Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2012 (EIA)

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

2

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

3

Maintenance and storage of fuel oil for residential heating systems: A guide for residential heating system maintenance personnel  

SciTech Connect

The quality of No. 2 fuel affects the performance of the heating system and is an important parameter in the proper and efficient operation of an oil-burning system. The physical and chemical characteristics of the fuel can affect the flow, atomization and combustion processes, all of which help to define and limit the overall performance of the heating system. The use of chemical additives by fuel oil marketershas become more common as a method of improving the quality of the fuel, especially for handling and storage. Numerous types of additives are available, but reliable information on their effectiveness and proper use is limited. This makes selecting an additive difficult in many situations. Common types of problems that contribute to poor fuel quality and how they affect residential heating equipment are identified inof this booklet. It covers the key items that are needed in an effective fuel quality monitoring program, such as what to look for when evaluating the quality of fuel as it is received from a supplier, or how to assess fuel problems associated with poor storage conditions. References to standard procedures and brief descriptions of the procedures also are given. Approaches for correcting a fuel-related problem, including the potential uses of chemical additives are discussed. Different types of additives are described to help users understand the functions and limitations of chemical treatment. Tips on how to select andeffectively use additives also are included. Finally, the importance of preventative maintenance in any fuel monitoring program is emphasized.

Litzke, Wai-Lin

1992-12-01T23:59:59.000Z

4

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

5

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

ago to 3.98 per gallon. That's up 6-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil...

6

Retail Price of No. 2 Fuel Oil to Residential Consumers  

U.S. Energy Information Administration (EIA)

(Dollars per Gallon Excluding Taxes) Data ... total No. 2 diesel fuel has been eliminated to help ensure that sensitive data reported to EIA by ...

7

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

DOE Green Energy (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

8

Residential heating oil prices virtually unchanged  

Gasoline and Diesel Fuel Update (EIA)

to 3.95 per gallon. That's down 8-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil...

9

Residential heating oil prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

last week to 3.92 per gallon. That's down 11 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for...

10

Residential heating oil prices increase  

Gasoline and Diesel Fuel Update (EIA)

last week to 3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for...

11

Winter Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Residential heating oil prices reflect a similar pattern to that shown in spot prices. However, like other retail petroleum prices, they tend to lag changes in wholesale prices in both directions, with the result that they don't rise as rapidly or as much, but they take longer to recede. This chart shows the residential heating oil prices collected under the State Heating Oil and Propane Program (SHOPP), which only runs during the heating season, from October through March. The spike in New York Harbor spot prices last winter carried through to residential prices throughout New England and the Central Atlantic states. Though the spike actually lasted only a few weeks, residential prices ended the heating season well above where they had started.

12

DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.  

SciTech Connect

Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used with all oil burner installations. The other possible failure mode had been attributed to fuel degradation and this became the main focus of the evaluation. The degradation of fuel usually occurs faster under higher temperature conditions. To preclude this as much as possible controls that provided for a post-purge of combustion airflow after burner shut down were selected. This provided a short period of time where the burner's combustion air blower continues to operate after the flame has gone out. This tends to cool the nozzle and in turn the fuel inside the small flow pathways inside the nozzle components. This study concludes that the use of low capacity nozzles is possible but only when the temperature and thermal mass environment of the combustion chamber result in a relatively ''cool'' condition. This was accomplished in one long-term experiment that essentially operated for a full heating season equivalent with no evidence of nozzle plugging or failure. The nozzle body surface temperature was kept at or below 150 F during the duration of the trial. On the other hand, a second system was studied that ended in a partial nozzle blockage and a system failure. In this ''hot environment'' system the nozzle body temperature reached 210 F. This occurred at close to a full heating season equivalent, yet it still would have resulted in a no-heat complaint by the homeowner.

MCDONALD,R.J.

2007-05-01T23:59:59.000Z

13

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

14

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

15

Cheyenne Light, Fuel and Power (Electric) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program <...

16

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

17

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

18

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

One of the first places where consumers are feeling the impact of One of the first places where consumers are feeling the impact of this winter's market pressures is in home heating oil prices. This chart shows prices through February 28, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of heating oil

19

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Slide 2 of 11 Notes: One of the first places where consumers are feeling the impact of this winter’s market pressures is in home heating oil prices. This chart shows prices through February 7, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents per gallon through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of

20

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

Table F7: Distillate Fuel Oil Consumption Estimates, 2011 State Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial...

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

22

Alternative Fuels Data Center: Residential Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Residential Electric Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Google Bookmark Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Delicious Rank Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on AddThis.com...

23

Fuel consumption: Industrial, residential, and general studies. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning fuel consumption in industrial and residential sectors. General studies of fuel supply, demand, policy, forecasts, and consumption models are presented. Citations examine fuel information and forecasting systems, fuel production, international economic and energy activities, heating oils, and pollution control. Fuel consumption in the transportation sector is covered in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-08-01T23:59:59.000Z

24

Table 2. Fuel Oil Consumption and Expeditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Consumption and Expeditures in U.S. Households ... Space Heating - Main or Secondary ... Forms EIA-457 A-G of the 2001 Residential Energy Consumption

25

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

26

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

27

National Rural Electric Cooperative Association: Residential Fuel Cell Demonstration Program  

DOE Green Energy (OSTI)

Summarizes the National Rural Electric Cooperative Association's work, under contract to DOE's Distribution and Interconnection R&D, to create a residential fuel cell demonstration program.

Not Available

2003-10-01T23:59:59.000Z

28

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

29

National Fuel (Gas) - Residential Energy Efficiency Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates National Fuel (Gas) - Residential Energy Efficiency Rebates < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Appliances & Electronics Water Heating Maximum Rebate Rebate amount cannot exceed the purchase price Program Info Start Date 1/1/2013 Expiration Date 3/31/2014 State New York Program Type Utility Rebate Program Rebate Amount Furnace: $250 Forced Air Furnace with ECM: $350 Hot Water Boiler: $350 Steam Boiler: $200 Programmable Thermostat: $25 Indirect Water Heater: $250 Provider Energy Federation Incorporated (EFI) National Fuel offers pre-qualified equipment rebates for the installation of certain energy efficiency measures to residential customers in Western

30

Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Residential Energy Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Residential Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Sealing Your Home Ventilation Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Insulation (Wall/Ceiling/Floor): $750 Insulation (Duct): $170 Infiltration Control: $200 Duct Sealing: $285 Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Required for Infiltration Control, Insulation, Duct Sealing, and Window Rebates

31

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

32

Weekly Minnesota No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly Minnesota No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

33

Weekly Massachusetts No. 2 Heating Oil Residential Price (Dollars ...  

U.S. Energy Information Administration (EIA)

Weekly Massachusetts No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

34

Weekly Wisconsin No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly Wisconsin No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

35

Residential coal use: 1982 international solid fuel trade show and conference Atlantic City, New Jersey. [USA; 1974; By state  

Science Conference Proceedings (OSTI)

The US Department of Energy's anthracite and residential coal programs are described. The residential coal effort is an outgrowth and extension of the anthracite program, which has been, and continues to be, involved in promoting increased production and use of anthracite and the restoration of anthracite as a viable economic alternative to soft coals and to imported oil and gas now supplying the Northeast. Since anthracite is a preferred fuel for residential heating, residential coal issues comprise an important part of our anthracite activities. We have commenced a study of residential coal utilization including: overview of the residential coal market; market potential for residential coal use; analysis of the state of technology, economics, constraints to increased use of coal and coal-based fuels in residential markets, and identification of research and development activities which would serve to increase the market potential for coal-fired residential systems. A considerable amount of information is given in this report on residential coal furnaces and coal usage in 1974, prices of heating oils and coal, methods of comparing these fuels (economics), air pollution, safety, wood and wood furnaces, regulations, etc.

Pell, J.

1982-06-01T23:59:59.000Z

36

Diesel fuel oils, 1982  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

37

Residential oil burners with low input and two stages firing  

SciTech Connect

The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

Butcher, T.; Krajewski, R.; Leigh, R. [and others

1997-12-31T23:59:59.000Z

38

fuel_oil.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Usage Form Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

39

National Fuel - Large Non-Residential Conservation Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Fuel - Large Non-Residential Conservation Program National Fuel - Large Non-Residential Conservation Program National Fuel - Large Non-Residential Conservation Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Manufacturing Appliances & Electronics Water Heating Maximum Rebate Commercial Custom Rebates: $200,000 Industrial Custom Rebates: $5,000,000 Program Info State New York Program Type Utility Rebate Program Rebate Amount Custom Rebates: $15/Mcf x the gas savings or 50% of the total project cost Unit Heater: $1000 Hot Air Furnace: $500 Low Intensity Infrared Heating: $500 Programmable Thermostat: $25

40

Diesel fuel oils, 1983  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1983 were submitted for study and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 192 samples of diesel fuel oils from 87 refineries throughout the country were made by 31 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the two grades of diesel fuels. Summaries of the results of the 1983 survey, compared with similar data for 1982, are shown in Tables 1 and 2 of the report. 3 figures, 4 tables.

Shelton, E.M.

1983-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

42

Residential Wood Heating Fuel Exemption (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood Heating Fuel Exemption (New York) Wood Heating Fuel Exemption (New York) Residential Wood Heating Fuel Exemption (New York) < Back Eligibility Multi-Family Residential Residential Savings Category Bioenergy Maximum Rebate None Program Info State New York Program Type Sales Tax Incentive Rebate Amount 100% exemption Provider New York State Department of Taxation and Finance New York exempts retail sales of wood used for residential heating purposes from the state sales tax. The law also permits local governments (municipalities and counties) to grant an exemption from local sales taxes. If a city with a population of 1 million or more chooses to grant the local exemption, it must enact a specific resolution that appears in the state law. Local sales tax rates in New York range from 1.5% to more than 4% in

43

Compare All CBECS Activities: Fuel Oil Use  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

44

Total Adjusted Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

45

Total Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

46

residual fuel oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Residual fuel oil: A general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuel oils and lighter ...

47

Railroad fuel-oil consumption in 1928  

SciTech Connect

Data are presented, by districts, covering the consumption of fuel oil for various uses by railroads.

Redfield, A.H.

1930-01-01T23:59:59.000Z

48

U.S. Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: One of the first places where consumers are feeling the impact of this winter’s market pressures is in home heating oil prices. This chart shows prices for the last four winters, with this year’s prices shown through January 24, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Although heating oil prices for consumers started this winter at similar levels to those in 1997, they already rose nearly 20 cents per gallon through mid-January. With the continuing upward pressure from crude

49

Phosphoric acid fuel cells in residential applications: Final report  

DOE Green Energy (OSTI)

The residential market for the phosphoric acid fuel cell (PAFC) was assessed for the states of the Northeast and North Central census regions. The investment that could be supported by the fuel savings of a 1 kw PAFC installed in 1992 would be in the range of $1300-$1800, based on a 5 year pay out. The most critical market factor affecting the economics of the fuel cell in residential application is the price differential between electricity and natural gas. The fuel cell looks more attractive in the populous states of the Northeast and North Central region as the differential between gas and electricity prices is 27% more than that for the national average. Extending application of the fuel cell to meet residential space heating needs look unattractive. In space heating the return comes from more efficient use of gas rather than reducing purchase of high priced electricity and the energy requirement varies dramatically over the season leading to poor fuel cell capacity utilization. This analysis provides several valuable results useful in formulating future fuel cell research plans. 19 tabs.

Hackworth, J.H.; Goudarzi, L.; Griswold, D.

1987-06-01T23:59:59.000Z

50

Residential Fuel Cell Performance Test Facility  

Science Conference Proceedings (OSTI)

... Currently, the test facility is setup to deliver natural gas as the fuel, but ... A turbine and magnetic flow meter measure the flow of water for the domestic ...

2011-11-15T23:59:59.000Z

51

Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model  

Reports and Publications (EIA)

The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

Information Center

2009-11-09T23:59:59.000Z

52

Residual Fuel Oil Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

53

Michigan residential heating oil and propane price survey: 1995--1996 heating season. Final report  

SciTech Connect

This report summarizes the results of a survey of residential No. 2 distillate fuel (home heating oil) and liquefied petroleum gas (propane) prices over the 1995--1996 heating season in Michigan. The Michigan`s Public Service Commission (MPSC) conducted the survey under a cooperative agreement with the US Department of Energy`s (DOE) Energy Information Administration (EIA). This survey was funded in part by a grant from the DOE. From October 1995 through March 1996, the MPSC surveyed participating distributors by telephone for current residential retail home heating oil and propane prices. The MPSC transmitted the data via a computer modem to the EIA using the Petroleum Electronic Data Reporting Option (PEDRO). Survey results were published in aggregate on the MPSC World Wide Web site at http://ermisweb.state.mi.us/shopp. The page was updated with both residential and wholesale prices immediately following the transmission of the data to the EIA. The EIA constructed the survey using a sample of Michigan home heating oil and propane retailers. The sample accounts for different sales volumes, geographic location, and sources of primary supply.

Moriarty, C.

1996-05-01T23:59:59.000Z

54

"Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"...

55

Proceedings: 1991 Fuel Oil Utilization Workshop  

Science Conference Proceedings (OSTI)

To assist utilities in improving fossil steam plant operations, EPRI continues to conduct annual fuel oil utilization workshops. At the 1991 conference, personnel from 16 electric utilities exchanged ideas on improving residual fuel oil utilization in their generating plants.

1991-05-01T23:59:59.000Z

56

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

1 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

57

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

3 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

58

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

90 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

59

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

7 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

60

Residential Buildings Historical Publications reports, data and...  

Gasoline and Diesel Fuel Update (EIA)

4 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

0 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

62

Residential Buildings Historical Publications reports, data and...  

Annual Energy Outlook 2012 (EIA)

2 Average Fuel OilKerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per...

63

Straight Vegetable Oil as a Diesel Fuel?  

DOE Green Energy (OSTI)

Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

Not Available

2006-04-01T23:59:59.000Z

64

Residual Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

65

South Dakota Residual Fuel Oil Adj Sales/Deliveries to Oil Company ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Adjusted Sales of Residual Fuel Oil for Oil Company Use ; Adjusted Sales of Residual Fuel Oil for Oil Company Use ; South Dakota Adjusted Distillate ...

66

Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 2,432,099: 2,860,743: 1,824,324: 1,789,144: 1,610,573: 1,716,176: 1984-2012: Delaware: ... Washington: 45,457: 43,662: ...

67

Performance control strategies for oil-fired residential heating systems  

SciTech Connect

Results are reported of a study of control system options which can be used to improve the combustion performance of residential, oil-fired heating equipment. Two basic control modes were considered in this program. The first is service required'' signals in which an indication is provided when the flame quality or heat exchanger cleanliness have degraded to the point that a service call is required. The second control mode is excess-air trim'' in which the burner would essentially tune itself continuously for maximum efficiency. 35 refs., 67 figs., 2 tabs.

Butcher, T.

1990-07-01T23:59:59.000Z

68

Oil Shale and Other Unconventional Fuels Activities | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

69

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Industrial Consumers (Thousand Gallons)

70

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Commercial Consumers (Thousand Gallons)

71

Fuel oil and kerosene sales, 1989  

Science Conference Proceedings (OSTI)

Despite the rise in petroleum products prices, a colder-than-normal winter in the latter part of 1989 spurred an increase in demand for distillate fuel oils. The shipping and electric utilities industries contributed to a significant rise in demand for both distillate and residual fuels oils in 1989. A total of 72.9 billion gallons of fuel oil and kerosene were sold to consumers in 1989, an increase of 3.0 percent over 1988 sales volumes. Of all fuel oil sold during 1989, distillate fuel oil accounted for 68.3 percent, which was an increase over 1988 when distillate fuel oil accounted for 67.2 percent of all fuel oil products sold in the United States. Residual fuel oil's share of total fuel oil sold fell slightly to 29.9 percent from 30.7 percent in 1988. Kerosene followed with a 1.8 percent share, also falling from the previous year when it accounted for a 2.1 percent share of total fuel oil sold. 3 figs., 24 tabs.

Not Available

1991-01-22T23:59:59.000Z

72

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

73

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents (OSTI)

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

74

Fuel Oil Prepared by Blending Heavy Oil and Coal Tar  

Science Conference Proceedings (OSTI)

The effect of temperature, harmonic ration, surfactant and shearing to fuel oil prepared by blending heavy oil and coal tar were detailedly studied. The results show that the viscosity of the blended oil increases gradually with the increase of harmonic ... Keywords: coal tar, heavy oil, blending, surfactant

Guojie Zhang; Xiaojie Guo; Bo Tian; Yaling Sun; Yongfa Zhang

2009-10-01T23:59:59.000Z

75

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

76

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

77

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)...

78

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

Because of the higher projected crude oil prices and because of Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

79

Household Fuel Oil or Kerosene Usage Form  

U.S. Energy Information Administration (EIA)

Contractors Street Address . Contractors City, State, and ZIP Code . ... is a light distillate fuel oil intended for use in vaporizing pot-type burners.

80

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at about $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

82

U.S. Residual Fuel Oil Refiner Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes...

83

Weekly Ohio No. 2 Heating Oil Residential Price (Dollars per Gallon)  

U.S. Energy Information Administration (EIA)

Weekly Ohio No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date

84

Weekly New Jersey No. 2 Heating Oil Residential Price (Dollars per ...  

U.S. Energy Information Administration (EIA)

Weekly New Jersey No. 2 Heating Oil Residential Price (Dollars per Gallon) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value

85

Total U.S. Main Space Heating Fuel Used U.S. Using Any Households ...  

U.S. Energy Information Administration (EIA)

Average Heating Degree Days by Main Space Heating Fuel Used, ... 2005 Residential Energy Consumption Survey: ... Any Fuel Natural Gas Fuel Oil Age of Main Heating ...

86

Solid fuel fired oil field steam generators  

Science Conference Proceedings (OSTI)

The increased shortages being experienced in the domestic crude oil supply have forced attention on the production of heavy crude oils from proven reserves to supplement requirements for petroleum products. Since most heavy crudes require heat to facilitate their extraction, oil field steam generators appear to represent a key component in any heavy crude oil production program. Typical oil field steam generator experience in California indicates that approx. one out of every 3 bbl of crude oil produced by steam stimulation must be consumed as fuel in the steam generators to produce the injection steam. The scarcity and price of crude oil makes it desirable to substitute more readily available and less expensive solid fuels for the crude oil which is presently serving as the primary steam generator fuel. Solid fuel firing capability also is of importance because of the substantial amounts of high heating value and low cost petroleum coke available from the processing of heavy crude oil and suitable for use as a steam generator fuel.

Young, W.W.

1982-01-01T23:59:59.000Z

87

Fuel oil and kerosene sales 1995  

Science Conference Proceedings (OSTI)

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

88

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to Commercial Consumers (Thousand Gallons)

89

Purification of Vegetable Oils Post-Consumption Residential and ...  

Science Conference Proceedings (OSTI)

The viscosity residential treated with clay Tonsil was lower compared to the crude ... Designing a Collaborative System for Socio-Environmental Management of...

90

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and ...  

U.S. Energy Information Administration (EIA)

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

91

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

92

Fuel Oil and Kerosene Sales 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil and Kerosene Sales Fuel Oil and Kerosene Sales 2012 November 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies. U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 1

93

Fuel oil and kerosene sales 1992  

SciTech Connect

This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1993-10-29T23:59:59.000Z

94

Fuel oil and kerosene sales 1993  

Science Conference Proceedings (OSTI)

This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1994-10-03T23:59:59.000Z

95

Advanced oil burner for residential heating -- development report  

SciTech Connect

The development of advanced oil burner concepts has long been a part of Brookhaven National Laboratory`s (BNL) oil heat research program. Generally, goals of this work include: increased system efficiency, reduced emissions of soot and NO{sub x}, and the practical extension of the firing rate range of current burners to lower input rates. The report describes the results of a project at BNL aimed at the development of air atomized burners. Two concepts are discussed. The first is an air atomizer which uses air supplied at pressures ranging from 10 to 20 psi and requiring the integration of an air compressor in the system. The second, more novel, approach involves the use of a low-pressure air atomizing nozzle which requires only 8-14 inches of water air pressure for fuel atomization. This second approach requires the use of a fan in the burner instead of a compressor although the fan pressure is higher than with conventional, pressure atomized retention head burners. In testing the first concept, high pressure air atomization, a conventional retention head burner was modified to accept the new nozzle. In addition, the burner head was modified to reduce the flow area to maintain roughly 1 inch of water pressure drop across the head at a firing rate of 0.25 gallons of oil per hour. The burner ignited easily and could be operated at low excess air levels without smoke. The major disadvantage of this burner approach is the need for the air compressor as part of the system. In evaluating options, a vane-type compressor was selected although the use of a compressor of this type will lead to increased burner maintenance requirements.

Butcher, T.A.

1995-07-01T23:59:59.000Z

96

Processing of Soybean Oil into Fuels  

DOE Green Energy (OSTI)

Abundant and easily refined, petroleum has provided high energy density liquid fuels for a century. However, recent price fluctuations, shortages, and concerns over the long term supply and greenhouse gas emissions have encouraged the development of alternatives to petroleum for liquid transportation fuels (Van Gerpen, Shanks et al. 2004). Plant-based fuels include short chain alcohols, now blended with gasoline, and biodiesels, commonly derived from seed oils. Of plant-derived diesel feedstocks, soybeans yield the most of oil by weight, up to 20% (Mushrush, Willauer et al. 2009), and so have become the primary source of biomass-derived diesel in the United States and Brazil (Lin, Cunshan et al. 2011). Worldwide ester biodiesel production reached over 11,000,000 tons per year in 2008 (Emerging Markets 2008). However, soybean oil cannot be burned directly in modern compression ignition vehicle engines as a direct replacement for diesel fuel because of its physical properties that can lead to clogging of the engine fuel line and problems in the fuel injectors, such as: high viscosity, high flash point, high pour point, high cloud point (where the fuel begins to gel), and high density (Peterson, Cook et al. 2001). Industrial production of biodiesel from oil of low fatty-acid content often follows homogeneous base-catalyzed transesterification, a sequential reaction of the parent triglyceride with an alcohol, usually methanol, into methyl ester and glycerol products. The conversion of the triglyceride to esterified fatty acids improves the characteristics of the fuel, allowing its introduction into a standard compression engine without giving rise to serious issues with flow or combustion. Commercially available biodiesel, a product of the transesterification of fats and oils, can also be blended with standard diesel fuel up to a maximum of 20 vol.%. In the laboratory, the fuel characteristics of unreacted soybean oil have also been improved by dilution with petroleum based fuels, or by aerating and formation of microemulsions. However, it is the chemical conversion of the oil to fuel that has been the area of most interest. The topic has been reviewed extensively (Van Gerpen, Shanks et al. 2004), so this aspect will be the focus in this chapter. Important aspects of the chemistry of conversion of oil into diesel fuel remain the same no matter the composition of the triglyceride. Hence, although the focus in this book is on soybean oil, studies on other plant based oils and simulated oils have occasional mention in this chapter. Valuable data can be taken on systems that are simpler than soybean based oils, with fewer or shorter chain components. Sometimes the triglycerides will behave differently under reaction conditions, and when relevant, these have been noted in the text. Although the price of diesel fuel has increased, economical production of biodiesel is a challenge because of (1) the increasing price of soybean oil feedstocks and reagent methanol, (2) a distributed supply of feedstocks that reduces the potential for economies of scale, (3) processing conditions that include pressures and temperatures above ambient, and (4) multiple processing steps needed to reduce contaminant levels to ASTM specification D6751 limits (Vasudevan & Briggs 2008). Much of the cost of biodiesel production is related to the conversion of the oil to the methyl ester and so there has been an emphasis to research improved methods of converting soybean oil to biodiesel. However, most of these studies have taken place at the bench scale, and have not demonstrated a marked improvement in yield or reduced oil-to-methanol ratio in comparison with standard base-catalyzed transesterification. One aspect that has a short term chance of implementation is the improvement of the conversion process by the use of a continuous rather than batch process, with energy savings generated by combined reaction and separation, online analysis, and reagent methanol added by titration as needed to produce ASTM specification grade fuel. By adapting process intensif

McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

97

Fuel oil and kerosene sales 1994  

SciTech Connect

This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

NONE

1995-09-27T23:59:59.000Z

98

Regional Residential  

Gasoline and Diesel Fuel Update (EIA)

upward pressure from crude oil markets, magnified by a regional shortfall of heating oil supplies, residential prices rose rapidly to peak February 7. The problem was...

99

Distillate and Crude Oil Price  

Gasoline and Diesel Fuel Update (EIA)

fuel and residential heating oil prices on the East Coast is being driven by higher crude oil prices than last year and higher spreads. Crude oil is projected to average almost...

100

Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP  

SciTech Connect

Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

McClanahan, Janice

2001-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

State of Maine residential heating oil survey 2001-02 season summary [SHOPP  

Science Conference Proceedings (OSTI)

This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

Elder, Betsy

2002-05-22T23:59:59.000Z

102

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we have raised expected peak prices this winter for residential heating oil deliveries to $1.55 per gallon (January) compared to $1.43 per gallon in last month's projections. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. Primary distillate inventories in the United States failed to rise significantly in November despite some speculation that previous distributions into secondary and tertiary storage would back up burgeoning production and import volumes into primary storage that month. Average

103

Lower Atlantic (PADD 1C) Distillate Fuel Oil and Kerosene ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 300,889: 274,739: 263,252: 232,429: 230,287: 254,322: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 275,489: ...

104

California Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 309,249: 232,151: 190,082: 225,123: 257,297: 241,967: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 101,932: ...

105

Rocky Mountain (PADD4) Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 262,644: 222,054: 212,571: 228,200: 245,446: 214,160: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 27: 26: 19: ...

106

Kentucky Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 170,042: 94,124: 48,002: 42,101: 67,347: 61,840: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 91,516: 104,387: ...

107

Pennsylvania Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 118,670: 113,851: 90,800: 124,258: 146,291: 140,663: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 25,735: ...

108

Georgia Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 78,927: 69,710: 62,072: 63,770: 71,374: 63,902: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 14,016: 10,831: ...

109

Illinois Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 40,116: 51,287: 55,322: 72,188: 58,526: 63,808: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 71,805: 101,851: ...

110

Ohio Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 333,069: 316,926: 206,134: 179,048: 203,135: 175,258: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 12,122: ...

111

Residual Fuel Oil Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day...

112

Table SH2. Total Households by Space Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Space Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: ... Electricity Natural Gas Fuel Oil Kerosene LPG Other

113

Table SH5. Total Expenditures for Space Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Space Heating Fuel 4 (millions) Fuel Oil U.S. Households ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Natural Gas

114

Review of Fuel Oil System Failures in Ontario  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Failure Analysis and Prevention. Presentation Title, Review of Fuel Oil System...

115

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

116

Fuel oil and kerosene sales, 1990  

Science Conference Proceedings (OSTI)

Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

Not Available

1991-10-10T23:59:59.000Z

117

Regional Residential Heating Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

One of the first places where consumers are feeling the impact of this winters market pressures is in home heating oil prices. This chart shows prices through ...

118

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2012,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2012,"6/30/1984" ,"Data 3","Industrial",9,"Annual",2012,"6/30/1984" ,"Data 4","Farm",4,"Annual",2012,"6/30/1984" ,"Data 5","Electric Power",2,"Annual",2012,"6/30/1984" ,"Data 6","Oil Company",2,"Annual",2012,"6/30/1984"

119

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1996 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

120

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Test and Evaluation of a High Efficiency Residential Fuel Cell System  

Science Conference Proceedings (OSTI)

A confluence of industry drivers, including the availability of low-cost natural gas, is creating new market opportunities for natural gas-based distributed generation. Solid oxide fuel cell systems (SOFC) are a potentially attractive option because of their high electrical efficiency (5060% lower heating value (LHV)). This report documents two years of testing and evaluation of a 1.5 kW SOFC residential system provided by Ceramics Fuel Cell Limited. Tests were conducted in collaboration with ...

2013-12-20T23:59:59.000Z

122

Camelina composite pellet fuels feasibility for residential and commercial applications.  

E-Print Network (OSTI)

??The use of wood pellet fuels for heating homes and buildings has been a mainstay in Montana since the first energy crisis of the 1970's. (more)

Taasevigen, Danny Jovin.

2010-01-01T23:59:59.000Z

123

"End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke...

124

"End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze...

125

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

126

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

127

Average Residential Price  

Gasoline and Diesel Fuel Update (EIA)

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

128

Average Residential Price  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

129

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

130

Improved Soybean Oil for Biodiesel Fuel  

SciTech Connect

The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it is imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may lead to job creation in rural areas of the country and help stimulate the agricultural economy. Moreover, production of soybean with enhanced oil quality for biodiesel may increase the attractiveness of this renewable, environmentally friendly fuel.

Tom Clemente; Jon Van Gerpen

2007-11-30T23:59:59.000Z

131

New Zealand Energy Data: Oil Consumption by Fuel and Sector ...  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other...

132

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

133

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

134

Process for Converting Algal Oil to Alternative Aviation Fuel ...  

Conversion of triglyceride oils extracted from algae-derived lipids into aircraft fuel is a critical goal development for our national energy security. romising ...

135

Process for Converting Algal Oil to Alternative Aviation Fuel  

triglyceride oils extracted from algae-derived lipids into aircraft fuel is a critical goal development for our national energy security. romising ...

136

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT ...  

U.S. Energy Information Administration (EIA)

An energy-consuming sector that consists of living quarters and ... buildings. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 3 Commercial Use ...

137

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT  

U.S. Energy Information Administration (EIA)

Version No.: 2013.01. FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT REFERENCE YEAR 2012 ; This report is ; ... 2012 . 10. Type of Report

138

The Pacific Northwest residential consumer: Perceptions and preferences of home heating fuels, major appliances, and appliance fuels  

SciTech Connect

In 1983 the Bonneville Power Administration contracted with the Pacific Northwest Laboratory (PNL) to conduct an analysis of the marketing environment for Bonneville's conservation activities. Since this baseline residential study, PNL has conducted two follow up market research projects: Phase 2 in 1985, and Phase 3, in 1988. In this report the respondents' perceptions, preferences, and fuel switching possibilities of fuels for home heating and major appliances are examined. To aid in effective target marketing, the report identifies market segments according to consumers' demographics, life-cycle, attitudes, and opinions.

Harkreader, S.A.; Hattrup, M.P.

1988-09-01T23:59:59.000Z

139

Diesel fuels from shale oil. [Review of selected research  

DOE Green Energy (OSTI)

High-boiling shale oil produced from Rocky Mountain oil shale can be reduced in molecular weight by recycle thermal cracking and by coking. Selected research on the production of diesel fuels from shale oil is reviewed. Diesel fuels of good quality have been made from cracked shale oil by acid and caustic treating. Diesel oil made by this process performed acceptably in an in-service test for powering a railroad engine in a 750-hour test. Better quality diesel fuels were made by hydrogenation of a coker distillate. Even better quality diesel fuels, suitable also for use as high-quality distillate burner fuels, have been made by hydrocracking of a crude shale oil from underground in-situ retorting experiments.

Cottingham, P.L.

1976-01-01T23:59:59.000Z

140

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA)

Central Atlantic (PADD 1B) 2,352,140: 2,431,656: 1,926,574: 1,750,150: 1,639,069: 1,570,785: 1984-2012: Delaware: ... Washington: 44,304: 38,803: ...

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Retail Price of No. 2 Fuel Oil to Residential Consumers  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Retail prices and Prime ...

142

The impact of residential density on vehicle usage and fuel consumption  

E-Print Network (OSTI)

characteristics on household residential choice and auto2009. The impact of residential density on vehicle usage and2010-05) The impact of residential density on vehicle usage

Kim, Jinwon; Brownstone, David

2010-01-01T23:59:59.000Z

143

Table 4. Sales of Distillate Fuel Oil by End Use, 1999 and 2000 ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration 13 Fuel Oil and Kerosene Sales 2000 Table 4. Sales of Distillate Fuel Oil by End Use, 1999 and 2000 (Thousand Gallons)

144

Table 2. Fuel Oil Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

1 A small amount of fuel oil used for appliances is included in "Fuel Oil" under "All Uses." NF = No applicable RSE row factor.

145

State Residential Energy Consumption Shares  

Gasoline and Diesel Fuel Update (EIA)

This next slide shows what fuels are used in the residential market. When a This next slide shows what fuels are used in the residential market. When a energy supply event happens, particularly severe winter weather, it is this sector that the government becomes most concerned about. As you can see, natural gas is very important to the residential sector not only in DC, MD and VA but in the United States as well. DC residents use more natural gas for home heating than do MD and VA. While residents use heating oil in all three states, this fuel plays an important role in MD and VA. Note: kerosene is included in the distillate category because it is an important fuel to rural households in MD and VA. MD and VA rely more on electricity than DC. Both MD and VA use propane as well. While there are some similarities in this chart, it is interesting to note

146

Residential wood burning: Energy modeling and conventional fuel displacement in a national sample  

SciTech Connect

This research studied the natural, built, and behavioral factors predictive of energy consumption for residential space heating with wood or conventional fuels. This study was a secondary analysis of survey data from a nationwide representative sample of 5,682 households collected DOE in the 1984-1985 REC survey. Included were: weather, census division and utility data, interviewer-supplied dwelling measurements and respondent-reported energy-related family behaviors. Linear-regression procedures were used to develop a model that identified key determinants accounting for the variability in wood consumption. A nonlinear-regression model was employed to estimate the amount of conventional fuels used for space heating. The model was also used to estimate the amount of conventional fuels being displaced by wood-heating systems. There was a significant (p {le} .05) linear relationship between the dependent variable, square root of cords burned, various independent variables.

Warsco, K.S.

1988-01-01T23:59:59.000Z

147

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Annual Energy Outlook 2012 (EIA)

Not available. W Withheld to avoid disclosure of individual company data. a Includes No. 4 fuel oil and No. 4 diesel fuel. Note: Totals may not equal the sum of the components...

148

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Annual Energy Outlook 2012 (EIA)

No data reported. W Withheld to avoid disclosure of individual company data. a Includes No. 4 fuel oil and No. 4 diesel fuel. Note: Totals may not equal the sum of the components...

149

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze...

150

,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...  

U.S. Energy Information Administration (EIA) Indexed Site

,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million" "End Use","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons...

151

Chinese tallow seed oil as a diesel fuel extender  

SciTech Connect

Chinese tallow and stillingia oil are products obtained from the seed of the unmerchantable, but high yielding Chinese tallow tree. Short-term diesel engine performance tests using mixtures 25%:75% and 50%:50% of Chinese tallow tree seed oil and tallow to diesel fuel gave engine power output, brake thermal efficiencies, and fuel consumption rates within 7% of those obtained using pure diesel fuel. Fuel property values of the extended fuels were found to be within limits proposed for diesel engines. 12 references.

Samson, W.D.; Vidrine, C.G.; Robbins, J.W.D.

1985-09-01T23:59:59.000Z

152

Fuel efficient lubricants and the effect of special base oils  

Science Conference Proceedings (OSTI)

The demand for improved fuel economy is placing increasing pressure upon engine manufacturers world-wide. Lubricants that can provide additional fuel efficiency benefits are being vigorously sought. Such lubricants must achieve the current performance specifications that are also increasing in severity. To meet all of these requirements, passenger car lubricant formulations will need special base oils. This paper presents data on comparable 5W-30 formulations based on either hydrogenated mineral oil, or hydrocracked or poly alpha olefin basestocks. These blends clearly demonstrate the effect of improved volatility on oil consumption and oxidation stability in a range of bench engine tests. Equivalent engine test performance is observed for the hydrocracked and polyalphaolefin blends. Both exhibit performance superior to that attained by the hydrogenated mineral oil-based blend. Predicted Sequence VI fuel savings for these blends show additional fuel efficiency benefits for hydrocracked vs. hydrogenated mineral oil-based blends. 18 refs., 7 figs., 4 tabs.

Kiovsky, T.E. [BP Oil Company, Cleveland, OH (United States); Yates, N.C.; Bales, J.R. [BP Oil International Limited, Middlesex (United Kingdom)

1994-04-01T23:59:59.000Z

153

Why don't fuel prices change as quickly as crude oil prices ...  

U.S. Energy Information Administration (EIA)

Fuel demand is affected mainly by economic conditions, and for heating oil, the weather. ... How do I calculate diesel fuel surcharges? How do I compare heating fuels?

154

Retail Heating Oil and Diesel Fuel Prices  

U.S. Energy Information Administration (EIA)

Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we ...

155

Small oil-fired heating equipment: The effects of fuel quality  

SciTech Connect

The physical and chemical characteristics of fuel can affect its flow, atomization, and combustion, all of which help to define the overall performance of a heating system. The objective of this study was to evaluate the effects of some important parameters of fuel quality on the operation of oil-fired residential heating equipment. The primary focus was on evaluating the effects of the fuel`s sulfur content, aromatics content, and viscosity. Since the characteristics of heating fuel are generally defined in terms of standards (such as ASTM, or state and local fuel-quality requirements), the adequacy and limitations of such specifications also are discussed. Liquid fuels are complex and their properties cannot generally be varied without affecting other properties. To the extent possible, test fuels were specially blended to meet the requirements of the ASTM limits but, at the same time, significant changes were made to the fuels to isolate and vary the selected parameters over broad ranges. A series of combustion tests were conducted using three different types of burners -- a flame-retention head burner, a high static-pressure-retention head burner, and an air-atomized burner. With some adjustments, such modern equipment generally can operate acceptably within a wide range of fuel properties. From the experimental data, the limits of some of the properties could be estimated. The property which most significantly affects the equipment`s performance is viscosity. Highly viscous fuels are poorly atomizated and incompletely burnt, resulting in higher flue gas emissions. Although the sulfur content of the fuel did not significantly affect performance during these short-term studies, other work done at BNL demonstrated that long-term effects due to sulfur can be detrimental in terms of fouling and scale formation on boiler heat exchanger tubes.

Litzke, W.

1993-08-01T23:59:59.000Z

156

Evaluation of the Field Performance of Residential Fuel Cells: Final Report  

DOE Green Energy (OSTI)

Distributed generation has attracted significant interest from rural electric cooperatives and their customers. Cooperatives have a particular nexus because of inherently low customer density, growth patterns at the end of long lines, and an influx of customers and high-tech industries seeking to diversify out of urban environments. Fuel cells are considered a particularly interesting DG candidate for these cooperatives because of their power quality, efficiency, and environmental benefits. The National Rural Electric Cooperative Association Cooperative Research Network residential fuel cell program demonstrated RFC power plants and assessed related technical and application issues. This final subcontract report is an assessment of the program's results. This 3-year program leveraged Department of Energy (DOE) and National Renewable Energy Laboratory (NREL) funding.

Torrero, E.; McClelland, R.

2004-05-01T23:59:59.000Z

157

Why don't fuel prices change as quickly as crude oil prices? - FAQ ...  

U.S. Energy Information Administration (EIA)

Why don't fuel prices change as quickly as crude oil prices? The cost of crude oil is a major component in the price of diesel fuel, gasoline, and heating oil.

158

Why don't fuel prices change as quickly as crude oil prices ...  

U.S. Energy Information Administration (EIA)

Why don't fuel prices change as quickly as crude oil prices? The cost of crude oil is a major component in the price of diesel fuel, gasoline, and heating oil.

159

Connecticut Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 314,674: 301,591: 272,255: 271,852: 274,578: 274,507: 1984-2012: ...

160

South Carolina Adjusted Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 751,994: 695,077: 654,296: 726,647: 725,148: 655,638: 1984-2012: ...

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Maryland Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 606,247: 548,583: 540,590: 579,203: 540,843: 531,683: 1984-2012: ...

162

Nebraska Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 446,825: 433,745: 461,938: 639,618: 603,268: 584,362: 1984-2012: ...

163

Massachusetts Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 487,861: 463,886: 443,620: 445,626: 460,154: 444,532: 1984-2012: ...

164

Michigan Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 970,806: 891,487: 819,086: 864,049: 854,644: 877,692: 1984-2012: ...

165

Minnesota Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 804,699: 761,187: 633,806: 665,652: 704,971: 746,974: 1984-2012: ...

166

District of Columbia Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 10,721: 15,894: 11,949: 13,216: 15,149: 15,321: 1984-2012: Residual ...

167

Minnesota Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 817,786: 767,218: 640,572: 678,530: 713,572: 763,303: 1984-2012: ...

168

New Jersey Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 1,088,505: 978,515: 760,035: 831,955: 952,930: 837,191: 1984-2012: ...

169

Wisconsin Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 788,665: 798,348: 703,583: 738,953: 719,417: 780,145: 1984-2012: ...

170

Connecticut Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 314,309: 300,255: 272,598: 271,767: 274,640: 273,827: 1984-2012: ...

171

Kansas Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 581,898: 610,088: 588,362: 554,334: 548,183: 573,992: 1984-2012: ...

172

Michigan Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 964,966: 888,432: 814,460: 855,592: 850,681: 871,756: 1984-2012: ...

173

Delaware Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 68,223: 61,302: 57,382: 56,676: 57,720: 57,230: 1984-2012: Residual ...

174

Nebraska Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 448,098: 435,444: 472,303: 689,579: 627,110: 613,232: 1984-2012: ...

175

Utah Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 525,714: 470,714: 420,706: 426,584: 508,266: 486,456: 1984-2012: ...

176

Ohio Imports of Residual Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Imports of Residual Fuel Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2000: 0: 0: 0: 0: 0: 108: 0: 0: 0: 0: 0: 27: 2001: 0: 44 ...

177

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Fuel Oil and Kerosene Sales 2011 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 ...

178

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

Gasoline and Diesel Fuel Update (EIA)

50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) Geographic Area Month Kerosene No. 1 Distillate No. 2...

179

Wear, durability, and lubricating oil performance of a straight vegetable oil (Karanja) blend fueled direct injection compression ignition engine  

Science Conference Proceedings (OSTI)

Depletion of fossil fuel resources and resulting associated environmental degradation has motivated search for alternative transportation fuels. Blending small quantity of Karanja oil (straight vegetable oil) with mineral diesel is one of the simplest available alternatives

Avinash Kumar Agarwal; Atul Dhar

2012-01-01T23:59:59.000Z

180

A natural-gas fuel processor for a residential fuel cell system.  

Science Conference Proceedings (OSTI)

A system model was used to develop an autothermal reforming fuel processor to meet the targets of 80% efficiency (higher heating value) and start-up energy consumption of less than 500 kJ when operated as part of a 1-kWe natural-gas fueled fuel cell system for cogeneration of heat and power. The key catalytic reactors of the fuel processor--namely the autothermal reformer, a two-stage water gas shift reactor and a preferential oxidation reactor--were configured and tested in a breadboard apparatus. Experimental results demonstrated a reformate containing {approx} 48% hydrogen (on a dry basis and with pure methane as fuel) and less than 5 ppm CO. The effects of steam-to-carbon and part load operations were explored.

Adachi, H.; Ahmed, S.; Lee, S. H. D.; Papadias, D.; Ahluwalia, R. K.; Bendert, J. C.; Kanner, S. A.; Yamazaki, Y.; Japan Institute of Energy

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Heating Oil and Propane Update  

Reports and Publications (EIA)

Weekly residential, wholesale, and spot prices; and production, demand, and stocks of heating fuels. (Weekly heating oil and propane prices are only collected during the heating season which extends from October through March. )

Information Center

182

Consider upgrading pyrolysis oils into renewable fuels  

Science Conference Proceedings (OSTI)

New research is identifying processing routes to convert cellulosic biomass into transportation fuels

Elliott, Douglas C.; Holmgren, Jennifer; Marinangelli, Richard; nair, Prabhakar; Bain, Richard

2008-09-01T23:59:59.000Z

183

Verifying a Simplified Fuel Oil Flow Field Measurement Protocol  

Science Conference Proceedings (OSTI)

The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

Henderson, H.; Dentz, J.; Doty, C.

2013-07-01T23:59:59.000Z

184

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Apartment building exterior and interior Apartment building exterior and interior Residential Buildings EETD's research in residential buildings addresses problems associated with whole-building integration involving modeling, measurement, design, and operation. Areas of research include the movement of air and associated penalties involving distribution of pollutants, energy and fresh air. Contacts Max Sherman MHSherman@lbl.gov (510) 486-4022 Iain Walker ISWalker@lbl.gov (510) 486-4692 Links Residential Building Systems Group Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends High Technology and Industrial Systems Lighting Systems Residential Buildings Simulation Tools Sustainable Federal Operations

185

Comprehensive study of a heavy fuel oil spill : modeling and analytical approaches to understanding environmental weathering  

E-Print Network (OSTI)

Driven by increasingly heavy oil reserves and more efficient refining technologies, use of heavy fuel oils for power generation is rising. Unlike other refined products and crude oils, a large portion of these heavy oils ...

Lemkau, Karin Lydia

2012-01-01T23:59:59.000Z

186

Oil or Hazardous Spills Releases Law (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Georgia Program Type Environmental Regulations Safety and Operational Guidelines Provider Georgia Department of Natural Resources The Oil or Hazardous Spills Law requires notice to the Environmental

187

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

188

Retail Heating Oil and Diesel Fuel Prices  

U.S. Energy Information Administration (EIA)

With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal ...

189

Total Adjusted Sales of Residual Fuel Oil  

Annual Energy Outlook 2012 (EIA)

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions,...

190

Distillate Fuel Oil Exports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

191

Residual Fuel Oil Exports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

192

A critical review of single fuel and interfuel substitution residential energy demand models  

E-Print Network (OSTI)

The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

Hartman, Raymond Steve

1978-01-01T23:59:59.000Z

193

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

Science Conference Proceedings (OSTI)

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

194

Figure HL1. U.S. Sales of Distillate and Residual Fuel Oils by ...  

U.S. Energy Information Administration (EIA)

Sales of Fuel Oil and Kerosene in 2009 . ... the need for electric utilities to consume distillate fuel to meet peak summer generation loads remained ...

195

New Jersey No. 2 Fuel Oil Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: New Jersey No. 2 Fuel Oil Refiner Sales Volumes; New Jersey Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

196

DEVELOPMENT OF SELF-TUNING RESIDENTIAL OIL/BURNER - OXYGEN SENSOR ASSESSMENT AND EARLY PROTOTYPE SYSTEM OPERATING EXPERIENCE  

SciTech Connect

This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available.

MCDONALD,R.J.; BUTCHER,T.A.; KRAJEWSKI,R.F.

1998-09-01T23:59:59.000Z

197

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2012 (EIA)

342.8 W W 123.0 412.7 W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy...

198

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

2,393.2 702.7 3,804.5 3,037.5 W 134.0 See footnotes at end of table. 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District 352 Energy Information Administration ...

199

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

116.7 W W W W 379.0 W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy...

200

Crude oil and finished fuel storage stability: An annotated review  

DOE Green Energy (OSTI)

A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

202

Shale oil: potential for electric power fuels. Final report  

SciTech Connect

This paper reviews the status of the oil shale industry and the impact it will have on the electric power industry in the years 1990 to 2000. The nontechnical problems are not addressed in detail as they have been suitably dealt with elsewhere. The available technologies for producing shale oil are reviewed. The major problem most processes face today is scale-up to commercial size. An industry of nearly 400,000 BPD is anticipated for 1990. The industry could grow to 1,000,000 BPD by the year 2000 with the introduction of second generation processes in the 1990s. The availability of shale oil may have a direct impact on the electric power industry initially. As the refineries improve their ability to handle shale oil, the availability of this fuel to the electric power industry for direct firing will decrease. The offgas from the oil shale industry could be of major importance to the electric power industry. One-quarter to one-third of the energy produced by the oil shale industry will be in the form of offgas (the gas produced in the retorting process). This will usually be a low Btu gas and therefore likely to be utilized on site to make electricity. The high yield of distillate fuels from shale oil could be important to the utility industry's demand for distillate fuels in peak shaving power generation. In addition to the potential supply implications, a shale oil industry and the people to support it will represent a substantial increase in power generation required in the shale oil region.

Gragg, M.; Lumpkin, R.E.; Guthrie, H.D.; Woinsky, S.G.

1981-12-01T23:59:59.000Z

203

Gulf Coast (PADD 3) Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 699,882: 631,796: 542,036: 573,037: 694,053: 729,109: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 613,864: ...

204

New York Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 63,226: 44,510: 35,307: 33,709: 42,254: 35,237: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 12,339: 10,814: ...

205

Florida Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 71,962: 55,219: 35,537: 41,430: 47,283: 61,059: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 140,493: 153,438: ...

206

West Virginia Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 15,766: 15,416: 10,143: 11,650: 12,711: 10,456: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 45,429: 28,568: 99: ...

207

Catalytic hydroprocessing of shale oil to produce distillate fuels  

DOE Green Energy (OSTI)

Results are presented of a Chevron Research Company study sponsored by the Energy Research and Development Administration (ERDA) to demonstrate the feasibility of converting whole shale oil to a synthetic crude resembling a typical petroleum distillate. The synthetic crude thus produced can then be processed, in conventional petroleum-refining facilities, to transportation fuels such as high octane gasoline, diesel, and jet fuel. The raw shale oil feed used is a typical Colorado shale oil produced in a surface retort in the so-called indirectly heated mode. It is shown that whole shale oil can be catalytically hydrodenitrified to reduce the nitrogen to levels as low as one part per million in a single catalytic stage. However, for economic reasons, it appears preferable to denitrify to about 0.05 wt % nitrogen. The resulting synthetic crude resembles a petroleum distillate that can be fractionated and further processed as necessary in conventional petroleum refining facilities. Shale oil contains about 0.6% sulfur. Sulfur is more easily removed by hydrofining than is nitrogen; therefore, only a few parts per million of sulfur remain at a product nitrogen of 0.05 wt %. Oxygen contained in the shale oil is also reduced to low levels during hydrodenitrification. The shale oil contains appreciable quantities of iron and arsenic which are also potential catalyst poisons. These metals are removed by a guard bed placed upstream from the hydrofining catalyst. Based on correlations, the naphthas from the shale oil hydrofiner can readily be upgraded to high octane gasolines by catalytic reforming. The middle distillate fractions may require some additional hydrofining to produce salable diesel or jet fuel. The technology is available, and pilot plant studies are scheduled to verify diesel hydrofiner performance.

Sullivan, R.F.; Stangeland, B.E.

1977-01-01T23:59:59.000Z

208

Pyrolysis Oil Upgrading to Transportation Fuels by Catalytic  

E-Print Network (OSTI)

such as fast- pyrolysis and catalytic fast-pyrolysis for producing liquid fuels from biomass feedstocks biomass to a fast-pyrolysis reactor (Table 3.4), the greatest mass yield of bio-oil can be attributed............................................................................................- 70 - TABLE 2.18. BIOMASS PYROLYSIS TECHNOLOGIES, REACTION CONDITIONS AND PRODUCTS................- 70

Groningen, Rijksuniversiteit

209

Industrial Uses of Vegetable OilsChapter 4 Biodiesel: An Alternative Diesel Fuel from Vegetable Oils or Animal Fats  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 4 Biodiesel: An Alternative Diesel Fuel from Vegetable Oils or Animal Fats Processing eChapters Processing Press Downloadable pdf of Chapter 4 Biodiesel: An Alternative Di

210

1999-2000 Winter Fuels Outlook  

U.S. Energy Information Administration (EIA)

supplies of space-heating fuels are expected to be more than adequate to meet winter demand. ... Residential Heating Oil Prices: Weather Scenarios $0.00 $0.20 $0.40 $ ...

211

Improving low temperature properties of synthetic diesel fuels derived from oil shale. Alternative fuels utilization program  

DOE Green Energy (OSTI)

The ability of additives to improve the cold flow properties of shale oil derived fuels boiling in the diesel fuel range was evaluated. Because a commercial shale oil industry did not exist to provide actual samples of finished fuels, a representative range of hydroprocessed shale oil fractions was prepared for use in the additive testing work. Crude oil shale from Occidental Shale Company was fractionated to give three liquids in the diesel fuel boiling range. The initial boiling point in each case was 325/sup 0/F (163/sup 0/C). The final boiling points were 640/sup 0/F (338/sup 0/C), 670/sup 0/F (354/sup 0/C) and 700/sup 0/F (371/sup 0/F). Each fraction was hydrotreated to three different severities (800, 1200 and 1500 psi total pressure) over a Shell 324 nickel molybdate on alumina catalyst at 710 to 750/sup 0/F to afford 9 different model fuels. A variety of commercial and experimental additives were evaluated as cold flow improvers in the model fuels at treat levels of 0.04 to 0.4 wt %. Both the standard pour point test (ASTM D97) and a more severe low temperature flow test (LTFT) were employed. Reductions in pour points of up to 70/sup 0/F and improvements in LTFT temperatures up to 16/sup 0/F were achieved. It is concluded that flow improver additives can play an important role in improving the cold flow properties of future synthetic fuels of the diesel type derived from oil shale.

Frankenfeld, J.W.; Taylor, W.F.

1980-11-01T23:59:59.000Z

212

Converting Green River shale oil to transportation fuels  

DOE Green Energy (OSTI)

Shale oils contain significant quantities of nitrogen, oxygen, and heavy metals. Removing these contaminants is a major consideration in the catalytic conversion of shale oil to transportation fuels. Hydrotreating can remove substantially all of these elements, while coking only removes most of the heavy metals. Pilot plant data for three processing schemes were generated during the course of this study: hydrotreating followed by hydrocracking, hydrotreating followed by fluid catalytic cracking, and delayed coking followed by hydrotreating. Yields and product inspections are presented for these three cases.

Sullivan, R.F.; Stangeland, B.E.

1978-01-01T23:59:59.000Z

213

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

214

U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel...  

Gasoline and Diesel Fuel Update (EIA)

Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 View History Residual Fuel Oil 11,012.1 9,799.5 9,875.4 10,018.0 9,930.4 9,430.3 1983-2013 Sulfur Less Than or Equal to 1% 3,072.6 2,251.1...

215

Development of self-tuning residential oil-burner. Oxygen sensor assessment and early prototype system operating experience  

SciTech Connect

This document is the first topical report dealing with a new project leading towards the development of a self-tuning residential oil burner. It was initiated under the Statement of Work for the Oil Heat Research and Development Program, for Fiscal Year 1997 as defined in the Combustion Equipment Technology Program, under the management of Brookhaven National Laboratory (BNL). In part, this work is based on research reported by BNL in 1990, suggesting various options for developing control strategies in oil heat technology leading to the enhanced efficiency of oil-fired heating systems. BNL has been addressing these concepts in order of priority and technology readiness. The research described in this report is part of an ongoing project and additional work is planned for the future assuming adequate program funding is made available. BNL has continued to investigate all types of sensor technologies associated with combustion systems including all forms of oxygen measurement techniques. In these studies the development of zirconium oxide oxygen sensors has been considered over the last decade. The development of these sensors for the automotive industry has allowed for cost reductions based on quantity of production that might not have occurred otherwise. This report relates BNL`s experience in testing various zirconium oxide sensors, and the results of tests intended to provide evaluation of the various designs with regard to performance in oil-fired systems. These tests included accuracy when installed on oil-fired heating appliances and response time in cyclic operating mode. An evaluation based on performance criteria and cost factors was performed. Cost factors in the oil heat industry are one of the most critical issues in introducing new technology.

McDonald, R.J.; Butcher, T.A.; Krajewski, R.F.

1998-09-01T23:59:59.000Z

216

Estimated United States Residential Energy Use in 2005  

DOE Green Energy (OSTI)

A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

Smith, C A; Johnson, D M; Simon, A J; Belles, R D

2011-12-12T23:59:59.000Z

217

Soybean Oil Derivatives for Fuel and Chemical Feedstocks  

Science Conference Proceedings (OSTI)

Plant based sources of hydrocarbons are being considered as alternatives to petrochemicals because of the need to conserve petroleum resources for reasons of national security and climate change. Changes in fuel formulations to include ethanol from corn sugar and methyl esters from soybean oil are examples of this policy in the United States and elsewhere. Replacements for commodity chemicals are also being considered, as this value stream represents much of the profit for the oil industry and one that would be affected by shortages in oil or other fossil fuels. While the discovery of large amounts of natural gas associated with oil shale deposits has abated this concern, research into bio-based feedstock materials continues. In particular, this chapter reviews a literature on the conversion of bio-based extracts to hydrocarbons for fuels and for building block commodity chemicals, with a focus on soybean derived products. Conversion of methyl esters from soybean triglycerides for replacement of diesel fuel is an active area of research; however, the focus of this chapter will not reside with esterification or transesterification, except has a means to provide materials for the production of hydrocarbons for fuels or chemical feedstocks. Methyl ester content in vehicle fuel is limited by a number of factors, including the performance in cold weather, the effect of oxygen content on engine components particularly in the case of older engines, shelf-life, and higher NOx emissions from engines that are not tuned to handle the handle the enhanced pre-ignition conditions of methyl ester combustion [1]. These factors have led to interest in synthesizing a hydrocarbon fuel from methyl esters, one that will maintain the cetane number but will achieve better performance in an automobile: enhanced mixing, injection, and combustion, and reduce downstream issues such as emissions and upstream issues such as fuel preparation and transportation. Various catalytic pathways from oxygenated precursor to hydrocarbon will be considered in the review: pyrolysis [2], deoxygenation and hydrogenation [3, 4], and hydrotreatment [5]. The focus of many of these studies has been production of fuels that are miscible or fungible with petroleum products, e.g., the work published by the group of Daniel Resasco at U. Oklahoma [6]. Much of the published literature focuses on simpler chemical representatives of the methyl esters form soybean oil; but these results are directly applicable to the production of chemical feedstocks, such as ethylbenzene that can be used for a variety of products: polymers, solvent, and reagent [3]. Although many chemical pathways have been demonstrated in the laboratory, the scale-up to handle quantities of bio-derived material presents a number of challenges in comparison with petroleum refining. These range from additional transportation costs because of distributed feedstock production to catalyst cost and regeneration. Other chapters in the book appear to address the cultivation and harvesting of soybeans and production of oil, so these areas will not be dealt with directly in this chapter except as they may relate to chemical changes in the feedstock material. However, the feasibility of the production of hydrocarbons from soybean triglycerides or methyl esters derived from these triglycerides will be considered, along with remaining technical hurdles before soybeans can make a significant contribution to the hydrocarbon economy.

McFarlane, Joanna [ORNL

2013-01-01T23:59:59.000Z

218

The impact of temperature in the fuel diesel - soy oil mixtures  

Science Conference Proceedings (OSTI)

In nowadays there are an increased number of cars and vehicles, which run on gasoline or diesel fuel. As a result of this are the production of air pollution and the need of imported oil as well. There is growing perceived economic and political need ... Keywords: biofuels, fuel temperature, gas emissions, soy oil fuel

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2010-02-01T23:59:59.000Z

219

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

Science Conference Proceedings (OSTI)

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

220

The impact of residential density on vehicle usage and fuel consumption  

E-Print Network (OSTI)

on vehicle usage and energy consumption. Journal of Urbanon vehicle usage and fuel consumption Jinwon Kim and Davidon vehicle usage and fuel consumption* Jinwon Kim and David

Kim, Jinwon; Brownstone, David

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Utah Distillate Fuel Oil, Greater than 15 to 500 ppm Sulfur Stocks ...  

U.S. Energy Information Administration (EIA)

Utah Distillate Fuel Oil, Greater than 15 to 500 ppm Sulfur Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

222

Why don't fuel prices change as quickly as crude oil prices? - FAQ ...  

U.S. Energy Information Administration (EIA)

Prices are determined by demand and supply in our market economy. Fuel demand is affected mainly by economic conditions, and for heating oil, the weather.

223

How many gallons of diesel fuel does one barrel of oil ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels ... How many gallons of diesel fuel does one ... and consumed in the ...

224

Sales of Fuel Oil and Kerosene in 2009 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crop Production 2009 Summary, January 2010, page 76. Energy Information Administration Fuel Oil and Kerosene Sales 2009 vii drilling rigs in operation, an important ...

225

"Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f...

226

Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy  

DOE Green Energy (OSTI)

A technique for measuring the fuel dilution of oil in a diesel engine is presented. Fuel dilution can occur when advanced in-cylinder fuel injection techniques are employed for the purpose of producing rich exhaust for lean NOx trap catalyst regeneration. Laser-induced fluorescence (LIF) spectroscopy is used to monitor the oil in a Mercedes 1.7-liter engine operated on a dynamometer platform. A fluorescent dye suitable for use in diesel fuel and oil systems is added to the engine fuel. The LIF spectra are monitored to detect the growth of the dye signal relative to the background fluorescence of the oil; fuel mass concentration is quantified based on a known sample set. The technique was implemented with fiber optic probes which can be inserted at various points in the oil system of the engine. A low cost 532-nm laser diode was used for excitation of the fluorescence. Measurements of fuel dilution of oil are presented for various in-cylinder injection strategies for rich operation of the diesel engine. Rates of fuel dilution increase for all strategies relative to normal lean operation, and higher fuel dilution rates are observed when extra fuel injection occurs later in the combustion cycle when fuel penetration into the cylinder wall oil film is more likely.

Parks, II, James E [ORNL; Partridge Jr, William P [ORNL

2007-01-01T23:59:59.000Z

227

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

228

Distillate Fuel Oil Assessment for Winter 1996-1997  

Gasoline and Diesel Fuel Update (EIA)

following Energy Information Administration sources: Weekly following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208(96-39); Petroleum Supply Monthly, September 1996, DOE/EIA-0109(96/09); Petroleum Supply Annual 1995, DOE/EIA-0340(95); Petroleum Marketing Monthly, September 1996, DOE/EIA-0380(96/09); Short-Term Energy Outlook, DOE/EIA-0202(96/4Q) and 4th Quarter 1996 Short-Term Integrated Forecasting System; and an address by EIA Administrator Jay E. Hakes on the Fall 1996 Heating Fuel Assessment before the National Association of State Energy Officials, September 16, 1996. Table FE1. Distillate Fuel Oil Demand and Supply Factors, Winter (October - March) 1993-94 Through 1996-97 History STEO Mid Case Factor Winter Winter Winter Winter 1993-94

229

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Enter the Amount Delivered in Gallons XXXX Type of Fuel Sold was: 1=Fuel Oil #1 2=Fuel Oil #2 3=Kerosene 4=Other Enter the Price per Gallon $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ XXX.XX $ X.XX (select one) 1 2 3 4 MM/DD/YY Page 1 of 2 U.S. Energy Information Administration Independent Statistics & Analysis

230

U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel...  

Annual Energy Outlook 2012 (EIA)

3,173.3 2,917.4 2,860.6 2,583.8 3,410.3 2,073.8 1983-2012 Sulfur Greater Than 1% 5,046.1 6,554.0 6,931.4 8,130.3 8,790.3 6,759.3 1983-2012 No. 4 Fuel Oil 260.4 152.5 121.3 W 103.7...

231

Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel  

DOE Patents (OSTI)

Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

Parks, II, James E. (Knoxville, TN); Partridge, Jr., William P. (Oak Ridge, TN)

2010-11-23T23:59:59.000Z

232

,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

233

,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vwr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

234

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria 83.0 96.4 146.4 153.3 182.2 226.1 220.3 342.3 248.3 Barbados NA NA NA NA NA NA NA NA NA Belgium 155.1 160.4 - - - - - - - - - - - - - - Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 115.7 117.8 180.4 141.5 198.4 222.4 NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) NA NA NA NA NA NA NA NA NA Colombia NA NA NA NA NA NA NA NA NA Cuba NA NA NA 183.4 NA NA NA NA NA

235

Northeast Heating Fuel Market The, Assessment and Options  

Reports and Publications (EIA)

In response to the President's request, this study examineshow the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential,commercial, industrial, and electricity generation sectorconsumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

Joan Heinkel

2000-05-01T23:59:59.000Z

236

Bio Diesel Oil of Mustard: Small Diesel a Renewable Alternative Fuel  

Science Conference Proceedings (OSTI)

This paper represents the mustard oil is a kind of renewable energy and alternative fuel of the future. In order to cope with the current situation of load shedding, and reduce dependence on imported fuels, the Bangladesh government to encourage the ... Keywords: Calorific Value, Ester Exchange Reaction, Keywords: Biodiesel, Mustard Oil, Pyrolysis, Viscosity

Liu Hongcong

2013-01-01T23:59:59.000Z

237

Final Technical Report: Residential Fuel Cell Demonstration by the Delaware County Electric Cooperative, Inc.  

Science Conference Proceedings (OSTI)

This demonstration project contributes to the knowledge base in the area of fuel cells in stationary applications, propane fuel cells, edge-of-grid applications for fuel cells, and energy storage in combination with fuel cells. The project demonstrated that it is technically feasible to meet the whole-house electrical energy needs of a typical upstate New York residence with a 5-kW fuel cell in combination with in-home energy storage without any major modifications to the residence or modifications to the consumption patterns of the residents of the home. The use of a fuel cell at constant output power through a 120-Volt inverter leads to system performance issues including: relatively poor power quality as quantified by the IEEE-defined short term flicker parameter relatively low overall system efficiency Each of these issues is discussed in detail in the text of this report. The fuel cell performed well over the 1-year demonstration period in terms of availability and efficiency of conversion from chemical energy (propane) to electrical energy at the fuel cell output terminals. Another strength of fuel cell performance in the demonstration was the low requirements for maintenance and repair on the fuel cell. The project uncovered a new and important installation consideration for propane fuel cells. Alcohol added to new propane storage tanks is preferentially absorbed on the surface of some fuel cell reformer desulfurization filters. The experience on this project indicates that special attention must be paid to the volume and composition of propane tank additives. Size, composition, and replacement schedules for the de-sulfurization filter bed should be adjusted to account for propane tank additives to avoid sulfur poisoning of fuel cell stacks. Despite good overall technical performance of the fuel cell and the whole energy system, the demonstration showed that such a system is not economically feasible as compared to other commercially available technologies such as propane reciprocating engine generators.

Mark Hilson Schneider

2007-06-06T23:59:59.000Z

238

,,,,"Reasons that Made Residual Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.25;" 5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable Residual","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","Consumed as a Fuel","Fuel Oil Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

239

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network (OSTI)

16 Figure 10. Residential Primary Energy Use in 2000 and3. Fuel Consumption in the Residential Sector in 2005 in10 Table 6. Residential Activity

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

240

Diesel - soy oil blends as fuel in a four stroke engine when the fuel temperatures are different  

Science Conference Proceedings (OSTI)

Due to the fact that petroleum is decreased in nowadays and also the fact that the environment sustains a lot of damage, it is necessary to be replaced by renewable fuels that can be used in the engines and are friendlily to the environment. This paper ... Keywords: biofuels, gas emissions, soy oil fuel

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis; Konstantinos Mitroulas; Marianthi Moschou

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

State of Maine residential heating oil survey: 1994--1995 Season summary  

Science Conference Proceedings (OSTI)

The 1994--95 heating season approached with more attention to petroleum products than experienced in some time. This year, however, the focus was on transportation fuels with the introduction of reformulated gasolines scheduled for the first of 1995. Last year transportation fuels had been in the spotlight in the Northeast as well, for the ills experienced with a new winter mix for diesel fuel. Would RFG have the same dubious entrance as diesel`s winter mix? Would RFG implementation work and what effect would the change in stocks have on the refineries? With worries related to transportation fuels being recognized, would there be reason for concern with heating fuels? As the new year approached, the refineries seemed to have no problem with supplies and RFG stocks were eased in about the second week of December. In Maine, the southern half of the state was effected by the gasoline substitution but seven of Maine`s sixteen counties were directed to follow the recommended criteria. Since the major population concentration lies in the southern three counties, concern was real. Attention paid to emission testing had come to a head in the fall, and RFG complaints were likely. There have been years when snow and cold arrived by Thanksgiving Day. In northern Maine, snow easily covers the ground before the SHOPP survey begins. The fall slipped by with no great shocks in the weather. December was more of the same, as the weather continued to favor the public. Normally the third week in January is considered the coldest time in the year, but not this year. By the end of January, two days were recorded as being more typical of winter. By March and the end of the survey season, one could only recognize that there were perhaps a few cold days this winter. Fuel prices fluctuated little through the entire heating season. There were no major problems to report and demand never placed pressure on dealers.

NONE

1995-04-01T23:59:59.000Z

242

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

243

ICEPT Working Paper Comparison of Fuel Cell and Combustion Micro-CHP under Future Residential  

E-Print Network (OSTI)

&D Research and Development SOFC Solid Oxide Fuel Cell UPS Uninterruptible Power Supply #12;The Nordic with the Danish advancement in wind energy research and research on SOFC. Norway had special knowledge on advanced

244

Microbial Fuel Cells Offer Innovative Technology for Oil, Gas ...  

Microbial Fuel Cells Offer Innovative Technology ... where organics and salt contaminate water in significant amounts during fossil fuels production.

245

Oil and Gas Conservation (Nebraska) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conservation (Nebraska) Conservation (Nebraska) Oil and Gas Conservation (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This section establishes the state's interest in encouraging the development, production, and utilization of natural gas and oil resources in a manner which will prevent waste and lead to the greatest ultimate

246

State energy price projections for the residential sector, 1992--1993  

Science Conference Proceedings (OSTI)

The purpose of this report, State Energy Price Projections for the Residential Sector, 1992--1993, is to provide projections of State-level residential prices for 1992 and 1993 for the following fuels: electricity, natural gas, heating oil, liquefied petroleum gas (LPG), kerosene, and coal. Prices for 1991 are also included for comparison purposes. This report also explains the methodology used to produce these estimates and the limitations.

Not Available

1992-09-24T23:59:59.000Z

247

State energy price projections for the residential sector, 1992--1993. [Contains model documentation  

SciTech Connect

The purpose of this report, State Energy Price Projections for the Residential Sector, 1992--1993, is to provide projections of State-level residential prices for 1992 and 1993 for the following fuels: electricity, natural gas, heating oil, liquefied petroleum gas (LPG), kerosene, and coal. Prices for 1991 are also included for comparison purposes. This report also explains the methodology used to produce these estimates and the limitations.

Not Available

1992-09-24T23:59:59.000Z

248

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

from last week to 2.62 per gallon; up 37.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price...

249

Residential propane prices increase  

U.S. Energy Information Administration (EIA) Indexed Site

from last week to 2.57 per gallon; up 32.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The retail price...

250

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.76 per gallon. That's up 51.2 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

251

Residential propane prices increase  

Gasoline and Diesel Fuel Update (EIA)

a week ago to 2.71 per gallon. That's up 46.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Propane prices...

252

,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsda_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsda_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

253

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

254

Isolation and identification of fuel-oil-degrading bacteria.  

E-Print Network (OSTI)

??The purpose of this study is to isolate and identify the crude oil-degrading bacteria from oil polluted soil. Their physiological characteristics and oil-degrading capability were (more)

Yang, Wan-yu

2008-01-01T23:59:59.000Z

255

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

256

State heating oil and propane program, 1994--1995 heating season. Final technical report  

SciTech Connect

Propane prices and No. 2 fuel prices during the 1994-1995 heating season are tabulated for the state of Ohio. Nineteen companies were included in the telephone survey of propane prices, and twenty two companies for the fuel oil prices. A bar graph is also presented for average residential prices of No. 2 heating oil.

NONE

1995-05-09T23:59:59.000Z

257

The Northeast heating fuel market: Assessment and options  

SciTech Connect

In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

None

2000-07-01T23:59:59.000Z

258

State of Maine residential heating oil survey: 1995--1996 season summary  

SciTech Connect

In Maine the cash price is surveyed, as opposed to lthe retail or charge price, as it has been identified as the price most often paid by Maine consumers. As one can see from the chart in this report, the 1995-1996 cash prices for No. 2 heating oil can be characterized as having an upward trend and much more fluctuation than last years` relatively flat line. The 1995-96 heating season started at the closing price of the previous season and for the first few weeks prices were lower than most of the 1994-95 trendline. When the weather became cooler, however, prices were on a steady incline until well into the winter. Prices leveled off for most of the rest of the season with a dramatic surge on the last week of the survey. The average statewide cash price for No. 2 heating oil this year was .861 1 cents, approximately ten cents higher than the average for 1994-1995 which was .7661 cents per gallon. It has been the observation of the SPO that during most of the 1995-1996 season, Maine`s prices showed a direct correspondence with New England rack or wholesale prices. It appeared that they never fluctuated more than 3-4 cents from each other.

Elder, B.

1996-05-01T23:59:59.000Z

259

Coming revolution in world oil markets. [Abetted by conservation, fuel substitution, and better technologies  

SciTech Connect

Dr. Singer feels that a revolution will take place in the world oil market provided government does not enact counterproductive policies, but stands aside to let market forces achieve their inevitable results. He observes that by the end of this decade, and certainly in the 1990s, the free world may require less than half of the oil it uses today - some 20 million barrels per day (mbd) instead of 50 mbd. However, some 75% of this oil, instead of the current 25%, will be refined into gasoline and other motor fuels, while natural gas, nuclear energy and coal in different forms will substitute for most of the fuel oil to produce heat and steam - generally at much lower cost. Oil has become too expensive to burn, and a major adjustment in world-wide use patterns is overdue. Three factors will bring about these dramatic changes: First, new coal technologies: they make it convenient to replace heavy fuel oil in existing oil-fired boilers. Second, advances in refinery technology: they can produce more light products, gasoline and motor fuels, and less heavy fuel oil from a barrel of crude oil. Third, and above all, the laws of economics: higher oil prices, by themselves, encourage conservation and substitution. In addition, large price differentials between higher-quality light crudes and heavy crudes that normally yield less gasoline put a significant premium on refinery upgrading. And wholesale prices for gasoline are greater and are rising faster than those of residual fuel oil. Squeezing out more gasoline can increase the value of a barrel of crude substantially. Dr. Singer notes that the coming revolution is not generally recognized because many of the demand and supply trends are just emerging. He proceeds to discuss the staggering consequences of such a revolution.

Singer, S.F.

1981-02-04T23:59:59.000Z

260

Oil and Oil Derivatives Compliance Requirements  

Science Conference Proceedings (OSTI)

... for international connection of oiled residues discharge ... C to + 163C, fuels, lubricating oils and hydraulic ... fuel of gas turbine, crude oil, lubricating oil ...

2012-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alabama Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 979,566: 854,244: 791,004: 859,486: 917,892: 871,796: 1984-2012: ...

262

Arizona Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 877,174: 799,123: 746,952: 751,025: 767,565: 761,995: 1984-2012: ...

263

Rhode Island Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 77,882: 61,856: 59,789: 65,067: 65,295: 62,041: 1984-2012: Residual ...

264

South Carolina Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 752,984: 699,864: 653,641: 726,889: 724,974: 656,396: 1984-2012: ...

265

Utah Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 512,415: 464,448: 420,807: 427,293: 507,559: 486,956: 1984-2012: ...

266

New Jersey Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 1,091,896: 991,981: 755,753: 832,806: 951,803: 842,035: 1984-2012: ...

267

U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

268

,"U.S. Total Distillate Fuel Oil and Kerosene Sales by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

269

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

270

Indiana No. 2 Fuel Oil Wholesale/Resale Volume by Refiners ...  

U.S. Energy Information Administration (EIA)

Indiana No. 2 Fuel Oil Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ... No.1 and ...

271

South Carolina No. 2 Fuel Oil Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

South Carolina No. 2 Fuel Oil Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 ... No.1 and No. 2 ...

272

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

DOE Green Energy (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

273

,"U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2012,"6301984"...

274

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Energy.gov (U.S. Department of Energy (DOE))

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

275

Residential Renewable Energy Tax Credit | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Tax Credit Residential Renewable Energy Tax Credit < Back Eligibility Residential Savings Category Solar Water Heat Photovoltaics Wind Fuel Cells Geothermal Heat...

276

Use of waste oils to improve densified refuse derived fuels. Final report  

DOE Green Energy (OSTI)

The preparation and properties of densified refuse-derived fuel (d-RDF) had previously been studied. The objectives of this study were the reduction of the power consumption and increase in the throughput of the densifier, increase in the calorific value and of the resistance of the d-RDF to weathering during outdoor storage. It was believed that these objectives might be achieved by adding waste oils to RDF just before densification. The majority of such oil from local sources includes spent crankcase oils with a high content of lead. In the work reported here, office wastes were shredded, air classified, and reshredded prior to feeding to an animal feed densifier. Water was added to the densifier feed in order to investigate a range of moisture contents. Waste oil (from a local dealer) was pumped through spray nozzles onto the densifier feed at controlled flows so as to investigate a range of oil contents. It is observed that over the practical range of waste oil contents, the savings in power consumption with increasing oil content are small. The addition of waste oil (up to 15 wt %) to the feed did not cause noticeable improvements in throughput rates. As expected, the calorific value of the fuel increases in proportion to the amount of waste oil. Pellets containing 13 wt % oil resulted in having a 20% higher calorific content. Increased waste oil levels in RDF led to reduction in pellet lengths and densities. The addition of waste oil to RDF did not improve pellet water repellency.

None

1980-10-01T23:59:59.000Z

277

Residential Fuel Cell Demonstration Handbook: National Rural Electric Cooperative Association Cooperative Research Network  

DOE Green Energy (OSTI)

This report is a guide for rural electric cooperatives engaged in field testing of equipment and in assessing related application and market issues. Dispersed generation and its companion fuel cell technology have attracted increased interest by rural electric cooperatives and their customers. In addition, fuel cells are a particularly interesting source because their power quality, efficiency, and environmental benefits have now been coupled with major manufacturer development efforts. The overall effort is structured to measure the performance, durability, reliability, and maintainability of these systems, to identify promising types of applications and modes of operation, and to assess the related prospect for future use. In addition, technical successes and shortcomings will be identified by demonstration participants and manufacturers using real-world experience garnered under typical operating environments.

Torrero, E.; McClelland, R.

2002-07-01T23:59:59.000Z

278

State Residential Energy Consumption Shares 1996  

Gasoline and Diesel Fuel Update (EIA)

Residential customers in the Northeast are more heavily dependent on heating oil than are residential consumers in the rest of the country. Rhode Island is no exception. In 1996,...

279

Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

This report is an update to "Technology Assessment of Residential Power Systems for Distributed Generation Markets" (EPRIsolutions report 1000772). That previous report dealt with fuel cells, stirling engine generators, and reciprocating engine generators; this current report focuses on polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cell (SOFC) power systems fueled with natural gas or propane and sized for residential loads.

2002-03-29T23:59:59.000Z

280

State energy price projections for the residential sector, 1991--1992  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide projections of State-level residential prices for 1991 and 1992 for the following fuels: electricity, natural gas, heating oil, liquefied petroleum gas (LPG), kerosene, and coal. Prices for 1990 are also included for comparison purposes. This report also explains the methodology used to produce these estimates and the limitations. (VC)

Not Available

1991-11-08T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Jasper County REMC - Residential Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jasper County REMC - Residential Residential Energy Efficiency Jasper County REMC - Residential Residential Energy Efficiency Rebate Program Jasper County REMC - Residential Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Refrigerator Recycling: $35 Heat Pump Water Heater: $400 Air-Source Heat Pumps: $250 - $1,500/unit (Power Moves rebate), $200 (REMC Bill Credit) Dual Fuel Heat Pumps: $1,500/unit Geothermal Heat Pumps: $1,500/unit (Power Moves rebate), $500 (REMC Bill Credit) Provider Jasper County REMC Jasper County REMC, in conjunction with Wabash Valley Power Association's Power Moves programs, offers a range of rebates to its residential

282

Residential Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Performance: guidelines, analysis and measurements of window and skylight performance Windows in residential buildings consume approximately 2% of all the energy used...

283

Revised Draft Fuel Price Forecasts for the Draft  

E-Print Network (OSTI)

Natural gas prices, as well as oil and coal prices, are forecast using an Excel spreadsheet model at this time, natural gas prices are forecast in more detail than oil and coal prices. Residential in the industrial boiler fuel market to help keep natural gas prices low. Continuing declines in coal prices coupled

284

Oil has played a predominant role in shaping the politics, economy, development, and foreign relations of the Middle East over the past century. Since oil fuels  

E-Print Network (OSTI)

Oil has played a predominant role in shaping the politics, economy, development, and foreign relations of the Middle East over the past century. Since oil fuels modern industries and societies worldwide, oil in the Middle East has become a key strategic commodity influencing international affairs

285

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

4b. Relative Standard Errors for Total Fuel Oil Consumption per 4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion Btu) Fuel Oil Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 10 14 13 13 Building Floorspace (Square Feet) 1,001 to 5,000 10 16 11 11 5,001 to 10,000 15 22 18 18 10,001 to 25,000 15 24 19 19 25,001 to 50,000 13 25 29 29 50,001 to 100,000 14 27 21 22 100,001 to 200,000 13 36 34 34 200,001 to 500,000 13 37 33 33 Over 500,000 17 51 50 50 Principal Building Activity Education 17 17 16 17 Food Sales and Service 25 36 16 16 Health Care 29 48 47 47 Lodging 27 37 32 32 Mercantile and Service 14 25 26 26 Office 14 19 21 21 Public Assembly 23 46 35 34 Public Order and Safety 28 48 46 46 Religious Worship

286

Residual Fuel Oil Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

287

Distillate Fuel Oil, Greater than 500 ppm Sulfur Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

288

Distillate Fuel Oil, 15 ppm and under Sulfur Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

289

Long-term Outlook for Oil and Other Liquid Fuels  

U.S. Energy Information Administration (EIA)

Biofuels, natural gas liquids, and crude oil production are key sources of increased domestic liquids supply. Source: EIA, Annual Energy Outlook 2011. Gulf of Mexico.

290

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

Fuel Oil/Kerosene, 2001 Fuel Oil/Kerosene, 2001 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 11.2 9.4 26.0 80 29 67.1 26 723 0.26 607 236 Census Region and Division Northeast 7.1 5.4 16.8 111 36 84.7 33 992 0.32 757 297 New England 2.9 2.5 8.0 110 35 96.3 39 1,001 0.32 875 350 Middle Atlantic 4.2 2.8 8.8 112 36 76.6 30 984 0.32 675 260

291

Residential Heating Oil Prices  

U.S. Energy Information Administration (EIA)

We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly.

292

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

Science Conference Proceedings (OSTI)

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

293

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

0.9 Relative Standard Errors for Table 10.9;" 0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

294

Methods for assessing the stability and compatibility of residual fuel oils  

SciTech Connect

The declining quality of residual fuel oil is of significant concern to residual fuel oil users in the electric utility industry. This project was concerned with the specific problems of instability (sediment formation or viscosity increases) and incompatibility (formation of sediment on blending with another fuel or cutter stock) which can adversely affect the fuel storage and handling systems. These problems became more severe in the late 70's and early 80's with the decline in quality of refinery feedstocks and an increase in severity of processing for conversion of resid to distillate products. Current specifications and quality control tests are inadequate to prevent or even predict problems due to instability or incompatibility. The objective of this project was to evaluate/develop rapid simple tests which utilities can use to anticipate and prevent problems from instability/incompatibility. 22 refs., 23 figs., 23 tabs.

Anderson, R.P.; Reynolds, J.W. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA))

1989-11-01T23:59:59.000Z

295

Fuel Consumption - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Energy Consumption Survey(RTECS), 1994 Fuel Consumption

296

Alternative Fuels - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Transportation Energy Consumption Survey(RTECS), Transporation Channel of Alternative Fuels

297

Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels  

DOE Green Energy (OSTI)

The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

Elliott, Douglas C.

2006-02-14T23:59:59.000Z

298

Synthetic fuels. Independent has practical oil-shale operation  

SciTech Connect

Geokinetics Inc., Salt Lake City, has been developing a relatively inexpensive process to develop lean shale resources in Utah since 1975. The firm has produced almost 50,000 bbl of shale oil during the past 6 years at its test site south of Vernal, Utah. Geokinetics is projected to produce eventually 109 million bbl of shale oil from its Utah properties at a cost of ca. $30/bbl. The Low Front End Cost (Lofreco) Process, with its small scale, modular construction, and low front end capital load, can develop oil shale under conditions inhibiting firms with big, capital intensive technologies. Lofreco entails blasting a thin shale bed to create a highly permeable in situ retort. The oil shale is ignited via air injection wells, and low pressure blowers provide air to create a fire front that covers the pay section. The front moves horizontally through the fracture shale bed, with hot combustion gases heating the shale to yield shale oil which drains to the bottom of the sloped retort. The oil is recovered via small, conventional pumping units.

Williams, B.

1982-06-28T23:59:59.000Z

299

Air emissions from residential heating: The wood heating option put into environmental perspective. Report for June 1997--July 1998  

SciTech Connect

The paper compares the national scale (rather than local) air quality impacts of the various residential space heating options. Specifically, it compares the relative contributions of the space heating options to fine particulate emissions, greenhouse gas emissions, and acid precipitation impacts. The major space heating energy options are natural gas, fuel oil, kerosene, liquefied petroleum gas (LPG), electricity, coal, and wood. Residential wood combustion (RWC) meets 9% of the Nation`s space heating energy needs and utilizes a renewable resource. Wood is burned regularly in about 30 million homes. Residential wood combustion is often perceived as environmentally dirty due to emissions from older wood burners.

Houck, J.E.; Tiegs, P.E.; McCrillis, R.C.; Keithley, C.; Crouch, J.

1998-12-31T23:59:59.000Z

300

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

Science Conference Proceedings (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Biodiesel fuels could reduce dependence on foreign oil  

Science Conference Proceedings (OSTI)

this article reports on a test project by the University of Nebraska and Kansas State University which examines the effects of ester-blend biodiesel from tallow compared with conventional diesel fuel on engine performance, durability, and emissions.

NONE

1994-12-31T23:59:59.000Z

302

Winter Fuels Market Assessment 2000  

Gasoline and Diesel Fuel Update (EIA)

September 13, 2000 September 13, 2000 Winter Fuels Market Assessment 2000 09/14/2000 Click here to start Table of Contents Winter Fuels Market Assessment 2000 West Texas Intermediate Crude Oil Prices Perspective on Real Monthly World Oil Prices, 1976 - 2000 U.S. Crude Oil Stocks Total OECD Oil Stocks Distillate and Spot Crude Oil Prices Distillate Stocks Expected to Remain Low Distillate Stocks Are Important Part of East Coast Winter Supply Consumer Winter Heating Oil Costs Natural Gas Prices: Well Above Recent Averages Annual Real Natural Gas Prices by Sector End-of-Month Working Gas in .Underground Storage Residential Prices Do Not Reflect the Volatility Seen in Wellhead Prices Consumer Natural Gas Heating Costs Winter Weather Uncertainty Author: John Cook Email: jcook@eia.doe.gov

303

Pyrolysis Oil Upgrading to Transportation Fuels by Catalytic  

E-Print Network (OSTI)

or methanol. ! While pyrolysis/gasification of coal and woody biomass are in commercial use, pyrolysis reforming of the aqueous phase derived from fast-pyrolysis of biomass. Renewable Energy 2009, 34, (12), 2872.; Lee, W.-J.; Wu, H.; Li, C.-Z., Fast pyrolysis of oil mallee woody biomass: Effect of temperature

Groningen, Rijksuniversiteit

304

Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment  

SciTech Connect

The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

Brodrick, J.R. [USDOE, Washington, DC (United States); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. [Pacific Northwest Lab., Richland, WA (United States)

1993-02-01T23:59:59.000Z

305

Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment  

SciTech Connect

The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

Brodrick, J.R. (USDOE, Washington, DC (United States)); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. (Pacific Northwest Lab., Richland, WA (United States))

1993-02-01T23:59:59.000Z

306

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

307

Residential Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Residential Residential Buildings Residential buildings-such as single family homes, townhomes, condominiums, and apartment buildings-are all covered by the Residential Energy Consumption Survey (RECS). See the RECS home page for further information. However, buildings that offer multiple accomodations such as hotels, motels, inns, dormitories, fraternities, sororities, convents, monasteries, and nursing homes, residential care facilities are considered commercial buildings and are categorized in the CBECS as lodging. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/residential.html

308

Winter fuels report  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

Not Available

1995-02-17T23:59:59.000Z

309

Winter fuels report  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

1990-11-29T23:59:59.000Z

310

Analysis of changes in residential energy consumption, 1973-1980  

Science Conference Proceedings (OSTI)

The progress of energy conservation in the residential sector since the 1973 to 1974 Arab oil embargo is assessed. To accomplish this goal, the reduction in residential energy use per household since 1973 is disaggregated into six possible factors. The factors considered were: (1) building shell efficiencies, (2) geographic distribution of households, (3) appliance efficiency, (4) size of dwelling units, (5) fuel switching, and (6) consumer attitudes. The most important factor identified was improved building shell efficiency, although the impact of appliance efficiency is growing rapidly. Due to data limitations, PNL was not able to quantify the effects of two factors (size of dwelling units and fuel switching) within the framework of this study. The total amount of the energy reduction explained ranged from 18 to 46% over the years 1974 to 1980.

King, M.J.; Belzer, D.B.; Callaway, J.M.; Adams, R.C.

1982-09-01T23:59:59.000Z

311

Distillate Fuel Oil Assessment for Winter 1995-1996  

Gasoline and Diesel Fuel Update (EIA)

U.S. Refining Capacity Utilization U.S. Refining Capacity Utilization by Tancred Lidderdale, Nancy Masterson, and Nicholas Dazzo* U.S. crude oil refinery utilization rates have steadily increased since oil price and allocation decontrol in 1981. The annual average atmospheric distillation utilization rate has increased from 68.6 percent of operable capacity in 1981 to 92.6 percent in 1994. The distillation utilization rate reached a peak of 96.4 percent in August 1994, the highest one-month average rate in over 20 years. This dramatic increase in refining capacity utilization has stimulated a growing interest in the ability of U.S. refineries to supply domestic requirements for finished petroleum products. This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in

312

Method to upgrade bio-oils to fuel and bio-crude  

SciTech Connect

This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

2013-12-10T23:59:59.000Z

313

Conversion to Dual Fuel Capability in Combustion Turbine Plants: Addition of Distillate Oil Firing for Combined Cycles  

Science Conference Proceedings (OSTI)

During development of combined cycle projects, key assumptions and estimates regarding markets and technology on which the project is based may change. With fuel costs of combined cycle plants representing over 90 percent of annual operating cost, sudden changes in fuel pricing demand attention and re-evaluation. Conversion from natural gas fuel only to dual fuel capability with the addition of distillate oil firing systems is a technical response to market conditions that may have long-term as well as s...

2001-09-26T23:59:59.000Z

314

Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wells: Rules Relating to Spacing, Pooling, and Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) Oil and Gas Wells: Rules Relating to Spacing, Pooling, and Unitization (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting The Department of Natural Resources is given the authority to create and promulgate regulations related to spacing, pooling, and utilization of oil

315

The Biodiesel Handbook, 2nd EditionChapter 2 History of Vegetable Oil-Based Diesel Fuels  

Science Conference Proceedings (OSTI)

The Biodiesel Handbook, 2nd Edition Chapter 2 History of Vegetable Oil-Based Diesel Fuels Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters Press Downloadable pdf of Chapter 2

316

Highly Efficient, 5-kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Petrecky Plug Power 968 Albany Shaker Road Latham, NY 12110 Phone: (518) 782-7700 ext: 1977 Email: james_petrecky@plugpower.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Vendor: ClearEdge Power, Hillsboro, OR Project Start Date: October 1, 2009 Project End Date: September 15, 2013 Objectives Quantify the durability of proton exchange membrane * (PEM) fuel cell systems in residential and light commercial combined heat and power (CHP) applications in California. Optimize system performance though testing of multiple * high-temperature units through collection of field data.

317

Table Commercial Industrial Vehicle Fuel Electric Power  

U.S. Energy Information Administration (EIA)

State Residential Commercial Industrial Vehicle Fuel Electric Power ... Form EIA?886, Annual Survey of Alternative Fueled Vehicles; ...

318

Distillate Fuel Oil Imports Could Be Available - For A Price  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So it wasn't demand and production explains only part of the reason we got through last winter with enough stocks. The mystery is solved when you look at net imports of distillate fuel last winter. As we found out, while imports are a small contributor to supply, they are sometimes crucial. Last winter, imports were the main source of supply increase following the price spike. Previous record levels were shattered as imports came pouring into the country. The fact that Europe was enjoying a warmer-than-normal winter also encouraged exports to the United States. It was massive amounts of imports, particularly from Russia, that helped us get through last winter in as good a shape as we did. Imports are expected to be relatively normal this winter. Added imports

319

The Long-run Macroeconomic Impacts of Fuel Subsidies in an Oil-importing Developing  

E-Print Network (OSTI)

Many developing and emerging market countries have subsidies on fuel products. Using a small open economy model with a non-traded sector I show how these subsidies impact the steady state levels of macroeconomic aggregates such as consumption, labor supply, and aggregate welfare. These subsidies can lead to crowding out of non-oil consumption, inefficient inter-sectoral allocations of labor, and other distortions in macroeconomic variables. Across steady states aggregate welfare is reduced by these subsidies. This result holds for a country with no oil production and for a net exporter of oil. The distortions in relative prices introduced by the subsidy create most of the welfare losses. How the subsidy is financed is of secondary importance. Aggregate welfare is significantly higher if the subsidies are replaced by lump-sum transfers of equal value.

Michael Plante; Michael Plante A

2013-01-01T23:59:59.000Z

320

Feasibility of burning refuse derived fuel in institutional size oil-fired boilers. Final report  

DOE Green Energy (OSTI)

This study investigates the feasibility of retrofitting existing oil-fired boilers of institutional size, approximately 3.63 to 36.3 Mg steam/h (8000 to 80,000 lbs steam/h) for co-firing with refuse-derived fuel (RDF). Relevant quantities describing mixtures of oil and RDF and combustion products for various levels of excess air are computed. Savings to be realized from the use of RDF are derived under several assumptions and allowable costs for a retrofit are estimated. An extensive survey of manufacturers of burners, boilers, and combustion systems showed that no hardware or proven design is yet available for such retrofit. Approaches with significant promises are outlined: the slagging burner, and a dry ash double vortex burner for low heat input from RDF. These two systems, and an evaluation of a small separate RDF dedicated combustor in support of the oil-fired boiler, are recommended as topics for future study.

None

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Building Technologies Residential Survey  

SciTech Connect

Introduction A telephone survey of 1,025 residential occupants was administered in late October for the Building Technologies Program (BT) to gather information on residential occupant attitudes, behaviors, knowledge, and perceptions. The next section, Survey Results, provides an overview of the responses, with major implications and caveats. Additional information is provided in three appendices as follows: - Appendix A -- Summary Response: Provides summary tabular data for the 13 questions that, with subparts, comprise a total of 25 questions. - Appendix B -- Benchmark Data: Provides a benchmark by six categories to the 2001 Residential Energy Consumption Survey administered by EIA. These were ownership, heating fuel, geographic location, race, household size and income. - Appendix C -- Background on Survey Method: Provides the reader with an understanding of the survey process and interpretation of the results.

Secrest, Thomas J.

2005-11-07T23:59:59.000Z

322

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

323

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

324

The influence of temperature in the gas emissions by using mixtures of diesel & olive seed oil as fuels  

Science Conference Proceedings (OSTI)

Air pollution is any gas or particulate that originates from both natural and anthropogenic sources. Anthropogenic sources mostly related to burning different kinds of fuel for energy. Moreover, the exhaust from burning fuels in automobiles, homes and ... Keywords: gas emissions, olive seed oil

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2010-02-01T23:59:59.000Z

325

Conversion of atactic polypropylene waste to fuel oil. Final report  

DOE Green Energy (OSTI)

A stable, convenient thermal pyrolysis process was demonstrated on a large scale pilot plant. The process successfully converted high viscosity copolymer atactic polypropylene to predominantly liquid fuels which could be burned in commercial burners. Energy yield of the process was very high - in excess of 93% including gas phase heating value. Design and operating data were obtained to permit design of a commercial size atactic conversion plant. Atactic polypropylene can be cracked at temperatures around 850/sup 0/F and residence time of 5 minutes. The viscosity of the cracked product increases with decrease in time/temperature. A majority of the pyrolysis was carried out at a pressure of 50 psig. Thermal cracking of atactic polypropylene is seen to result in sigificant coke formation (0.4% to 0.8% on a weight of feed basis) although the coke levels were of an order of magnitude lower than those obtained during catalytic cracking. The discrepancy between batch and continuous test data can be atrributed to lowered heat transfer and diffusion rates. Oxidative pyrolysis is not seen as a viable commercial alternative due to a significant amount of water formation. However, introduction of controlled quantities of oxygen at lower temperatures to affect change in feedstock viscosity could be considered. It is essential to have a complete characterization of the polymer composition and structure in order to obtain useful and duplicable data because the pyrolysis products and probably the pyrolysis kinetics are affected by introduction of abnormalities into the polymer structure during polymerization. The polymer products from continuous testing contained an olefinic content of 80% or higher. This suggests that the pyrolysis products be investigated for use as olefinic raw materials. Catalytic cracking does not seem to result in any advantage over the Thermal Cracking process in terms of reaction rates or temperature of operation.

Bhatia, J.

1981-04-01T23:59:59.000Z

326

Proceedings of the 1998 oil heat technology conference  

DOE Green Energy (OSTI)

The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

McDonald, R.J.

1998-04-01T23:59:59.000Z

327

Hydroprocessing of heavy oils for the production of fuel-cell quality fuels. Final technical report, September 30, 1977-September 30, 1978  

DOE Green Energy (OSTI)

Progress is reported on a program to establish whether heavy oils such as No. 4 or No. 6 fuel oil can be hydrogasified or hydrotreated to produce a steam-reforming feed suitable for use in an integrated fuel cell power generation facility. Hydrogasification data show that methane is the major gas product, along with a certain amount of coke formation. The liquid product was similar to the feed oil indicating that the oil did not fully enter the reaction. The hydrotreating apparatus was fully tested and proved to be operational. A trial run on No. 4 fuel oil using a Ni/MoO/sub 3/ hydrodesulfurization finishing catalyst showed very good sulfur removal to the gas phase, along with substantial reduction of specific gravity in the liquid product over the feed oil. Whereas the coke formation during hydrogasification is a clear disadvantage, further testing is required of the hydrotreating catalysts to determine quantitatively how efficient the sulfur removal can be and how amenable steam reforming the hydrotreated oil will be.

Jarvi, G.A.; Camara, E.H.; Marianowski, L.G.; Lee, A.L.; Vasil, D.R.; Oberle, R.D.

1978-01-01T23:59:59.000Z

328

Verdigris Valley Electric Cooperative - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Verdigris Valley Electric Cooperative - Residential Energy Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program Verdigris Valley Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Room Air Conditioner: $50 Electric Water Heaters: $50 - $199 Geothermal Heat Pumps (new): $300/ton Geothermal Heat Pumps (replacement): $150/ton Air-source/Dual Fuel Heat Pumps: $150/ton Provider Verdigris Valley Electric Cooperative Verdigris Valley Electric Cooperative (VVEC) offers rebates for residential customers who purchase energy efficient home equipment. Rebates are

329

Firelands Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Firelands Electric Cooperative - Residential Energy Efficiency Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program Firelands Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump: $800 Air Source Heat Pump: $500 Dual Fuel Heat Pump: $250 Electric Water Heater: $100-$300 HVAC Controls: $100 Provider Firelands Electric Cooperative Firelands Electric Cooperative (FEC) is offering rebates on energy efficient equipment to residential customers receiving electric service from FEC. Eligible equipment includes new Geothermal Heat Pumps, Air-Source

330

Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered  

DOE Patents (OSTI)

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, Richard F. (Houston, TX); Ryan, Daniel F. (Friendswood, TX)

1982-01-01T23:59:59.000Z

331

Impacts of Water Quality on Residential Water Heating Equipment  

SciTech Connect

Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

Widder, Sarah H.; Baechler, Michael C.

2013-11-01T23:59:59.000Z

332

The design, selection, and application of oil-free screw compressors for fuel gas service  

SciTech Connect

Fuel gas compressors installed in cogeneration systems must be highly reliable and efficient machines. The screw compressor can usually be designed to meet most of the gas flow rates and pressure conditions generally required for such installations. To an ever-increasing degree, alternative sources are being found for the fuel gas supply, such as coke-oven gas, blast-furnace gas, flare gas, landfill gas, and synthesis gas from coal gasification or from pyrolysis. A feature of the oil-free screw compressor when such gases are being considered is the isolation of the gas compression space from the bearing and gear lubrication system by using positive shaft seals. This ensures that the process gas cannot be contaminated by the lubricating oil, and that there is not risk of loss of lubricant viscosity by gas solution in the oil. This feature enables the compressed gas to contain relatively high levels of particulate contamination without danger of ``sludge`` formation, and also permits the injection of water or liquid solvents into the compression space, to reduce the temperature rise due to the heat of compression, or to ``wash`` any particulate manner through the compressor.

Lelgemann, K.D. [MAN Gutehoffnungshuette AG, Oberhausen (Germany)

1995-01-01T23:59:59.000Z

333

Pacific Northwest residential energy survey. Volume 1. Executive summary  

SciTech Connect

Information obtained from residential customers with individually metered electric service within each of the 4 states (Washington, Oregon, Idaho, Montana) and 4 climate zones is summarized. Detailed findings of the data obtained from the 4030 personal interviews are presented in 7 chapters: Demographic and Family Characteristics; Dwelling Characteristics; Weatherization; Heating and Air Conditioning Systems; Water Heating; Presence and Use of Major Appliances; and Characteristics of Customers with Various Consumption Patterns. Electricity, natural gas, and fuel oil consumption data were appended to the survey data collected so that these characteristics could be related to the amount of electricity or natural gas consumed. In the appendix, comments about sampling errors are given. (MCW)

1980-08-01T23:59:59.000Z

334

National Grid (Gas) - Residential EnergyWise Rebate Programs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

amongst its residential customers. Interested customers who heat with gas, oil, or propane should schedule a free home energy audit through National Grid's Weatherization or...

335

Trends in U.S. Residential Natural Gas Consumption  

Annual Energy Outlook 2012 (EIA)

the Residential Energy Consumption Survey. Energy Information Administration, Office of Oil and Gas, June 2010 1 Natural gas prices may have also contributed to the decrease...

336

Winter fuels report  

SciTech Connect

The report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; (2) propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; (3) natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; (4) residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the United States and selected cities; and (6) US total heating degree-days by city.

1990-11-01T23:59:59.000Z

337

Residential Energy Consumption Survey (RECS) - U.S. Energy Information  

Gasoline and Diesel Fuel Update (EIA)

RECS Terminology RECS Terminology A B C D E F G H I J K L M N O P Q R S T U V W XYZ A Account Classification: The method in which suppliers of electricity, natural gas, or fuel oil classify and bill their customers. Commonly used account classifications are "Commercial," "Industrial," "Residential," and "Other" Suppliers' definitions of these terms vary from supplier to supplier and from the definitions used in the Residential Energy Consumption Survey (RECS). In addition, the same customer may be classified differently by each of its energy suppliers. Adequacy of Insulation: The respondent's perception of the adequacy of the housing unit's insulation. Aggregate Ratio: The ratio of two population aggregates (totals). For

338

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

339

Distributed Bio-Oil Reforming - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Stefan Czernik (Primary Contact), Richard French, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6135 Email: Stefan.Czernik@nrel.gov DOE Manager Sara Dillich Phone: (202) 586-1623 Email: Sara.Dillich@ee.doe.gov Subcontractor: University of Minnesota, Minneapolis, MN Project Start Date: October 1, 2004 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives By 2012, develop and demonstrate distributed reforming * technology for producing hydrogen from bio-oil at $4.10/ kilogram (kg) purified hydrogen. Demonstrate integrated performance at bench scale * including bio-oil vaporization, partial-oxidation (POX)

340

Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) Nonmetallic Mining Reclamation; Oil and Gas (Wisconsin) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info Start Date 1995 State Wisconsin Program Type Siting and Permitting Provider Department of Natural Resources These regulations describe standards relevant to reclamation that must be followed both during and after the completion of mining in a given area. An

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oil and Gas Exploration (Connecticut) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exploration (Connecticut) Exploration (Connecticut) Oil and Gas Exploration (Connecticut) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Connecticut Program Type Siting and Permitting These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding exploratory well drilling or aerial surveys. Such exploration for oil or gas must be registered with the

342

,"U.S. Residual Fuel Oil Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Sales Volumes" Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_c_nus_eppr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_c_nus_eppr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

343

Straight Vegetable Oil as a Diesel Fuel? Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Performance of SVO Performance of SVO While straight vegetable oil or mixtures of SVO and diesel fuel have been used by some over the years, research has shown that SVO has technical issues that pose barriers to widespread acceptance. The published engineering literature strongly indicates that the use of SVO will lead to reduced engine life. This reduced engine life is caused by the buildup of carbon deposits inside the engine, as well as negative impacts of SVO on the engine lubricant. Both carbon deposits and excessive buildup of SVO in the lubricant are caused by the very high boiling point and viscosity of SVO relative to the required boiling range for diesel fuel. The carbon buildup doesn't necessarily happen quickly but instead over a longer period. These conclusions are

344

EIA Oil price timeline  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

345

Monitoring of Olympic National Park Beaches to determine fate and effects of spilled bunker C fuel oil  

SciTech Connect

On December 23, 1988, the barge Nestucca was accidentally struck by its tow, a Souse Brothers Towing Company tug, releasing approximately 230,000 gallons of Bunker C fuel oil and fouling beaches from Grays Harbor north to Vancouver Island. Affected beaches in Washington included a 40-mile-long strip that has been recently added to Olympic National Park. The purpose of the monitoring program documented in this report was to determine the fate of spilled Bunker C fuel oil on selected Washington coastal beaches. We sought to determine (1) how much oil remained in intertidal and shallow subtidal habitats following clean-up and weathering, (2) to what extent intertidal and/or shallow subtidal biotic assemblages have been contaminated, and (3) how rapidly the oil has left the ecosystem. 45 refs., 18 figs., 8 tabs.

Strand, J.A.; Cullinan, V.I.; Crecelius, E.A.; Fortman, T.J.; Citterman, R.J.; Fleischmann, M.L.

1990-10-01T23:59:59.000Z

346

Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior and interior of apartment building Exterior and interior of apartment building Residential Buildings The study of ventilation in residential buildings is aimed at understanding the role that air leakage, infiltration, mechanical ventilation, natural ventilation and building use have on providing acceptable indoor air quality so that energy and related costs can be minimized without negatively impacting indoor air quality. Risks to human health and safety caused by inappropriate changes to ventilation and air tightness can be a major barrier to achieving high performance buildings and must be considered.This research area focuses primarily on residential and other small buildings where the interaction of the envelope is important and energy costs are dominated by space conditioning energy rather than air

347

Winters fuels report  

SciTech Connect

The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

1995-10-27T23:59:59.000Z

348

Mining and Gas and Oil Production (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mining and Gas and Oil Production (North Dakota) Mining and Gas and Oil Production (North Dakota) Mining and Gas and Oil Production (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Buying & Making Electricity Program Info State North Dakota Program Type Siting and Permitting This chapter of the North Dakota Code contains provisions for oil, gas, and coal mining and the development of geothermal resources. This chapter

349

Addendum to methods for assessing the stability and compatibility of residual fuel oils  

Science Conference Proceedings (OSTI)

An improved method for predicting the compatibility or incompatibility which will result on the blending of two or more residual fuel oils is presented. Incompatability (formation of sludge on blending of two fuels) results when the solvency power of a blend is inadequate to keep asphaltenes in solution. Prediction and thereby prevention of incompatibility requires the use of two fuel parameters. One is a measure of solvency power (i.e.,aromaticity); an adequate measure is the Bureau of Mines Correlation Index (BMCI). The second parameter required is a measure of solvency required to completely dissolve the asphaltenes. This parameter is the toluene equivalence which is expressed as the minimum percent of toluene which is required in a toluene/heptane blend to completely dissolve the asphaltene. In earlier work, complete solubility was determined by a spot test. That method was a tedious trial and error procedure but a more important problem was that it was not possible to obtain reproducible results with a number of fuels. A new method which appears to have overcome both of these problems has been developed. The new procedure is a titration method in which the fuel is dissolved in toluene and titrated in the endpoint,''i.e., the point at which precipitation of asphaltenes occurs. Precipitation of asphaltenes is detected by examination of a drop of solution under a microscope. Polarized light is used to distinguish between waxes and precipitated asphaltenes. The entire procedure can be completed in 30 minutes and does not require expensive equipment. 6 refs., 6 figs., 2 tabs.

Anderson, R.P.; Pearson, C.D. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA))

1991-06-01T23:59:59.000Z

350

Guidelines for residential commissioning  

E-Print Network (OSTI)

Potential Benefits of Commissioning California Homes.Delp. 2000. Residential Commissioning: A Review of Relatedfor Evaluating Residential Commissioning Metrics Lawrence

Wray, Craig P.; Walker, Iain S.; Sherman, Max H.

2003-01-01T23:59:59.000Z

351

Development of a coal fired pulse combustor for residential space heating. Phase I, Final report  

SciTech Connect

This report presents the results of the first phase of a program for the development of a coal-fired residential combustion system. This phase consisted of the design, fabrication, testing, and evaluation of an advanced pulse combustor sized for residential space heating requirements. The objective was to develop an advanced pulse coal combustor at the {approximately} 100,000 Btu/hr scale that can be integrated into a packaged space heating system for small residential applications. The strategy for the development effort included the scale down of the feasibility unit from 1-2 MMBtu/hr to 100,000 Btu/hr to establish a baseline for isolating the effect of scale-down and new chamber configurations separately. Initial focus at the residential scale was concentrated on methods of fuel injection and atomization in a bare metal unit. This was followed by incorporating changes to the advanced chamber designs and testing of refractory-lined units. Multi-fuel capability for firing oil or gas as a secondary fuel was also established. Upon completion of the configuration and component testing, an optimum configuration would be selected for integrated testing of the pulse combustor unit. The strategy also defined the use of Dry Ultrafine Coal (DUC) for Phases 1 and 2 of the development program with CWM firing to be a product improvement activity for a later phase of the program.

NONE

1988-04-01T23:59:59.000Z

352

Residential energy consumption across different population groups: Comparative analysis for Latino and non-Latino households in U.S.A.  

SciTech Connect

Residential energy cost, an important part of the household budget, varies significantly across different population groups. In the United States, researchers have conducted many studies of household fuel consumption by fuel type -- electricity, natural gas, fuel oil, and liquefied petroleum gas (LPG) -- and by geographic areas. The results of past research have also demonstrated significant variation in residential energy use across various population groups, including white, black, and Latino. However, research shows that residential energy demand by fuel type for Latinos, the fastest-growing population group in the United States, has not been explained by economic and noneconomic factors in any available statistical model. This paper presents a discussion of energy demand and expenditure patterns for Latino and non-Latino households in the United States. The statistical model developed to explain fuel consumption and expenditures for Latino households is based on Stone and Geary`s linear expenditure system model. For comparison, the authors also developed models for energy consumption in non-Latino, black, and nonblack households. These models estimate consumption of and expenditures for electricity, natural gas, fuel oil, and LPG by various households at the national level. The study revealed significant variations in the patterns of fuel consumption for Latinos and non-Latinos. The model methodology and results of this research should be useful to energy policymakers in government and industry, researchers, and academicians who are concerned with economic and energy issues related to various population groups.

Poyer, D.A.; Teotia, A.P.S. [Argonne National Lab., IL (United States); Henderson, L. [Univ. of Baltimore, MD (United States)

1998-05-01T23:59:59.000Z

353

Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products  

DOE Green Energy (OSTI)

Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

Sefer, N.R.; Russell, J.A.

1981-12-01T23:59:59.000Z

354

New York Home Heating Oil Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a ...

355

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network (OSTI)

equipment = furnace Heating fuel = oil Home type = single orequipment = boiler Heating fuel = oil Home type = single orHOME HEATING FUEL CON 3 NATURAL GAS FROM UNDERGROUND PIPES = 1 BOTTLED GAS (LPG OR PROPANE) = 2 FUEL OIL

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

356

Improved engineering-economic model of residential energy use. [1970-2000  

SciTech Connect

An improved version of the ORNL residential energy use model was developed to simulate energy use in the residential sector from 1970 through 2000. The model provides considerable detail on annual energy uses by fuel, end use, and housing type; and also estimates annual equipment installations and ownership, equipment energy requirements, structural thermal integrities, fuel expenditures, equipment costs, and costs for improving thermal integrities on new and existing housing units. Thus, the model provides considerable detail on residential energy uses and associated costs. These details are useful for evaluating alternative energy conservation policies, programs, and technologies for their energy and economic effects during the next quarter century. The present version of the model deals with four fuels, eight end uses, and three housing types. Each of these 96 fuel use components is calculated each year as a function of stocks of occupied housing units and new construction, equipment ownership by fuel and end use, thermal integrity of housing units, average unit energy requirements for each equipment type, and usage factors that reflect household behavior. Simulations of energy use from 1960 to 1975 show that the model accurately predicts historical data on aggregate energy use, energy use by fuel, energy use by end use, and equipment ownership market-shares. A reference projection developed with the model shows residential energy use growing from 17.5 GGJ (10/sup 18/ joules) in 1975 to 18.5 GGJ in 1980 and 26.6 GGJ in 2000, with an average annual growth rate of 1.7 percent. Electricity increases its share of the energy budget from 44 percent in 1975 to 67 percent in 2000. Shares provided by gas, oil, and other fuels all decline during this period.

Hirst, E.; Cope, J.; Cohn, S.; Lin, W.; Hoskins, R.

1977-04-01T23:59:59.000Z

357

Missouri Rural Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

water heaters, geothermal heat pumps, and dual fuel air source heat pumps. Dual fuel air source heat pumps must use fuel oil, natural gas, or propane for backup heating with the...

358

Residential Enhanced Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Enhanced Rewards Program Residential Enhanced Rewards Program Residential Enhanced Rewards Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Program Info Funding Source Focus on Energy Expiration Date 05/31/2013 State Wisconsin Program Type State Rebate Program Rebate Amount Natural Gas Furnace: $475 Furnace with ECM (natural gas, propane, or oil-fired): $850 Hot-Water Boiler ( Natural Gas Furnace with AC: $1,500 Provider Focus on Energy Focus on Energy offers incentives for income-qualifying customers for the purchase of high efficiency heating equipment. Owner-occupied single-family and multifamily residences of 3 units or less are eligible for the incentives. Applicants must be able to document a gross household income of

359

LOW COST BIOHEATING OIL APPLICATION.  

SciTech Connect

The report describes primarily the results of combustion tests carried out with a soy methyl ester (SME) that can be considered as a biofuel that does not quite meet the ASTM D 6751-02 specifications for biodiesel. The tests were performed in a residential boiler and a commercial boiler. Blends of the SME in distillate fuel (home heating fuel or equivalently, ASTM No.2 fuel oil) were tested in both the boilers. Similar tests had been conducted in a previous project with ASTM biodiesel blends and hence provided a comparison. Blends of the SME in ASTM No.6 oil (residual oil) were also tested in the commercial boiler using a different burner. Physical properties of the blends (in both the petroleum based fuels) were also measured. It was found that the SME blends in the distillate burned, not surprisingly, similarly to biodiesel blends. Reductions in NOx with blending of the SME were the most significant finding as before with biodiesel blends. The blends in No.6 oil also showed reductions in NOx in the commercial boiler combustion tests, though levels with No.6 blends are higher than with No.2 blends as expected. A significant conclusion from the physical property tests was that even the blending of 10% SME with the No.6 oil caused a significant reduction in viscosity, which suggests a potential direction of application of such blends.

KRISHNA,C.R.

2003-05-01T23:59:59.000Z

360

The Energy Cooperative - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Energy Cooperative - Residential Energy Efficiency Rebate The Energy Cooperative - Residential Energy Efficiency Rebate Program The Energy Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heating Heat Pumps Appliances & Electronics Water Heating Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $599 Water Heater (Replacement): $100 Water Heater (New): $250 - $350 Geothermal Heat Pump: $599 Central AC: $100 Provider The Energy Cooperative The Energy Cooperative offers incentives to residential customers for the installation of dual fuel heating systems, water heaters, geothermal heat pumps and central air conditioners. Equipment must be installed in eligible

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Increasing vehicle fuel efficiency and decreasing de-pendence on foreign oil are priorities of the U.S. De-  

E-Print Network (OSTI)

#12;Increasing vehicle fuel efficiency and decreasing de- pendence on foreign oil are priorities manufacturing research facility in the DOE laboratory system. For more than ten years, it has worked with government and industry to address commercialization challeng- es, including cost and manufacturing

362

The Biodiesel Handbook, 2nd EditionChapter 10 Other Alternative Diesel Fuels from Vegetable Oils ande Animal Fats  

Science Conference Proceedings (OSTI)

The Biodiesel Handbook, 2nd Edition Chapter 10 Other Alternative Diesel Fuels from Vegetable Oils ande Animal Fats Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters AOCS F4C73AF32C5BD3F02A46C8467BF15904 Press

363

,"U.S. Residual Fuel Oil Prices by Sales Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Prices by Sales Type" Prices by Sales Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","9/2013","1/15/1983" ,"Data 2","Sulfur Less Than or Equal to 1%",2,"Monthly","9/2013","1/15/1983" ,"Data 3","Sulfur Greater Than 1%",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_resid_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm"

364

,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales Volumes",9,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_a_eppr_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_a_eppr_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

365

Residential energy consumption survey: housing characteristics 1984  

SciTech Connect

Data collected in the 1984 Residential Energy Consumption Survey (RECS), the sixth national survey of households and their fuel suppliers, provides baseline information on how households use energy. Households living in all types of housing units - single-family homes (including townhouses), apartments, and mobile homes - were chosen to participate. Data from the surveys are available to the public. The housing characteristics this report describes include fuels and the uses they are put to in the home; appliances; square footage of floorspace; heating (and cooling) equipment; thermal characteristics of housing structures; conservation features and measures taken; the consumption of wood; temperatures indoors; and regional weather. These data are tabulated in sets, first showing counts of households and then showing percentages. Results showed: Fewer households are changing their main heating fuel. More households are air conditioned than before. Some 50% of air-conditioned homes now use central systems. The three appliances considered essential are the refrigerator, the range, and the television set. At least 98% of US homes have at least one television set; but automatic dishwashers are still not prevalent. Few households use the budget plans tht are available from their utility companies to ease the payment burden of seasonal surges in fuel bills. The most common type of heating equipment in the United States is the natural-gas forced-air furnace. About 40% ofthose furnaces are at least 15 years old. The oldest water heaters are those that use fuel oil. The most common conservation feature in 1984 is ceiling or attic insulation - 80% of homes report having this item. Relatively few households claimed tax credits in 1984 for energy-conservation improvements.

Not Available

1986-10-08T23:59:59.000Z

366

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

New England includes: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont. Mid-Atlantic includes: Delaware, District of Columbia, Maryland, New Jersey, New...

367

Alternative Fuels and Vehicles Offer Solutions to Imported Oil, Air Pollution, Climate Change  

DOE Green Energy (OSTI)

A fact sheet describing available alternative fuels vehicles and the fuels themselves, written primarily for individual motorists.

Not Available

2002-04-01T23:59:59.000Z

368

Oil and Gas Gross Production Tax (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Gross Production Tax (North Dakota) Oil and Gas Gross Production Tax (North Dakota) Oil and Gas Gross Production Tax (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State North Dakota Program Type Fees A gross production tax applies to most gas produced in North Dakota. Gas burned at the well site to power an electrical generator that consumes at least 75 percent of the gas is exempt from taxation under this chapter.

369

Sustainability Assessment of Residential Building Energy System in Belgrade  

E-Print Network (OSTI)

As a metropolitan city, Belgrade is a dwelling place for about 25% of total citizen number of Republic of Serbia, and at the same time regional cultural, educational, scientific and business center with its own energy production. Belgrade represents a significant consumer of final energy to support the living standard of the occupants. Energy production is based on domestic coal and imported fossil fuels such as oil and natural gas resulting in a high impact to the environment by emission of harmful substances. Multi-criteria method is a basic tool for the sustainability assessment in metropolitan cities. The design of potential options is the first step in the evaluation of buildings. The selection of a number of residential buildings is based on geographic position and type of heating. This paper presents the sustainable assessment of energy system for residential building sector in Belgrade. In order to present the energy system options for residential building sector, three sets of energy indicators: economical, social and environmental are taken into consideration.

Vucicevic, B.; Bakic, V.; Jovanovic, M.; Turanjanin, V.

2010-01-01T23:59:59.000Z

370

Heating oil futures contract now uses ultra-low sulfur diesel fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

371

Energy News: The Structure of Fuel Oil Use in US Households.  

U.S. Energy Information Administration (EIA)

Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, ... home heating oil prices in the Northeast and New England, ...

372

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

SciTech Connect

The main contribution of this report is to characterize the underlying residential and transport sector end use energy consumption in India. Each sector was analyzed in detail. End-use sector-level information regarding adoption of particular technologies was used as a key input in a bottom-up modeling approach. The report looks at energy used over the period 1990 to 2005 and develops a baseline scenario to 2020. Moreover, the intent of this report is also to highlight available sources of data in India for the residential and transport sectors. The analysis as performed in this way reveals several interesting features of energy use in India. In the residential sector, an analysis of patterns of energy use and particular end uses shows that biomass (wood), which has traditionally been the main source of primary energy used in households, will stabilize in absolute terms. Meanwhile, due to the forces of urbanization and increased use of commercial fuels, the relative significance of biomass will be greatly diminished by 2020. At the same time, per household residential electricity consumption will likely quadruple in the 20 years between 2000 and 2020. In fact, primary electricity use will increase more rapidly than any other major fuel -- even more than oil, in spite of the fact that transport is the most rapidly growing sector. The growth in electricity demand implies that chronic outages are to be expected unless drastic improvements are made both to the efficiency of the power infrastructure and to electric end uses and industrial processes. In the transport sector, the rapid growth in personal vehicle sales indicates strong energy growth in that area. Energy use by cars is expected to grow at an annual growth rate of 11percent, increasing demand for oil considerably. In addition, oil consumption used for freight transport will also continue to increase .

de la Rue du Can, Stephane; Letschert, Virginie; McNeil, Michael; Zhou, Nan; Sathaye, Jayant

2009-03-31T23:59:59.000Z

373

ASHRAE and residential ventilation  

SciTech Connect

In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the logical place to provide leadership. This leadership has been demonstrated most recently by the publication of the first nationally recognized standard on ventilation in homes, ASHRAE Standard 62.2-2003, which builds on work that has been part of ASHRAE for many years and will presumably continue. Homeowners and occupants, which includes virtually all of us, will benefit from the application of Standard 62.2 and use of the top ten list. This activity is exactly the kind of benefit to society that the founders of ASHRAE envisioned and is consistent with ASHRAE's mission and vision. ASHRAE members should be proud of their Society for taking leadership in residential ventilation.

Sherman, Max H.

2003-10-01T23:59:59.000Z

374

Fuel choice and aggregate energy demand in the commercial sector  

SciTech Connect

This report presents a fuel choice and aggregate-demand model of energy use in the commercial sector of the United States. The model structure is dynamic with short-run fuel-price responses estimated to be close to those of the residential sector. Of the three fuels analyzed, electricity consumption exhibits a greater response to its own price than either natural gas or fuel oil. In addition, electricity price increases have the largest effect on end-use energy conservation in the commercial sector. An improved commercial energy-use data base is developed which removes the residential portion of electricity and natural gas use that traditional energy-consumption data sources assign to the commercial sector. In addition, household and commercial petroleum use is differentiated on a state-by-state basis.

Cohn, S.

1978-12-01T23:59:59.000Z

375

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsŽ  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

376

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential BuildingsŽ  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, Draft Environmental Assessment for Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential Buildings" and 10 CFR Part 435 "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Low-Rise Residential Buildings" (DOE/EA-1778) 2 SUMMARY The U.S. Department of Energy (DOE) has prepared this Environmental Assessment (EA) for DOE's Proposed Rule, 10 CFR Part 433, "Energy Conservation and Fossil Fuel-Generated Energy Consumption Reduction Standards for the Design and Construction of New Federal Commercial and Multi-Family High-Rise Residential

377

Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control  

Science Conference Proceedings (OSTI)

Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established reburning chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

Robert A. Carrington; William C. Hecker; Reed Clayson

2008-06-01T23:59:59.000Z

378

Southwest Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Electric Cooperative - Residential Energy Efficiency Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Cooling Maximum Rebate Geothermal Heat Pump: 10 tons for Residential, 50 tons for Commercial Energy Audit Repairs: $500 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Geothermal Heat Pump (New Units): $750/ton Geothermal Heat Pump (Replacement Units): $200/ton Dual Fuel Heat Pump: $150/ton Room AC: $50 Energy Audit Repairs: 50% of cost Provider Southwest Electric Cooperative Southwest Electric Cooperative offers rebates to its customers that purchase energy efficient heating and air conditioning equipment . This

379

State heating oil and propane program: Final technical report, 1991-92 heating season, Minnesota Department of Public Service  

SciTech Connect

This report summarizes the survey approach and results of the Department of Public Service`s survey of retail fuel oil and propane prices during the 1991-92 heating season. The semi-monthly phone surveys were conducted in cooperation with the U. S. Department of Energy`s State Fuel Oil and Propane Program, which coordinated surveys of heating fuel, prices by 25 eastern and midwest states. This federal/state program serves as a method for fast collection, analysis, and dissemination of information on current residential prices. No other information source meets needs for timely retail, price information over the course of the heating season.

1992-05-29T23:59:59.000Z

380

Residential energy-consumption survey: consumption and expenditures, April 1978-March 1979  

SciTech Connect

Tables present data on energy consumption and expenditures for US households during a 12-month period. The total amount of energy consumed by the residential sector from April 1978 through March 1979 is estimated to have been 10,563 trillion Btu with an average household consumption of 138 million Btu. Table 1 summarizes residential energy consumption for all fuels (totals and averages) as wells as total amounts consumed and expenditures for each of the major fuel types (natural gas, electricity, fuel oil, and liquid petroleum gas). Tables 2 and 3 give the number of households and the average energy prices, respectively, for each of the major fuel types. In Tables 4 to 9, totals and averages for both consumption and expenditures are given for each of the major fuels. The consumption of each fuel is given first for all households using the fuel. Then, households are divided into those that use the fuel as their main source of heat and those using the fuel for other purposes. Electricity data (Tables 5 to 7) are further broken down into households that use electricity for air conditioning and those not using it for this purpose. Limited data are also presented on households that use each of the major fuels for heating water. Each of the consumption tables is given for a variety of general household features, including: geographical, structural and physical, and demographic characteristics. Tables 10 to 18 present the same information for the subgroup of households living in single-family owner-occupied detached houses. The third set of tables (19 to 27) is limited to households that paid directly for all of the energy they used. Tables 28 to 36 provide variance estimates for the data.

Not Available

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CONFIRMATORY SURVEY OF THE FUEL OIL TANK AREA HUMBOLDT BAY POWER PLANT EUREKA, CALIFORNIA  

SciTech Connect

During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISEs opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&Es Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&Es onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

WADE C. ADAMS

2012-04-09T23:59:59.000Z

382

New York Home Heating Oil Prices - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

The severity of this spot price increase is causing dramatic changes in residential home heating oil prices, although residential price movements are usually a ...

383

Winter fuels report. Week ending, January 26, 1996  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers analysts, and State and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks on a U.S. level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a U.S. level; (2) propane net production, imports and stocks on a U.S. level and for PADD`s I, II, and III; (3) natural gas supply and disposition and underground storage for the U.S. and consumption for all PADD`s; as well as selected National average prices; (4) residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the U.S. and selected cities; and (6) a 6-10 Day and 30-Day outlook for temperature and precipitation and U.S. total heating degree-days by city. The distillate fuel oil and propane supply data are collected and published weekly. The data are based on company submissions for the week ending 7:00 a.m. for the preceding Friday. Weekly data for distillate fuel oil are also published in the Weekly Petroleum Status Report. Monthly data for distillate fuel oil and propane are published in the Petroleum Supply Monthly. The residential pricing information is collected by the EIA and the State Energy Offices on a semimonthly basis for the EIA/State Heating Oil and Propane Program. The wholesale price comparison data are collected daily and are published weekly. Residential heating fuel prices are derived from price quotes for home delivery of No. 2 fuel oil and propane. As such, they reflect prices in effect on the dates shown. Wholesale heating oil and propane prices are estimates using a sample of terminal quotes to represent average State prices on the dates given.

NONE

1996-01-23T23:59:59.000Z

384

Microsoft PowerPoint - 2011WinterFuels_finalv3.pptx [Read-Only]  

Gasoline and Diesel Fuel Update (EIA)

Sh Sh t T d Wi t F l O tl k EIA Short-Term and Winter Fuels Outlook f for Winter Fuels Outlook Conference National Association of State Energy Officials (NASEO) O b 12 2011 | h C October 12, 2011 | Washington, DC by www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Howard Gruenspecht, Acting Administrator Overview * EIA expects higher average fuel bills this winter heating season for heating oil, propane, and natural gas, but little change in electricity bills. y * Higher fuel prices are the main driver - 10% higher heating oil prices (than last winter) g g p ( ) - 7% higher propane prices - 4% higher residential natural gas prices - 1% higher electricity prices * Projected average expenditures for heating oil users are at their highest level ever. 2 Howard Gruenspecht, Winter Fuels Outlook

385

Residential Buildings Historical Publications reports, data and ...  

U.S. Energy Information Administration (EIA)

Space-Heating Energy Consumption in U.S. Households by Climate Zone, 2001 ... 9.1 Fuel Oil ... Specific questions on this product may be directed to:

386

Residential Buildings Historical Publications reports, data and ...  

U.S. Energy Information Administration (EIA)

Total Energy Consumption in U.S. Households by Four Most Populated States, ... 4.1 Fuel Oil ... Specific questions on this product may be directed to:

387

Residential heating costs: a comparison of geothermal, solar and conventional resources  

DOE Green Energy (OSTI)

The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location - being dependent on the local prices of conventional energy supplies, local solar insolation, cimate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

Bloomster, C.H.; Garrett-Price, B.A.; Fassbender, L.L.

1980-08-01T23:59:59.000Z

388

Winter fuels report  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

1990-10-04T23:59:59.000Z

389

Winter fuels report  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1994-10-01T23:59:59.000Z

390

Ohio Weekly Heating Oil and Propane Prices (October - March)  

U.S. Energy Information Administration (EIA)

Wholesale Heating Oil : Residential ... Weekly heating oil and propane prices are only collected during the heating season which extends from ... 3/20/2013: Next ...

391

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network (OSTI)

Total Energy Source Demand Coal, Oil, Gas, Heat, Electricity Demography Japans population, an important factor in predicting residential energy demand as well

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

392

A Contrast Between Distillate Fuel Oil Markets in Autumn 1996 and ...  

U.S. Energy Information Administration (EIA)

likelihood of losing money, not making it, on its inventories. This economic disincentive to store oil was powerful. While some

393

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

2 2 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.5 12.2 30.0 98 40 77.1 27 829 0.34 650 231 Census Region and Division Northeast 8.8 6.0 17.4 138 48 94.5 34 1,163 0.40 796 283 New England 2.5 1.9 5.9 131 43 101.9 36 1,106 0.36 863 309 Middle Atlantic 6.3 4.1 11.5 142 50 91.5 32 1,191 0.42 769 272

394

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.4 14.0 33.3 87 37 70.3 27 513 0.22 414 156 Census Region and Division Northeast 9.1 6.3 17.8 140 49 96.0 37 808 0.28 556 212 New England 2.6 2.0 5.8 130 46 102.1 39 770 0.27 604 233 Middle Atlantic 6.5 4.2 12.1 144 51 93.6 36 826 0.29 537 204

395

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

90 90 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 16.3 13.5 33.2 77 31 63.9 23 609 0.25 506 181 Census Region and Division Northeast 8.9 6.4 19.3 121 40 87.7 32 950 0.32 690 253 New England 2.5 2.1 5.9 121 43 99.0 39 956 0.34 784 307 Middle Atlantic 6.3 4.4 13.4 121 39 83.2 30 947 0.31 652 234

396

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

1 1 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 14.6 11.0 28.9 116 44 87.9 32 1,032 0.39 781 283 Census Region and Division Northeast 8.9 5.9 18.0 158 51 103.5 36 1,405 0.46 923 323 New England 2.4 1.7 5.1 148 50 105.3 36 1,332 0.45 946 327 Middle Atlantic 6.5 4.1 12.8 161 52 102.9 36 1,435 0.46 915 322

397

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

0 0 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 15.4 11.6 29.7 131 51 99.0 36 1,053 0.41 795 287 Census Region and Division Northeast 9.2 6.0 18.2 176 59 116.2 42 1,419 0.47 934 335 New England 2.7 2.0 6.0 161 53 118.3 42 1,297 0.43 954 336 Middle Atlantic 6.5 4.1 12.2 184 61 115.3 42 1,478 0.49 926 335

398

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

7 7 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures Total per Floor- per Square per per per Total Total space (1) Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.2 11.0 23.2 97 46 81.1 31 694 0.33 578 224 Census Region and Division Northeast 8.2 6.2 14.5 136 57 101.3 40 950 0.40 710 282 New England 3.1 2.7 5.8 126 60 111.5 45 902 0.43 797 321 Middle Atlantic 5.2 3.4 8.8 143 56 95.1 38 988 0.39 657 260

399

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

3 3 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 13.8 11.6 29.8 92 36 77.5 28 604 0.23 506 186 Census Region and Division Northeast 7.9 5.9 17.2 133 45 98.7 36 854 0.29 636 234 New England 2.8 2.4 6.6 125 45 105.6 40 819 0.30 691 262 Middle Atlantic 5.0 3.5 10.6 138 45 94.8 34 878 0.29 605 219

400

Residential Buildings Historical Publications reports, data and housing  

Gasoline and Diesel Fuel Update (EIA)

4 4 Average Fuel Oil/Kerosene Residential Buildings Consumption Expenditures per Total per Square per per per Total Total Floorspace Building Foot per Household per Square per Household Households Number (billion (million (thousand Household Member Building Foot Household Member Characteristics (million) (million) sq. ft.) Btu) Btu) (million Btu) (million Btu) (dollars) (dollars) (dollars) (dollars) Total U.S. Households 17.5 13.8 32.0 91 39 71.9 27 697 0.30 550 203 Census Region and Division Northeast 9.5 6.6 18.2 141 51 97.3 35 1,066 0.38 734 266 New England 2.5 1.9 5.6 140 49 108.8 39 1,105 0.38 856 306 Middle Atlantic 7.0 4.6 12.6 142 52 93.2 34 1,050 0.38 690 252

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Winter fuels report, week ending October 6, 1995  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topcs: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s, I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Informatoin Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

1995-10-06T23:59:59.000Z

402

Winter fuels report. Week ending, October 21, 1994  

Science Conference Proceedings (OSTI)

Demand for distillate fuel oil is expected to show a slight decline this winter (October 1, 1994-March 31, 1995) from last, according to the Energy Information Administration`s (EIA) 4th Quarter 1994 Short-Term Energy Outlook (STEO) Mid-World Oil Price Case forecast. EIA projects winter demand to decline one percent to 3.3 million barrels per day, assuming normal weather conditions. The effects of expected moderate growth in the economy and industrial production will likely be offset by much warmer temperatures than those a year ago. EIA projects prices for both residential heating oil and diesel fuel to be moderately higher than prices last winter. Increases are likely, primarily because crude oil prices are expected to be higher than they were a year earlier (Table FE5).

Zitomer, M.; Griffith, A.; Zyren, J.

1994-10-01T23:59:59.000Z

403

Winter fuels report, week ending November 16, 1990  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs., 12 tabs.

1990-11-21T23:59:59.000Z

404

Residential | OpenEI  

Open Energy Info (EERE)

Residential Residential Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (7 months ago) Date Updated July 02nd, 2013 (5 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

405

Residential Renewable Energy Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Renewable Energy Tax Credit Residential Renewable Energy Tax Credit Residential Renewable Energy Tax Credit < Back Eligibility Residential Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate Solar-electric systems placed in service after 2008: no maximum Solar water heaters placed in service after 2008: no maximum Wind turbines placed in service after 2008: no maximum Geothermal heat pumps placed in service 2008: no maximum Fuel cells: 500 per 0.5 kW Program Info Start Date 1/1/2006 Expiration Date 12/31/2016 Program Type Personal Tax Credit Rebate Amount 30% Provider U.S. Internal Revenue Service Established by ''The Energy Policy Act of 2005'', the federal tax credit for residential energy property initially applied to solar-electric

406

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Adam R. 2008. Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. In

Coughlin, Katie

2013-01-01T23:59:59.000Z

407

Fuel consumption: industrial, residential, and general studies. Volume 2. 1977-October, 1979 (a bibliography with abstracts). Report for 1977-October 1979  

SciTech Connect

Citations of research on fuel supply, demand, shortages, and conservation through effective utilization are presented. A few abstracts pertain to energy consumption in the agricultural sector, fuel substitution, economic studies, and environmental concerns relating to energy consumption. Bibliographies on electric power consumption and fuel consumption by transportation also are available. (This updated bibliography contains 159 abstracts, 29 of which are new entries to the previous edition.)

Hundemann, A.S.

1979-11-01T23:59:59.000Z

408

PROGRESS IN RESIDENTIAL ENERGY CONSERVATION - A MULTI COUNTRY PERSPECTIVE -  

E-Print Network (OSTI)

il Figure 5. Co~ervation in oil-hemted dwellings: 1972/78 (houses) Sources; Canadian oil company, Agence pour leoGer;un Easo, Swedish OK, Fuel Oil and Heat INDEX, l972w100

Schipper, Lee

2013-01-01T23:59:59.000Z

409

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

410

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

411

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

412

The Impact of Residential Density on Vehicle Usage and Energy Consumption  

E-Print Network (OSTI)

Understanding total residential transportation energy usageon Vehicle Usage and Energy Consumption total annual fuelUsage and Energy Consumption Gasoline-equivalent gallons per year total

Golob, Thomas F; Brownstone, David

2005-01-01T23:59:59.000Z

413

State heating oil and propane program: Final report. Survey of No.2 heating oil and propane prices at the retail level, October 1997 through March 1998  

SciTech Connect

The Energy Efficiency Division of the Vermont Department of Public Service (DPS) monitored the price and inventory of residential heating oil and propane during the 1997--98 heating season under a grant from the US Department of Energy`s Energy Information Administration (EIA). DPS staff collected data biweekly between October 5, 1997 and March 16, 1998 on the retail price of {number_sign}2 home heating oil and propane by telephone survey. Propane price quoted was based on the rate for a residential home heating customer using 1,000+ per year. The survey included a sample of fuel dealers selected by the EIA, plus additional dealers and fuels selected by the DPS. The EIA weighted, analyzed, and reported the data collected from their sample.

1998-11-01T23:59:59.000Z

414

Columbia River PUD - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Columbia River PUD - Residential Energy Efficiency Rebate Programs Columbia River PUD - Residential Energy Efficiency Rebate Programs Columbia River PUD - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Ventilation Manufacturing Heat Pumps Water Heating Windows, Doors, & Skylights Maximum Rebate Weatherization Measures: rebate amounts cannot exceed 50% of the total project cost Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Electric Clothes Washers: $50 Gas, Oil or Propane Clothes Washers: $20 Refrigerators/Freezers: $15 Duct Sealing: $400 Ductless Heat Pumps: $1,000 Air-source Heat Pumps: $700 - $1,100

415

Residential Wood Residential wood combustion (RWC) is  

E-Print Network (OSTI)

Residential Wood Combustion Residential wood combustion (RWC) is increasing in Europe because PM2.5. Furthermore, other combustion- related sources of OA in Europe may need to be reassessed. Will it affect global OA emission estimates? Combustion of biofuels is globally one of the major OA sources

416

Monthly 2008 Utility and Nonutility Fuel Receipts and Fuel Quality...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tags fossil fuel receipts, coal receipts, oil receipts, gas receipts, fossil fuel consumption, electricity generating fuel Dataset Ratings Overall 0 No votes yet Data...

417

2005 Residential Energy Consumption Survey  

U.S. Energy Information Administration (EIA) Indexed Site

G (2005) - Household Fuel Oil or Kerosene Usage Form G (2005) - Household Fuel Oil or Kerosene Usage Form OMB No. 1905-0092, Expiring May 31, 2008 Household Fuel Oil or Kerosene Usage Form Service Address: If the customer account number is not shown on the label, please enter it here. STEP 1 Customer Account: __/__/__/__/__/__/__/__/__/__/__/__/__/__/__/ STEP 2 Now, please turn the page and answer the seven questions for the household identified above. Completed forms are due by March 4, 2006. If you have any questions, please call (toll-free) 1-NNN-NNN-NNNN. Ask for the Supplier Survey Specialist. This report is mandatory under Public Law 93-275, as amended. See the enclosed Answers to Frequently Asked Questions for more details concerning confidentiality and sanctions.

418

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

419

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network (OSTI)

Central Air, Fuels = Oil and Gas, Other = LPG and Misc. (3)Central Air, Fuels = Oil and Gas, LPG and Misc. (3) Sources:Central Air, Fuels = Oil and Gas, Other = LPG and Misc. (3)

Johnson, F.X.

2010-01-01T23:59:59.000Z

420

Combustion of EDS mid-distillate and refined shale-oil residual fuel in a gas turbine with large single-combustion chamber  

DOE Green Energy (OSTI)

The test fuels included a coal derived mid distillate recycle liquid from the EDS coal liquefaction process, produced by Exxon, and a hydroprocessed residual Paraho shale oil fraction originating from a US Government sponsored program. A BBC (Brown Boveri Co.) type 9 fully equipped 35 MW capacity gas turbine, located at BBC's test facilities near Basel, Switzerland, was utilized. The objective of the combustion test was to establish whether these alternate fuels can be fired in large single combustor turbines without deleterious effects to the turbine or environment. Nitrogen in the shale oil was on the order of 0.4 wt% while the EDS distillate contained slightly less than 10 wt% hydrogen. The test program entailed the firing of 600 barrels of each test fuel at varying turbine loads and a comparison of the results with those from a base case petroleum diesel fuel. Fuel bound nitrogen was not found to contribute significantly to NO/sub x/ emissions in contrast to other work reported earlier in subscale gas turbine tests. Water injection at 0.6 to 0.7 water-fo-fuel mass ratios was effective in meeting EPA requirements for NO/sub x/ emissions from the diesel, shale and coal derived fuels at full turbine load. Low fuel hydrogen content did not cause any operational or emission problems. Combustor wall temperature, the major problem with low hydrogen fuels, rose only slightly within acceptable limits.

Not Available

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

S&FP Program Promotes Alternative Fuels to Cut Need for Foreign Oil  

DOE Green Energy (OSTI)

A detailed description of the history of EPAct's State & Alternative Fuel Provider Program and what fleets need to do to comply to its regulations.

Not Available

2002-04-01T23:59:59.000Z

422

Technology Assessment of Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

Significant research and development (R&D) investments in fuel cell technology have led to functioning prototypes of residential fuel power systems operating on natural gas. Efforts by at least four leading companies are expected to lead to early field trials of residential power systems in 2000 and early 2001, followed by pre-commercial prototypes during 2001-2002, and commercial introduction in the 2002-2005 time frame. Other technology companies are expected to follow suit.

2000-12-12T23:59:59.000Z

423

Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Alabama Electric Cooperative - Residential Energy Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program Central Alabama Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $1,200 Program Info State Alabama Program Type Utility Rebate Program Rebate Amount Touchstone Energy Homes with Geothermal/Dual-Fuel Heat Pumps: $200 for whole home, plus $200 per ton of heat pump Provider Central Alabama Electric Cooperative Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a

424

Coweta-Fayette EMC - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coweta-Fayette EMC - Residential Energy Efficiency Rebate Program Coweta-Fayette EMC - Residential Energy Efficiency Rebate Program Coweta-Fayette EMC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Windows, Doors, & Skylights Maximum Rebate Double-Pane/Storm Windows: $500 Programmable Thermostat: $50 per home Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Existing Homes Electric Heat Pumps: $150 - $300 Dual Fuel Heat Pumps: $200 Geothermal Heat Pumps: $1000 Water Heaters: $250 Attic Insulation: $90 - $150 Floor Insulation: $150 Double-Pane/Storm Windows: $50/window Programmable Thermostat: $25/unit

425

Potential use of wood and agriculture wastes as steam generator fuel for thermal enhanced oil recovery. Final report  

DOE Green Energy (OSTI)

Enhanced oil recovery by steam injection methods produces over 200,000 barrels per day of crude oil in California. A sizeable portion of the produced crude, up to 40% for some projects, may be burned to generate steam for injection into the reservoir. The purpose of this study is to evaluate the potential to use wood and agriculture wastes to replace crude oil as steam generator fuel. The Bakersfield area of California's San Joaquin Valley is the focus for this paper. Production from thermal EOR methods centers around Bakersfield and agriculture and wood wastes are available from the San Joaquin Valley and the nearby Sierra Nevada mountains. This paper documents the production of waste materials by county, estimated energy value of each material, and estimated transportation cost for each material. Both agriculture and wood wastes were found to be available in sizeable quantities and could become attractive steam generation fuels. However, some qualifications need to be made on the use of these materials. Transportation costs will probably limit the range of shipping these materials to perhaps 50 to 100 miles. Availability is subject to competition from existing and developing uses of these materials, such as energy sources in their immediate production area. Existing steam generators probably cannot be retrofitted to burn these materials. Fluidized bed combustion, or low Btu gasification, may be a good technology for utilization. FBC or FBG could accept a variety of waste materials. This will be important because the amount of any single waste may not be large enough to support the energy requirements of a good size thermal f a good size thermal EOR operation.

Kosstrin, H.M.; McDonald, R.K.

1979-01-01T23:59:59.000Z

426

Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC  

Buildings Energy Data Book (EERE)

3 3 Efficiency Standards for Residential Boilers Effective for products manufactured before September 1, 2012 AFUE(%) (1) Boilers (excluding gas steam) Gas Steam Boilers Effective for products manufactured on or after September 1, 2012 (2) AFUE (%) (1) No Constant Burning Pilot Automatic Means for Adjusting Water Temperature Gas Steam No Constant Burning Pilot Oil Hot Water Automatic Means for Adjusting Water Temperature Oil Steam None Electric Hot water Automatic Means for Adjusting Water Temperature Electric Steam None Note(s): Source(s): 84 82 None None 1) Annual Fuel Utilization Efficiency. 2) Boilers manufactured to operate without any need for electricity, an electric connection, electric gauges, electric pumps, electric wires, or electric devices are not required to comply with the revised standards that take effect September 1,

427

Residential Alternative Energy System Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Alternative Energy System Tax Credit Residential Alternative Energy System Tax Credit Residential Alternative Energy System Tax Credit < Back Eligibility Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Heating & Cooling Commercial Heating & Cooling Solar Heating Buying & Making Electricity Home Weatherization Water Water Heating Wind Maximum Rebate $500 per individual taxpayer; up to $1,000 per household Program Info Start Date 1/1/2002 Expiration Date none State Montana Program Type Personal Tax Credit Rebate Amount 100% Provider Montana Department of Environmental Quality Residential taxpayers who install an energy system using a recognized non-fossil form of energy on their home after December 31, 2001 are eligible for a tax credit equal to the amount of the cost of the system and

428

Cuivre River Electric - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cuivre River Electric - Residential Energy Efficiency Rebate Cuivre River Electric - Residential Energy Efficiency Rebate Programs Cuivre River Electric - Residential Energy Efficiency Rebate Programs < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Geothermal Heat Pumps: Maximum of 10 tons for residential systems and 50 tons for commercial systems Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Water Heater: $50 Geothermal Heat Pumps: $750/ton Dual Fuel Air-source Heat Pumps: $150/ton Provider Cuivre River Electric Cuivre River Electric Cooperative, through the Take Control and Save program, offers rebates for cooperative members who purchase efficient geothermal and dual fuel heat pumps, and electric water heaters. Water

429

Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Program Pee Dee Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Dual Fuel Heat Pumps: two systems per house Geothermal Heat Pumps: $1,000 Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $500 Geothermal Heat Pumps: $200/ton Electric Water Heaters: $200 - $250, depending on size Provider Pee Dee Electric Cooperative Pee Dee Electric Cooperative offers a variety of programs for residential members to save energy in participating homes. Rebates are available for

430

Burlington Electric Department - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Burlington Electric Department - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Appliances &...

431

Columbia Rural Electric Association - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Columbia Rural Electric Association - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home...

432

Ozarks Electric Cooperative - Residential Energy Efficiency Loan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ozarks Electric Cooperative - Residential Energy Efficiency Loan Program Ozarks Electric Cooperative - Residential Energy Efficiency Loan Program Eligibility Residential Savings...

433

Kootenai Electric Cooperative - Residential Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kootenai Electric Cooperative - Residential Efficiency Rebate Program Kootenai Electric Cooperative - Residential Efficiency Rebate Program Eligibility Residential Savings For Home...

434

Southwest Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Southwest Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

435

Kirkwood Electric - Residential Energy Efficiency Rebate Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Kirkwood Electric - Residential Energy Efficiency Rebate Program Kirkwood Electric - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating &...

436

Central Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Central Electric Cooperative - Residential Energy Efficiency Rebate Programs Eligibility Construction Residential Savings For Other...

437

Cherokee Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cherokee Electric Cooperative - Residential Energy Efficiency Loan Programs Cherokee Electric Cooperative - Residential Energy Efficiency Loan Programs Eligibility Residential...

438

Marietta Power & Water - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power & Water - Residential Energy Efficiency Rebate Program Marietta Power & Water - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For...

439

SRP - Residential Energy Efficiency Rebate Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SRP - Residential Energy Efficiency Rebate Program SRP - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Home Weatherization Commercial...

440

Barron Electric Cooperative - Residential Energy Resource Conservation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Barron Electric Cooperative - Residential Energy Resource Conservation Loan Program Eligibility Residential Savings For Home...

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cedar Falls Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program Cedar Falls Utilities - Residential Energy Efficiency Rebate Program Eligibility Residential Savings For Heating & Cooling Commercial...

442

TOPIC Brief BUILDING TECHNOLOGIES PROGRAM Lighting: Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Residential and Commercial Requirements TOPIC BRIEF 1 Lighting: Residential and Commercial Requirements Residential Lighting Requirements The 2009 International Energy...

443

Minnesota Valley Electric Cooperative -Residential Energy Resource...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Resource Conservation Loan Program Minnesota Valley Electric Cooperative -Residential Energy Resource Conservation Loan Program Eligibility Residential Savings...

444

Lake Region Electric Cooperative - Residential Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Region Electric Cooperative - Residential Energy Efficiency Rebate Program Lake Region Electric Cooperative - Residential Energy Efficiency Rebate Program Eligibility Residential...

445

Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Program Co-Mo Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Cooling Maximum Rebate Geothermal Heat Pumps: 10 ton maximum for Residential, 50 ton maximum for Commercial Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Room AC: $50 Water Heater: $50 Air Source Heat Pumps: $150 per ton Dual Fuel Air Source Heat Pumps: $300 per ton Geothermal Heat Pumps (Closed Loop): up to $850 per ton Geothermal Heat Pumps (Open Loop or Replacement): $150 per ton Provider Co-Mo Electric Cooperative Co-Mo Electric Cooperative provides rebates to residential and commercial

446

Residential energy use and conservation in Venezuela: Results and implications of a household survey in Caracas  

SciTech Connect

This document presents the final report of a study of residential energy use in Caracas, the capital of Venezuela. It contains the findings of a household energy-use survey held in Caracas in 1988 and examines options for introducing energy conservation measures in the Venezuelan residential sector. Oil exports form the backbone of the Venezuelan economy. Improving energy efficiency in Venezuela will help free domestic oil resources that can be sold to the rest of the world. Energy conservation will also contribute to a faster recovery of the economy by reducing the need for major investments in new energy facilities, allowing the Venezuelan government to direct its financial investments towards other areas of development. Local environmental benefits will constitute an important additional by-product of implementing energy-efficiency policies in Venezuela. Caracas`s residential sector shows great potential for energy conservation. The sector is characterized by high saturation levels of major appliances, inefficiency of appliances available in the market, and by careless patterns of energy use. Household energy use per capita average 6.5 GJ/per year which is higher than most cities in developing countries; most of this energy is used for cooking. Electricity accounts for 41% of all energy use, while LPG and natural gas constitute the remainder. Specific options for inducing energy conservation and energy efficiency in Caracas`s residential sector include energy-pricing policies, fuel switching, particularly from electricity to gas, improving the energy performance of new appliances and customer information. To ensure the accomplishment of an energy-efficiency strategy, a concerted effort by energy users, manufacturers, utility companies, government agencies, and research institutions will be needed.

Figueroa, M.J.; Ketoff, A.; Masera, O.

1992-10-01T23:59:59.000Z

447

PPL Electric Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program PPL Electric Utilities - Residential Energy Efficiency Rebate Program Eligibility Multi-Family Residential Residential Savings For Home...

448

Atmos Energy (Gas) - Residential Efficiency Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Atmos Energy (Gas) - Residential Efficiency Program Atmos Energy (Gas) - Residential Efficiency Program Eligibility Low-Income Residential Residential Savings For Heating & Cooling...

449

Benton PUD - Residential Energy Efficiency Rebate Programs |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Programs Benton PUD - Residential Energy Efficiency Rebate Programs Eligibility Multi-Family Residential Residential Savings For Appliances &...

450

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

451

Residential Renewable Energy Tax Credit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Tax Credit Renewable Energy Tax Credit Residential Renewable Energy Tax Credit < Back Eligibility Residential Savings Category Solar Water Heat Photovoltaics Wind Fuel Cells Geothermal Heat Pumps Other Solar-Electric Technologies Fuel Cells using Renewable Fuels Maximum Rebate Solar-electric systems placed in service after 2008: no maximum Solar water heaters placed in service after 2008: no maximum Wind turbines placed in service after 2008: no maximum Geothermal heat pumps placed in service after 2008: no maximum Fuel cells: $500 per 0.5 kW Program Info Program Type Personal Tax Credit Rebate Amount 30% Established by The Energy Policy Act of 2005, the federal tax credit for residential energy property initially applied to solar-electric systems, solar water heating systems and fuel cells. The Energy Improvement and

452

Bio-Heating Oil Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) Bio-Heating Oil Tax Credit (Personal) < Back Eligibility Commercial Residential Savings Category Biofuels Alternative Fuel Vehicles Bioenergy Maximum Rebate $500 per year Program Info Start Date 01/01/2008 State Maryland Program Type Personal Tax Credit Rebate Amount $0.03/gallon of biodiesel Provider Revenue Administration Division Maryland allows individuals and corporations to take an income tax credit of $0.03/gallon for purchases of biodiesel used for space heating or water heating. The maximum credit is $500 per year. It may not be refunded or carried over to subsequent years. In order to qualify for the tax credit, the heating oil must be at least 5% biodiesel sourced from U.S. Environmental Protection Agency (EPA) approved feedstocks or be accepted

453

Global residential appliance standards  

SciTech Connect

In most countries, residential electricity consumption typically ranges from 20% to 40% of total electricity consumption. This energy is used for heating, cooling, refrigeration and other end-uses. Significant energy savings are possible if new appliance purchases are for models with higher efficiency than that of existing models. There are several ways to ensure or encourage such an outcome, for example, appliance rebates, innovative procurement, and minimum efficiency standards. This paper focuses on the latter approach. At the present time, the US is the only country with comprehensive appliance energy efficiency standards. However, many other countries, such as Australia, Canada, the European Community (EC), Japan and Korea, are considering enacting standards. The greatest potential impact of minimum efficiency standards for appliances is in the developing countries (e.g., China and India), where saturations of household appliances are relatively low but growing rapidly. This paper discusses the potential savings that could be achieved from global appliance efficiency standards for refrigerators and freezers. It also could be achieved from global appliance efficiency standards for refrigerators and freezers. It also discusses the impediments to establishing common standards for certain appliance types, such as differing test procedures, characteristics, and fuel prices. A methodology for establishing global efficiency standards for refrigerators and freezers is described.

Turiel, I.; McMahon, J.E. [Lawrence Berkeley Lab., CA (US); Lebot, B. [Agence Francaise pour la Maitrise de l`Energie, Valbonne (FR)

1993-03-01T23:59:59.000Z

454

Building Technologies Office: Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Buildings Residential Buildings to someone by E-mail Share Building Technologies Office: Residential Buildings on Facebook Tweet about Building Technologies Office: Residential Buildings on Twitter Bookmark Building Technologies Office: Residential Buildings on Google Bookmark Building Technologies Office: Residential Buildings on Delicious Rank Building Technologies Office: Residential Buildings on Digg Find More places to share Building Technologies Office: Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links Success Stories Previous Next Warming Up to Pump Heat. Lighten Energy Loads with System Design. Cut Refrigerator Energy Use to Save Money. Tools EnergyPlus Whole Building Simulation Program

455

Butler Rural Electric Cooperative - Residential Rebate Program (Ohio) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Butler Rural Electric Cooperative - Residential Rebate Program Butler Rural Electric Cooperative - Residential Rebate Program (Ohio) Butler Rural Electric Cooperative - Residential Rebate Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Heat Pumps Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Geothermal Systems (New Installations): $1,200 Geothermal Systems (Replacement Systems): $600 Dual Fuel Heating Systems (New Installations): $600 Dual Fuel Heating Systems (Replacements): $300 Air Source Heat Pump Systems (New and Replacements): $300 Marathon Water Heaters: $350 - $550 Provider Butler Rural Electric Cooperative, Inc. Butler Rural Electric Cooperative provides rebates for geothermal heat pumps, dual fuel heating systems, and water heaters. A $1,200 rebate is

456

Residential Transportation Historical Publications reports, data and  

U.S. Energy Information Administration (EIA) Indexed Site

Historical Publications Historical Publications Residential Transportation reports, data tables and transportation questionnaires Released: May 2008 The Energy Information Administration conducts several core consumption surveys. Among them was the Residential Transportation Energy Consumption Survey (RTECS). RTECS was designed by EIA to provide information on how energy is used by households for personal vehicles. It was an integral part of a series of surveys (i.e., core consumption surveys) designed by EIA to collect data on energy used by end-use economic sectors. The RTECS collected data on the number and type of vehicles used by the household. For each vehicle, data were collected on the number of miles traveled (commonly called VMT) for the year, the number of gallons of fuel consumed, the type of fuel used, the priced paid for fuel, and the number of miles per gallon. Additional electronic releases are available on the Transportation homepage.

457

Buildings Energy Data Book: 2.3 Residential Sector Expenditures  

Buildings Energy Data Book (EERE)

3 3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015 241.7 2016 241.8 2017 243.0 2018 244.7 2019 246.4 2020 247.9 2021 250.4 2022 253.3 2023 255.6 2024 257.8 2025 260.3 2026 263.2 2027 266.0 2028 267.6 2029 268.1 2030 269.7 2031 272.9 2032 276.6 2033 280.4 2034 284.6 2035 288.6 Note(s): Source(s): 1) Residential petroleum products include distillate fuel oil, LPG, and kerosene. EIA, State Energy Data 2009: Prices and Expenditures, Jun. 2011, Table 2 for 1980-2009; EIA, Annual Energy Outlook 2012 Early Release, Jan. 2012, Table

458

The Fuel Situation  

Science Conference Proceedings (OSTI)

The United States has an abundance of energy resources; fossil fuels (mostly coal and oil shale) adequate for centuries

J. C. Fisher

1974-01-01T23:59:59.000Z

459

OpenEI - Residential  

Open Energy Info (EERE)

Commercial and Commercial and Residential Hourly Load Profiles for all TMY3 Locations in the United States http://en.openei.org/datasets/node/961 This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols).  This dataset also includes the residential/">Residential Energy Consumption Survey (RECS) for statistical references of building types

460

Residential Price - Marketers  

U.S. Energy Information Administration (EIA)

Average Price of Natural Gas Delivered to Residential and Commercial Consumers by Local Distribution and Marketers in Selected States (Dollars per Thousand Cubic Feet ...

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Essays on residential desegregation  

E-Print Network (OSTI)

Many ethnically diverse countries have policies that encourage integration across ethnic groups. This dissertation investigates the impact and welfare implications of a residential desegregation policy in Singapore, the ...

Wong, Maisy

2008-01-01T23:59:59.000Z

462

Choosing a Residential Window  

NLE Websites -- All DOE Office Websites (Extended Search)

Choosing a Residential Window LBNLs Windows and Daylighting Group provides technical support to government and industry efforts to help consumers and builders choose...

463

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

464

Table 4a. U.S. Crude Oil and Liquid Fuels Supply, Consumption, and ...  

U.S. Energy Information Administration (EIA)

Total Commercial Inventory ..... 1,082 1,112 1,123 1,111 1,097 1,122 1,126 1,085 1,092 1,127 1,138 1,097 1,111 1,085 1,097 Crude Oil in SPR ...

465

Winter Fuels Report for the week ending November 2, 1990  

SciTech Connect

The report is to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all Petroleum Administration for Defense Districts (PADDs) and product supplied on a US level; propane net production, imports and stocks for PADD I, II, and III;natural gas supply and disposition and underground storage for the United States and consumption for all PADDs; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city.

1990-11-08T23:59:59.000Z

466

NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 Washington, DC Richard Newell, Administrator U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

10 1 10 1 NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 Washington, DC Richard Newell, Administrator U.S. Energy Information Administration EIA Short-Term and Winter Fuels Outlook Richard Newell, NASEO Winter Fuels Conference, October 2010 2 Overview * EIA expects average heating bills to be 3% higher this winter than last - an increase of $24 to a U.S. average of $986 per household * Due to higher fuel prices forecast this winter compared to last - 2% higher electricity prices - 8% higher heating oil prices - 6% higher residential natural gas prices - 11% higher propane prices * Bill increases are moderated by a warmer winter weather forecast for the South, but little change in the Midwest/West; slightly colder in the Northeast * Inventories of fuel oil and natural gas are currently well above typical levels,

467

Patterns of residential energy demand by type of household: white, black, Hispanic, and low- and nonlow-income  

SciTech Connect

This report compares patterns of residential energy use by white, black, Hispanic, low-income, and nonlow-income households. The observed downward trend in residential energy demand over the period of this study can be attributed primarily to changes in space-heating energy demand. Demand for space-heating energy has experienced a greater decline than energy demand for other end uses for two reasons: (1) it is the largest end use of residential energy, causing public attention to focus on it and on strategies for conserving it; and (2) space-heating expenditures are large relative to other residential energy expenditures. The price elasticity of demand is thus greater, due to the income effect. The relative demand for space-heating energy, when controlled for the effect of climate, declined significantly over the 1978-1982 period for all fuels studied. Income classes do not differ significantly. In contrast, black households were found to use more energy for space heating than white households were found to use, although those observed differences are statistically significant only for houses heated with natural gas. As expected, the average expenditure for space-heating energy increased significantly for dwellings heated by natural gas and fuel oil. No statistically significant increases were found in electricity expenditures for space heating. Electric space heat is, in general, confined to milder regions of the country, where space heating is relatively less essential. As a consequence, we would expect the electricity demand for space heating to be more price-elastic than the demand for other fuels.

Klein, Y.; Anderson, J.; Kaganove, J.; Throgmorton, J.

1984-10-01T23:59:59.000Z

468

A Contrast Between Distillate Fuel Oil Markets in Autumn 1996 and 1997  

Gasoline and Diesel Fuel Update (EIA)

Cheryl Cheryl J. Trench, an independent petroleum analyst, contributed to this article. Unless otherwise referenced, data in this article are taken from the following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208; Petroleum Supply Monthly, DOE/EIA-0109; Petroleum Supply Annual, DOE/EIA-0340; Petroleum Marketing Monthly, DOE/EIA-0380; Short-Term Energy Outlook, DOE/EIA-0202; and Short-Term Integrated Forecasting System. 1996 Factor 1997 Record low Previous end-winter stocks In the historical range High Prevailing prices $5/barrel lower (WTI) Falling prices Price expectations (overall) Stable prices Falling prices Price expectations (heating oil) Seasonally higher prices Strong growth Off-season demand Weaker growth Europe out-bidding US World competition for heating oil Europe's markets calm Untested; Trainor

469

Residential Buildings Historical Publications reports, data and ...  

U.S. Energy Information Administration (EIA)

Water-Heating Energy Consumption in U.S. Households by Four Most Populated States, ... 5.4 Fuel Oil ... Specific questions on this product may be directed to:

470

Buildings Energy Data Book: 2.4 Residential Environmental Data  

Buildings Energy Data Book (EERE)

7 7 2009 Methane Emissions for U.S. Residential Buildings Energy Production, by Fuel Type Fuel Type Petroleum 1.0 Natural Gas 38.8 Coal 0.0 Wood 2.6 Electricity (2) 51.6 Total 94.0 Note(s): Source(s): MMT CO2 Equivalent (1) 1) Sources of emissions include oil and gas production, processing, and distribution; coal mining; and utility and site combustion. Carbon Dioxide equivalent units are calculated by converting methane emissions to carbon dioxide emissions (methane's global warming potential is 23 times that of carbon dioxide). 2) Emissions of electricity generators attributable to the buildings sector. EIA, Emissions of Greenhouse Gases in the U.S. 2009, Mar. 2011, Table 18, p. 37 for energy production emissions; EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2009, April 2011, Table 3-10, p. 3-9 for stationary combustion emissions; and EIA, Annual Energy Outlook 2012 Early Release,

471

Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program  

SciTech Connect

The Connecticut low income weatherization program was developed in response to a 1987 rate docket order from the Connecticut Department of Public Utility Control (DPUC) to Connecticut Light Power Co., an operating subsidiary of Northeast Utilities (NU). (Throughout this report, NU is referred to as the operator of the program.) This program, known as the Weatherization Residential Assistance Partnership, or WRAP, was configured utilizing input from a collaborative group of interested parties to the docket. It was agreed that this program would be put forth by the electric utility, but would not ignore oil and gas savings (thus, it was to be fuel- blind''). The allocated cost of conservation services for each fuel source, however, should be cost effective. It was to be offered to those utility customers at or below 200 percent of the federal poverty levels, and provide a wide array of energy saving measures directed toward heating, water heating and lighting. It was felt by the collaborative group that this program would raise the level of expenditures per participant for weatherization services provided by the state, and by linking to and revising the auditing process for weatherization, would lower the audit unit cost. The program plans ranged from the offering of low-cost heating, water heating and infiltration measures, increased insulation levels, carpentry and plumbing services, to furnace or burner replacement. The program was configured to allow for very comprehensive weatherization and heating system servicing.

1991-12-01T23:59:59.000Z

472

RESIDENTIAL ENERGY CONSUMPTION SURVEY 1997 CONSUMPTION AND ...  

U.S. Energy Information Administration (EIA)

Residential Sector energy Intensities for 1978-1997 using data from EIA Residential Energy Consumption Survey.

473

Residential Humidity Control Strategies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Humidity Control Strategies Residential Humidity Control Strategies Armin Rudd Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas 2 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control goals  Comfort, and Indoor Air Quality  Control indoor humidity year-around, just like we do temperature  Durability and customer satisfaction  Reduce builder risk and warranty/service costs 2 3 Residential Energy Efficiency Stakeholder Meeting 2/29 - 3/2/2012 Austin, Texas Humidity control challenges 1. In humid cooling climates, there will always be times of the year when there is little sensible cooling load to create thermostat demand but humidity remains high * Cooling systems that modify fan speed and temperature set point based on humidity can help but are still limited

474

Residential Transportation Historical Data Tables for 1983-2001  

U.S. Energy Information Administration (EIA) Indexed Site

RTECS Historical Data Tables RTECS Historical Data Tables Residential Transportation Historical Data Tables Released: May 2008 Below are historical data tables from the Residential Transportation Energy Consumption Survey (RTECS) and Household Vehicles Energy Use: Latest Data & Trends report. These tables cover the trends in energy consumption for household transportation throughout the survey years. The data focus on several important indicators of demand for transportation: number and type of vehicles per household; vehicle-miles traveled per household and per vehicle; fuel consumption; fuel expenditures; and fuel economy. Excel PDF Trends in Households & Vehicles Table 1. Number of Households with Vehicles excel pdf Table 2. Percent of Households with Vehicles excel pdf

475

Residential Energy Consumption Survey: Consumption and expenditures, April 1984 through March 1985: Part 1, National data  

Science Conference Proceedings (OSTI)

This report presents data collected in the 1984 Residential Energy Consumption Survey (RECS) conducted by the Energy Information Administration (EIA). The 1984 RECS was the sixth national survey of US households and their energy suppliers. The purpose of these surveys is to provide baseline information on how households use energy. Households in all types of housing units - single family homes (including townhouses), apartments, and mobile homes - were chosen to participate. Data from the surveys are available to the public in published reports such as this one and on public-use data tapes. The report presents data on the US consumption and expenditures for residential use of these ''major fuels'' - natural gas, electricity, fuel oil, kerosene, and liquefied petroleum gas (LPG) - from April 1984 through March 1985. These data are presented in tables in the Detailed Statistics section of this report. Except for kerosene and wood fuel, the consumption and expenditures data are based on actual household bills obtained, with the permission of the household, from the companies supplying energy to the household. Purchases of kerosene are based on respondent reports because records of ''cash and carry'' purchases of kerosene for individual households are usually unavailable. Data on the consumption of wood fuel (Table 27) covers the 12-month period ending November 1984 and are based on respondent recall of the amount of wood burned during the 12-month period. Both the kerosene and wood consumption data are subject to memory errors and other reporting errors. This report does not cover household use of motor fuel, which is reported separately.

Not Available

1987-03-04T23:59:59.000Z

476

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

477

Dubois REC - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dubois REC - Residential Energy Efficiency Rebate Program Dubois REC - Residential Energy Efficiency Rebate Program Dubois REC - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Indiana Program Type Utility Rebate Program Rebate Amount Water Heater: $50 - $400 Central Air Conditioner: $200 - $300 Air-source Heat Pump: $300 - $1,000 Dual Fuel Heat Pump: $300 - $400 Geothermal Heat Pump: $1,000 ETS Room Unit: $30/kW ETS Whole House Unit: $300 - $400 Provider Dubois REC Dubois REC offers a variety of rebates for residential customers to save energy in new or existing homes. Rebates are offered for geothermal and air-source heat pumps, central air conditioners, electric water heaters,

478

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

479

Missouri Rural Electric Cooperative - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Missouri Rural Electric Cooperative - Residential Energy Efficiency Missouri Rural Electric Cooperative - Residential Energy Efficiency Rebate Program Missouri Rural Electric Cooperative - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Heating & Cooling Commercial Heating & Cooling Heat Pumps Commercial Lighting Lighting Water Heating Cooling Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Clothes Washer: $100 Dishwasher: $50 Room AC Unit: $50 Water Heaters: $50 - $100 CFL Light Bulbs: Free Geothermal Heat Pumps: $250/ton Ground Loop Replacement: $500/ton Dual Fuel Air Source Heat Pumps: $150/ton Provider Missouri Rural Electric Cooperative Missouri Rural Electric Cooperative (MREC) offers a number of rebates to residential customers for the purchase and installation of energy efficient

480

Platte-Clay Electric Cooperative - Residential Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Platte-Clay Electric Cooperative - Residential Energy Efficiency Platte-Clay Electric Cooperative - Residential Energy Efficiency Rebates Platte-Clay Electric Cooperative - Residential Energy Efficiency Rebates < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Room Air Conditioners: $50 Geothermal Heat Pump: $750/ton new installation; $150/ton for replacement Dual Fuel Heat Pump: $150/ton plus $.01 rate reduction (above 200 kWh) Water Heaters: Discounted price Provider Platte-Clay Electric Cooperative Platte-Clay Electric Cooperative offers a variety of rebates to residential and commercial customers who wish to upgrade to energy efficient equipment. Newly installed ground source heat pumps are eligible for a $750 per ton

Note: This page contains sample records for the topic "fuel oil residential" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Marietta Power and Water - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marietta Power and Water - Residential Energy Efficiency Rebate Marietta Power and Water - Residential Energy Efficiency Rebate Program Marietta Power and Water - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate $500 Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Heat Pump: $150 Water Heater: $250 Heat Pump and Water Heater: $500 Provider Marietta Power and Water Marietta Power and Water provides rebates for electric water heaters ($250) and electric and dual-fuel heat pumps ($150). If both a water heater and heat pump are installed simultaneously, a rebate of $500 is available. Electric and dual-fuel heat pumps may be installed in newly constructed

482

Global Alternative Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternative Fuels Jump to: navigation, search Name Global Alternative Fuels Place El Paso, Texas Zip 79922 Product Global Alternative Fuels processes virgin oils (palm, soybean,...

483

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in target channels and discharged a few times more frequently than the natural-uranium driver fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

484

Converting Chattanooga oil shale to synthetic liquid fuel. Phase I. Final report. [Tennessee  

SciTech Connect

The Chattanooga Shale is widely distributed in Tennessee and has been known as a potential source of shale oil and strategic minerals, particularly uranium, for many years. It was studied in the late 1940's as a source of uranium. The shale varies in color from light gray to black. The shale is of the Devonian Age and occurs under the Maury formation and above the Leipers limestone. It exists as the Gassaway and Dowelltown members. Generally, the combined thickness of these two members in the seven-county study ranged in thickness from about 26 feet to greater than 34 feet. The overall intent of this study was to identify the extent of the Chattanooga shale in Tennessee, characterize its properties, review its potential as an oil producer in terms of present-day technologies, and to assess interest in the private sector for development and commercialization. This report contains the results of this six-month study. 28 figures, 58 tables.

1981-01-01T23:59:59.000Z

485

What are projected diesel fuel prices for 2013 and for 2014? - FAQ ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Why don't fuel prices change as quickly as crude oil prices? Why has diesel fuel been more expensive than gasoline?

486

Residential HVAC Data, Assumptions and Methodology for End-Use Forecasting with EPRI-REEPS 2.1  

E-Print Network (OSTI)

oil hydronic, electric room, and electric (air source) heatFuels = Oil and Gas, LPG and Misc. (3) Sources: 1990 RECS (Fuels = Oil and Gas, Other = LPG and Misc. (3) Sources: 1990

Johnson, F.X.

2010-01-01T23:59:59.000Z

487

Residential and Commercial Briefings 2000: Characteristics of the Retail Marketplace  

Science Conference Proceedings (OSTI)

This industry report examines changes in the competitive electricity market throughout the year 2000, and how these changes affect residential and commercial customers. The following issues are discussed: o Characteristics of the residential and commercial markets: current and future energy use data by market and fuel type o Industry restructuring, deregulation, and its energy suppliers: deregulation issues by state and energy supplier activity within those states o Corporate moves, mergers, and business...

2002-02-07T23:59:59.000Z

488

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network (OSTI)

1.1 and 1.1A Figure 6: Uses of Crude Oil in the UnitedStates Other Residual Fuel Oil (bunker fuel) PetrochemicalDiesel Fuel and Heating Oil Jet Fuel Figure 7: Sources of

Borenstein, Severin

2008-01-01T23:59:59.000Z

489

State energy price projections for the residential sector, 1993--1994  

Science Conference Proceedings (OSTI)

The purpose of tills report, State Energy Price Projections for the Residential Sector, 1993--1994, is to provide projections of State-level residential prices for 1993 and 1994 for the following fuels: electricity, natural gas, heating oil, liquefied petroleum gas (LPG), kerosene, and coal. Prices for 1992 are also included for comparison purposes. This report also explains the methodology used to produce estimates and the limitations. This report is provided at the request of the Administration for Children and Families, US Department of Health and Human Services, which provides State grants to assist eligible households in meeting the costs of home energy use for space heating or cooling under the Low Income Home Energy Assistance Program (LIHEAP). Funds for LIHEAP are allocated according to each State`s share of home energy expenditures by low income households, if Congress allocates more than $1.975 billion for LIHEAP. Whenever less than $1.975 billion is allocated for LIHEAP, funds are allocated based on the allotment percentages for fiscal year 1984. This has been the case for the last several years. Each State`s share of the funds above $1.975 billion is determined using a formula based, in part, on the price estimates in this report. Several data sources and factors are used in deriving estimates on each State`s share of home energy expenditures by low-income households. One such factor is State-level residential energy prices. The State-level residential energy price projections presented in this report are derived from a set of forecasting equations estimated for each State, based on annual time series data from the Energy Information Administration`s (EIA) State Energy Price and Expenditure Report (SEPER) database, the EIA Natural Gas Monthly (NGM), the EIA Petroleum Marketing Annual (PMA), and the EIA Electric Power Monthly (EPM).

Not Available

1993-11-01T23:59:59.000Z

490

Appendix A: Fuel Price Forecast Introduction..................................................................................................................................... 1  

E-Print Network (OSTI)

Appendix A: Fuel Price Forecast Introduction................................................................................................................................. 3 Price Forecasts............................................................................................................................... 12 Oil Price Forecast Range

491

Heating Oil and Propane Update  

Annual Energy Outlook 2012 (EIA)

to collect data on State-level stocks and residential prices of No. 2 heating oil and propane during the heating season. The data are used to monitor the prices of propane and No....

492

Residential | Open Energy Information  

Open Energy Info (EERE)

Residential Residential Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends In the AEO2011 Reference case, residential energy use per capita declines by 17.0 percent from 2009 to 2035 (Figure 58). Delivered energy use stays relatively constant while population grows by 26.7 percent during the period. Growth in the number of homes and in average square footage leads to increased demand for energy services, which is offset in part by efficiency gains in space heating, water heating, and lighting equipment. Population shifts to warmer and drier climates also reduce energy demand for space heating.[1] Issues in Focus In 2009, the residential and commercial buildings sectors used 19.6 quadrillion Btu of delivered energy, or 21 percent of total U.S. energy

493

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

494

Residential Energy Disclosure (Hawaii)  

Energy.gov (U.S. Department of Energy (DOE))

A residential property owner is required to disclose electricity costs for the most recent three-month period in which the property was occupied as a condition of selling it. No proof or copies of...

495

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

496

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

497

Residential sector: the demand for energy services  

Science Conference Proceedings (OSTI)

The purpose of this report is to project the demand for residential services, and, thereby, the demand for energy into the future. The service demands which best represent a complete breakdown of residential energy consumption is identified and estimates of the amount of energy, by fuel type, used to satisfy each service demand for an initial base year (1978) are detailed. These estimates are reported for both gross (or input) energy use and net or useful energy use, in the residential sector. The various factors which affect the consumption level for each type of energy and each identified service demand are discussed. These factors include number of households, appliance penetration, choice of fuel type, technical conversion efficiency of energy using devices, and relative energy efficiency of the building shell (extent of insulation, resistance to air infiltration, etc.). These factors are discussed relative to both the present and expected future values, for the purpose of projections. The importance of the housing stock to service demand estimation and projection and trends in housing in Illinois are discussed. How the housing stock is projected based on population and household projections is explained. The housing projections to the year 2000 are detailed. The projections of energy consumption by service demand and fuel type are contrasted with the various energy demand projections in Illinois Energy Consumption Trends: 1960 to 2000 and explains how and why the two approaches differ. (MCW)

Not Available

1981-01-01T23:59:59.000Z

498

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway  

SciTech Connect

This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

2013-11-01T23:59:59.000Z

499

DOE Hydrogen and Fuel Cells Program: Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

America's dependence on imported oil and reduce the environmental impacts of fossil fuel combustion. Beginning in fiscal year 2004, the Hydrogen Fuel Initiative (HFI) increased...

500

Residential Gateways and Controllers  

Science Conference Proceedings (OSTI)

Energy companies are exploring two-way residential communications to help reduce the cost of providing standard energy-related services, such as itemized billing or demand reduction, as well as to provide nontraditional services, such as diagnostic services and e-mail. This report covers the key to development of these services -- residential gateways and controllers. The report was prepared with both technical and financial energy company managers in mind, for use as a reference tool and strategic plann...

1999-08-31T23:59:59.000Z