Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biofuels – Jet fuel  

This is a process for producing jet fuel from biological feed stock, including animal fats and oils, vegetable oils, and crop seed oils. The aviation and fuel-producing communities would have the option of leveraging available renewable and/or ...

2

HEFA and F-T jet fuel cost analyses  

E-Print Network (OSTI)

Aviation and the Environment 2. HEFA jet fuel from vegetable oil bottom-up cost study 3. HEFA jet fuel from microalgae bottom-up cost

Nick Carter; Michael Bredehoeft; Christoph Wollersheim; Hakan Olcay; James Hileman; Steven Barrett; Website Lae. Mit. Edu

2012-01-01T23:59:59.000Z

3

Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered  

DOE Patents (OSTI)

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, Richard F. (Houston, TX); Ryan, Daniel F. (Friendswood, TX)

1982-01-01T23:59:59.000Z

4

Production of biocomponent containing jet fuels  

Science Conference Proceedings (OSTI)

Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Further than quality requirements were more aggravated in front of jet fuels. This was generated by ... Keywords: aromatic content, biocomponent, crystallization point, jet fuel, kerosene, vegetable oil

Z. Eller; P. Solymosi; T. Kasza; Z. Varga; J. Hancsók

2011-12-01T23:59:59.000Z

5

Residual Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

6

Jet Fuel from Bio-Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Jet Fuel from Bio-Diesel Background Due to concerns with limited resources of petroleum-based fuels, the demand for using renewable feedstocks, such as vegetable oils and animal...

7

Jet fuel from LPG  

SciTech Connect

Explains how jet fuel can be manufactured from propane and/or butane with attractive rates of return. This scheme is advantageous where large reserves of LPG-bearing gas is available or LPG is in excess. The following sequence of processes in involved: dehydrogenation of propane (and/or butane) to propylene (and/or butylene); polymerization of this monomer to a substantial yield of the desired polymer by recycling undesired polymer; and hydrotreating the polymer to saturate double bonds. An attribute of this process scheme is that each of the individual processes has been practiced commercially. The process should have appeal in those parts of the world which have large reserves of LPG-bearing natural gas but little or no crude oil, or where large excesses of LPG are available. Concludes that economic analysis shows attractive rates of return in a range of reasonable propane costs and product selling prices.

Maples, R.E.; Jones, J.R.

1983-02-01T23:59:59.000Z

8

Jet Fuel from Microalgal Lipids  

DOE Green Energy (OSTI)

A fact sheet on production of jet fuel or multi-purpose military fuel from lipids produced by microalgae.

Not Available

2006-07-01T23:59:59.000Z

9

Jet Fuel Supply/Price Outlook - Fueling the Recovery  

U.S. Energy Information Administration (EIA)

Jet Fuel Supply/Price Outlook: Fueling the Recovery Energy Information Administration Presentation to 4th International Jet Fuel Conference February ...

10

Advanced thermally stable jet fuels  

Science Conference Proceedings (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

11

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

12

Production of jet fuel from coal-derived liquids  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Task 1 of the work, in which processes to produce each of the three jet fuels, JP-4, JP-8, and JP-8X, were designed, has been completed. The formal Task 1 report should issue next quarter. Task 2 work was initiated this quarter. In Task 2, process conditions for producing jet fuel from the Great Plains tar oil stream will be verified and samples of each of the three jet fuels will be produced. Experimental work shows that the hydrotreating conditions specified in Task 1 will not convert sufficient aromatics in the tar oil to produce jet fuel. Alternative schemes have been proposed and are being tested in the laboratories at Amoco Research Center. The simplest of these schemes, in which the heavy ends from the hydrotreater are recycled to extinction, was tested and proved infeasible. A second stage, fixed bed hydrotreater will be added to the process along with the expanded bed, first-stage hydrotreater and the hydrocracker specified in the Task 1 design. Future work will include additional experiments to specify the best process configuration and production of samples of each of the three grades of jet fuel. 6 figs., 7 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1988-01-01T23:59:59.000Z

13

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

14

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

15

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

16

Integrated coke, asphalt and jet fuel production process and apparatus  

DOE Patents (OSTI)

A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

Shang, Jer Y. (McLean, VA)

1991-01-01T23:59:59.000Z

17

Production of jet fuels from coal derived liquids  

Science Conference Proceedings (OSTI)

Amoco Oil Company has conducted bench- and pilot plant-scale experiments to produce jet fuels from the tar oil from the Great Plains Coal Gasification Plant in Beulah, North Dakota. Experiments show that the hydroprocessing conditions recommended in Task 1 are not severe enough to saturate the aromatics in the tar oil to meet jet fuel specifications. Alternatives were investigated. Jet fuel specifications can be achieved when the tar oil is: hydrotreated in an expanded-bed hydrotreater to lower aromatics and heteroatom content; the effluent is then hydrotreated in a second, fixed bed hydrotreater; and, finally, the 550{degree}F boiling fraction from the two hydrotreaters is hydrocracked to extinction. The process was verified by pilot-plant production of 2 barrels of JP-8 turbine fuel, which met all but the flash point specification for JP-8. In addition, small samples of JP-4, JP-8, and high-density fuel were produced as a part of Task 2. 13 figs., 21 tabs.

Furlong, M.; Fox, J.; Masin, J.

1989-06-01T23:59:59.000Z

18

Production of jet fuel from coal-derived liquids  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels, for maximizing profits, and for profitable production of each of the three jet fuels from the by-product liquids have been developed. Economic analyses of the designs show that jet fuel can be produced from the by-products, but not economically. However, jet fuel production could be subsidized profitably by processing the phenolic and naphtha streams to cresols, phenols, BTX, and other valuable chemical by-products. Uncertainties in the studies are marketability of the chemical by-products, replacement fuel costs, and viable schemes to process the phenol stream, among others. 8 figs., 2 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1990-01-01T23:59:59.000Z

19

Production of jet fuels from coal derived liquids  

SciTech Connect

Amoco and Lummus Crest have developed seven cases for upgrading by-product liquids from the Great Plains Coal Gasification Plant to jet fuels, and in several of the cases, saleable chemicals in addition to jet fuels. The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However, the phenolic and naphtha streams do have the potential to significantly increase (on the order of $10--15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to 10 percent of the US market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream. 9 refs., 24 figs., 14 tabs.

Fleming, B.A.; Fox, J.D.; Furlong, M.W.; Masin, J.G.; Sault, L.P.; Tatterson, D.F. (Amoco Oil Co., Naperville, IL (USA). Research and Development Dept.); Fornoff, L.L.; Link, M.A.; Stahlnecker, E.; Torster, K. (Lummus Crest, Inc., Bloomfield, NJ (USA))

1988-09-01T23:59:59.000Z

20

U.S. Exports of Kerosene-Type Jet Fuel (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel Exports; Kerosene-Type Jet Fuel Exports by Destination; Kerosene-Type Jet Fuel Supply and Disposition ...

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

fuel_oil.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Usage Form Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

22

Diesel fuel oils, 1982  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

23

Integrated coke, asphalt and jet fuel production process and apparatus  

DOE Patents (OSTI)

A process and apparatus for the production of coke, asphalt and jet fuel from a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products, removing at least some coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. The process provides a useful method of mass producing these products from materials such as coal, oil shale and tar sands. 1 fig.

Shang, Jer Yu.

1989-10-17T23:59:59.000Z

24

Diesel fuel oils, 1983  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1983 were submitted for study and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 192 samples of diesel fuel oils from 87 refineries throughout the country were made by 31 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the two grades of diesel fuels. Summaries of the results of the 1983 survey, compared with similar data for 1982, are shown in Tables 1 and 2 of the report. 3 figures, 4 tables.

Shelton, E.M.

1983-11-01T23:59:59.000Z

25

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

26

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

27

Michigan Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) Michigan Downstream Charge Capacity of Operable Petroleum Refineries ...

28

Idaho Kerosene-Type Jet Fuel Retail Sales by Refiners ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Idaho Kerosene-Type Jet Fuel Refiner Sales Volumes; Idaho Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

29

Compare All CBECS Activities: Fuel Oil Use  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

30

Ejector device for direct injection fuel jet  

SciTech Connect

Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

Upatnieks, Ansis (Livermore, CA)

2006-05-30T23:59:59.000Z

31

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2012 (EIA)

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

32

residual fuel oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Residual fuel oil: A general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuel oils and lighter ...

33

Production of jet fuel from coal-derived liquids  

DOE Green Energy (OSTI)

Amoco and Lummus Crest are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each, and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high density (JP-8X) jet fuels from the by-product liquids. In addition to the maximum jet fuel schemes, conceptual designs have also been formulated for maximizing profits from refining of the Great Plains by-products. Conceptual processing schemes for profitable production of JP-4, JP-8, and JP-8X have been developed, as has a maximum profit'' case. All four of these additional cases have now been transferred to Lummus for design and integration studies. Development of these schemes required the use of linear programming technology. This technology includes not only conventional refining processes which have been adapted for use with coal-derived liquids (e.g. hydrotreating, hydrocracking), but also processes which may be uniquely suited to the Great Plains by-products such as cresylic acid extraction, hydordealkylation, and needle coking. 6 figs., 3 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.; Soderberg, D.J.

1987-01-01T23:59:59.000Z

34

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each, and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Experimental work to date has shown that the tar oil stream requires substantially more severe processing than the preliminary design estimates indicated. A new design basis is now being tested and samples of JP-4, JP-8, and JP-8X are in production, based on that new, more severe processing scheme. Six barrels of tar oil have been hydrotreated according to the first step of the processing scheme and will be used to produce barrel quantities of JP-8. 2 refs., 2 figs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1988-01-01T23:59:59.000Z

35

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 have also been produced and shipped to the US Air Force for further testing. Lummus-Crest Inc. is now completing a preliminary process design for the profitable production of JP-8 and has made recommendations for a production run to produce larger quantities of JP-8. 2 figs., 3 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1989-01-01T23:59:59.000Z

36

Production of jet fuel from coal-derived liquids  

SciTech Connect

Amoco and Lummus-Crest, under a contract with the United States Department of Energy, are evaluating the process options and economics for upgrading the naphtha, crude phenols, and tar oil by-products from the Great Plains Coal Gasification Plant to jet fuels and other salable products. Analytical characterizations of these three by-products indicate the range of products that can be manufactured from each and potential problems which could be encountered during refining. These characterizations, along with limited experimental data and Amoco's proprietary process models, were used to design conceptual processing schemes for maximizing the production of Grades JP-4, JP-8, and high-density (JP-8X) jet fuels from the by-product liquids. Conceptual designs have been completed and a case for profitable production of JP-8 has been selected for experimental testing and preliminary design in the later phases of the contract. Samples of JP-4, JP-8, and JP-8X aviation turbine fuels have been manufactured from the Great Plains tar oil. Larger samples of JP-8 are nearly completed. Specification of a design basis for profitable production of JP-8 is under way. 5 figs., 4 tabs.

Furlong, M.W.; Fox, J.D.; Masin, J.G.

1988-01-01T23:59:59.000Z

37

Railroad fuel-oil consumption in 1928  

SciTech Connect

Data are presented, by districts, covering the consumption of fuel oil for various uses by railroads.

Redfield, A.H.

1930-01-01T23:59:59.000Z

38

Environmental and economic assessment of microalgae-derived jet fuel  

E-Print Network (OSTI)

Significant efforts must be undertaken to quantitatively assess various alternative jet fuel pathways when working towards achieving environmental and economic United States commercial and military alternative aviation ...

Carter, Nicholas Aaron

2012-01-01T23:59:59.000Z

39

U.S. Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) U.S. Downstream Charge Capacity of Operable Petroleum Refineries ...

40

Residual Fuel Oil Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

42

Jet Fuel from Camelina: Jet Fuel From Camelina Sativa: A Systems Approach  

SciTech Connect

PETRO Project: NC State will genetically modify the oil-crop plant Camelina sativa to produce high quantities of both modified oils and terpenes. These components are optimized for thermocatalytic conversion into energy-dense drop-in transportation fuels. The genetically engineered Camelina will capture more carbon than current varieties and have higher oil yields. The Camelina will be more tolerant to drought and heat, which makes it suitable for farming in warmer and drier climate zones in the US. The increased productivity of NC State’s-enhanced Camelina and the development of energy-effective harvesting, extraction, and conversion technology could provide an alternative non-petrochemical source of fuel.

None

2012-01-01T23:59:59.000Z

43

Missouri Kerosene-Type Jet Fuel Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene-Type Jet Fuel Sales for Resale Refiner Sales Volumes; Missouri Kerosene-Type Jet Fuel Refiner Sales Volumes; Missouri Sales for Resale ...

44

New Mexico Kerosene-Type Jet Fuel Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene-Type Jet Fuel Sales for Resale Refiner Sales Volumes; New Mexico Kerosene-Type Jet Fuel Refiner Sales Volumes; New Mexico Sales for Resale ...

45

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

46

Proceedings: 1991 Fuel Oil Utilization Workshop  

Science Conference Proceedings (OSTI)

To assist utilities in improving fossil steam plant operations, EPRI continues to conduct annual fuel oil utilization workshops. At the 1991 conference, personnel from 16 electric utilities exchanged ideas on improving residual fuel oil utilization in their generating plants.

1991-05-01T23:59:59.000Z

47

South Dakota Residual Fuel Oil Adj Sales/Deliveries to Oil Company ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Adjusted Sales of Residual Fuel Oil for Oil Company Use ; Adjusted Sales of Residual Fuel Oil for Oil Company Use ; South Dakota Adjusted Distillate ...

48

Sooting characteristics of surrogates for jet fuels  

Science Conference Proceedings (OSTI)

Currently, modeling the combustion of aviation fuels, such as JP-8 and JetA, is not feasible due to the complexity and compositional variation of these practical fuels. Surrogate fuel mixtures, composed of a few pure hydrocarbon compounds, are a key step toward modeling the combustion of practical aviation fuels. For the surrogate to simulate the practical fuel, the composition must be designed to reproduce certain pre-designated chemical parameters such as sooting tendency, H/C ratio, autoignition, as well as physical parameters such as boiling range and density. In this study, we focused only on the sooting characteristics based on the Threshold Soot Index (TSI). New measurements of TSI values derived from the smoke point along with other sooting tendency data from the literature have been combined to develop a set of recommended TSI values for pure compounds used to make surrogate mixtures. When formulating the surrogate fuel mixtures, the TSI values of the components are used to predict the TSI of the mixture. To verify the empirical mixture rule for TSI, the TSI values of several binary mixtures of candidate surrogate components were measured. Binary mixtures were also used to derive a TSI for iso-cetane, which had not previously been measured, and to verify the TSI for 1-methylnaphthalene, which had a low smoke point and large relative uncertainty as a pure compound. Lastly, surrogate mixtures containing three components were tested to see how well the measured TSI values matched the predicted values, and to demonstrate that a target value for TSI can be maintained using various components, while also holding the H/C ratio constant. (author)

Mensch, Amy; Santoro, Robert J.; Litzinger, Thomas A. [Department of Mechanical and Nuclear Engineering, and The Propulsion Engineering Research Center, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, S.-Y. [Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI 49931 (United States)

2010-06-15T23:59:59.000Z

49

"Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"...

50

Straight Vegetable Oil as a Diesel Fuel?  

DOE Green Energy (OSTI)

Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

Not Available

2006-04-01T23:59:59.000Z

51

NREL: News - NREL Teams with Navy, Private Industry to Make Jet Fuel from  

NLE Websites -- All DOE Office Websites (Extended Search)

313 313 NREL Teams with Navy, Private Industry to Make Jet Fuel from Switchgrass Project could spur jobs in rural America, lead to less reliance of foreign oil June 6, 2013 The Energy Department's National Renewable Energy Laboratory (NREL) is partnering with Cobalt Technologies, U.S. Navy, and Show Me Energy Cooperative to demonstrate that jet fuel can be made economically and in large quantities from a renewable biomass feedstock such as switch grass. "This can be an important step in the efforts to continue to displace petroleum by using biomass resources," NREL Manager for Bioprocess Integration R&D Dan Schell said. "We're converting biomass into sugars for subsequent conversion to butanol and then to JP5 jet fuel." It's one of four biorefinery projects funded recently by the Energy

52

Oil Shale and Other Unconventional Fuels Activities | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

53

A jet fuel surrogate formulated by real fuel properties  

Science Conference Proceedings (OSTI)

An implicit methodology based on chemical group theory to formulate a jet aviation fuel surrogate by the measurements of several combustion related fuel properties is tested. The empirical formula and derived cetane number of an actual aviation fuel, POSF 4658, have been determined. A three component surrogate fuel for POSF 4658 has been formulated by constraining a mixture of n-decane, iso-octane and toluene to reproduce the hydrogen/carbon ratio and derived cetane number of the target fuel. The validity of the proposed surrogate is evaluated by experimental measurement of select combustion properties of POSF 4658, and the POSF 4658 surrogate. (1)A variable pressure flow reactor has been used to chart the chemical reactivity of stoichiometric mixtures of POSF 4658/O{sub 2}/N{sub 2} and POSF 4658 surrogate/O{sub 2}/N{sub 2} at 12.5 atm and 500-1000 K, fixing the carbon content at 0.3% for both mixtures. (2)The high temperature chemical reactivity and chemical kinetic-molecular diffusion coupling of POSF 4658 and POSF 4658 surrogate have been evaluated by measurement of the strained extinction limit of diffusion flames. (3)The autoignition behavior of POSF 4658 and POSF 4658 surrogate has been measured with a shock tube at 674-1222 K and with a rapid compression machine at 645-714 K for stoichiometric mixtures of fuel in air at pressures close to 20 atm. The flow reactor study shows that the character and extent of chemical reactivity of both fuels at low temperature (500-675 K) and high temperature (900 K+) are extremely similar. Slight differences in the transition from the end of the negative temperature coefficient regime to hot ignition are observed. The diffusion flame strained extinction limits of the fuels are observed to be indistinguishable when compared on a molar basis. Ignition delay measurements also show that POSF 4658 exhibits NTC behavior. Moreover, the ignition delays of both fuels are also extremely similar over the temperature range studied in both shock tube and rapid compression machine experiments. A chemical kinetic model is constructed and utilized to interpret the experimental observations and provides a rationale as to why the real fuel and surrogate fuel exhibit such similar reactivity. (author)

Dooley, Stephen; Won, Sang Hee; Chaos, Marcos; Heyne, Joshua; Ju, Yiguang; Dryer, Frederick L. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Kumar, Kamal; Sung, Chih-Jen [School of Engineering, University of Connecticut, Storrs, CT (United States); Wang, Haowei; Oehlschlaeger, Matthew A. [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Santoro, Robert J.; Litzinger, Thomas A. [Propulsion Engineering Research Center, The Pennsylvania State University, University Park, PA (United States)

2010-12-15T23:59:59.000Z

54

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-09-17T23:59:59.000Z

55

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

56

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-05-18T23:59:59.000Z

57

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Industrial Consumers (Thousand Gallons)

58

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Commercial Consumers (Thousand Gallons)

59

Fuel Oil Prepared by Blending Heavy Oil and Coal Tar  

Science Conference Proceedings (OSTI)

The effect of temperature, harmonic ration, surfactant and shearing to fuel oil prepared by blending heavy oil and coal tar were detailedly studied. The results show that the viscosity of the blended oil increases gradually with the increase of harmonic ... Keywords: coal tar, heavy oil, blending, surfactant

Guojie Zhang; Xiaojie Guo; Bo Tian; Yaling Sun; Yongfa Zhang

2009-10-01T23:59:59.000Z

60

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel oil and kerosene sales, 1989  

Science Conference Proceedings (OSTI)

Despite the rise in petroleum products prices, a colder-than-normal winter in the latter part of 1989 spurred an increase in demand for distillate fuel oils. The shipping and electric utilities industries contributed to a significant rise in demand for both distillate and residual fuels oils in 1989. A total of 72.9 billion gallons of fuel oil and kerosene were sold to consumers in 1989, an increase of 3.0 percent over 1988 sales volumes. Of all fuel oil sold during 1989, distillate fuel oil accounted for 68.3 percent, which was an increase over 1988 when distillate fuel oil accounted for 67.2 percent of all fuel oil products sold in the United States. Residual fuel oil's share of total fuel oil sold fell slightly to 29.9 percent from 30.7 percent in 1988. Kerosene followed with a 1.8 percent share, also falling from the previous year when it accounted for a 2.1 percent share of total fuel oil sold. 3 figs., 24 tabs.

Not Available

1991-01-22T23:59:59.000Z

62

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-05-17T23:59:59.000Z

63

Crude oil and finished fuel storage stability: An annotated review  

DOE Green Energy (OSTI)

A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

1991-01-01T23:59:59.000Z

64

Jet Fuel from Microalgal Lipids; National Renewable Energy Laboratory (NREL) Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Probably our most pressing energy need is Probably our most pressing energy need is to develop domestic, renewable substitutes for imported transportation fuel. Ethanol made from starch or sugar such as corn grain already displaces about 2% of gasoline and making it from cellulosic biomass will allow much greater displacement. Biodiesel made from oil crops such as soybeans can displace some of our diesel use. Unfortunately, neither of these biofuels can help supply jet fuel, for which energy density and low-temperature fuel properties are critical. Ethanol is not dense enough having only about half the energy per volume of jet fuel. Biodiesel has about 80% the energy density of kerosene, but can solidify at the low temperatures of high altitude flight. In

65

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents (OSTI)

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

66

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

Science Conference Proceedings (OSTI)

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day of high-Btu Natural Gas from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation fuel jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions, thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report discusses the suitability of the tar oil stream. 5 refs., 20 figs., 15 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

67

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

68

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)...

69

Catalytic hydroprocessing of shale oil to produce distillate fuels  

DOE Green Energy (OSTI)

Results are presented of a Chevron Research Company study sponsored by the Energy Research and Development Administration (ERDA) to demonstrate the feasibility of converting whole shale oil to a synthetic crude resembling a typical petroleum distillate. The synthetic crude thus produced can then be processed, in conventional petroleum-refining facilities, to transportation fuels such as high octane gasoline, diesel, and jet fuel. The raw shale oil feed used is a typical Colorado shale oil produced in a surface retort in the so-called indirectly heated mode. It is shown that whole shale oil can be catalytically hydrodenitrified to reduce the nitrogen to levels as low as one part per million in a single catalytic stage. However, for economic reasons, it appears preferable to denitrify to about 0.05 wt % nitrogen. The resulting synthetic crude resembles a petroleum distillate that can be fractionated and further processed as necessary in conventional petroleum refining facilities. Shale oil contains about 0.6% sulfur. Sulfur is more easily removed by hydrofining than is nitrogen; therefore, only a few parts per million of sulfur remain at a product nitrogen of 0.05 wt %. Oxygen contained in the shale oil is also reduced to low levels during hydrodenitrification. The shale oil contains appreciable quantities of iron and arsenic which are also potential catalyst poisons. These metals are removed by a guard bed placed upstream from the hydrofining catalyst. Based on correlations, the naphthas from the shale oil hydrofiner can readily be upgraded to high octane gasolines by catalytic reforming. The middle distillate fractions may require some additional hydrofining to produce salable diesel or jet fuel. The technology is available, and pilot plant studies are scheduled to verify diesel hydrofiner performance.

Sullivan, R.F.; Stangeland, B.E.

1977-01-01T23:59:59.000Z

70

Household Fuel Oil or Kerosene Usage Form  

U.S. Energy Information Administration (EIA)

Contractor’s Street Address . Contractor’s City, State, and ZIP Code . ... is a light distillate fuel oil intended for use in vaporizing pot-type burners.

71

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

72

Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels  

SciTech Connect

A transition from petroleum~derived jet fuels to blends with Fischer-Tropsch (F~T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2009-01-01T23:59:59.000Z

73

Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels  

SciTech Connect

A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2008-01-01T23:59:59.000Z

74

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect

The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two

Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2008-03-31T23:59:59.000Z

75

Past, present and emerging toxicity issues for jet fuel  

SciTech Connect

The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels.

Mattie, David R., E-mail: david.mattie@wpafb.af.mil [Applied Biotechnology Branch, Air Force Research Laboratory, AFRL/RHPB Bldg. 837, 2729 R Street, Wright-Patterson Air Force Base, OH 45433-5707 (United States); Sterner, Teresa R. [HJF, AFRL/RHPB Bldg 837, 2729 R Street, Wright-Patterson Air Force Base, OH 45433-5707 (United States)

2011-07-15T23:59:59.000Z

76

U.S. Residual Fuel Oil Refiner Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Download Series History Download Series History Definitions, Sources & Notes...

77

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2005-11-17T23:59:59.000Z

78

Kerosene-Type Jet Fuel Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

79

Solid fuel fired oil field steam generators  

Science Conference Proceedings (OSTI)

The increased shortages being experienced in the domestic crude oil supply have forced attention on the production of heavy crude oils from proven reserves to supplement requirements for petroleum products. Since most heavy crudes require heat to facilitate their extraction, oil field steam generators appear to represent a key component in any heavy crude oil production program. Typical oil field steam generator experience in California indicates that approx. one out of every 3 bbl of crude oil produced by steam stimulation must be consumed as fuel in the steam generators to produce the injection steam. The scarcity and price of crude oil makes it desirable to substitute more readily available and less expensive solid fuels for the crude oil which is presently serving as the primary steam generator fuel. Solid fuel firing capability also is of importance because of the substantial amounts of high heating value and low cost petroleum coke available from the processing of heavy crude oil and suitable for use as a steam generator fuel.

Young, W.W.

1982-01-01T23:59:59.000Z

80

South Carolina Kerosene-Type Jet Fuel All Sales/Deliveries by ...  

U.S. Energy Information Administration (EIA)

South Carolina Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day)

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Midwest (PADD 2) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

82

PAD District 5 Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

83

PAD District 4 Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

84

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to Commercial Consumers (Thousand Gallons)

85

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network (OSTI)

1.1 and 1.1A Figure 6: Uses of Crude Oil in the UnitedStates Other Residual Fuel Oil (bunker fuel) PetrochemicalDiesel Fuel and Heating Oil Jet Fuel Figure 7: Sources of

Borenstein, Severin

2008-01-01T23:59:59.000Z

86

Fuel oil and kerosene sales 1995  

Science Conference Proceedings (OSTI)

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

87

Arkansas Kerosene-Type Jet Fuel Retail Sales by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Arkansas Kerosene-Type Jet Fuel Refiner Sales Volumes; Arkansas Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 ...

88

Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products  

SciTech Connect

The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

Willson, W.G.; Knudson, C.L.; Rindt, J.R.

1987-01-01T23:59:59.000Z

89

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation

90

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and ...  

U.S. Energy Information Administration (EIA)

Ohio Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

91

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk ...  

U.S. Energy Information Administration (EIA)

South Dakota Distillate Fuel Oil Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

92

Fuel Oil and Kerosene Sales 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil and Kerosene Sales Fuel Oil and Kerosene Sales 2012 November 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies. U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 1

93

Fuel oil and kerosene sales 1992  

SciTech Connect

This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1993-10-29T23:59:59.000Z

94

Fuel oil and kerosene sales 1993  

Science Conference Proceedings (OSTI)

This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1994-10-03T23:59:59.000Z

95

Processing of Soybean Oil into Fuels  

DOE Green Energy (OSTI)

Abundant and easily refined, petroleum has provided high energy density liquid fuels for a century. However, recent price fluctuations, shortages, and concerns over the long term supply and greenhouse gas emissions have encouraged the development of alternatives to petroleum for liquid transportation fuels (Van Gerpen, Shanks et al. 2004). Plant-based fuels include short chain alcohols, now blended with gasoline, and biodiesels, commonly derived from seed oils. Of plant-derived diesel feedstocks, soybeans yield the most of oil by weight, up to 20% (Mushrush, Willauer et al. 2009), and so have become the primary source of biomass-derived diesel in the United States and Brazil (Lin, Cunshan et al. 2011). Worldwide ester biodiesel production reached over 11,000,000 tons per year in 2008 (Emerging Markets 2008). However, soybean oil cannot be burned directly in modern compression ignition vehicle engines as a direct replacement for diesel fuel because of its physical properties that can lead to clogging of the engine fuel line and problems in the fuel injectors, such as: high viscosity, high flash point, high pour point, high cloud point (where the fuel begins to gel), and high density (Peterson, Cook et al. 2001). Industrial production of biodiesel from oil of low fatty-acid content often follows homogeneous base-catalyzed transesterification, a sequential reaction of the parent triglyceride with an alcohol, usually methanol, into methyl ester and glycerol products. The conversion of the triglyceride to esterified fatty acids improves the characteristics of the fuel, allowing its introduction into a standard compression engine without giving rise to serious issues with flow or combustion. Commercially available biodiesel, a product of the transesterification of fats and oils, can also be blended with standard diesel fuel up to a maximum of 20 vol.%. In the laboratory, the fuel characteristics of unreacted soybean oil have also been improved by dilution with petroleum based fuels, or by aerating and formation of microemulsions. However, it is the chemical conversion of the oil to fuel that has been the area of most interest. The topic has been reviewed extensively (Van Gerpen, Shanks et al. 2004), so this aspect will be the focus in this chapter. Important aspects of the chemistry of conversion of oil into diesel fuel remain the same no matter the composition of the triglyceride. Hence, although the focus in this book is on soybean oil, studies on other plant based oils and simulated oils have occasional mention in this chapter. Valuable data can be taken on systems that are simpler than soybean based oils, with fewer or shorter chain components. Sometimes the triglycerides will behave differently under reaction conditions, and when relevant, these have been noted in the text. Although the price of diesel fuel has increased, economical production of biodiesel is a challenge because of (1) the increasing price of soybean oil feedstocks and reagent methanol, (2) a distributed supply of feedstocks that reduces the potential for economies of scale, (3) processing conditions that include pressures and temperatures above ambient, and (4) multiple processing steps needed to reduce contaminant levels to ASTM specification D6751 limits (Vasudevan & Briggs 2008). Much of the cost of biodiesel production is related to the conversion of the oil to the methyl ester and so there has been an emphasis to research improved methods of converting soybean oil to biodiesel. However, most of these studies have taken place at the bench scale, and have not demonstrated a marked improvement in yield or reduced oil-to-methanol ratio in comparison with standard base-catalyzed transesterification. One aspect that has a short term chance of implementation is the improvement of the conversion process by the use of a continuous rather than batch process, with energy savings generated by combined reaction and separation, online analysis, and reagent methanol added by titration as needed to produce ASTM specification grade fuel. By adapting process intensif

McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

96

Fuel oil and kerosene sales 1994  

SciTech Connect

This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

NONE

1995-09-27T23:59:59.000Z

97

East Coast (PADD 1) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

98

Gulf Coast (PADD 3) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

99

Production of jet fuels from coal-derived liquids  

Science Conference Proceedings (OSTI)

Samples of jet fuel (JP-4, JP-8, JP-8X) produced from the liquid by-products of the gasification of lignite coal from the Great Plains Gasification Plant were analyzed to determine the quantity and type of organo-oxygen compounds present. Results were compared to similar fuel samples produced from petroleum. Large quantities of oxygen compounds were found in the coal-derived liquids and were removed in the refining process. Trace quantities of organo-oxygenate compounds were suspected to be present in the refined fuels. Compounds were identified and quantified as part of an effort to determine the effect of these compounds in fuel instability. Results of the analysis showed trace levels of phenols, naphthols, benzofurans, hexanol, and hydrogenated naphthols were present in levels below 100 ppM. 9 figs., 3 tabs.

Knudson, C.L.

1990-06-01T23:59:59.000Z

100

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

Science Conference Proceedings (OSTI)

This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2007-03-17T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Jet flames of a refuse derived fuel  

SciTech Connect

This paper is concerned with combustion of a refuse derived fuel in a small-scale flame. The objective is to provide a direct comparison of the RDF flame properties with properties of pulverized coal flames fired under similar boundary conditions. Measurements of temperature, gas composition (O{sub 2}, CO{sub 2}, CO, NO) and burnout have demonstrated fundamental differences between the coal flames and the RDF flames. The pulverized coals ignite in the close vicinity of the burner and most of the combustion is completed within the first 300 ms. Despite the high volatile content of the RDF, its combustion extends far into the furnace and after 1.8 s residence time only a 94% burnout has been achieved. This effect has been attributed not only to the larger particle size of fluffy RDF particles but also to differences in RDF volatiles if compared to coal volatiles. Substantial amounts of oily tars have been observed in the RDF flames even though the flame temperatures exceeded 1300 C. The presence of these tars has enhanced the slagging propensity of RDF flames and rapidly growing deposits of high carbon content have been observed. (author)

Weber, Roman; Kupka, Tomasz; Zajac, Krzysztof [Institute of Energy Process Engineering and Fuel Technology, Clausthal University of Technology, Agicolastrasse 4, 38 678 Clausthal-Zellerfeld (Germany)

2009-04-15T23:59:59.000Z

102

Lower Atlantic (PADD 1C) Distillate Fuel Oil and Kerosene ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 300,889: 274,739: 263,252: 232,429: 230,287: 254,322: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 275,489: ...

103

California Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 309,249: 232,151: 190,082: 225,123: 257,297: 241,967: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 101,932: ...

104

Rocky Mountain (PADD4) Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 262,644: 222,054: 212,571: 228,200: 245,446: 214,160: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 27: 26: 19: ...

105

Kentucky Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 170,042: 94,124: 48,002: 42,101: 67,347: 61,840: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 91,516: 104,387: ...

106

Pennsylvania Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 118,670: 113,851: 90,800: 124,258: 146,291: 140,663: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 25,735: ...

107

Georgia Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 78,927: 69,710: 62,072: 63,770: 71,374: 63,902: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 14,016: 10,831: ...

108

Illinois Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 40,116: 51,287: 55,322: 72,188: 58,526: 63,808: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 71,805: 101,851: ...

109

Ohio Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 333,069: 316,926: 206,134: 179,048: 203,135: 175,258: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 12,122: ...

110

Residual Fuel Oil Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil Residual F.O., Sulfur < 1% Residual F.O., Sulfur > 1% No. 4 Fuel Oil Period-Unit: Monthly - Thousand Gallons per Day Annual - Thousand Gallons per Day...

111

Review of Fuel Oil System Failures in Ontario  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Failure Analysis and Prevention. Presentation Title, Review of Fuel Oil System ...

112

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Catalytic Hydrotreating, Other/Residual Fuel Oil Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

113

Isolation and Identification of Nitrogen Species in Jet Fuel and Diesel Fuel  

Science Conference Proceedings (OSTI)

Many performance characteristics of liquid fuels-including lubricity, the ability to swell seal materials, storage stability, and thermal stability-are determined, to a large degree, by the trace polar species that the fuel contains. Because the polar fraction comprises such a small portion of the fuel matrix, it is difficult to detect these species without first isolating them from the bulk fuel. This manuscript describes the extension of previous work that established a protocol for the isolation and identification of oxygenates in jet fuels. The current work shows that a liquid-liquid extraction using methanol, followed by an isolation step using high-performance liquid chromatography (HPLC) with a silica column, can successfully separate polar nitrogen-containing species from the fuel, in addition to separating oxygenates. The analytical protocol further isolates the polar target species using a polar capillary gas chromatography (GC) column and a nontraditional oven heating program. The method is amenable to milliliter quantitites of fuel samples and produces a matrix that can be analyzed directly, using typical GC methods. The method was evaluated using spiked surrogate fuels, as well as actual petroleum-derived jet fuel samples. Furthermore, it is shown that the method also can be extended for use on diesel fuels.

Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2007-05-01T23:59:59.000Z

114

Isolation and Identification of Nitrogen Species in Jet Fuel and Diesel Fuel  

Science Conference Proceedings (OSTI)

Many performance characteristics of liquid fuels--including lubricity, the ability to swell seal materials, storage stability, and thermal stability--are determined, to a large degree, by the trace polar species that the fuel contains. Because the polar fraction comprises such a small portion of the fuel matrix, it is difficult to detect these species without first isolating them from the bulk fuel. This manuscript describes the extension of previous work that established a protocol for the isolation and identification of oxygenates in jet fuels. The current work shows that a liquid-liquid extraction using methanol, followed by an isolation step using high-performance liquid chromatography (HPLC) with a silica column, can successfully separate polar nitrogen-containing species from the fuel, in addition to separating oxygenates. The analytical protocol further isolates the polar target species using a polar capillary gas chromatography (GC) column and a nontraditional oven heating program. The method is amenable to milliliter quantitites of fuel samples and produces a matrix that can be analyzed directly, using typical GC methods. The method was evaluated using spiked surrogate fuels, as well as actual petroleum-derived jet fuel samples. Furthermore, it is shown that the method also can be extended for use on diesel fuels.

Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

2007-05-01T23:59:59.000Z

115

Delta Air Lines plans to increase jet fuel yield at Trainer ...  

U.S. Energy Information Administration (EIA)

Last year a few refineries had jet fuel yields in the range that Delta has planned for Trainer, but only for a few months of the year.

116

Fuel oil and kerosene sales, 1990  

Science Conference Proceedings (OSTI)

Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

Not Available

1991-10-10T23:59:59.000Z

117

Group combustion of liquid fuel in laminar spray jet  

SciTech Connect

The present study examines the global configuration, detailed structure, and combustion characteristic of sprays under various firing conditions represented by various principal parameters including group combustion number, fuel-air mass ratio, Reynolds number, and spray angle. A system of conservation equations of spray flames in an axisymmetric configuration is solved by a finite-difference method for n-Butylbenzen (C/sub 10/H/sub 14/). An extensive spray sensitivity study reveals remarkable insight into the group flame structure which can be adopted as a basic engineering criteria for spray flame classification. It can be used to develop practical guides for the design of atomizers and burners. Highlights of the study are described in the following. There are three principal spray group combustion modes that may occur independently in a spray burner. These combustion modes are external, internal and critical group combustion modes, according to the relative magnitude of the length of the flame and the spray jet. The external group flame, located outside the spray jet is deemed to be the principal combustion configuration of practical spray flame. Predicted spray structure of the external flame is found to be in good agreement with the experimental observations. In particular, axial and radial distributions of major spray variables, droplet size, number density of droplet, concentration of fuel and oxidizer, velocities, and temperature, together with the flame contour and jet boundary are in qualitative agreement with the laboratory scale kerosene spray flame reported by Onuma and coworkers (1974, 1976). The existence of an air deficient fuel rich combustible mixture in the spray core is expected to provoke significant thermal decomposition of the hydrocarbon and also facilitate the formation of soot and particles.

Kim, H.Y.

1982-01-01T23:59:59.000Z

118

Refinery Integration of By-Products from Coal-Derived Jet Fuels  

SciTech Connect

This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

2006-09-17T23:59:59.000Z

119

Climate policy and the airline industry : emissions trading and renewable jet fuel  

E-Print Network (OSTI)

In this thesis, I assess the impact of the current EU Emissions Trading Scheme and a hypothetical renewable jet fuel mandate on US airlines. I find that both the EU Scheme up until 2020 and a renewable jet fuel mandate of ...

McConnachie, D. (Dominic Alistair)

2012-01-01T23:59:59.000Z

120

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1996 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

122

Control of flames by tangential jet actuators in oxy-fuel burners  

Science Conference Proceedings (OSTI)

The active control of oxy-fuel flames from burners with separated jets is investigated. The control system consists of four small jet actuators, placed tangential to the exit of the main jets to generate a swirling flow. These actuators are able to modify the flow structure and to act on mixing between the reactants and consequently on the flame behavior. The burner (25 kW) is composed of separated jets, one jet of natural gas and one or two jets of pure oxygen. Experiments are conducted with three burner configurations, according to the number of jets, the jet exit velocities, and the separation distance between the jets. OH chemiluminescence measurements, particle image velocimetry, and measurements of NO{sub x} emissions are used to characterize the flow and the flame structure. Results show that the small jet actuators have a significant influence on the behavior of jets and the flame characteristics, particularly in the stabilization zone. It is shown that the control leads to a decrease in lift-off heights and to better stability of the flame. The use of jet actuators induces high jet spreading and an increase in turbulence intensity, which improves the mixing between the reactants and the surrounding fluid. Pollutant measurements show important results in terms of NO{sub x} reductions (up to 60%), in particular for low swirl intensity. The burner parameters, such as the number of jets and the spacing between the jets, also impact the flame behavior and NO{sub x} formation. (author)

Boushaki, Toufik [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Site Universitaire du Madrillet, 76801 Saint Etienne du Rouvray, Cedex (France); Universite de Toulouse-INPT-UPS, IMFT (Institut de Mecanique des Fluides de Toulouse), Allee Camille Soula, F-31400 Toulouse, Cedex (France); Sautet, Jean-Charles [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Site Universitaire du Madrillet, 76801 Saint Etienne du Rouvray, Cedex (France); Labegorre, Bernard [Air Liquide, Centre de Recherche Claude-Delorme, Les Loges-en-Josas, B.P. 126 78354 Jouy-en-Josas, Cedex (France)

2009-11-15T23:59:59.000Z

123

"End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke...

124

"End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze...

125

Improved Soybean Oil for Biodiesel Fuel  

SciTech Connect

The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it is imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may lead to job creation in rural areas of the country and help stimulate the agricultural economy. Moreover, production of soybean with enhanced oil quality for biodiesel may increase the attractiveness of this renewable, environmentally friendly fuel.

Tom Clemente; Jon Van Gerpen

2007-11-30T23:59:59.000Z

126

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

127

New Zealand Energy Data: Oil Consumption by Fuel and Sector ...  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other...

128

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

129

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

130

Process for Converting Algal Oil to Alternative Aviation Fuel ...  

Conversion of triglyceride oils extracted from algae-derived lipids into aircraft fuel is a critical goal development for our national energy security. romising ...

131

Process for Converting Algal Oil to Alternative Aviation Fuel  

triglyceride oils extracted from algae-derived lipids into aircraft fuel is a critical goal development for our national energy security. romising ...

132

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT ...  

U.S. Energy Information Administration (EIA)

An energy-consuming sector that consists of living quarters and ... buildings. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 3 Commercial Use ...

133

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT  

U.S. Energy Information Administration (EIA)

Version No.: 2013.01. FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT REFERENCE YEAR 2012 ; This report is ; ... 2012 . 10. Type of Report

134

Theoretical Study of the Thermal Decomposition of a Jet Fuel Surrogate  

E-Print Network (OSTI)

In a scramjet, the fuel can be used to cool down the engine walls. The thermal decomposition of the jet fuel changes the reacting mixture before its combustion. A numerical study of the pyrolysis of norbornane, a jet fuel surrogate, has been performed. Rate constants of some sensitive reaction channels have been calculated by means of quantum chemical calculations at the CBS-QB3 level of theory. The mechanism has been validated against experimental results obtained in a jet-stirred reactor and important and/or sensitive pathways have been derived.

Sirjean, Baptiste; Glaude, Pierre-Alexandre; Ruiz-Lopez, M F; Fournet, René

2009-01-01T23:59:59.000Z

135

Advanced thermally stable jet fuels: Technical progress report, October 1994--December 1994  

DOE Green Energy (OSTI)

There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 5 subtasks which are described: Literature review on thermal stability of jet fuels; Pyrolytic and catalytic reactions of potential endothermic fuels: cis- and trans-decalin; Use of site specific {sup 13}C-labeling to examine the thermal stressing of 1-phenylhexane: A case study for the determination of reaction kinetics in complex fuel mixtures versus model compound studies; Estimation of critical temperatures of jet fuels; and Surface effects on deposit formation in a flow reactor system. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Characterization of solid gums, sediments, and carbonaceous deposits, is subtask, Studies of surface chemistry of PX-21 activated carbon during thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Exploratory screening and development potential of jet fuel thermal stabilizers over 400 C; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, are 4 subtasks: Novel approaches to low-severity coal liquefaction and coal/resid co-processing using water and dispersed catalysts; Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels; Design of a batch mode and a continuous mode three-phase reactor system for the liquefaction of coal and upgrading of coal liquids; and Exploratory studies on coal liquids upgrading using mesopores molecular sieve catalysts. 136 refs., 69 figs., 24 tabs.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

1995-02-01T23:59:59.000Z

136

Diesel fuels from shale oil. [Review of selected research  

DOE Green Energy (OSTI)

High-boiling shale oil produced from Rocky Mountain oil shale can be reduced in molecular weight by recycle thermal cracking and by coking. Selected research on the production of diesel fuels from shale oil is reviewed. Diesel fuels of good quality have been made from cracked shale oil by acid and caustic treating. Diesel oil made by this process performed acceptably in an in-service test for powering a railroad engine in a 750-hour test. Better quality diesel fuels were made by hydrogenation of a coker distillate. Even better quality diesel fuels, suitable also for use as high-quality distillate burner fuels, have been made by hydrocracking of a crude shale oil from underground in-situ retorting experiments.

Cottingham, P.L.

1976-01-01T23:59:59.000Z

137

Advanced thermally stable jet fuels: Technical progress report, July 1994--September 1994  

DOE Green Energy (OSTI)

There are five tasks within this project on thermally stable coal-based jet fuels. Progress on each of the tasks is described. Task 1, Investigation of the quantitative degradation chemistry of fuels, has 3 subtasks which are described: Pyrolysis of n-alkylbenzenes; Thermal decomposition of n-tetradecane in near-critical region; and Re-examining the effects of reactant and inert gas pressure on tetradecane pyrolysis--Effect of cold volume in batch reactor. Under Task 2, Investigation of incipient deposition, the subtask reported is Uncertainty analysis on growth and deposition of particles during heating of coal-derived aviation gas turbine fuels; under Task 3, Investigation of the quantitative degradation chemistry of fuels, is subtask, Effects of high surface area activated carbon and decalin on thermal degradation of jet A-1 fuel and n-dodecane; under Task 4, Coal-based fuel stabilization studies, is subtask, Screening potential jet fuel stabilizers using the model compound dodecane; and under Task 5, Exploratory studies on the direct conversion of coal to high quality jet fuels, is subtask, Shape-selective naphthalene hydrogenation for production of thermally stable jet fuels. 25 refs., 64 figs., 22 tabs.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Boehman, A.; Coleman, M.M.

1994-07-01T23:59:59.000Z

138

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

Winchester, N.

139

Life-cycle assessment of Greenhouse Gas emissions from alternative jet fuels  

E-Print Network (OSTI)

The key motivation for this work was the potential impact of alternative jet fuel use on emissions that contribute to global climate change. This work focused on one specific aspect in examining the feasibility of using ...

Wong, Hsin Min

2008-01-01T23:59:59.000Z

140

Cost-benefit analysis of ultra-low sulfur jet fuel  

E-Print Network (OSTI)

The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

Kuhn, Stephen (Stephen Richard)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 295,460 ...

142

U.S. Exports to Italy of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Italy of Kerosene-Type Jet Fuel (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 2: 2008: 23: 9: 18: 2009: 89: 2010: 10 ...

143

New Jersey Kerosene-Type Jet Fuel All Sales/Deliveries by Prime ...  

U.S. Energy Information Administration (EIA)

New Jersey Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

144

U.S. Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier ...  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1983: 30,535.1 ...

145

Lithuania Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 0: 2012-2012: Special Naphthas : 0 : 0: 2008-2012: Residual Fuel Oil : 1: 0 : 2010-2011: Waxes : 0: 0: 0: 0 : 2008-2011: Asphalt and Road Oil ...

146

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

147

Experimental study of ethylene counterflow diffusion flames perturbed by trace amounts of jet fuel and jet fuel surrogates under incipiently sooting conditions  

SciTech Connect

The structure of an ethylene counterflow diffusion flame doped with 2000 ppm on a molar basis of either jet fuel or two jet fuel surrogates is studied under incipient sooting conditions. The doped flames have identical stoichiometric mixture fractions (z{sub f} = 0.18) and strain rates (a = 92 s{sup -1}), resulting in a well-defined and fixed temperature/time history for all of the flames. Gas samples are extracted from the flame with quartz microprobes for subsequent GC/MS analysis. Profiles of critical fuel decomposition products and soot precursors, such as benzene and toluene, are compared. The data for C7-C12 alkanes are consistent with typical decomposition of large alkanes with both surrogates showing good qualitative agreement with jet fuel in their pyrolysis trends. Olefins are formed as the fuel alkanes decompose, with agreement between the surrogates and jet fuel that improves for small alkenes, probably because of an increase in kinetic pathways which makes the specifics of the alkane structure less important. Good agreement between jet fuel and the surrogates is found with respect to critical soot precursors such as benzene and toluene. Although the six-component Utah/Yale surrogate performs better than the Aachen surrogate, the latter performs adequately and retains the advantage of simplicity, since it consists of only two components. The acetylene profiles present a unique multimodal behavior that can be attributed to acetylene's participation in early stages of formation of soot precursors, such as benzene and other large pyrolysis products, as well as in the surface growth of soot particles. (author)

Jahangirian, Saeed; Gomez, Alessandro [Department of Mechanical Engineering, Yale Center for Combustion Studies, New Haven, CT 06477 (United States); McEnally, Charles S. [Department of Chemical Engineering, Yale Center for Combustion Studies, New Haven, CT 06477 (United States)

2009-09-15T23:59:59.000Z

148

Table 4. Sales of Distillate Fuel Oil by End Use, 1999 and 2000 ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration 13 Fuel Oil and Kerosene Sales 2000 Table 4. Sales of Distillate Fuel Oil by End Use, 1999 and 2000 (Thousand Gallons)

149

Table 2. Fuel Oil Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

1 A small amount of fuel oil used for appliances is included in "Fuel Oil" under "All Uses." NF = No applicable RSE row factor.

150

Jet Jet Jet Jet  

NLE Websites -- All DOE Office Websites (Extended Search)

protons protons top quark bottom quark muon top quark antiprotons bottom quark low energy muon quark quark - W boson + Jet Jet Jet Jet neutrino W boson particles antiparticles A Top Antitop Quark Event from the D-Zero Detector at Fermilab muon low energy muon Jet Jet Jet Jet particles antiparticles Particles Seen by the D-Zero Detector at Fermilab in a Top Antitop Quark Event. DST LEGO 16-JUL-1996 15:32 Run 92704 Event 14022 9-JUL-1995 13:17 MUON MUON Miss ET ET DST ETA-PHI 4 MUON 1 MISS ET 4 JET (HAD) (EM) D-Zero Detector at Fermi National Accelerator Laboratory Lego Plot CAL+TKS END VIEW 16-JUL-1996 15:33 Run 92704 Event 14022 9-JUL-1995 13:17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

151

Chinese tallow seed oil as a diesel fuel extender  

SciTech Connect

Chinese tallow and stillingia oil are products obtained from the seed of the unmerchantable, but high yielding Chinese tallow tree. Short-term diesel engine performance tests using mixtures 25%:75% and 50%:50% of Chinese tallow tree seed oil and tallow to diesel fuel gave engine power output, brake thermal efficiencies, and fuel consumption rates within 7% of those obtained using pure diesel fuel. Fuel property values of the extended fuels were found to be within limits proposed for diesel engines. 12 references.

Samson, W.D.; Vidrine, C.G.; Robbins, J.W.D.

1985-09-01T23:59:59.000Z

152

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Annual Energy Outlook 2012 (EIA)

Not available. W Withheld to avoid disclosure of individual company data. a Includes No. 4 fuel oil and No. 4 diesel fuel. Note: Totals may not equal the sum of the components...

153

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Annual Energy Outlook 2012 (EIA)

No data reported. W Withheld to avoid disclosure of individual company data. a Includes No. 4 fuel oil and No. 4 diesel fuel. Note: Totals may not equal the sum of the components...

154

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze...

155

,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...  

U.S. Energy Information Administration (EIA) Indexed Site

,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million" "End Use","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons...

156

Fuel efficient lubricants and the effect of special base oils  

Science Conference Proceedings (OSTI)

The demand for improved fuel economy is placing increasing pressure upon engine manufacturers world-wide. Lubricants that can provide additional fuel efficiency benefits are being vigorously sought. Such lubricants must achieve the current performance specifications that are also increasing in severity. To meet all of these requirements, passenger car lubricant formulations will need special base oils. This paper presents data on comparable 5W-30 formulations based on either hydrogenated mineral oil, or hydrocracked or poly alpha olefin basestocks. These blends clearly demonstrate the effect of improved volatility on oil consumption and oxidation stability in a range of bench engine tests. Equivalent engine test performance is observed for the hydrocracked and polyalphaolefin blends. Both exhibit performance superior to that attained by the hydrogenated mineral oil-based blend. Predicted Sequence VI fuel savings for these blends show additional fuel efficiency benefits for hydrocracked vs. hydrogenated mineral oil-based blends. 18 refs., 7 figs., 4 tabs.

Kiovsky, T.E. [BP Oil Company, Cleveland, OH (United States); Yates, N.C.; Bales, J.R. [BP Oil International Limited, Middlesex (United Kingdom)

1994-04-01T23:59:59.000Z

157

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network (OSTI)

ReceiVed August 2, 2007 The development of robust desulfurizers and new reforming catalysts for fuel cells: the desulfurization of jet fuel and the development of sulfur-tolerant reforming catalysts/C) ratios. The water gas shift reaction is then used to convert additional CO into CO2. Nickel has been

Azad, Abdul-Majeed

158

Retail Heating Oil and Diesel Fuel Prices  

U.S. Energy Information Administration (EIA)

Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we ...

159

Advanced thermally stable jet fuels. Technical progress report, April 1994--June 1994  

Science Conference Proceedings (OSTI)

Research continued on coal-based, thermally stable, jet fuels. Significant progress has been made on the detection of polycyclic aromatic hydrocarbons present in highly stressed fuels, using high-performance liquid chromatography (HPLC) with diode-array detection. Gas chromatography is not able to detect compounds with {>=}6 fused aromatic rings, but such compounds can be identified using the HPLC method. The concentration of such compounds is low in comparison to aromatics of 1-3 rings, but the role of the large compounds in the formation of solid deposits may be crucial in determining the thermal stability of a fuel. The unusual properties of fluid fuels in the near-critical region appear to have significant effects on their thermal decomposition reactions. This issue has been investigated in the present reporting period using n-tetradecane as a model compound for fuel decomposition. Temperature-programmed retention indices are very useful for gas chromatographic and gas chromatography/mass spectrometric analysis of coal and petroleum derived jet fuels. We have demonstrated this in the identification of components in two JP-8 fuels and their liquid chromatographic fractions. The role of activated carbon surfaces as catalysts in the thermal stressing of jet fuel was investigated using n-dodecane and n-octane as model compounds. In some cases the reactions were spiked with addition of 5% decalin to test the ability of the carbon to catalyze the transformation of decalin to naphthalene. We have previously shown that benzyl alcohol and 1,4-benzenedimethanol are effective stabilizers at temperatures {>=}400{degrees}C for jet fuels and the model compound dodecane. The addition of ethanol to hydrocarbon/benzyl alcohol mixtures has a significant effect on the thermal stabilization of jet fuels above 400{degrees}C. Ethanol appears to function by reducing the benzaldehyde formed during the degradation of the benzyl alcohol. This reduction regenerates the benzyl alcohol.

Schobert, H.H.; Eser, S.; Song, C. [and others

1994-07-01T23:59:59.000Z

160

Why don't fuel prices change as quickly as crude oil prices ...  

U.S. Energy Information Administration (EIA)

Fuel demand is affected mainly by economic conditions, and for heating oil, the weather. ... How do I calculate diesel fuel surcharges? How do I compare heating fuels?

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Why don't fuel prices change as quickly as crude oil prices? - FAQ ...  

U.S. Energy Information Administration (EIA)

Why don't fuel prices change as quickly as crude oil prices? The cost of crude oil is a major component in the price of diesel fuel, gasoline, and heating oil.

162

Why don't fuel prices change as quickly as crude oil prices ...  

U.S. Energy Information Administration (EIA)

Why don't fuel prices change as quickly as crude oil prices? The cost of crude oil is a major component in the price of diesel fuel, gasoline, and heating oil.

163

Connecticut Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 314,674: 301,591: 272,255: 271,852: 274,578: 274,507: 1984-2012: ...

164

South Carolina Adjusted Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 751,994: 695,077: 654,296: 726,647: 725,148: 655,638: 1984-2012: ...

165

Maryland Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 606,247: 548,583: 540,590: 579,203: 540,843: 531,683: 1984-2012: ...

166

Nebraska Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 446,825: 433,745: 461,938: 639,618: 603,268: 584,362: 1984-2012: ...

167

Massachusetts Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 487,861: 463,886: 443,620: 445,626: 460,154: 444,532: 1984-2012: ...

168

Michigan Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 970,806: 891,487: 819,086: 864,049: 854,644: 877,692: 1984-2012: ...

169

Minnesota Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 804,699: 761,187: 633,806: 665,652: 704,971: 746,974: 1984-2012: ...

170

District of Columbia Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 10,721: 15,894: 11,949: 13,216: 15,149: 15,321: 1984-2012: Residual ...

171

Minnesota Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 817,786: 767,218: 640,572: 678,530: 713,572: 763,303: 1984-2012: ...

172

New Jersey Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 1,088,505: 978,515: 760,035: 831,955: 952,930: 837,191: 1984-2012: ...

173

Wisconsin Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 788,665: 798,348: 703,583: 738,953: 719,417: 780,145: 1984-2012: ...

174

Connecticut Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 314,309: 300,255: 272,598: 271,767: 274,640: 273,827: 1984-2012: ...

175

Kansas Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 581,898: 610,088: 588,362: 554,334: 548,183: 573,992: 1984-2012: ...

176

Michigan Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 964,966: 888,432: 814,460: 855,592: 850,681: 871,756: 1984-2012: ...

177

Delaware Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 68,223: 61,302: 57,382: 56,676: 57,720: 57,230: 1984-2012: Residual ...

178

Nebraska Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 448,098: 435,444: 472,303: 689,579: 627,110: 613,232: 1984-2012: ...

179

Utah Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 525,714: 470,714: 420,706: 426,584: 508,266: 486,456: 1984-2012: ...

180

Ohio Imports of Residual Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Imports of Residual Fuel Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2000: 0: 0: 0: 0: 0: 108: 0: 0: 0: 0: 0: 27: 2001: 0: 44 ...

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Fuel Oil and Kerosene Sales 2011 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 ...

182

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

Gasoline and Diesel Fuel Update (EIA)

50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) Geographic Area Month Kerosene No. 1 Distillate No. 2...

183

Wear, durability, and lubricating oil performance of a straight vegetable oil (Karanja) blend fueled direct injection compression ignition engine  

Science Conference Proceedings (OSTI)

Depletion of fossil fuel resources and resulting associated environmental degradation has motivated search for alternative transportation fuels. Blending small quantity of Karanja oil (straight vegetable oil) with mineral diesel is one of the simplest available alternatives

Avinash Kumar Agarwal; Atul Dhar

2012-01-01T23:59:59.000Z

184

,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_epjk_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_epjk_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

185

Advanced thermally stable jet fuels. Technical progress report, April 1995--June 1995  

Science Conference Proceedings (OSTI)

Research continued on thermally stable jet fuel from coal liquids and petroleum distillates. The oxidative and thermal stabilities of ten fuels have been studied by differential scanning calorimetry and in microautoclave reactors. The compositions of the stressed fuels (as well as the unreacted fuels) were characterized by gas chromatography and gas chromatography/mass spectrometry. In addition, simulated distillation curves were determined by thermogravimetric analysis. The product distributions and reaction mechanisms for the thermal decomposition of n-alkanes in near-critical and supercritical regions were studied. The emphasis of the work in this reporting period has been placed on reaction mechanisms and product distributions. Work is continuing on obtaining additional {sup 13}C-labeled jet fuel components for future thermal stressing studies. Compounds of current interest include 6-{sup 13}C-dodecane and 1-cyclohexyl-1-{sup 13}C-hexane. Further analysis of the formation of solids from the thermal stressing of decane and decalin has been performed.

Schobert, H.H.; Eser, S.; Boehman, A.; Song, C. [and others

1995-08-01T23:59:59.000Z

186

Consider upgrading pyrolysis oils into renewable fuels  

Science Conference Proceedings (OSTI)

New research is identifying processing routes to convert cellulosic biomass into transportation fuels

Elliott, Douglas C.; Holmgren, Jennifer; Marinangelli, Richard; nair, Prabhakar; Bain, Richard

2008-09-01T23:59:59.000Z

187

Comprehensive study of a heavy fuel oil spill : modeling and analytical approaches to understanding environmental weathering  

E-Print Network (OSTI)

Driven by increasingly heavy oil reserves and more efficient refining technologies, use of heavy fuel oils for power generation is rising. Unlike other refined products and crude oils, a large portion of these heavy oils ...

Lemkau, Karin Lydia

2012-01-01T23:59:59.000Z

188

Verifying a Simplified Fuel Oil Flow Field Measurement Protocol  

Science Conference Proceedings (OSTI)

The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

Henderson, H.; Dentz, J.; Doty, C.

2013-07-01T23:59:59.000Z

189

Hydrocracking is an important source of diesel and jet fuel ...  

U.S. Energy Information Administration (EIA)

The hydrocracker upgrades low-quality heavy gas oils from the atmospheric or vacuum distillation tower ... This keeps the reactor temperature from coo ...

190

Kerosene-Type Jet Fuel Refinery Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

191

Hydrocracking is an important source of diesel and jet fuel ...  

U.S. Energy Information Administration (EIA)

The hydrocracker upgrades low-quality heavy gas oils from the atmospheric or vacuum distillation tower ... This keeps the reactor temperature from cooling to the ...

192

Kerosene-Type Jet Fuel Imports by Area of Entry  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil includes ...

193

Kerosene-Type Jet Fuel Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

194

An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures: Jet-A and JP-8  

Science Conference Proceedings (OSTI)

Ignition delay times of Jet-A/oxidizer and JP-8/oxidizer mixtures are measured using a heated rapid compression machine at compressed charge pressures corresponding to 7, 15, and 30 bar, compressed temperatures ranging from 650 to 1100 K, and equivalence ratios varying from 0.42 to 2.26. When using air as the oxidant, two oxidizer-to-fuel mass ratios of 13 and 19 are investigated. To achieve higher compressed temperatures for fuel lean mixtures (equivalence ratio of {proportional_to}0.42), argon dilution is also used and the corresponding oxidizer-to-fuel mass ratio is 84.9. For the conditions studied, experimental results show two-stage ignition characteristics for both Jet-A and JP-8. Variations of both the first-stage and overall ignition delays with compressed temperature, compressed pressure, and equivalence ratio are reported and correlated. It is noted that the negative temperature coefficient phenomenon becomes more prominent at relatively lower pressures. Furthermore, the first-stage-ignition delay is found to be less sensitive to changes in equivalence ratio and primarily dependent on temperature. (author)

Kumar, Kamal; Sung, Chih-Jen [Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

2010-04-15T23:59:59.000Z

195

Jet fuel ignition delay times: Shock tube experiments over wide conditions and surrogate model predictions  

Science Conference Proceedings (OSTI)

Ignition delay times were measured for gas-phase jet fuel (Jet-A and JP-8) in air behind reflected shock waves in a heated high-pressure shock tube. Initial reflected shock conditions were as follows: temperatures of 715-1229 K, pressures of 17-51 atm, equivalence ratios of 0.5 and 1, and oxygen concentrations of 10 and 21% in synthetic air. Ignition delay times were measured using sidewall pressure and OH* emission at 306 nm. Longer ignition delay times at low temperatures (715-850 K) were accessed by utilizing driver-gas tailoring methods. Also presented is a review of previous ignition delay time measurements of kerosene-based fuels and recent work on surrogate fuel and kinetic mechanism development. To our knowledge, we report the first gas-phase shock tube ignition delay time data for JP-8, and our measurements for Jet-A are for a broader range of conditions than previously available. Our results have very low scatter and are in excellent agreement with the limited previous shock tube data for Jet-A. Although JP-8 and Jet-A have slightly different compositions, their ignition delay times are very similar. A simple 1/P dependence was found for ignition delay times from 874 to 1220 K for the pressure range studied for both fuels. Ignition delay time variations with equivalence ratio and oxygen concentration were also investigated. The new experimental results were compared with predictions of several kinetic mechanisms, using different jet fuel surrogate mixtures. (author)

Vasu, Subith S.; Davidson, David F.; Hanson, Ronald K. [Mechanical Engineering Department, Stanford University, Stanford, CA 94305 (United States)

2008-01-15T23:59:59.000Z

196

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

197

Possible use of polyaphronated hydrocarbons at jet fuels  

Science Conference Proceedings (OSTI)

The Air Force is interested in low cost missile propulsion systems which meet the need for increased stand off range and can fly at high speeds at both low and high altitudes. Due to their high performance capabilities, liquid fueled ramjets are important candidates for these missions. They tend to perform well when the combustor length is long enough to enable all of the fuel to be burned before being lost through the exhaust nozzle. When a combustor has to be shortened due to size limitations, liquid fuel performance drops as a result of not burning all of the injected fuel. Proper fuel injection and atomization are essential factors in obtaining high performance in all liquid fueled ramjets and other air breathing combustion systems. Poor fuel atomization results in low combustion efficiency, contributes to combustion instability, and aids in the formation of pollutants. Very fine fuel atomization requires complex fuel control injection systems which are impractical for ramjet applications. The recent developments in the colloid system, polyaphrons, opens up the possibility that fuels prepared in this way may increase the performance of ramjet propulsion systems, particularly those which are limited in combustion efficiency due to short evaporation and residence times, such as is the case for the very compact swirl combustor configurations. Polyaphrons have the potential to induce better atomization thereby decreasing residence times required for individual droplet burning.

Sebba, F.; Schetz, J.A. (Virginia Polytechnic Institute and State Univ., Blacksburg (USA)); Neff, R.B. (Aero Propulsion Lab., Wright-Patterson Air Force Base, OH (USA))

1987-04-01T23:59:59.000Z

198

Advanced thermally stable jet fuels. Technical progress report, July 1995--September 1995  

SciTech Connect

The Penn State program in advanced thermally stable jet engine fuels has five components: development of mechanisms of degradation and solids formation; quantitative measurement of growth of sub-micrometer-sized and micrometer particles suspended in fuels during thermal stresses; characterization of carbonaceous deposits by various instrumental and microscopic methods; elucidation of the role of additives in retarding the formation of carbonaceous solids; and assessment of the potential of producing high yields of cycloalkanes and hydroaromatics by direct coal liquefaction. Progress is described.

Schobert, H.H.; Eser, S.; Song, C. [and others

1995-10-01T23:59:59.000Z

199

Retail Heating Oil and Diesel Fuel Prices  

U.S. Energy Information Administration (EIA)

With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal ...

200

Total Adjusted Sales of Residual Fuel Oil  

Annual Energy Outlook 2012 (EIA)

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions,...

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Total Adjusted Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

202

Total Sales of Distillate Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series...

203

Distillate Fuel Oil Exports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

204

Residual Fuel Oil Exports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

205

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 13,255: 14,640: 14,907: 15,583: 14,878 ...

206

U.S. Imports of Kerosene-Type Jet Fuel, Bonded (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports of Kerosene-Type Jet Fuel, Bonded (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 1,406: 1,620: 1,231: 1,388: 1,379: 1,456 ...

207

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

Because of the higher projected crude oil prices and because of Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

208

AltAir Fuels | Open Energy Information  

Open Energy Info (EERE)

Sector Renewable Energy Product Seattle-based developer of projects for the production of jet fuel from renewable and sustainable oils. References AltAir Fuels1 LinkedIn...

209

Production of jet fuels from coal-derived liquids. Volume 6. Preliminary analysis of upgrading alternatives for the Great Plains liquid by-production streams. Interim report, March 1987-February 1988  

Science Conference Proceedings (OSTI)

Amoco and Lummus Crest have developed seven cases for upgrading by-product liquids from the Great Plains Coal Gasification plant to jet fuels, and in several of the cases, saleable chemicals in addition to jet fuels. The analysis shows that the various grades of jet fuel can be produced from the Great Plains tar oil, but not economically. However the phenolic and naptha streams do have the potential to significantly increase (on the order of $10-15 million/year) the net revenues at Great Plains by producing chemicals, especially cresylic acid, cresol, and xylenol. The amount of these chemicals, which can be marketed, is a concern, but profits can be generated even when oxygenated chemical sales are limited to 10% of the U.S. market. Another concern is that while commercial processes exist to extract phenolic mixtures, these processes have not been demonstrated with the Great Plains phenolic stream.

Fleming, B.A.; Fox, J.D.; Furlong, M.W.; Masin, J.G.; Sault, L.P.

1988-09-01T23:59:59.000Z

210

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at about $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

211

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

Science Conference Proceedings (OSTI)

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

212

Figure HL1. U.S. Sales of Distillate and Residual Fuel Oils by ...  

U.S. Energy Information Administration (EIA)

Sales of Fuel Oil and Kerosene in 2009 . ... the need for electric utilities to consume distillate fuel to meet peak summer generation loads remained ...

213

New Jersey No. 2 Fuel Oil Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: New Jersey No. 2 Fuel Oil Refiner Sales Volumes; New Jersey Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

214

Shale oil: potential for electric power fuels. Final report  

SciTech Connect

This paper reviews the status of the oil shale industry and the impact it will have on the electric power industry in the years 1990 to 2000. The nontechnical problems are not addressed in detail as they have been suitably dealt with elsewhere. The available technologies for producing shale oil are reviewed. The major problem most processes face today is scale-up to commercial size. An industry of nearly 400,000 BPD is anticipated for 1990. The industry could grow to 1,000,000 BPD by the year 2000 with the introduction of second generation processes in the 1990s. The availability of shale oil may have a direct impact on the electric power industry initially. As the refineries improve their ability to handle shale oil, the availability of this fuel to the electric power industry for direct firing will decrease. The offgas from the oil shale industry could be of major importance to the electric power industry. One-quarter to one-third of the energy produced by the oil shale industry will be in the form of offgas (the gas produced in the retorting process). This will usually be a low Btu gas and therefore likely to be utilized on site to make electricity. The high yield of distillate fuels from shale oil could be important to the utility industry's demand for distillate fuels in peak shaving power generation. In addition to the potential supply implications, a shale oil industry and the people to support it will represent a substantial increase in power generation required in the shale oil region.

Gragg, M.; Lumpkin, R.E.; Guthrie, H.D.; Woinsky, S.G.

1981-12-01T23:59:59.000Z

215

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2012 (EIA)

342.8 W W 123.0 412.7 W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy...

216

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

2,393.2 702.7 3,804.5 3,037.5 W 134.0 See footnotes at end of table. 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District 352 Energy Information Administration ...

217

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

116.7 W W W W 379.0 W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy...

218

Gulf Coast (PADD 3) Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 699,882: 631,796: 542,036: 573,037: 694,053: 729,109: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 613,864: ...

219

New York Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 63,226: 44,510: 35,307: 33,709: 42,254: 35,237: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 12,339: 10,814: ...

220

Florida Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 71,962: 55,219: 35,537: 41,430: 47,283: 61,059: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 140,493: 153,438: ...

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

West Virginia Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 15,766: 15,416: 10,143: 11,650: 12,711: 10,456: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 45,429: 28,568: 99: ...

222

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

223

Table 8.6c Estimated Consumption of Combustible Fuels for Useful ...  

U.S. Energy Information Administration (EIA)

11 Commercial combined-heat-and-power (CHP) plants. 4 Jet fuel, kerosene, other petroleum liquids, and waste oil. 12 Industrial combined-heat-and-power (CHP) plants.

224

H-mode fueling optimization with the supersonic deuterium jet in NSTX  

SciTech Connect

High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphite Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms-scale controls and a reservoir gas pressure up to P{sub 0} = 5000 Torr. In this paper we summarize recent progress toward optimization of H-mode fueling in NSTX using the SGI-U.

Soukhanovskii, V A; Bell, M G; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Lundberg, D P; Maingi, R; Menard, J E; Raman, R; Roquemore, A L; Stotler, D P

2008-06-18T23:59:59.000Z

225

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we have raised expected peak prices this winter for residential heating oil deliveries to $1.55 per gallon (January) compared to $1.43 per gallon in last month's projections. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. Primary distillate inventories in the United States failed to rise significantly in November despite some speculation that previous distributions into secondary and tertiary storage would back up burgeoning production and import volumes into primary storage that month. Average

226

Pyrolysis Oil Upgrading to Transportation Fuels by Catalytic  

E-Print Network (OSTI)

such as fast- pyrolysis and catalytic fast-pyrolysis for producing liquid fuels from biomass feedstocks biomass to a fast-pyrolysis reactor (Table 3.4), the greatest mass yield of bio-oil can be attributed............................................................................................- 70 - TABLE 2.18. BIOMASS PYROLYSIS TECHNOLOGIES, REACTION CONDITIONS AND PRODUCTS................- 70

Groningen, Rijksuniversiteit

227

Georgia, Republic of Exports of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

Distillate Fuel Oil : 0 : 2011-2011: Greater than 15 to 500 ppm Sulfur : 0 : 2011-2011: Kerosene-Type Jet Fuel : 475: 1: 2011-2012: Special Naphthas : 2 : 2005-2008:

228

Industrial Uses of Vegetable OilsChapter 4 Biodiesel: An Alternative Diesel Fuel from Vegetable Oils or Animal Fats  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 4 Biodiesel: An Alternative Diesel Fuel from Vegetable Oils or Animal Fats Processing eChapters Processing Press Downloadable pdf of Chapter 4 Biodiesel: An Alternative Di

229

Advanced thermally stable jet fuels. Technical progress report, October 1993--December 1993  

DOE Green Energy (OSTI)

The Penn State program in advancd thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding them formation of vcarbonaceous solids; and, (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.

1994-01-01T23:59:59.000Z

230

Oil in Tennessee  

Science Conference Proceedings (OSTI)

Oil is the single most dominant force in the ''energy outlook'' and will continue to be throughout the foreseeable generations. Tennesseans now spend about $10 billion annually to satisfy energy needs; nearly half of that is for oil-based products. Most of the petroleum products sold are in the form of motor fuel, but a third of these products are made up of other categories, such as aviation and jet fuels, heating fuels, and lubricants. Baseline industry data is supplied.

Lamp, R.; Forester, C. (ed.)

1987-01-01T23:59:59.000Z

231

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

232

Converting Green River shale oil to transportation fuels  

DOE Green Energy (OSTI)

Shale oils contain significant quantities of nitrogen, oxygen, and heavy metals. Removing these contaminants is a major consideration in the catalytic conversion of shale oil to transportation fuels. Hydrotreating can remove substantially all of these elements, while coking only removes most of the heavy metals. Pilot plant data for three processing schemes were generated during the course of this study: hydrotreating followed by hydrocracking, hydrotreating followed by fluid catalytic cracking, and delayed coking followed by hydrotreating. Yields and product inspections are presented for these three cases.

Sullivan, R.F.; Stangeland, B.E.

1978-01-01T23:59:59.000Z

233

Improving low temperature properties of synthetic diesel fuels derived from oil shale. Alternative fuels utilization program  

DOE Green Energy (OSTI)

The ability of additives to improve the cold flow properties of shale oil derived fuels boiling in the diesel fuel range was evaluated. Because a commercial shale oil industry did not exist to provide actual samples of finished fuels, a representative range of hydroprocessed shale oil fractions was prepared for use in the additive testing work. Crude oil shale from Occidental Shale Company was fractionated to give three liquids in the diesel fuel boiling range. The initial boiling point in each case was 325/sup 0/F (163/sup 0/C). The final boiling points were 640/sup 0/F (338/sup 0/C), 670/sup 0/F (354/sup 0/C) and 700/sup 0/F (371/sup 0/F). Each fraction was hydrotreated to three different severities (800, 1200 and 1500 psi total pressure) over a Shell 324 nickel molybdate on alumina catalyst at 710 to 750/sup 0/F to afford 9 different model fuels. A variety of commercial and experimental additives were evaluated as cold flow improvers in the model fuels at treat levels of 0.04 to 0.4 wt %. Both the standard pour point test (ASTM D97) and a more severe low temperature flow test (LTFT) were employed. Reductions in pour points of up to 70/sup 0/F and improvements in LTFT temperatures up to 16/sup 0/F were achieved. It is concluded that flow improver additives can play an important role in improving the cold flow properties of future synthetic fuels of the diesel type derived from oil shale.

Frankenfeld, J.W.; Taylor, W.F.

1980-11-01T23:59:59.000Z

234

Advanced thermally stable jet fuels. Technical progress report, January 1995--March 1995  

SciTech Connect

Quantitative structure-property relationships have been applied to study the thermal stability of pure hydrocarbons typical of jet fuel components. A simple method of chemical structure description in terms of Benson groups was tested in searching for structure-property relationships for the hydrocarbons tested experimentally in this program. Molecular connectivity as a structure-based approach to chemical structure-property relationship analysis was also tested. Further development of both the experimental data base and computational methods will be necessary. Thermal decomposition studies, using glass tube reactors, were extended to two additional model compounds: n-decane and n-dodecane. Efforts on refining the deposit growth measurement and characterization of suspended matter in stressed fuels have lead to improvements in the analysis of stressed fuels. Catalytic hydrogenation and dehydrogenation studies utilizing a molybdenum sulfide catalyst are also described.

Schobert, H.H.; Eser, S.; Song, C. [and others

1995-06-01T23:59:59.000Z

235

U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel...  

Gasoline and Diesel Fuel Update (EIA)

Mar-13 Apr-13 May-13 Jun-13 Jul-13 Aug-13 View History Residual Fuel Oil 11,012.1 9,799.5 9,875.4 10,018.0 9,930.4 9,430.3 1983-2013 Sulfur Less Than or Equal to 1% 3,072.6 2,251.1...

236

Soybean Oil Derivatives for Fuel and Chemical Feedstocks  

Science Conference Proceedings (OSTI)

Plant based sources of hydrocarbons are being considered as alternatives to petrochemicals because of the need to conserve petroleum resources for reasons of national security and climate change. Changes in fuel formulations to include ethanol from corn sugar and methyl esters from soybean oil are examples of this policy in the United States and elsewhere. Replacements for commodity chemicals are also being considered, as this value stream represents much of the profit for the oil industry and one that would be affected by shortages in oil or other fossil fuels. While the discovery of large amounts of natural gas associated with oil shale deposits has abated this concern, research into bio-based feedstock materials continues. In particular, this chapter reviews a literature on the conversion of bio-based extracts to hydrocarbons for fuels and for building block commodity chemicals, with a focus on soybean derived products. Conversion of methyl esters from soybean triglycerides for replacement of diesel fuel is an active area of research; however, the focus of this chapter will not reside with esterification or transesterification, except has a means to provide materials for the production of hydrocarbons for fuels or chemical feedstocks. Methyl ester content in vehicle fuel is limited by a number of factors, including the performance in cold weather, the effect of oxygen content on engine components particularly in the case of older engines, shelf-life, and higher NOx emissions from engines that are not tuned to handle the handle the enhanced pre-ignition conditions of methyl ester combustion [1]. These factors have led to interest in synthesizing a hydrocarbon fuel from methyl esters, one that will maintain the cetane number but will achieve better performance in an automobile: enhanced mixing, injection, and combustion, and reduce downstream issues such as emissions and upstream issues such as fuel preparation and transportation. Various catalytic pathways from oxygenated precursor to hydrocarbon will be considered in the review: pyrolysis [2], deoxygenation and hydrogenation [3, 4], and hydrotreatment [5]. The focus of many of these studies has been production of fuels that are miscible or fungible with petroleum products, e.g., the work published by the group of Daniel Resasco at U. Oklahoma [6]. Much of the published literature focuses on simpler chemical representatives of the methyl esters form soybean oil; but these results are directly applicable to the production of chemical feedstocks, such as ethylbenzene that can be used for a variety of products: polymers, solvent, and reagent [3]. Although many chemical pathways have been demonstrated in the laboratory, the scale-up to handle quantities of bio-derived material presents a number of challenges in comparison with petroleum refining. These range from additional transportation costs because of distributed feedstock production to catalyst cost and regeneration. Other chapters in the book appear to address the cultivation and harvesting of soybeans and production of oil, so these areas will not be dealt with directly in this chapter except as they may relate to chemical changes in the feedstock material. However, the feasibility of the production of hydrocarbons from soybean triglycerides or methyl esters derived from these triglycerides will be considered, along with remaining technical hurdles before soybeans can make a significant contribution to the hydrocarbon economy.

McFarlane, Joanna [ORNL

2013-01-01T23:59:59.000Z

237

Performance and emissions of a catalytic reactor with propane, diesel, and Jet A fuels  

DOE Green Energy (OSTI)

As part of the ERDA-funded Gas Turbine Highway Vehicle Systems project, tests were made to determine the performance and emissions of a catalytic reactor operated with propane, No. 2 diesel, and Jet A fuels. A 12-cm diameter and 16-cm long catalytic reactor using a proprietary noble metal catalyst was operated at an inlet temperature of 800 K, a pressure of 3 x 10/sup 5/ Pa and reference velocities of 10 to 15 m/s. No significant differences between the performance of the three fuels were observed when 98.5% purity propane was used. The combustion efficiency for 99.8% purity propane tested later was significantly lower, however. The diesel fuel contained 135 ppM of bound nitrogen and consequently produced the highest NO/sub x/ emissions of the three fuels. As much as 85% of the bound nitrogen was converted to NO/sub x/. Steady-state emissions goals based on half the most stringent proposed automotive standards were met when the reactor was operated at an adiabatic combustion temperature higher than 1350 K with all fuels except the 99.8% purity propane. With that fuel, a minimum temperature of 1480 K was required.

Anderson, D.N.

1977-01-01T23:59:59.000Z

238

The impact of temperature in the fuel diesel - soy oil mixtures  

Science Conference Proceedings (OSTI)

In nowadays there are an increased number of cars and vehicles, which run on gasoline or diesel fuel. As a result of this are the production of air pollution and the need of imported oil as well. There is growing perceived economic and political need ... Keywords: biofuels, fuel temperature, gas emissions, soy oil fuel

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2010-02-01T23:59:59.000Z

239

Advanced thermally stable jet fuels. Technical progress report, July 1993--September 1993  

DOE Green Energy (OSTI)

The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. An exploratory study was conducted to investigate the pyrolysis of n-butylbenzene in a flow reactor at atmospheric pressure. A number of similarities to trends previously observed in high-pressure static reactions were identified. The product distribution from pyrolysis of n-tetradecane at 400{degrees}C and 425{degrees}C was investigated. The critical temperatures of a suite of petroleum- and coal-derived jet fuels were measured by a rapidly heating sealed tube method. Work has continued on refining the measurements of deposit growth for stressing mixtures of coal-derived JP-8C with tetradecane. Current work has given emphasis to the initial stages of fuel decomposition and the onset of deposition. Pretreatment of JPTS fuel with PX-21 activated carbon (50 mg of PX-21 in 15 mL JPTS) delayed degradation and prevented carbon deposition during thermal stressing at 425{degrees}C for 5 h in nitrogen and air atmospheres. Clear indications of initial and subsequent deposit formation on different metal surfaces have been identified for thermal stressing of dodecane. Seven additives were tested for their ability to retard decomposition of dodecane at 450{degrees}C under nitrogen. Nuclear magnetic resonance data for Dammar resin indicates that structures proposed in the literature are not entirely correct.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.

1993-12-01T23:59:59.000Z

240

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

Science Conference Proceedings (OSTI)

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Guyana Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 0 : 2011-2011: Special Naphthas: 0: 0 : 0: 0: 0: 2004-2012: Residual Fuel Oil : 0: 0: 0: 0: 0: 2004-2012: Waxes: 0: 0 : 0: 0: 2004-2012 ...

242

Malaysia Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 1 : 1 : 1: 2004-2012: Special Naphthas: 0: 0: 0: 0: 0: 0: 2004-2012: Residual Fuel Oil: 0: 1: 2-3-2: 0: 1994-2012: Naphtha for Petrochem ...

243

Singapore Net Imports of Crude Oil and Petroleum Products into the ...  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2004-2012: Special Naphthas: 0: 0: 0: 0-3: 0: 2004-2013: Residual Fuel Oil-232-100-184-102-69-112: 2004-2013: Naphtha for Petrochem ...

244

Utah Distillate Fuel Oil, Greater than 15 to 500 ppm Sulfur Stocks ...  

U.S. Energy Information Administration (EIA)

Utah Distillate Fuel Oil, Greater than 15 to 500 ppm Sulfur Stocks at Refineries, Bulk Terminals, and Natural Gas Plants (Thousand Barrels)

245

Why don't fuel prices change as quickly as crude oil prices? - FAQ ...  

U.S. Energy Information Administration (EIA)

Prices are determined by demand and supply in our market economy. Fuel demand is affected mainly by economic conditions, and for heating oil, the weather.

246

How many gallons of diesel fuel does one barrel of oil ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels ... How many gallons of diesel fuel does one ... and consumed in the ...

247

Table 2. Fuel Oil Consumption and Expeditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Consumption and Expeditures in U.S. Households ... Space Heating - Main or Secondary ... Forms EIA-457 A-G of the 2001 Residential Energy Consumption

248

Sales of Fuel Oil and Kerosene in 2009 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crop Production 2009 Summary, January 2010, page 76. Energy Information Administration Fuel Oil and Kerosene Sales 2009 vii drilling rigs in operation, an important ...

249

"Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"Net","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","Total","Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze)","Other(f...

250

Measurement of Fuel Dilution of Oil in a Diesel Engine using Laser-Induced Fluorescence Spectroscopy  

DOE Green Energy (OSTI)

A technique for measuring the fuel dilution of oil in a diesel engine is presented. Fuel dilution can occur when advanced in-cylinder fuel injection techniques are employed for the purpose of producing rich exhaust for lean NOx trap catalyst regeneration. Laser-induced fluorescence (LIF) spectroscopy is used to monitor the oil in a Mercedes 1.7-liter engine operated on a dynamometer platform. A fluorescent dye suitable for use in diesel fuel and oil systems is added to the engine fuel. The LIF spectra are monitored to detect the growth of the dye signal relative to the background fluorescence of the oil; fuel mass concentration is quantified based on a known sample set. The technique was implemented with fiber optic probes which can be inserted at various points in the oil system of the engine. A low cost 532-nm laser diode was used for excitation of the fluorescence. Measurements of fuel dilution of oil are presented for various in-cylinder injection strategies for rich operation of the diesel engine. Rates of fuel dilution increase for all strategies relative to normal lean operation, and higher fuel dilution rates are observed when extra fuel injection occurs later in the combustion cycle when fuel penetration into the cylinder wall oil film is more likely.

Parks, II, James E [ORNL; Partridge Jr, William P [ORNL

2007-01-01T23:59:59.000Z

251

Distillate Fuel Oil Assessment for Winter 1996-1997  

Gasoline and Diesel Fuel Update (EIA)

following Energy Information Administration sources: Weekly following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208(96-39); Petroleum Supply Monthly, September 1996, DOE/EIA-0109(96/09); Petroleum Supply Annual 1995, DOE/EIA-0340(95); Petroleum Marketing Monthly, September 1996, DOE/EIA-0380(96/09); Short-Term Energy Outlook, DOE/EIA-0202(96/4Q) and 4th Quarter 1996 Short-Term Integrated Forecasting System; and an address by EIA Administrator Jay E. Hakes on the Fall 1996 Heating Fuel Assessment before the National Association of State Energy Officials, September 16, 1996. Table FE1. Distillate Fuel Oil Demand and Supply Factors, Winter (October - March) 1993-94 Through 1996-97 History STEO Mid Case Factor Winter Winter Winter Winter 1993-94

252

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

253

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

254

Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel  

DOE Patents (OSTI)

Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

Parks, II, James E. (Knoxville, TN); Partridge, Jr., William P. (Oak Ridge, TN)

2010-11-23T23:59:59.000Z

255

Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel  

Science Conference Proceedings (OSTI)

We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

Beverly L. Smith; Thomas J. Bruno [National Institute of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Division

2007-09-15T23:59:59.000Z

256

Measurements of fuel mixture fraction oscillations of a turbulent jet non-premixed flame  

Science Conference Proceedings (OSTI)

This work describes new type of combustion instability for which the 3-way coupling between mixing, flame heat release, and acoustics is modified by local buoyancy effects. Measurements of fuel mixture fraction are made for a non-premixed jet flame in a combustion chamber to assess the dynamics of mixing under imposed acoustic oscillations (22-55 Hz). Infrared laser absorption and phase resolved acetone-planar laser induced fluorescence are used to measure the fuel mixture fraction and then the degree of fuel/air mixing is calculated by determining the unmixedness. Results show acoustic excitation causes oscillations in the degree of fuel/air mixing at the driving frequency, which results in oscillatory flame behavior. This oscillatory flame behavior couples to the buoyancy and this in turn affects the mixing. Results also show that the mixing becomes less effective when the excitation frequency is increased or when the flame is present, compared to the non-reacting case. This work describes a key coupling mechanism that occurs when buoyancy is a significant factor in the flow field. (author)

Kanga, D.M. [LG Chem Research Park, Dajeon 305-380 (Korea); Fernandez, V.; Culick, F.E.C. [Department of Mechanical Engineering, California Institute of Technology, Pasadena, CA 91125 (United States); Ratner, A. [Department of Mechanical and Industrial Engineering, University of Iowa, Iowa City, IA 52242 (United States)

2009-01-15T23:59:59.000Z

257

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Enter the Amount Delivered in Gallons XXXX Type of Fuel Sold was: 1=Fuel Oil #1 2=Fuel Oil #2 3=Kerosene 4=Other Enter the Price per Gallon $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ XXX.XX $ X.XX (select one) 1 2 3 4 MM/DD/YY Page 1 of 2 U.S. Energy Information Administration Independent Statistics & Analysis

258

U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel...  

Annual Energy Outlook 2012 (EIA)

3,173.3 2,917.4 2,860.6 2,583.8 3,410.3 2,073.8 1983-2012 Sulfur Greater Than 1% 5,046.1 6,554.0 6,931.4 8,130.3 8,790.3 6,759.3 1983-2012 No. 4 Fuel Oil 260.4 152.5 121.3 W 103.7...

259

Advanced thermally stable jet fuels. Technical progress report, August 1992--October 1992  

DOE Green Energy (OSTI)

The Penn State program in advanced thermally stable coal-based jet fuels has five borad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and miocrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Pyrolysis of four isomers of butylbenzene was investigated in static microautoclave reactors at 450{degrees}C under 0.69 MPa of UHP N{sub 2}. Thee rates of disappearance of substrates were found to depend upon the bonding energy of C{alpha}-C{beta} bond in the side chain in the initial period of pyrolysis reactions. Possible catalytic effects of metal surfaces on thermal degradation and deposit formation at temperatures >400{degrees}C have been studied. Carbon deposition depends on the composition of the metal surfaces, and also depends on the chemical compositions of the reactants. Thermal stressing of JP-8 was conducted in the presence of alumina, carbonaceous deposits recovered from earlier stressing experiments, activated carbon, carbon black, and graphite. The addition of different solid carbons during thermal stressing leads to different reaction mechanisms. {sup 13}C NMR spectroscopy, along with {sup 13}C-labeling techniques, have been used to examine the thermal stability of a jet fuel sample mixed with 5% benzyl alcohol. Several heterometallic complexes consisting of two transition metals and sulfur in a single molecule were synthesized and tested as precursors of bimetallic dispersed catalysts for liquefaction of a Montana subbituminous and Pittsburgh No. 8 bituminous coals.

Schobert, H.H.; Eser, S.; Song, C.; Hatcher, P.G.; Walsh, P.M.; Coleman, M.M.; Bortiatynski, J.; Burgess, C.; Dutta, R.; Gergova, K.; Lai, W.C.; Li, J.; McKinney, D.; Parfitt, D.; Peng, Y.; Sanghani, P.; Yoon, E.

1993-02-01T23:59:59.000Z

260

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria 83.0 96.4 146.4 153.3 182.2 226.1 220.3 342.3 248.3 Barbados NA NA NA NA NA NA NA NA NA Belgium 155.1 160.4 - - - - - - - - - - - - - - Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 115.7 117.8 180.4 141.5 198.4 222.4 NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) NA NA NA NA NA NA NA NA NA Colombia NA NA NA NA NA NA NA NA NA Cuba NA NA NA 183.4 NA NA NA NA NA

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

262

,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vwr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

263

Bio Diesel Oil of Mustard: Small Diesel a Renewable Alternative Fuel  

Science Conference Proceedings (OSTI)

This paper represents the mustard oil is a kind of renewable energy and alternative fuel of the future. In order to cope with the current situation of load shedding, and reduce dependence on imported fuels, the Bangladesh government to encourage the ... Keywords: Calorific Value, Ester Exchange Reaction, Keywords: Biodiesel, Mustard Oil, Pyrolysis, Viscosity

Liu Hongcong

2013-01-01T23:59:59.000Z

264

,,,,"Reasons that Made Residual Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.25;" 5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable Residual","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","Consumed as a Fuel","Fuel Oil Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

265

Advanced thermally stable jet fuels. Technical progress report, January 1996--March 1996  

Science Conference Proceedings (OSTI)

A reactive structure index was developed to correlate the molecular structures of saturated hydrocarbons with their reactivities using a linear group contribution method. The index is composed of several sub-indices determined from the structure, including carbon group indices, ring index, and conformation index. The effects on decomposition of ring structure, side-chain length, steric isomers, and branching were examined. Good correlations were obtained for two sets of saturated hydrocarbons. The reactivity of alkanes and cycloalkanes increases with increasing chain or side-chain length. Cycloalkanes are desirable components of advanced jet fuels, in terms of having higher thermal stability and density than n-alkanes of the same carbon number. The cis-isomer is usually more reactive than the trans-isomer, except for cis-1,3-dimethylcyclohexane. which is more stable than its trans-isomer. The presence of a branch or branches appears to decrease the decomposition rate compared to n-alkanes.

Schobert, H.H.; Eser, S.; Song, C. [and others

1996-08-01T23:59:59.000Z

266

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

267

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

268

Diesel - soy oil blends as fuel in a four stroke engine when the fuel temperatures are different  

Science Conference Proceedings (OSTI)

Due to the fact that petroleum is decreased in nowadays and also the fact that the environment sustains a lot of damage, it is necessary to be replaced by renewable fuels that can be used in the engines and are friendlily to the environment. This paper ... Keywords: biofuels, gas emissions, soy oil fuel

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis; Konstantinos Mitroulas; Marianthi Moschou

2011-12-01T23:59:59.000Z

269

Isolation and identification of fuel-oil-degrading bacteria.  

E-Print Network (OSTI)

??The purpose of this study is to isolate and identify the crude oil-degrading bacteria from oil polluted soil. Their physiological characteristics and oil-degrading capability were… (more)

Yang, Wan-yu

2008-01-01T23:59:59.000Z

270

Advanced thermally stable jet fuels. Technical progress report, April 1993--June 1993  

DOE Green Energy (OSTI)

The Penn State program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) development of mechanisms of degradation and solids formation; (2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and (5) assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Some of our accomplishments and findings are: The product distribution and reaction mechanisms for pyrolysis of alkylcyclohexanes at 450{degree}C have been investigated in detail. In this report we present results of pyrolysis of cyclohexane and a variety of alkylcyclohexanes in nitrogen atmospheres, along with pseudo-first order rate constants, and possible reaction mechanisms for the origin of major pyrolysis products are presented. Addition of PX-21 activated carbon effectively stops the formation of carbonaceous solids on reactor walls during thermal stressing of JPTS. A review of physical and chemical interactions in supercritical fluids has been completed. Work has begun on thermal stability studies of a second generation of fuel additives, 1,2,3,4-tetrahydro-l-naphthol, 9,10-phenanthrenediol, phthalan, and 1,2-benzenedimethanol, and with careful selection of the feedstock, it is possible to achieve 85--95% conversion of coal to liquids, with 40--50% of the dichloromethane-soluble products being naphthalenes. (Further hydrogenation of the naphthalenes should produce the desired highly stable decalins.)

Schobert, H.H.; Eser, S.; Song, C. [and others

1993-10-01T23:59:59.000Z

271

Microbial Fuel Cells Offer Innovative Technology for Oil, Gas ...  

Microbial Fuel Cells Offer Innovative Technology ... where organics and salt contaminate water in significant amounts during fossil fuels production.

272

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

273

,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsda_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsda_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

274

Oil and Oil Derivatives Compliance Requirements  

Science Conference Proceedings (OSTI)

... for international connection of oiled residues discharge ... C to + 163°C, fuels, lubricating oils and hydraulic ... fuel of gas turbine, crude oil, lubricating oil ...

2012-10-26T23:59:59.000Z

275

Coming revolution in world oil markets. [Abetted by conservation, fuel substitution, and better technologies  

SciTech Connect

Dr. Singer feels that a revolution will take place in the world oil market provided government does not enact counterproductive policies, but stands aside to let market forces achieve their inevitable results. He observes that by the end of this decade, and certainly in the 1990s, the free world may require less than half of the oil it uses today - some 20 million barrels per day (mbd) instead of 50 mbd. However, some 75% of this oil, instead of the current 25%, will be refined into gasoline and other motor fuels, while natural gas, nuclear energy and coal in different forms will substitute for most of the fuel oil to produce heat and steam - generally at much lower cost. Oil has become too expensive to burn, and a major adjustment in world-wide use patterns is overdue. Three factors will bring about these dramatic changes: First, new coal technologies: they make it convenient to replace heavy fuel oil in existing oil-fired boilers. Second, advances in refinery technology: they can produce more light products, gasoline and motor fuels, and less heavy fuel oil from a barrel of crude oil. Third, and above all, the laws of economics: higher oil prices, by themselves, encourage conservation and substitution. In addition, large price differentials between higher-quality light crudes and heavy crudes that normally yield less gasoline put a significant premium on refinery upgrading. And wholesale prices for gasoline are greater and are rising faster than those of residual fuel oil. Squeezing out more gasoline can increase the value of a barrel of crude substantially. Dr. Singer notes that the coming revolution is not generally recognized because many of the demand and supply trends are just emerging. He proceeds to discuss the staggering consequences of such a revolution.

Singer, S.F.

1981-02-04T23:59:59.000Z

276

One-dimensional turbulence model simulations of autoignition of hydrogen/carbon monoxide fuel mixtures in a turbulent jet  

Science Conference Proceedings (OSTI)

The autoignition of hydrogen/carbon monoxide in a turbulent jet with preheated co-flow air is studied using the one-dimensional turbulence (ODT) model. The simulations are performed at atmospheric pressure based on varying the jet Reynolds number and the oxidizer preheat temperature for two compositions corresponding to varying the ratios of H{sub 2} and CO in the fuel stream. Moreover, simulations for homogeneous autoignition are implemented for similar mixture conditions for comparison with the turbulent jet results. The results identify the key effects of differential diffusion and turbulence on the onset and eventual progress of autoignition in the turbulent jets. The differential diffusion of hydrogen fuels results in a reduction of the ignition delay relative to similar conditions of homogeneous autoignition. Turbulence may play an important role in delaying ignition at high-turbulence conditions, a process countered by the differential diffusion of hydrogen relative to carbon monoxide; however, when ignition is established, turbulence enhances the overall rates of combustion of the non-premixed flame downstream of the ignition point. (author)

Gupta, Kamlesh G.; Echekki, Tarek [Department of Mechanical and Aerospace Engineering, North Carolina State University, NC (United States)

2011-02-15T23:59:59.000Z

277

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Energy.gov (U.S. Department of Energy (DOE))

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

278

Use of waste oils to improve densified refuse derived fuels. Final report  

DOE Green Energy (OSTI)

The preparation and properties of densified refuse-derived fuel (d-RDF) had previously been studied. The objectives of this study were the reduction of the power consumption and increase in the throughput of the densifier, increase in the calorific value and of the resistance of the d-RDF to weathering during outdoor storage. It was believed that these objectives might be achieved by adding waste oils to RDF just before densification. The majority of such oil from local sources includes spent crankcase oils with a high content of lead. In the work reported here, office wastes were shredded, air classified, and reshredded prior to feeding to an animal feed densifier. Water was added to the densifier feed in order to investigate a range of moisture contents. Waste oil (from a local dealer) was pumped through spray nozzles onto the densifier feed at controlled flows so as to investigate a range of oil contents. It is observed that over the practical range of waste oil contents, the savings in power consumption with increasing oil content are small. The addition of waste oil (up to 15 wt %) to the feed did not cause noticeable improvements in throughput rates. As expected, the calorific value of the fuel increases in proportion to the amount of waste oil. Pellets containing 13 wt % oil resulted in having a 20% higher calorific content. Increased waste oil levels in RDF led to reduction in pellet lengths and densities. The addition of waste oil to RDF did not improve pellet water repellency.

None

1980-10-01T23:59:59.000Z

279

Alabama Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 979,566: 854,244: 791,004: 859,486: 917,892: 871,796: 1984-2012: ...

280

Arizona Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 877,174: 799,123: 746,952: 751,025: 767,565: 761,995: 1984-2012: ...

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Rhode Island Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 77,882: 61,856: 59,789: 65,067: 65,295: 62,041: 1984-2012: Residual ...

282

South Carolina Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 752,984: 699,864: 653,641: 726,889: 724,974: 656,396: 1984-2012: ...

283

Utah Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 512,415: 464,448: 420,807: 427,293: 507,559: 486,956: 1984-2012: ...

284

New Jersey Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 1,091,896: 991,981: 755,753: 832,806: 951,803: 842,035: 1984-2012: ...

285

U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

286

,"U.S. Total Distillate Fuel Oil and Kerosene Sales by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

287

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

288

Indiana No. 2 Fuel Oil Wholesale/Resale Volume by Refiners ...  

U.S. Energy Information Administration (EIA)

Indiana No. 2 Fuel Oil Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 ... No.1 and ...

289

South Carolina No. 2 Fuel Oil Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

South Carolina No. 2 Fuel Oil Wholesale/Resale Volume by Refiners (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 ... No.1 and No. 2 ...

290

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation  

DOE Green Energy (OSTI)

Assesses oil dilution impacts on a diesel engine operating with a diesel particle filter, NOx storage, a selective catalytic reduction emission control system, and a soy-based 20% biodiesel fuel blend.

Thornton, M. J.; Alleman, T. L.; Luecke, J.; McCormick, R. L.

2009-08-01T23:59:59.000Z

291

,"U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Adjusted Sales of Distillate Fuel Oil by End Use",13,"Annual",2012,"6301984"...

292

Microalgal Production of Jet Fuel: Cooperative Research and Development Final Report, CRADA Number CRD-07-208  

DOE Green Energy (OSTI)

Microalgae are photosynthetic microorganisms that can use CO2 and sunlight to generate the complex biomolecules necessary for their survival. These biomolecules include energy-rich lipid compounds that can be converted using existing refinery equipment into valuable bio-derived fuels, including jet fuel for military and commercial use. Through a dedicated and thorough collaborative research, development and deployment program, the team of the National Renewable Energy Laboratory (NREL) and Chevron will identify a suitable algae strain that will surpass the per-acre biomass productivity of terrestrial plant crops.

Jarvis, E. E.; Pienkos, P. T.

2012-06-01T23:59:59.000Z

293

Neutron spectroscopy as a fuel ion ratio diagnostic: Lessons from JET and prospects for ITER  

SciTech Connect

The determination of the fuel ion ratio n{sub t}/n{sub d} in ITER is required at a precision of 20%, time resolution of 100 ms, spatial resolution of a/10, and over a range of 0.016 keV and for n{sub T}/n{sub D}<0.6. A crucial issue is the signal-to-background situation in the measurement of the weak 2.5 MeV emission from DD reactions in the presence of a background of scattered 14 MeV DT neutrons. Important experimental input and corroboration for this assessment are presented from the time-of-flight neutron spectrometer at JET where the presence of a strong component of backscattered neutrons is observed. Neutron emission components on ITER due to beam-thermal and tritium-tritium reactions can further enhance the prospects for NES.

Ericsson, G.; Conroy, S.; Gatu Johnson, M.; Andersson Sunden, E.; Cecconello, M.; Eriksson, J.; Hellesen, C.; Sangaroon, S.; Weiszflog, M. [Department of Physics and Astronomy, Uppsala University (EURATOM-VR Association), SE-75120 Uppsala (Sweden); Collaboration: JET EFDA Contributors

2010-10-15T23:59:59.000Z

294

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

295

Market assessment for shale oil  

DOE Green Energy (OSTI)

This study identified several key issues on the cost, timeliness, and ease with which shale oil can be introduced into the United States' refining system. The capacity of the existing refining industry to process raw shale oil is limited by the availability of surplus hydrogen for severe hydrotreating. The existing crude oil pipeline system will encounter difficulties in handling raw shale oil's high viscosity, pour point, and contaminant levels. The cost of processing raw shale oil as an alternate to petroleum crude oil is extremely variable and primarily dependent upon the percentage of shale oil run in the refinery, as well as the availability of excess hydrogen. A large fraction of any shale oil which is produced will be refined by the major oil companies who participate in the shale oil projects and who do not anticipate problems in processing the shale oil in their refineries. Shale oil produced for sale to independent refiners will initially be sold as boiler fuel. A federal shale oil storage program might be feasible to supplement the Strategic Petroleum Reserve. Based on refinery configurations, hydrogen supply, transportation systems, and crude availability, eleven refineries in Petroleum Administration for Defense Districts (PADDs) 2A and 2B have been identified as potential processors of shale oil. Based on refining technology and projected product demands to the year 2000, shale oil will be best suited to the production of diesel fuel and jet fuel. Tests of raw shale oil in boilers are needed to demonstrate nitrogen oxide emissions control.

Not Available

1979-10-01T23:59:59.000Z

296

Life-cycle analysis of alternative aviation fuels in GREET  

SciTech Connect

The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

2012-07-23T23:59:59.000Z

297

Oil has played a predominant role in shaping the politics, economy, development, and foreign relations of the Middle East over the past century. Since oil fuels  

E-Print Network (OSTI)

Oil has played a predominant role in shaping the politics, economy, development, and foreign relations of the Middle East over the past century. Since oil fuels modern industries and societies worldwide, oil in the Middle East has become a key strategic commodity influencing international affairs

298

Experimental and computational study of methane counterflow diffusion flames perturbed by trace amounts of either jet fuel or a 6-component surrogate under non-sooting conditions  

Science Conference Proceedings (OSTI)

The chemical structure of a methane counterflow diffusion flame and of the same flame doped with 1000 ppm (molar) of either jet fuel or a 6-component jet fuel surrogate was analyzed experimentally, by gas sampling via quartz microprobes and subsequent GC/MS analysis, and computationally using a semi-detailed kinetic mechanism for the surrogate blend. Conditions were chosen to ensure that all three flames were non-sooting, with identical temperature profiles and stoichiometric mixture fraction, through a judicious selection of feed stream composition and strain rate. The experimental dataset provides a glimpse of the pyrolysis and oxidation behavior of jet fuel in a diffusion flame. The jet fuel initial oxidation is consistent with anticipated chemical kinetic behavior, based on thermal decomposition of large alkanes to smaller and smaller fragments and the survival of ring-stabilized aromatics at higher temperatures. The 6-component surrogate captures the same trend correctly, but the agreement is not quantitative with respect to some of the aromatics such as benzene and toluene. Various alkanes, alkenes and aromatics among the jet fuel components are either only qualitatively characterized or could not be identified, because of the presence of many isomers and overlapping spectra in the chromatogram, leaving 80% of the carbon from the jet fuel unaccounted for in the early pyrolysis history of the parent fuel. Computationally, the one-dimensional code adopted a semi-detailed kinetic mechanism for the surrogate blend that is based on an existing hierarchically constructed kinetic model for alkanes and simple aromatics, extended to account for the presence of tetralin and methylcyclohexane as reference fuels. The computational results are in reasonably good agreement with the experimental ones for the surrogate behavior, with the greatest discrepancy in the concentrations of aromatics and ethylene. (author)

Bufferand, H.; Tosatto, L.; La Mantia, B.; Smooke, M.D.; Gomez, A. [Department of Mechanical Engineering, Yale Center for Combustion Studies, Yale University, New Haven, CT 06520-8286 (United States)

2009-08-15T23:59:59.000Z

299

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

DOE Green Energy (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

300

Residual Fuel Oil Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Distillate Fuel Oil, Greater than 500 ppm Sulfur Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

302

Distillate Fuel Oil, 15 ppm and under Sulfur Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

303

Long-term Outlook for Oil and Other Liquid Fuels  

U.S. Energy Information Administration (EIA)

Biofuels, natural gas liquids, and crude oil production are key sources of increased domestic liquids supply. Source: EIA, Annual Energy Outlook 2011. Gulf of Mexico.

304

Evaluation of the natural biodegradation of jet fuel JP-8 in various soils using respirometry. Master`s thesis  

Science Conference Proceedings (OSTI)

This research effort used an automated respirometer to evaluate the intrinsic aerobic biodegradation potential of jet fuel JP-8 in various types of natural soils. Four replications of a complete factorial design experiment were accomplished using three levels of fuel and three types of soil in a three by three matrix of treatments. Laboratory microcosms were prepared containing the treatments, using the soils in a close to natural state, and allowed to react for fourteen days. A two-way ANOVA test on the experimental data demonstrated a strong positive correlation between the amount of fuel biodegraded with the initial level of fuel and also with the clay content of the soil. Interaction effects were also observed between the two factors. The continuous oxygen uptake rate curves were used to follow biodegradation of the fuel through the various steps of biological growth. The biokinetics of the observed reactions could be inferred from the oxygen rate curves. Analyses of soil nutrient consumption and the predicted ratio of oxygen uptake to carbon dioxide production were also done. Regression analysis demonstrated a significant reduction in nirates in microcosms with higher initial levels of fuel.

Baker, J.A.

1995-12-01T23:59:59.000Z

305

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

306

Water consumption footprint and land requirements of alternative diesel and jet fuel  

E-Print Network (OSTI)

The Renewable Fuels Standard 2 (RFS2) is an important component of alternative transportation fuels policy in the United States (US). By mandating the production of alternative fuels, RFS2 attempts to address a number of ...

Staples, Mark Douglas

2013-01-01T23:59:59.000Z

307

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

4b. Relative Standard Errors for Total Fuel Oil Consumption per 4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion Btu) Fuel Oil Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 10 14 13 13 Building Floorspace (Square Feet) 1,001 to 5,000 10 16 11 11 5,001 to 10,000 15 22 18 18 10,001 to 25,000 15 24 19 19 25,001 to 50,000 13 25 29 29 50,001 to 100,000 14 27 21 22 100,001 to 200,000 13 36 34 34 200,001 to 500,000 13 37 33 33 Over 500,000 17 51 50 50 Principal Building Activity Education 17 17 16 17 Food Sales and Service 25 36 16 16 Health Care 29 48 47 47 Lodging 27 37 32 32 Mercantile and Service 14 25 26 26 Office 14 19 21 21 Public Assembly 23 46 35 34 Public Order and Safety 28 48 46 46 Religious Worship

308

Materials Susceptibility in Contaminated Alternative Fuel  

Science Conference Proceedings (OSTI)

... Jet Fuel certification ... 50% of fuel should be alterative fuel blends by 2025 • Many alternative fuels have already been certified ...

2013-08-28T23:59:59.000Z

309

Retail Price of No. 2 Fuel Oil to Residential Consumers  

U.S. Energy Information Administration (EIA)

(Dollars per Gallon Excluding Taxes) Data ... total No. 2 diesel fuel has been eliminated to help ensure that sensitive data reported to EIA by ...

310

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

Science Conference Proceedings (OSTI)

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

311

Catalytic Hydrogenation of Bio-Oil for Chemicals and Fuels  

DOE Green Energy (OSTI)

The scope of work includes optimizing processing conditions and demonstrating catalyst lifetime for catalyst formulations that are readily scaleable to commercial operations. We use a bench-scale, continuous-flow, packed-bed, catalytic, tubular reactor, which can be operated in the range of 100-400 mL/hr., from 50-400 C and up to 20MPa (see Figure 1). With this unit we produce upgraded bio-oil from whole bio-oil or useful bio-oil fractions, specifically pyrolytic lignin. The product oils are fractionated, for example by distillation, for recovery of chemical product streams. Other products from our tests have been used in further testing in petroleum refining technology at UOP and fractionation for product recovery in our own lab. Further scale-up of the technology is envisioned and we will carry out or support process design efforts with industrial partners, such as UOP.

Elliott, Douglas C.

2006-02-14T23:59:59.000Z

312

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

0.9 Relative Standard Errors for Table 10.9;" 0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

313

Synthetic fuels. Independent has practical oil-shale operation  

SciTech Connect

Geokinetics Inc., Salt Lake City, has been developing a relatively inexpensive process to develop lean shale resources in Utah since 1975. The firm has produced almost 50,000 bbl of shale oil during the past 6 years at its test site south of Vernal, Utah. Geokinetics is projected to produce eventually 109 million bbl of shale oil from its Utah properties at a cost of ca. $30/bbl. The Low Front End Cost (Lofreco) Process, with its small scale, modular construction, and low front end capital load, can develop oil shale under conditions inhibiting firms with big, capital intensive technologies. Lofreco entails blasting a thin shale bed to create a highly permeable in situ retort. The oil shale is ignited via air injection wells, and low pressure blowers provide air to create a fire front that covers the pay section. The front moves horizontally through the fracture shale bed, with hot combustion gases heating the shale to yield shale oil which drains to the bottom of the sloped retort. The oil is recovered via small, conventional pumping units.

Williams, B.

1982-06-28T23:59:59.000Z

314

Methods for assessing the stability and compatibility of residual fuel oils  

SciTech Connect

The declining quality of residual fuel oil is of significant concern to residual fuel oil users in the electric utility industry. This project was concerned with the specific problems of instability (sediment formation or viscosity increases) and incompatibility (formation of sediment on blending with another fuel or cutter stock) which can adversely affect the fuel storage and handling systems. These problems became more severe in the late 70's and early 80's with the decline in quality of refinery feedstocks and an increase in severity of processing for conversion of resid to distillate products. Current specifications and quality control tests are inadequate to prevent or even predict problems due to instability or incompatibility. The objective of this project was to evaluate/develop rapid simple tests which utilities can use to anticipate and prevent problems from instability/incompatibility. 22 refs., 23 figs., 23 tabs.

Anderson, R.P.; Reynolds, J.W. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA))

1989-11-01T23:59:59.000Z

315

Production of jet fuels from coal-derived liquids. Volume 7. GPGP jet-fuels production program. Evaluation of technical uncertainties for producing jet fuels from liquid by-products of the Great Plains gasification plant. Interim report, 2 October 1987-30 September 1988  

Science Conference Proceedings (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding was provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to analyze GPGP operations and develop correlations for the liquid by-products and plant operating factors such as coal feed rate and coal characteristics.

Fraser, M.D.; Rossi, R.J.; Wan, E.I.

1989-01-01T23:59:59.000Z

316

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

317

Composition and properties of jet and diesel fuels derived from coal and shale  

Science Conference Proceedings (OSTI)

Important properties controlling the availability and efficient use of fuels for Navy aircraft and ships are a) low temperature properties

J. Solash; R. N. Hazlett

1981-01-01T23:59:59.000Z

318

Biodiesel fuels could reduce dependence on foreign oil  

Science Conference Proceedings (OSTI)

this article reports on a test project by the University of Nebraska and Kansas State University which examines the effects of ester-blend biodiesel from tallow compared with conventional diesel fuel on engine performance, durability, and emissions.

NONE

1994-12-31T23:59:59.000Z

319

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

Science Conference Proceedings (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

320

Pyrolysis Oil Upgrading to Transportation Fuels by Catalytic  

E-Print Network (OSTI)

or methanol. ! While pyrolysis/gasification of coal and woody biomass are in commercial use, pyrolysis reforming of the aqueous phase derived from fast-pyrolysis of biomass. Renewable Energy 2009, 34, (12), 2872.; Lee, W.-J.; Wu, H.; Li, C.-Z., Fast pyrolysis of oil mallee woody biomass: Effect of temperature

Groningen, Rijksuniversiteit

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Oil shale, tar sands, and related materials  

SciTech Connect

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

322

Singapore Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2012-2012: Special Naphthas: 0: 0: 0: 0: 0: 108: 1993-2013: Residual Fuel Oil: 3,227: 7,198: 3,010: 5,718: 3,067: 2,153: 1993-2013: Waxes: 0 ...

323

Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment  

SciTech Connect

The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

Brodrick, J.R. [USDOE, Washington, DC (United States); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. [Pacific Northwest Lab., Richland, WA (United States)

1993-02-01T23:59:59.000Z

324

Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment  

SciTech Connect

The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

Brodrick, J.R. (USDOE, Washington, DC (United States)); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. (Pacific Northwest Lab., Richland, WA (United States))

1993-02-01T23:59:59.000Z

325

Distillate Fuel Oil Assessment for Winter 1995-1996  

Gasoline and Diesel Fuel Update (EIA)

U.S. Refining Capacity Utilization U.S. Refining Capacity Utilization by Tancred Lidderdale, Nancy Masterson, and Nicholas Dazzo* U.S. crude oil refinery utilization rates have steadily increased since oil price and allocation decontrol in 1981. The annual average atmospheric distillation utilization rate has increased from 68.6 percent of operable capacity in 1981 to 92.6 percent in 1994. The distillation utilization rate reached a peak of 96.4 percent in August 1994, the highest one-month average rate in over 20 years. This dramatic increase in refining capacity utilization has stimulated a growing interest in the ability of U.S. refineries to supply domestic requirements for finished petroleum products. This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in

326

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

327

Method to upgrade bio-oils to fuel and bio-crude  

SciTech Connect

This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

2013-12-10T23:59:59.000Z

328

Direct numerical simulation of temporally evolving luminous jet flames with detailed fuel and soot chemistry  

Science Conference Proceedings (OSTI)

Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO{sub 2}, H{sub 2}O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.

Sankaran, Ramanan [ORNL

2011-01-01T23:59:59.000Z

329

Small oil-fired heating equipment: The effects of fuel quality  

SciTech Connect

The physical and chemical characteristics of fuel can affect its flow, atomization, and combustion, all of which help to define the overall performance of a heating system. The objective of this study was to evaluate the effects of some important parameters of fuel quality on the operation of oil-fired residential heating equipment. The primary focus was on evaluating the effects of the fuel`s sulfur content, aromatics content, and viscosity. Since the characteristics of heating fuel are generally defined in terms of standards (such as ASTM, or state and local fuel-quality requirements), the adequacy and limitations of such specifications also are discussed. Liquid fuels are complex and their properties cannot generally be varied without affecting other properties. To the extent possible, test fuels were specially blended to meet the requirements of the ASTM limits but, at the same time, significant changes were made to the fuels to isolate and vary the selected parameters over broad ranges. A series of combustion tests were conducted using three different types of burners -- a flame-retention head burner, a high static-pressure-retention head burner, and an air-atomized burner. With some adjustments, such modern equipment generally can operate acceptably within a wide range of fuel properties. From the experimental data, the limits of some of the properties could be estimated. The property which most significantly affects the equipment`s performance is viscosity. Highly viscous fuels are poorly atomizated and incompletely burnt, resulting in higher flue gas emissions. Although the sulfur content of the fuel did not significantly affect performance during these short-term studies, other work done at BNL demonstrated that long-term effects due to sulfur can be detrimental in terms of fouling and scale formation on boiler heat exchanger tubes.

Litzke, W.

1993-08-01T23:59:59.000Z

330

Conversion to Dual Fuel Capability in Combustion Turbine Plants: Addition of Distillate Oil Firing for Combined Cycles  

Science Conference Proceedings (OSTI)

During development of combined cycle projects, key assumptions and estimates regarding markets and technology on which the project is based may change. With fuel costs of combined cycle plants representing over 90 percent of annual operating cost, sudden changes in fuel pricing demand attention and re-evaluation. Conversion from natural gas fuel only to dual fuel capability with the addition of distillate oil firing systems is a technical response to market conditions that may have long-term as well as s...

2001-09-26T23:59:59.000Z

331

Novel techniques for the denitrogenation of shale oil. Final report, January 1, 1982-March 31, 1984  

DOE Green Energy (OSTI)

The objective of this project is to test the feasibility of a novel process to denitrogenate shale oil and selected distillate fractions by mild catalytic hydrogenation followed by ion exchange. Emphasis is directed toward the study of the ion exchange portion of the process. Using both bench- and pilot-scale units, research was first undertaken to produce a series of samples of mildly hydrogenated shale oils which were then distilled into naphtha, jet fuel, diesel fuel, gas oil and residue. Experiments were performed to determine the relative thermal stability (at somewhat elevated temperatures) of various hydrogenated and ion-exchange treated jet and diesel fuels. Ion exchange markedly improved the stability of raw shale oil. However, the stability of the mildly hydrotreated shale-derived jet fuel was made worse by adding ion-exchange treatment, presumably as a result of removing some of the lower level stabilizers (i.e., phenolics). All samples of shale-derived jet fuel, except the highly hydrogenated P67-154 jet fuel, were less stable than petroleum-derived jet A. In contrast to the above, the raw shale-derived diesel fuel was more stable than petroleum-derived No. 2 heating oil. Mild hydrotreating effected some improvement in stability. A study of the results with Amberlyst-15 resin shows that the process economics are most favorable for the ion exchange of jet fuel when the shale oil hydrotreating severity is high and the nitrogen content of the charge to ion exchange is relatively low. Although ion exchange is not economical in these cases, it appears to be economical when the weight percent nitrogen in the charge to the ion exchange is below 0.05 wt %. Significant savings are possible by minimizing the amount of resin used and by maximizing the number of cycles before discarding the resin. This appears to be realizable using Rohm and Haas XE-397 resin. 14 references, 46 figures, 28 tables.

Cronauer, D.C.

1985-02-01T23:59:59.000Z

332

The Biodiesel Handbook, 2nd EditionChapter 2 History of Vegetable Oil-Based Diesel Fuels  

Science Conference Proceedings (OSTI)

The Biodiesel Handbook, 2nd Edition Chapter 2 History of Vegetable Oil-Based Diesel Fuels Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters Press   Downloadable pdf of Chapter 2

333

Distillate Fuel Oil Imports Could Be Available - For A Price  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So it wasn't demand and production explains only part of the reason we got through last winter with enough stocks. The mystery is solved when you look at net imports of distillate fuel last winter. As we found out, while imports are a small contributor to supply, they are sometimes crucial. Last winter, imports were the main source of supply increase following the price spike. Previous record levels were shattered as imports came pouring into the country. The fact that Europe was enjoying a warmer-than-normal winter also encouraged exports to the United States. It was massive amounts of imports, particularly from Russia, that helped us get through last winter in as good a shape as we did. Imports are expected to be relatively normal this winter. Added imports

334

“The Long-run Macroeconomic Impacts of Fuel Subsidies in an Oil-importing Developing  

E-Print Network (OSTI)

Many developing and emerging market countries have subsidies on fuel products. Using a small open economy model with a non-traded sector I show how these subsidies impact the steady state levels of macroeconomic aggregates such as consumption, labor supply, and aggregate welfare. These subsidies can lead to crowding out of non-oil consumption, inefficient inter-sectoral allocations of labor, and other distortions in macroeconomic variables. Across steady states aggregate welfare is reduced by these subsidies. This result holds for a country with no oil production and for a net exporter of oil. The distortions in relative prices introduced by the subsidy create most of the welfare losses. How the subsidy is financed is of secondary importance. Aggregate welfare is significantly higher if the subsidies are replaced by lump-sum transfers of equal value.

Michael Plante; Michael Plante A

2013-01-01T23:59:59.000Z

335

Feasibility of burning refuse derived fuel in institutional size oil-fired boilers. Final report  

DOE Green Energy (OSTI)

This study investigates the feasibility of retrofitting existing oil-fired boilers of institutional size, approximately 3.63 to 36.3 Mg steam/h (8000 to 80,000 lbs steam/h) for co-firing with refuse-derived fuel (RDF). Relevant quantities describing mixtures of oil and RDF and combustion products for various levels of excess air are computed. Savings to be realized from the use of RDF are derived under several assumptions and allowable costs for a retrofit are estimated. An extensive survey of manufacturers of burners, boilers, and combustion systems showed that no hardware or proven design is yet available for such retrofit. Approaches with significant promises are outlined: the slagging burner, and a dry ash double vortex burner for low heat input from RDF. These two systems, and an evaluation of a small separate RDF dedicated combustor in support of the oil-fired boiler, are recommended as topics for future study.

None

1980-10-01T23:59:59.000Z

336

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

337

Microchannel Distillation of JP-8 Jet Fuel for Sulfur Content Reduction  

Science Conference Proceedings (OSTI)

In microchannel based distillation processes, thin vapor and liquid films are contacted in small channels where mass transfer is diffusion-limited. The microchannel architecture enables improvements in distillation processes. A shorter height equivalent of a theoretical plate (HETP) and therefore a more compact distillation unit can be achieved. A microchannel distillation unit was used to produce a light fraction of JP-8 fuel with reduced sulfur content for use as feed to produce fuel-cell grade hydrogen. The HETP of the microchannel unit is discussed, as well as the effects of process conditions such as feed temperature, flow rate, and reflux ratio.

Zheng, Feng; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Huang, Xiwen; King, David L.

2006-09-16T23:59:59.000Z

338

Market assessment for shale oil  

SciTech Connect

This study identified several key issues on the cost, timeliness, and ease with which shale oil can be introduced into the United States' refining system. The capacity of the existing refining industry to process raw shale oil is limited by the availability of surplus hydrogen for severe hydrotreating. The existing crude oil pipeline system will encounter difficulties in handling raw shale oil's high viscosity, pour point, and contaminant levels. The cost of processing raw shale oil as an alternate to petroleum crude oil is extremely variable and primarily dependent upon the percentage of shale oil run in the refinery, as well as the availability of excess hydrogen. A large fraction of any shale oil which is produced will be refined by the major oil companies who participate in the shale oil projects and who do not anticipate problems in processing the shale oil in their refineries. Shale oil produced for sale to independent refiners will initially be sold as boiler fuel. A federal shale oil storage program might be feasible to supplement the Strategic Petroleum Reserve. Based on refinery configurations, hydrogen supply, transportation systems, and crude availability, eleven refineries in Petroleum Administration for Defense Districts (PADDs) 2A and 2B have been identified as potential processors of shale oil. Based on refining technology and projected product demands to the year 2000, shale oil will be best suited to the production of diesel fuel and jet fuel. Tests of raw shale oil in boilers are needed to demonstrate nitrogen oxide emissions control.

1979-10-01T23:59:59.000Z

339

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

340

Conversion of atactic polypropylene waste to fuel oil. Final report  

DOE Green Energy (OSTI)

A stable, convenient thermal pyrolysis process was demonstrated on a large scale pilot plant. The process successfully converted high viscosity copolymer atactic polypropylene to predominantly liquid fuels which could be burned in commercial burners. Energy yield of the process was very high - in excess of 93% including gas phase heating value. Design and operating data were obtained to permit design of a commercial size atactic conversion plant. Atactic polypropylene can be cracked at temperatures around 850/sup 0/F and residence time of 5 minutes. The viscosity of the cracked product increases with decrease in time/temperature. A majority of the pyrolysis was carried out at a pressure of 50 psig. Thermal cracking of atactic polypropylene is seen to result in sigificant coke formation (0.4% to 0.8% on a weight of feed basis) although the coke levels were of an order of magnitude lower than those obtained during catalytic cracking. The discrepancy between batch and continuous test data can be atrributed to lowered heat transfer and diffusion rates. Oxidative pyrolysis is not seen as a viable commercial alternative due to a significant amount of water formation. However, introduction of controlled quantities of oxygen at lower temperatures to affect change in feedstock viscosity could be considered. It is essential to have a complete characterization of the polymer composition and structure in order to obtain useful and duplicable data because the pyrolysis products and probably the pyrolysis kinetics are affected by introduction of abnormalities into the polymer structure during polymerization. The polymer products from continuous testing contained an olefinic content of 80% or higher. This suggests that the pyrolysis products be investigated for use as olefinic raw materials. Catalytic cracking does not seem to result in any advantage over the Thermal Cracking process in terms of reaction rates or temperature of operation.

Bhatia, J.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The influence of temperature in the gas emissions by using mixtures of diesel & olive seed oil as fuels  

Science Conference Proceedings (OSTI)

Air pollution is any gas or particulate that originates from both natural and anthropogenic sources. Anthropogenic sources mostly related to burning different kinds of fuel for energy. Moreover, the exhaust from burning fuels in automobiles, homes and ... Keywords: gas emissions, olive seed oil

Charalampos Arapatsakos; Dimitrios Christoforidis; Anastasios Karkanis

2010-02-01T23:59:59.000Z

342

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2012,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2012,"6/30/1984" ,"Data 3","Industrial",9,"Annual",2012,"6/30/1984" ,"Data 4","Farm",4,"Annual",2012,"6/30/1984" ,"Data 5","Electric Power",2,"Annual",2012,"6/30/1984" ,"Data 6","Oil Company",2,"Annual",2012,"6/30/1984"

343

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

DOE Green Energy (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

344

Hydroprocessing of heavy oils for the production of fuel-cell quality fuels. Final technical report, September 30, 1977-September 30, 1978  

DOE Green Energy (OSTI)

Progress is reported on a program to establish whether heavy oils such as No. 4 or No. 6 fuel oil can be hydrogasified or hydrotreated to produce a steam-reforming feed suitable for use in an integrated fuel cell power generation facility. Hydrogasification data show that methane is the major gas product, along with a certain amount of coke formation. The liquid product was similar to the feed oil indicating that the oil did not fully enter the reaction. The hydrotreating apparatus was fully tested and proved to be operational. A trial run on No. 4 fuel oil using a Ni/MoO/sub 3/ hydrodesulfurization finishing catalyst showed very good sulfur removal to the gas phase, along with substantial reduction of specific gravity in the liquid product over the feed oil. Whereas the coke formation during hydrogasification is a clear disadvantage, further testing is required of the hydrotreating catalysts to determine quantitatively how efficient the sulfur removal can be and how amenable steam reforming the hydrotreated oil will be.

Jarvi, G.A.; Camara, E.H.; Marianowski, L.G.; Lee, A.L.; Vasil, D.R.; Oberle, R.D.

1978-01-01T23:59:59.000Z

345

The design, selection, and application of oil-free screw compressors for fuel gas service  

SciTech Connect

Fuel gas compressors installed in cogeneration systems must be highly reliable and efficient machines. The screw compressor can usually be designed to meet most of the gas flow rates and pressure conditions generally required for such installations. To an ever-increasing degree, alternative sources are being found for the fuel gas supply, such as coke-oven gas, blast-furnace gas, flare gas, landfill gas, and synthesis gas from coal gasification or from pyrolysis. A feature of the oil-free screw compressor when such gases are being considered is the isolation of the gas compression space from the bearing and gear lubrication system by using positive shaft seals. This ensures that the process gas cannot be contaminated by the lubricating oil, and that there is not risk of loss of lubricant viscosity by gas solution in the oil. This feature enables the compressed gas to contain relatively high levels of particulate contamination without danger of ``sludge`` formation, and also permits the injection of water or liquid solvents into the compression space, to reduce the temperature rise due to the heat of compression, or to ``wash`` any particulate manner through the compressor.

Lelgemann, K.D. [MAN Gutehoffnungshuette AG, Oberhausen (Germany)

1995-01-01T23:59:59.000Z

346

Singapore Net Imports of Crude Oil and Petroleum Products into the ...  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel: 4: 1: 1: 1 : 0: 2004-2012: Special Naphthas-1-1: 0-1: 0-1: 2004-2012: Residual Fuel Oil-59-67-102-117-112-103: 2004-2012: Naphtha for ...

347

Bahamas Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel-1-1-2-2-2-2: 2004-2012: Special Naphthas: 0: 0: 0: 0-1-2: 2004-2012: Residual Fuel Oil-20-12-17-23-14-11: 1993-2012: Naphtha for Petrochem ...

348

PLIF flow visualization of methane gas jet from spark plug fuel injector in a direct injection spark ignition engine  

Science Conference Proceedings (OSTI)

A Spark Plug Fuel Injection (SPFI), which is a combination of a fuel injector and a spark plug was developed with the aim to convert any gasoline port injection spark ignition engine to gaseous fuel direct injection [1]. A direct fuel injector is combined ... Keywords: air-fuel mixing, direct fuel injection, flow visualization, gaseous fuel, laser-induced fluorescent

Taib Iskandar Mohamad; How Heoy Geok

2008-11-01T23:59:59.000Z

349

Converting syncrudes to transportation fuels: Appendix 1  

DOE Green Energy (OSTI)

Syncrudes derived from oil shale and those produced in direct coal liquefaction processes can be converted to transportation fuels using modern commercial hydroprocessing technology. Upgrading routes typically consist of hydrogen addition and removal of heteroatom and inorganic impurities. This paper reviews refining routes and discusses the properties of finished transportation fuel products (gasoline, jet fuel, diesel) produced from syncrudes. Fuels produced from bituminous coal, subbituminous coal, and lignite are contrasted with those produced from oil shale and petroleum. Transportation fuels from shale oil resemble those from waxy petroleum crudes. Upgraded products from liquids made in H-Coal, EDS, and SRC-II direct coal liquefaction processes are low in paraffin content and consist mainly of cyclic hydrocarbons. As a result, the latter have some unusual and desirable properties for transportation fuels. 14 refs., 8 figs., 8 tabs.

Sullivan, R.F.; O'Rear, D.J.; Frumkin, H.A.

1981-01-01T23:59:59.000Z

350

Distributed Bio-Oil Reforming - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Stefan Czernik (Primary Contact), Richard French, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6135 Email: Stefan.Czernik@nrel.gov DOE Manager Sara Dillich Phone: (202) 586-1623 Email: Sara.Dillich@ee.doe.gov Subcontractor: University of Minnesota, Minneapolis, MN Project Start Date: October 1, 2004 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives By 2012, develop and demonstrate distributed reforming * technology for producing hydrogen from bio-oil at $4.10/ kilogram (kg) purified hydrogen. Demonstrate integrated performance at bench scale * including bio-oil vaporization, partial-oxidation (POX)

351

,"U.S. Residual Fuel Oil Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Sales Volumes" Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_c_nus_eppr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_c_nus_eppr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

352

Maintenance and storage of fuel oil for residential heating systems: A guide for residential heating system maintenance personnel  

SciTech Connect

The quality of No. 2 fuel affects the performance of the heating system and is an important parameter in the proper and efficient operation of an oil-burning system. The physical and chemical characteristics of the fuel can affect the flow, atomization and combustion processes, all of which help to define and limit the overall performance of the heating system. The use of chemical additives by fuel oil marketershas become more common as a method of improving the quality of the fuel, especially for handling and storage. Numerous types of additives are available, but reliable information on their effectiveness and proper use is limited. This makes selecting an additive difficult in many situations. Common types of problems that contribute to poor fuel quality and how they affect residential heating equipment are identified inof this booklet. It covers the key items that are needed in an effective fuel quality monitoring program, such as what to look for when evaluating the quality of fuel as it is received from a supplier, or how to assess fuel problems associated with poor storage conditions. References to standard procedures and brief descriptions of the procedures also are given. Approaches for correcting a fuel-related problem, including the potential uses of chemical additives are discussed. Different types of additives are described to help users understand the functions and limitations of chemical treatment. Tips on how to select andeffectively use additives also are included. Finally, the importance of preventative maintenance in any fuel monitoring program is emphasized.

Litzke, Wai-Lin

1992-12-01T23:59:59.000Z

353

EIA Oil price timeline  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

354

Straight Vegetable Oil as a Diesel Fuel? Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Performance of SVO Performance of SVO While straight vegetable oil or mixtures of SVO and diesel fuel have been used by some over the years, research has shown that SVO has technical issues that pose barriers to widespread acceptance. The published engineering literature strongly indicates that the use of SVO will lead to reduced engine life. This reduced engine life is caused by the buildup of carbon deposits inside the engine, as well as negative impacts of SVO on the engine lubricant. Both carbon deposits and excessive buildup of SVO in the lubricant are caused by the very high boiling point and viscosity of SVO relative to the required boiling range for diesel fuel. The carbon buildup doesn't necessarily happen quickly but instead over a longer period. These conclusions are

355

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

356

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

357

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

358

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

359

Monitoring of Olympic National Park Beaches to determine fate and effects of spilled bunker C fuel oil  

SciTech Connect

On December 23, 1988, the barge Nestucca was accidentally struck by its tow, a Souse Brothers Towing Company tug, releasing approximately 230,000 gallons of Bunker C fuel oil and fouling beaches from Grays Harbor north to Vancouver Island. Affected beaches in Washington included a 40-mile-long strip that has been recently added to Olympic National Park. The purpose of the monitoring program documented in this report was to determine the fate of spilled Bunker C fuel oil on selected Washington coastal beaches. We sought to determine (1) how much oil remained in intertidal and shallow subtidal habitats following clean-up and weathering, (2) to what extent intertidal and/or shallow subtidal biotic assemblages have been contaminated, and (3) how rapidly the oil has left the ecosystem. 45 refs., 18 figs., 8 tabs.

Strand, J.A.; Cullinan, V.I.; Crecelius, E.A.; Fortman, T.J.; Citterman, R.J.; Fleischmann, M.L.

1990-10-01T23:59:59.000Z

360

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Addendum to methods for assessing the stability and compatibility of residual fuel oils  

Science Conference Proceedings (OSTI)

An improved method for predicting the compatibility or incompatibility which will result on the blending of two or more residual fuel oils is presented. Incompatability (formation of sludge on blending of two fuels) results when the solvency power of a blend is inadequate to keep asphaltenes in solution. Prediction and thereby prevention of incompatibility requires the use of two fuel parameters. One is a measure of solvency power (i.e.,aromaticity); an adequate measure is the Bureau of Mines Correlation Index (BMCI). The second parameter required is a measure of solvency required to completely dissolve the asphaltenes. This parameter is the toluene equivalence which is expressed as the minimum percent of toluene which is required in a toluene/heptane blend to completely dissolve the asphaltene. In earlier work, complete solubility was determined by a spot test. That method was a tedious trial and error procedure but a more important problem was that it was not possible to obtain reproducible results with a number of fuels. A new method which appears to have overcome both of these problems has been developed. The new procedure is a titration method in which the fuel is dissolved in toluene and titrated in the endpoint,''i.e., the point at which precipitation of asphaltenes occurs. Precipitation of asphaltenes is detected by examination of a drop of solution under a microscope. Polarized light is used to distinguish between waxes and precipitated asphaltenes. The entire procedure can be completed in 30 minutes and does not require expensive equipment. 6 refs., 6 figs., 2 tabs.

Anderson, R.P.; Pearson, C.D. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (USA))

1991-06-01T23:59:59.000Z

362

Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products  

DOE Green Energy (OSTI)

Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

Sefer, N.R.; Russell, J.A.

1981-12-01T23:59:59.000Z

363

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

364

Increasing vehicle fuel efficiency and decreasing de-pendence on foreign oil are priorities of the U.S. De-  

E-Print Network (OSTI)

#12;Increasing vehicle fuel efficiency and decreasing de- pendence on foreign oil are priorities manufacturing research facility in the DOE laboratory system. For more than ten years, it has worked with government and industry to address commercialization challeng- es, including cost and manufacturing

365

The Biodiesel Handbook, 2nd EditionChapter 10 Other Alternative Diesel Fuels from Vegetable Oils ande Animal Fats  

Science Conference Proceedings (OSTI)

The Biodiesel Handbook, 2nd Edition Chapter 10 Other Alternative Diesel Fuels from Vegetable Oils ande Animal Fats Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts eChapters AOCS F4C73AF32C5BD3F02A46C8467BF15904 Press

366

Total Crude Oil and Products Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

367

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

368

BioJet Corporation | Open Energy Information  

Open Energy Info (EERE)

93940 Sector Carbon Product Monterey-based carbon credit developer and producer of bio-jet fuel derived from jatropha. References BioJet Corporation1 LinkedIn Connections...

369

,"U.S. Residual Fuel Oil Prices by Sales Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Prices by Sales Type" Prices by Sales Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","9/2013","1/15/1983" ,"Data 2","Sulfur Less Than or Equal to 1%",2,"Monthly","9/2013","1/15/1983" ,"Data 3","Sulfur Greater Than 1%",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_resid_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm"

370

,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales Volumes",9,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_a_eppr_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_a_eppr_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

371

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Petroleum Supply and Market Outlook. Briefing for the 7 th Annual International Airport Operations/Jet Fuel Conference

372

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

373

Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blend. Components (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

374

Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Tanker and Barge between PAD Districts Tanker and Barge between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Residual FO - Less than 0.31% Sulfur Residual FO - 0.31 to 1.00% Sulfur Residual FO - Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

375

Measurement of Selected Physical and Chemical Properties of Blends of Coaal-Based Jet fuel with Dodecane and Norpar-13.  

E-Print Network (OSTI)

??The aim of this work was to investigate the impact of blending a coal-based fuel, JP-900, with two model paraffinic fuels, dodecane and Norpar-13, on… (more)

Guiadem, Sidonie

2009-01-01T23:59:59.000Z

376

Alternative Fuels and Vehicles Offer Solutions to Imported Oil, Air Pollution, Climate Change  

DOE Green Energy (OSTI)

A fact sheet describing available alternative fuels vehicles and the fuels themselves, written primarily for individual motorists.

Not Available

2002-04-01T23:59:59.000Z

377

Heating oil futures contract now uses ultra-low sulfur diesel fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

378

Energy News: The Structure of Fuel Oil Use in US Households.  

U.S. Energy Information Administration (EIA)

Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, ... home heating oil prices in the Northeast and New England, ...

379

Jet Observables Without Jet Algorithms  

E-Print Network (OSTI)

We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables---jet multiplicity, summed scalar transverse momentum, and missing transverse momentum---have event shape counterparts that are closely correlated with their jet-based cousins. Due to their "local" computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

Daniele Bertolini; Tucker Chan; Jesse Thaler

2013-10-28T23:59:59.000Z

380

High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale  

Science Conference Proceedings (OSTI)

The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Safe Fluids for Jet Engine Texts  

Science Conference Proceedings (OSTI)

... industry and DoD use NIST calibration services for hydrocarbon liquid flow to ensure agreement and quality of measurements of jet fuel flow and ...

2012-08-29T23:59:59.000Z

382

Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control  

Science Conference Proceedings (OSTI)

Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

Robert A. Carrington; William C. Hecker; Reed Clayson

2008-06-01T23:59:59.000Z

383

CONFIRMATORY SURVEY OF THE FUEL OIL TANK AREA HUMBOLDT BAY POWER PLANT EUREKA, CALIFORNIA  

SciTech Connect

During the period of February 14 to 15, 2012, ORISE performed radiological confirmatory survey activities for the former Fuel Oil Tank Area (FOTA) and additional radiological surveys of portions of the Humboldt Bay Power Plant site in Eureka, California. The radiological survey results demonstrate that residual surface soil contamination was not present significantly above background levels within the FOTA. Therefore, it is ORISE’s opinion that the radiological conditions for the FOTA surveyed by ORISE are commensurate with the site release criteria for final status surveys as specified in PG&E’s Characterization Survey Planning Worksheet. In addition, the confirmatory results indicated that the ORISE FOTA survey unit Cs-137 mean concentrations results compared favorably with the PG&E FOTA Cs-137 mean concentration results, as determined by ORISE from the PG&E characterization data. The interlaboratory comparison analyses of the three soil samples analyzed by PG&E’s onsite laboratory and the ORISE laboratory indicated good agreement for the sample results and provided confidence in the PG&E analytical procedures and final status survey soil sample data reporting.

WADE C. ADAMS

2012-04-09T23:59:59.000Z

384

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

385

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

386

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

387

Available Technologies: Alternative Diesel Fuel from Biosynthetic ...  

Imaging Tools; Lasers; ... Cold weather anticlouding additive for diesel fuels ; Diesel or jet fuel alternative; Platform for advanced biosynthetic fuels development ;

388

A Contrast Between Distillate Fuel Oil Markets in Autumn 1996 and ...  

U.S. Energy Information Administration (EIA)

likelihood of losing money, not making it, on its inventories. This economic disincentive to store oil was powerful. While some

389

Life cycle assessment of greenhouse gas emissions and non-CO? combustion effects from alternative jet fuels  

E-Print Network (OSTI)

The long-term viability and success of a transportation fuel depends on both economic and environmental sustainability. This thesis focuses specifically on assessing the life cycle greenhouse gas (GHG) emissions and non-CO ...

Stratton, Russell William

2010-01-01T23:59:59.000Z

390

Certification of alternative aviation fuels and blend components  

SciTech Connect

Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

2013-01-15T23:59:59.000Z

391

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Adam R. 2008. “Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. In

Coughlin, Katie

2013-01-01T23:59:59.000Z

392

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

393

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

394

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

395

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

Science Conference Proceedings (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

396

S&FP Program Promotes Alternative Fuels to Cut Need for Foreign Oil  

DOE Green Energy (OSTI)

A detailed description of the history of EPAct's State & Alternative Fuel Provider Program and what fleets need to do to comply to its regulations.

Not Available

2002-04-01T23:59:59.000Z

397

Pyrolysis of shale oil residual fractions  

SciTech Connect

The freezing point of JP-5, the Navy jet fuel, has been related to the n-alkane content, specifically n-hexadecane. In general, jet fuels from shale oil have the highest n-alkanes. The formation of n-alkanes in the jet fuel distillation range can be explained if large n-alkanes are present in the crude oil source. Quantities of large n-alkanes are insufficient, however, to explain the amounts found - up to 37% n-alkanes in the jet fuel range. Other possible precursors to small straight chain molecules are substituted cyclic compounds. Attack in the side chain obviously afford a path to an n-alkane. Aromatic hydrocarbons, esters, acids, amines, and ethers also have the potential to form n-alkanes if an unbranched alkyl chain is present in the molecule. Investigations showed that the best yield of the JP-5 cut comes at different times for the various fractions, but a time in the 60 to 120 min range would appear to be the optimum time for good yield at 450/sup 0/C. The longer time would be preferred with respect to lower potential n-alkane yield. None of the fractions gave n-alkane yields approaching the 37% amount found in the Shale-I JP-5. A temperature different than the 450/sup 0/C used here might affect the conversion percentage. Further the combined saturate, aromatic, and polar fractions may interact under pyrolysis conditions to give higher potential n-alkane yields than the fractions stressed independently.

Hazlett, R.N.; Beal, E.; Vetter, T.; Sonntag, R.; Moniz, W.

1980-01-01T23:59:59.000Z

398

Combustion of EDS mid-distillate and refined shale-oil residual fuel in a gas turbine with large single-combustion chamber  

DOE Green Energy (OSTI)

The test fuels included a coal derived mid distillate recycle liquid from the EDS coal liquefaction process, produced by Exxon, and a hydroprocessed residual Paraho shale oil fraction originating from a US Government sponsored program. A BBC (Brown Boveri Co.) type 9 fully equipped 35 MW capacity gas turbine, located at BBC's test facilities near Basel, Switzerland, was utilized. The objective of the combustion test was to establish whether these alternate fuels can be fired in large single combustor turbines without deleterious effects to the turbine or environment. Nitrogen in the shale oil was on the order of 0.4 wt% while the EDS distillate contained slightly less than 10 wt% hydrogen. The test program entailed the firing of 600 barrels of each test fuel at varying turbine loads and a comparison of the results with those from a base case petroleum diesel fuel. Fuel bound nitrogen was not found to contribute significantly to NO/sub x/ emissions in contrast to other work reported earlier in subscale gas turbine tests. Water injection at 0.6 to 0.7 water-fo-fuel mass ratios was effective in meeting EPA requirements for NO/sub x/ emissions from the diesel, shale and coal derived fuels at full turbine load. Low fuel hydrogen content did not cause any operational or emission problems. Combustor wall temperature, the major problem with low hydrogen fuels, rose only slightly within acceptable limits.

Not Available

1983-01-01T23:59:59.000Z

399

Potential use of wood and agriculture wastes as steam generator fuel for thermal enhanced oil recovery. Final report  

DOE Green Energy (OSTI)

Enhanced oil recovery by steam injection methods produces over 200,000 barrels per day of crude oil in California. A sizeable portion of the produced crude, up to 40% for some projects, may be burned to generate steam for injection into the reservoir. The purpose of this study is to evaluate the potential to use wood and agriculture wastes to replace crude oil as steam generator fuel. The Bakersfield area of California's San Joaquin Valley is the focus for this paper. Production from thermal EOR methods centers around Bakersfield and agriculture and wood wastes are available from the San Joaquin Valley and the nearby Sierra Nevada mountains. This paper documents the production of waste materials by county, estimated energy value of each material, and estimated transportation cost for each material. Both agriculture and wood wastes were found to be available in sizeable quantities and could become attractive steam generation fuels. However, some qualifications need to be made on the use of these materials. Transportation costs will probably limit the range of shipping these materials to perhaps 50 to 100 miles. Availability is subject to competition from existing and developing uses of these materials, such as energy sources in their immediate production area. Existing steam generators probably cannot be retrofitted to burn these materials. Fluidized bed combustion, or low Btu gasification, may be a good technology for utilization. FBC or FBG could accept a variety of waste materials. This will be important because the amount of any single waste may not be large enough to support the energy requirements of a good size thermal f a good size thermal EOR operation.

Kosstrin, H.M.; McDonald, R.K.

1979-01-01T23:59:59.000Z

400

Analyzing the oil refining industry in developing countries: A comparative study of China and India  

SciTech Connect

The oil refining industry is a critical link in the energy chain in many developing and industrialized countries, transforming crude oil into transport fuels (gasoline, jet fuel, and diesel), residual fuel oil (widely used as a fuel in industry and the electric power sector), and other products such as kerosine, frequently for lighting an cooking usages. Three to four decades ago, the demand for oil products in most developing countries was centered to a few large cities; thus, few refineries were built in these regions. But because of the astonishing economic growth in many developing nations, demand for oil products has increased rapidly. As a result, the refining industry has expanded rapidly in such countries, even in cases were there is no domestic crude oil production. Oil product demand and refinery expansion in Asian developing countries in particular have experienced significant growth. Between 1976 and 1993, oil product demand and refinery capacity in that region (excluding Japan) increased annually an average of 5.2 percent and 4.3 percent, respectively, whereas the comparable figures for the world as a whole remained virtually unchanged during the same period. The substantial gains in Asia`s crude oil production in the 1970s is believed to have facilitated this refinery expansion.

Tang, F.C.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Monthly 2008 Utility and Nonutility Fuel Receipts and Fuel Quality...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tags fossil fuel receipts, coal receipts, oil receipts, gas receipts, fossil fuel consumption, electricity generating fuel Dataset Ratings Overall 0 No votes yet Data...

402

Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner  

Science Conference Proceedings (OSTI)

The reactants are generally injected into the industrial furnaces by jets. An effective method to act on combustion in such systems is to control the way injection jets. The present study concerns the control of turbulent flames by the jets deflection in a natural gas-oxygen burner with separated jets. The burner of 25 kW power is constituted with three aligned jets, one central natural gas jet surrounded by two oxygen jets. The principal idea is to confine the fuel jet by oxygen jets to favour the mixing in order to improve the flame stability and consequently to reduce the pollutant emissions like NO{sub x}. The flame stability and its structural properties are analyzed by the OH chemiluminescence. The Particle Image Velocimetry technique has been used to characterize the dynamic field. Results show that the control by inclined jets has a considerable effect on the dynamic behaviour and flame topology. Indeed, the control by incline of oxygen jets towards fuel jet showed a double interest: a better stabilization of flame and a significant reduction of nitrogen oxides. Measurements showed that the deflection favours the mixing and accelerates the fusion of jets allowing the flame stabilization. (author)

Boushaki, T.; Mergheni, M.A.; Sautet, J.C. [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Avenue de l'Universite, 76 801 Saint Etienne du Rouvray, Cedex (France); Labegorre, B. [Air Liquide CRCD, Les Loges en Josas, BP 126, 78350 Jouy en Josas (France)

2008-07-15T23:59:59.000Z

403

Jet engine's speed controller with constant pressure chamber  

Science Conference Proceedings (OSTI)

The paper deals with an automatic system meant to control a jet engine's rotation speed, through the fuel injection's control, based on a constant pressure chamber controller. One has established the non-linear mathematical model (based on the motion ... Keywords: actuator, control, fuel injection, fuel pump, jet-engine, pressure chamber

Alexandru Nicolae Tudosie

2008-06-01T23:59:59.000Z

404

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

405

DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.  

SciTech Connect

Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used with all oil burner installations. The other possible failure mode had been attributed to fuel degradation and this became the main focus of the evaluation. The degradation of fuel usually occurs faster under higher temperature conditions. To preclude this as much as possible controls that provided for a post-purge of combustion airflow after burner shut down were selected. This provided a short period of time where the burner's combustion air blower continues to operate after the flame has gone out. This tends to cool the nozzle and in turn the fuel inside the small flow pathways inside the nozzle components. This study concludes that the use of low capacity nozzles is possible but only when the temperature and thermal mass environment of the combustion chamber result in a relatively ''cool'' condition. This was accomplished in one long-term experiment that essentially operated for a full heating season equivalent with no evidence of nozzle plugging or failure. The nozzle body surface temperature was kept at or below 150 F during the duration of the trial. On the other hand, a second system was studied that ended in a partial nozzle blockage and a system failure. In this ''hot environment'' system the nozzle body temperature reached 210 F. This occurred at close to a full heating season equivalent, yet it still would have resulted in a no-heat complaint by the homeowner.

MCDONALD,R.J.

2007-05-01T23:59:59.000Z

406

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

407

Table 4a. U.S. Crude Oil and Liquid Fuels Supply, Consumption, and ...  

U.S. Energy Information Administration (EIA)

Total Commercial Inventory ..... 1,082 1,112 1,123 1,111 1,097 1,122 1,126 1,085 1,092 1,127 1,138 1,097 1,111 1,085 1,097 Crude Oil in SPR ...

408

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

409

A Contrast Between Distillate Fuel Oil Markets in Autumn 1996 and 1997  

Gasoline and Diesel Fuel Update (EIA)

Cheryl Cheryl J. Trench, an independent petroleum analyst, contributed to this article. Unless otherwise referenced, data in this article are taken from the following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208; Petroleum Supply Monthly, DOE/EIA-0109; Petroleum Supply Annual, DOE/EIA-0340; Petroleum Marketing Monthly, DOE/EIA-0380; Short-Term Energy Outlook, DOE/EIA-0202; and Short-Term Integrated Forecasting System. 1996 Factor 1997 Record low Previous end-winter stocks In the historical range High Prevailing prices $5/barrel lower (WTI) Falling prices Price expectations (overall) Stable prices Falling prices Price expectations (heating oil) Seasonally higher prices Strong growth Off-season demand Weaker growth Europe out-bidding US World competition for heating oil Europe's markets calm Untested; Trainor

410

Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends  

E-Print Network (OSTI)

In recent years, the development and use of biofuels have received considerable attention due to the high demand for environmentally acceptable (green) fuels. Most of the recent studies have looked at the processes of converting vegetable oils into biodiesel. It is well known vegetable oil to biodiesel conversion involves many processes including transesterification, which makes biodiesel costly and time-consuming to produce. In this study, the effects of blending high-viscosity fresh and used corn oils with low-viscosity diesel and jet fuel mixed with butanol and ethanol were studied. Several corn oil-based blends were formulated and characterized to understand the effect of composition on viscosity, fuel stability and energy content. The formulated corn oil blends were combusted in a 30 kW modified combustion chamber to determine the corresponding NOx and CO emission levels, along with CO? levels. Used corn oil was made by simply heating fresh corn oil for a fixed period of time (about 44 hours), and was characterized by quantifying its total polar material (TPM), iodine value, free fatty acid content, and peroxide value. The combustion experiments were conducted at a constant heat output of 68,620 kJ/hr (19 kW), to observe and study the effects of equivalence ratio, swirl number, and fuel composition on emissions. Used corn oil blends exhibited better combustion performance than fresh corn oil blends, due in part to the higher unsaturation levels in fresh corn oil. NOx emissions for used corn oil increased with swirl number. Among all the blends, the one with the higher amount of diesel (lower amount of corn oil) showed higher NOx emissions. The blend with fresh corn oil showed decreasing NOx with increasing equivalence ratio at swirl number 1.4. All blends showed generally decreasing CO trends at both swirl numbers at very lean conditions. The diesel fuel component as well as the alcohols in the blends were also important in the production of pollutants. Compared to the diesel-based blends mixed with used corn oil, butanol, and ethanol, the jet fuel-based blends showed higher NOx levels and lower CO levels at both swirl numbers.

Savant, Gautam Sandesh

2012-05-01T23:59:59.000Z

411

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

Table F7: Distillate Fuel Oil Consumption Estimates, 2011 State Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial...

412

The Fuel Situation  

Science Conference Proceedings (OSTI)

The United States has an abundance of energy resources; fossil fuels (mostly coal and oil shale) adequate for centuries

J. C. Fisher

1974-01-01T23:59:59.000Z

413

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

414

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

415

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

416

Converting Chattanooga oil shale to synthetic liquid fuel. Phase I. Final report. [Tennessee  

SciTech Connect

The Chattanooga Shale is widely distributed in Tennessee and has been known as a potential source of shale oil and strategic minerals, particularly uranium, for many years. It was studied in the late 1940's as a source of uranium. The shale varies in color from light gray to black. The shale is of the Devonian Age and occurs under the Maury formation and above the Leipers limestone. It exists as the Gassaway and Dowelltown members. Generally, the combined thickness of these two members in the seven-county study ranged in thickness from about 26 feet to greater than 34 feet. The overall intent of this study was to identify the extent of the Chattanooga shale in Tennessee, characterize its properties, review its potential as an oil producer in terms of present-day technologies, and to assess interest in the private sector for development and commercialization. This report contains the results of this six-month study. 28 figures, 58 tables.

1981-01-01T23:59:59.000Z

417

Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Shell storage capacity ...

418

Laser Raman scattering measurements of differential molecular diffusion in turbulent nonpremixed jet flames of H{sub 2}/CO{sub 2} fuel  

DOE Green Energy (OSTI)

This paper explores effects of differential diffusion in nonpremixed turbulent jet flames. Pulsed Raman scattering spectroscopy is used to measure temperature and species concentrations in chemically reacting jets of H{sub 2}/CO{sub 2} into air, over a range of jet Reynolds numbers from 1,000 to 30,000 based on cold jet fluid properties. Results show significant effects of differential diffusion at all jet Reynolds numbers considered. Differential diffusion between H{sub 2} and C0{sub 2} produces differences between the hydrogen element mixture fraction ({xi}{sub H}) and the carbon element mixture fraction ({xi}{sub c}). The greatest effects occur on the rich side of stoichiometric, where {xi}{sub H} is observed to be smaller than {xi}{sub C} at all Reynolds numbers. Differential diffusion between H{sub 2} and H{sub 2}O creates a net flux of hydrogen element toward the stoichiometric contour and causes a local maximum in {xi}H that occurs near the stoichiometric condition. A differential diffusion variable {sup Z}H is defined as the difference between {xi}{sub H} and {xi}{sub C}. The variance Of {sup Z}H conditional on {xi}{sub C} also shows that differential diffusion effects are greatest on the rich side of the flame. Conditional variances of {sup Z}H are largest at intermediate Reynolds numbers.

Smith, L.L.; Dibble, R.W.; Talbot, L. [California Univ., Berkeley, CA (United States). Dept. of Mechanical Engineering; Barlow, R.S.; Carter, C.D. [Sandia National Labs., Livermore, CA (United States)

1994-01-01T23:59:59.000Z

419

Distillate and Crude Oil Price  

Gasoline and Diesel Fuel Update (EIA)

fuel and residential heating oil prices on the East Coast is being driven by higher crude oil prices than last year and higher spreads. Crude oil is projected to average almost...

420

What are projected diesel fuel prices for 2013 and for 2014? - FAQ ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, ... Why don't fuel prices change as quickly as crude oil prices? Why has diesel fuel been more expensive than gasoline?

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway  

SciTech Connect

This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

2013-11-01T23:59:59.000Z

422

Market Power in California's Gasoline Market  

E-Print Network (OSTI)

price (See Figure 2.2a). Jet Fuel Distillate Fuel Oil: Reformulated Gasoline Residual Fuel Oil Petroleum Coke

Borenstein, Severin; Bushnell, James; Lewis, Matthew

2004-01-01T23:59:59.000Z

423

Global Alternative Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternative Fuels Jump to: navigation, search Name Global Alternative Fuels Place El Paso, Texas Zip 79922 Product Global Alternative Fuels processes virgin oils (palm, soybean,...

424

EIA projects record winter household heating oil prices in the ...  

U.S. Energy Information Administration (EIA)

Home; Browse by Tag; Most Popular Tags. electricity; oil/petroleum; liquid fuels; natural gas; prices; states; ... Heating oil prices largely reflect crude oil prices.

425

Appendix A: Fuel Price Forecast Introduction..................................................................................................................................... 1  

E-Print Network (OSTI)

Appendix A: Fuel Price Forecast Introduction................................................................................................................................. 3 Price Forecasts............................................................................................................................... 12 Oil Price Forecast Range

426

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

427

DOE Hydrogen and Fuel Cells Program: Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

America's dependence on imported oil and reduce the environmental impacts of fossil fuel combustion. Beginning in fiscal year 2004, the Hydrogen Fuel Initiative (HFI) increased...

428

BCA Perspective on Fuel Cell APUs  

NLE Websites -- All DOE Office Websites (Extended Search)

(Overall system at cruise) 0.6 litre Jet-A 40% less fuel used In-flight SFC* saving is 0.7% * Specific Fuel Consumption Fuel saving opportunity on the...

429

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

430

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

Oil Shale Process Wastewater," in Analysis of Waters Associated with Alternate Fuel Production,oil and shale during In in-situ processes, retort water its production

Fox, J.P.

2010-01-01T23:59:59.000Z

431

CO2 Emissions - Kuwait Oil Fires  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Regional Middle East Kuwait Oil Fires Graphics CO2 Emissions from the 1991 Kuwait Oil Fires Data graphic Data...

432

S and FP Program Promotes Alternative Fuels to Cut Need for Foreign Oil: EPAct Fleet Information and Regulations, State and Alternative Fuel Provider Program Fact Sheet  

DOE Green Energy (OSTI)

A detailed description of the history of EPAct's State and Alternative Fuel Provider Program and what fleets need to do to comply to its regulations.

Melendez, M.; White, H.

2001-04-26T23:59:59.000Z

433

Vehicle Technologies Office: Non-Petroleum-Based Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

than light, sweet crude oil - for example, natural gas, heavy crude, tar (oil) sands, oil shale, and coal. Renewable Non-Petroleum-Based Fuels Researchers have identified options...

434

Characterization of exhaust emissions from palm oil-based and soybean oil-based biodiesel fueled heavy-duty transit buses.  

E-Print Network (OSTI)

??Biodiesel blends offer a renewable energy fueling option for compression-ignition internal combustion engines. Typically, biodiesel blended at or less than 20% (B20), by volume, will… (more)

Efaw, Trampas J.

2009-01-01T23:59:59.000Z

435

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

436

Multiphysics CFD Modeling of a Free Falling Jet during Melt-Blowing ...  

Science Conference Proceedings (OSTI)

Presentation Title, Multiphysics CFD Modeling of a Free Falling Jet during Melt- Blowing Slag Fiberization ... A Micro-Macro Model of a PEM Fuel Cell System.

437

The extraction of bitumen from western oil sands: Volume 2. Final report  

Science Conference Proceedings (OSTI)

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

438

Synthetic fuels from US oil shales: a technical and economic verification of the HYTORT process. Quarterly report, October 1-December 31, 1980  

DOE Green Energy (OSTI)

The objective of this program is to fully demonstrate the technical and economic feasibility of the HYTORT process concept as it applies to both Eocene and Devonian shales. Achievement of this objective will significantly widen the nation's synthetic fuels resource base by adding a new resource - Devonian shale - to the list of possible feedstocks for a synthetic fuels industry. It will also establish a high-efficiency alternative to conventional retorting of Western oil shales. Research at the Institute of Gas Technology (IGT) has led to the development of the HYTORT process concept, which can be applied to the resources of Devonian shales of the Eastern United States as well as to Western shales, to produce oil or combustible gas at costs competitive with or less than those for retorting of Colorado shales. The HYTORT process concept has been successfully scaled up through small-scale laboratory equipment, a bench-scale unit capable of processing 100 pounds of shale per hour, and a Process Development Unit (PDU) with a shale capacity of 1 ton/hr. In addition, preliminary process design and economic analysis work shows that the HYTORT process exhibits attractive efficiency and economics.

Not Available

1981-07-01T23:59:59.000Z

439

Fueling the Navy's Great Green Fleet with Advanced Biofuels | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fueling the Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels Fueling the Navy's Great Green Fleet with Advanced Biofuels December 5, 2011 - 5:44pm Addthis Idaho National Laboratory describes R&D efforts to transform raw biomass into quality feedstocks for the production of renewable fuels, power and bioproducts. Aaron Crowell Senior Technical Research Analyst What does this project do? Develops and utilizes domestically produced biofuels to make our military and the nation more secure. From transporting the oil necessary to fuel jets and vehicles to supplying battery packs to infantry, energy plays a central role in almost everything the U.S. military does. Because of this reliance, it's imperative that the military cultivate energy sources that are not subject to the whims of

440

Supply, disposition, and stocks of all oils by P. A. D. districts and imports into the United States, by country, final 1978  

Science Conference Proceedings (OSTI)

Final annual US supply, disposition, and stocks are detailed for: all oils, petroleum products, crude oil, selected natural gas plant liquids, and net unfinished oils for each of five P.A.D. (Petroleum Administration for Defense) Districts for 1978. Petroleum products include motor gasoline, aviation gasoline, jet engine fuels, ethane, liquefied gases, kerosene, distillate fuel oil, residual fuel oil, petrochemical feedstocks, naphthas, lubricants, wax, coke, asphalt, and other products. Also given is the percentage of refinery yields based on crude and net unfinished oil rerun. Imports of petroleum products and of crude oil into the United States are shown by country and continent, with US totals and subtotals for each P.A.D. District. OPEC (Organization of Petroleum Exporting Countries) members are indicated. Data are reported in barrels per day. An accompanying map indicates the US P.A.D. Districts. A brief narrative discusses salient statistics. Prior to the 1978 annual issue, this report was entitled Supply Demand, and Stocks of All Oils by P.A.D. Districts and Imports into the United States, by Country. 1 figure, 6 tables.

Not Available

1980-01-07T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Low Carbon Fuel Standards  

E-Print Network (OSTI)

cap would be placed on oil refineries and would require themwith the fuels. The refineries would be able to tradeto improve the efficiency of refineries and introduce low-

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

442

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

Table F9: Residual Fuel Oil Consumption Estimates, 2011 State Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation Electric Power Total...

443

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network (OSTI)

Fuel Oil (bunker fuel) Petrochemical Feedstock Motorof re?ned oil product used in the U.S. is motor gasoline.

Borenstein, Severin

2008-01-01T23:59:59.000Z

444

Strait of Hormuz is chokepoint for 20% of world’s oil ...  

U.S. Energy Information Administration (EIA)

International crude oil and liquefied fuels movements depend on reliable transport through key chokepoints. In 2011, total world crude oil and liquefied fuels ...

445

Prediction of performance and exhaust emissions of a diesel engine fueled with biodiesel produced from waste frying palm oil  

Science Conference Proceedings (OSTI)

Biodiesel is receiving increasing attention each passing day because of its fuel properties and compatibility with the petroleum-based diesel fuel (PBDF). Therefore, in this study, the prediction of the engine performance and exhaust emissions is carried ... Keywords: ANN, Biodiesel, Diesel engine, Emissions, Engine performance

Mustafa Canakci; Ahmet Necati Ozsezen; Erol Arcaklioglu; Ahmet Erdil

2009-07-01T23:59:59.000Z

446

Oil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

447

Thermal Interaction Between Molten Metal Jet and Sodium Pool: Effect of Principal Factors Governing Fragmentation of the Jet  

SciTech Connect

To clarify the effects of the principal factors that govern the thermal fragmentation of a molten metallic fuel jet in the course of fuel-coolant interaction, which is important in evaluating the sequence of core disruptive accidents (CDAs) for metallic fuel fast reactors, basic experiments were carried out using molten metallic fuel simulants (copper and silver) and a sodium pool.Fragmentation of a molten metal jet with a solid crust was caused by internal pressure produced by the boiling of sodium, which is locally entrapped inside the jet due to hydrodynamic motion between the jet and the coolant. The superheating and the latent heat of fusion of the jet are the principal factors governing this type of thermal fragmentation. On the other hand, the effect of the initial sodium temperature is regarded as negligible in the case of thermal conditions expected to result in CDAs for practical metallic fuel cores. Based on the fragmentation data for several kinds of jets (Cu, Ag, SUS, U, and U-5 wt% Zr alloy), an empirical correlation is proposed that is applicable to the calculation of a mass median diameter of fragments produced by the thermal fragmentation of the jet with a solid crust under low ambient Weber number conditions.

Nishimura, Satoshi [Central Research Institute of Electric Power Industry (CRIEPI) (Japan); Kinoshita, Izumi [Central Research Institute of Electric Power Industry (CRIEPI) (Japan); Sugiyama, Ken-Ichiro [Hokkaido University (Japan); Ueda, Nobuyuki [Central Research Institute of Electric Power Industry (CRIEPI) (Japan)

2005-02-15T23:59:59.000Z

448

Fueling area site assessment  

SciTech Connect

This report provides results of a Site Assessment performed at the Fuel Storage Area at Buckley ANG Base in Aurora, Colorado. Buckley ANG Base occupies 3,328 acres of land within the City of Aurora in Arapahoe County, Colorado. The Fuel Storage Area (also known as the Fueling Area) is located on the west side of the Base at the intersection of South Powderhorn Street and East Breckenridge Avenue. The Fueling Area consists of above ground storage tanks in a bermed area, pumps, piping, valves, an unloading stand and a fill stand. Jet fuel from the Fueling Area is used to support aircraft operations at the Base. Jet fuel is stored in two 200,000 gallon above ground storage tanks. Fuel is received in tanker trucks at the unloading stand located south and east of the storage tanks. Fuel required for aircraft fueling and other use is transferred into tanker trucks at the fill stand and transported to various points on the Base. The Fuel Storage Area has been in operation for over 20 years and handles approximately 7 million gallons of jet fuel annually.

1996-08-15T23:59:59.000Z

449

Plasma jet ignition device  

DOE Patents (OSTI)

An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

1985-01-15T23:59:59.000Z

450

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network (OSTI)

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

451

High heating oil prices discourage heating oil supply contracts ...  

U.S. Energy Information Administration (EIA)

EIA's Short-Term Energy and Winter Fuels Outlook expects the U.S. home heating oil price will average $3.71 per gallon for the season, ...

452

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

453

AgriFuel Company | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name AgriFuel Company Place Cranford, New Jersey Sector Biofuels Product AgriFuel produces and markets biofuels refined from waste vegetable oil,...

454

Aviation turbine fuels, 1985  

Science Conference Proceedings (OSTI)

Samples of this report are typical 1985 production and were analyzed in the laboratories of 17 manufactures of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma, the American Petroleum Institute (API), and the United States Department of Energy (DOE), Bartlesville Project Office. results for certain properties of 88 samples of aviation turbine fuels are included in the report for military grades JP-4 and JP-5, and commercial type Jet A. Previous aviation fuel survey reports are listed.

Dickson, C.L.; Woodward, P.W.

1986-05-01T23:59:59.000Z

455

Aviation turbine fuels, 1982  

Science Conference Proceedings (OSTI)

Properties of some aviation turbine fuels marketed in the United States during 1982 are presented in this report. The samples represented are typical 1982 production and were analyzed in the laboratories of 14 manufacturers of aviation turbine (jet) fuels. The data were submitted for study, calculation, and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma, and the American Petroleum Institute (API). Results for the properties of 90 samples of aviation turbine fuels are included in the report for military grades JP-4 and HP-5, and commercial type Jet A.

Shelton, E.M.; Dickson, C.L.

1983-03-01T23:59:59.000Z

456

G. Uniform Engine Fuels and Automotive Lubricants ...  

Science Conference Proceedings (OSTI)

... 3.6. Fuel Oils. 3.6.1. Labeling of Grade Required. – Fuel Oil shall be identified by the grades of No. ... 3.10. Liquefied Petroleum Gas (LPG). ...

2013-10-25T23:59:59.000Z

457

Energy Policy 34 (2006) 515531 Have we run out of oil yet? Oil peaking analysis from  

E-Print Network (OSTI)

Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah;#12;Energy Policy Act of 2005 Section 369 Oil Shale, Tar Sands and Other Strategic Unconventional Fuels Sec May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U

458

HS_Oil_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Fossil Energy Study Guide: Oil Pet roleum-or cr ude oil-is a fossil fuel that is found in large quantities beneath the Earth's sur face and is often used as a fuel or raw material in the chemical indust r y. It is a smelly, yellow-to-black liquid and is usually found in underg round areas called reser voirs. If you could look down an oil well and see oil where Nature created it, you might be surprised. You wouldn't see a big underground lake, as a lot of people think. Oil doesn't exist in deep, black pools. In fact, an underground oil formation-an "oil reservoir"-looks very much like any other rock formation. Oil exists in this underground formation as tiny droplets trapped inside the open spaces, called "pores," inside rocks. Th

459

Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.  

E-Print Network (OSTI)

billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

460

Deep desulfurization of hydrocarbon fuels  

SciTech Connect

The invention relates to processes for reducing the sulfur content in hydrocarbon fuels such as gasoline, diesel fuel and jet fuel. The invention provides a method and materials for producing ultra low sulfur content transportation fuels for motor vehicles as well as for applications such as fuel cells. The materials and method of the invention may be used at ambient or elevated temperatures and at ambient or elevated pressures without the need for hydrogen.

Song, Chunshan (State College, PA); Ma, Xiaoliang (State College, PA); Sprague, Michael J. (Calgary, CA); Subramani, Velu (State College, PA)

2012-04-17T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil jet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center - Fuel Properties Comparison  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Data Center - Fuel Properties Comparison Fuels Data Center - Fuel Properties Comparison www.afdc.energy.gov 1 2/27/2013 Gasoline Diesel (No. 2) Biodiesel Propane (LPG) Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) Ethanol Methanol Hydrogen Electricity Chemical Structure C 4 to C 12 C 8 to C 25 Methyl esters of C 12 to C 22 fatty acids C 3 H 8 (majority) and C 4 H 10 (minority) CH 4 (83-99%), C 2 H 6 (1-13%) CH 4 CH 3 CH 2 OH CH 3 OH H 2 N/A Fuel Material (feedstocks) Crude Oil Crude Oil Fats and oils from sources such as soy beans, waste cooking oil, animal fats, and rapeseed A by-product of petroleum refining or natural gas processing Underground reserves Underground reserves Corn, grains, or

462

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

463

Hypervelocity impact jet formation  

SciTech Connect

The hypervelocity impact of a particle on a surface generates a jet of shocked material which is thrown from the impact site. A simple analytic model has been developed to obtain expressions for the evolution of this jet of ejecta. The analysis is based on applying the conservation equations of mass and momentum to the problem of a normal impact of a sphere against a semi-infinite flat target. Expressions are developed for the evolution of the jet velocity, jet release point and the locus of points which describe the ejecta envelope. These analytical ejecta profiles are compared with high speed photographs of impact jet formation. 6 refs., 7 figs.

Ang, J.A.

1991-01-01T23:59:59.000Z

464

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

465

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

Science Conference Proceedings (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

466

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

PAD District level net receipts includes implied net ... Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil ...

467

Utilization of pyrolysis oil in industrial scale boilers.  

E-Print Network (OSTI)

??The performance of pyrolysis oil in a large-scale combustion system is investigated to determine the feasibility of displacing fuel oil or natural gas in current… (more)

Redfern, Kyle D.

2013-01-01T23:59:59.000Z

468

Trends in Eagle Ford drilling highlight the search for oil ...  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... In major shale plays, drilling activity depends largely on the resource mix and relative fuel ...

469

Oil Study Guide - Middle School | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Middle School More Documents & Publications Oil Study Guide - High School Natural Gas Study Guide - Middle School Secure Fuels from Domestic Resources - Oil Shale and Tar Sands...

470

A Study of the Use of Jatropha Oil Blends in Boilers  

DOE Green Energy (OSTI)

Executive Summary: This project investigated the combustion performance of blends of unrefined Jatropha oil and its blends in laboratory boilers. Although a very limited amount of testing blends in distillate oil, ASTM No. 2 oil or heating oil was conducted, the primary interest was in testing the performance of blends with residual ASTM No. 6 oil. The basic idea is to provide a renewable fuel option to residual oil used in space heating and in industrial applications. The intent also was to explore the use of non-edible plant oil and one that might be potentially cheaper than biodiesel. The characteristics of No. 6 oil, such as high viscosity at ambient temperature, which requires it to be kept heated, make the blending with such oils feasible. Jatropha oil is one such oil and there is currently considerable interest building up in its use as a source for making biodiesel and jet fuel. A 10% blend of Jatropha oil with heating oil was burned using a standard burner in a residential boiler. Combustion performance was shown to be comparable with that of burning heating oil by itself with some noticeable differences. Typical heating oil has about 2000 ppm of sulfur, while the Jatropha oil has about 50 ppm leading to lower levels of sulphur dioxide emissions. Stack measurements also showed that the NOx emission was lower with the blend. We have previously reported similar reductions in NOx with blends of biodiesel in heating oil as well as slight reductions in PM2.5, particulates below 2.5 microns in size. Long term tests were not part of this project and hence deleterious effects on pumps, seals etc., if any, were not measured. The majority of the work involved testing blends of Jatropha oil with residual oil in a 1.5 million Btu/hr boiler with a burner modified t