U.S. Adjusted Sales of Residual Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries and TBDArea: U.S.

  11. Progress report Idaho on-road test with vegetable oil as a diesel fuel

    SciTech Connect (OSTI)

    Reece, D.; Peterson, C.L.

    1993-12-31

    Biodiesel is among many biofuels being considered in the US for alternative fueled vehicles. The use of this fuel can reduce US dependence on imported oil and help improve air quality by reducing gaseous and particulate emissions. Researchers at the Department of Agricultural Engineering at the University of Idaho have pioneered rapeseed oil as a diesel fuel substitute. Although UI has conducted many laboratory and tractor tests using raw rapeseed oil and rape methyl ester (RME), these fuels have not been proven viable for on-road applications. A biodiesel demonstration project has been launched to show the use of biodiesel in on-road vehicles. Two diesel powered pickups are being tested on 20 percent biodiesel and 80 percent diesel. One is a Dodge 3/4-ton pickup powered by a Cummins 5.9 liter turbocharged and intercooled engine. This engine is direct injected and is being run on 20 percent RME and 80 percent diesel. The other pickup is a Ford, powered by a Navistar 7.3 liter, naturally aspirated engine. This engine has a precombustion chamber and is being operated on 20 percent raw rapeseed oil and 80 percent diesel. The engines themselves are unmodified, but modifications have been made to the vehicles for the convenience of the test. In order to give maximum vehicle range, fuel mixing is done on-board. Two tanks are provided, one for the diesel and one for the biodiesel. Electric fuel pumps supply fuel to a combining chamber for correct proportioning. The biodiesel fuel tanks are heated with a heat exchanger which utilizes engine coolant circulation.

  12. Economic implications of substituting plant oils for diesel fuel. Volume 2. Final report

    SciTech Connect (OSTI)

    Griffin, R.C.; Collins, G.S.; Lacewell, R.D.; Chang, H.C.

    1983-08-01

    This study of expected economic impacts of substituting plant oils for diesel fuel consisted of two components: (1) analysis of oilseed production and oilseed crushing capacity in the US and Texas and (2) simulation of impacts on US cropping patterns, crop prices, producer rent, and consumer surplus. The primary oilseed crops considered were soybeans, cottonseed, sunflowers, and peanuts. 19 references, 2 figures, 14 tables.

  13. Additives and Cathode Materials for High-Energy Lithium Sulfur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

  14. Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,

  15. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  16. Additive for lubricants and hydrocarbon fuels comprising reaction products of olefins, sulfur, hydrogen sulfide and nitrogen containing polymeric compounds

    SciTech Connect (OSTI)

    Horodysky, A.G.; Law, D.A.

    1987-04-28

    A process is described for making an additive for lubricant compositions comprising co-reacting: a monoolefin selected from the group consisting of butenes, propenes, pentenes, and mixtures of two or more thereof; sulfur; hydrogen sulfide; polymeric nitrogen-containing compound selected from the group consisting of succinimides, amides, imides, polyoxyazoline polymers and alkyl imidazoline compounds; and a catalytic amount of an amine selected from the group consisting of polyethylene amines and hydroxyl-containing amines; at a temperature between about 130/sup 0/C and about 200/sup 0/C and a pressure of about 0 psig to about 900 psig, the reactants being reacted in a molar ratio of olefin, polymeric nitrogen-containing compound, and hydrogen sulfide to sulfur of 2 to 0.5, 0.001 to 0.4, and 0.5 to 0.7, respectively, and the concentration of amine being between 0.5 and 10 percent of the total weight of reactants.

  17. Winters fuels report

    SciTech Connect (OSTI)

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  18. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003" ,"All Buildings*",,"Total Energy Consumption (trillion Btu)" ,"Number of Buildings (thousand)","Floorspace...

  19. Major Fuels","Site Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    C1. Total Energy Consumption by Major Fuel, 1999" ,"All Buildings",,"Total Energy Consumption (trillion Btu)",,,,,"Primary Electricity (trillion Btu)" ,"Number of Buildings...

  20. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.8

  1. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1 57,015.7

  2. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1

  3. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1872.2

  4. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.68,502.854.83,186.1872.2956.0

  5. Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.2 9,758.6 6,676.5 14,388.9

  6. Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.2 9,758.6 6,676.5

  7. Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.2 9,758.6 6,676.5555.2

  8. Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.2 9,758.6

  9. U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan FebFeet)YearCrudeVolumes

  10. U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area: U.S.Sales

  11. U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubic Feet) DepletedDiscoveriesArea: U.S.-

  12. U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubic Feet) DepletedDiscoveriesArea:Volumes

  13. Pyrolysis of Woody Residue Feedstocks: Upgrading of Bio-Oils from Mountain-Pine-Beetle-Killed Trees and Hog Fuel

    SciTech Connect (OSTI)

    Zacher, Alan H.; Elliott, Douglas C.; Olarte, Mariefel V.; Santosa, Daniel M.; Preto, Fernando; Iisa, Kristiina

    2014-12-01

    Liquid transportation fuel blend-stocks were produced by pyrolysis and catalytic upgrading of woody residue biomass. Mountain pine beetle killed wood and hog fuel from a saw mill were pyrolyzed in a 1 kg/h fluidized bed reactor and subsequently upgraded to hydrocarbons in a continuous fixed bed hydrotreater. Upgrading was performed by catalytic hydrotreatment in a two-stage bed at 170°C and 405°C with a per bed LHSV between 0.17 and 0.19. The overall yields from biomass to upgraded fuel were similar for both feeds: 24-25% despite the differences in bio-oil (intermediate) mass yield. Pyrolysis bio-oil mass yield was 61% from MPBK wood, and subsequent upgrading of the bio-oil gave an average mass yield of 41% to liquid fuel blend stocks. Hydrogen was consumed at an average of 0.042g/g of bio-oil fed, with final oxygen content in the product fuel ranging from 0.31% to 1.58% over the course of the test. Comparatively for hog fuel, pyrolysis bio-oil mass yield was lower at 54% due to inorganics in the biomass, but subsequent upgrading of that bio-oil had an average mass yield of 45% to liquid fuel, resulting in a similar final mass yield to fuel compared to the cleaner MPBK wood. Hydrogen consumption for the hog fuel upgrading averaged 0.041 g/g of bio-oil fed, and the final oxygen content of the product fuel ranged from 0.09% to 2.4% over the run. While it was confirmed that inorganic laded biomass yields less bio-oil, this work demonstrated that the resultant bio-oil can be upgraded to hydrocarbons at a higher yield than bio-oil from clean wood. Thus the final hydrocarbon yield from clean or residue biomass pyrolysis/upgrading was similar.

  14. Swedish tests on rape-seed oil as an alternative to diesel fuel

    SciTech Connect (OSTI)

    Johansson, E.; Nordstroem, O.

    1982-01-01

    The cheapest version of Swedish rape-seed oil was chosen. First the rape-seed oil was mixed in different proportions with regular diesel fuel. A mixture of 1/3 rape-seed oil and 2/3 regular diesel fuel (R 33) was then selected for a long-term test. A Perkins 4.248 diesel engine was used for laboratory tests. Four regular farm tractors, owned and operated by farmers, and two tractors belonging to the Institute have been running on R 33. Each tractor was calibrated on a dynamometer according to Swedish and ISO-standards before they were operated on R 33. Since then the tractors have been regularly recalibrated. The test tractors have been operated on R 33 for more than 3400 h. An additional 1200 h have been covered by the laboratory test engine. None of the test tractors have hitherto required repairs due to the use of R 33, but some fuel filters have been replaced. Some fuel injectors have been cleaned due to deposits on the nozzles. 4 figures, 1 table.

  15. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 1, [September--November 1994

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1994-11-30

    This project is being coordinated with an ongoing project at Western Kentucky University that is being supported by the Southeastern Regional Biomass Energy Program through the Tennessee Valley Authority. Fluidized bed combustion tests will be performed on municipal solid waste blended with high-sulfur and high-chlorine coals in a laboratory scale combustor. The purpose of the tests is to evaluate combustion performance, the extent of the inorganic acid gases (HCl and SO{sub x}) and chlorinated organic compound formation, the effect of chlorine species on SO{sub 2} removal with a sorbent, and the effect of sulfur species on the formation of chlorinated organic compounds from MSW for a range of bed temperatures, excess air levels, MSW/coal ratios, and S/Cl ratios. Flue gas samples will be collected and analyzed at three locations: free board, cyclone inlet, and cyclone outlet. Analytical methods used will include ion chromatography, gas chromatography, and mass spectrometry. Waste stream ash samples will be collected from the cyclone catch and analyzed for unburned carbon, chlorine, chlorinated benzenes, polychlorinated biphenyls, chlorinated phenols, dioxins, furans, and metal content. Major, minor, and trace elements in the ash will be determined by x-ray fluorescence and inductively coupled plasma-atomic emission spectroscopy. Accomplishments for the first quarter are presented.

  16. Experimental plan for the fuel-oil study. Weatherization Assistance Program: Volume 2

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.; Brown, M.A.

    1992-01-01

    An up-to-date assessment of the Weatherization Assistance Program (WAP) is being performed by the US Department of Energy WAP Division and the Oak Ridge National Laboratory. Five studies form the evaluation. Major goals of the Fuel-Oil Study are to estimate the fuel oil saved by the WAP in the Northeast during the 1990 and 1991 program years, identify and quantify non-energy impacts of the WAP, assess the cost effectiveness of the WAP within this submarket, and assess factors which may cause savings and cost effectiveness to vary. The study will only analyze single-family houses in the nine states in the Northeast census region and will be carried out over two heating seasons (1990 and 1991 WAP program years). A split-winter, pre- and post-weatherization experimental design with a control group will be used. Houses will be monitored over one winter. Energy conservation measures will be installed in the weatherized houses in January of each winter by the local WAP subgrantee. One hundred twenty five weatherized houses and 75 control houses will be monitored over the 1990--1991 winter; a different set of 200 houses will be monitored over the 1991--1992 winter. The houses will be evenly distributed among 25 subgrantees. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature data will be collected for all houses. Fuel-oil delivery data will be collected for each house monitored over the 1990--1991 winter for at least a year before weatherization. The delivery data will be analyzed to determine if the accuracy of the study can be improved by collecting fuel-oil delivery data on a larger sample of houses over the 1991--1992 winter. Detailed survey information will be obtained on all the houses. This information includes descriptive details of the house and its mechanical systems, details on household size and other demographics, and occupant answers to questions regarding comfort, safety, and operation of their space-heating system and house.

  17. Potential use of California lignite and other alternate fuel for enhanced oil recovery. Phase I and II. Final report. [As alternative fuels for steam generation in thermal EOR

    SciTech Connect (OSTI)

    Shelton, R.; Shimizu, A.; Briggs, A.

    1980-02-01

    The Nation's continued reliance on liquid fossil fuels and decreasing reserves of light oils gives increased impetus to improving the recovery of heavy oil. Thermal enhanced oil recovery EOR techniques, such as steam injection, have generally been the most effective for increasing heavy oil production. However, conventional steam generation consumes a large fraction of the produced oil. The substitution of alternate (solid) fuels would release much of this consumed oil to market. This two-part report focuses on two solid fuels available in California, the site of most thermal EOR - petroleum coke and lignite. Phase I, entitled Economic Analysis, shows detailed cost comparisons between the two candidate fuels and also with Western coal. The analysis includes fuels characterizations, process designs for several combustion systems, and a thorough evaluation of the technical and economic uncertainties. In Phase II, many technical parameters of petroleum coke combustion were measured in a pilot-plant fluidized bed. The results of the study showed that petroleum coke combustion for EOR is feasible and cost effective in a fluidized bed combustor.

  18. Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered

    DOE Patents [OSTI]

    Bauman, Richard F. (Houston, TX); Ryan, Daniel F. (Friendswood, TX)

    1982-01-01

    An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

  19. Methods of refining natural oils and methods of producing fuel compositions

    SciTech Connect (OSTI)

    Firth, Bruce E; Kirk, Sharon E; Gavaskar, Vasudeo S

    2015-11-04

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent selected from the group consisting of phosphorous acid, phosphinic acid, and a combination thereof; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  20. Methods of refining natural oils, and methods of producing fuel compositions

    SciTech Connect (OSTI)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method of refining a natural oil includes: (a) providing a feedstock that includes a natural oil; (b) reacting the feedstock in the presence of a metathesis catalyst to form a metathesized product that includes olefins and esters; (c) passivating residual metathesis catalyst with an agent that comprises nitric acid; (d) separating the olefins in the metathesized product from the esters in the metathesized product; and (e) transesterifying the esters in the presence of an alcohol to form a transesterified product and/or hydrogenating the olefins to form a fully or partially saturated hydrogenated product. Methods for suppressing isomerization of olefin metathesis products produced in a metathesis reaction, and methods of producing fuel compositions are described.

  1. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  2. Economic feasibility of biochemical processes for the upgrading of crudes and the removal of sulfur, nitrogen, and trace metals from crude oil -- Benchmark cost establishment of biochemical processes on the basis of conventional downstream technologies. Final report FY95

    SciTech Connect (OSTI)

    Premuzic, E.T.

    1996-08-01

    During the past several years, a considerable amount of work has been carried out showing that microbially enhanced oil recovery (MEOR) is promising and the resulting biotechnology may be deliverable. At Brookhaven National Laboratory (BNL), systematic studies have been conducted which dealt with the effects of thermophilic and thermoadapted bacteria on the chemical and physical properties of selected types of crude oils at elevated temperatures and pressures. Current studies indicate that during the biotreatment several chemical and physical properties of crude oils are affected. The oils are (1) emulsified; (2) acidified; (3) there is a qualitative and quantitative change in light and heavy fractions of the crudes; (4) there are chemical changes in fractions containing sulfur compounds; (5) there is an apparent reduction in the concentration of trace metals; and (6) the qualitative and quantitative changes appear to be microbial species dependent; and (7) there is a distinction between biodegraded and biotreated oils. The downstream biotechnological crude oil processing research performed thus far is of laboratory scale and has focused on demonstrating the technical feasibility of downstream processing with different types of biocatalysts under a variety of processing conditions. Quantitative economic analysis is the topic of the present project which investigates the economic feasibility of the various biochemical downstream processes which hold promise in upgrading of heavy crudes, such as those found in California, e.g., Monterey-type, Midway Sunset, Honda crudes, and others.

  3. Co-firing high sulfur coal with refuse derived fuels. Progress report No. 3, [April--June 1995

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-05-31

    The Thermogravimetric Analyzer-Fourier Transform Infrared Spectrometer-Mass Spectrometer (TG-FTIR-MS) system was used to identify molecular chlorine, along with HCl, CO, CO{sub 2}, H{sub 2}O, and various hydrocarbons in the gaseous products of the combustion of PVC resin in air. This is a significant finding that will lead us to examine this combustion step further to look for the formation of chlorinated organic compounds. The combination of TG-FTIR and TG-MS offers complementary techniques for the detection and identification of combustion products from coals PVC, cellulose, shredded newspaper, and various blends of these materials. The pilot atmospheric fluidized bed combustor (AFBC) at Western Kentucky University has been tested. The main purpose of these preliminary AFBC runs were to determine the compatibility of coal and pelletized wood in blends and to explore the effects of flue/air ratio. Our objective is to conduct AFBC burns with 90 percent sulfur capture and more then 96% combustion efficiency.

  4. Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers

    E-Print Network [OSTI]

    Das, Suman

    Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah alternative feedstocks · Alternative fuels must be: · Compatible with current infrastructure · Sustainable to traditional petroleum based fuels · Differences associated with oxygen · Removal of some oxygen is necessary

  5. Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of

    E-Print Network [OSTI]

    Keeling, Stephen L.

    #12;Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of this report, the other people in the Peak Oil Netherlands Foundation for their work, peakoil.com & the oildrum

  6. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 5, [October--December 1995

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1995-11-30

    Studies involving the tubular furnace are in the process of identifying the ideal experimental coal-to-refuse derived fuel(RDF) ratio for use in the AFBC system. A series of experiments with this furnace has been performed to determine the possible chemical pathway for formation of chlorinated organic compounds during the combustion of various RDF sources. Phenol and chlorine appear to be likely reactants necessary for the formation of these compounds. The main goal of these experiment is to determine the exact experimental conditions for the formation of chlorinated organic compounds, as well as methods to inhibit their development. Work on the fluidized bed combustor has involved five combustion runs, in which a combustion efficiency of greater than 96% and with a consistent CO{sub 2} concentration of approximately 13% was obtained. Modifications responsible for these improvements include the addition of the underbed fuel feed system and revision of the flue gas sampling system. New methods of determining combustion efficiency and percentage of SO{sub 2} capture using TG techniques to analyze combustion products are being developed. The current outlook using this TGA/FTIR method is very promising, since previously obscured reactions are being studied. the analysis of combustion products is revealing a more complete picture of the combustion process within the AFBC system.

  7. Proposal for the Award of a Contract for the Supply of about 8000 Tonnes of Heavy Fuel Oil per Year over a Period of Three Years

    E-Print Network [OSTI]

    1989-01-01

    Proposal for the Award of a Contract for the Supply of about 8000 Tonnes of Heavy Fuel Oil per Year over a Period of Three Years

  8. Co-firing high sulfur coal with refuse derived fuels. Technical progress report No. 8, July 1996--August 1996

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Riley, J.T.; Lloyd, W.G.

    1996-08-31

    The objective of this study was to examine the possible formation of chlorinated organic compounds during the combustion of blends of refuse derived fuels (RDF) and coal under conditions similar to those of an atmospheric fluidized bed combustion (AFBC) system. A series of experiments were conducted using a TGA interfaced to FTIR. Additional experiments using a tube furnace preheated to AFBC operating temperatures were also conducted. The combustion products were cryogenically trapped and analyzed with a GC/MS system. The chlorination of phenols and the condensation reactions of chlorophenols were investigated in this study. A possible mechanism for the formation of chlorinated organic compounds such as dibenzodioxins and dibenzofurans, by chlorination and condensation reactions involving phenols, was proposed.

  9. Particles of spilled oil-absorbing carbon in contact with water

    DOE Patents [OSTI]

    Muradov, Nazim (Melbourne, FL)

    2011-03-29

    Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.

  10. EPA Diesel Rule and the Sulfur Effects (DECSE) Project

    SciTech Connect (OSTI)

    2009-05-08

    The VT program collaborated with industry stakeholders and the EPA (in an effort initiated in 1998 called Diesel Emission Control – Sulfur Effects study, otherwise known as DECSE) to quantify the effects of fuel sulfur on emission control technologies.

  11. Diesel lube oils; Fourth dimension of diesel particulate control

    SciTech Connect (OSTI)

    Springer, K.J. (Southwest Research Institute, San Antonio, TX (US))

    1989-07-01

    Particulate emission control, for the HD diesel engine, has previously been considered a three-dimensional problem involving: combustion of the fuel by the engine, fuel modification, and exhaust aftertreatment. The lube oil contribution may be considered a fourth dimension of the problem. Historically, the heavy-duty engine manufacturer has met emission standards for smoke (1968 to present), CO, HC, and NOx (1974 to present) and particulates (1988 to present) through changes in engine design. This paper used the allocation method to estimate the reduction in lube oil consumption needed to meet 1991 and 1994 U.S. particulate emission standards. This analysis places the contribution of lube oil as a source of exhaust particulates into prospective with the contributions from fuel sulfur and fuel combustion. An emissions control strategy to meet future regulations is offered in which reductions from fuel modification, combustion improvement, reduced lube oil consumption, and exhaust particulate trap-catalysts are all involved.

  12. Uses of lunar sulfur

    SciTech Connect (OSTI)

    Vaniman, D.T.; Pettit, D.R.; Heiken, G.

    1988-01-01

    Sulfur and sulfur compounds have a wide range of applications for their fluid, electrical, chemical and biochemical properties. Although low in abundance on the Moon (/approximately/0.1% in mare soils), sulfur is surface-correlated and relatively extractable. Co-production of sulfur during oxygen extraction from ilmenite-rich soils could yield sulfur in masses up to 10% of the mass of oxygen produced. Sulfur deserves serious consideration as a lunar resource. 29 refs., 3 figs.

  13. ,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longecReformulated Gasoline

  14. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    SciTech Connect (OSTI)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  15. CONFIRMATORY SURVEY OF THE FUEL OIL TANK AREA HUMBOLDT BAY POWER PLANT EUREKA, CALIFORNIA

    SciTech Connect (OSTI)

    WADE C. ADAMS

    2012-04-09

    During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

  16. The bottom-of-the-barrel -- Real options to avoid fuel oil

    SciTech Connect (OSTI)

    Dickenson, R.L.; Schulman, B.L.; Biasca, F.E.; Johnson, H.E. [SFA Pacific, Inc., Mountain View, CA (United States)

    1996-12-01

    For several years now, refinery revamps and modernization have been driven by environmental mandates on transportation fuel specifications. Much of this capital expenditure has generated little economic benefit for the refiner. The situation will likely continue. However, more recently, the remodeling of integrated oil companies has focused intense pressure on refiners to improve refining profitability. These two factors make more efficient and economic use of the bottom-of-the-barrel a critical necessity. To this end, technology developers have recently made significant improvements to a variety of process technologies, while aggressive refiners have enacted innovative business strategies for residue utilization. Installed bottoms utilization capacity continues to expand actively. Recent commercial advances in residue FCC and residue demetallization are examples of the former. Examples of the latter are refinery-based power generation and hydrogen production projects based on gasification of pitch and coke. Key driving forces for these activities are: disposal of asphaltenes; dealing with higher-metals crudes; and conversion of carbon residues to dollars. The paper discusses FCC, residue hydro-conversion, automated demetallization, ebullating bed hydrocracking, slurry phase hydrocracking, refined-based power and the need for hydrogen.

  17. ,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longecReformulated Gasoline RefinerResidual Fuel

  18. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  19. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  20. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H. (LaJolla, CA)

    1983-12-20

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  1. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  2. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  3. Process for removing pyritic sulfur from bituminous coals

    DOE Patents [OSTI]

    Pawlak, Wanda (Edmonton, CA); Janiak, Jerzy S. (Edmonton, CA); Turak, Ali A. (Edmonton, CA); Ignasiak, Boleslaw L. (Edmonton, CA)

    1990-01-01

    A process is provided for removing pyritic sulfur and lowering ash content of bituminous coals by grinding the feed coal, subjecting it to micro-agglomeration with a bridging liquid containing heavy oil, separating the microagglomerates and separating them to a water wash to remove suspended pyritic sulfur. In one embodiment the coal is subjected to a second micro-agglomeration step.

  4. New Technology for Hydroprocessing Bio-oils to Fuels Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and Reduce Carbon Pollution |ofNew Rules HelpofTechnologies ImproveNew

  5. Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaics »TanklessResearch Proposal"National

  6. ,"U.S. Adjusted Sales of Distillate Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015"Monthly","10/2015" ,"ReleaseMonthly","10/2015"Net Receipts byDistillate Fuel

  7. ,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1Sales to End Users Refinerto End

  8. ,"U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015"Monthly","10/2015" ,"ReleaseMonthly","10/2015"Net Receipts by

  9. ,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015"Monthly","10/2015" ,"ReleaseMonthly","10/2015"Net Receipts byDistillate

  10. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsMonthly","10/2015"Monthly","10/2015"Imports" ,"Click worksheet name or tab at bottom for

  11. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES Pursuant to the contract clause entitled, "Laws,of

  12. Hydrocracking in a low-fuel-oil refinery: a case study

    SciTech Connect (OSTI)

    Koch, N.D.; Traylor, R.W.

    1981-01-01

    At the TOSCO Bakersfield refinery in California, hydrocracking is an important process the conversion of heavy oil to gasoline. The process facilitates maximizing the yield of gasoline, the refinery's primary product. Over the last 15 years, increased production goals have been achieved through increases in the capacity of the hydrocracking unit, and improvements in gasoline yield have been obtained by modifying the unit to use new improved catalysts.

  13. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect (OSTI)

    Not Available

    1981-06-25

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  14. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    with a 10% aromatic, ultra-low sulfur diesel fuel used inequivalent 10% aromatic ultra-low sulfur diesel fuel used inx emissions compared to ultra-low sulfur diesel fuel (ULSD).

  15. 2 SPRAY OILS--BEYOND 2000 Modern use of petroleum-derived oils as agricultural crop

    E-Print Network [OSTI]

    Agnello, Arthur M.

    2 SPRAY OILS--BEYOND 2000 Abstract Modern use of petroleum-derived oils as agricultural crop,buttheseweretoophytotoxic.Eventually, researchersconcentratedondistillatesintherangebetween kerosene and lubricating oils.Three basic classes of carbon structures present in petroleum oils (aromatics and other un- saturated components) in oils that were removable with sulfuric acid; the remainder

  16. ,"U.S. Residual Fuel Oil Prices by Sales Type"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015" ,"ReleaseMonthly","10/2015"Prime Supplier Sales VolumesPrices by Sales Type" ,"Click

  17. ,"U.S. Residual Fuel Oil Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015" ,"ReleaseMonthly","10/2015"Prime Supplier Sales VolumesPrices by Sales Type"

  18. ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" " Unit:8 Relative

  19. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" " Unit:8

  20. ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" " Unit:89

  1. ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" "10.3 Relative5

  2. ,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" "10.3 Relative534

  3. ,,,,"Reasons that Made Residual Fuel Oil Unswitchable"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" "10.3

  4. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.2 48.3

  5. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.2 48.35.1

  6. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.2

  7. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.243.9 36.4

  8. Table 42. Residual Fuel Oil Prices by PAD District and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24, 20145,1374.6 73.975.6 81.745.243.9

  9. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.349.9

  10. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.349.9048.9 3,882.7

  11. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.2 10,037.23,846.349.9048.9

  12. Table A3. Refiner/Reseller Prices of Distillate and Residual Fuel Oils,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 ConsumptionNonfuel"

  13. Table A3. Refiner/Reseller Prices of Distillate and Residual Fuel Oils,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 ConsumptionNonfuel" PAD

  14. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubicFracking,MichiganThousand47,959.1 11,050.917,583.7 5,086.5

  15. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubicFracking,MichiganThousand47,959.1 11,050.917,583.7

  16. Table 10.24 Reasons that Made Distillate Fuel Oil Unswitchable, 2006;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 15

  17. Table 10.25 Reasons that Made Residual Fuel Oil Unswitchable, 2006;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 155 Reasons that Made

  18. Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas Plant Stocks

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S The National Interim714 b Weekly

  19. U.S. Sales of Distillate Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area: U.S. East

  20. U.S. Sales of Residual Fuel Oil by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area: U.S.

  1. Refiner and Blender Net Production of Distillate Fuel Oil > 15 pmm to 500

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a. Space5,168 5,228 5,107ppm

  2. Table 4a. Total Fuel Oil Consumption per Effective Occupied Square Foot,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 0 1 0 0Effective

  3. Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 0 1 0 0EffectiveEffective

  4. Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has

    E-Print Network [OSTI]

    Due to depletion of oil resources, increasing fuel prices and environmental issues associated with burning of fossil fuels, extensive research has been performed in biofuel production and dramatic progress has been made. But still problems exist in economically production of biofuels. One major problem

  5. Improving fractionation lowers butane sulfur level at Saudi gas plant

    SciTech Connect (OSTI)

    Harruff, L.G.; Martinie, G.D.; Rahman, A. [Saudi Arabian Oil Co., Dhahran (Saudi Arabia)

    1998-10-12

    Increasing the debutanizer reflux/feed ratio to improve fractionation at an eastern Saudi Arabian NGL plant reduced high sulfur in the butane product. The sulfur resulted from dimethyl sulfide (DMS) contamination in the feed stream from an offshore crude-oil reservoir in the northern Arabian Gulf. The contamination is limited to two northeastern offshore gas-oil separation plants operated by Saudi Arabian Oil Co. (Saudi Aramco) and, therefore, cannot be transported to facilities outside the Eastern Province. Two technically acceptable solutions for removing this contaminant were investigated: 13X molecular-sieve adsorption of the DMS and increased fractionation efficiency. The latter would force DMS into the debutanizer bottoms.

  6. A Future for Fossil Fuel By JOHN DEUTCH and ERNEST MONIZ March 15, 2007; Page A17

    E-Print Network [OSTI]

    Deutch, John

    turbines. Coal is partially burned with oxygen (not air, to avoid wastefully heating up nitrogen) to form as a substitute for imported oil? Coal can be converted into liquid fuel suitable for transportation use there is some good news: The so-called "criteria air pollutants" (sulfur oxides, nitrogen oxides and particulate

  7. A Study of the Use of Jatropha Oil Blends in Boilers

    SciTech Connect (OSTI)

    Krishna, C.R.

    2010-10-01

    Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified to burn residual oil. Blends of 20 and 60% Jatropha oil and 100% Jatropha oil were burned in the combustion performance tests. The residual oil used had a sulfur content of over 2000 ppm and hence dramatic reductions in sulfur dioxide emissions are measured with the blends. Again, consistent with our past experience with biodiesel blends, significant reductions in nitrogen oxide emissions nearing 50% with 100% Jatropha oil, were also measured. This is in contrast with the use of biodiesel in diesel engines, where the NOx has a tendency to increase. In addition to the gaseous emission measurements, particulate emissions were measured using an EPA CTM-39 system to obtain both particulates, of sizes below 2.5 microns, so-called PM2.5, and of sizes larger than 2.5 microns. The results show that the particulate emissions are lower with the blending of Jatropha oil. Overall, one can conclude that the blending of Jatropha oil with residual oil is a feasible approach to using non-edible plant oil to provide a renewable content to residual oil, with significant benefits in the reduction of pollutant emissions such as sulfur dioxide, nitrogen oxides and particulates.

  8. Filamentous carbon particles for cleaning oil spills and method of production

    DOE Patents [OSTI]

    Muradov, Nazim

    2010-04-06

    A compact hydrogen generator is coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. The hydrogen generator can be conveniently integrated with high temperature fuel cells to produce an efficient and self-contained source of electrical power.

  9. Sulfur recovery process

    SciTech Connect (OSTI)

    Hise, R.E.; Cook, W.J.

    1991-06-04

    This paper describes a method for recovering sulfur from a process feed stream mixture of gases comprising sulfur-containing compounds including hydrogen sulfide using the Claus reaction to convert sulfur-containing compounds to elemental sulfur and crystallization to separate sulfur-containing compounds from a tail gas of the Claus reaction for further processing as a recycle stream. It comprises: providing a Claus feed stream containing a stoichiometric excess of hydrogen sulfide, the Claus feed stream including the process feed stream and the recycles stream; introducing the Claus feed stream and an oxidizing agent into a sulfur recovery unit for converting sulfur-containing compounds in the Claus feed stream to elemental sulfur; withdrawing the tail gas from the sulfur recovery unit; separating water from the tail gas to producing a dehydrated tail gas; separating sulfur-containing compounds including carbonyl sulfide from the dehydrated tail gas as an excluded material by crystallization and withdrawing an excluded material-enriched output from the crystallization to produce the recycle stream; and combining the recycle stream with the process feed stream to produce the Claus feed stream.

  10. Chemical kinetic modeling of oxy-fuel combustion of sour gas for enhanced oil recovery

    E-Print Network [OSTI]

    Bongartz, Dominik

    2014-01-01

    Oxy-fuel combustion of sour gas, a mixture of natural gas (primarily methane (CH 4 )), carbon dioxide (CO 2 ), and hydrogen sulfide (H 2 S), could enable the utilization of large natural gas resources, especially when ...

  11. Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Gasoline Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of...

  12. Nitrogen dioxide, sulfur dioxide, and ammonia detector for remote sensing of vehicle emissions

    E-Print Network [OSTI]

    Denver, University of

    sulfur diesel fuel is less expensive due to reduced taxes and as such may be prone to illegal use in on-road November 2005; published online 18 January 2006 A remote sensor for measuring on-road vehicles passing of reducing sulfur in fuel for all mobile sources. This process begins with ultralow sulfur on-road diesel

  13. Abatement of Air Pollution: Control of Sulfur Compound Emissions...

    Broader source: Energy.gov (indexed) [DOE]

    set limits on the sulfur content of allowable fuels (1.0% by weight, dry basis) for combustion, as well as for the heat input of any fuel burning equipment (250,000 Btuhour)....

  14. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    S and a reference ultra-low-sulfur diesel (ULSD) with 5 ppmof the reference ultra-low-sulfur diesel (5 ppm). SF CD =diesel fuel (CD), ultra-low-sulfur diesel fuel (ULSD),

  15. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    = distillate fuel; ULSD = ultra-low-sulfur distillate fuel;ppm S and a reference ultra-low-sulfur diesel (ULSD) with 5content of the reference ultra-low-sulfur diesel (5 ppm). SF

  16. Stability and composition of palm, coconut and soy oil fatty acid microemulsion diesel fuels

    SciTech Connect (OSTI)

    Compere, A.L.; Griffith, W.L.; Googin, J.M.

    1985-01-01

    Microemulsions fuels containing fully and partially coconut, palm, and soy fatty acids; varying amounts of C/sub 1/ to C/sub 4/ alcohols; varying amounts of water; and four fuel bases were evaluated between 0 and 60/sup 0/C for stability as a single phase system. In general, ability to form a stable single phase system rose with increasing alcohol chain length, decreasing water, and increasing dispersed phase content. It was possible to form 0 to 60/sup 0/C stable single phase systems in all four fuels tested using 30 to 50% v/v dispersed phase containing 1-butanol and either palm or soy fatty acids. 11 refs., 3 tabs.

  17. A design strategy applied to sulfur resistant lean NOx̳ automotive catalysts

    E-Print Network [OSTI]

    Tang, Hairong

    2005-01-01

    Catalyst poisoning due to sulfur compounds derived from fuel sulfur presents a major challenge, intractable thus far, to development of many advanced technologies for automotive catalysts such as the lean NOx, trap. Under ...

  18. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S. (Hopewell Junction, NY); Corbeels, Roger J. (Wappingers Falls, NY); Kokturk, Uygur (Wappingers Falls, NY)

    1989-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  19. ADVANCED SULFUR CONTROL CONCEPTS

    SciTech Connect (OSTI)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael; Jeffrey W. Portzer

    2003-01-01

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce the number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).

  20. OFFICE OF RESPONSE AND RESTORATION ! EMERGENCY RESPONSE DIVISION Deepwater Horizon Oil

    E-Print Network [OSTI]

    ) oil is a South Louisiana sweet crude oil (crude oil is termed sweet if it is low in sulfur). Like all crude oils, MS252 oil is a complex mixture of thousands of chemical compounds. Of those thousands in the environment. Compared with other crude oils, MS252 oil is relatively high in alkanes. Because alkanes are made

  1. APPLICATION OF CERAMICS TO HIGH PRESSURE FUEL SYSTEMS

    SciTech Connect (OSTI)

    Mandler, Jr., William F.

    2000-08-20

    Diesel fuel systems are facing increased demands as engines with reduced emissions are developed. Injection pressures have increased to provide finer atomization of fuel for more efficient combustion, Figure 1. This increases the mechanical loads on the system and requires tighter clearances between plungers and bores to prevent leakage. At the same time, fuel lubricity has decreased as a byproduct of reducing the sulfur levels in fuel. Contamination of fuel by water and debris is an ever-present problem. For oil-lubricated fuel system components, increased soot loading in the oil results in increased wear rates. Additionally, engine manufacturers are lengthening warranty periods for engines and systems. This combination of factors requires the development of new materials to counteract the harsher tribological environment.

  2. Heavy oil hydroprocessing

    SciTech Connect (OSTI)

    Pratt, R.E.; Nongbri, G.; Clausen, G.A. [Texaco R& D, Port Arthur, TX (United States)] [and others

    1995-12-31

    Many of the crude oils available worldwide are classified as heavy oils (API gravity less than 20). In addition, many of the heavier crude oils are also high in sulfur content. Both the low gravity and high sulfur content make these crude oils difficult to process in many refineries and additional processing equipment is required. Often, deasphalting of the vacuum residuum is one of the processing routes chosen. However, the deasphalted oil (DAO) is often of poor quality and presents problems in processing in existing refinery units. Fixed bed hydrotreater and hydrocracker catalysts are quickly fouled and fluid catalytic cracking units (FCCU) reach regenerator temperature limits with only small amounts of DAO in the feed. Use of the T-STAR ebullated bed process to hydrocrack and upgrade the DAO is an excellent route for making the DAO more palatable to refinery units.

  3. Microbial desulfurization of Eastern oil shale: Bioreactor studies

    SciTech Connect (OSTI)

    Maka, A.; Akin, C.; Punwani, D.V.; Lau, F.S.; Srivastava, V.J.

    1989-01-01

    The removal of sulfur from Eastern oil shale (40 microns particle size) slurries in bioreactors by mixed microbial cultures was examined. A mixed culture that is able to remove the organic sulfur from model sulfur compounds presenting coal as well as a mixed culture isolated from oil shale enrichments were evaluated. The cultures were grown in aerobic fed-batch bioreactors where the oil shale served as the source of all nutrients except organic carbon. Glucose was added as an auxiliary carbon source. Microbial growth was monitored by plate counts, the pH was checked periodically, and oil shale samples were analyzed for sulfur content. Results show a 24% reduction in the sulfur content of the oil shale after 14 days. The settling characteristics of the oil shale in the bioreactors were examined in the presence of the microbes. Also, the mixing characteristics of the oil shale in the bioreactors were examined. 10 refs., 6 figs., 5 tabs.

  4. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Zhicheng Hu.

    1993-09-07

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO[sub 2] in the regenerator off gas stream to elemental sulfur in the presence of a catalyst. 4 figures.

  5. Elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, Maria (Winchester, MA); Hu, Zhicheng (Somerville, MA)

    1993-01-01

    An improved catalytic reduction process for the direct recovery of elemental sulfur from various SO.sub.2 -containing industrial gas streams. The catalytic process provides combined high activity and selectivity for the reduction of SO.sub.2 to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over certain catalyst formulations based on cerium oxide. The process is a single-stage, catalytic sulfur recovery process in conjunction with regenerators, such as those used in dry, regenerative flue gas desulfurization or other processes, involving direct reduction of the SO.sub.2 in the regenerator off gas stream to elemental sulfur in the presence of a catalyst.

  6. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  7. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    Adam R. 2008. “Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. In

  8. The demonstration of an advanced cyclone coal combustor, with internal sulfur, nitrogen, and ash control for the conversion of a 23 MMBtu/hour oil fired boiler to pulverized coal

    SciTech Connect (OSTI)

    Zauderer, B.; Fleming, E.S.

    1991-08-30

    The project objective was to demonstrate a technology which can be used to retrofit oil/gas designed boilers, and conventional pulverized coal fired boilers to direct coal firing, by using a patented sir cooled coal combustor that is attached in place of oil/gas/coal burners. A significant part of the test effort was devoted to resolving operational issues related to uniform coal feeding, efficient combustion under very fuel rich conditions, maintenance of continuous slag flow and removal from the combustor, development of proper air cooling operating procedures, and determining component materials durability. The second major focus of the test effort was on environmental control, especially control of SO{sub 2} emissions. By using staged combustion, the NO{sub x} emissions were reduced by around 3/4 to 184 ppmv, with further reductions to 160 ppmv in the stack particulate scrubber. By injection of calcium based sorbents into the combustor, stack SO{sub 2} emissions were reduced by a maximum of of 58%. (VC)

  9. Sulfur control in ion-conducting membrane systems

    DOE Patents [OSTI]

    Stein, VanEric Edward; Richards, Robin Edward; Brengel, David Douglas; Carolan, Michael Francis

    2003-08-05

    A method for controlling the sulfur dioxide partial pressure in a pressurized, heated, oxygen-containing gas mixture which is contacted with an ion-conducting metallic oxide membrane which permeates oxygen ions. The sulfur dioxide partial pressure in the oxygen-depleted non-permeate gas from the membrane module is maintained below a critical sulfur dioxide partial pressure, p.sub.SO2 *, to protect the membrane material from reacting with sulfur dioxide and reducing the oxygen flux of the membrane. Each ion-conducting metallic oxide material has a characteristic critical sulfur dioxide partial pressure which is useful in determining the required level of sulfur removal from the feed gas and/or from the fuel gas used in a direct-fired feed gas heater.

  10. fuel

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal RegisterStorm1 3446 YEAR/%2Afissile4/%2A en

  11. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01

    Crude oil: equal to field production + imports+unaccounted for - stockcrude oil will become denser and more sulfurous as the lighter, higher-quality stocksfeedstocks, or stock changes. In the case of crude oil used

  12. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  13. Biogenic sulfur source strengths

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.; Bamesberger, W.L.

    1981-12-01

    Conclusions are presented from a 4-yr field measurement study of biogenic sulfur gas emissions from soils, and some water and vegetated surfaces, at 35 locales in the eastern and southeastern United States. More than one soil order was examined whenever possible to increase the data base obtained from the 11 major soil orders comprising the study area. Data analysis and emission model development were based upon an (80 x 80)-km/sup 2/ grid system. The measured sulfur fluxes, adjusted for the annual mean temperature for each sampling locale, weigted by the percentage of each soil order within each grid, and averaged for each of the east-west grid tiers from 47/sup 0/N to 25/sup 0/N latitude, showed an exponential north-to-south increase in total sulfur gas flux. Our model predits an additional increase of nearly 25-fold in sulfur flux between 25/sup 0/N and the equator.

  14. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01

    engines operating with heavy fuel oils. J. Aerosol Sci 1998,from high-sulfur heavy fuel oil to lower-sulfur marineHeavy Fuel Oil .

  15. The toxicity of two crude oils and kerosine to cattle 

    E-Print Network [OSTI]

    Rowe, Loyd Douglas

    1972-01-01

    in this study: c (1) a west Texas raw sour crude oil relatively low in gasoline, naphtha, and kerosine and relatively high in gas oil, lubricating distillates, residue, and sulfur; (2) a west Texas raw sweet d crude oil relatively high in gasoline, naphtha... and Kerosine Administered to Cattle* Characteristic Sweet crude Sour crude Kerosine Light gasoline (/) 14. 2 9. 6 Total gasoline plus naphtha (%) 43. 0 31. 6 Kerosine (/) Gas oil Lubricating distillates (%) Residue (%) Distillation loss (%%d) Sulfur...

  16. Carbon-Sulfur Bond Cleavage of Methyl-Substituted Thiophenes with Iridium(III)

    E-Print Network [OSTI]

    Jones, William D.

    polluting sulfur compounds are removed during the hydroprocessing of crude oil. Unrefined petroleum contains of a hydrogen acceptor, the thiophene was desulfurized (eq 2).4 Also, in the heterogeneous CoMo system it has

  17. A fresh look at coal-derived liquid fuels

    SciTech Connect (OSTI)

    Paul, A.D. [Benham Companies LLC (USA)

    2009-01-15

    35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

  18. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  19. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    of vegetable oils, animal fats, and waste cooking oils, withof vegetable oils, animal fats, and waste cooking oils.Fuel Wobbe Number Waste Vegetable Oil xxiv Chapter One:

  20. A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    from California’s heavy oil and importing fuel refined frommanufactured from heavy oil, and fuel b might representresources, including heavy oil, tar sands, oil shale and

  1. A Low-Carbon Fuel Standard for California Part 2: Policy Analysis

    E-Print Network [OSTI]

    2007-01-01

    from California’s heavy oil and importing fuel refined frommanufactured from heavy oil, and fuel b might representresources, including heavy oil, tar sands, oil shale and

  2. Maintenance and operation of the US Alternative Fuel Center

    SciTech Connect (OSTI)

    Erwin, J.; Ferrill, J.L.; Hetrick, D.L.

    1994-08-01

    The Alternative Fuels Utilization Program (AFUP) of the Office of Energy Efficiency and Renewable Energy has investigated the possibilities and limitations of expanded scope of fuel alternatives and replacement means for transportation fuels from alternative sources. Under the AFUP, the Alternative Fuel Center (AFC) was created to solve problems in the DOE programs that were grappling with the utilization of shale oil and coal liquids for transportation fuels. This report covers the first year at the 3-year contract. The principal objective was to assist the AFUP in accomplishing its general goals with two new fuel initiatives selected for tasks in the project year: (1) Production of low-sulfur, low-olefin catalytically cracked gasoline blendstock; and (2) production of low-reactivity/low-emission gasoline. Supporting goals included maintaining equipment in good working order, performing reformulated gasoline tests, and meeting the needs of other government agencies and industries for fuel research involving custom processing, blending, or analysis of experimental fuels.

  3. Projections of Full-Fuel-Cycle Energy and Emissions Metrics

    E-Print Network [OSTI]

    Coughlin, Katie

    2013-01-01

    from Conventional Oil Production and Oil Sands. ” Environ.6 Forecasts of Canadian oil production published in 2006 andPetroleum Fuels The oil production chain is similar to

  4. Status of Heavy Vehicle Diesel Emission Control Sulfur Effects (DECSE) Test Program

    SciTech Connect (OSTI)

    George Sverdrup

    1999-06-07

    DECSE test program is well under way to providing data on effects of sulfur levels in diesel fuel on performance of emission control technologies.

  5. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway

    SciTech Connect (OSTI)

    Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

    2013-11-01

    This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

  6. Behavior of carbonate-rich fuels in ACFBC and PFBC conditions

    SciTech Connect (OSTI)

    Ots, A.; Arro, H.; Pihu, T.; Prikk, A.

    1999-07-01

    Estonian oil shale is known as one of richest in carbonate fuels. High mineral matter content (60--75% in dry mass), moderate moisture (9--12%) and carbonate carbon dioxide content (17--19%), and low heating value (LHV 8--10 MJ/kg as received) are characteristic for Estonian oil shale. Approximately half of the mineral matter is in the carbonate form, mainly as calcium carbonate. The sulfur content of dry mass is 1.5--1.7% and Ca/S molar ratio is 8--10. Due to limestone present in oil shale, the additional sorbent for sulfur retention during combustion is not needed. The behavior of carbonates as well as the formation of ash at fluidized bed combustion (FBC) was the main topics to study. At Thermal Engineering Department (TED) of Tallinn Technical University a laboratory pressurized combustion facility was used for investigation the decomposition of soil shale carbonates in atmospheric and pressurized burning conditions. The experiments with oil shale were performed at pressures 0.1 MPa and 1.2 MPa and at the temperature 850 C. Based on the carbonate decomposition rate (CDR) 0.3--0.4 established experimentally at pressurized combustion, it may be concluded that the heating value of oil shale increases approximately by 5.5--8% and the carbon dioxide concentration in flue gas decreases by 13--20% compared with the conditions of the complete decomposition of carbonate. Combustion of oil shale was tested in 0.15--1.0 MW{sub th} test facilities. The tests confirmed the suitability of both ACFBC and PFBC technologies to utilize oil shale. The tests showed a nearly complete binding of sulfur by oil shale ash and a limited formation of NO{sub x} at combustion. Oil shale FBC is characterized by the formation of large amounts (40--85% from total) of fine-grained fly ash.

  7. Hydroprocessing key issue in low-sulfur' era

    SciTech Connect (OSTI)

    Not Available

    1993-07-26

    Refiners gave heavy attention to hydroprocessing operations at the most recent National Petroleum Refiners Association annual question and answer session on refining and petrochemical technology. Among the topics covered were diesel color, blending to meet diesel sulfur specs, and ammonia injection in hydrocracking units. The panelists also related their experiences with increasing vacuum gas oil conversion in hydrocracking operations. These discussions are reproduced here.

  8. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  9. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  10. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  11. An Evolutionary Arms Race for Sulfur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWith PropaneNaturalTestAn Evolutionary Arms Race for Sulfur An

  12. PEMEX selects the H-Oil{reg_sign} process for their hydrodesulfurization residue complex at the Miguel Hidalgo Refinery

    SciTech Connect (OSTI)

    Wisdom, L.I.; Colyar, J.J. [Hydrocarbon Research, Inc., Princeton, NJ (United States)

    1995-12-31

    Petroleos Mexicanos (PEMEX) has selected the H-Oil Process for the conversion and upgrading of a blend of Maya and Isthmus vacuum residua at the Miguel Hidalgo Refinery. The 8,450 metric ton/day (50,000 bpsd) H-Oil Plant will produce a low sulfur (0.8 wt%) fuel oil, diesel, naphtha, and LPG. The H-Oil Plant will be a key component of the Hydrodesulfurization Residue (HDR) Complex which will be located at the Miguel Hidalgo Refinery in Tula, State of Hidalgo, Mexico. The project is part of PEMEX`s Ecology Projects currently underway in Mexico. This paper describes the HDR Complex and the design basis of the H-Oil Plant and provides the current status of this project.

  13. Process for forming sulfuric acid

    DOE Patents [OSTI]

    Lu, Wen-Tong P. (Upper St. Clair, PA)

    1981-01-01

    An improved electrode is disclosed for the anode in a sulfur cycle hydrogen generation process where sulfur dioxie is oxidized to form sulfuric acid at the anode. The active compound in the electrode is palladium, palladium oxide, an alloy of palladium, or a mixture thereof. The active compound may be deposited on a porous, stable, conductive substrate.

  14. untitled

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil a Propane (Consumer Grade) Residual Fuel Oil Sulfur Less Than or Equal to 1 Percent Sulfur Greater Than 1 Percent Total Residual Fuel Oil United States January...

  15. Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlenderBusiness Case forbuttonhighlighted Driving

  16. European Market Study for BioOil (Pyrolysis Oil)

    E-Print Network [OSTI]

    European Market Study for BioOil (Pyrolysis Oil) Dec 15, 2006 Doug Bradley President Climate Change of Contents Scope Executive Summary 1. Background 2. Pyrolysis Oil-Char Supply and Export Potential 2 Competitiveness 3.1. Substitute Fuels 3.2. Price of Fossil Fuels 3.3. Delivered Costs of Pyrolysis Oil/Char 4

  17. Solid oxide fuel cell process and apparatus

    DOE Patents [OSTI]

    Cooper, Matthew Ellis (Morgantown, WV); Bayless, David J. (Athens, OH); Trembly, Jason P. (Durham, NC)

    2011-11-15

    Conveying gas containing sulfur through a sulfur tolerant planar solid oxide fuel cell (PSOFC) stack for sulfur scrubbing, followed by conveying the gas through a non-sulfur tolerant PSOFC stack. The sulfur tolerant PSOFC stack utilizes anode materials, such as LSV, that selectively convert H.sub.2S present in the fuel stream to other non-poisoning sulfur compounds. The remaining balance of gases remaining in the completely or near H.sub.2S-free exhaust fuel stream is then used as the fuel for the conventional PSOFC stack that is downstream of the sulfur-tolerant PSOFC. A broad range of fuels such as gasified coal, natural gas and reformed hydrocarbons are used to produce electricity.

  18. ,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" " Unit:

  19. Deep desulfurization of hydrocarbon fuels

    DOE Patents [OSTI]

    Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

    2012-04-17

    The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

  20. "Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2Residential"0 DETAILED DATA5 Relative

  1. "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2Residential"0 DETAILED DATA52.3

  2. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2Residential"0 DETAILED3.49 Relative4

  3. Population, Economy and Energy Use’s Influence on Sulfur Emissions in the United States Since 1900 

    E-Print Network [OSTI]

    Kissock, J. K.; Husar, R. B.

    1990-01-01

    and the transition from coal to less sulfur intensive fuels have reduced sulfur emissions. The net effect of all drivers has been moderate growth in sulfur emissions from 1900 to present. Since 1973, increased energy efficiency and the shift from an industrial to a...

  4. Stratospheric sulfur oxidation kinetics

    SciTech Connect (OSTI)

    Jayne, J.T.; Worsnop, D.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States)] [and others

    1995-12-31

    Oxidation of SO2 to H2SO4 in the atmosphere is believed to involve the reaction of SO3 with water. It is commonly assumed that this is an important step leading to homogeneous nucleation of H2SO4 aerosol particles. Heterogeneous chemistry on sulfuric acid aerosols regulate much of the ozone photochemistry in the lower stratosphere and are also believed to have significant effect on the climate. Understanding aerosol loading requires a detailed knowledge of the stratospheric sulfur budget, including its oxidation kinetics. Here we present results of a laboratory project studying a key step in the oxidation process, the homogeneous reaction between SO3 and H2O vapor. Kinetic measurements are performed in a high-pressure turbulent fast-flow reactor (fabricated at MIT) which minimizes heterogeneous loss of SO3 on reactorwalls. The rate of decay of SO3 and the appearance of H2SO4 is monitored in the presence of excess water vapor. Gas phase reactants and products are detected via an atmospheric pressure chemical ionization mass spectrometer which is coupled to the exit of the flow reactor. Sulfuric acid nucleation studies can also be performed using the turbulent flow reactor. Initial measurements using a particle detector (based on Mie scattering) showed that aerosol formation and particle size distribution are controlled by varying the SO3/H2O gas ratio and the reactor temperature. Results for the reaction SO3J+ H2O show a second order dependence in water vapor density and a strong negative temperature dependence. The results, measured in the range -30C to +95C, imply that an SO3.H2O adduct and/or a water dimer species is likely involved in the reaction mechanism. Results of recent theoretical calculations on the SO3 + H2O system also support the finding that two water molecules are involved. Implications for the gas phase production of sulfuric acid in the atmosphere will be discussed.

  5. Transforming the Oil Industry into the Energy Industry

    E-Print Network [OSTI]

    Sperling, Daniel; Yeh, Sonia

    2009-01-01

    made from tar sands and conventional oil. Environmentalvery heavy oils fuel providers that and tar sands, also emit

  6. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  7. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  8. Catalyst for the reduction of sulfur dioxide to elemental sulfur

    DOE Patents [OSTI]

    Jin, Y.; Yu, Q.; Chang, S.G.

    1996-02-27

    The inventive catalysts allow for the reduction of sulfur dioxide to elemental sulfur in smokestack scrubber environments. The catalysts have a very high sulfur yield of over 90% and space velocity of 10,000 h{sup {minus}1}. They also have the capacity to convert waste gases generated during the initial conversion into elemental sulfur. The catalysts have inexpensive components, and are inexpensive to produce. The net impact of the invention is to make this technology practically available to industrial applications. 21 figs.

  9. Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030

    SciTech Connect (OSTI)

    L. M. Dittmer

    2006-08-10

    The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  10. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  11. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  12. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  13. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  14. Design and prototype of dual loop lubricant system to improve engine fuel economy, emissions, and oil drain interval

    E-Print Network [OSTI]

    Plumley, Michael J

    2015-01-01

    Regulations aimed at improving fuel economy and reducing harmful emissions from internal combustion engines place constraints on lubricant formulations necessary for controlling wear and reducing friction. Viscosity reduction ...

  15. Evaluation of Sulfur in Syngas

    SciTech Connect (OSTI)

    None

    2006-04-01

    This project will define the options and costs at different scales of technology that can be used to remove sulfur from syngas.

  16. Chemical kinetics and oil shale process design

    SciTech Connect (OSTI)

    Burnham, A.K.

    1993-07-01

    Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

  17. Process for removing sulfur from sulfur-containing gases

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Jozewicz, Wojciech (Chapel Hill, NC)

    1989-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

  18. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  19. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  20. Spot-Oiling Johnsongrass. 

    E-Print Network [OSTI]

    Elliott, Fred C.; Norris, M. J.; Rea, H. E.

    1955-01-01

    -treat Johnsongrass in cotton in 19 54. Power-driven sprayers normally used for in- tect control in row crops were modified for Yose. A spray pressure of 12 pounds re inch was used. Two systems of the grass were tried. In one system the crenr applying the oil... crown-oilings with naphtha, 83 percent in 7 tests by 3 oil- ings, 95 percent in 6 tests by 4 oilings and 98 percent in 4 tests by 5 to 7 oilings. The use of mixtures of 50 percent naphtha and 50 per- cent kerosene or diesel fuel oil reduced...

  1. Determination of alternative fuels combustion products: Phase 3 report

    SciTech Connect (OSTI)

    Whitney, K.A.

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  2. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01

    impacts of alberta’s oil sands. canadian energy researchLife cycle assessment of oil sands tech- nologies. InstituteElasticity of demand for fuel Oil sand capacity and growth

  3. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  4. Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels 

    E-Print Network [OSTI]

    Cawte, A. D.

    1979-01-01

    as CEA Combustion, Ltd., to develop a more efficient suspended - flame burner. Subsequently, the CEGB (Central Electric Generating Board) in Great Britain developed standards for register type burners installed in fossil fuel fired electric generating...

  5. Biomass Derivatives Competitive with Heating Oil Costs.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

  6. Volume efficient sodium sulfur battery

    DOE Patents [OSTI]

    Mikkor, Mati (Ann Arbor, MI)

    1980-01-01

    In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

  7. Rheology and stability of SRC residual fuel oils - storage evaluation. SRC-1 quarterly technical report, October-December 1982. Supplement

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    In Air Products ongoing study to characterize the rheology and stability of various SRC residual oils, single-phase blends of 50 wt % HSRC and TSL SRC in 1:1 mixtures of 1st- and 2nd-stage process solvents were subjected to storage stability tests at 150/sup 0/F in nitrogen and air atmospheres. Using viscosity as an indicator, it was observed that the blends studied increased in viscosity with storage time in an air atmosphere; the viscosity increase began after a 4-week storage period. The increase in HSRC blend viscosity was significantly greater than that of the TSL SRC blend. A 60-day air-stored blend will require a pumping temperature about 10/sup 0/F higher than that specified for an unaged blend in order to have the same viscosity. The viscosity increase under nitrogen storage was relatively insignificant. Nitrogen blanketing appears to be important in maintaining the specified viscosity characteristics of the blends during storage in the 150/sup 0/F storage condition tested. A loss of volatiles undoubtedly occurs during high-temperature storage under laboratory conditions. Such losses contribute to an increase in the viscosity of the blend. In commercial practice, volatile losses are expected to be significantly lower. Solvent extraction data and analysis of separated fractions suggest that during storage under the above conditions, some oxidative polymerization of pentane-soluble oil components forms higher molecular weight pentane insolubles (asphaltenes and benzene insolubles). Asphaltenes are also involved in the increase in viscosity and do chemically change. 1 reference, 8 figures, 27 tables.

  8. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2010-01-01

    residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oilOil Lubricants Naphtha Petroleum feedstocks Natural Gas Liquids Municipal Solid Waste

  9. Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor

    E-Print Network [OSTI]

    Tobin, Roger G.

    Sulfur surface chemistry on the platinum gate of a silicon carbide based hydrogen sensor Yung Ho September 2007 We have investigated the effects of sulfur contamination on a Pt-gate silicon carbide based monitoring, solid-oxide fuel cells, and coal gasification, require operation at much higher temperatures than

  10. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  11. Natural Gas and Crude Oil Prices in AEO (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the Annual Energy Outlook 2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

  12. Oil and Gas Investor returns climb as oil

    E-Print Network [OSTI]

    Arizona, University of

    Oil and Gas Investor returns climb as oil and gas drilling ventures succeed. www #12;Eng-Tips Forum Medical News Building/Construction · Engineers Advance Fuel Cell Technology · Micro

  13. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  14. Cost, Conflict and Climate: U.S. Challenges in the World Oil Market

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    1.1 and 1.1A Figure 6: Uses of Crude Oil in the UnitedStates Other Residual Fuel Oil (bunker fuel) PetrochemicalDiesel Fuel and Heating Oil Jet Fuel Figure 7: Sources of

  15. Sulfur-Free Selective Pulping 

    E-Print Network [OSTI]

    Dimmel, D. R.; Bozell, J. J.

    1994-01-01

    an increase in pulping rate and yields, which translates to less energy required per ton of product. Less sulfur means a simplified process, lower odor emissions, and a decrease requirement for bleaching chemicals, meaning less organics being discharged...

  16. The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel

    E-Print Network [OSTI]

    the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary

  17. Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors

    SciTech Connect (OSTI)

    Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

    2014-02-01

    Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

  18. Bacterial Sulfur Storage Globules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura BeaneCardwell,Production - Energyby I. J. Pickering

  19. Carbon/Sulfur Nanocomposites and Additives for High-Energy Lithium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es105liang2011o.pdf More Documents & Publications CarbonSulfur...

  20. Fuel Tables.indd

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    F8: Distillate Fuel Oil Price and Expenditure Estimates, 2013 State Prices Expenditures Residential Commercial Industrial Transportation Electric Power Total Residential Commercial...

  1. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    0: Residual Fuel Oil Price and Expenditure Estimates, 2013 State Prices Expenditures Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation...

  2. Qualification of Alternative Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Qualification of Alternative Fuels May 8, 2012 Pyrolysis Oil Workshop Thomas Butcher Sustainable Energy Technologies Department Applications Baseline - Residential and Light...

  3. Method of preparing graphene-sulfur nanocomposites for rechargeable...

    Office of Scientific and Technical Information (OSTI)

    Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes Citation Details In-Document Search Title: Method of preparing graphene-sulfur...

  4. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two

  5. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  6. Oil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014DepartmentCouncilOffice of the ChiefResearchOil Oil For

  7. On the Origin of Sulfur

    E-Print Network [OSTI]

    Nils Ryde; David L. Lambert

    2005-10-05

    We present our work on the halo evolution of sulfur, based on observations of the S I lines around 9220 A for ten stars for which the S abundance was obtained previously from much weaker S I lines at 8694 A. We cannot confirm the rise and the high [S/Fe] abundances for low [Fe/H], as claimed in the literature from analysis of the 8694 A lines. The reasons for claims of an increase in [S/Fe] with decreasing [Fe/H] are probably twofold: uncertainties in the measurements of the weak 8694 A lines, and systematic errors in metallicity determinations from Fe I lines. The near-infrared sulfur triplet at 9212.9, 9228.1, and 9237.5 A are preferred for an abundance analysis of sulfur for metal-poor stars. Our work was presented in full by Ryde & Lambert (2004).

  8. Superclean coal-water slurry combustion testing in an oil-fired boiler

    SciTech Connect (OSTI)

    Miller, B.G.; Schobert, H.H.

    1990-09-28

    The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) demonstration and evaluation. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress is reported. 7 refs., 7 figs., 1 tab.

  9. Method of preparing graphene-sulfur nanocomposites for rechargeable

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(JournalspectroscopyReport) |(Patent) | SciTech Connect Patent:lithium-sulfur

  10. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  11. Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production

    E-Print Network [OSTI]

    Liu, Zhongzhe

    2013-01-01

    fuel, the limited local crude oil reserve, and the higheras fuels refined from crude oil. Sasol (an international

  12. World Oil Prices in AEO2007 (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Over the long term, the Annual Energy Outlook 2007 (AEO) projection for world oil prices -- defined as the average price of imported low-sulfur, light crude oil to U.S. refiners -- is similar to the AEO2006 projection. In the near term, however, AEO2007 projects prices that are $8 to $10 higher than those in AEO2006.

  13. Fuels and Other Products | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Crude Methanol Production from Coal and Natural Gas PDF Production of Zero Sulfur Diesel Fuel from Domestic Coal: Configurational Options to Reduce Environmental...

  14. Two stage sorption of sulfur compounds

    DOE Patents [OSTI]

    Moore, William E. (Manassas, VA)

    1992-01-01

    A two stage method for reducing the sulfur content of exhaust gases is disclosed. Alkali- or alkaline-earth-based sorbent is totally or partially vaporized and introduced into a sulfur-containing gas stream. The activated sorbent can be introduced in the reaction zone or the exhaust gases of a combustor or a gasifier. High efficiencies of sulfur removal can be achieved.

  15. Assessing historical global sulfur emission patterns for the period 1850--1990

    SciTech Connect (OSTI)

    Lefohn, A.S.; Husar, J.D.; Husar, R.B.; Brimblecombe, P.

    1996-07-19

    Anthropogenic sulfur dioxide emissions from energy-producing and metal production activities have become an important factor in better understanding the relationship between humans and the environment. Concerns about (1) acid rain effects on the environment and (2) anthropogenic aerosols affecting possible global change have prompted interest in the transformation and fate of sulfur in the environment. One step in assessing the importance of sulfur emissions is the development of a reliable regional emission inventory of sulfur as a function of time. The objective of this research effort was to create a homogeneous database for historical sulfur emission estimates for the world. The time from 1850--1990 was selected to include the period of industrialization form the time the main production of fuels and minerals began until the most recent year for which complete production data exist. This research effort attempts to correct some of the deficiencies associated with previous global sulfur emission estimates by (1) identifying those production activities that resulted in sulfur emissions by country and (2) calculating historical emission trends by country across years. An important component of this study was the comparison of the sulfur emission results with those of previous studies.

  16. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect (OSTI)

    Xiaoliang Ma; Michael Sprague; Lu Sun; Chunshan Song

    2002-10-01

    In order to reduce the sulfur level in liquid hydrocarbon fuels for environmental protection and fuel cell applications, deep desulfurization of a model diesel fuel and a real diesel fuel was conducted by our SARS (selective adsorption for removing sulfur) process using the adsorbent A-2. Effect of temperature on the desulfurization process was examined. Adsorption desulfurization at ambient temperature, 24 h{sup -1} of LHSV over A-2 is efficient to remove dibenzothiophene (DBT) in the model diesel fuel, but difficult to remove 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT). Adsorption desulfurization at 150 C over A-2 can efficiently remove DBT, 4-MDBT and 4,6-DMDBT in the model diesel fuel. The sulfur content in the model diesel fuel can be reduced to less than 1 ppmw at 150 C without using hydrogen gas. The adsorption capacity corresponding to the break-through point is 6.9 milligram of sulfur per gram of A-2 (mg-S/g-A-2), and the saturate capacity is 13.7 mg-S/g-A-2. Adsorption desulfurization of a commercial diesel fuel with a total sulfur level of 47 ppmw was also performed at ambient temperature and 24 h{sup -1} of LHSV over the adsorbent A-2. The results show that only part of the sulfur compounds existing in the low sulfur diesel can be removed by adsorption over A-2 at such operating conditions, because (1) the all sulfur compounds in the low sulfur diesel are the refractory sulfur compounds that have one or two alkyl groups at the 4- and/or 6-positions of DBT, which inhibit the approach of the sulfur atom to the adsorption site; (2) some compounds coexisting in the commercial low sulfur diesel probably inhibit the interaction between the sulfur compounds and the adsorbent. Further work in determining the optimum operating conditions and screening better adsorbent is desired.

  17. Safety considerations for the use of sulfur in sulfur-modified pavement materials 

    E-Print Network [OSTI]

    Jacobs, Carolyn Yuriko

    1980-01-01

    Liquid Sulfur Page v111 ix 33 33 35 IV Symptoms of Poisoning . First Aid SULFUR IN THE PAVING INDUSTRY General Sand-Asphalt-Sulfur Pavements (SAS) ', , Sulfur-Extended Asphalt Pavements (SEA) Sulfur Concrete EVALUATION OF RISKS AND SAFETY... RECOMMENDATIONS General Stationary Sources Mobile Sources Maintenance 40 41 43 43 44 45 46 Hot-Mix Recycling VI EMISSIONS MONITORING METHODS General Area Monitoring - Continuous Samplina Short Term Sampling (" Grab" Sampling) Personnel Monitoring...

  18. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...

    Broader source: Energy.gov (indexed) [DOE]

    to remove both sulfur species in biogas to ppb levels, making its use possible in a fuel cell CHP unit The high concentrations of sulfur species in the biogas (up to 1.5%...

  19. Novel Nanoscale Catalysts and Desulfurizers for Aviation Fuels Martin Duran* and Abdul-Majeed Azad

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    in terms of hydrogen yield and sulfur-tolerance; catalysts containing small levels of palladium and rhodium) to hydrogen through steam reforming poses a challenge since these fuels contain sulfur up to about 1000 ppm

  20. Saving Energy and Reducing Emissions with Fuel-Flexible Burners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using the standard fuel injectors found in fuel oil burners. This project developed fuel-flexible burners operating on biomass-derived liquid fuels with low carbon emissions....

  1. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01

    oil-like hydrocarbon fuels from non-conventional petroleumto hydrocarbon-based substitutes for conventional petroleum.liquid hydrocarbons, avail- ability of conventional oil, the

  2. Oil and gas outlook

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIARegionalMethodologyNorth093 *Oil andOil and

  3. Disease management Applying Stylet Oil, Sulforix or

    E-Print Network [OSTI]

    Isaacs, Rufus

    1 Disease management Applying Stylet Oil, Sulforix or Armicarb now to vines with powdery mildew will reduce disease pressure next year. Do not apply Sulforix to sulfur-sensitive grapes. Bunch rots are best controlled by leaf pulling, but application of Fungastop may help reduce sour rot. Insect management Low

  4. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  5. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander E.; Sperling, Dan

    2007-01-01

    CDC 2005). Heavy oil resources require additional energyin California Low-quality oil resources produce fuels withthan high-quality oil resources. The differences between

  6. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    CDC 2005). Heavy oil resources require additional energyin California Low-quality oil resources produce fuels withthan high-quality oil resources. The differences between

  7. Argonne Electrochemical Technology ProgramArgonne Electrochemical Technology Program Effects of Fuel Composition on

    E-Print Network [OSTI]

    , and impurities as isooctane solutions · test blends of fuel components · test real-world fuels from refineries · test blends of fuel components · test real-world fuels from refineries · Long-term testing (1000h) Fuel of major gasoline components Sulfur tolerance of Pt catalysts determined Studied sulfur effects on Ni, Co

  8. EIS-0083: Final Northeast Regional Environmental Impact Statement; The Potential Conversion of Forty-Two Powerplants From Oil to Coal or Alternate Fuels

    Broader source: Energy.gov [DOE]

    This Economic Regulatory Administration statement assesses the potential for cumulative and interactive environmental impacts resulting from conversion of up to 42 northeastern power plants from oil to coal and from an alternative “Voluntary Conversion” scenario for 27 power plants.

  9. Development and application of a lubricant composition model to study effects of oil transport, vaporization, fuel dilution, and soot contamination on lubricant rheology and engine friction

    E-Print Network [OSTI]

    Gu, Grace Xiang

    2014-01-01

    Engine oil lubricants play a critical role in controlling mechanical friction in internal combustion engines by reducing metal-on-metal contact. This implies the importance of understanding lubricant optimization at the ...

  10. Unusual refinery boiler tube failures due to corrosion by sulfuric acid induced by steam leaks

    SciTech Connect (OSTI)

    Lopez-Lopez, D.; Wong-Moreno, A.

    1998-12-31

    Corrosion by sulfuric acid in boilers is a low probability event because gas temperature and metal temperature of boiler tubes are high enough to avoid the condensation of sulfuric acid from flue gases. This degradation mechanism is frequently considered as an important cause of air preheaters materials degradation, where flue gases are cooled by heat transfer to the combustion air. Corrosion is associated to the presence of sulfuric acid, which condensates if metal temperature (or gas temperature) is below of the acid dew point. In economizer tubes, sulfuric acid corrosion is an unlikely event because flue gas and tube temperatures are normally over the acid dewpoint. In this paper, the failure analysis of generator tubes (similar to the economizer of bigger boilers) of two small oil-fired subcritical boilers is reported. It is concluded that sulfuric acid corrosion was the cause of the failure. The sulfuric acid condensation was due to the contact of flue gases containing SO{sub 3} with water-steam spray coming from leaks at the interface of rolled tube to the drum. Considering the information gathered from these two cases studied, an analysis of this failure mechanism is presented including a description of the thermodynamics condition of water leaking from the drum, and an analysis of the factors favoring it.

  11. 1 What is Oil ? General information

    E-Print Network [OSTI]

    Kammen, Daniel M.

    of petroleum products manufactured from crude oil. Many are for specific purposes, for example motor gasoline gasoline to heavier ones such as fuel oil. Oil #12;Crude oil Natural gas liquids Other hydrocarbons Additives/blending components Refinery feedstocks Refinery gas Transport diesel Ethane Heating and other

  12. Bureau of Land Management Oil Shale Development

    E-Print Network [OSTI]

    Utah, University of

    Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

  13. Selective trace determination of sulfur and aluminum using charged particle activation analysis 

    E-Print Network [OSTI]

    Burton, Terrence Dale

    1974-01-01

    for the characterization of ultra-pure materials. In a previous study ( 26) we had analyzed crude oil samples for their sulfur content using the reaction 3 S(p, oc ) P. P is a positron emitter with a half- 29 29 life of 4. . 2 seconds. The 0. 511 MeV gamma... gammas which tended to overload the detector, a lead absorber ( 2" thick) was used. A focused beam of 20 MeV protons was used for irradiating a pure sulfur pellet at very low beam currents (1 nano ampere) and the prompt 2. 23 MeV gamma ray...

  14. Process for demetallizing and desulfurizing heavy crude oil

    SciTech Connect (OSTI)

    Brown, R.E.; Hogan, R.J.; Combs, D.M.; Kukes, S.G.

    1989-12-05

    This patent describes a process for producing a synthetic crude oil of improved properties by desulfurizing, denitrogenating and demetallizing a heavy crude oil feed stock. The feed stock being a crude oil having an average boiling point at least as high as 500{degrees} F., an API gravity at 60{degrees} F. of less than 20, and containing at least about 1 weight percent sulfur.

  15. Fuel gas desulfurization

    DOE Patents [OSTI]

    Yang, Ralph T. (Tonawanda, NY); Shen, Ming-Shing (Rocky Point, NY)

    1981-01-01

    A method for removing sulfurous gases such as H.sub.2 S and COS from a fuel gas is disclosed wherein limestone particulates containing iron sulfide provide catalytic absorption of the H.sub.2 S and COS by the limestone. The method is effective at temperatures of 400.degree. C. to 700.degree. C. in particular.

  16. Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.

    E-Print Network [OSTI]

    billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

  17. Estimating Impacts of Diesel Fuel Reformulation with Vector-based Blending

    SciTech Connect (OSTI)

    Hadder, G.R.

    2003-01-23

    The Oak Ridge National Laboratory Refinery Yield Model has been used to study the refining cost, investment, and operating impacts of specifications for reformulated diesel fuel (RFD) produced in refineries of the U.S. Midwest in summer of year 2010. The study evaluates different diesel fuel reformulation investment pathways. The study also determines whether there are refinery economic benefits for producing an emissions reduction RFD (with flexibility for individual property values) compared to a vehicle performance RFD (with inflexible recipe values for individual properties). Results show that refining costs are lower with early notice of requirements for RFD. While advanced desulfurization technologies (with low hydrogen consumption and little effect on cetane quality and aromatics content) reduce the cost of ultra low sulfur diesel fuel, these technologies contribute to the increased costs of a delayed notice investment pathway compared to an early notice investment pathway for diesel fuel reformulation. With challenging RFD specifications, there is little refining benefit from producing emissions reduction RFD compared to vehicle performance RFD. As specifications become tighter, processing becomes more difficult, blendstock choices become more limited, and refinery benefits vanish for emissions reduction relative to vehicle performance specifications. Conversely, the emissions reduction specifications show increasing refinery benefits over vehicle performance specifications as specifications are relaxed, and alternative processing routes and blendstocks become available. In sensitivity cases, the refinery model is also used to examine the impact of RFD specifications on the economics of using Canadian synthetic crude oil. There is a sizeable increase in synthetic crude demand as ultra low sulfur diesel fuel displaces low sulfur diesel fuel, but this demand increase would be reversed by requirements for diesel fuel reformulation.

  18. Sibley station low-sulfur coal conversion program

    SciTech Connect (OSTI)

    Rupinskas, R.L. [Sargent & Lundy LLC, Chicago, IL (United States); Rembold, D.F. [Missouri Public Service, Kansas City, MO (United States)

    1995-03-01

    After embarking on an upgrade project in 1986 that was designed to allow efficient and reliable operation of its coal-fired Sibley station through 2010, Missouri Public Service (MPS) faced the uncertainty of impending acid-rain legislation. To protect its investment in the Sibley Rebuild Program, the utility evaluated compliance options based on the emerging legislation and concluded that switching to low-sulfur coal offered the least-cost compliance approach. Compared to installing a scrubber, switching to a low-sulfur coal was also more straightforward, although not without challenges and complications. This paper reviews the Sibley low-sulfur coal conversion program. At Sibley, fuel switching was chosen only after numerous internal and external studies; it withstood late challenges from natural gas and allowance trading. Switching demanded additional equipment to blend Power River Basin coals and other coals, and demanded additional and upgraded protective equipment in the areas of fire protection, dust collection, and explosion prevention. In the year since the coal conversion project was completed the facility has operated reliably, the economic benefits of the lower cost Powder River Basin coals have been realized, and the station has also met the requirements of both phases of the acid rain legislation. Fuel switching at Sibley required a team approach and careful analysis. The coal conversion project also required attention and dedication by team members in order to minimize fuel costs while maintaining optimum plant efficiency and availability.

  19. An electrochemical Claus process for sulfur recovery

    SciTech Connect (OSTI)

    Pujare, N.U.; Tsai, K.J.; Sammuells, A.F. (Eltron Research, Inc., Aurora, IL (US))

    1989-12-01

    Electrochemical oxidation of H{sub 2}S to give sulfur and water was achieved at 900{degrees}C using fuel cells possessing the general configuration where anode electrocatalysts experimentally investigated for promoting the subject oxidation reaction included WS{sub 2} and the thiospinels CuNi{sub 2}S{sub 4}, CuCo{sub 2}S{sub 4}, CuFe{sub 2}S{sub 4}, and NiFe{sub 2}S{sub 4}. The predominant oxidizable electroactive species present in the fuel cell anode compartment was suggested to be hydrogen originating from the initial thermal dissociation of H{sub 2}S (H{sub 2}S {r reversible} H{sub 2} + 1/2 S{sub 2}) at fuel cell operating temperatures. Rapid anode kinetics were found for the anodic reaction with the empirical trend for exchange currents (i{sub o}) per geometric area being found to be NiFe{sub 2}S{sub 4}{gt}WS{sub 2}{gt}CuCo{sub 2}S{sub 4}{gt}CuFe{sub 2}S{sub 4}{approx equal}NiCo{sub 2}S{sub 4}{gt}CuNi{sub 2}S{sub 4}.

  20. Biogenic sulfur emissions in the SURE region

    SciTech Connect (OSTI)

    Adams, D.F.; Farwell, S.O.; Robinson, E.; Pack, M.R.

    1980-09-01

    The objective of this study was to estimate the magnitude of biogenic sulfur emissions from the northeastern United States - defined as the EPRI Sulfate Regional Experiment (SURE) study area. Initial laboratory efforts developed and validated a portable sulfur sampling system and a sensitive, gas chromatographic analytical detection system. Twenty-one separate sites were visited in 1977 to obtain a representative sulfur emission sampling of soil orders, suborders, and wetlands. The procedure determined the quantity of sulfur added to sulfur-free sweep air by the soil flux as the clean air was blown through the dynamic enclosure set over the selected sampling area. This study represents the first systematic sampling for biogenic sulfur over such a wide range of soils and such a large land area. The major impacts upon the measured sulfur flux were found to include soil orders, temperature, sunlight intensity, tidal effects along coastal areas. A mathematical model was developed for biogenic sulfur emissions which related these field variables to the mean seasonal and annual ambient temperatures regimes for each SURE grid and the percentage of each soil order within each grid. This model showed that at least 53,500 metric tons (MT) of biogenic sulfur are emitted from the SURE land surfaces and approximately 10,000 MT are emitted from the oceanic fraction of the SURE grids. This equates to a land sulfur flux of nearly 0.02 gram of sulfur per square meter per yr, or about 0.6% of the reported anthropogenic emissions withn the SURE study area. Based upon these data and the summertime Bermuda high clockwise circulation of maritime air across Florida and the Gulf Coast states northward through the SURE area, the total land biogenic sulfur emission contribution to the SURE area atmospheric sulfur burden might approach 1 to 2.5% of the anthropogenic.

  1. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01

    D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Reportfor CO2 evolved from oil shale. Fuel Processing Technology,

  2. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01

    www.int.iol.co.za. ———. 2004b. Heavy Oil Slick Oozes ontoThat Converts Ultra-Heavy Oil into Clean-Burning Fuel. Marchof heavy and ultra-heavy oil at the Richmond refinery (see

  3. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01

    entirely from steam-induced heavy oil production in Cali-from Venezuela’s extra-heavy oil reached about 0.6 Mbbl/d inliquid fuels. Heavy and extra-heavy oil are very viscous and

  4. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    SciTech Connect (OSTI)

    Gunther Dieckmann

    2006-06-30

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  5. Production of low-sulfur binder pitch from high-sulfur Illinois coals. Technical report, September 1--November 30, 1994

    SciTech Connect (OSTI)

    Knight, R.A. [Inst. of Gas Technology, Chicago, IL (United States)

    1994-12-31

    The objective of this project is to produce electrode binder pitch with sulfur content below 0.6 wt% from high-sulfur Illinois coal mild gasification liquids. In this project, two approaches to sulfur reduction are being explored in conjunction with thermocracking: (1) the use of conventionally cleaned coal with low ({approximately}1%) sulfur as a mild gasification feedstock, and (2) direct biodesulfurization of the liquids prior to thermocracking. In Case 1, the crude pitch is being produced by mild gasification of IBC-109 coal in an existing IGT bench-scale reactor, followed by distillation of the scrubbing solvent and light-to-middle oils to isolate the crude pitch. In Case 2, the crude pitch for biodesulfurization is the same material previously studied, which was obtained from Illinois No. 6 coal tests conducted in the IGT mild gasification PRU in 1990. Biodesulfurization is to be performed by contacting the pitch with Rhodococcus Rhodochrous either as live cultures or in the form of concentrated biocatalyst. Following preparation of the crude pitches, pitch upgrading experiments are to be conducted in a continuous flash thermocracker (FTC) constructed in previous ICCI-sponsored studies. The finished pitch is then characterized for physical and chemical properties (density, softening point, QI, TI, coking value, and elemental composition), and compared to typical specifications for binder pitches. This quarter, 45 kg of IBC-109 coal was obtained and sized to 40 x 80 mesh for mild gasification. Laboratory experiments were conducted to identify means of dispersing or emulsifying pitch in water to render is accessible to biocatalysts, and exploratory desulfurization tests on one-gram pitch samples were begun.

  6. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    growth. For data on world oil consumption and long- term oilOil Production Domestic Oil Consumption a variety of

  7. A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    n.a. CG oil n.e. RFG oil n.e. ULSD oil n.e. FTD NG n.e. Fueln.a. n.a. CG n.a. RFG n.a. ULSD n.a. M100 M85 CNG CH2 n.a.RFG = reformulated gasoline, ULSD = ultra-low-sulfur diesel,

  8. A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01

    n.a. CG oil n.e. RFG oil n.e. ULSD oil n.e. FTD NG n.e. Fueln.a. n.a. CG n.a. RFG n.a. ULSD n.a. M100 M85 CNG CH2 n.a.RFG = reformulated gasoline, ULSD = ultra-low-sulfur diesel,

  9. Residential heating oil prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating oil priceheating oil3,4,heating oil

  10. Characterization of Mugil cephalus liver microsomal mixed function oxidase enzymes and metabolism: and their induction in response to #2 fuel oil water soluble fraction and benzpyrene 

    E-Print Network [OSTI]

    Woodin, Bruce Ray

    1979-01-01

    using the frozen livers of plaice tti ~l) 11 d f h ' 4 h A C d'* oil spill and a neighboring control bay. No significant difference was observed between the cytochrome P-450 levels in the livers of plaice from the two collection sites... of Benzpyrene Exposure on Mullet. . . . . . . . . . . . . . . . . . Effects of Freezing on the Stability of Microsomal Enzymes Cy h F-4501 1 Z1: dft 1 t Amoco Cadiz Oil Spill 22 26 33 33 35 38 40 40 45 50 50 53 60 63 63 DISCUSSION...

  11. The last decade of global anthropogenic sulfur dioxide: 2000-2011 emissions

    SciTech Connect (OSTI)

    Klimont, Z.; Smith, Steven J.; Cofala, Janusz

    2013-01-09

    Evolution of global and regional anthropogenic SO2 emissions in the last decade has been estimated through a bottom-up calculation for recent years. After a strong increase in emissions that peaked about 2006, we estimate a declining trend continuing until 2011. However, there is a strong spatial variability with North America and Europe continuing to reduce emissions with an increasing role of Asia and international shipping. China remains a key contributor but the introduction of stricter emission limits followed by an ambitious program of installing flue gas desulfurization on power plants resulted in significant decline in emissions from energy sector and stabilization of Chinese SO2 emissions. Comparable mitigation strategies are not yet present in several other Asian countries and industrial sectors in general, while emissions from international shipping are expected to start declining soon following agreed reduction of sulfur content of fuel oil. Estimated trends in global SO2 emissions are within the range of RCP projections and uncertainty calculated for the year 2005.

  12. Analytical Framework to Evaluate Emission Control Systems for Marine Engines

    E-Print Network [OSTI]

    Jayaram, Varalakshmi

    2010-01-01

    engines operating with heavy fuel oils. J. Aerosol Sci 1998,blends of water and heavy fuel oil (HFO). Experimentaloperate on high sulfur heavy fuel oil with sulfur content of

  13. Contribution of isotopologue self-shielding to sulfur mass-independent fractionation during sulfur dioxide photolysis

    E-Print Network [OSTI]

    Lyons, J. R.

    Signatures of sulfur mass-independent fractionation (S-MIF) are observed for sulfur minerals in Archean rocks, and for modern stratospheric sulfate aerosols (SSA) deposited in polar ice. Ultraviolet light photolysis of ...

  14. Industrial Utilization of Coal-Oil Mixtures 

    E-Print Network [OSTI]

    Dunn, J. E.; Hawkins, G. T.

    1982-01-01

    Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM...

  15. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  16. Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)

    SciTech Connect (OSTI)

    Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

    2014-09-01

    Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

  17. Process for recovery of sulfur from acid gases

    DOE Patents [OSTI]

    Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  18. Sulfur oxidation to sulfate coupled with electron transfer to electrodes by Desulfuromonas strain TZ1

    SciTech Connect (OSTI)

    Zhang, T; Bain, TS; Barlett, MA; Dar, SA; Snoeyenbos-West, OL; Nevin, KP; Lovley, DR

    2014-01-02

    Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.

  19. Effects of Fuel Dilution with Biodiesel on Lubricant Acidity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Affecting Fuel Economy and Engine Wear Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Development of High Performance Heavy Duty Engine Oils...

  20. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds

    SciTech Connect (OSTI)

    Wang, Huamin; Male, Jonathan L.; Wang, Yong

    2013-05-01

    There is considerable world-wide interest in discovering renewable sources of energy that can substitute for fossil fuels. Lignocellulosic biomass, which is the most abundant and inexpensive renewable feedstock on the planet, has a great potential for sustainable production of fuels, chemicals, and carbon-based materials. Fast pyrolysis integrated with hydrotreating is one of the simplest, most cost-effective and most efficient processes to convert lignocellulosic biomass to liquid hydrocarbon fuels for transportation, which has attracted significant attention in recent decades. However, effective hydrotreating of pyrolysis bio-oil presents a daunting challenge to the commercialization of biomass conversion via pyrolysis-hydrotreating. Specifically, development of active, selective, and stable hydrotreating catalysts is the bottleneck due to the poor quality of pyrolysis bio-oil feedstock (high oxygen content, molecular complexity, coking propensity, and corrosiveness). Significant research has been conducted to address the practical issues and provide the fundamental understanding of the hydrotreating/hydrodeoxygenation (HDO) of bio-oils and their oxygen-containing model compounds, including phenolics, furans, and carboxylic acids. A wide range of catalysts have been studied, including conventional Mo-based sulfide catalysts and noble metal catalysts, with the latter being the primary focus of the recent research because of their excellent catalytic performances and no requirement of environmentally unfriendly sulfur. The reaction mechanisms of HDO of model compounds on noble metal catalysts as well as their efficacy for hydrotreating or stabilization of bio-oil have been recently reported. This review provides a survey of the relevant literatures of recent 10 years about the advances in the understanding of the HDO chemistry of bio-oils and their model compounds mainly on noble metal catalysts.

  1. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, while also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  2. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  3. SOFC cells and stacks for complex fuels

    SciTech Connect (OSTI)

    Edward M. Sabolsky; Matthew Seabaugh; Katarzyna Sabolsky; Sergio A. Ibanez; Zhimin Zhong

    2007-07-01

    Reformed hydrocarbon and coal (syngas) fuels present an opportunity to integrate solid oxide fuel cells into the existing fuel infrastructure. However, these fuels often contain impurities or additives that may lead to cell degradation through sulfur poisoning or coking. Achieving high performance and sulfur tolerance in SOFCs operating on these fuels would simplify system balance of plant and sequestration of anode tail gas. NexTech Materials, Ltd., has developed a suite of materials and components (cells, seals, interconnects) designed for operation in sulfur-containing syngas fuels. These materials and component technologies have been integrated into an SOFC stack for testing on simulated propane, logistic fuel reformates and coal syngas. Details of the technical approach, cell and stack performance is reported.

  4. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-Compatible Cumulative Damage FrameworkPilotPilot

  5. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005

    SciTech Connect (OSTI)

    John E. Pinkerton

    2007-08-15

    Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

  6. Sulfur oxide adsorbents and emissions control

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA)

    2006-12-26

    High capacity sulfur oxide absorbents utilizing manganese-based octahedral molecular sieve (Mn--OMS) materials are disclosed. An emissions reduction system for a combustion exhaust includes a scrubber 24 containing these high capacity sulfur oxide absorbents located upstream from a NOX filter 26 or particulate trap.

  7. Microbial Architecture of Environmental Sulfur Processes: A

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    potential impacts on water quality, including acid generation in acid mine drainage (AMD) environments, 2009. Accepted July 9, 2009. Microbial oxidation of sulfur-rich mining waste materials drives acid mine drainage (AMD) and affects the global sulfur biogeochemical cycle. The generation of AMD is a complex

  8. "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2Residential"0 DETAILED DATA52.31.33

  9. "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2Residential"0 DETAILED3.49

  10. Development and use of the GREET model to estimate fuel-cycle energy use and emissions of various transportation technologies and fuels

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-03-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel- cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydrogen, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  11. Sound Oil Company

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVESDepartment of EnergyEnergy SolyndraSound Oil

  12. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  13. Method of removal of sulfur from coal and petroleum products

    DOE Patents [OSTI]

    Verkade, John G. (Ames, IA); Mohan, Thyagarajan (Ames, IA); Angelici, Robert J. (Ames, IA)

    1995-01-01

    A method for the removal of sulfur from sulfur-bearing materials such as coal and petroleum products using organophosphine and organophosphite compounds is provided.

  14. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    SciTech Connect (OSTI)

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  15. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect (OSTI)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  16. Shale Oil and Gas, Frac Sand, and Watershed

    E-Print Network [OSTI]

    Minnesota, University of

    ;Bakken Oil Shale scope · Light, Sweet crude ­ ideal for automotive fuels and mid-size refineries (Midwest

  17. A novel process for upgrading heavy oil emulsions

    SciTech Connect (OSTI)

    Ng, F.T.T.; Rintjema, R.T. [Univ. of Waterloo, Ontario (Canada). Dept. of Chemical Engineering

    1994-12-31

    Canada has extensive reserves of high sulfur heavy oils. These heavy oils are recovered primarily by steam injection techniques. As a result, the heavy oils are obtained as emulsions at well-heads. The heavy oils, being high in sulfur and metals, and low in hydrogen to carbon atomic ratio, require upgrading such as desulfurization and hydrocracking before it can be used in conventional refineries. Conventional emulsion treatment and desulfurization technology require multistage processing. Thus, alternative technologies for processing heavy oil emulsions would be attractive. The authors have recently developed a novel single stage process for upgrading emulsions via activation of water to provide hydrogen in situ for catalytic desulfurization and hydrocracking. Current work is focused on the desulfurization aspect of upgrading, using benzothiophene as the model sulfur compound and molybdic acid as the catalyst. At 340 C and a CO loading pressure of 600 psi, up to 86% sulfur removal was obtained. As well, in situ generated H{sub 2} was found to be more active than externally supplied molecular H{sub 2}. A likely pathway for desulfurization of benzothiophene was via the initial hydrogenation of benzothiophene to dihydrobenzothiophene followed by hydrogenolysis to give ethylbenzene and H{sub 2}S.

  18. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01

    for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

  19. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01

    for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

  1. Our addiction to foreign oil and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    addiction to foreign oil and fossil fuels puts our economy, our environment, and ultimately our national security at risk. Furthermore, there is a growing recognition of the...

  2. Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles

    E-Print Network [OSTI]

    Hajbabaei, Maryam

    2013-01-01

    Biodiesel Blends on NOx Emissions. SAE Technical Paper 2008,Energy Laboratory Diesel Emissions Control - Sulfur Effectsbetween NOx, Particulate Emission, and Fuel Consumption of a

  3. Modeling sulfur dioxide capture in a pulverized coal combustor

    SciTech Connect (OSTI)

    Nair, R.B.; Yavuzkurt, S. [Pennsylvania State Univ., University Park, PA (United States)

    1997-04-01

    The formation and capture of sulfur dioxide in a pulverized coal combustor is investigated. A two-dimensional, steady, axisymmetric code, PCGC-2 (Pulverized Coal Gasification and Combustion-two Dimensional), originally developed at Brigham Young University, has been used to simulate combustion of the pulverized coal. This paper represents part of a project to investigate simultaneously enhancing sulfur capture and particulate agglomeration in combustor effluents. Results from the code have been compared to experimental data obtained from MTCI`s (Manufacturing Technology and Conversion International) test pulse combustor, which generates sound pressure levels of {approximately}180 dB. The overall goal behind the pulse combustor program at MTCI is to develop combustors for stationary gas turbines that use relatively inexpensive coal-based fuels. This study attempts to model the capture of sulfur dioxide when injected into a pulse combustor firing micronized coal. While this work does not presume to model the complex gas flow-field generated by the pulsating flow, the effects of the acoustic field are expressed by increased heat and mass transfer to the particles (coal/sorbent) in question. A comprehensive calcination-sintering-sulfation model for single particles was used to model the capture of sulfur dioxide by limestone sorbent. Processes controlling sulfation are external heat and mass transfer, pore diffusion, diffusion through the product layer of CaSO{sub 4}, sintering, and calcination. The model was incorporated into the PCGC-2 program. Comparisons of exit concentrations of SO{sub 2} showed a fairly good agreement (within {approximately}10 percent) with the experimental results from MTCI.

  4. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    SciTech Connect (OSTI)

    2009-11-01

    TDA Research Inc., in collaboration with FuelCell Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels.

  5. Reactive plasma upgrade of squalane - a heavy oil simulant

    SciTech Connect (OSTI)

    Kong, P.C.; Watkins, A.D.; Detering, B.A. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-07-01

    U.S. light crude oil production has steadily declined over the last two decades. However, huge known heavy oil deposits in the North American continent remain largely untapped. In the past 10 years, the API gravity of crude oils has been decreasing by about 0.17% per year, and the sulfur content has been increasing by about 0.027% per year. As the API gravity of crude oil decreases, there will be an urgent need for economically viable new technologies to ungrade the heavy oil to a high API gravity feed stock for the refineries. The Idaho National Engineering Laboratory is investigating an innovative plasma process to upgrade heavy oil and refinery residuum. This paper will present some of the results and the implications of this technology for heavy oil upgrade and conversion.

  6. Reactive plasma upgrade of squalane - a heavy oil simulant

    SciTech Connect (OSTI)

    Kong, P.C.; Watkins, A.D.; Detering, B.A.; Thomas, C.P.

    1995-10-01

    U.S. light crude oil production has steadily declined over the last two decades. However, huge known heavy oil deposits in the North American continent remain largely untapped. In the past 10 years, the API gravity of crude oils has been decreasing by about 0.17% per year, and the sulfur content has been increasing by about 0.027% per year. As the API gravity of crude oil decreases, there will be an urgent need for economically viable new technologies to upgrade the heavy oil to a high API gravity feed stock for the refineries. The Idaho National Engineering Laboratory is investigating an innovative plasma process to upgrade heavy oil and refinery residuum. This paper will present some of the results and the implications of this technology for heavy oil upgrade and conversion.

  7. Oil shale as an energy source in Israel

    SciTech Connect (OSTI)

    Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  8. Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process

    E-Print Network [OSTI]

    Hu, Sangran

    2012-01-01

    Jet fuel and crude oil price history……………………………. …………6Figure 2 Jet fuel and crude oil price history. From IATAa sharp decrease in crude oil price occurred in the 1950s.

  9. Catalyst for elemental sulfur recovery process

    DOE Patents [OSTI]

    Flytzani-Stephanopoulos, M.; Liu, W.

    1995-01-24

    A catalytic reduction process is described for the direct recovery of elemental sulfur from various SO[sub 2]-containing industrial gas streams. The catalytic process provides high activity and selectivity, as well as stability in the reaction atmosphere, for the reduction of SO[sub 2] to elemental sulfur product with carbon monoxide or other reducing gases. The reaction of sulfur dioxide and reducing gas takes place over a metal oxide composite catalyst having one of the following empirical formulas: [(FO[sub 2])[sub 1[minus]n](RO)[sub n

  10. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    savings of fuels in electricity generation, we find thatTotal fuel used for electricity generation, includes oil.Electricity Generation (a) Low sulfur heavy fuel oil (b)

  11. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CS Seminars CalendarOil & Gas

  12. Residential heating oil price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctober 2015Administration (EIA)heating oil

  13. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article) | SciTech ConnectSciTechelectrodes

  14. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journal Article)lasers (Journal Article) | SciTech

  15. Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin

    SciTech Connect (OSTI)

    Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

    2011-02-28

    Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

  16. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    SciTech Connect (OSTI)

    Xiaoliang Ma; Lu Sun; Chunshan Song

    2001-09-01

    Due to the increasingly stricter regulations for deep reduction of fuel sulfur content, development of new deep desulfurization processes for liquid transport fuels has become one of the major challenges to the refining industry and to the production of hydrocarbon fuels for fuel cell applications. The sulfur compounds in the current transport fuels corresponding to the S level of 350-500 ppm account for only about 0.12-0.25 wt % of the fuel. The conventional hydrotreating approaches will need to increase catalyst bed volume at high-temperature and high-pressure conditions for treating 100 % of the whole fuel in order to convert the fuel mass of less than 0.25 wt %. In the present study, we are exploring a novel adsorption process for desulfurization at low temperatures, which can effectively reduce the sulfur content in gasoline, jet fuel and diesel fuel at low investment and operating cost to meet the needs for ultra-clean transportation fuels and for fuel cell applications. Some adsorbents were prepared in this study for selective adsorption of sulfur compounds in the fuels. The adsorption experiments were conducted by using a model fuel and real fuels. The results show that the adsorbent (A-1) with a transition metal compound has a significant selectivity for sulfur compounds with a saturated adsorption capacity of {approx}0.12 mol of sulfur compounds per mol of the metal compound. Most sulfur compounds existing in the current commercial gasoline, jet fuel and diesel fuel can be removed by the adsorption using adsorbent A-1. On the basis of the preliminary results, a novel concept for integrated process for deep desulfurization of liquid hydrocarbons was proposed.

  17. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    SciTech Connect (OSTI)

    Mahajan, Devinder

    2004-12-28

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  18. Oil and gas journal databook, 1987 edition

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This book is an annual compendium of surveys and special reports reviewed by experts. The 1987 edition opens with a forward by Gene Kinney, co-publisher of the Oil and Gas Journal and includes the OGJ 400 Report, Crude Oil Assays, Worldwide Petrochemical Survey, the Midyear Forecast and Reviews, the Worldwide Gas Processing Report, the Ethylene Report, Sulfur Survey, the International Refining, Catalyst Compilation, Annual Refining Survey, Worldwide Construction Report, Pipeline Economics Report, Worldwide Production and Refining Report, the Morgan Pipeline Cost Index for Oil and Gas, the Nelson Cost Index, the Hughes Rig Count, the Smith Rig Count, the OGJ Production Report, the API Refinery Report, API Crude and Product Stocks, APU Imports of Crude and Products, and the complete Oil and Gas Journal 1986 Index of articles.

  19. Arabian crude-oil residues evaluated

    SciTech Connect (OSTI)

    Ali, M.F.; Bukhari, A.; Hasan, M.; Saleem, M.

    1985-08-12

    This article evaluates detailed physical and chemical characteristics for four important Saudi Arabian resids. Petroleum residues are composed of a mixture of large and complex hydrocarbon molecules along with one or more heteroatoms such as sulfur, oxygen, nitrogen, vanadium, and nickel. The amount of residue and its physical and chemical composition depend on the source of the crude oil and methods of processing. Residues from four Saudi Arabian crude oils produced by the Arabian American Oil Co. (Aramco) were evaluated. The crude oils are 38.5 degrees API Arabian Extra Light, 33.8 degrees API Arabian Light, 30.4 degrees Api Arabian Medium, and 28.03 degrees API Arabian Heavy. Results are presented and residue preparation, and physical and chemical characteristics are analyzed.

  20. reliable, efficient, ultra-clean Fuel Cell Power Plant Experience

    E-Print Network [OSTI]

    reliable, efficient, ultra-clean Fuel Cell Power Plant Experience Naval Applications US Department Shore Capacity - Low Profile, Easy Siting Connects to existing electricity and fuel infrastructure Cell Stack and operated with high sulfur naval logistic fuel (JP-5 jet fuel) · Over 1000 Hours of Fuel