Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Chapter 2: BACKGROUND (I) Description of the coal Conversion and Oil Shale Retorting Fuel Cycles 2  

E-Print Network (OSTI)

oil shale 2.2 Coal and Oil Shale Resources energy systems retorting. Coal and oil shale resources are

unknown authors

2

Coal-oil slurry preparation  

DOE Patents (OSTI)

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

3

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"...

4

Risk-Cost Tradeoff Analysis of Oil vs. Coal Fuels for Power Generation  

Science Journals Connector (OSTI)

This study examines the economic requirements and health consequences of converting an electrical power generating unit from oil to coal combustion at the West Springfield, MA Generating Station. Three alterna...

Lawrence B. Gratt; Gregory S. Kowalczyk

1991-01-01T23:59:59.000Z

5

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

6

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

7

Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control  

SciTech Connect

Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

Robert A. Carrington; William C. Hecker; Reed Clayson

2008-06-01T23:59:59.000Z

8

Coal liquefaction process wherein jet fuel, diesel fuel and/or astm no. 2 fuel oil is recovered  

SciTech Connect

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, R.F.; Ryan, D.F.

1982-06-01T23:59:59.000Z

9

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

10

Heavy oil (residuum) and heavy oil/coal coprocessing program provides good route to making acceptable fuels from heavy oil and coal  

SciTech Connect

This report discusses aspects and needs for the coprocessing of coal and petroleum residum. (CBS) 4 refs., 3 figs., 1 tab.

Schulman, B.L.

1990-08-01T23:59:59.000Z

11

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

12

Pulverized coal fuel injector  

DOE Patents (OSTI)

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

13

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal"...

14

Gasification of Coal and Oil  

Science Journals Connector (OSTI)

... , said the Gas Council is spending £120,000 this year on research into coal gasification, and the National Coal Board and the Central Electricity Generating Board £680,000 and ... coal utilization. The Gas Council is spending about £230,000 on research into the gasification of oil under a programme intended to contribute also to the improvement of the economics ...

1960-02-13T23:59:59.000Z

15

Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15--August 15, 1996  

SciTech Connect

The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers is also evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) was conducted with a proven coal-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrind circuit was recently installed and was evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and was used to generate baseline data firing No. 6 fuel oil and fire CWSF. A temporary storage system for No. 6 fuel oil was installed and modifications to the existing CWSF handling and preheating system were made to accommodate No. 6 oil.

Miller, B.G.; Scaroni, A.W.

1997-06-03T23:59:59.000Z

16

Low-rank coal oil agglomeration  

DOE Patents (OSTI)

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

17

Vegetable oil fuel  

SciTech Connect

In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

Bartholomew, D.

1981-04-01T23:59:59.000Z

18

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

19

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

20

At-sea test and demonstration of coal-oil mixture as a marine boiler fuel. part I: shoreside testing. Final report Nov 81-Mar 82  

SciTech Connect

This report documents laboratory and wear-loop experimental evaluations and a combustion test using a full-scale Marine burner and fuel-supply equipment using a coal/oil mixture (COM). Laboratory work led to selection of a fuel acceptable for use in a shipboard demonstration from six candidate COMs. Significant variations were discovered among these samples, and an appropriate final selection was made for the shipboard tests. This COM was further evaluated during a land-based combustion test using a Marine burner (30 million-Btu/hr scale) installed in an industrial package boiler. Comparative tests using No. 6 fuel oil and the selected COM were performed along with a general shakedown and test run of the pump and heating set designed for the at-sea demonstration. Combustion tests indicated that the replacement of No. 6 fuel oil with the proper COM is quite feasible. However, close attention must be given to the handling and atomization of this fuel. A modified T-jet atomizer performed with acceptable levels of wear, plugging, and ash disposition problems. It was concluded that an at-sea demonstration of the COM should be pursued.

Wagoner, C.L.; Eckhart, C.F.; Clark, G.A.

1982-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

22

Combustion characteristics of coal fuels in adiabatic diesel engines  

SciTech Connect

An experimental investigation was conducted to determine the combustion characteristics of coal fuels in adiabatic diesel engines. For this purpose engine testing was carried out by the fumigation of fine coal powder to the intake of an insulated and uncooled single cylinder diesel engine. The engine tests conducted include three types of fuels - Diesel fuel No. 2 (DF-2), Dual fuel (DF-2 + Coal), and Coal fuel. Excellent combustion characteristics of coal fuels were obtained in the present work in an adiabatic engine operating at high temperatures. The ''thermal ignition'' concept uncovered in this investigation led to a hot ''ignition chamber'' which provided ignition of the coal fuel. The high temperature engine with the ''ignition chamber'' permitted engine operation on 100% coal fuel without any external ignition aids or compression ignition. With the addition of a glow plug, the coal fueled engine was successfully cold started. For the coal fueled engine tests, analysis of cylinder pressure data showed rapid heat release rates, shorter combustion duration and very fast burning of coal powder fuel. Preliminary results of the apparent indicated cycle efficiency calculated from the heat release data, indicate that 100% coal powder fueled engine has higher cycle efficiency than DF-2 fueled engine in an adiabatic configuration. The problems encountered during the engine tests include: variation in the engine speed and load due to non-uniform coal flow rate by the coal feed system, contamination of the lubricating oil with fine coal powder, and wear of conventional piston rings. However, these problems can be solved with an improved coal feed system and wear resistant ceramic materials for the piston rings. 33 refs.

Kamo, R.; Kakwani, R.M.; Woods, M.E.; Valdmanis, E.

1986-06-01T23:59:59.000Z

23

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

24

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

25

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

26

A fresh look at coal-derived liquid fuels  

SciTech Connect

35% of the world's energy comes from oil, and 96% of that oil is used for transportation. The current number of vehicles globally is estimated to be 700 million; that number is expected to double overall by 2030, and to triple in developing countries. Now consider that the US has 27% of the world's supply of coal yet only 2% of the oil. Coal-to-liquids technologies could bridge the gap between US fuel supply and demand. The advantages of coal-derived liquid fuels are discussed in this article compared to the challenges of alternative feedstocks of oil sands, oil shale and renewable sources. It is argued that pollutant emissions from coal-to-liquid facilities could be minimal because sulfur compounds will be removed, contaminants need to be removed for the FT process, and technologies are available for removing solid wastes and nitrogen oxides. If CO{sub 2} emissions for coal-derived liquid plants are captured and sequestered, overall emissions of CO{sub 2} would be equal or less than those from petroleum. Although coal liquefaction requires large volumes of water, most water used can be recycled. Converting coal to liquid fuels could, at least in the near term, bring a higher level of stability to world oil prices and the global economy and could serve as insurance for the US against price hikes from oil-producing countries. 7 figs.

Paul, A.D. [Benham Companies LLC (USA)

2009-01-15T23:59:59.000Z

27

Low-rank coal oil agglomeration  

DOE Patents (OSTI)

A low-rank coal oil agglomeration process is described. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and is usually coal-derived.

Knudson, C.L.; Timpe, R.C.

1991-07-16T23:59:59.000Z

28

Oil from Coal  

Science Journals Connector (OSTI)

... sources are not capable of indefinite expansion, since their industrial stability is dependent upon adequate markets for the main products—coke of various kinds or gas. They were, however, ... gallon and remain in operation until 1950, and that it should be extended to include diesel oil used in motor vehicles. It might be feared that this extension would involve ...

C. H. LANDER

1938-04-09T23:59:59.000Z

29

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

30

Too much coal, too little oil  

Science Journals Connector (OSTI)

Our main message is that it is optimal to use less coal and more oil once one takes account of coal being a backstop which emits much more CO2 than oil. The way of achieving this is to have a steeply rising carbon tax during the initial oil-only phase, a less-steeply rising carbon tax during the intermediate phase where oil and coal are used alongside each other and the following coal-only phase, and a flat carbon tax during the final renewables-only phase. The “laissez-faire” outcome uses coal forever or starts with oil until it is no longer cost-effective to do so and then switches to coal. We also analyze the effects on the optimal transition times and carbon tax of a carbon-free, albeit expensive backstop (solar or wind energy). Subsidizing renewables to just below the cost of coal does not affect the oil-only phase. The gain in green welfare dominates the welfare cost of the subsidy if the subsidy gap is small and the global warming challenge is acute. Without a carbon tax a prohibitive coal tax leads to less oil left in situ and substantially delays introduction of renewables, but curbs global warming substantially as coal is never used. Finally, we characterize under general conditions what the optimal sequencing oil and coal looks like.

Frederick van der Ploeg; Cees Withagen

2012-01-01T23:59:59.000Z

31

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

32

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...A. G. Horsler, Gas Counc. (Gt. Brit...England, 1962; Gas J. 312, 19 (1962...be-come overdependent on natural gas and oil to supply...gasifier at elevated pressure with a downward flow...operability on coals of high ash-fusion temperature...

Arthur M. Squires

1974-04-19T23:59:59.000Z

33

An assessment of the potential for coal/residual oil coprocessing  

SciTech Connect

Among the promising new techniques to produce liquid hydrocarbon fuels from coal is coal/petroleum coprocessing based upon the use of heavy oil, tar sand bitumen and petroleum residua as ''solvents'' for the conversion of coal. Coprocessing is the simultaneous hydrogenation of coal and heavy oil fractions in specially designed reactors with coal contents by weight ranging from as low as 1% to potentially as high as 50-60% depending upon the technology employed. The results of a study on the potential for coal/residual oil coprocessing in the United States are addressed in this paper.

Huber, D.A.; Lee, Q.; Thomas, R.L.; Frye, K.; Rudins, G.

1986-09-01T23:59:59.000Z

34

EIS-0083: Final Northeast Regional Environmental Impact Statement; The Potential Conversion of Forty-Two Powerplants From Oil to Coal or Alternate Fuels  

Energy.gov (U.S. Department of Energy (DOE))

This Economic Regulatory Administration statement assesses the potential for cumulative and interactive environmental impacts resulting from conversion of up to 42 northeastern power plants from oil to coal and from an alternative “Voluntary Conversion” scenario for 27 power plants.

35

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

36

Compare All CBECS Activities: Fuel Oil Use  

Gasoline and Diesel Fuel Update (EIA)

of fuel oil in 1999. Only six building types had any statistically significant fuel oil usage, with education buildings using the most total fuel oil. Figure showing total fuel oil...

37

Diesel fuel oils, 1980  

SciTech Connect

Properties of diesel fuels produced during 1980 were submitted for study and compilation under a cooperative agreement between the Department of Energy, Bartlesville Energy Technology Center, Bartlesville, Oklahoma and the American Petroleum Institute. Tests of 192 samples of diesel fuel oils from 95 refineries throughout the country were made by 28 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960-1980. Summaries of the results of the 1980 survey, compared with similar data for 1979, are shown.

Shelton, E.M.

1980-12-01T23:59:59.000Z

38

REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS  

SciTech Connect

This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

2004-04-23T23:59:59.000Z

39

Coal-fueled high-speed diesel engine development  

SciTech Connect

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

40

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2012 (EIA)

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Low-rank coal oil agglomeration product and process  

DOE Patents (OSTI)

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

1992-11-10T23:59:59.000Z

42

Low-rank coal oil agglomeration product and process  

DOE Patents (OSTI)

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); DeWall, Raymond A. (Grand Forks, ND); Musich, Mark A. (Grand Forks, ND)

1992-01-01T23:59:59.000Z

43

fuel_oil.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Usage Form Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

44

Diesel fuel oils, 1982  

SciTech Connect

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

45

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents (OSTI)

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere is described. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis. 4 figs., 8 tabs.

Rashid Khan, M.

1988-05-05T23:59:59.000Z

46

Decaking of coal or oil shale during pyrolysis in the presence of iron oxides  

DOE Patents (OSTI)

A method for producing a fuel from the pyrolysis of coal or oil shale in the presence of iron oxide in an inert gas atmosphere. The method includes the steps of pulverizing feed coal or oil shale, pulverizing iron oxide, mixing the pulverized feed and iron oxide, and heating the mixture in a gas atmosphere which is substantially inert to the mixture so as to form a product fuel, which may be gaseous, liquid and/or solid. The method of the invention reduces the swelling of coals, such as bituminous coal and the like, which are otherwise known to swell during pyrolysis.

Khan, M. Rashid (Morgantown, WV)

1989-01-01T23:59:59.000Z

47

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

48

Process for heating coal-oil slurries  

DOE Patents (OSTI)

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

49

Diesel fuel oils, 1981  

SciTech Connect

Properties of diesel fuels produced during 1981 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 160 samples of diesel fuel oils from 77 refineries throughout the country were made by 26 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1981. Summaries of the results of the 1981 survey, compared with similar data for 1980, are shown.

Shelton, E.M.

1981-12-01T23:59:59.000Z

50

Soybean Oil as Diesel Fuel  

Science Journals Connector (OSTI)

Soybean Oil as Diesel Fuel ... TESTS are reported from Japan on the use of soybean oil as Diesel fuel in a 12-horsepower engine of 150-mm. ... This trouble was overcome by passing through some of the Diesel cooling water to heat the fuel tank and supply line. ...

C.H.S. TUPHOLME

1940-10-10T23:59:59.000Z

51

Solvent extraction of bituminous coals using light cycle oil: characterization of diaromatic products in liquids  

SciTech Connect

Many studies of the pyrolytic degradation of coal-derived and petroleum-derived aviation fuels have demonstrated that the coal-derived fuels show better thermal stability, both with respect to deposition of carbonaceous solids and cracking to gases. Much previous work at our institute has focused on the use of refined chemical oil (RCO), a distillate from the refining of coal tar, blended with light cycle oil (LCO) from catalytic cracking of vacuum gas oil. Hydroprocessing of this blend forms high concentrations of tetralin and decalin derivatives that confer particularly good thermal stability on the fuel. However, possible supply constraints for RCO make it important to consider alternative ways to produce an 'RCO-like' product from coal in an inexpensive process. This study shows the results of coal extraction using LCO as a solvent. At 350{sup o}C at a solvent-to-coal ratio of 10:1, the conversions were 30-50 wt % and extract yields 28-40 wt % when testing five different coals. When using lower LCO/coal ratios, conversions and extract yields were much smaller; lower LCO/coal ratios also caused mechanical issues. LCO is thought to behave similarly to a nonpolar, non-hydrogen donor solvent, which would facilitate heat-induced structural relaxation of the coal followed by solubilization. The main components contributed from the coal to the extract when using Pittsburgh coal are di- and triaromatic compounds. 41 refs., 3 figs., 12 tabs.

Josefa M. Griffith; Caroline E. Burgess Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States). EMS Energy Institute

2009-09-15T23:59:59.000Z

52

Combustion characteristics of dry coal-powder-fueled adiabatic diesel engine: Final report  

SciTech Connect

This report describes the progress and findings of a research program aimed at investigating the combustion characteristics of dry coal powder fueled diesel engine. During this program, significant achievements were made in overcoming many problems facing the coal-powder-fueled engine. The Thermal Ignition Combustion System (TICS) concept was used to enhance the combustion of coal powder fuel. The major coal-fueled engine test results and accomplishments are as follows: design, fabrication and engine testing of improved coal feed system for fumigation of coal powder to the intake air; design, fabrication and engine testing of the TICS chamber made from a superalloy material (Hastelloy X); design, fabrication and engine testing of wear resistant chrome oxide ceramic coated piston rings and cylinder liner; lubrication system was improved to separate coal particles from the contaminated lubricating oil; control of the ignition timing of fumigated coal powder by utilizing exhaust gas recirculation (EGR) and variable TICS chamber temperature; coal-fueled engine testing was conducted in two configurations: dual fuel (with diesel pilot) and 100% coal-fueled engine without diesel pilot or heated intake air; cold starting of the 100% coal-powder-fueled engine with a glow plug; and coal-fueled-engine was operated from 800 to 1800 rpm speed and idle to full load engine conditions.

Kakwani, R.M.; Kamo, R.

1989-01-01T23:59:59.000Z

53

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

54

Advanced coal-fueled gas turbine systems  

SciTech Connect

Several technology advances since the early coal-fueled turbine programs that address technical issues of coal as a turbine fuel have been developed in the early 1980s: Coal-water suspensions as fuel form, improved methods for removing ash and contaminants from coal, staged combustion for reducing NO{sub x} emissions from fuel-bound nitrogen, and greater understanding of deposition/erosion/corrosion and their control. Several Advanced Coal-Fueled Gas Turbine Systems programs were awarded to gas turbine manufacturers for for components development and proof of concept tests; one of these was Allison. Tests were conducted in a subscale coal combustion facility and a full-scale facility operating a coal combustor sized to the Allison Model 501-K industrial turbine. A rich-quench-lean (RQL), low nitrogen oxide combustor design incorporating hot gas cleanup was developed for coal fuels; this should also be applicable to biomass, etc. The combustor tests showed NO{sub x} and CO emissions {le} levels for turbines operating with natural gas. Water washing of vanes from the turbine removed the deposits. Systems and economic evaluations identified two possible applications for RQL turbines: Cogeneration plants based on Allison 501-K turbine (output 3.7 MW(e), 23,000 lbs/hr steam) and combined cycle power plants based on 50 MW or larger gas turbines. Coal-fueled cogeneration plant configurations were defined and evaluated for site specific factors. A coal-fueled turbine combined cycle plant design was identified which is simple, compact, and results in lower capital cost, with comparable efficiency and low emissions relative to other coal technologies (gasification, advanced PFBC).

Wenglarz, R.A.

1994-08-01T23:59:59.000Z

55

Coal-fueled diesels for modular power generation  

SciTech Connect

Interest in coal-fueled heat engines revived after the sharp increase in the prices of natural gas and petroleum in the 1970`s. Based on the success of micronized coal water slurry combustion tests in an engine in the 1980`s, Morgantown Energy Technology Center (METC) of the US Department of Energy. initiated several programs for the development of advanced coal-fueled diesel and gas turbine engines for use in cogeneration, small utilities, industrial applications and transportation. Cooper-Bessemer and Arthur D. Little have been developing technology since 1985, under the sponsor of METC, to enable coal water slurry (CWS) to be utilized in large bore, medium-speed diesel engines. Modular power generation applications in the 10--100 MW size (each plant typically using from two to eight engines) are the target applications for the late 1990`s and beyond when, according to the US DOE and other projections, oil and natural gas prices are expected to escalate much more rapidly compared to the price of coal. As part of this program over 7.50 hours of prototype engine operation has been achieved on coal water slurry (CWS), including over 100 hours operation of a six-cylinder full scale engine with Integrated Emissions Control System in 1993. In this paper, the authors described the project cost of the CWS fuel used, the heat rate of the engine operating on CWS, the projected maintenance cost for various engine components, and the demonstrated low emissions characteristics of the coal diesel system.

Wilson, R.P. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, A.K. [Cooper-Bessemer Reciprocating, Grove City, PA (United States); Smith, W.C. [Department of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

1993-11-01T23:59:59.000Z

56

Use of coal liquefaction catalysts for coal/oil coprocessing and heavy oil upgrading  

SciTech Connect

The catalytic hydrogenation of coal and model solvents using dispersed or supported catalysts at different pressures has been the focus of several recent studies at PETC. The effectiveness of these catalysts has been studied in coal liquefaction and coal-oil coprocessing. Coal-oil coprocessing involves the co-reaction of coal and petroleum-derived oil or resid. The results of these studies have indicated that both dispersed and supported catalysts are effective in these systems at elevated H{sub 2} pressures ({approximately}2,500 psig). Attempts to reduce pressure indicated that a combination of catalyst concentration and solvent quality could be used to compensate for reductions in H{sub 2} pressure. Comparison of the coal and coprocessing systems reveals many similarities in the catalytic requirements for both systems. Both hydrogenation and hydrogenolysis activities are required and the reactive environments are similar. Also, the use of catalysts in the two systems shares problems with similar types of inhibitors and poisons. The logical extension of this is that it may be reasonable to expect similar trends in catalyst activity for both systems. In fact, many of the catalysts selected for coal liquefaction were selected based on their effectiveness in petroleum systems. This study investigates the use of supported and dispersed coal liquefaction catalysts in coal-oil coprocessing and petroleum-only systems. The focus of the study was delineating the effects of coal concentration, pressure, and catalyst type.

Cugini, A.V.; Krastman, D.; Thompson, R.L. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center; Gardner, T.J. [Sandia National Labs., Albuquerque, NM (United States); Ciocco, M.V.

1997-04-01T23:59:59.000Z

57

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

58

Coal-Fueled Diesel Technology Assessment Study: systems performance and cost comparisons  

SciTech Connect

This report examines the performance of diesel engines operating on coal-based fuels and compares their power generation costs with those of corresponding oil-burning prime movers. Similar performance and cost comparisons are also presented for an alternative prime mover, the direct-fired gas turbine in both a simple-cycle and a regenerative-cycle configuration. The coal-based fuels under consideration include micronized coal, coal slurries, and coal-derived gaseous fuels. The study focuses on medium-speed diesel engines for locomotive, marine, small stationary power, and industrial cogeneration applications in the 1000 to 10,000 kW size range. This report reviews the domestic industrial and transportation markets for medium-speed engines currently using oil or gas. The major problem areas involving the operation of these engines on coal-based fuels are summarized. The characteristics of available coal-based fuels are discussed and the costs of various fuels are compared. Based on performance data from the literature, as well as updated cost estimates originally developed for the Total Energy Technology Alternatives Studies program, power generation costs are determined for both oil-fueled and coal-fueled diesel engines. Similar calculations are also performed for direct-fired gas turbines. The calculations illustrate the sensitivity of the power generation cost to the associated fuel cost for these prime movers. The results also show the importance of reducing the cost of available coal-based fuels, in order to improve the economic competitiveness of coal-fueled prime movers relative to engines operating on oil or gas. 50 refs., 9 figs., 11 tabs.

Holtz, R.E.; Krazinski, J.L.

1985-12-01T23:59:59.000Z

59

Marine Fuel Oil on a Mixed Base  

Science Journals Connector (OSTI)

Three grades of high–viscosity marine fuel oil are manufactured according to TU 38. ... developing the composition and technology for production of marine fuel oils [1– 4].

S. V. Kotov; A. G. Oltyrev; I. N. Kankaeva…

2001-05-01T23:59:59.000Z

60

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2012 (EIA)

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Characterization of Liquids Derived From Laboratory Coking of Decant Oil and Co-Coking of Pittsburgh Seam Bituminous Coal with Decant Oil  

Science Journals Connector (OSTI)

(41-43) Co-coking of decant oil/coal blend produced higher coke and gas yields but less liquid product than those of coking. ... When the same decant oil was blended with the Pittsburgh Seam coal and then delayed co-coked, the overhead liquid contained 2.1% gasoline, 3.6% jet fuel, 4.6% diesel, and 88.8% fuel oil on average. ... It is also possible that catalytic cracking reactions may occur via the coal mineral matter (e.g., clays, which are abundant minerals in coals, can serve as cracking catalysts) (Table 1). ...

Ömer Gül; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert

2009-04-21T23:59:59.000Z

62

Coal fuel slurry for internal combustion engines  

Science Journals Connector (OSTI)

A technoeconomic study of the production of coal-water fuel slurry for internal combustion engines and thermal power plants was performed. Based on the accumulated experimental data, it was found that, in the ...

N. I. Red’kina; G. S. Khodakov; E. G. Gorlov

2013-09-01T23:59:59.000Z

63

Air blast type coal slurry fuel injector  

DOE Patents (OSTI)

A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

Phatak, Ramkrishna G. (San Antonio, TX)

1986-01-01T23:59:59.000Z

64

Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Fuel Future Oil Demands Enhanced Oil Recovery to Fuel Future Oil Demands Trevor Kirsten 2013.10.02 I'm Trevor Kirsten and I lead a team of GE researchers that investigate a...

65

Producing liquid fuels from coal: prospects and policy issues  

SciTech Connect

The increase in world oil prices since 2003 has prompted renewed interest in producing and using liquid fuels from unconventional resources, such as biomass, oil shale, and coal. This book focuses on issues and options associated with establishing a commercial coal-to-liquids (CTL) industry within the United States. It describes the technical status, costs, and performance of methods that are available for producing liquids from coal; the key energy and environmental policy issues associated with CTL development; the impediments to early commercial experience; and the efficacy of alternative federal incentives in promoting early commercial experience. Because coal is not the only near-term option for meeting liquid-fuel needs, this book also briefly reviews the benefits and limitations of other approaches, including the development of oil shale resources, the further development of biomass resources, and increasing dependence on imported petroleum. A companion document provides a detailed description of incentive packages that the federal government could offer to encourage private-sector investors to pursue early CTL production experience while reducing the probability of bad outcomes and limiting the costs that might be required to motivate those investors. (See Rand Technical Report TR586, Camm, Bartis, and Bushman, 2008.) 114 refs., 2 figs., 16 tabs., 3 apps.

James T. Bartis; Frank Camm; David S. Ortiz

2008-07-01T23:59:59.000Z

66

Wear mechanism and wear prevention in coal-fueled diesel engines. Task 7, Extended wear testing  

SciTech Connect

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

67

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect

Over the past several years, interest has arisen in the development of coal-fired diesel engines for the purpose of efficiently utilizing the extensive coal reserves in the United States, and therefore reducing dependence on foreign oil. One process, which is being considered for use in producing clean coal fuel products involves mild gasification. This process produces by-products which can be further refined and, when blended with neat diesel fuel, used as an engine fuel. The purpose of this task was to test a blend of this coal liquid and diesel fuel (referred to as coal-lite) in an engine, and determine if any detrimental results were observed. This was done by performing a back-to-back performance and emission test of neat diesel fuel and the coal-lite fuel, followed by a 500-hour test of the coal-lite fuel, and completed by a back-to-back performance and emission test of the coal-lite fuel and neat diesel fuel.

Wakenell, J.F.; Fritz, S.G.; Schwalb, J.A.

1991-07-01T23:59:59.000Z

68

Coal-fueled diesel locomotive test  

SciTech Connect

The biggest challenges to the development of a commercially-acceptable coal-fueled diesel-electric locomotive are integrating all systems into a working unit that can be operated in railroad service. This involves mainly the following three systems: (1) the multi-cylinder coal-fueled diesel engine, (2) the locomotive and engine controls, and (3) the CWS fuel supply system. Consequently, a workable 12-cylinder coal-fueled diesel engine was considered necessary at this stage to evolve the required locomotive support systems, in addition to gaining valuable multi-cylinder engine operating experience. The CWS fuel used during this project was obtained from Otisca, Inc. (Syracuse, NY). It was prepared from micronized and deashed Kentucky Blue Gem coal to 49.0% coal loading by weight, with less than 1% ash and 5 micron mean diameter particle size. Its higher heating value was analyzed at approximately 34630 kJ/k. Anti-agglomerating additive Triton X-114 was added to the CWS at GE Transportation Systems at 2% of coal weight. The nature of the Otisca CWS fuel makes it inherently more difficult to store, pump, and inject than diesel fuel, since concepts which govern Newtonian or normally viscous liquids do not apply entirely to CWS. Otisca CWS tends to be unstable and to settle in tanks and lines after a period of time, making it necessary to provide a means of agitation during storage. To avoid long term settling problems and to minimize losses, piping velocities were designed to be in the 60-90 m/min range.

Hsu, B.D.; McDowell, R.E.; Confer, G.L.; Basic, S.L.

1993-01-01T23:59:59.000Z

69

High-pressure coal fuel processor development  

SciTech Connect

The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

Greenhalgh, M.L.

1992-11-01T23:59:59.000Z

70

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network (OSTI)

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

71

Coal-oil mixture combustion program: injection into a blast furnace  

SciTech Connect

A chemically stabilized coal-oil mixture (COM) was made and used as an auxiliary fuel in a blast furnace for 44 days. Approximately 485,000 gallons of COM were produced at an on-site COM plant. Composition was 47.9% coal, 47.6% No. 6 oil, 4.0% water, and 0.5% emulsifier. Average injection rates were 3.8 to 13.0 gpm during different periods of the trial. Coal handling equipment, mixing and processing equipment, pumps, piping, fuel lances, and instrumentation are discussed. The blast furnace performance during the trial is compared to a Base Period of injecting No. 6 oil. Blast furnace performance was satisfactory, with one pound of COM replacing one pound of coke or 0.8 pound of No. 6 oil. The production of COM and its usage in a blast furnace is economical and feasible.

Jansto, S.G.; Mertdogan, A.; Marlin, L.A.; Beaucaire, V.D.

1982-04-30T23:59:59.000Z

72

Delayed Coking of Decant Oil and Coal in a Laboratory-Scale Coking Unit  

Science Journals Connector (OSTI)

The fact that coke quality varies with the chemical composition of the precursor feedstock creates a significant incentive to examine the process of coking and how it relates to the composition of the feedstock. ... (7)?Derbyshire, F. J.; Odoerfer, G. A.; Rudnick, L. R.; Varghese, P.; Whitehurst, D. D. Fundamental studies in the conversion of coals to fuels of increased hydrogen content. ... Bituminous coal/petroleum co-cokes were produced by coking 4:1 blends of vacuum resid (VR)/coal and decant oil (DO)/coal at temperatures of 465 and 500 °C for reaction times of 12 and 18 h, under autogenous pressure in microautoclave reactors. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2006-05-18T23:59:59.000Z

73

High-pressure coal fuel processor development  

SciTech Connect

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. (Caterpillar, Inc., Peoria, IL (United States))

1992-12-01T23:59:59.000Z

74

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network (OSTI)

Mar Lett (2010) 30:331–338 Fig. 3 Coal Oil Point seep field,hydrocarbon seeps near Coal Oil Point, California. Marhydrocarbon seep emissions, Coal Oil Point seep field,

Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

2010-01-01T23:59:59.000Z

75

Formation of seep bubble plumes in the Coal Oil Point seep field  

E-Print Network (OSTI)

hydrocarbon seeps near Coal Oil Point, California. Marof seep bubble plumes in the Coal Oil Point seep field Irameasurement system in the Coal Oil Point seep field in the

Leifer, Ira; Culling, Daniel

2010-01-01T23:59:59.000Z

76

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

77

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

78

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...appreciably larger sizes than coal to other...they grew to a size to fall upon an...air-blown Winkler gasifier pro-ducing power...additional gasification medium (air or oxygen-steam...provide "pure" gasifier Test revamp Develop larger sizes Develop pressure...

Arthur M. Squires

1974-04-19T23:59:59.000Z

79

Clean Fuels from Coal Gasification  

Science Journals Connector (OSTI)

...superheating and water-heating sections of the boiler...percent on a higher heating value basis. Conclusions...made historically by heating bitumi-nous coal in...heart of the anthracite district only about 5 years ago...energy, wind, and geothermal steam and brines, will...

Arthur M. Squires

1974-04-19T23:59:59.000Z

80

Straight Vegetable Oil as a Diesel Fuel?  

SciTech Connect

Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

Not Available

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

of natural gas, along with the coal reserve base of 326s Fossil Fuel Reserve Base, 2007 Oil Natural Gas Coal 233ensured reserves”) of coal, oil and natural gas published in

Aden, Nathaniel

2010-01-01T23:59:59.000Z

82

Evaluation of coal-derived liquids as boiler fuels. Volume 2: boiler test results. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases. The first phase included the combustion tests of the two conventional fuels (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). The second phase involved the evaluation of three additional CDL fuels (H-Coal light distillate, Exxon Donor Solvent full range distillate and Solvent Refined Coal-II middle distillate). The test boiler was a front wall-fired Babcock and Wilcox unit with a rated steam flow of 425,000 lb/h and a generating capacity of 40 MW. Boiler performance and emissions were evaluated with baseline and CDL fuels at 15, 25, 40 MW loads and at various excess air levels. Low NO/sub x/ (staged) combustion techniques were also implemented. Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. The CDL fuels could be handled similarly to No. 2 oil with appropriate safety procedures and materials compatibility considerations. Volume 2 of a five-volume report contains the detailed boiler test results. 96 figs., 26 tabs.

Not Available

1985-09-01T23:59:59.000Z

83

Testing for market integration crude oil, coal, and natural gas  

SciTech Connect

Prompted by the contemporaneous spike in coal, oil, and natural gas prices, this paper evaluates the degree of market integration both within and between crude oil, coal, and natural gas markets. Our approach yields parameters that can be readily tested against a priori conjectures. Using daily price data for five very different crude oils, we conclude that the world oil market is a single, highly integrated economic market. On the other hand, coal prices at five trading locations across the United States are cointegrated, but the degree of market integration is much weaker, particularly between Western and Eastern coals. Finally, we show that crude oil, coal, and natural gas markets are only very weakly integrated. Our results indicate that there is not a primary energy market. Despite current price peaks, it is not useful to think of a primary energy market, except in a very long run context.

Bachmeier, L.J.; Griffin, J.M. [Texas A& amp; M Univ, College Station, TX (United States)

2006-07-01T23:59:59.000Z

84

Superclean coal-water slurry combustion testing in an oil-fired boiler  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3.0% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) demonstration and evaluation. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress is reported. 7 refs., 7 figs., 1 tab.

Miller, B.G.; Schobert, H.H.

1990-09-28T23:59:59.000Z

85

Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Gas Contaminants on Solid Oxide Fuel Cell Operation. Effect of Coal Gas Contaminants on Solid Oxide Fuel Cell Operation. Abstract: The operation of solid oxide fuel cells...

86

Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines  

SciTech Connect

Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

Johnson, R.N.; Lee, M.; White, R.A.

1994-01-01T23:59:59.000Z

87

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents (OSTI)

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

88

Oil Shale and Other Unconventional Fuels Activities | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

89

Superclean coal-water slurry combustion testing in an oil-fired boiler  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

90

Coal Integrated Gasification Fuel Cell System Study  

SciTech Connect

This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

2004-01-31T23:59:59.000Z

91

Co-coking of Hydrotreated Decant Oil/Coal Blends: Effect of Hydrotreatment Severity on the Yield Distribution and Quality of Distillate Fuels  

Science Journals Connector (OSTI)

The coke yield from delayed co-coking of hydrotreated DOs and coal blends was observed to be in the range of 15.9–24.4%. ... The coal used in this study (EI-106) was a 50:50 blend of the Powellton and Eagle seams, both very similar coals of high-volatile A bituminous rank from West Virginia. ... One of the hydrotreated DOs (EI-133) was coked alone. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2013-05-19T23:59:59.000Z

92

Production of Oil from Coal in Germany  

Science Journals Connector (OSTI)

... British Commonwealth there are cheaper supplies of coal than in Great Britain, as well as reserves of brown coal and ... of brown coal and lignite. Dr. Parker stated that bombing attacks between May and September 1944 caused a reduction ...

1947-02-01T23:59:59.000Z

93

Fuel oil and kerosene sales 1997  

SciTech Connect

The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

NONE

1998-08-01T23:59:59.000Z

94

Estimating Externalities of Coal Fuel Cycles, Report 3  

SciTech Connect

The agreement between the US DOE and the EC established the specific objectives of the study: (a) to develop a methodological framework that uses existing data and models to quantify the external costs and benefits of energy; (b) to demonstrate the application of the framework to estimate the externalities of the coal, biomass, oil, natural gas, hydro, nuclear, photovoltaic, and wind fuel cycles (by agreement with the EC, the US addressed the first six of these); and (c) to identify major gaps in the availability of information to quantify impacts, damages, benefits, and externalities of fuel cycles; and to suggest priorities for future research. The main consideration in defining these objectives was a desire to have more information about externalities, and a better method for estimating them.

Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

1994-09-01T23:59:59.000Z

95

(Wear mechanism and wear prevention in coal-fueled diesel engines)  

SciTech Connect

The overall objectives of this program is to develop the engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; definition of the specific effect of each coal-related lube oil contaminant; determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; evaluation of several different engine design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and presentation of the engine/lubricant system and design determined to have the most potential. 2 figs., 3 tabs.

Not Available

1989-09-15T23:59:59.000Z

96

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect

The overall objective of this program is to develop the engine and lubricant system design approach that has the highest probability for commercial acceptance. Several specific objectives can also be identified. These objectives include: definition of the dominant wear mechanisms prevailing in coal-fueled diesel engines; definition of the specific effect of each coal-related lube oil contaminant; determination of the potential of traditional engine lubrication design approaches to either solve or mitigate the effects of the coal related lube oil contaminants; evaluation of several different design approaches aimed specifically at preventing lube oil contamination or preventing damage due to lube oil contamination; and presentation of the engine/lubricant system design determined to have the most potential. 2 figs., 3 tabs.

Not Available

1990-02-19T23:59:59.000Z

97

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents (OSTI)

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

98

American Clean Coal Fuels | Open Energy Information  

Open Energy Info (EERE)

Fuels Fuels Jump to: navigation, search Name American Clean Coal Fuels Address 123 NW 12th ave Place Portland, Oregon Zip 97209 Sector Biofuels Product Uses gasification to turn carbon based feedstocks into syngas for biofuels Website http://www.cleancoalfuels.com/ Coordinates 45.5238219°, -122.6831677° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5238219,"lon":-122.6831677,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Fuel oil and kerosene sales 1996  

SciTech Connect

The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

NONE

1997-08-01T23:59:59.000Z

100

Evaluation of coal-derived liquids as boiler fuels. Volume 1. Comprehensive report. Final report  

SciTech Connect

A combustion demonstration using six coal-derived liquid (CDL) fuels was conducted on a utility boiler located at the Plant Sweatt Electric Generating Station of Mississippi Power Company in Meridian, Mississippi. The test program was conducted in two phases which are distinguished by the level of the test effort. The first phase included the combustion tests of the two conventional fuels used at the station (natural gas and No. 6 fuel oil) and three coal-derived liquid fuels (Solvent Refined Coal-II full range distillate, H-Coal heavy distillate and H-Coal blended distillate). Boiler performance monitoring included measurements for fuel steam and flue gas flow, pressure, temperature, and heat absorption, resulting in a calculated combustion efficiency, boiler efficiency, and heat rate. Emissions measurements included oxygen, carbon dioxide, carbon monoxide, oxides of nitrogen, sulfur dioxide, sulfur trioxide, acid dewpoint, particulate mass, size distribution and morphology, chlorides, and opacity. In general, no adverse boiler performance effects were encountered with the combustion of the CDL fuels. The test program demonstrated the general suitability of CDL fuels for use in existing oil-fired utility boilers. No significant boiler tube surface modifications will be required. With the exception of NO/sub x/ emissions, the CDL fuels will be expected to have lower levels of stack emissions compared to a conventional No. 6 fuel oil. NO/sub x/ emissions will be controllable to EPA standards with the application of conventional combustion modification techniques. Volume 1, of a five-volume report, contains a comprehensive report of the entire test program. 43 figs., 19 tabs.

Not Available

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oil Shale: A Huge Resource of Low-Grade Fuel  

Science Journals Connector (OSTI)

...barrel of oil. With coal, only about 0...the technology for coal liquefaction were...shale would require mining, transporting...same condition as Appalachia. There is no doubt...cornered for surface coal mining. One would think...

William D. Metz

1974-06-21T23:59:59.000Z

102

Combustion and fuel characterization of coal-water fuels  

SciTech Connect

Activities conducted under this contract include studies on the combustion and fireside behavior of numerous coal-water fuels (CWFs). The work has been broken down into the following areas: Task 1 -- Selection of Candidate Fuels; Task 2 -- Bench Scale Tests; Task 3 -- CWF Preparation and Supply; Task 4 -- Combustion Characterization; Task 5 -- Ash Deposition and Performance Testing; Task 6 -- Commercial Applications. This report covers Task 6, the study of commercial applications of CWFs as related to the technical and economic aspects of the conversion of existing boilers and heaters to CWF firing. This work involves the analysis of seven units of various sizes and configurations firing several selected CWFs. Three utility boilers, two industrial boilers, and two process heater designs are included. Each of the units was considered with four primary selected CWFs. A fifth fuel was considered for one of the utility units. A sixth fuel, a microfine grind CWF, was evaluated on two utility units and one industrial unit. The particular fuels were chosen with the objective of examining the effects of coal source, ash level, ash properties, and beneficiation on the CWF performance and economics of the seven units. 10 refs., 81 figs., 80 tabs.

Beal, H.R.; Gralton, G.W.; Gronauer, T.W.; Liljedahl, G.N.; Love, B.F.

1987-06-01T23:59:59.000Z

103

Advanced Coal-Fueled Gas Turbine Program  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

104

Abrasive wear by coal-fueled diesel engine and related particles  

SciTech Connect

The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1992-09-01T23:59:59.000Z

105

Novel injector techniques for coal-fueled diesel engines  

SciTech Connect

This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

106

Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report  

SciTech Connect

Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

Not Available

1980-01-01T23:59:59.000Z

107

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

108

Solvent extraction of South African coal using a low volatile, coal-derived solvent / Eulouka Janse van Rensburg.  

E-Print Network (OSTI)

??Coal is an important fuel for countries with large coal reserves such as South Africa since it is expected that oil and natural gas prices… (more)

Van Rensburg, Eulouka Janse

2007-01-01T23:59:59.000Z

109

A case history of a fixed bed, coal-derived oil hydrotreater  

Science Journals Connector (OSTI)

With the apparent shrinkage in the worldwide supply of liquid hydrocarbon fuels, upgrading of coal-derived liquids to synthetic crude oils will eventually emerge as a commercial entity. Although the Char-Oil-Energy Development (COED) Project has been shelved in the short term, information about the reaction engineering of the upgrading of coal-derived liquids by hydrotreatment in the COED Process should be relevant to upgrading technologies for other coal liquefaction processes. The COED Process was developed by FMC Corporation and the Office of Coal Research (now DOE) in the late 1960's and early 1970's. The process produced a synthetic crude oil, medium Btu gas and char by multi-stage, fluidized bed pyrolysis of coal. The raw coal-tar produced by pyrolysis was upgraded to synthetic crude oil by catalytic, fixed-bed hydrotreatment. Raw coal-tar has different properties from petroleum-derived oils, and upgrading by hydrotreatment is not an off-the-shelf technology. A 30 barrel per day fixed-bed hydrotreater was constructed and operated at the COED pilot plant site. The pilot plant hydrotreater design was based on conventional petroleum residua hydrotreatment technology together with bench-scale hydrotreatment tests performed by ARCO in the 1960's utilizing coal-tars produced in a process development unit. The pilot plant hydrotreater did operate for about four years providing valuable information about the reaction engineering of the hydrotreatment process as well as providing numerous samples for applications studies performed by other DOE contractors and interested potential users of the COED syncrude. Of note, 50,000 gallons of COED syncrude were supplied to the U.S. Naval Ship Engineering Center for shipboard testing in the boilers of the U.S.S. Johnston on November 15–16th, 1973. This paper deals with the reaction engineering of the guard chamber and fixed-bed hydrotreatment reactors at the COED facility. Of major importance is the study of the role of the feedstock (pyrolysis coal-tar) properties and their effects on the catalysts utilized in the reactors. A working kinetic model has been derived that could allow a designer to optimize a particular set of design parameters and a plant operator to determine catalyst life. A quantitative comparison has been made of the effect of metals content of coal-derived oils and petroleum resids on catalyst deactivation.

Marvin I. Greene

1981-01-01T23:59:59.000Z

110

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

SciTech Connect

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

111

Surface studies of coal, oil, and coal-oil-mixture ash using auger electron spectroscopy and solvent leaching techniques  

SciTech Connect

Fly ash produced by the combustion of coal, oil, and a coal-oil mixture have been studied by Auger electron spectroscopy and solvent leaching techniques. The Auger data indicate that the surface concentration of the metal ions Na, Fe, Mg, Ni, V, and Al as well as S and C increases on going from coal to coal-oil mixture and oil ash. The relative surface enrichments of oil and coal-oil-mixture ash are consistent with a simple model of the ash-formation process, and the results confirm that several toxic metals are significantly enriched on the surface of the ash particles. The Auger data are compared to HCl and tris buffer leachate composition analyses, and in neither case does the leachate give an accurate representation of the surface composition. HCl apparently dissolves large oxide deposits and thus overestimates the surface concentrations of Fe, Al, and V. Conversely, several metallic ions are essentially insoluble in neutral aqueous solutions, so their surface concentration is underestimated by the tris leachate.

Stinespring, C.D.; Harris, W.R.; Cook, J.M.; Casleton, K.H.

1985-09-01T23:59:59.000Z

112

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

113

Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)  

SciTech Connect

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-05-01T23:59:59.000Z

114

Oil shale and coal in intermontane basins of Thailand  

SciTech Connect

The Mae Tip intermontane basin contains Cenozoic oil shales in beds up to 1 m (3.3 ft) thick interbedded with coal and mudstone. The oil shales contain lamosite-type alginite, and give a maximum oil yield of 122 L/MT (29.3 gal/ton). The beds are laterally continuous for at least 1.5 km (1.0 mi), but pass into mudstones toward the basin margin. The oil shales originated when peat swamps close to a steep basin margin were flooded by shallow lakes, allowing algae to replace rooted vegetation. This distinctive oil shale-coal assemblage is known from many small intermontane basins in Thailand, where locally high geothermal gradients suggest potential for hydrocarbons.

Gibling, M.R.; Srisuk, S.; Ukakimaphan, Y.

1985-05-01T23:59:59.000Z

115

Characterization of coal oil using three-dimensional excitation and emission matrix fluorescence spectroscopy  

Science Journals Connector (OSTI)

Three-dimensional (3D) excitation-emission matrix (EEM) fluorescence spectroscopy is applied to characterize the coal oil. The results show that the 3D fluorescence spectra of coal oil...

Xiao, Xue; Zhang, Yujun; Wang, Zhigang; Jin, Dan; Yin, Gaofang; Liu, Wenqing

2009-01-01T23:59:59.000Z

116

RCW 79.14 Mineral, Coal, Oil and Gas Leases | Open Energy Information  

Open Energy Info (EERE)

RCW 79.14 Mineral, Coal, Oil and Gas Leases Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: RCW 79.14 Mineral, Coal, Oil and Gas...

117

Beach tar accumulation, transport mechanisms, and sources of variability at Coal Oil Point, California  

E-Print Network (OSTI)

quantification was used at Coal Oil Point (COP), California to study the mechanisms transporting oil/tar fromBeach tar accumulation, transport mechanisms, and sources of variability at Coal Oil Point 2007 Elsevier Ltd. All rights reserved. Keywords: Santa Barbara Channel; Tar; Seeps; Oil slick; Oil

Luyendyk, Bruce

118

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation`s carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. [Energy Research Corp., Danbury, CT (United States); Meyers, S.J. [Fluor Daniel, Inc., Irvine, CA (United States); Hauserman, W.B. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1992-12-01T23:59:59.000Z

119

Integration of carbonate fuel cells with advanced coal gasification systems  

SciTech Connect

Carbonate fuel cells have attributes which make them ideally suited to operate on coal-derived fuel gas; they can convert the methane, hydrogen, and carbon monoxide present in coal derived fuel gas directly to electricity, are not subject to thermodynamic cycle limits as are heat engines, and operate at temperatures compatible with coal gasifiers. Some new opportunities for improved efficiency have been identified in integrated coal gasification/carbonate fuel cells which take advantage of low temperature catalytic coal gasification producing a methane-rich fuel gas, and the internal methane reforming capabilities of Energy Research Corporation's carbonate fuel cells. By selecting the appropriate operating conditions and catalyst in the gasifier, methane formation is maximized to improve gasification efficiency and to take advantage of the heat management aspects of the internal reforming carbonate fuel cell. These advanced integrated gasification/carbonate fuel cell systems are projected to have better efficiencies than gasification/carbonate fuel cell systems employing conventional gasification, and also competing non-fuel cell systems. These improved efficiencies would be accompanied by a corresponding reduction in impact on the environment as well.

Steinfeld, G. (Energy Research Corp., Danbury, CT (United States)); Meyers, S.J. (Fluor Daniel, Inc., Irvine, CA (United States)); Hauserman, W.B. (North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center)

1992-01-01T23:59:59.000Z

120

Fuel oil and kerosene sales 1995  

SciTech Connect

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

0.9 Relative Standard Errors for Table 10.9;" 0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

122

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect

This three-year research project at Combustion Engineering, Inc. (CE) will assess the potential economic and environmental benefits derived from coal beneficiation by various advanced cleaning processes. The objectives of this program include the development of a detailed generic engineering database, comprised of fuel combustion and ash performance data on beneficiated coal-based fuels (BCFs), which is needed to permit broad application. This technical database will provide detailed information on fundamental fuel properties influencing combustion and mineral matter behavior as well as quantitative performance data on combustion, ash deposition, ash erosion, particulate collection, and gaseous and particulate emissions. Program objectives also address the application of this technical database to predict performance impacts associated with firing BCFs in various commercial boiler designs as well as assessment of the economic implications of BCF utilization. Additionally, demonstration of this technology, with respect to large-scale fuel preparation, firing equipment operation, fuel performance, environmental impacts, and verification of prediction methodology, will be provided during field testing. Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the field test. Approximately nine BCFs will be in dry ultra fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Up to 25 additional BCFs would be characterized during optional project supplements. 9 figs., 1 tab.

Not Available

1989-12-01T23:59:59.000Z

123

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-11-01T23:59:59.000Z

124

Abrasive wear by diesel engine coal-fuel and related particles  

SciTech Connect

The purpose of the work summarized in this report was to obtain a basic understanding of the factors which are responsible for wear of the piston ring and cylinder wall surfaces in diesel engines utilizing coal-fuel. The approach included analytical studies using scanning electron microscopy and energy dispersive x-ray analyses to characterize coal-fuel and various combustion particles, and two different wear tests. The wear tests were a modified pin-on-disk test and a block-on-ring test capable of either unidirectional or reciprocating-rotational sliding. The wear tests in general were conducted with mixtures of the particles and lubricating oil. The particles studied included coal-fuel, particles resulting from the combustion of coal fuel, mineral matter extracted during the processing of coal, and several other common abrasive particle types among which quartz was the most extensively examined. The variables studied included those associated with the particles, such as particle type, size, and hardness; variables related to contact conditions and the surrounding environment; and variables related to the type and properties of the test specimen materials.

Ives, L.K. [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

1994-09-01T23:59:59.000Z

125

Fuel Oil and Kerosene Sales 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil and Kerosene Sales Fuel Oil and Kerosene Sales 2012 November 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies. U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 1

126

Fuel oil and kerosene sales 1993  

SciTech Connect

This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1994-10-03T23:59:59.000Z

127

Solid Oxide Fuel Cell System Utilizing Syngas from Coal Gasifiers  

Science Journals Connector (OSTI)

Solid Oxide Fuel Cell System Utilizing Syngas from Coal Gasifiers ... The oxidizer is expected to be similar in design to a HRSG duct firing burner (at the inlet of a HRSG). ...

Hossein Ghezel-Ayagh; Stephen Jolly; Dilip Patel; David Stauffer

2013-01-10T23:59:59.000Z

128

Group effects on fuel NOx emissisons from coal  

E-Print Network (OSTI)

GROUP EFFECTS ON FUEL NOX EMISSIONS FROM COAL A Thesis by ANAND ANAKKARA VADAKKATH Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1991 Major Subject: Mechanical Engineering GROUP EFFECTS ON FUEL NOX EMISSIONS FROM COAL A Thesis by ANAND ANAKKARA VADAKKATH Approved ss to style and content by: K. Annamalai (Chair of Committee) Cr, R. Laster (Member) J. Wagne (Member...

Vadakkath, Anand Anakkara

2012-06-07T23:59:59.000Z

129

Fuel oil and kerosene sales 1994  

SciTech Connect

This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

NONE

1995-09-27T23:59:59.000Z

130

Primary and Secondary Distillates as Marine Fuel Oil  

Science Journals Connector (OSTI)

The component compositions of marine fuel oils satisfying the requirements of TU 38. ... were developed. Light gasoils replace standard diesel fuel in marine fuel oil. The demulsifiability of light and heavy ... ...

T. N. Mitusova; I. A. Pugach; N. P. Averina…

131

Supersonic coal water slurry fuel atomizer  

DOE Patents (OSTI)

A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Balsavich, John (Foxborough, MA)

1991-01-01T23:59:59.000Z

132

Method for controlling boiling point distribution of coal liquefaction oil product  

DOE Patents (OSTI)

The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

1982-12-21T23:59:59.000Z

133

Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991  

SciTech Connect

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

134

E-Print Network 3.0 - assisted thermal oil Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

that produced synthetic fuel from coal, oil... the CRS Web Order Code RL33359 Oil Shale: History, Incentives, and Policy April 13, 2006 Anthony Andrews... ;Oil Shale:...

135

Dimethyl ether (DME) from coal as a household cooking fuel in China  

E-Print Network (OSTI)

technologies. Given China's rich coal resources, the production and use of coal-derived DME as a cooking fuelDimethyl ether (DME) from coal as a household cooking fuel in China Eric D. Larson Princeton gas (LPG) as a household cooking fuel. As such, DME is an attractive fuel for clean cooking. DME can

136

Economical production of transportation fuels from coal, natural gas, and other carbonaceous feedstocks  

SciTech Connect

The Nation`s economy and security will continue to be vitally linked to an efficient transportation system of air, rail, and highway vehicles that depend on a continuous supply of liquid fuels at a reasonable price and with characteristics that can help the vehicle manufacturers meet increasingly strict environmental regulations. However, an analysis of US oil production and demand shows that, between now and 2015, a significant increase in imported oil will be needed to meet transportation fuel requirements. One element of an overall Department of Energy`s (DOE) strategy to address this energy security issue while helping meet emissions requirements is to produce premium transportation fuels from non-petroleum feedstocks, such as coal, natural gas, and biomass, via Fischer-Tropsch (F-T) and other synthesis gas conversion technologies.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Winslow, J.C.; Venkataraman, V.K.; Driscoll, D.J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

1998-12-31T23:59:59.000Z

137

Liquid Tin Anode Direct Coal Fuel Cell Final Program Report  

SciTech Connect

This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

Tao, Thomas

2012-01-26T23:59:59.000Z

138

Response of Oil Sands Derived Fuels in Diesel HCCI Operation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response of Oil Sands Derived Fuels in Diesel HCCI Operation Bruce G. Bunting senior staff scientist Fuels, Engines, and Emissions Research Center 2007 DOE DEER Conference...

139

Table 5.3 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand...

140

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Annual book of ASTM Standards 2005. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The standard part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrographic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2005-09-15T23:59:59.000Z

142

Method of producing a colloidal fuel from coal and a heavy petroleum fraction  

DOE Patents (OSTI)

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300.degree.-550.degree. C. The slurry is heated to a temperature of 400.degree.-500.degree. C. for a limited time of only about 1-5 minutes before cooling to a temperature of less than 300.degree. C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, James R. (Columbus, OH)

1983-08-09T23:59:59.000Z

143

Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams  

SciTech Connect

We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

Clifford, C.E.B.; Schobert, H.H. [Pennsylvania State University, PA (United States)

2008-07-01T23:59:59.000Z

144

Response of Oil Sands Derived Fuels in Diesel HCCI Operation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Response of Oil Sands Derived Fuels in Diesel HCCI Operation Response of Oil Sands Derived Fuels in Diesel HCCI Operation Presentation given at the 2007 Diesel Engine-Efficiency &...

145

Coal and Biomass to Liquid Fuels  

Science Journals Connector (OSTI)

Figure 3.3 illustrates the main processing steps in coal to gasoline using MTG. Methanol synthesis is large-scale commercial technology...2]. Single-train methane-based methanol plants up to 5,500 tonnes of metha...

James R. Katzer

2011-01-01T23:59:59.000Z

146

EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY EIS-0432: Medicine Bow Fuel & Power Coal-to-Liquid Facility in Carbon County, WY Documents Available for...

147

Energy analysis of the coal fuel cycle in an Appalachian coal county  

SciTech Connect

Preliminary results from an energy analysis of the coal fuel cycle in an Appalachian coal county have provided a systematic assessment of hidden energy subsidies in extraction, transport, processing, and combustion. Current results indicate that the system operates at an annual energy deficit of approximately 350 x 10/sup 10/ kcal. A major loss is depletion of the coal resource base by use of inefficient mining techniques. Although of smaller magnitude, reductions in work force and community productivity from occupational accidents, disease, and road maintenance requirements for transport also appear to be significant. Further assessment is needed to verify assumptions and characterize additional data bases. 39 references.

Watson, A.P.

1984-03-01T23:59:59.000Z

148

Enzymantic Conversion of Coal to Liquid Fuels  

SciTech Connect

The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time, corresponding to the consumption of aromatic intermediates as they undergo ring cleavage. The results show that this process happens within 1 hour when using extracellular enzymes, but takes several days when using live organisms. In addition, live organisms require specific culture conditions, control of contaminants and fungicides in order to effectively produce extracellular enzymes that degrade coal. Therefore, when comparing the two enzymatic methods, results show that the process of using extracellular lignin degrading enzymes, such as laccase and manganese peroxidase, appears to be a more efficient method of decomposing bituminous coal.

Richard Troiano

2011-01-31T23:59:59.000Z

149

High-pressure coal fuel processor development. Final report  

SciTech Connect

Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

Greenhalgh, M.L. [Caterpillar, Inc., Peoria, IL (United States)

1992-12-01T23:59:59.000Z

150

Development of a co-firing fuel from biomass-derived binder and crushed coal.  

E-Print Network (OSTI)

??The focus of this work was the development of a co-firing boiler fuel for use in the coal power plant industry. This fuel, known as… (more)

Friend, Andrew

2013-01-01T23:59:59.000Z

151

Study on reaction property of China Yangcun coal with heavy oils  

SciTech Connect

The reaction properties in coprocessing of China Yangcun coal with three heavy oils (coal tar, petroleum residua and mixed heavy oil) were investigated at different temperatures and 7.0 MPa cold-initial pressure (H{sub 2}) by using a GJ-02 resonance agitation tube reactor. The analyses of feedstock and reaction residua were conducted with GC-MS and FTIR. Experimental results showed: (1) A quantity of low molecular compounds were dissolved in Yangcun coal and these compounds mostly were preasphaltene. (2) The temperature of the highest conversion of Yangcun coal was 390 C. The highest conversion temperature mainly depended upon the coal property and not upon the categories of heavy oils. (3) Conversion order of coprocessing of Yangcun coal with three heavy oils: coal tar > mixed heavy oils > petroleum residua. Aromatic components in heavy oils were media which produced and transferred active hydrogen during reactions. (4) Ash in the coal had a self-catalytic effect. FeS in the coal was catalyst species during coprocessing of coal with heavy oils. (5) Conversion-time curves of coprocessing of Yangcun coal with petroleum residua at 390 C and 430 C were studied. It was discussed that the coprocessing process could be divided into three stages: beginning high reactivity stage, slower-rate hydrogenation stage and condensation polymerization stage. Reaction rate constant of each stage was also calculated. (6) The reaction mechanism of coprocessing was discussed.

Ling Kaicheng; Shen Jun; Zhou Gangming; Wang Zhizhong [Taiyuan Univ. of Technology (China)

1997-12-31T23:59:59.000Z

152

Comparison of coal/solid recovered fuel (SRF) with coal/refuse derived fuel (RDF) in a fluidised bed reactor  

Science Journals Connector (OSTI)

An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.

S.T. Wagland; P. Kilgallon; R. Coveney; A. Garg; R. Smith; P.J. Longhurst; S.J.T. Pollard; N. Simms

2011-01-01T23:59:59.000Z

153

Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

154

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect

Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

Schwalb, J.A.; Ryan, T.W.

1991-10-01T23:59:59.000Z

155

Wear mechanism and wear prevention in coal-fueled diesel engines. Final report  

SciTech Connect

Coal fueled diesel engines present unique wear problems in the piston ring/cylinder liner area because of their tendency to contaminate the lube-oil with high concentrations of highly abrasive particles. This program involved a series of bench-scale wear tests and engine tests designed to investigate various aspects of the ring/liner wear problem and to make specific recommendations to engine manufacturers as to how to alleviate these problems. The program was organized into tasks, designed to accomplish the following objectives: (1) define the predominant wear mechanisms causing accelerated wear in the ring/liner area; (2) investigate the effectiveness of traditional approaches to wear prevention to prevent wear in coal-fueled engines; (3) further refine information on the most promising approaches to wear prevention; (4) present detailed information and recommendations to engine manufacturers on the most promising approach to wear prevention; (5) present a final report covering the entire program; (6)complete engine tests with a coal-derived liquid fuel, and investigate the effects of the fuel on engine wear and emissions.

Schwalb, J.A.; Ryan, T.W.

1991-10-01T23:59:59.000Z

156

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 4  

SciTech Connect

This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effective replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals for clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 48-month program which started on September 30, 1992. This report discusses the technical progress made during the 4th quarter of the project from July 1 to September 30, 1993.

Smit, F.J.; Hogsett, R.F.; Jha, M.C.

1993-11-04T23:59:59.000Z

157

Demonstration of a Carbonate Fuel Cell on Coal Derived Gas  

E-Print Network (OSTI)

system has run on actual syn-gas. Consequently, the Electric Power Research Institute (“EPRI”) has sponsored a 20 kW carbonate fuel cell pilot plant that will begin operating in March at Destec Energy’s coal gasification plant in Plaquemine, Louisiana...

Rastler, D. M.; Keeler, C. G.; Chi, C. V.

158

Gasification Characteristics of Coal/Biomass Mixed Fuels  

SciTech Connect

A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures. A key result of this work is the finding that the reactivities of the mixed chars were not always in between the reactivities of the pure component chars at comparable gasification conditions. Mixed char reactivity to CO2 was lower than the reactivities of both the pure Wyodak coal and pure corn stover chars to CO2. In contrast, mixed char reactivity to H2O was higher than the reactivities of both the pure Wyodak coal and pure corn stover chars to H2O. This was found to be in part, a consequence of the reduced mass specific surface areas of the coal char particles formed during devolatilization when the coal and biomass particles are co-fired. The biomass particles devolatilize prior to the coal particles, impacting the temperature and the composition of the environment in which the coal particles devolatilize. This situation results in coal char particles within the mixed char that differ in specific surface area and reactivity from the coal char particles produced in the absence of the devolatilizing biomass particles. Due to presence of this “affected” coal char, it was not possible to develop a mixed char reactivity model that uses linear mixing rules to determine the reactivity of a mixed char from only the reactivities of the pure mixture components. However, it was possible to predict both mixed char specific surface area and reactivity for a wide range of fuel mixture rat os provided the specific surface area and reactivity of the affected coal char particles are known. Using the kinetic parameters determined for the Wyodak coal and corn stover chars, the model was found to adequately predict the observed conversion times and off-gas compositions

Mitchell, Reginald

2013-09-30T23:59:59.000Z

159

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

U.S. Energy Information Administration (EIA) Indexed Site

No. 2 Distillate No. 4 Fuel a Total Distillate and Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel No. 2 Distillate Low-Sulfur High-Sulfur Total United States January...

160

TEE-0067 - In the Matter of North Side Coal & Oil Co., Inc. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - In the Matter of North Side Coal & Oil Co., Inc. 7 - In the Matter of North Side Coal & Oil Co., Inc. TEE-0067 - In the Matter of North Side Coal & Oil Co., Inc. On December 2, 2009, North Side Coal & Oil Co., Inc. (North Side) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). The firm requests that it be permanently relieved of the requirement to prepare and file the Energy Information Administration (EIA) Form EIA-782B, entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report." As explained below, we have determined that the request should be denied. tee0067.pdf More Documents & Publications VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. TEE-0071 - In the Matter of Monroe Oil Company

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The proceedings of the 31st international technical conference on coal utilization and fuel systems  

SciTech Connect

Topics covered include oxy-fuel, gasification, CO{sub 2} sequestration, coal preparation, opportunities and barriers for overall energy efficiency improvement, advanced sensors and controls, co-firing, computer simulations and virtual power plants, hydrogen fuels from coal, advanced materials, combustion optimisation, innovations for existing power plants, CO{sub 2} capture, biomass, alternative methods of hydrogen production, NOx control, mercury, low NOx technology, coal to liquids, and coal compatible fuel cells.

Sakkestad, B.A. (ed.)

2006-07-01T23:59:59.000Z

162

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

163

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

164

Innovative coal-fueled diesel engine injector  

SciTech Connect

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

165

Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980  

SciTech Connect

The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

Sefer, N.R.; Russell, J.A.

1980-11-01T23:59:59.000Z

166

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

100 million for an alternative fuel or gasification facility that uses coal, oil shale, or tar sands as the primary feedstock; 25 million for an energy-efficient...

167

Wetland regulations affecting coal mining and oil and gas operations  

SciTech Connect

Although the total acreage of wetlands in Appalachia is relatively small, the impact of wetlands on coal mining and the oil and gas industry can be significant. Wetlands are strongly protected from degradation and diminution under both federal and state regulatory programs, and both environmental protection groups and the public are concerned about the disturbance of natural wetlands. If an owner or operator of site is unable to obtain an appropriate permit, the presence of wetlands may completely preclude energy development. This article strives to provide an insight into the regulatory scheme surrounding wetlands and the risks of wetlands development.

Tokarz, A.P. [Bowles Rice McDavid Graff & Love, Charleston, WV (United States); Dulin, B.E. [Univ. Center for Environmental, Geotechnical, and Applied Sciences, Huntington, WV (United States)

1995-12-31T23:59:59.000Z

168

Separation and Characterization of Olefin/Paraffin in Coal Tar and Petroleum Coker Oil  

Science Journals Connector (OSTI)

Separation and Characterization of Olefin/Paraffin in Coal Tar and Petroleum Coker Oil ... This technique has been applied to shale oils, tar sands, and petroleum in both the mid-distillate (400-680°F) and gas oil boiling ranges (680-1000°F). ... enables anal. of petroleum high ends, i.e., heavy oils, residua and asphaltenes. ...

Hongxing Ni; Chang Samuel Hsu; Chao Ma; Quan Shi; Chunming Xu

2013-04-26T23:59:59.000Z

169

The spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil Point, California  

E-Print Network (OSTI)

area) are not well established, either globally or within strong source areas such as near Coal OilThe spatial scales, distribution, and intensity of natural marine hydrocarbon seeps near Coal Oil hydrocarbon seepage from marine environments is an important source of methane and other gases

Washburn, Libe

170

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network (OSTI)

geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the worldORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field constructed from 3D seismic and well data allowed investigation of the relationship between the subsurface

Luyendyk, Bruce

171

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network (OSTI)

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based… (more)

Gao, Chen

2010-01-01T23:59:59.000Z

172

Chapter 8 - Algae Oils as Fuels  

Science Journals Connector (OSTI)

Abstract Biologically produced fuels are considered potential and viable alternatives to meet the world’s fuel requirements. In this context, algal-based oil is of significant importance due to its renewable and carbon-neutral nature. Biosynthesis of triglycerides by utilizing CO2 (by biofixation) or wastewater under stress conditions via photoautotrophic, heterotrophic (photo/dark), or mixotrophic mechanisms enumerates the potential of microalgae for generation of renewable biodiesel. In addition to the algal cultivation, the conversion of the accumulated lipids to biodiesel is gaining considerable interest. Though there exist some constraints, the process of harnessing biofuel from microalgae is both economically viable and environmentally sustainable compared to the other oil-producing terrestrial crops. This chapter explores biofuel production using microalgae. Concerted efforts are made in this chapter to discuss the biochemistry pertaining to algal lipid synthesis, nutritional modes of algae, cultivation systems used for algal oil production, and the cascade of steps involved, from biomass cultivation to transesterification of the fuel. The ability of microalgae to capture CO2 and its survivability in wastewater is also elaborated in the context of lipid synthesis.

S. Venkata Mohan; M. Prathima Devi; G. Venkata Subhash; Rashmi Chandra

2014-01-01T23:59:59.000Z

173

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

174

Superclean coal-water slurry combustion testing in an oil-fired boiler. Quarterly technical progress report, November 15, 1989--February 15, 1990  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the US Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of demonstrating the capability of effectively firing SCCWS in industrial boilers designed for oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with less than 3% ash and 0.9% sulfur) can effectively be burned in oil-designed industrial boilers without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of three phases: (1) design, permitting, and test planning, (2) construction and start up, and (3) operations and disposition. The boiler testing will determine if the SCCWS combustion characteristics, heat release rate, slagging and fouling factors, erosion and corrosion limits, and fuel transport, storage, and handling can be accommodated in an oil-designed boiler. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting and operating boilers will be identified to assess the viability of future oil-to-coal retrofits. Progress for this quarter is summarized.

Miller, B.G.; Walsh, P.M.; Elston, J.T.; Scaroni, A.W.

1990-04-06T23:59:59.000Z

175

Conditions of utilization of coal mining and processing sludges as slurry fuel  

SciTech Connect

The results of this study have shown that coal sludge can be used as slurry fuel (like coal-water fuel (CWF)) providing that its ash content does not exceed 30% and the amount in the fuel is at least 55%. The conventional CWF preparation technologies are inapplicable to the fabrication of water-sludge fuel; therefore, special technologies with allowance for the ash content, the particle size, and the water content of coal sludge are demanded.

E.G. Gorlov; A.I. Seregin; G.S. Khodakov [Institute for Fossil Fuels, Moscow (Russian Federation)

2007-12-15T23:59:59.000Z

176

Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue  

DOE Patents (OSTI)

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, J.R.

1981-11-13T23:59:59.000Z

177

Liquid Transportation Fuels from Coal and Biomass  

E-Print Network (OSTI)

factors that would enhance or impede development and deployment. · Review other alternative fuels MIT HAROLD SCHOBERT Pennsylvania State University CHRISTOPHER SOMERVILLE Energy BioSciences Institute biomass 085 072 Wheat straw 070 055 a2008 costs = baseline costs #12;BIOCHEMICAL CONVERSION STATUS

178

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

gas produced from biomass, where biomass is defined as any organic material other than oil, natural gas, and coal; liquid, gaseous or solid synthetic fuels produced from coal; or...

179

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

180

Integrating catalytic coal gasifiers with solid oxide fuel cells  

SciTech Connect

A review was conducted for coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide [1-2]. The overall system efficiency can reach 60% when a) the coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis, b) the carbon dioxide is separated from the methane-rich synthesis gas, c) the methane-rich syngas is sent to a SOFC, and d) the off-gases from the SOFC are recycled back to coal gasifier. The thermodynamics of this process will be reviewed and compared to conventional processes in order to highlight where available work (i.e. exergy) is lost in entrained-flow, high-temperature gasification, and where exergy is lost in hydrogen oxidation within the SOFC. The main advantage of steam gasification of coal to methane and carbon dioxide is that the amount of exergy consumed in the gasifier is small compared to conventional, high temperature, oxygen-blown gasifiers. However, the goal of limiting the amount of exergy destruction in the gasifier has the effect of limiting the rates of chemical reactions. Thus, one of the main advantages of steam gasification leads to one of its main problems: slow reaction kinetics. While conventional entrained-flow, high-temperature gasifiers consume a sizable portion of the available work in the coal oxidation, the consumed exergy speeds up the rates of reactions. And while the rates of steam gasification reactions can be increased through the use of catalysts, only a few catalysts can meet cost requirements because there is often significant deactivation due to chemical reactions between the inorganic species in the coal and the catalyst. Previous research into increasing the kinetics of steam gasification will be reviewed. The goal of this paper is to highlight both the challenges and advantages of integrating catalytic coal gasifiers with SOFCs.

Siefert, N.; Shamsi, A.; Shekhawat, D.; Berry, D.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Choline for neutralizing naphthenic acid in fuel and lubricating oils  

SciTech Connect

A method is described of neutralizing at least a portion of the naphthenic acids present in fuel and lubricating oils which contain naphthenic acids which comprises treating these oils with a neutralizing amount of choline.

Ries, D.G.; Roof, G.L.

1986-07-15T23:59:59.000Z

182

Production of high-energy fuel with low volatile content from 3B and D coal  

Science Journals Connector (OSTI)

Experiments on the carbonization of coal show that high-energy fuel with satisfactory piece strength (?8 MPa in compression) may be produced in the nonoxidative heating of 3B and D coal, with gradual increase ...

M. V. Kulesh; S. R. Islamov

2012-08-01T23:59:59.000Z

183

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal  

E-Print Network (OSTI)

ORIGINAL PAPER Fireside Corrosion in Oxy-fuel Combustion of Coal Gordon R. Holcomb · Joseph Tylczak the nature of coal ash deposits. Wigley and Goh [1] reported that particles in oxy-fired deposits, compared

Laughlin, David E.

184

Engineering development of advanced physical fine coal cleaning for premium fuel applications. Quarterly technical progress report No. 6, January--March 1994  

SciTech Connect

This project is a major step in the Department of Energy`s program to show that ultra-clean coal-water slurry fuel (CWF) can be produced from selected coals and that this premium fuel will be a cost-effectve replacement for oil and natural gas now fueling some of the industrial and utility boilers in the United States as well as for advanced combustars currently under development. The replacement of oil and gas with CWF can only be realized if retrofit costs are kept to a minimum and retrofit boiler emissions meet national goals fbr clean air. These concerns establish the specifications for maximum ash and sulfur levels and combustion properties of the CWF. This cost-share contract is a 51-month program which started on September 30, 1992. This report discusses the technical progress, made during the 6th quarter of the project from January 1 to March 31, 1994. The project has three major objectives: (1) The primary objective is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to coal-water slurry fuel for premium fuel applications. The fine coal cleaning technologies are advanced column flotation and selective agglomeration. (2) A secondary objective is to develop the design base for near-term application of these advanced fine coal cleaning technologies in new or existing coal preparation plants for efficiently processing minus 28-mesh coal fines and converting this to marketable products in current market economics. (3) A third objective is to determine the removal of toxic trace elements from coal by advance column flotation and selective agglomeration technologies.

Smit, F.J.; Rowe, R.M.; Anast, K.R.; Jha, M.C.

1994-05-06T23:59:59.000Z

185

Coal to Liquids Technologies  

Science Journals Connector (OSTI)

By the mid-1940s, natural gas and oil production had become more developed and cost-competitive with coal, and technology for production of synthetic transportation fuels was not considered economic after the Sec...

Marianna Asaro; Ronald M. Smith

2013-01-01T23:59:59.000Z

186

Coal to Liquids Technologies  

Science Journals Connector (OSTI)

By the mid-1940s, natural gas and oil production had become more developed and cost-competitive with coal, and technology for production of synthetic transportation fuels was not considered economic after the Sec...

Marianna Asaro; Ronald M. Smith

2012-01-01T23:59:59.000Z

187

Combustion characterization of beneficiated coal-based fuels  

SciTech Connect

This three-year research project at Combustion Engineering, Inc. (CE), will assess the potential economic and environmental benefits derived from coal beneficiation by various advanced cleaning processes. The objectives of this program include the development of a detailed generic engineering data base, comprised of fuel combustion and ash performance data on beneficiated coal-based fuels (BCFs), which is needed to permit broad application. This technical data base will provide detailed information on fundamental fuel properties influencing combustion and mineral matter behavior as well as quantitative performance data on combustion, ash deposition, ash erosion, particulate collection, and gaseous and particulate emissions. Program objectives also address the application of this technical data base to predict performance impacts associated with firing BCFs in various commercial boiler designs as well as assessment of the economic implications of BCF utilization. Additionally, demonstration of this technology, with respect to large-scale fuel preparation, firing equipment operation, fuel performance, environmental impacts, and verification of prediction methodology, will be provided during field testing.

Not Available

1990-03-01T23:59:59.000Z

188

Superclean coal-water slurry combustion testing in an oil-fired boiler. Semiannual technical progress report, August 15, 1992--February 15, 1993  

SciTech Connect

The Pennsylvania State University is conducting a superclean coal-water slurry (SCCWS) program for the United States Department of Energy (DOE) and the Commonwealth of Pennsylvania with the objective of determining the capability of effectively firing SCCWS in an industrial boiler designed for heavy fuel oil. Penn State has entered into a cooperative agreement with DOE to determine if SCCWS (a fuel containing coal with 3.0 wt.% ash and 0.9 wt.% sulfur) can effectively be burned in a heavy fuel oil-designed industrial boiler without adverse impact on boiler rating, maintainability, reliability, and availability. The project will provide information on the design of new systems specifically configured to fire these clean coal-based fuels. The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) program expansion (additional 1,000 hours of testing). The boiler testing wig determine if the SCCWS combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion limits, and fuel transport, storage, and handling characteristics can be accommodated in an oil-designed boiler system. In addition, the proof-of-concept demonstration will generate data to determine how the properties of SCCWS and its parent coal affect boiler performance. Economic factors associated with retrofitting boilers will be identified

Miller, B.G.; Pisupati, S.V.; Poe, R.L.; Morrison, J.L.; Xie, J.; Walsh, P.M.; Wincek, R.T.; Clark, D.A.; Scaroni, A.W.

1993-04-21T23:59:59.000Z

189

Preparation and combustion of coal-water fuel from the Sin Pun coal deposit, southern Thailand  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources in Thailand, the Energy & Environmental Research Center (EERC) prepared a program to assess the responsiveness of Sin Pun lignite to the temperature and pressure conditions of hot-water drying. The results indicate that drying made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 27 wt% for the raw coal to about 15 wt% for the hot-water-dried (HWD) coals. The energy density for a pumpable coal-water fuel (CWF) indicates an increase from 4500 to 6100 Btu/lb by hot-water drying. Approximately 650 lb of HWD Sin Pun CWF were fired in the EERC`s combustion test facility. The fuel burned extremely well, with no feed problems noted during the course of the test. Fouling and slagging deposits each indicated a very low rate of ash deposition, with only a dusty layer formed on the cooled metal surfaces. The combustor was operated at between 20% and 25% excess air, resulting in a flue gas SO{sub 2} concentration averaging approximately 6500 parts per million.

NONE

1997-05-01T23:59:59.000Z

190

Low NOx modifications on front-fired pulverized coal fuel burners  

SciTech Connect

Burner optimizations and modifications were performed on Public Service of New Hampshire`s Schiller Units 4, 5, and 6. These are Foster-Wheeler 50 MWg pulverized coal and No.6 fuel oil-fired boilers with six burners each. Burner optimizations consisted of fuel flow, primary air, secondary air testing and balancing. Burner modifications consisted of the addition of circumferentially and radially staged flame stabilizers, circumferentially-staged coal spreaders, and modifications to the existing pulverized coal pipe. NO{sub x} emissions on Unit 6 of .41 lb/mmBtu were achieved at optimized burner settings at full load with all burners in service and without the use of overfire air or bias firing. This represented a 50% NO{sub x} reduction from the average pre-modification baseline NO{sub x} emissions of .81 lb/mmBtu prior to the optimizations and burner modification program. NO{sub x} emissions as low as .38 lb/mmBtu were achieved with the use of overfire air. There was essentially no quantifiable change in LOIs (baseline LOIs averaged 40%). Furnace excess O{sub 2} as low as 1.2% was achieved with CO emissions of less than 200 ppm. Total installed costs including the overfire air system were approximately $7/kW.

Owens, B.; Hitchko, M. [Public Service of New Hampshire, Manchester, NH (United States); Broderick, R.G. [RJM Corp., Ridgefield, CT (United States)

1996-01-01T23:59:59.000Z

191

Table 19. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Prices," source for backcast estimates prior to January 1983. 19. U.S. Refiner Residual Fuel Oil Prices 36 Energy Information Administration Petroleum Marketing Annual 1996...

192

Table 19. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Prices," source for backcast estimates prior to January 1983. 19. U.S. Refiner Residual Fuel Oil Prices 36 Energy Information Administration Petroleum Marketing Annual 1997...

193

Process for Converting Algal Oil to Alternative Aviation Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Process for Converting Algal Oil to Alternative Aviation Fuel Los Alamos National Laboratory Contact LANL About This Technology The conversion process uses a Kolbe-based method of...

194

Thermal Effects by Firing Oil Shale Fuel in CFB Boilers  

Science Journals Connector (OSTI)

It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mine...

D. Neshumayev; A. Ots; T. Parve; T Pihu…

2010-01-01T23:59:59.000Z

195

Market and equipment performance analysis for the application of coal-based fuels/advanced combustion systems: Commercial and small industrial applications: Volume B, Appendices  

SciTech Connect

In March 1985, Burns and Roe Services Corporation (BRSC) under Contract No. AC22-84PC72571 with the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC) initiated a task entitled ''Market and Equipment Performance Analysis for the Application of Coal-Based Fuels/Advanced Combustion Systems.'' This volume contains the following Appendices: Commercial sector applications of coal based fuels and advanced technologies, EOS Technologies, Inc.; Estimation of fuel use and population for industrial boilers <50 mm Btu/hr and direct fired combustors <100 mm Btu/hr firing oil and gas, PEI Associates; Characteristics of oil and gas fired boilers; Characteristics of oil and gas fired process heaters; Environmental permitting considerations; States air emission rules and regulations applying to commercial/industrial boilers and process heaters <100 mm Btu/hr heat input; Advanced coal combustion systems; Application of advanced coal combustion systems to watertube boilers; Application of advanced coal combustion systems to firetube boilers; and Application of advanced coal combustion systems to process heaters.

Not Available

1986-05-01T23:59:59.000Z

196

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline  

Science Journals Connector (OSTI)

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline ... (11) Another analysis suggests that a transition to hydrogen- and natural-gas-fueled vehicles—and the associated climate benefits—will partly be driven by dwindling oil supplies. ... Within each class, we do not attempt to predict the exact substitute that will dominate (for example, whether electricity, hydrogen fuel cells, or natural gas will prevail in the passenger car market), but rather model the aggregate contribution of alternatives to conventional oil. ...

Adam R. Brandt; Adam Millard-Ball; Matthew Ganser; Steven M. Gorelick

2013-05-22T23:59:59.000Z

197

Liquid Tin Anode Direct Coal Fuel Cell - CellTech Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Tin Anode Direct Coal Liquid Tin Anode Direct Coal Fuel Cell-CellTech Power Background Direct carbon solid oxide fuel cells (SOFCs) offer a theoretical efficiency advantage over traditional SOFCs operating on gasified carbon (syngas). CellTech Power LLC (CellTech) has been developing a liquid tin anode (LTA) SOFC that can directly convert carbonaceous fuels including coal into electricity without gasification. One of the most significant impediments

198

Coal-fueled diesel system for stationary power applications -- Technology development. Final report, March 1988--June 1994  

SciTech Connect

Morgantown Energy Technology Center, Cooper-Bessemer and Arthur D. Little have developed the technology to enable coal-water slurry to be utilized in large-bore, medium-speed diesel engines. The target application is modular power generation in the 10 to 100 MW size, with each plant using between two and eight engines. Such systems are expected to be economically attractive in the non-utility generation market after 2000, when oil and natural gas prices are expected to escalate rapidly compared to the price of coal. During this development program, over 1,000 hours of prototype engine operation have been achieved on coal-water slurry (CWS), including over 100 hours operation of a six-cylinder, 1.8 MW engine with an integrated emissions control system. Arthur D. Little, Inc., managed the coal-fueled diesel development, with Cooper-Bessemer as the principal subcontractor responsible for the engine design and testing. Several key technical advances which enable the viability of the coal-fueled diesel engine were made under this program. Principal among them are the development and demonstration of (1) durable injection nozzles; (2) an integrated emissions control system; ad (3) low-cost clean coal slurry formulations optimized for the engine. Significant advances in all subsystem designs were made to develop the full-scale Cooper-Bessemer coal engine components in preparation for a 100-hour proof-of-concept test of an integrated system, including emissions controls. The Clean Coal Diesel power plant of the future will provide a cost-competitive, low-emissions, modular, coal-based power generation option to the non-utility generation, small utility, independent power producer, and cogeneration markets. Combined cycle efficiencies will be approximately 48% (lower heating value basis) and installed cost will be approximately $1,300/kW (1992 dollars).

NONE

1995-10-01T23:59:59.000Z

199

NEW SOLID FUELS FROM COAL AND BIOMASS WASTE  

SciTech Connect

Under DOE sponsorship, McDermott Technology, Inc. (MTI), Babcock and Wilcox Company (B and W), and Minergy Corporation developed and evaluated a sludge derived fuel (SDF) made from sewage sludge. Our approach is to dry and agglomerate the sludge, combine it with a fluxing agent, if necessary, and co-fire the resulting fuel with coal in a cyclone boiler to recover the energy and to vitrify mineral matter into a non-leachable product. This product can then be used in the construction industry. A literature search showed that there is significant variability of the sludge fuel properties from a given wastewater plant (seasonal and/or day-to-day changes) or from different wastewater plants. A large sewage sludge sample (30 tons) from a municipal wastewater treatment facility was collected, dried, pelletized and successfully co-fired with coal in a cyclone-equipped pilot. Several sludge particle size distributions were tested. Finer sludge particle size distributions, similar to the standard B and W size distribution for sub-bituminous coal, showed the best combustion and slagging performance. Up to 74.6% and 78.9% sludge was successfully co-fired with pulverized coal and with natural gas, respectively. An economic evaluation on a 25-MW power plant showed the viability of co-firing the optimum SDF in a power generation application. The return on equity was 22 to 31%, adequate to attract investors and allow a full-scale project to proceed. Additional market research and engineering will be required to verify the economic assumptions. Areas to focus on are: plant detail design and detail capital cost estimates, market research into possible project locations, sludge availability at the proposed project locations, market research into electric energy sales and renewable energy sales opportunities at the proposed project location. As a result of this program, wastes that are currently not being used and considered an environmental problem will be processed into a renewable fuel. These fuels will be converted to energy while reducing CO{sub 2} emissions from power generating boilers and mitigating global warming concerns. This report describes the sludge analysis, solid fuel preparation and production, combustion performance, environmental emissions and required equipment.

Hamid Farzan

2001-09-24T23:59:59.000Z

200

MS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COAL-OUR MOST ABUNDANT FUEL COAL-OUR MOST ABUNDANT FUEL America has more coal than any other fossil fuel resource. Th e United States also has more coal reserves than any other single country in the world. In fact, 1/4 of all the known coal in the world is in the United States. Th e United States has more energy in coal that can be mined than the rest of the world has in oil that can be pumped from the ground. Currently, coal is mined in 25 of the 50 states. Coal is used primarily in the United States to generate electricity. In fact, it is burned in power plants to produce nearly half of the electricity we use. A stove uses about half a ton of coal a year. A water heater uses about two tons of coal a year. And a refrigerator, that's another half-ton a year. Even though you

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Coal for the future. Proceedings of the 33rd international technical conference on coal utilization and fuel systems  

SciTech Connect

Topics covered include oxy-fuel technology, modelling and simulations, low NOx technology, gasification technology, pre-utilization beneficiation of coal, advanced energy conversion systems, mercury emissions control, improving power plant efficiency and reducing emissions, biomass and wastes, coal to liquids, post-combustion CO{sub 2} capture, multi emission controls, advanced materials, advanced controls, and international highlights.

Sakkestad, B.A. (ed.)

2008-07-01T23:59:59.000Z

202

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

203

HS_Coal_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Coal Fossil Energy Study Guide: Coal Coal is the most plentiful fuel in the fossil family. The United States has more coal reserves than any other country in the world. In fact, one-fourth of all known coal in the world is in the United States, with large deposits located in 38 states. The United States has almost as much energ y in coal that can be mined as the rest of the world has in oil that can be pumped from the ground. TYPES OF COAL Coal is a black rock made up of large amounts of carbon. Like all fossil fuels, coal can be burned to release energy. Coal contains elements such as hydrogen, oxygen, and nitrogen; has various amounts of minerals; and is itself considered to be a mineral of organic origin. Due to the variety of materials buried over time in the

204

SECA Coal-Based Systems - FuelCell Energy, Inc.  

SciTech Connect

The overall goal of this U.S. Department of Energy (DOE) sponsored project is the development of solid oxide fuel cell (SOFC) cell and stack technology suitable for use in highly-efficient, economically-competitive central generation power plant facilities fueled by coal synthesis gas (syngas). This program incorporates the following supporting objectives: • Reduce SOFC-based electrical power generation system cost to $700 or less (2007 dollars) for a greater than 100 MW Integrated Gasification Fuel Cell (IGFC) power plant, exclusive of coal gasification and CO2 separation subsystem costs. • Achieve an overall IGFC power plant efficiency of at least 50%, from coal (higher heating value or HHV) to AC power (exclusive of CO2 compression power requirement). • Reduce the release of CO2 to the environment in an IGFC power plant to no more than 10% of the carbon in the syngas. • Increase SOFC stack reliability to achieve a design life of greater than 40,000 hours. At the inception of the project, the efforts were focused on research, design and testing of prototype planar SOFC power generators for stationary applications. FuelCell Energy, Inc. successfully completed the initial stage of the project by meeting the program metrics, culminating in delivery and testing of a 3 kW system at National Energy Technology Laboratory (NETL). Subsequently, the project was re-aligned into a three phase effort with the main goal to develop SOFC technology for application in coal-fueled power plants with >90% carbon capture. Phase I of the Coal-based efforts focused on cell and stack size scale-up with concurrent enhancement of performance, life, cost, and manufacturing characteristics. Also in Phase I, design and analysis of the baseline (greater than 100 MW) power plant system—including concept identification, system definition, and cost analysis—was conducted. Phase II efforts focused on development of a ?25 kW SOFC stack tower incorporating multiple stack building blocks of scaled-up cells, suitable for integration into a large-scale fuel cell power module. Activities in Phase II also included the development of the baseline system, factory cost estimate for the baseline plant’s power block, and conceptual design of a natural gas fueled sub-MW system to be used for testing and verification of the fuel cell stacks in a system environment. The specific objective for Phase III was the validation of the performance and robustness of stacks and scaled stack arrays suitable for use in large-scale power generation systems such as an IGFC with reliable, fail-safe operation being of paramount importance. The work culminated in the verification tests of a 60 kW SOFC stack module in a power plant facility. This final technical report summarizes the progress made during the project period. Significant progress was made in the areas of cell and stack technology development, stack module design, sub-scale module tests, Baseline Power Plant system development and Proof-of- Concept Module unit design. The development of this technology will significantly advance the nation’s energy security and independence interests while simultaneously addressing environmental concerns, including greenhouse gas emissions and water usage.

Ayagh, Hossein

2014-01-31T23:59:59.000Z

205

Advanced Coal-Fueled Gas Turbine Program. Final report  

SciTech Connect

The objective of the original Request for Proposal was to establish the technological bases necessary for the subsequent commercial development and deployment of advanced coal-fueled gas turbine power systems by the private sector. The offeror was to identify the specific application or applications, toward which his development efforts would be directed; define and substantiate the technical, economic, and environmental criteria for the selected application; and conduct such component design, development, integration, and tests as deemed necessary to fulfill this objective. Specifically, the offeror was to choose a system through which ingenious methods of grouping subcomponents into integrated systems accomplishes the following: (1) Preserve the inherent power density and performance advantages of gas turbine systems. (2) System must be capable of meeting or exceeding existing and expected environmental regulations for the proposed application. (3) System must offer a considerable improvement over coal-fueled systems which are commercial, have been demonstrated, or are being demonstrated. (4) System proposed must be an integrated gas turbine concept, i.e., all fuel conditioning, all expansion gas conditioning, or post-expansion gas cleaning, must be integrated into the gas turbine system.

Horner, M.W.; Ekstedt, E.E.; Gal, E.; Jackson, M.R.; Kimura, S.G.; Lavigne, R.G.; Lucas, C.; Rairden, J.R.; Sabla, P.E.; Savelli, J.F.; Slaughter, D.M.; Spiro, C.L.; Staub, F.W.

1989-02-01T23:59:59.000Z

206

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

207

Saving diesel fuel in the oil field  

SciTech Connect

Describes how diesel electric SCR (silicon controlled rectifier) drilling rigs are helping drillers save fuel expense in the oil fields, along with other energy conservation methods. Compares SCR to conventional drilling rigs. Points out that on conventional rigs, diesel engines drive rig components directly, while on the SCR electric rigs, diesel engines turn a.c. electric generators which supply energy to d.c. electric motors for rig component power. Components of the SCR rigs include drawworks, mud pumps, rotary table, compressors, shakers, blenders and the camp load. Recommends economic principles such as supplying generators large enough to handle the low p.f. (power factor) as well as peak power requirements; and keeping the work load on diesel engines as high as possible for fuel economy. Presents tables of fuel consumed per 100 kW at various load factors; effect of power factor on engine hp required; electric drilling rig power modules; and engine and generator selection guide. Emphasizes consideration of the competitive difference in diesel engine economy.

Elder, B.

1982-11-01T23:59:59.000Z

208

VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - In the Matter of North Side Coal & Oil Co., Inc. 1 - In the Matter of North Side Coal & Oil Co., Inc. VEE-0081 - In the Matter of North Side Coal & Oil Co., Inc. On February 25, 2002, North Side Coal & Oil Co., Inc. (North Side) of Milwaukee, Wisconsin filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, North Side requests that it be excused from filing the Energy Information Administration's (EIA) form entitled "Resellers'/ Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we conclude that it is appropriate to excuse North Side from filing the Form EIA-782B from September 2002 until March 2003 because the firm is a "noncertainty firm" and has demonstrated that it will

209

Synthesis of super plasticizer NF-30 from coal coking by product washing oil and performance analysis  

Science Journals Connector (OSTI)

Super plasticizer was synthesized by using coal coking by product washing oil and industrial naphthalene....2 in exhaust (20%). Compared with NF, NF-30 have some advantages in lower cost, high water reducing rate...

Zifang Xu ???; Mingxu Zhang; Wenpei Hu

2013-10-01T23:59:59.000Z

210

Microbial Degradation in Soil Microcosms of Fuel Oil Hydrocarbons from Drilling Cuttings  

Science Journals Connector (OSTI)

Microbial Degradation in Soil Microcosms of Fuel Oil Hydrocarbons from Drilling Cuttings ... Relation between Bioavailability and Fuel Oil Hydrocarbon Composition in Contaminated Soils ...

Claude-Henri. ChaIneau; Jean-Louis. Morel; Jean. Oudot

1995-06-01T23:59:59.000Z

211

Effects of No. 2 Fuel Oil, Nigerian Crude Oil, and Used Crankcase Oil on Attached Algal Communities: Acute and Chronic Toxicity of Water-Soluble Constituents  

Science Journals Connector (OSTI)

...EXTRACTS OF OILS ON ALGAE 677 (Chlorophyta...Exposure to no. 2 fuel oil extract led to domi...products such as no. 2 fuel oil are usually toxic to algae, invertebrates, and...EXTRACTS OF OILS ON ALGAE 681 2 fuel oil extracts decreased...

Thomas L. Bott; Kurt Rogenmuser

1978-11-01T23:59:59.000Z

212

Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

fuels. Energy feedstocks for transportation fuel production could include crude oil, natural gas (NG), coal, biomass (grains such as corn and cellulosic biomass), and...

213

Economic evaluation of the efficiency of technologies for the manufacture of gas and briquetted fuel from coals  

Science Journals Connector (OSTI)

The technical feasibility of the production of new types of fuel from coal, which most fully meet the requirements of ... influence of the new types of fuel from coals on the economic indices of the production of...

I. P. Krapchin; T. I. Kuz’mina

2012-02-01T23:59:59.000Z

214

Wear mechanism and wear prevention in coal-fueled diesel engines  

SciTech Connect

Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

Schwalb, J.A.

1991-06-01T23:59:59.000Z

215

Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, 2014 115 Copyright 2014 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, 2014 115 Copyright © 2014 Inderscience fields in Saudi Arabia', Int. J. Oil, Gas and Coal Technology, Vol. 7, No. 2, pp.115­131. Biographical economic recovery of oil and gas from a reservoir. The purpose of reservoir management is to control

Mohaghegh, Shahab

216

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1  

E-Print Network (OSTI)

Co-firing of coal and biomass fuel blends M. Sami, K. Annamalai*, M. Wooldridge1 Department; accepted 6 June 2000 Abstract This paper reviews literature on co-firing of coal with biomass fuels. Here, the term biomass includes organic matter produced as a result of photosynthesis as well as municipal

Wooldridge, Margaret S.

217

Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis  

SciTech Connect

Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

Not Available

1991-12-01T23:59:59.000Z

218

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

219

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2012 (EIA)

W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

220

Novel injector techniques for coal-fueled diesel engines. Final report  

SciTech Connect

This report, entitled ``Novel Injector Techniques for Coal-Fueled Diesel Engines,`` describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

Badgley, P.R.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NETL: News Release - World's First Coal Mine Methane Fuel Cell Powers Up in  

NLE Websites -- All DOE Office Websites (Extended Search)

22, 2003 22, 2003 World's First Coal Mine Methane Fuel Cell Powers Up in Ohio New Technology Mitigates Coal Mine Methane Emissions, Produces Electricity HOPEDALE, OH - In a novel pairing of old and new, FuelCell Energy of Danbury, Conn., has begun operating the world's first fuel cell powered by coal mine methane. Funded by the Department of Energy, the demonstration harnesses the power of a pollutant - methane emissions from coal mines - to produce electricity in a new, 21st Century fuel cell. MORE INFO Remarks by DOE's James Slutz FuelCell Energy Web Site "We believe this technology can reduce coal mine methane emissions significantly while producing clean, efficient, and reliable high-quality power," Secretary of Energy Spencer Abraham said. "This has the dual

222

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network (OSTI)

for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

223

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network (OSTI)

for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

2007-01-01T23:59:59.000Z

224

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

SciTech Connect

Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradual heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and four conference publications dealing with utilization of animal waste as fuel have been published. In addition a presentation was made to a utility company interested in the new reburn technology for NO{sub x} reduction.

Kalyan Annamalai; John Sweeten; Saqib Mukhtar; Soyuz Priyadarsan (PhD)

2003-06-01T23:59:59.000Z

225

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-01-01T23:59:59.000Z

226

CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS  

SciTech Connect

The following are proposed activities for quarter 2 (9/15/00-12/14/00): (1) Conduct TGA and fuel characterization studies--Task 1; (2) Perform re-burn experiments--Task 2; (3) Fabricate fixed bed gasifier/combustor--Task 3; and (4) Modify the 3D combustion modeling code for feedlot and litter fuels--Task 4. The following were achieved During Quarter 2 (9/15/00-12/14/00): (1) The chicken litter has been obtained from Sanderson farms in Denton, after being treated with a cyclonic dryer. The litter was then placed into steel barrels and shipped to California to be pulverized in preparation for firing. Litter samples have also been sent for ultimate/proximate laboratory analyses.--Task 1; (2) Reburn-experiments have been conducted on coal, as a base case for comparison to litter biomass. Results will be reported along with litter biomass as reburn fuel in the next report--Task 2; (3) Student has not yet been hired to perform task 3. Plans are ahead to hire him or her during quarter No. 3; and (4) Conducted a general mixture fraction model for possible incorporation in the code.

Dr. Kalyan Annamalai; Dr. John Sweeten; Dr. Sayeed Mukhtar

2001-02-05T23:59:59.000Z

227

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector.  

E-Print Network (OSTI)

??Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected… (more)

Payne, Stephen Ellis

2012-01-01T23:59:59.000Z

228

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector  

E-Print Network (OSTI)

Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected into a pressurized chamber equipped with quartz...

Payne, Stephen Ellis

2012-06-07T23:59:59.000Z

229

Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel  

Science Journals Connector (OSTI)

Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil bio petroleum fuel and diesel which can be an energy source.

Mustafa Hamid Al-abbas; Wan Aini Wan Ibrahim; Mohd. Marsin Sanagi

2012-01-01T23:59:59.000Z

230

NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network (OSTI)

NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

Hall, Julian

231

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network (OSTI)

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

232

Engineering development of advanced physical fine coal cleaning for premium fuel applications  

SciTech Connect

The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

Shields, G.L.; Smit, F.J.; Jha, M.C.

1997-08-28T23:59:59.000Z

233

Behavior of shale oil jet fuels at variable severities  

SciTech Connect

Catalytic hydroprocessed shale oil jet fuels in the USA were characterized and compared with petroleum jet fuel to demonstrate their possibility as a conventional jet fuel substitute. The shale oils (Geokinetics, Occidental, Paraho and Tosco II) were hydrotreated in a 0.058m ID by 1.52m long reactor containing Ni/MO/Al/sub 2/O/sub 3/ catalyst. The fractionated hydrogenated shale oils at jet fuel ranges (120-300/sup 0/C) were analyzed for composition and physical properties. The increasing hydroprocessing severity proportionally decreased nitrogen, sulfur, olefins, and aromatics, and increased hydrogen content. The nitrogen content even at high severity conditions was considerably higher than that of conventional jet fuel. Sulfur and olefin contents were lower at all severities. The heat of combustion and the physical properties, except the freezing point, were comparable to petroleum jet fuels. The yields of jet fuels increased proportionally to increased severity. The study showed that high severity hydroprocessing gave better performance in processing shale oils to jet fuels.

Mukherjee, N.L.

1988-01-01T23:59:59.000Z

234

Verifying a Simplified Fuel Oil Flow Field Measurement Protocol  

SciTech Connect

The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

Henderson, H.; Dentz, J.; Doty, C.

2013-07-01T23:59:59.000Z

235

Coal-liquid fuel/diesel engine operating compatibility. Final report  

SciTech Connect

This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

Hoffman, J.G.; Martin, F.W.

1983-09-01T23:59:59.000Z

236

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 6, July 1990--September 1990  

SciTech Connect

The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

Chow, O.K.; Nsakala, N.Y.

1990-11-01T23:59:59.000Z

237

Pulverized Coal-Fired Boilers and Pollution Control  

Science Journals Connector (OSTI)

Fossil fuels, such as coal, natural gas, and fuel oil, are used to generate electric power for industrial, commercial, and residential use. ... production and approximately 41% of the world power generation was s...

David K. Moyeda

2013-01-01T23:59:59.000Z

238

Investigations into coal coprocessing and coal liquefaction  

SciTech Connect

The conversion of coal to liquid suitable as feedstock to a petroleum refinery is dependent upon several process variables. These variables include temperature, pressure, coal rank, catalyst type, nature of the feed to the reactor, type of process, etc. Western Research Institute (WRI) has initiated a research program in the area of coal liquefaction to address the impact of some of these variables upon the yield and quality of the coal-derived liquid. The principal goal of this research is to improve the efficiency of the coal liquefaction process. Two different approaches are currently being investigated. These include the coprocessing of a heavy liquid, such as crude oil, and coal using a dispersed catalyst and the direct liquefaction of coal using a supported catalyst. Another important consideration in coal liquefaction is the utilization of hydrogen, including both externally- and internally-supplied hydrogen. Because the incorporation of externally-supplied hydrogen during conversion of this very aromatic fossil fuel to, for example, transportation fuels is very expensive, improved utilization of internally-supplied hydrogen can lead to reducing processing costs. The objectives of this investigation, which is Task 3.3.4, Coal Coprocessing, of the 1991--1992 Annual Research Plan, are: (1) to evaluate coal/oil pretreatment conditions that are expected to improve the liquid yield through more efficient dispersion of an oil-soluble, iron-based catalyst, (2) to characterize the coke deposits on novel, supported catalysts after coal liquefaction experiments and to correlate the carbon skeletal structure parameters of the coke deposit with catalyst performance as measured by coal liquefaction product yield, and (3) to determine the modes of hydrogen utilization during coal liquefaction and coprocessing. Experimental results are discussed in this report.

Guffey, F.D.; Netzel, D.A.; Miknis, F.P.; Thomas, K.P. [Western Research Inst., Laramie, WY (United States); Zhang, Tiejun; Haynes, H.W. Jr. [Wyoming Univ., Laramie, WY (United States). Dept. of Chemical Engineering

1994-06-01T23:59:59.000Z

239

Improving operational efficiency of fuel oil facilities used at gas-and-oil-fired power stations  

Science Journals Connector (OSTI)

Results obtained from experimental investigations of energy consumption are described, and ways for considerably reducing it are proposed taking as an example the fuel oil facility at the 2400-MW Lukoml District ...

A. K. Vnukov; F. A. Rozanova; A. A. Bazylenko; V. L. Zhurbilo…

2009-09-01T23:59:59.000Z

240

Effect of severity on catalytic hydroprocessed shale oil jet fuels  

SciTech Connect

Catalytic hydroprocessed shale oil jet fuels in the USA were characterized and compared with petroleum jet fuel to demonstrate their possibility as a conventional jet fuel substitute. The shale oils (Geokinetics, Occidental, Paraho and Tosco II) were hydrotreated in a 0.0508m ID by K1.524m long reactor containing Ni/Mo/Al/sub 2/O/sub 3/ catalyst. The fractionated hydrogenated shale oils at jet fuel ranges (120-300/degree/C) were analyzed for composition and physical properties. The increasing hydroprocessing severity proportionally decreased nitrogen, sulfur, olefins, aromatics and increased hydrogen content. The nitrogen content was considerable higher even at high severity conditions. Sulfur and olefin contents were lower at all severities. The heat of combustion and the physical properties, except the freezing point, were comparable to petroleum jet fuels. The yields of jet fuels increased proportionally to increased severity. The study showed that high severity hydroprocessing gave better performance in processing shale oils to jet fuels.

Mukherjee, N.L.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Improving the technology of creating water-coal fuel from lignites  

SciTech Connect

This paper describes the preparation of coal-water fuel slurries from lignite. The heat of combustion as related to the preparation of the lignite was investigated. The hydrobarothermal processing of suspensions of lignites was studied in autoclaves.

Gorlov, E.G.; Golovin, G.S.; Zotova, O.V. [Rossiiskaya Akadeiya, Nauk (Russian Federation)

1994-12-31T23:59:59.000Z

242

Investigation of Coal Fueled Chemical Looping Combustion Using Fe3O4 as Oxygen Carrier  

Science Journals Connector (OSTI)

Chemical-looping combustion (CLC) is a novel combustion technique with CO2 separation. Magnetite (Fe3O4) was selected as the oxygen carrier and Shenhua coal (Inner Mongolia, China) as the fuel for this study. The...

Wenguo Xlang; Xiaoyan Sun; Sha Wangt…

2010-01-01T23:59:59.000Z

243

The economics of liquid transportation fuels from coal: Past, present and future  

SciTech Connect

This paper reviews the technologies for producing liquid transportation fuels from coal and traces their evolution. Estimates of how their economics have changed with continuing research and development are also given.

Gray, D.; Tomlinson, G.; ElSawy, A. [Mitre Corp., McLean, VA (United States)

1993-08-01T23:59:59.000Z

244

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

245

A cycle simulation of coal particle fueled reciprocating internal-combustion engines  

E-Print Network (OSTI)

- Summary of Experimental Diesel Engine Operation on Solid Coal Fuels Page Table 2 - Property Data for Coal (Char) Particles . . 23 Table 3 - Summary of the Combustion Model and Reaction Constants 40 Table 4 ? Specifications of the Base Case Engine... Efforts The first attempt to operate a solid particle fueled piston engine was performed nearly a century ago by Rudolf Diesel, inventor of the compression-ignition engine. Since then, at least a dozen separate attempts to oper- ate diesel engines...

Rosegay, Kenneth Harold

2012-06-07T23:59:59.000Z

246

Fuel strategies, coal supply, dust control, and byproduct utilization  

SciTech Connect

This book contains articles presented at the 1990 International Joint Power Generation Conference. Included are the following papers: Waste management on hard coal fired power plants; Acid rain legislation FGD by-product concerns; Innovative transport modes; coal slurry pipelines.

Aananson, M.L. (Philadelphia Electric Co. (US)); Krishna, K. (Burns and McDonnell (US)); Mahr, D. (Burns and Roe Enterprises (US)); Nechvatal, T.M. (Wisconsin Electric Power Co. (US))

1990-01-01T23:59:59.000Z

247

Process for converting coal into liquid fuel and metallurgical coke  

DOE Patents (OSTI)

A method of recovering coal liquids and producing metallurgical coke utilizes low ash, low sulfur coal as a parent for a coal char formed by pyrolysis with a volatile content of less than 8%. The char is briquetted and heated in an inert gas over a prescribed heat history to yield a high strength briquette with less than 2% volatile content.

Wolfe, Richard A. (Abingdon, VA); Im, Chang J. (Abingdon, VA); Wright, Robert E. (Bristol, TN)

1994-01-01T23:59:59.000Z

248

Alternative Fuels Used in Transportation: Science Projects in...  

Energy Savers (EERE)

with a hydroxyl radical (OH). Methanol can be produced from natural gas, coal, residual oil, or biomass. Although vehicles can operate on pure methanol fuel (M100), methanol...

249

The future of oil: unconventional fossil fuels  

Science Journals Connector (OSTI)

...revolutionizing the energy outlook in...revolutionizing the energy outlook in...estimate what the price of oil will...terminals in the USA to meet projected...and its history is instructive...domestic oil prices that followed...and for the USA as a whole...are used. -Energy return on...geological history, which could...

2014-01-01T23:59:59.000Z

250

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

Because of the higher projected crude oil prices and because of Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

251

Renewable wood fuel: Fuel feed system for a pulverized coal boiler. Final report  

SciTech Connect

This report evaluates a pilot test program conducted by New York State Gas & Electric Corporation to evaluate the feasibility of co-firing a pulverized coal plant with renewable wood fuels. The goal was to establish that such a co-firing system can reduce air emissions while maintaining good operational procedures and cost controls. The test fuel feed system employed at Greenidge Station`s Boiler 6 was shown to be effective in feeding wood products. Emission results were promising and an economic analysis indicates that it will be beneficial to pursue further refinements to the equipment and systems. The report recommends further evaluation of the generation and emission impacts using woods of varied moisture contents and at varied Btu input rates to determine if a drying system would be a cost-effective option.

NONE

1996-01-01T23:59:59.000Z

252

Transportation costs for new fuel forms produced from low rank US coals  

SciTech Connect

Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

Newcombe, R.J.; McKelvey, D.G. (TMS, Inc., Germantown, MD (USA)); Ruether, J.A. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-09-01T23:59:59.000Z

253

Bio-coal briquette  

SciTech Connect

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

254

Engineering Development of Advanced Physical Fine Coal Cleaing for Premium Fuel Applications  

SciTech Connect

The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel? column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications -- Less than 2 pounds of ash per million Btu (860 grams per gigajoule) and

Frank J. Smit; Gene L. Schields; Mehesh C. Jha; Nick Moro

1997-09-26T23:59:59.000Z

255

Preparation and gasification of a Thailand coal-water fuel  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy and Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density, determined at 500 cP, indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700 C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals and will produce high levels of hydrogen and be fairly reactive.

Ness, R.O. Jr.; Anderson, C.M.; Musich, M.A.; Richter, J.J.; Dewall, R.A.; Young, B.C. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Nakanart, A. [Ministry of Industry, Bangkok (Thailand)

1996-12-31T23:59:59.000Z

256

Availability of heavy fuel oils by sulfur level, September 1981  

SciTech Connect

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held, refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 2 figures, 13 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

257

Advanced turbine design for coal-fueled engines  

SciTech Connect

The investigators conclude that: (1) Turbine erosion resistance was shown to be improved by a factor of 5 by varying the turbine design. Increasing the number of stages and increasing the mean radius reduces the peak predicted erosion rates for 2-D flows on the blade airfoil from values which are 6 times those of the vane to values of erosion which are comparable to those of the vane airfoils. (2) Turbine erosion was a strong function of airfoil shape depending on particle diameter. Different airfoil shapes for the same turbine operating condition resulted in a factor of 7 change in airfoil erosion for the smallest particles studied (5 micron). (3) Predicted erosion for the various turbines analyzed was a strong function of particle diameter and weaker function of particle density. (4) Three dimensional secondary flows were shown to cause increases in peak and average erosion on the vane and blade airfoils. Additionally, the interblade secondary flows and stationary outer case caused unique erosion patterns which were not obtainable with 2-D analyses. (5) Analysis of the results indicate that hot gas cleanup systems are necessary to achieve acceptable turbine life in direct-fired, coal-fueled systems. In addition, serious consequences arise when hot gas filter systems fail for even short time periods. For a complete failure of the filter system, a 0.030 in. thick corrosion-resistant protective coating on a turbine blade would be eroded at some locations within eight minutes.

Wagner, J.H.; Johnson, B.V.

1993-04-01T23:59:59.000Z

258

Oil-soluble coal-liquefaction catalyst screening. [Octoic and naphthenic acids as organic ligands  

SciTech Connect

Experiments were performed to determine the effect of oil-soluble catalysts in direct coal liquefaction. Variables included the metal type (Mo, Co, Ni, Mn and Sn), metal loading (0.01 to 1.0 wt %) and organic ligand (octoic and naphthenic acids). All runs were carried out with Illinois No. 6 coal (Burning Star mine) and SRC-II heavy distillate solvent at 400/sup 0/C for 30 min. under 800 psig (cold) H/sub 2/. Statistical analysis showed that for Mo and Ni, hydrogen consumption and conversion to oil increased with increasing metal concentration. For example, conversion to oil increased from 15.7% without catalyst to 28.5% with addition of 0.1% Mo naphthenate and 26.0% with addition of 0.1% Ni naphthenate. The effect of ligand type on catalyst activity was insignificant, indicating tht neither of the organic acids were influential for coal liquefaction. Oil-soluble catalysts containing Co, Mn and Sn had no significant effect upon coal liquefaction, within the concentration range studied. 6 figures, 5 tables.

Kottenstette, R.J.

1983-03-01T23:59:59.000Z

259

Some physiochemical tests of sunflower oil and no. 2 diesel oil as fuels  

SciTech Connect

The suitability of sunflower oil as a fuel for diesel engines was evaluated by determining the physiochemical properties of sunflower oil, No. 2 diesel and blends of both. This evaluation was accomplished by determining the American Petroleum Institute (API) gravity, cetane rating, heat of combustion, kinematic viscosity, pour point, cloud point, and water content of these fuels using methods specified by the American Society of Testing Materials (ASTM) for diesel fuels. These tests for petroleum products are designed to standardize results so comparisons can be made from one laboratory to another.

Ramdeen, P.; Backer, L.F.; Kaufman, K.R.; Kucera, H.L.; Moilanen, C.W.

1982-05-01T23:59:59.000Z

260

,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

fuels is not available due to the potential" "environmental impact of storage tanks." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " WWithheld...

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-04-01T23:59:59.000Z

262

Optimization of experimental conditions for recovery of coking coal fines by oil agglomeration technique  

Science Journals Connector (OSTI)

The significance of coking coal in the metallurgical sector as well as the meager coking coal reserves across the globe increase the necessity to recover coking coal fines from the fine coking coal slurries generated from coal preparation and utilization activities. Oil agglomeration studies were carried out by varying the experimental conditions for maximum recovery of coking coal fines i.e., yield of the agglomerates. The various operational parameters studied were oil dosage, agitation speed, agglomeration time and pulp density. By using Taguchi experimental design, oil dosage (20%), agitation speed (1100 rpm), agglomeration time (3 min) and pulp density (4.5%) were identified as the optimized conditions. A confirmation experiment has also been carried out at the optimized conditions. The percentage contribution of each parameter on agglomerate yield was analyzed by adopting analysis of variance (ANOVA) statistical method as well as multiple linear regression analysis. The order of influence of the parameters on the agglomerate yield is of the following order: pulp density > oil dosage > agitation speed > agglomeration time. A mathematical model was developed to fit the set of experimental conditions with the yield obtained at each test run and also at the optimized conditions. The experimentally obtained yield was compared with the predicted yield of the model and the results indicate a maximum error of 5% between the two. A maximum yield of 90.42% predicted at the optimized conditions appeared to be in close agreement with the experimental yield thus indicating the accuracy of the model in predicting the results.

G.H.V.C. Chary; M.G. Dastidar

2010-01-01T23:59:59.000Z

263

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at about $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

264

The future of oil: unconventional fossil fuels  

Science Journals Connector (OSTI)

...groundwater contamination. Nevertheless, innovative solutions have been found to many of...long project lead times, environmental remediation and the future oil price. Canadian...operations, being cheaper than mining; -innovative technology; -co-generation to reduce...

2014-01-01T23:59:59.000Z

265

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

DOE Patents (OSTI)

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

266

A Characterization and Evaluation of Coal Liquefaction Process Streams. Results of Inspection Tests on Nine Coal-Derived Distillation Cuts in the Jet Fuel Boiling Range  

SciTech Connect

This report describes the assessment of the physical and chemical properties of the jet fuel (180-300 C) distillation fraction of nine direct coal liquefaction products and compares those properties to the corresponding specifications for aviation turbine fuels. These crude coal liquids were compared with finished fuel specifications specifically to learn what the refining requirements for these crudes will be to make them into finished fuels. The properties of the jet fuel fractions were shown in this work to require extensive hydrotreating to meet Jet A-1 specifications. However, these materials have a number of desirable qualities as feedstocks for the production of high energy-density jet fuels.

S. D. Brandes; R. A. Winschel

1999-12-30T23:59:59.000Z

267

Monetization of Nigeria coal by conversion to hydrocarbon fuels through Fischer-Tropsch process  

SciTech Connect

Given the instability of crude oil prices and the disruptions in crude oil supply chains, this article offers a complementing investment proposal through diversification of Nigeria's energy source and dependence. Therefore, the following issues were examined and reported: A comparative survey of coal and hydrocarbon reserve bases in Nigeria was undertaken and presented. An excursion into the economic, environmental, and technological justifications for the proposed diversification and roll-back to coal-based resource was also undertaken and presented. The technology available for coal beneficiation for environmental pollution control was reviewed and reported. The Fischer-Tropsch synthesis and its advances into Sasol's slurry phase distillate process were reviewed. Specifically, the adoption of Sasol's advanced synthol process and the slurry phase distillate process were recommended as ways of processing the products of coal gasification. The article concludes by discussing all the above-mentioned issues with regard to value addition as a means of wealth creation and investment.

Oguejiofor, G.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Chemical Engineering

2008-07-01T23:59:59.000Z

268

Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright 2008 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

Int. J. Oil, Gas and Coal Technology, Vol. 1, Nos. 1/2, 2008 65 Copyright © 2008 Inderscience Enterprises Ltd. Building the foundation for Prudhoe Bay oil production optimisation using neural networks E-mail: siskd@Bp.com Abstract: Field data from the Prudhoe Bay oil field in Alaska was used

Mohaghegh, Shahab

269

2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright 2009 Inderscience Enterprises Ltd.  

E-Print Network (OSTI)

2 Int. J. Oil, Gas and Coal Technology, Vol. 2, No. 1, 2009 Copyright © 2009 Inderscience@yahoo.com Hafez Hafez ADCO-PDD, Abu Dhabi Company for Onshore Oil Operation (ADCO), P.O. Box 270, Abu Dhabi Dhabi Company for Onshore Oil Operation (ADCO), P.O. Box 270, Abu Dhabi, United Arab Emirates Email

Mohaghegh, Shahab

270

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

271

Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis Developed jointly...

272

An empirical analysis of the price discovery function of Shanghai fuel oil futures market  

Science Journals Connector (OSTI)

This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such ... there exists a strong relationship between the spot price of Huangpu fuel oil spot market and the fut...

Zhen Wang; Zhenhai Liu; Chao Chen

2007-08-01T23:59:59.000Z

273

Simulation of Fuel Oil System in Marine Engine Simulator Based on Finite Element Method  

Science Journals Connector (OSTI)

This paper focuses on the simulation research to fuel oil system. Hydrodynamic analysis to fuel oil system pipelines network is done and the modeling method is using finite element theory. A relative accepted ...

Diyang Li; Yuan Jiang; Boyang Li

2012-01-01T23:59:59.000Z

274

E-Print Network 3.0 - ammonium nitrate-fuel oil Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

nitrate-fuel oil Search Powered by Explorit Topic List Advanced Search Sample search results for: ammonium nitrate-fuel oil Page: << < 1 2 3 4 5 > >> 1 ORNL 2010-G01068jcn UT-B ID...

275

Advanced coal-fueled gas turbine systems: Subscale combustion testing. Topical report, Task 3.1  

SciTech Connect

This is the final report on the Subscale Combustor Testing performed at Textron Defense Systems` (TDS) Haverhill Combustion Laboratories for the Advanced Coal-Fueled Gas Turbine System Program of the Westinghouse Electric Corp. This program was initiated by the Department of Energy in 1986 as an R&D effort to establish the technology base for the commercial application of direct coal-fired gas turbines. The combustion system under consideration incorporates a modular staged, rich-lean-quench, Toroidal Vortex Slogging Combustor (TVC) concept. Fuel-rich conditions in the first stage inhibit NO{sub x} formation from fuel-bound nitrogen; molten coal ash and sulfated sorbent are removed, tapped and quenched from the combustion gases by inertial separation in the second stage. Final oxidation of the fuel-rich gases, and dilution to achieve the desired turbine inlet conditions are accomplished in the third stage, which is maintained sufficiently lean so that here, too, NO{sub x} formation is inhibited. The primary objective of this work was to verify the feasibility of a direct coal-fueled combustion system for combustion turbine applications. This has been accomplished by the design, fabrication, testing and operation of a subscale development-type coal-fired combustor. Because this was a complete departure from present-day turbine combustors and fuels, it was considered necessary to make a thorough evaluation of this design, and its operation in subscale, before applying it in commercial combustion turbine power systems.

Not Available

1993-05-01T23:59:59.000Z

276

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

277

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we have raised expected peak prices this winter for residential heating oil deliveries to $1.55 per gallon (January) compared to $1.43 per gallon in last month's projections. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. Primary distillate inventories in the United States failed to rise significantly in November despite some speculation that previous distributions into secondary and tertiary storage would back up burgeoning production and import volumes into primary storage that month. Average

278

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

279

Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life  

SciTech Connect

The U.S. Department of Energy's SECA program envisions the development of high-efficiency, low-emission, CO{sub 2} sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NO{sub x} production), and modularity. Naturally occurring coal has many impurities and some of these impurities end in the fuel gas stream either as a vapor or in the form of fine particulate matter. Establishing the tolerance limits of SOFCs for contaminants in the coal-derived gas will allow proper design of the fuel feed system that will not catastrophically damage the SOFC or allow long-term cumulative degradation. The anodes of Ni-cermet-based SOFCs are vulnerable to degradation in the presence of contaminants that are expected to be present in a coal-derived fuel gas stream. Whereas the effects of some contaminants such as H{sub 2}S, NH{sub 3} and HCl have been studied, the effects of other contaminants such as As, P, and Hg have not been ascertained. The primary objective of this study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700 to 900 C. The results were used to assess catastrophic damage risk and long-term cumulative effects of the trace contaminants on the lifetime expectancy of SOFC systems fed with coal-derived gas streams.

Gopala Krishnan; P. Jayaweera; J. Bao; J. Perez; K. H. Lau; M. Hornbostel; A. Sanjurjo; J. R. Albritton; R. P. Gupta

2008-09-30T23:59:59.000Z

280

Letter to the editor The bio-fuel debate and fossil energy use in palm oil  

E-Print Network (OSTI)

Letter to the editor The bio-fuel debate and fossil energy use in palm oil production: a critique-fuels based on palm oil to re- duce greenhouse gas emissions, due account should be taken of carbon emissions fuel use in palm oil pro- duction, making a number of assumptions that I believe to be incorrect

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NETL: Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

use of our domestic energy resources and infrastructure. Gasification Systems | Advanced Combustion | Coal & Coal-Biomass to Liquids | Solid Oxide Fuel Cells | Turbines CO2...

282

Blending high sulfer coal with refuse derived fuel to make SO{sub 2} compliant slurry fuels  

SciTech Connect

The need for a better method of disposing of the international community`s garbage hardly needs emphasizing. In 1993, the United States alone generated approximately 207 million ton per year of Municipal Solid Waste (MSW), with 62% landfilled, 220/6 recycled, and 16% combusted for energy recovery. Despite strenuous efforts to make these disposal methods meet present needs, the cost of disposal is rising dramatically. Concurrently, the Clean Air Act Amendments (CAAA) of 1990 have severely restricted the SO{sub 2} emissions from coal fired boilers. Medium and high sulfur coals will not comply with the Phase II CAAA regulation limit of 1.2 lb SO{sub 2}/MM Btu, without advanced coal cleaning technologies or flue gas desulfurization, including the majority of the North Dakota lignite reserves. Utility power plants have attempted to burn refuse derived fuel (RDF), a heterogeneous solid fuel produced from MSW, with coal in utility scale boilers (generally referred to as co-firing). Co-firing of RDF with coal has been attempted in sixteen different boilers, five commercially. While lower SO{sub 2} emissions provided the impetus, co-firing RDF with coal suffered from several disadvantages including increased solids handling, increased excess air requirements, higher HCI, CO, NO{sub x} and chlorinated organic emissions, increased slag formation in the boiler, and higher fly ash resistivity. Currently, only two of the sixteen boilers are still regularly used to co-fire RDF. The overall objective of this research program was to assess the feasibility of blending RDF with lignite coal to form SO{sub 2} Compliant slurry fuels using EnerTech`s SlurryCarb{trademark} process. In particular, the objective was to overcome the difficulties of conventional co-firing. Blended slurry fuels were produced with the Energy & Environmental Research Center`s (EERC) bench-scale autoclave and were combusted in a pressurized fluidized-bed reactor (PFBR).

Klosky, M. [EnerTech Environmental, Inc., Atlanta, GA (United States); Anderson, C. [Energy & Environmental Research Center, Grand Forks, ND (United States)

1995-12-31T23:59:59.000Z

283

?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)  

SciTech Connect

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-06-01T23:59:59.000Z

284

Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050  

Science Journals Connector (OSTI)

Methane, coal and biomass are being considered as alternatives to crude oil for the production of basic petrochemicals, such as light olefins. This paper is a study on the production costs of 24 process routes utilizing these primary energy sources. A wide range of projected energy prices in 2030–2050 found in the open literature is used. The basis for comparison is the production cost per t of high value chemicals (HVCs or light olefin-value equivalent). A Monte Carlo method was used to estimate the ranking of production costs of all 24 routes with 10,000 trials of varying energy prices and CO2 emissions costs (assumed to be within $0–100/t CO2; the total CO2 emissions, or cradle-to-grave CO2 emissions, were considered). High energy prices in the first three quarter of 2008 were tested separately. The main findings are:• Production costs: while the production costs of crude oil- and natural gas-based routes are within $500–900/t HVCs, those of coal- and biomass-based routes are mostly within $400–800/t HVCs. Production costs of coal- and biomass-based routes are in general quite similar while in some cases the difference is significant. Among the top seven most expensive routes, six are oil- and gas-based routes. Among the top seven least expensive routes, six are coal and biomass routes. • CO2 emissions costs: the effect of CO2 emissions costs was found to be strong on the coal-based routes and also quite significant on the biomass-based routes. However, the effect on oil- and gas-based routes is found to be small or relatively moderate. • Energy prices in 2008: most of the coal-based routes and biomass-based routes (particularly sugar cane) still have much lower production costs than the oil- and gas-based routes (even if international freight costs are included). To ensure the reduction of CO2 emissions in the long-term, we suggest that policies for the petrochemicals industry focus on stimulating the use of biomass as well as carbon capture and storage features for coal-based routes.

Tao Ren; Bert Daniëls; Martin K. Patel; Kornelis Blok

2009-01-01T23:59:59.000Z

285

New lube oil for stationary heavy fuel engines  

SciTech Connect

An extensively field-tested diesel engine lubricating oil for medium speed, heavy fuel stationary engine applications has been introduced by Caltex Petroleum, in Dallas, Texas. The new oil is similar to a product developed and marketed for marine medium speed heavy fuel propulsion and auxillary engine applications by one of its two parent companies, Chevron. Detailed are results of two field evaluations in Caterpillar 3600 series engines installed at Kimberly Clark (KCPI) and Sime Darby (SDPI), both in the Philippines. Both were one year, 7000-plus hour field evaluations of a new, 40 BN trunk piston engine oil (TPEO), identified as Caltex Delo 3400, SAE 40 engine lube oil. The oil uses the new Phenalate additive technology developed by Chevron Chemical Company`s Oronite Additives Division. This technology is designed to improve engine cleanliness in regard to soft black sludge and piston deposits. The focus of the field evaluations was the performance of the lubricating oil. During controlled tests at Sime Darby, the most noticeable improvement over another technology was in the control of sludge deposits. This improvement was seen in all areas where black sludge forms, such as the rocker cover, crankcase cover and valve assemblies. 4 figs.

NONE

1996-12-01T23:59:59.000Z

286

Refiner options for converting and utilizing heavy fuel oil  

SciTech Connect

Ongoing advances in established technologies, together with recent commercial applications of residue fluid catalytic cracking (RFCC), automated residue demetallization, solvent deasphalting and gasification of pitch and coke, have markedly enhanced options for processing and economically using residues. Key long-term driving forces for processing strategies are: the need for flexibility to handle heavy, high-metals crude oils, and the economic benefit of being able to convert low-value residues to high-value light transportation fuels, hydrogen and electric power. Narrowing light/heavy crude oil price differentials and relatively low crude oil price levels since the early 1990s until the first quarter of 1996 have slowed the addition of new bottom-of-the-barrel conversion projects over the past two years. At the same time, world crude oil demand has increased at an annual average rate of nearly one million barrels/day (MMbpd) since 1985. Some major producer/refining companies forecast this rate of increase to continue well into the next decade. The inevitable net result will be the increased production of heavier crude oils. The authors project that this will be accompanied by flat or declining markets for heavy fuel oil and a resultant need for additional residue conversion/utilization capacity. The paper discusses technology application and status, economic observations, and technology outlook.

Dickenson, R.L.; Biasca, F.E.; Schulman, B.L.; Johnson, H.E. [SFA Pacific, Inc., Mountain View, CA (United States)

1997-02-01T23:59:59.000Z

287

Wiang Haeng coal-water fuel preparation and gasification, Thailand - task 39  

SciTech Connect

In response to an inquiry by the Department of Mineral Resources (DMR) in Thailand, the Energy & Environmental Research Center (EERC) prepared a four-task program to assess the responsiveness of Wiang Haeng coal to the temperature and pressure conditions of hot-water drying (HWD). The results indicate that HWD made several improvements in the coal, notably increases (HWD). The results indicate that HWD made several improvements in the coal, notably increases in heating value and carbon content and reductions in equilibrium moisture and oxygen content. The equilibrium moisture content decreased from 37.4 wt% for the raw coal to about 20 wt% for the HWD coals. The energy density for a pumpable coal-water fuel indicates an increase from 4450 to 6650 Btu/lb by hydrothermal treatment. Raw and HWD coal were then gasified at various mild gasification conditions of 700{degrees}C and 30 psig. The tests indicated that the coal is probably similar to other low-rank coals, will produce high levels of hydrogen, and be fairly reactive.

Anderson, C.M.; Musich, M.A.; Young, B.C. [and others

1996-07-01T23:59:59.000Z

288

High-pressure coal fuel processor development. Task 1, Proof of principle testing  

SciTech Connect

The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

Greenhalgh, M.L.

1992-11-01T23:59:59.000Z

289

Comparative Analysis of the Production Costs and Life-Cycle GHG Emissions of FT-Liquid Fuels from Coal and  

E-Print Network (OSTI)

Coal and Natural Gas Figure S1 shows a graphical description of the life cycle of coal-to-liquids (CTL) and gas-to-liquids (GTL). Figure S1: Life Cycle of Coal-Based and Natural Gas-Based Fischer-Tropsch LiquidComparative Analysis of the Production Costs and Life- Cycle GHG Emissions of FT-Liquid Fuels from

Jaramillo, Paulina

290

The evaluation of a coal-derived liquid as a feedstock for the production of high-density aviation turbine fuel  

SciTech Connect

The conversion of coal-derived liquids to transportation fuels has been the subject of many studies sponsored by the US Department of Energy and the US Department of Defense. For the most part, these studies evaluated conventional petroleum processes for the production of specification-grade fuels. Recently, however, the interest of these two departments expanded to include the evaluation of alternate fossil fuels as a feedstock for the production of high-density aviation turbine fuel. In this study, we evaluated five processes for their ability to produce intermediates from a coal-derived liquid for the production of high-density turbine fuel. These processes include acid-base extraction to reduce the heteroatom content of the middle distillate and the atmospheric and vacuum gas oils, solvent dewaxing to reduce the paraffin (alkane) content of the atmospheric and vacuum gas oils, Attapulgus clay treatment to reduce the heteroatom content of the middle distillate, coking to reduce the distillate range of the vacuum gas oil, and hydrogenation to remove heteroatoms and to saturate aromatic rings in the middle distillate and atmospheric gas oil. The chemical and physical properties that the US Air Force considers critical for the development of high-denisty aviation turbine fuel are specific gravity and net heat of combustion. The target minimum values for these properties are a specific gravity of at least 0.85 and a net heat of combustion of at least 130,000 Btu/gal. In addition, the minimum hydrogen content is 13.0 wt %, the maximum freeze point is {minus}53{degrees}F ({minus}47{degrees}C), the maximum amount of aromatics is about 25 to 30 vol %, and the maximum amount of paraffins is 10 vol %. 13 refs., 20 tabs.

Thomas, K.P.; Hunter, D.E.

1989-08-01T23:59:59.000Z

291

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-04-01T23:59:59.000Z

292

The end of the age of oil David Goodstein  

E-Print Network (OSTI)

1986 1989 1992 1995 1998 2001 Non-OPEC OPEC bnbbls Source: BP Statistical Review of World Energy 2003 Tired Saudi Fields By JEFF GERTH The New York Times, February 24, 2004 ...the country's oil fields now (99 Quads) #12;Fossil Fuels Oil Natural gas Shale oil Methane hydrate Coal #12;Coal Hundreds, maybe

Bertini, Robert L.

293

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-06-30T23:59:59.000Z

294

Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels  

SciTech Connect

For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

1995-12-31T23:59:59.000Z

295

Peaking of World Oil Production  

Science Journals Connector (OSTI)

Nonrenewable and renewable energy sources make up the two major energy categories of interest to our industrial civilization. Nonrenewable energy includes different fossil fuels (coal, oil, natural gas) th...

J. Edward Gates

2014-01-01T23:59:59.000Z

296

Advanced coal-fueled gas turbine systems. Final report  

SciTech Connect

The configuration of the subscale combustor has evolved during the six years of this program from a system using only an impact separator to remove particulates to a system which also included a slagging cyclone separator before the lean-quench combustor. The system also now includes active slag tapping after the impact separator rather than a bucket to collect the slag. The subscale 12 MM Btu/hr (higher heating value, HHV) slagging combustor has demonstrated excellent coal-fired operation at 6 atm. The combustor has fired both coal-water mixtures (CWM) and pulverized coal (PC). Three Wyoming subbituminous coals and two bituminous coals have been successfully fired in the TVC. As a result of this active testing, the following conclusions may be drawn: (1) it was possible to achieve the full design thermal capacity of 12 MM Btu/hr with the subscale slagging combustor, while burning 100% pulverized coal and operating at the design pressure of 6 atm; (2) because of the separate-chamber, rich-lean design of the subscale slagging combustor, NO{sub x} emissions that easily meet the New Source Performance Standards (NSPS) limits were achieved; (3) carbon burnout efficiency was in excess of 99% when 100% coal-fired; (4) ninety percent of the ash can be separated as slag in the impact separator, and a total 98 to 99% removed with the addition of the slagging cyclone separator; (5) Objectives for third-stage exit temperature (1850{degrees}F), and exit temperature pattern factor (14%) were readily achieved; (6) overall pressure loss is currently an acceptable 5 to 6% without cyclone separator and 7 to 9% with the cyclone; and (7) feeding pulverized coal or sorbent into the combustor against 6 atm pressure is achievable.

Not Available

1993-08-01T23:59:59.000Z

297

Wear mechanism and wear prevention in coal-fueled diesel engines. Task 3, Traditional approaches to wear prevention  

SciTech Connect

Contamination of the lube-oil with hard abrasive particles leads to a three-body abrasive wear mechanism that highly accelerates piston ring/cylinder liner wear in coal-fueled diesel engines. One approach to reducing that wear is to modify the size and orientation of surface asperities on the cylinder to enhance the formation of a hydrodynamic film, and to provide avenues of escape for particles that would otherwise be trapped in the wear zone. Another approach is to introduce additives into the contaminated lube-oil that further enhance hydrodynamic film formation, form chemical films on the wearing surfaces, or form films on the contaminant particles. This work focuses on defining the effects of cylinder liner surface finish, various configurations of slots in the cylinder liner surface, and various additives in the contaminated lube-oil on the wear process. Wear tests were initiated in a bench apparatus using coal-ash contaminated lube-oil to test the various wear configurations. The results of these tests indicate that the formation of a hydrodynamic film between the ring and cylinder specimens is enhanced by increasing surface roughness, and by orienting the surface asperities normal to the direction of ring travel but modifications to the cylinder liner surface did not greatly reduce the wear rate. Additives to the lubricant seemed to have a much more significant effect on wear, with a dispersant additive highly accelerating the wear, while a detergent additive was able to reduce the wear almost to the rate achieved where there was no contaminant.

Schwalb, J.A.

1991-06-01T23:59:59.000Z

298

Organic compounds in water extracts of coal: links to Balkan endemic nephropathy  

Science Journals Connector (OSTI)

Most of the world’s energy is provided by fossil fuels, and coal is the world’s most abundant fossil fuel with reserves substantially greater than those of oil and...2008). “Lignite” ranks in between peat and sub...

S. V. M. Maharaj; W. H. Orem; C. A. Tatu…

2014-02-01T23:59:59.000Z

299

Fundamental aspects of coal-water fuel droplet combustion and secondary atomization of coal-water mixtures. Volume I, final report  

E-Print Network (OSTI)

This Final Report is issued in two volumes, covering research into the combustion of coal-water fuels (CWF). Two separate but related tasks are discussed; the present report, Volume I, contains results obtained under Task ...

Sarofim, Adel F.

1987-01-01T23:59:59.000Z

300

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Coal fueled diesel system for stationary power applications-technology development  

SciTech Connect

The use of coal as a fuel for diesel engines dates back to the early days of the development of the engine. Dr. Diesel envisioned his concept as a multi-fuel engine, with coal a prime candidate due to the fact that it was Germany`s primary domestic energy resource. It is interesting that the focus on coal burning diesel engines appears to peak about every twenty years as shortages of other energy resources increase the economic attractiveness of using coal. This periodic interest in coal started in Germany with the work of Diesel in the timeframe 1898-1906. Pawlikowski carried on the work from 1916 to 1928. Two German companies commercialized the technology prior to and during World War II. The next flurry of activity occurred in the United States in the period from 1957-69, with work done at Southwest Research Institute, Virginia Polytechnical University, and Howard University. The current period of activity started in 1978 with work sponsored by the Conservation and Renewable Energy Branch of the US Department of Energy. This work was done at Southwest Research Institute and by ThermoElectron at Sulzer Engine in Switzerland. In 1982, the Fossil Energy Branch of the US Department of Energy, through the Morgantown Energy Technology Center (METC) initiated a concentrated effort to develop coal burning diesel and gas turbine engines. The diesel engine work in the METC sponsored program was performed at Arthur D. Little (Cooper-Bessemer as subcontractor), Bartlesville Energy Technology Center (now NIPER), Caterpillar, Detroit Diesel Corporation, General Motor Corporation (Electromotive Division), General Electric, Southwest Research Institute, and various universities and other research and development organizations. This DOE-METC coal engine RD & D initiative which spanned the 1982-1993 timeframe is the topic of this review document. The combustion of a coal-water fuel slurry in a diesel engine is described. The engine modifications necessary are discussed.

NONE

1995-08-01T23:59:59.000Z

302

A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation  

SciTech Connect

Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.

Jiang, C.

1993-12-31T23:59:59.000Z

303

"An Economic Process for Coal Liquefaction to Liquid Fuels" SBIR Phase II -- Final Scientific/Technical Report  

SciTech Connect

The current commercial processes for direct coal liquefaction utilize expensive backmix-flow reactor system and conventional catalysts resulting in incomplete and retrogressive reactions that produce low distillate liquid yield and high gas yield, with high hydrogen consumption. The new process we have developed, which uses a less expensive reactor system and highly active special catalysts, resulted in high distillate liquid yield, low gas yield and low hydrogen consumption. The new reactor system using the special catalyst can be operated smoothly for direct catalytic coal liquefaction. Due to high hydrogenation and hydrocracking activities of the special catalysts, moderate temperatures and high residence time in each stage of the reactor system resulted in high distillate yield in the C{sub 4}-650{degrees}F range with no 650{degrees}F{sup +} product formed except for the remaining unconverted coal residue. The C{sub 4}-650{degrees}F distillate is more valuable than the light petroleum crude. Since there is no 650{degrees}F{sup +} liquid product, simple reforming and hydrotreating of the C{sub 4}-650{degrees}F product will produce the commercial grade light liquid fuels. There is no need for further refinement using catalytic cracking process that is currently used in petroleum refining. The special catalysts prepared and used in the experimental runs had surface area between 40-155 m{sup 2}/gm. The liquid distillate yield in the new process is >20 w% higher than that in the current commercial process. Coal conversion in the experimental runs was moderate, in the range of 88 - 94 w% maf-coal. Though coal conversion can be increased by adjustment in operating conditions, the purpose of limiting coal conversion to moderate amounts in the process was to use the remaining unconverted coal for hydrogen production by steam reforming. Hydrogen consumption was in the range of 4.0 - 6.0 w% maf-coal. A preliminary economic analysis of the new coal liquefaction process was carried out by comparing the design and costs of the current commercial plant of the Shenhua Corporation in Erdos, Inner Mongolia. The cost of producing synthetic crude oil from coal in the current commercial process was estimated to be $50.5 per barrel compared to the estimated cost of $41.7 per barrel in the new process. As mentioned earlier, the light distillate product in the new process is of higher quality and value than the C{sub 4}-975{degrees}F product in the current commercial process adopted by the Shenhua Corporation. In sum, the new coal liquefaction process is superior and less capital intensive to current commercial process, and has a high potential for commercialization.

Ganguli, Partha Sarathi

2009-02-19T23:59:59.000Z

304

Correlation of stability/rheology relationship with coal: Properties and chemical additives  

SciTech Connect

Coal-water slurries have the potential of a near term replacement for fuel oil. In order to gain the fundamental understanding of the preparation and handling of coal-water slurries, experiments were performed to identify the relationship between the coal content of a given coal-water slurry and its physical and chemical properties. The objectives of this program were: Investigate the relationship between the chemical and physical properties of coal and the rheology of coal-water slurry Define procedures for evaluating and preparing coal water slurries for a particular coal candidate, based on the characteristic coal properties Develop improved methods of screening surfactants used in coal-water slurry preparation Perform experiments designed to investigate the effect of characteristic coal properties on slurry quality, by examining the effect of the individual coal properties on slurry quality Develop a statistical formulation to predict the coal content of a given coal water slurry content based on the coal characteristic properties.

Ohene, F.

1992-02-19T23:59:59.000Z

305

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-09-30T23:59:59.000Z

306

Availability of heavy fuel oils by sulfur levels, February 1981  

SciTech Connect

This monthly report includes a narrative analysis of the status of the United States' total new supply of heavy fuel oils, with an emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country or origin, and by importing state. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. The December issue repeats the seven major tables with final data in all categories for the previous calendar year. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. 2 figs., 13 tabs.

Wolfrey, J.

1981-10-15T23:59:59.000Z

307

Availability of heavy fuel oils by sulfur levels, March 1981  

SciTech Connect

This monthly report includes a narrative analysis of the status of the United States' total new supply of heavy fuel oils, with an emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country of origin, and by importing state. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. The December issue repeats the seven major tables with final data in all categories for the previous calendar year. This report was previously published by the Bureau of Mines in the Minerals Industries Survey Series under the same title. 2 figs., 13 tabs.

Wolfrey, J.

1981-10-15T23:59:59.000Z

308

Availability of heavy fuel oils by sulfur level, August 1981  

SciTech Connect

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 1 figure, 14 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

309

Availability of heavy fuel oils by sulfur level, October 1981  

SciTech Connect

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterbone movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 1 figure, 14 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

310

Lube oil for medium-speed, heavy-fuel engines  

SciTech Connect

A new generation of trunk-piston engine lube oils has been introduced by Chevron International Marine Lubricants for medium-speed, heavy-fuel, four-stroke engines. The new Chevron Delo 1000, 2000, 3000, and 3400 marine lubricants are specially designed for the demands of medium-speed diesel engines in today`s marine and stationary power markets. The new lube oil has been formulated to provide high levels of engine cleanliness, with low levels of wear. Testing by Chevron engineers shows that the new oils prevent the buildup of black sludge, a sticky, viscous deposit that can accumulate on the surfaces of medium-speed engines that run on heavy residual fuel. The performance of the new lube oils has been thoroughly evaluated by Chevron in a number of ongoing field tests. Results from 5000 hour teardown of a 6600 kW, model 6 MaK 601C engine in the cargo ship MV Germania serve as a good example of the field testing. 3 figs.

NONE

1995-09-01T23:59:59.000Z

311

Coal-water slurry fuel internal combustion engine and method for operating same  

DOE Patents (OSTI)

An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

McMillian, Michael H. (Fairmont, WV)

1992-01-01T23:59:59.000Z

312

Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Developed jointly by Da Vinci Emissions Services Ltd., Cummins Inc., and Oak Ridge National Laboratory (ORNL), the Da Vinci Fuel-in-Oil (DAFIO™) technology uses a fiber optic probe to obtain real-time measurements of oil in an operating engine to quantify the fuel dissolved in the lubricant oil.

313

Liquid Fuels from Coal: From R & D to an Industry  

Science Journals Connector (OSTI)

...10 FEBRUARY 1978 the major tool that the United States is now...2). Coal is gasified with steam by the Lurgi technology to...in-frastructure and logistics system for feed and products. It...pe-troleum. While no accurate assessment of costs was really possible...

L. E. Swabb Jr.

1978-02-10T23:59:59.000Z

314

Coke quality for blast furnaces with coal-dust fuel  

SciTech Connect

Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

Y.A. Zolotukhin; N.S. Andreichikov [Eastern Coal-Chemistry Institute, Yekaterinburg (Russian Federation)

2009-07-01T23:59:59.000Z

315

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

8 PM)" 8 PM)" "Alaska" "Fuel, Quality",1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",203,141,148 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",8698,8520,8278 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",0.33,0.5,0.71

316

Modelling the Fate of Sulphur During Pulverized Coal Combustion under Conventional and Oxy-fuel Conditions  

Science Journals Connector (OSTI)

Abstract Focus of the present study is on the fate of sulphur during coal combustion and modelling of the corresponding \\{SOx\\} formation mechanisms. The sulphur chemistry during coal combustion in general is briefly described and potential effects of the oxy-fuel conditions are explained. Details about the developed sulphur chemistry model which covers both heterogeneous and homogeneous reaction pathways are given. The model describes the sulphur transformation in a sequence of stages: the release of coal-bound sulphur, gas phase reactions of sulphuric species, and self-retention of sulphur oxides by coal ash. The model is evaluated against experimental data from IFK's semi-industrial scale furnace (500 kWth) firing lignite at conventional and oxy-fuel combustion conditions. Four reference cases are considered, i.e. air and oxy-fuel mode in both non-staged and staged operation. Based on the results from the basic combustion simulation with AIOLOS, the sulphur chemistry model has been applied in a subsequent post-processing step. The sulphur related results show that the general trends regarding the species concentrations may be predicted correctly. The specific characteristics and the effect of oxy-fuel conditions and oxidant staging are captured correspondingly within the simulation results. Yet, certain deficiencies concerning the quantitative prediction could be identified which necessitate further investigations.

Michael Müller; Uwe Schnell; Günter Scheffknecht

2013-01-01T23:59:59.000Z

317

Comparing properties of coal ash and alternative-fuel ash  

Science Journals Connector (OSTI)

The results of investigating ash produced in burning alternative kinds of fuel are discussed. Its impact on the environment is evaluated, and possibilities of recovering it are studied.

E. P. Dick; G. A. Ryabov; A. N. Tugov; A. N. Soboleva

2007-03-01T23:59:59.000Z

318

Table A57. Capability to Switch from Coal to Alternative Energy Sources by  

U.S. Energy Information Administration (EIA) Indexed Site

7. Capability to Switch from Coal to Alternative Energy Sources by" 7. Capability to Switch from Coal to Alternative Energy Sources by" " Industry Group, Selected Industries, and Selected Characteristics, 1991 " " (Estimates in Thousand Short Tons)" " "," "," ", " "," "," Coal",,," Alternative Types of Energy(b)" " "," ","-","-","-------------","-","-","-","-","-","-","RSE" ,,"Total"," ","Not","Electricity","Natural","Distillate","Residual",,,"Row" ,,"Consumed(c)","Switchable","Switchable","Receipts(d)","Gas","Fuel Oil","Fuel Oil","LPG","Other","Factors"

319

Trace elements in co-combustion of solid recovered fuel and coal  

Science Journals Connector (OSTI)

Trace element partitioning in co-combustion of a bituminous coal and a solid recovered fuel (SRF) was studied in an entrained flow reactor. The experiments were carried out at conditions similar to pulverized coal combustion, with SRF shares of 7.9 wt.% (wet basis), 14.8 wt.% and 25.0 wt.%. In addition, the effect of additives such as NaCl, PVC, ammonium sulphate, and kaolinite on trace element partitioning was investigated. The trace elements studied were As, Cd, Cr, Pb, Sb and Zn, since these elements were significantly enriched in SRF as compared to coal. During the experiments, bottom ash was collected in a chamber, large fly ash particles were collected by a cyclone with a cut-off diameter of ~ 2.5 ?m, and the remaining fly ash particles were gathered in a filter. It was found that when coal was co-fired with SRF, the As, Cd, Pb, Sb and Zn content in filter ash/cyclone ash increased almost linearly with their content in fuel ash. This linear tendency was affected when the fuels were mixed with additives. The volatility of trace elements during combustion was assessed by applying a relative enrichment (RE) factor, and TEM–EDS analysis was conducted to provide qualitative interpretations. The results indicated that As, Cd, Pb, Sb and Zn were highly volatile when co-firing coal and SRF, whereas the volatility of Cr was relatively low. Compared with coal combustion, co-firing of coal and SRF slightly enhanced the volatility of Cd, Pb and Zn, but reduced the volatility of Cr and Sb. The Cl-based additives increased the volatility of Cd, Pb and As, whereas addition of ammonium sulphate generally decreased the volatility of trace elements. Addition of kaolinite reduced the volatility of Pb, while the influence on other trace elements was insignificant. The results from the present work imply that trace element emission would be significantly increased when coal is co-fired with SRF, which may greatly enhance the toxicity of the dusts from coal-fired power plant. In order to minimize trace element emission in co-combustion, in addition to lowering the trace element content in SRF, utilizing SRF with low Cl content and coal with high S and aluminosilicates content would be desirable.

Hao Wu; Peter Glarborg; Flemming Jappe Frandsen; Kim Dam-Johansen; Peter Arendt Jensen; Bo Sander

2013-01-01T23:59:59.000Z

320

Delayed coking of decant oil and coal in a laboratory-scale coking unit  

SciTech Connect

In this paper, we describe the development of a laboratory-scale delayed coker and present results of an investigation on the recovered liquid from the coking of decant oil and decant oil/coal mixtures. Using quantitative gas chromatography/mass spectroscopy (GC/MS) and {sup 1}H and {sup 13}C NMR, a study was made of the chemical composition of the distillate liquids isolated from the overheads collected during the coking and co-coking process. {sup 1}H and {sup 13}C NMR analyses of combined liquids from coking and co-coking did not show any substantial differences. These NMR results of coking and co-coking liquids agree with those of GC/MS. In these studies, it was observed that co-coking with coal resulted in a decrease in the paraffins contents of the liquid. The percentage of cycloparaffins, indenes, naphthalenes, and tetralins did not change significantly. In contrast, alkyl benzenes and polycyclic aromatic hydrocarbons in the distillate were higher in the co-coking experiments which may have resulted from the distillation of thermally cracked coal macromolecules and the contribution of these molecules to the overall liquid composition. 40 refs., 3 figs., 13 tabs.

Oemer Guel; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University Park, PA (United States). Energy Institute, C205 Coal Utilization Laboratory

2006-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

"Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel...

322

Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz  

SciTech Connect

The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

Yuan Zhang; Jin-hu Wu; Dong-ke Zhang [Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry

2008-03-15T23:59:59.000Z

323

Fireside Corrosion in Oxy-Fuel Combustion of Coal  

SciTech Connect

The goal is to develop technologies for pulverized coal boilers with >90% CO{sub 2} capture and sequestration and <35% increase in the cost of electricity. Air-fired power plant experience shows a corrosion loss max at 680-700 C. Low melting point alkali metal trisulfates, such as (K,Na){sub 3}Fe(SO{sub 4}){sub 3}, become thermally unstable above this temperature range. Some overall conclusions are: (1) CO{sub 2} + 30% H{sub 2}O more corrosive than Ar + 30% H{sub 2}O; (2) Excess O{sub 2} in H{sub 2}O can, in some cases, greatly increase oxidation; (3) Coal ash is generally innocuous without SO{sub 3}3 in gas phase; and (4) Long-term exposures are starting to establish differences between air-firing and oxy-firing conditions.

G. R. Holcomb; J. Tylczak; G. H. Meier; K. Jung; N. Mu; N. M. Yanar; F. S. Pettit

2011-10-09T23:59:59.000Z

324

Cycle simulation of coal-fueled engines utilizing low heat rejection concepts  

E-Print Network (OSTI)

achieved using the coal water slurry both with and without a diesel pilot. Fuel consumption was also comparable to that of diesel fuel. Ignition delays as long as 6 ms were observed, which was acceptable for the engines speed range. In general, exhaust.... Hsu [15, 16] reports on the successful operation of a General Electric locomotive engine on CWS with and without a diesel pilot. When no pilot was used, inlet air temperature had to be raised by about 40'C. Specific fuel consumption was comparable...

Roth, John M.

2012-06-07T23:59:59.000Z

325

Chemically authentic surrogate mixture model for the thermophysical properties of a coal-derived liquid fuel  

SciTech Connect

We developed a surrogate mixture model to represent the physical properties of a coal-derived liquid fuel using only information obtained from a gas chromatography-mass spectrometry analysis of the fuel and a recently developed 'advanced distillation curve'. We then predicted the density, speed of sound, and viscosity of the fuel and compared them to limited experimental data. The surrogate contains five components (n-propylcyclohexane, trans-decalin, {alpha}-methyldecalin, bicyclohexane, and n-hexadecane), yet comparisons to limited experimental data demonstrate that the model is able to represent the density, sound speed, and viscosity to within 1, 4, and 5%, respectively. 102 refs., 2 figs., 5 tabs.

M.L. Huber; E.W. Lemmon; V. Diky; B.L. Smith; T.J. Bruno [National Institute of Standards and Technology (NIST), Boulder, CO (United States). Physical and Chemical Properties Division

2008-09-15T23:59:59.000Z

326

Innovative coal-fueled diesel engine injector. Final report  

SciTech Connect

The purpose of this research investigation was to develop an electronic coal water slurry injection system in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of CWS at various engine load and speed conditions without external ignition sources. The combination of the new injection system and the TICS is designed to reduce injector nozzle spray orifice wear by lowering the peak injection pressure requirements. (VC)

Badgley, P.; Doup, D.

1991-05-01T23:59:59.000Z

327

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

328

Understanding the chemistry and physics of coal structure (A Review)  

Science Journals Connector (OSTI)

...element, and perhaps its most distinctive feature when compared to other solid fossil fuel sources like petroleum and oil shale, is an extensive network MICROPORES FIG. 1. Diagram of the major constituents in coal: organic mate- rial, fragments...

Duane G. Levine; Richard H. Schlosberg; Bernard G. Silbernagel

1982-01-01T23:59:59.000Z

329

Task 27 -- Alaskan low-rank coal-water fuel demonstration project  

SciTech Connect

Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

NONE

1995-10-01T23:59:59.000Z

330

Crude oil and finished fuel storage stability: an annotated review  

SciTech Connect

The Bartlesville Energy Technology Center (BETC) of the Deopartment of Energy (DOE) and the US Army Fuels and Lubricants Research laboratory (AFLRL) at Southwest Research Institute (SwRI) have been working together on a support effort for the Strategic Petroleum Reserve Office (SPRO) of DOE. One task within this effort was a detailed literature survey of previous experiences in long-term storage of crude oil and finished fuels with an emphasis on underground storage. Based on the discussion presented in this review, in the limited number of cases reported, the refinability of crude oil was not significantly affected by prolonged storage. It was found that most crudes will deposit a sludge during storage which may interfere with withdrawal pumping. This sludge is probably composed of wax, sediment, water, and possibly asphaltenes. Emulsions of the water-oil interface have been reported after prolonged storage which have been attributed to action of centrifugal pumps used to remove accumulated seepage water. It is possible that these emulsions resulted from biological activity, such as the anaerobic activity reported, but no hydrogen sulfide production was observed.

Brinkman, D.W.; Bowden, J.N.; Giles, H.N.

1980-02-01T23:59:59.000Z

331

Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels  

SciTech Connect

This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

Steven Markovich

2010-06-30T23:59:59.000Z

332

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the first such report that will be submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1--December 31, 2003. This quarter saw progress in three areas. These areas are: (1) Evaluations of coal based methanol and the fuel cell grade baseline fuel, (2) Design and set up of the autothermal reactor, as well as (3) Set up and data collection of baseline performance using the steam reformer. All of the projects are proceeding on schedule. During this quarter one conference paper was written that will be presented at the ASME Power 2004 conference in March 2004, which outlines the research direction and basis for looking at the coal to hydrogen pathway.

Paul A. Erickson

2004-04-01T23:59:59.000Z

333

Correlation of stability/rheology relationship with coal: Properties and chemical additives. Final technical report, September 1988--November 1991  

SciTech Connect

Coal-water slurries have the potential of a near term replacement for fuel oil. In order to gain the fundamental understanding of the preparation and handling of coal-water slurries, experiments were performed to identify the relationship between the coal content of a given coal-water slurry and its physical and chemical properties. The objectives of this program were: Investigate the relationship between the chemical and physical properties of coal and the rheology of coal-water slurry Define procedures for evaluating and preparing coal water slurries for a particular coal candidate, based on the characteristic coal properties Develop improved methods of screening surfactants used in coal-water slurry preparation Perform experiments designed to investigate the effect of characteristic coal properties on slurry quality, by examining the effect of the individual coal properties on slurry quality Develop a statistical formulation to predict the coal content of a given coal water slurry content based on the coal characteristic properties.

Ohene, F.

1992-02-19T23:59:59.000Z

334

Selective enrichment of phenols from coal liquefaction oil by solid phase extraction method  

SciTech Connect

This study focuses on the solid phase extraction method for the enrichment and separation of phenol from coal liquefaction oil. The phenols' separation efficiency was compared on different solid phase extraction (SPE) cartridges, and the effect of solvents with different polarity and solubility parameter on amino-bonded silica was compared for selection of optimal elution solution. The result showed that amino-bonded silica has the highest selectivity and best extraction capability due to two factors, weak anion exchange adsorption and polar attraction adsorption.

Tian, M.; Feng, J. [Taiyuan University of Technoloy, Taiyuan (China)

2009-07-01T23:59:59.000Z

335

NMR Sensor for Onboard Ship Detection of Catalytic Fines in Marine Fuel Oils  

Science Journals Connector (OSTI)

NMR Sensor for Onboard Ship Detection of Catalytic Fines in Marine Fuel Oils ... Vermeire, M. B. Everything You Need to Know About Marine Fuels; Chevron Global Marine Products: Ghent, Belgium, 2007. ...

Morten K. Sørensen; Mads S. Vinding; Oleg N. Bakharev; Tomas Nesgaard; Ole Jensen; Niels Chr. Nielsen

2014-07-02T23:59:59.000Z

336

Survey of tar sand deposits, heavy oil fields, and shallow light oil fields of the United States for underground coal gasification applications  

SciTech Connect

A literature survey was conducted to identify areas of the United States where tar sand deposits, heavy oil fields, or shallow light oil fields might be suitably associated with coal deposits for production of oil by in situ thermal recovery methods using heat derived from underground coal gasification (UCG) processes. The survey is part of a Department of Energy-sponsored program to develop new applications for UCG technology in utilizing coal resources that are unattractive for mining. Results from the survey indicate tar sand deposits, heavy oil fields, or light oil fields are probably or possibly located within 5 miles of suitable coal in 17 states (Table 1). Especially promising areas are in the Uinta Basin of Utah; the North Slope of Alaska; the San Miguel deposit in southwest Texas; the Illinois-Eastern Interior Basin area of western Kentucky, southwestern Indiana and Illinois; the tri-state area of Missouri, Kansas and Oklahoma; and the northern Appalachian Basin in eastern Ohio and northwestern Pennsylvania. The deposits in these areas warrant further evaluation. 30 refs., 4 figs., 1 tab.

Trudell, L.G.

1986-06-01T23:59:59.000Z

337

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

SciTech Connect

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

338

Conventional Energy (Oil, Gas, and Coal) Forum & Associated Vertical Business Development Best Practices in Indian Country  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & CONVENTIONAL ENERGY (OIL, GAS & COAL) FORUM & ASSOCIATED VERTICAL BUSINESS DEVELOPMENT BEST PRACTICES IN INDIAN COUNTRY March 1, 2012 MANDALAY BAY RESORT AND CASINO NORTH CONVENTION CENTER 3950 Las Vegas Blvd. South, Las Vegas, NV 89119 The dynamic world of conventional energy (focusing on oil, gas and coal energy) is a critical piece of the American energy portfolio. This strategic energy forum will focus on recent trends, existing successful partnerships, and perspectives on the future of conventional energy and how tribal business interests are evolving to meet the interests and needs of new tribal energy economies. The third of a series of planned DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this forum will provide an opportunity for Tribal leaders, federal

339

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

340

China's Coal: Demand, Constraints, and Externalities  

E-Print Network (OSTI)

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Distillate Fuel Oil Assessment for Winter 1996-1997  

Gasoline and Diesel Fuel Update (EIA)

following Energy Information Administration sources: Weekly following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208(96-39); Petroleum Supply Monthly, September 1996, DOE/EIA-0109(96/09); Petroleum Supply Annual 1995, DOE/EIA-0340(95); Petroleum Marketing Monthly, September 1996, DOE/EIA-0380(96/09); Short-Term Energy Outlook, DOE/EIA-0202(96/4Q) and 4th Quarter 1996 Short-Term Integrated Forecasting System; and an address by EIA Administrator Jay E. Hakes on the Fall 1996 Heating Fuel Assessment before the National Association of State Energy Officials, September 16, 1996. Table FE1. Distillate Fuel Oil Demand and Supply Factors, Winter (October - March) 1993-94 Through 1996-97 History STEO Mid Case Factor Winter Winter Winter Winter 1993-94

342

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

343

Degradation Mechanism in a Direct Carbon Fuel Cell Operated with Demineralised Brown Coal  

Science Journals Connector (OSTI)

Abstract The performance of a demineralised and devolatilised coal from the Morwell mine in the Latrobe Valley, Victoria, has been investigated in a direct carbon fuel cell (DCFC) operated at 850 °C. The focus of the investigation has been on understanding degradation issues as a function of time involving a sequence of electrochemical impedance spectroscopy and voltage-current characteristic. Diffusion limited processes dominate the electrode polarisation losses in pure N2 atmosphere, however, these decrease substantially in the presence of CO2 as the anode chamber purge gas, due to in situ generation of fuel species by the reaction of CO2 with carbon. Post-mortem analysis of anode by SEM and XRD revealed only a minor degradation due to its reduction, particle agglomeration as well as the formation of small quantity of new phases. However, major fuel cell performance degradation (increase of ohmic resistive and electrode polarisation losses) occurred due to loss of carbon/anode contacts and a reduction in the electron-conducting pathways as the fuel was consumed. The investigations revealed that the demineralised coal char can be used as a viable fuel for DCFC, however, further developments on anode materials and fuel feed mechanism would be required to achieve long-term sustained performance.

Adam C. Rady; Sarbjit Giddey; Aniruddha Kulkarni; Sukhvinder P.S. Badwal; Sankar Bhattacharya

2014-01-01T23:59:59.000Z

344

Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel  

DOE Patents (OSTI)

Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

2010-11-23T23:59:59.000Z

345

Nitrogen oxide removal processes for coal-fueled electric power generation  

SciTech Connect

There is a global trend requiring lower NO{sub x}, emissions from stationary combustion sources. When NO{sub x} is released into the atmosphere it contributes to photochemical smog and acid rain. Elevated ozone concentrations have been implicated in crop and forest damage, and adverse effects on human health. Several alternative technologies have been developed to reduce NO{sub x} emissions resulting from the combustion of coal. The alternatives, which range from combustion modifications, to addition of post-combustion systems, to use of alternate coal combustion technologies, provide different degrees of NO{sub x} reduction efficiency with different associated costs. Only by careful evaluation of site specific factors can the optimum technology for each application be chosen. This chapter will investigate the alternatives for NO{sub x} control for new, large utility steam generators using coal as a fuel.

Van Nieuwenhuizen, Wm.

1993-12-31T23:59:59.000Z

346

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-06-30T23:59:59.000Z

347

The potential utilization of nuclear hydrogen for synthetic fuels production at a coal–to–liquid facility / Steven Chiuta.  

E-Print Network (OSTI)

??The production of synthetic fuels (synfuels) in coal–to–liquids (CTL) facilities has contributed to global warming due to the huge CO2 emissions of the process. This… (more)

Chiuta, Steven

2010-01-01T23:59:59.000Z

348

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Enter the Amount Delivered in Gallons XXXX Type of Fuel Sold was: 1=Fuel Oil #1 2=Fuel Oil #2 3=Kerosene 4=Other Enter the Price per Gallon $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ XXX.XX $ X.XX (select one) 1 2 3 4 MM/DD/YY Page 1 of 2 U.S. Energy Information Administration Independent Statistics & Analysis

349

COAL & POWER SYSTEMS  

NLE Websites -- All DOE Office Websites (Extended Search)

COAL & POWER SYSTEMS COAL & POWER SYSTEMS STRATEGIC & MULTI-YEAR PROGRAM PLANS U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY GREENER, SOONER... THROUGH TECHNOLOGY INTRODUCTION .......... i-1 STRATEGIC PLAN ........ 1-1 PROGRAM PLANS Vision 21 .......................... 2-1 Central Power Systems ...... 3-1 Distributed Generation ..... 4-1 Fuels ................................ 5-1 Carbon Sequestration ....... 6-1 Advanced Research ........... 7-1 TABLE OF CONTENTS STRATEGIC & MULTI-YEAR PROGRAM PLANS STRENGTH THROUGH SCIENCE... A "GREENER, SOONER" PHILOSOPHY Coal, natural gas, and oil fuel about 70 percent of the electricity generated in the United States. As promising as renewable and other alternative fuels are, it will be several decades before they can make significant energy contributions to the Nation's

350

The Future of Low Carbon Transportation Fuels  

E-Print Network (OSTI)

" Nuclear" Oil resources" Unconventional:" oil shale liquid, " oil sands" Coal resources" Transport! Elec

Kammen, Daniel M.

351

FINAL ENVIRONMENTAL IMPACT STATEMENT FOR THE GILBERTON COAL-TO-CLEAN FUELS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IMPACT STATEMENT IMPACT STATEMENT FOR THE GILBERTON COAL-TO-CLEAN FUELS AND POWER PROJECT GILBERTON, PENNSYLVANIA Volume 2: Appendices October 2007 U.S. DEPARTMENT OF ENERGY Final: October 2007 COVER SHEET October 2007 RESPONSIBLE AGENCY U.S. Department of Energy (DOE) TITLE Final Environmental Impact Statement for the Gilberton Coal-to-Clean Fuels and Power Project LOCATION Gilberton, Pennsylvania CONTACTS Additional copies or information concerning this final environmental impact statement (EIS) can be obtained from Ms. Janice L. Bell, National Environmental Policy Act (NEPA) Document Manager, U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Road, P.O. Box 10940, Pittsburgh, PA 15236-0940. Telephone: 412-386-4512.

352

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria 83.0 96.4 146.4 153.3 182.2 226.1 220.3 342.3 248.3 Barbados NA NA NA NA NA NA NA NA NA Belgium 155.1 160.4 - - - - - - - - - - - - - - Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 115.7 117.8 180.4 141.5 198.4 222.4 NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) NA NA NA NA NA NA NA NA NA Colombia NA NA NA NA NA NA NA NA NA Cuba NA NA NA 183.4 NA NA NA NA NA

353

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Maine" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-",241,237,262,266,327,319,367,506,619 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-",13138,13124,12854,12823,12784,13171,12979,12779,13011 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-",0.71,0.69,0.77,0.78,0.7,0.65,0.72,0.82,0.72

354

Evaluation of coal-derived liquids as boiler fuels. Volume 3. Emissions test results. Final report  

SciTech Connect

A combustion demonstration using six coal-derived fuels was conducted on a utility boiler located at the plant, Sweatt Electric Generating Station of Mississippi Power Company, in Meridian, Mississippi. Volume 1, of a 5 volume report, contains a comprehensive report of the whole test program - see abstract of Volume 1 for a detailed abstract of the whole program. Volume 3 contains detailed emissions testing results. 41 figs., 6 tabs. (LTN)

Not Available

1985-09-01T23:59:59.000Z

355

,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

356

,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vwr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

357

Methodology for comparing the health effects of electricity generation from uranium and coal fuels  

SciTech Connect

A methodology was developed for comparing the health risks of electricity generation from uranium and coal fuels. The health effects attributable to the construction, operation, and decommissioning of each facility in the two fuel cycle were considered. The methodology is based on defining (1) requirement variables for the materials, energy, etc., (2) effluent variables associated with the requirement variables as well as with the fuel cycle facility operation, and (3) health impact variables for effluents and accidents. The materials, energy, etc., required for construction, operation, and decommissioning of each fuel cycle facility are defined as primary variables. The materials, energy, etc., needed to produce the primary variable are defined as secondary requirement variables. Each requirement variable (primary, secondary, etc.) has associated effluent variables and health impact variables. A diverging chain or tree is formed for each primary variable. Fortunately, most elements reoccur frequently to reduce the level of analysis complexity. 6 references, 11 figures, 6 tables.

Rhyne, W.R.; El-Bassioni, A.A.

1981-12-08T23:59:59.000Z

358

Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 3, November 1989--January 1990  

SciTech Connect

This three-year research project at Combustion Engineering, Inc. (CE), will assess the potential economic and environmental benefits derived from coal beneficiation by various advanced cleaning processes. The objectives of this program include the development of a detailed generic engineering data base, comprised of fuel combustion and ash performance data on beneficiated coal-based fuels (BCFs), which is needed to permit broad application. This technical data base will provide detailed information on fundamental fuel properties influencing combustion and mineral matter behavior as well as quantitative performance data on combustion, ash deposition, ash erosion, particulate collection, and gaseous and particulate emissions. Program objectives also address the application of this technical data base to predict performance impacts associated with firing BCFs in various commercial boiler designs as well as assessment of the economic implications of BCF utilization. Additionally, demonstration of this technology, with respect to large-scale fuel preparation, firing equipment operation, fuel performance, environmental impacts, and verification of prediction methodology, will be provided during field testing.

Not Available

1990-03-01T23:59:59.000Z

359

Oil To Biofuels Case Study Objectives  

E-Print Network (OSTI)

Oil To Biofuels Case Study Objectives - Critically evaluate the nature of certain societal process and scientific solutions to problems. Inception. - Gulf Oil Spill case study. - Lawrence Livermore? - Estimate the amount of your biofuel required to replace a fossil fuel of your choice (coal, oil, etc

Auerbach, Scott M.

360

Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds  

DOE Patents (OSTI)

A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.

Khan, M. Rashid (Morgantown, WV)

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

,,,,"Reasons that Made Residual Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.25;" 5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable Residual","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","Consumed as a Fuel","Fuel Oil Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

362

Concentration measurements of biodiesel in engine oil and in diesel fuel  

Science Journals Connector (OSTI)

This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

A Mäder; M Eskiner; C Burger; W Ruck; M Rossner; J Krahl

2012-01-01T23:59:59.000Z

363

Process for the production of fuel gas from coal  

DOE Patents (OSTI)

An improved apparatus and process for the conversion of hydrocarbonaceous materials, such as coal, to more valuable gaseous products in a fluidized bed gasification reaction and efficient withdrawal of agglomerated ash from the fluidized bed is disclosed. The improvements are obtained by introducing an oxygen containing gas into the bottom of the fluidized bed through a separate conduit positioned within the center of a nozzle adapted to agglomerate and withdraw the ash from the bottom of the fluidized bed. The conduit extends above the constricted center portion of the nozzle and preferably terminates within and does not extend from the nozzle. In addition to improving ash agglomeration and withdrawal, the present invention prevents sintering and clinkering of the ash in the fluidized bed and permits the efficient recycle of fine material recovered from the product gases by contacting the fines in the fluidized bed with the oxygen as it emanates from the conduit positioned within the withdrawal nozzle. Finally, the present method of oxygen introduction permits the efficient recycle of a portion of the product gases to the reaction zone to increase the reducing properties of the hot product gas.

Patel, Jitendra G. (Bolingbrook, IL); Sandstrom, William A. (Chicago, IL); Tarman, Paul B. (Elmhurst, IL)

1982-01-01T23:59:59.000Z

364

Effects of no. 2 fuel oil on hatchability of marine and estuarine bird eggs  

Science Journals Connector (OSTI)

Eggs of Louisiana herons, sandwich terns, and laughing gulls were oiled with either 0, 5, or 20 ?l of No. 2 fuel oil in the field and in the laboratory. After 5 days of natural incubation, field-oiled and cont...

Donald H. White; Kirke A. King…

365

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

366

Techno-economic analysis of the coal-to-olefins process in comparison with the oil-to-olefins process  

Science Journals Connector (OSTI)

Abstract Olefins are one of the most important oil derivatives widely used in industry. To reduce the dependence of olefins industry on oil, China is increasing the production of olefins from alternative energy resources, especially from coal. This study is concerned with the opportunities and obstacles of coal-to-olefins development, and focuses on making an overall techno-economic analysis of a coal-to-olefins plant with the capacity of 0.7 Mt/a olefins. Comparison is made with a 1.5 Mt/a oil-to-olefins plant based on three criteria including energy efficiency, capital investment, and product cost. It was found that the coal-based olefins process show prominent advantage in product cost because of the low price of its feedstock. However, it suffers from the limitations of higher capital investment, lower energy efficiency, and higher emissions. The effects of production scale, raw material price, and carbon tax were varied for the two production routes, and thus the operational regions were found for the coal-to-olefins process to be competitive.

Dong Xiang; Yu Qian; Yi Man; Siyu Yang

2014-01-01T23:59:59.000Z

367

Clean Coal Diesel Demonstration Project  

SciTech Connect

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

368

Simulated coal-gas fueled carbonate fuel cell power plant system verification. Final report, September 1990--June 1995  

SciTech Connect

This report summarizes work performed under U.S. Department of Energy, Morgantown Energy Technology Center (DOE/METC) Contract DE-AC-90MC27168 for September 1990 through March 1995. Energy Research Corporation (ERC), with support from DOE, EPRI, and utilities, has been developing a carbonate fuel cell technology. ERC`s design is a unique direct fuel cell (DFC) which does not need an external fuel reformer. An alliance was formed with a representative group of utilities and, with their input, a commercial entry product was chosen. The first 2 MW demonstration unit was planned and construction begun at Santa Clara, CA. A conceptual design of a 10OMW-Class dual fuel power plant was developed; economics of natural gas versus coal gas use were analyzed. A facility was set up to manufacture 2 MW/yr of carbonate fuel cell stacks. A 100kW-Class subscale power plant was built and several stacks were tested. This power plant has achieved an efficiency of {approximately}50% (LHV) from pipeline natural gas to direct current electricity conversion. Over 6,000 hours of operation including 5,000 cumulative hours of stack operation were demonstrated. One stack was operated on natural gas at 130 kW, which is the highest carbonate fuel cell power produced to date, at 74% fuel utilization, with excellent performance distribution across the stack. In parallel, carbonate fuel cell performance has been improved, component materials have been proven stable with lifetimes projected to 40,000 hours. Matrix strength, electrolyte distribution, and cell decay rate have been improved. Major progress has been achieved in lowering stack cost.

NONE

1995-03-01T23:59:59.000Z

369

Synthetic fuels handbook: properties, process and performance  

SciTech Connect

The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

Speight, J. [University of Utah, UT (United States)

2008-07-01T23:59:59.000Z

370

Coal and Coal-Biomass to Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

and Coal-Biomass to Liquids News Gasifipedia Coal-Biomass Feed Advanced Fuels Synthesis Systems Analyses International Activity Project Information Project Portfolio Publications...

371

Life cycle study of coal-based dimethyl ether as vehicle fuel for urban bus in China  

Science Journals Connector (OSTI)

With life cycle assessment (LCA) methodology, a life cycle model of coal-based dimethyl ether (CBDME) as a vehicle fuel is established for China. Its life cycle from well to wheel are divided into three phases. They are feedstock extraction, fuel production and fuel consumption in vehicle. The primary energy consumption (PEC) and global warming potential (GWP) of CBDME pathway are analyzed and compared with coal-based diesel (CBD) as a latent rival to replace conventional petroleum-based diesel (CPBD). This study demonstrates that the LCA methodology is very suitable and effective for the choice of vehicle fuels. One result is that the greenhouse gases (GHGs) emission of coal-based vehicle fuel pathways is usually concentrated on fuel production stage. The percentages of CBDME and CBD pathways both exceed 60%. The application of carbon capture and storage (CCS) is helpful for coal-based vehicle fuel pathways to improve their global warming effect dramatically. Compared with CBD pathway, CBDME pathway consumes less PEC and emits less \\{GHGs\\} emission as well. Even though the CCS and CH4-fired generation are used, the advantages of CBDME are still kept. For saving petroleum energy and reducing global warming effect, CBDME has greater potential than CBD to substitute CPBD under current fuel synthesis technologies. If the hurdles such as the maturity of engine and vehicle technologies, corresponding regulations and standards and infrastructures are reliably solved, CBDME will have better prospect in China.

Liang Zhang; Zhen Huang

2007-01-01T23:59:59.000Z

372

Performance of solid oxide fuel cells operaated with coal syngas provided directly from a gasification process  

SciTech Connect

Solid oxide fuel cells (SOFCs) are being developed for integrated gasification power plants that generate electricity from coal at 50% efficiency. The interaction of trace metals in coal syngas with Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but test data from direct coal syngas exposure are sparsely available. This effort evaluates the significance of performance losses associated with exposure to direct coal syngas. Specimen are operated in a unique mobile test skid that is deployed to the research gasifier at NCCC in Wilsonville, AL. The test skid interfaces with a gasifier slipstream to deliver hot syngas to a parallel array of twelve SOFCs. During the 500 h test period, all twelve cells are monitored for performance at four current densities. Degradation is attributed to syngas exposure and trace material attack on the anode structure that is accelerated at increasing current densities. Cells that are operated at 0 and 125 mA cm{sup 2} degrade at 9.1 and 10.7% per 1000 h, respectively, while cells operated at 250 and 375 mA cm{sup 2} degrade at 18.9 and 16.2% per 1000 h, respectively. Spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, G.; Gerdes, K.; Song, X.; Chen, Y.; Shutthanandan, V.; Englehard, M.; Zhu, Z.; Thevuthasan, S.; Gemmen, R.

2012-01-01T23:59:59.000Z

373

Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases  

SciTech Connect

The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

2001-11-06T23:59:59.000Z

374

Development of Kilowatt-Scale Coal Fuel Cell Technology - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Steven S.C. Chuang (Primary Contact), Tritti Siengchum, Jelvehnaz Mirzababaei, Azadeh Rismanchian, and Seyed Ali Modjtahedi The University of Akron 302 Buchtel Common Akron, OH 44310-3906 Phone: (330) 972-6993 Email: schuang@uakron.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-08GO0881114 Project Start Date: June 1, 2008 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives To develop a kilowatt-scale coal-based solid oxide fuel cell (SOFC) technology. The outcome of this research effort

375

Investigation of a Coupled Fuel Reactor for Coal-Fueled Chemical Looping Combustion  

Science Journals Connector (OSTI)

To determine the solids circulation rate, an annular loop-seal was designed. ... Shen, L.; Wu, J.; Xiao, J.Experiments on chemical looping combustion of coal with a NiO based oxygen carrier Combust. ... Industrial & Engineering Chemistry Research (2013), 52 (18), 6119-6128 CODEN: IECRED; ISSN:0888-5885. ...

Hongming Sun; Lei Xu; Zhenshan Li; Ningsheng Cai

2014-09-02T23:59:59.000Z

376

Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels  

SciTech Connect

Liquid hydrocarbon fuels will continue to play a significant role in the transportation sector in the future of both the world and the United States because of the their convenience, high energy density, and vast existing infrastructure. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports by developing overseas economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be alleviated in part by utilizing the abundant domestic coal resource base. Continued R&D in coal conversion technology is expected to significantly reduce costs so that synfuels can compete economically at a much earlier date than previously forecast.

Srivastava, R.; McIlvried, H.G. [Burns and Roe Services Co., Pittsburgh, PA (United States); Gray, D.; Klunder, E.B.

1995-12-31T23:59:59.000Z

377

Simulation of the Fuel Reactor of a Coal?Fired Chemical Looping Combustor  

Science Journals Connector (OSTI)

Responsible carbon management (CM) will be required for the future utilization of coal for power generation. CO 2 separation is the more costly component of CM not sequestration. Most methods of capture require a costly process of gas separation to obtain a CO 2 ?rich gas stream. However recently a process termed Chemical Looping Combustion (CLC) has been proposed in which an oxygen?carrier is used to provide the oxygen for combustion. This process quite naturally generates a separate exhaust gas stream containing mainly H 2 O and CO 2 but requires two reaction vessels an Air Reactor (AR) and a Fuel Reactor (FR). The carrier (M for metal the usual carrier) is oxidized in the AR. This highly exothermic process provides heat for power generation. The oxidized carrier (MO) is separated from this hot vitiated air stream and transported to the FR where it oxidizes the hydrocarbon fuel yielding an exhaust gas stream of mainly H 2 O and CO 2 . This process is usually slightly endothermic so that the carrier must also transport the necessary heat of reaction. The reduced carrier (M) is then returned to the air reactor for regeneration hence the term “looping.” The net chemical reaction and energy release is identical to that of conventional combustion of the fuel. However CO 2 separation is easily achieved the only operational penalty being the slight pressure losses required to circulate the carrier. CLC requires many unit operations involving gas?solid or granular flow. To utilize coal in the fuel reactor in either a moving bed or bubbling fluidized bed the granular flow is especially critical. The solid coal fuel must be heated by the recycled metal oxide driving off moisture and volatile material. The remaining char must be gasified by H 2 O (or CO 2 ) which is recycled from the product stream. The gaseous product of these reactions must then contact the MO before leaving the bed to obtain complete conversion to H 2 O and CO 2 . Further the reduced M particles must be removed from the bed and returned to the air reactor without any accompanying unburned fuel. This paper presents a simulation of the gas?particle granular flow with heat transfer and chemical reactions in the FR. Accurate simulation of the segregation processes depending on particle density and size differences between the carrier and the fuel allows the design of a reactor with the desired behavior.

Kartikeya Mahalatkar; Thomas O’Brien; E. David Huckaby; John Kuhlman

2009-01-01T23:59:59.000Z

378

Encoal mild coal gasification project: Final design modifications report  

SciTech Connect

The design, construction and operation Phases of the Encoal Mild Coal Gasification Project have been completed. The plant, designed to process 1,000 ton/day of subbituminous Power River Basin (PRB) low-sulfur coal feed and to produce two environmentally friendly products, a solid fuel and a liquid fuel, has been operational for nearly five years. The solid product, Process Derived Fuel (PDF), is a stable, low-sulfur, high-Btu fuel similar in composition and handling properties to bituminous coal. The liquid product, Coal Derived Liquid (CDL), is a heavy, low-sulfur, liquid fuel similar in properties to heavy industrial fuel oil. Opportunities for upgrading the CDL to higher value chemicals and fuels have been identified. Significant quantities of both PDF and CDL have been delivered and successfully burned in utility and industrial boilers. A summary of the Project is given.

NONE

1997-07-01T23:59:59.000Z

379

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

380

,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsda_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsda_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Chemical fate of Bunker C fuel oil in a subtropical marine environment  

SciTech Connect

On August 10, 1993, a major oil spill occurred when approximately 1.2 million liters of Bunker C (No. 6) fuel oil spilled from the fuel tanker Bouchard 155 after it collided with the phosphate freighter Balsa 37 in a shipping channel at the entrance to Tampa Bay, Florida. Although early hydrodynamic conditions with ebbing tides caused most of the oil to be carried several kilometers out of Tampa Bay and into the Gulf of Mexico, subsequent onshore winds and spring tides caused significant quantities of the oil to be deposited on nearby beaches and in mangrove, seagrass and estuarine habitats north of the mouth of Tampa Bay.

Wetzel, D.L.; Van Vleet, E.S. [Univ. of South Florida, St. Petersburg, FL (United States)

1996-12-31T23:59:59.000Z

382

Testing Waste Olive Oil Methyl Ester as a Fuel in a Diesel Engine  

Science Journals Connector (OSTI)

In this sense, to gain knowledge about the implications of its use, waste olive oil methyl ester was evaluated as a fuel for diesel engines during a 50-h short-term performance test in a diesel direct-injection Perkins engine. ... At the beginning of the last century, Rudolph Diesel fueled a diesel engine with the oil of an African groundnut (peanut), thus demonstrating the idea of using vegetable oil as a substitute for No. 2 diesel fuel. ... In this way, we obtained a volume value for each trio of working values, making a brake-specific fuel consumption comparison between different tests or fuels possible, as shown in Table 2, where Vi is the volume value for each test and V50 corresponds to that of No. 2 diesel fuel after 50 h (the test that showed the minimum value). ...

M. P. Dorado; E. Ballesteros; J. M. Arnal; J. Gómez; F. J. López Giménez

2003-10-02T23:59:59.000Z

383

Generation of a Gaseous Fuel by Pyrolysis or Gasification of Biomass for Use as Reburn Gas in Coal-Fired Boilers  

Science Journals Connector (OSTI)

Biofliels attract increasing interest in power plant technology as sources of carbon dioxide neutral fuels. Besides using solid pulverised biomass as an additional fuel in coal-fired boilers a further possibil...

C. Storm; H. Spliethoff; K. R. G. Hein

2002-01-01T23:59:59.000Z

384

Fluidised bed co-gasification of coal and olive oil industry wastes  

Science Journals Connector (OSTI)

Co-gasification of bagasse wastes mixed with coal is technically feasible, without major installation changes. The effect of experimental conditions on co-gasification process was analysed, to enhance gas production and improve its composition and energetic content. The rise of bagasse content increased tars and gaseous hydrocarbons contents, which can be reduced by increasing gasification temperature and/or air flow rate. The rise of temperature till 890 °C favoured hydrocarbons further reactions and allowed an increase of 45% in hydrogen release and a decrease in gaseous hydrocarbons of 55%. A reduction of around 30% in gaseous hydrocarbons was also achieved by rising O2/fuel ratio till 0.6 g/g daf, which decreased gas heating value, due to nitrogen diluting effect. Though no significant changes in gaseous hydrocarbons composition were obtained, the presence of dolomite in the fluidised bed had the benefit of decreasing tars content and rising gas yield, being the gas richer in hydrogen content.

Rui Neto André; Filomena Pinto; Carlos Franco; M. Dias; I. Gulyurtlu; M.A.A. Matos; I. Cabrita

2005-01-01T23:59:59.000Z

385

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

1 PM)" 1 PM)" "Hawaii" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)","-","-","-","-","-","-","-","-","-","-","-","-",303,296,188,175,281,309,358,297,279 " Average heat value (Btu per pound)","-","-","-","-","-","-","-","-","-","-","-","-",11536,11422,11097,10975,10943,10871,10669,10640,10562 " Average sulfur Content (percent)","-","-","-","-","-","-","-","-","-","-","-","-",0.32,0.44,0.49,0.55,0.51,0.47,0.66,0.65,0.62

386

Oxy-fuel combustion systems for pollution free coal fired power generation  

SciTech Connect

Jupiter Oxygen's patented oxy-fuel combustion systems1 are capable of economically generating power from coal with ultra-low emissions and increased boiler efficiency. Jupiter's system uses pure oxygen as the combustion agent, excluding air and thus nitrogen, concentrating CO2 and pollutants for efficient capture with near zero NOx production, reducing exhaust mass flow, and increasing radiant heat transfer. Flue-gas recirculation rates can be varied to add flexibility to new boiler designs using this technology. Computer modeling and thermal analysis have identified important design considerations in retrofit applications.

Ochs, Thomas L.; Oryshchyn, Danylo B.; Gross, Dietrich (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Gross, Alex (Jupiter Oxygen Corp.); Dogan, Cindy; Summers, Cathy A.; Simmons, William (CoalTeck LLC); Schoenfeld, Mark (Jupiter Oxygen Corp.)

2004-01-01T23:59:59.000Z

387

Moderate or Intense Low-Oxygen Dilution Oxy-combustion Characteristics of Light Oil and Pulverized Coal in a Pilot-Scale Furnace  

Science Journals Connector (OSTI)

The primary and secondary oxidizer streams are preheated to 450 and 400 K with electrical heaters, respectively. ... on the heat transfer, the comparison of flameless oxyfuel and flameless air fuel combustion results of lab. ... processes that coal particles experience during combustion, the characteristics of oxy-fuel combustion are reviewed in the context of heat and mass transfer, fuel delivery and injection, coal particle heating and moisture evapn., devolatilization and ignition, char oxidn. ...

P. Li; F. Wang; Y. Tu; Z. Mei; J. Zhang; Y. Zheng; H. Liu; Z. Liu; J. Mi; C. Zheng

2014-01-06T23:59:59.000Z

388

Coal: An energy bridge to the future  

SciTech Connect

For years, coal drove the transportation business in this country and it may be poised for a comeback when it comes to moving people and things. A hundred years ago, steam engines burned tons of coal as they pulled trains across the country. Now researchers are looking at converting that coal to liquid fuel that would fill up our gas tanks and move our cars and trucks. The technology already exists to transform coal into a liquid fuel. In fact, Pacific Northwest National Laboratory scientists and engineers have researched forms of coal and hydrocarbon gasification on and off for more than 30 years. But oil has never sustained a high enough price to kick start a coal-to-liquid fuel industry. That may be changing now. In addition to high crude oil prices, experts agree worldwide petroleum resources won’t last forever, and hydrocarbon resources like coal may be the only resource available, at a large enough scale, to off-set oil consumption, in the near term.

Bauer, Susan J.

2006-09-29T23:59:59.000Z

389

Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Final report  

SciTech Connect

The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. Current methods of oil extraction and refining were considered, as well as the products of those processes. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. No modification of process design or equipment is required. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons.

Not Available

1981-11-01T23:59:59.000Z

390

VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.  

SciTech Connect

The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

2004-10-01T23:59:59.000Z

391

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Energy.gov (U.S. Department of Energy (DOE))

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

392

A CO-UTILIZATION OF COAL WITH E-FUEL FROM ENERTECH'S SLURRYCARBtm PROCESS  

SciTech Connect

In August 1999, EnerTech Environmental, LLC (EnerTech) and the Federal Energy Technology Center (FETC) entered into a Cooperative Agreement to develop the first SlurryCarb{trademark} facility for converting Municipal Sewage Sludge (MSS) into a high-density slurry fuel, which could be co-utilized with coal in various industrial applications. Funded primarily by private investors, this program was divided into two major phases, Project Definition (Phase 0) and Design, Construction, and Operation (Phase 1). Project Definition, performed during this reporting period, was designed to define the project from a technical, economic, and scheduling standpoint. Once defined, much of the project risk would be appropriately mitigated thereby providing stakeholders, such as FETC, less risk when investing in the more costly Phase 1, which includes the design, construction, and operation of the first SlurryCarb{trademark} facility. Since May 1999, EnerTech has made significant progress in the tasks required in Phase 0 for bringing this project to Phase 1. These accomplishments have enhanced the probability for success thereby reducing the risk to the United States Department of Energy's (DOE) for its investment in the project. Phase 0 technical accomplishments include: Locating and securing a project site for the 60 dry ton per day (DTPD) SlurryCarb{trademark} facility; Locating and securing a project partner who will supply the necessary MSS for the project revenue stream; Completing the basic engineering of the project, which included value engineering for reducing technical risk and lowering project costs (final drawings, detail technical review, test runs on process development unit, fuel production for fuel usage research, and final cost estimate all pending); Research and a market study necessary for finding a potential fuel user, which included working with General Electric Environmental Research Corporation (EER) with a focus on coal utilization (locate actual fuel user and detailed combustion research pending); Beginning the National Environmental Policy Act (NEPA) process necessary for the DOE involvement (final NEPA report pending); Completing the basic design for the fuel delivery system and developing a research protocol for testing required by the fuel user (actual fuel testing pending); and Locating engineering, procurement, and construction firm (EPC) to provide a fixed price guaranteed schedule for the project (EPC contract negotiation pending). For this project, a semi-annual technical progress report is required to describe the technical progress made during the duration of the budget period.

Susan L. Hoang

2000-03-02T23:59:59.000Z

393

Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping  

SciTech Connect

Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.

Pan, Wei-Ping; Cao, Yan

2012-11-30T23:59:59.000Z

394

Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station  

Science Journals Connector (OSTI)

Fine particles formed from combustion of a bituminous coal and co-combustion of coal with 7 th% (thermal percentage) solid recovered fuel (SRF) in a pulverized coal-fired power plant were sampled and characterized in this study. The particles from dedicated coal combustion and co-combustion both showed an ultrafine mode centered at approximately 0.1 ?m. Compared with coal combustion, co-combustion of coal and SRF increased the formation of submicron particles, especially ultrafine particles below 0.2 ?m. The morphology of the particles indicated that supermicron particles were primarily formed by the melting of minerals. The ultrafine particles were generated through nucleation and coagulation of vaporized inorganic species, while for the particles in between supermicron and ultrafine particles, condensation of vaporized species or aggregation of nucleates on the existing spherical submicron particles appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were depleted in ultrafine particles. The observed high volatility of Ca was likely related with the high combustion temperature and relative low oxygen condition in the boiler which may promote vaporization of Ca during char oxidation. The discrepancies on the observed volatilities of Ca and alkalis between some laboratory experiments and full-scale measurements were discussed. The composition of the fine particles from co-combustion was generally similar to those from coal combustion. The ultrafine particles from co-combustion were of slightly higher Ca, P, and K contents, and lower S content.

H. Wu; A.J. Pedersen; P. Glarborg; F.J. Frandsen; K. Dam-Johansen; B. Sander

2011-01-01T23:59:59.000Z

395

Coal-fueled high-speed diesel engine development. Final report, September 28, 1990--November 30, 1993  

SciTech Connect

The goal of this program was to study the feasibility of operating a Detroit Diesel Series 149 engine at high speeds using a Coal-Water-Slurry (CWS) fuel. The CWS-fueled 149 engine is proposed for the mine-haul off-highway truck and work boat marine markets. Economic analysis studies indicate that, for these markets, the use of CWS fuel could have sufficient operating cost savings, depending upon the future diesel fuel price, emission control system capital and operating costs, and maintenance and overhaul costs. A major portion of the maintenance costs is expected to be due to lower life and higher cost of the CWS injectors. Injection and combustion systems were specially designed for CWS, and were installed in one cylinder of a Detroit Diesel 8V-149TI engine for testing. The objective was to achieve engine operation for sustained periods at speeds up to 1,900 rpm with reasonable fuel economy and coal burnout rate. A computer simulation predicted autoignition of coal fuel at 1,900 rpm would require an average droplet size of 18 microns and 19:1 compression ratio, so the injection system, and pistons were designed accordingly. The injection system was capable of supplying the required volume of CWS/injection with a duration of approximately 25 crank angle degrees and peak pressures on the order of 100 mpa. In addition to the high compression ratio, the combustion system also utilized hot residual gases in the cylinder, warm inlet air admission and ceramic insulated engine components to enhance combustion. Autoignition of CWS fuel was achieved at 1900 rpm, at loads ranging from 20--80 percent of the rated load of diesel-fuel powered cylinders. Limited emissions data indicates coal burnout rates in excess of 99 percent. NO{sub x} levels were significantly lower, while unburned hydrocarbon levels were higher for the CWS fueled cylinder than for corresponding diesel-fuel powered cylinders.

Kakwani, R.M.; Winsor, R.E.; Ryan, T.W. III; Schwalb, J.A.; Wahiduzzaman, S.; Wilson, R.P. Jr.

1993-09-01T23:59:59.000Z

396

The effect of wood biomass blending with pulverized coal on combustion characteristics under oxy-fuel condition  

Science Journals Connector (OSTI)

Abstract In this study, combustion from the co-firing of coal and wood biomass, and thermal characteristics such as ignition temperature, burn-out temperature, and activation energy were discussed using a thermogravimetric analyzer (TGA). We investigated the effects of biomass blending with two kinds of pulverized coal (bituminous Shenhua, and sub-bituminous Adaro) under air and oxy-fuel conditions. The coal fraction in the blended samples was set to 1, 0.8, and 0.5. The oxygen fraction in the oxidant was set to 0.21, 0.3, 0.5, and 0.8. The ignition temperature was governed by the fuel composition, particularly in the blended biomass which has a much higher content of volatile matter comparing to coal. However, the burnout temperature, which shows a strong relationship with char combustion, depended on the oxidant ingredients rather than on the fuel components. Thermal characteristics such as ignition, burnout temperature, reaction region, and heat flow were very similar between air and a 0.3 oxygen concentration under oxy-fuel conditions with Shenhua coal.

Seongyool Ahn; Gyungmin Choi; Duckjool Kim

2014-01-01T23:59:59.000Z

397

Techno-economic assessments of oxy-fuel technology for South African coal-fired power stations  

Science Journals Connector (OSTI)

Abstract Oxy-fuel technology is one of the potential solutions to reduce CO2 emissions from coal-fired power plants. Although vendors offer a “retrofit package,” to the best of our knowledge there has not been a study undertaken that looks at the technical and economic viability of oxy-fuel technology for CO2 capture for South African coal-fired power stations. This study presents a techno-economic analysis for six coal fired power stations in South Africa. Each of these power stations has a total capacity of about 3600 MW. The analysis was done using the oxy-fuel model developed by Carnegie Mellon University in the USA. The model was used to define the performance and costs of retrofitting the boilers. The results obtained showed that the CO2 emission rate was reduced by a factor of 10 for all the plants when retrofitted to oxy-fuel combustion. Between 27 and 29% of the energy generated was used to capture CO2. The energy loss was correlated to the coal properties. Sulphur content in the coal samples affects the energy used for flue gas cooling but did not affect the energy used for CO2 purification and compression. The study also showed there is a need for the flue gas to be treated for \\{NOx\\} and \\{SOx\\} control. The total capital costs and cost of electricity for the six plants were different, resulting with the cost of electricity varying from 101$/MWh to124$/MWh.

B.O. Oboirien; B.C. North; T. Kleyn

2014-01-01T23:59:59.000Z

398

RECS Fuel Oil Usage Form_v1 (Draft).xps  

Annual Energy Outlook 2012 (EIA)

fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

399

Characterization by photoacoustic spectroscopy of the photosynthetic Scenedesmus armatus system affected by fuel oil contamination  

Science Journals Connector (OSTI)

The effect of aqueous fuel oil extract (AFOE)1 on the photosynthetic system in green algae Scenedesmus armatus...cultures was examined by photoacoustic spectroscopy. After a 24-h culture growth, the photosyntheti...

J. Szurkowski; Z. Tukaj

1995-10-01T23:59:59.000Z

400

Table 42. Residual Fuel Oil Prices by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

"KD0VABNUS1","KPRVABNUS1" "Date","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Vessel...

402

Toxicity of Fuel Oil Water Accommodated Fractions on Two Marine Microalgae, Skeletonema costatum and Chlorela spp  

Science Journals Connector (OSTI)

In this paper, the acute toxicity of four fuel oils including F120, F180, F380 and No.-20 was evaluated by exposing the marine microalgae Chlorela spp. (Chlorophyta) and Skeletonema costatum (Bacillariophyta) in ...

Min Chao; Xinqiang Shen; Fengxia Lun…

2012-05-01T23:59:59.000Z

403

METC research on coal-fired diesels  

SciTech Connect

The METC in-house Coal-Fueled Diesel Research project is part of the overall DOE effort to develop a technology base for diesel engines capable of operating on coal, shale oil or low-cost coal-derived fuels. The in-house effort started in 1985 as a test-bed for coal-derived liquid fuels and will end this fiscal year with the successful completion of METC`s diesel R&D program. Currently METC in-house research and development efforts focus on pilot chamber combustion in METC`s coal-water slurry (CWS) fueled diesel engine. A novel pilot chamber for a direct-injected, coal-fueled diesel engine has been designed and is being tested in METC`s single cylinder research diesel engine. The pilot chamber configuration allows for operation at extended load and speed conditions using 100 percent CWS and no other pilot fuel. The concept involves the use of a small volume chamber exterior to the main cylinder in which approximately 5 percent of the total fuel energy at full load conditions is injected. Lower NO{sub X} levels may be obtained due to leaner burning as well as broader stable performance using only CWS fuel.

McMillian, M.H. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E.H.; Addis, R.E. [EG and G Washington Analytical Services Center, Inc., Morgantown, WV (United States)

1993-11-01T23:59:59.000Z

404

Composition-explicit distillation curves of aviation fuel JP-8 and a coal-based jet fuel  

SciTech Connect

We have recently introduced several important improvements in the measurement of distillation curves for complex fluids. The modifications to the classical measurement provide for (1) a composition explicit data channel for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements that are true thermodynamic state points; (3) temperature, volume, and pressure measurements of low uncertainty suitable for an equation of state development; (4) consistency with a century of historical data; (5) an assessment of the energy content of each distillate fraction; (6) a trace chemical analysis of each distillate fraction; and (7) a corrosivity assessment of each distillate fraction. The most significant modification is achieved with a new sampling approach that allows precise qualitative as well as quantitative analyses of each fraction, on the fly. We have applied the new method to the measurement of rocket propellant, gasoline, and jet fuels. In this paper, we present the application of the technique to representative batches of the military aviation fuel JP-8, and also to a coal-derived fuel developed as a potential substitute. We present not only the distillation curves but also a chemical characterization of each fraction and discuss the contrasts between the two fluids. 26 refs., 5 figs., 6 tabs.

Beverly L. Smith; Thomas J. Bruno [National Institute of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Division

2007-09-15T23:59:59.000Z

405

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network (OSTI)

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

2012-06-07T23:59:59.000Z

406

Performance of solid oxide fuel cells operated with coal syngas provided directly from a gasification process  

SciTech Connect

Solid oxide fuel cells (SOFCs) are presently being developed for gasification integrated power plants that generate electricity from coal at 50+% efficiency. The interaction of trace metals in coal syngas with the Ni-based SOFC anodes is being investigated through thermodynamic analyses and in laboratory experiments, but direct test data from coal syngas exposure are sparsely available. This research effort evaluates the significance of SOFC performance losses associated with exposure of a SOFC anode to direct coal syngas. SOFC specimen of industrially relevant composition are operated in a unique mobile test skid that was deployed to the research gasifier at the National Carbon Capture Center (NCCC) in Wilsonville, AL. The mobile test skid interfaces with a gasifier slipstream to deliver hot syngas (up to 300°C) directly to a parallel array of 12 button cell specimen, each of which possesses an active area of approximately 2 cm2. During the 500 hour test period, all twelve cells were monitored for performance at four discrete operating current densities, and all cells maintained contact with a data acquisition system. Of these twelve, nine demonstrated good performance throughout the test, while three of the cells were partially compromised. Degradation associated with the properly functioning cells was attributed to syngas exposure and trace material attack on the anode structure that was accelerated at increasing current densities. Cells that were operated at 0 and 125 mA/cm² degraded at 9.1 and 10.7% per 1000 hours, respectively, while cells operated at 250 and 375 mA/cm² degraded at 18.9 and 16.2% per 1000 hours, respectively. Post-trial spectroscopic analysis of the anodes showed carbon, sulfur, and phosphorus deposits; no secondary Ni-metal phases were found.

Hackett, Gregory A.; Gerdes, Kirk R.; Song, Xueyan; Chen, Yun; Shutthanandan, V.; Engelhard, Mark H.; Zhu, Zihua; Thevuthasan, Suntharampillai; Gemmen, Randall

2012-09-15T23:59:59.000Z

407

Sustainable fuel for the transportation sector  

Science Journals Connector (OSTI)

...of liquid hydrocarbon fuels (16, 17). It can...conversion to liquid fuels using the FT process...support total current oil consumption of 13.8 Mbbl/d by the...produce liquid hydrocarbon fuel. In our proposal, the...from the transportation engine. Therefore, for coal...

Rakesh Agrawal; Navneet R. Singh; Fabio H. Ribeiro; W. Nicholas Delgass

2007-01-01T23:59:59.000Z

408

Cobalt-cement catalysts for the synthesis of motor fuel components from synthesis gas obtained from oil shale  

Science Journals Connector (OSTI)

Highly effective cobalt-cement catalysts for the synthesis of aliphatic hydrocarbons from CO and H2, which are formed upon the thermolysis or gasification of oil shale or coals, are considered. The formation of t...

A. L. Lapidus; E. Z. Golosman; Yu. A. Strizhakova

2011-06-01T23:59:59.000Z

409

Evaluation of soy based heavy fuel oil emulsifiers for energy efficiency and environmental improvement  

SciTech Connect

It is known that the emulsification of water into heavy fuel oil (No. 6) can result in improved atomization of the fuel in a combustion chamber, which results in several benefits. In this study, two soybean lecithin based emulsifiers were evaluated. The emulsifiers were added to the No. 6 fuel at 0.5% and 1 % levels and emulsions of 10% and 15% water were prepared and burned in a pilot scale combustion chamber. The results showed a significant decrease in NO{sub x} emissions, and a reduction in carbon particulates, as well as a decrease in the excess oxygen requirement when the emulsions were burned when compared to fuel oil alone and a fuel oil/water mixture without the emulsifier. It was concluded that the use of a soybean lecithin based emulsifier may be used to increase the burning efficiency of heavy fuel oils, reduce emissions and particulates, and reduce down time for cleaning. This can be very important in utility plants which burn large volumes of heavy fuel oil and are located near urban areas.

Lee, P.K.; Szuhaj, B.F. [Central Soya Company, Inc., Fort Wayne, IN (United States); Diego, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

1996-12-31T23:59:59.000Z

410

Selective Separation of Thiols from a Model Fuel by Metal Oxides  

Science Journals Connector (OSTI)

These fossil fuels typically contain sulfur compounds on the order of a few percent. ... The authors have found that sulfur-loaded coals adsorb heavy metals in aqueous solutions. ... methods for fuel oils in relation to demand of low-sulfur fuel oils for air pollution control. ...

Yuuki Mochizuki; Katsuyasu Sugawara

2008-10-14T23:59:59.000Z

411

Effect of Coal Contaminants on Solid Oxide Fuel System Performance and Service Life  

SciTech Connect

The U.S. Department of Energy’s SECA program envisions the development of high-efficiency, low-emission, CO2 sequestration-ready, and fuel-flexible technology to produce electricity from fossil fuels. One such technology is the integrated gasification-solid oxide fuel cell (SOFC) that produces electricity from the gas stream of a coal gasifier. SOFCs have high fuel-to-electricity conversion efficiency, environmental compatibility (low NOx production), and modularity. The primary objective of the Phase I study was to determine the sensitivity of the performance of solid oxide fuel cells to trace level contaminants present in a coal-derived gas stream in the temperature range 700? to 900?C. Laboratory-scale tests were performed with 1-inch diameter solid oxide fuel cells procured from InDec B.V., Netherlands. These cells produce 0.15, 0.27, and 0.35 W/cm2 at 700?, 750?, and 800?C, respectively, in a H2 anode feed and are expected to be stable within 10% of the original performance over a period of 2000 h. A simulated coal-derived gas containing 30.0% CO, 30.6% H2 11.8% CO2, 27.6% H2O was used at a rate of ~100 standard cm3/min to determine the effect of contaminants on the electrical performance of the cells. Alumina or zirconia components were used for the gas manifold to prevent loss of contaminants by reaction with the surfaces of the gas manifold Short-term accelerated tests were conducted with several contaminants including As, P, CH3Cl, HCl, Hg, Sb, and Zn vapors. In these tests, AsH3, PH3, Cd vapor and CH3Cl identified as the potential contaminants that can affect the electrical performance of SOFCs. The effect of some of these contaminants varied with the operating temperature. Cell failure due to contact break inside the anode chamber occurred when the cell was exposed to 10 ppm arsenic vapor at 800?C. The electrical performance of SOFC samples suffered less than 1% in when exposed to contaminants such as HCl(g), Hg(g), and Zn(g), and SbO(g) at levels of 8 ppm and above. AsH3 vapor at 0.5 ppm did not affect the electrical performance of an SOFC sample even after 1000 h at 750?C. In Phase II of the program, long-term tests will be performed with multiple contaminants at a temperature range of 750? to 850?C. These tests will be at contaminant levels typical of coal-derived gas streams that have undergone gas cleanup using Selexol technology. The chemical nature of the contaminant species will be identified at the operating temperature of SOFC and compare them with thermodynamic equilibrium calculations. The results of the testing will be used to recommend the sensitivity limits for SOFC operation and to assess the reduction in the service life of the SOFC for trace level contaminants.

Gopala N. Krishnan, Palitha Jayaweera, Jordi Perez, M. Hornbostel, John. R. Albritton and Raghubir P. Gupta

2007-10-31T23:59:59.000Z

412

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment  

E-Print Network (OSTI)

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

413

Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area  

Science Journals Connector (OSTI)

Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area ... Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. ...

Ling Tao; David Fairley; Michael J. Kleeman; Robert A. Harley

2013-08-14T23:59:59.000Z

414

Chemical-Looping Combustion with Fuel Oil in a 10 kW Pilot Plant  

Science Journals Connector (OSTI)

Chemical-Looping Combustion with Fuel Oil in a 10 kW Pilot Plant ... The unit is based on interconnected fluidized beds and is similar to the design originally presented by Lyngfelt et al.(12) In the riser section there is a fast-fluidized regime, whereas in the loop-seals and the fuel reactor there is a bubbling regime. ... Energy Combust. ...

Patrick Moldenhauer; Magnus Rydén; Tobias Mattisson; Ali Hoteit; Aqil Jamal; Anders Lyngfelt

2014-08-29T23:59:59.000Z

415

Commodity Price Interaction: CO2 Allowances, Fuel Sources and Electricity  

Science Journals Connector (OSTI)

This work anlyses the relationship between the returns for carbon, electricity and fossil fuel price (coal, oil and natural gas), ... in carbon are not strongly reflected in electricity prices. Also, market power...

Mara Madaleno; Carlos Pinho; Cláudia Ribeiro

2014-01-01T23:59:59.000Z

416

The economical production of alcohol fuels from coal-derived synthesis gas: Case studies, design, and economics  

SciTech Connect

This project is a combination of process simulation and catalyst development aimed at identifying the most economical method for converting coal to syngas to linear higher alcohols to be used as oxygenated fuel additives. There are two tasks. The goal of Task 1 is to discover, study, and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas, and to explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. The goal of Task 2 is to simulate, by computer, energy efficient and economically efficient processes for converting coal to energy (fuel alcohols and/or power). The primary focus is to convert syngas to fuel alcohols. This report contains results from Task 2. The first step for Task 2 was to develop computer simulations of alternative coal to syngas to linear higher alcohol processes, to evaluate and compare the economics and energy efficiency of these alternative processes, and to make a preliminary determination as to the most attractive process configuration. A benefit of this approach is that simulations will be debugged and available for use when Task 1 results are available. Seven cases were developed using different gasifier technologies, different methods for altering the H{sub 2}/CO ratio of the syngas to the desired 1.1/1, and with the higher alcohol fuel additives as primary products and as by-products of a power generation facility. Texaco, Shell, and Lurgi gasifier designs were used to test gasifying coal. Steam reforming of natural gas, sour gas shift conversion, or pressure swing adsorption were used to alter the H{sub 2}/CO ratio of the syngas. In addition, a case using only natural gas was prepared to compare coal and natural gas as a source of syngas.

NONE

1995-10-01T23:59:59.000Z

417

U.S. Coal Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Data - U.S. Energy Information Administration (EIA) Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

418

Development of high energy density fuels from mild gasification of coal  

SciTech Connect

The overall objective of the program is the determination of the minimal processing requirements to produce High Energy Density Fuels (HEDF), meeting a minimal energy density of 130,000 Btu/gal (conventional jet fuels have energy densities in the vicinity of 115,000--120,000 Btu/gal) and having acceptable advanced fuel specifications in accordance with the three defined categories of HEDF. The program encompasses assessing current technology capability; selecting acceptable processing and refining schemes; and generating samples of advanced test fuels. A task breakdown structure was developed containing eight key tasks. This report summarizes the work that Amoco Oil Company (AOC), as key subcontractor, performed in the execution of Task 4, Proposed Upgrading Schemes for Advanced Fuel. The intent of the Task 4 study was to represent all the candidate processing options, that were either studied in the experimental efforts of Task 3 or were available from the prior art in the open literature, in a linear program (LP) model. The LP model would allow scaling of the bench-scale Task 3 results to commercial scale and would perform economic evaluations on any combination of the processes which might be used to make HEDF. Section 2.0 of this report summarizes the process and economic bases used. Sections 3.0 and 4.0 details the economics and processing sensitivities for HEDF production. 1 ref., 15 figs., 9 tabs.

Not Available

1990-10-01T23:59:59.000Z

419

High opacity white plumes from coal-fired and oil-fired sources  

SciTech Connect

In recent years, with the installation of high efficiency particulate emission control devices on utility and industrial boilers, high-opacity white plumes have become more of a problem because formerly the emissions of primary particulate matter obscured and/or served as a condensing surface for the condensable material. The problem common to some of these installations is the violation of opacity standards due to the presence of a high-opacity persistent plume that emits from the stack. Oil fired boilers violating opacity standards typically comply with mass emission standards while coal fired boilers typically violate visual emission standards when simultaneously violating mass emission standards. The investigation reported here focuses on the atypical case when in-situ transmissometer measurements show compliance but plume opacity as measured by Reference Method 9 or LIDAR exceeds opacity standards. This case comes about due to gas phase reactions that produce fine aerosols, vapor phase condensation and physical agglomeration of sub-micron sized clusters and particles. The plume opacity control technology applicable to these aerosols which are created and/or grown in white plume is discussed in this paper.

Lee, K.T. (National Cheng Kung Univ. (TW))

1988-01-01T23:59:59.000Z

420

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants  

SciTech Connect

Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

2012-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Nitrogen Oxides, Sulphur Trioxide and Mercury Emissions during Oxy-Fuel Fluidized Bed Combustion of Victorian Brown Coal  

Science Journals Connector (OSTI)

This study investigates, for the first time, the NOX, N2O, SO3 and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOX emissions and higher N2O ...

Bithi Roy; Luguang Chen; Sankar Bhattacharya

2014-11-17T23:59:59.000Z

422

Thermo economic evaluation of oxy fuel combustion cycle in Kazeroon power plant considering enhanced oil recovery revenues  

Science Journals Connector (OSTI)

Oxy fuel combustion and conventional cycle (currently working cycle ... for enhanced oil recovery in the various oil price indices is conducted and indices net present ... models reveal that gross efficiency of t...

Ehsan Torabnejad; Ramin Haghighi-Khoshkhoo…

2014-03-01T23:59:59.000Z

423

Oil and Fuel Spills EHS Contact: Lysa Holland (ljh17@psu.edu) 814-865-6391  

E-Print Network (OSTI)

Oil and Fuel Spills EHS Contact: Lysa Holland (ljh17@psu.edu) 814-865-6391 Procedures implemented. Other spills/releases of oil containing materials must be reported if they exceed 1 quart

Maroncelli, Mark

424

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

425

Deashing of coal liquids by sonically assisted filtration  

SciTech Connect

This project seeks to improve the effectiveness and reduce the cost of coal liquefaction by novel applications of sonic and ultrasonic energy. The specific purpose of this project is to develop and improve means for the economical removal of dispersed solid particles of ash, unreacted coal, and spent catalyst from direct and indirect coal liquefaction resids by using sonic or ultrasonic waves. Product streams containing solids are generated in both direct and indirect coal liquefaction processes. Direct coal liquefaction processes generate liquid products which contain solids including coal-originated mineral matter, unreacted coal, and spent dispersed catalyst. The removal of these solids from a product stream is one of the most difficult problems in direct coal liquefaction processes. On this report, results are discussed for sonically assisted crossflow filtration of V-1067 resid, diluted with No. 2 fuel oil, and sonically assisted batch filtrations of solids concentrates from continuous cross-flow filtration experiments.

Slomka, B.J.

1994-10-01T23:59:59.000Z

426

POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING  

SciTech Connect

This report covers the technical progress achieved from July 01, 1997 to September 30, 1997 on the POC-Scale Testing Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental procedures and test data for recovery of fine coal from coal fines streams generated at a commercial coal preparation plant are described. Two coal fines streams, namely Sieve Bend Effluent and Cyclone Overflow were investigated. The test results showed that ash was reduced by more than 50% at combustible matter recovery levels exceeding 95%.

NONE

1998-01-01T23:59:59.000Z

427

Hydrogen from Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Coal Edward Schmetz Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004 Presentation Outline ƒ Hydrogen Initiatives ƒ Hydrogen from Coal Central Production Goal ƒ Why Coal ƒ Why Hydrogen Separation Membranes ƒ Coal-based Synthesis Gas Characteristics ƒ Technical Barriers ƒ Targets ƒ Future Plans 2 3 Hydrogen from Coal Program Hydrogen from Coal Program FutureGen FutureGen Hydrogen Fuel Initiative Hydrogen Fuel Initiative Gasification Fuel Cells Turbines Gasification Fuel Cells Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen * The Hydrogen Fuel Initiative is a $1.2 billion RD&D program to develop hydrogen

428

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURING LOW RANK FUELS  

SciTech Connect

This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a review of the available data on mercury oxidation across SCR catalysts from small, laboratory-scale experiments, pilot-scale slipstream reactors and full-scale power plants was carried out. Data from small-scale reactors obtained with both simulated flue gas and actual coal combustion flue gas demonstrated the importance of temperature, ammonia, space velocity and chlorine on mercury oxidation across SCR catalyst. SCR catalysts are, under certain circumstances, capable of driving mercury speciation toward the gas-phase equilibrium values at SCR temperatures. Evidence suggests that mercury does not always reach equilibrium at the outlet. There may be other factors that become apparent as more data become available.

Constance Senior

2004-07-30T23:59:59.000Z

429

Table 6. Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, N  

U.S. Energy Information Administration (EIA) Indexed Site

6 PM)" 6 PM)" "South Dakota" "Fuel, Quality",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Coal (cents per million Btu)",115,113,113,110,108,103,94,92,93,94,99,103,130,134,139,142,151,156,174,176,195 " Average heat value (Btu per pound)",6096,6025,6034,6057,6049,6972,9034,8687,8728,8630,8464,8540,8550,8560,8523,8711,8534,8530,8391,8386,8327 " Average sulfur Content (percent)",0.9,0.87,0.92,0.9,0.91,0.87,0.52,0.63,0.72,0.6,0.31,0.33,0.37,0.33,0.34,0.31,0.32,0.3,0.31,0.31,0.33 "Petroleum (cents per million Btu)1",565,488,"-",467,"-","-",598,"-","-","-","-","-","-",804,822,1245,1546,"-",1985,1248,1808

430

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a model of Hg oxidation across SCRs was formulated based on full-scale data. The model took into account the effects of temperature, space velocity, catalyst type and HCl concentration in the flue gas.

Constance Senior

2004-10-29T23:59:59.000Z

431

OXIDATION OF MERCURY ACROSS SCR CATALYSTS IN COAL-FIRED POWER PLANTS BURNING LOW RANK FUELS  

SciTech Connect

This is the fifth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-03NT41728. The objective of this program is to measure the oxidation of mercury in flue gas across SCR catalyst in a coal-fired power plant burning low rank fuels using a slipstream reactor containing multiple commercial catalysts in parallel. The Electric Power Research Institute (EPRI) and Argillon GmbH are providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, the available data from laboratory, pilot and full-scale SCR units was reviewed, leading to hypotheses about the mechanism for mercury oxidation by SCR catalysts.

Constance Senior

2004-04-30T23:59:59.000Z

432

Simulated coal-gas-fueled molten carbonate fuel cell development program  

SciTech Connect

In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

Johnson, W.H.

1992-07-01T23:59:59.000Z

433

Simulated coal-gas-fueled molten carbonate fuel cell development program. Topical report: Cathode compatibility tests  

SciTech Connect

In previous work, International Fuel Cells Corporation (EFC) found interactions between molten carbonate fuel cell cathode materials being considered as replacements for the presently used nickel oxide and matrix materials. Consequently, this work was conducted to screen additional new materials for mutual compatibility. As part of this program, experiments were performed to examine the compatibility of several candidate, alternative cathode materials with the standard lithium aluminate matrix material in the presence of electrolyte at cell potentials. Initial cathode candidates were materials lithium ferrite, yttrium iron garnet, lithium manganite and doped ceria which were developed by universities, national laboratories, or contractors to DOE, EPRI, or GRI. These investigations were conducted in laboratory scale experiments. None of the materials tested can directly replace nickel oxide or indicate greater stability of cell performance than afforded by nickel oxide. Specifically: (1) no further work on niobium doped ceria is warranted; (2) cobalt migration was found in the lithium ferrite cathode tested. This could possibly lead to shorting problems similiar to those encountered with nickel oxide; (3) Possible shorting problems may also exist with the proprietary dopant in YIG; (4) lithium ferrite and YIG cathode were not single phase materials. Assessment of the chemical stability, i.e., dopant loss, was severely impeded by dissolution of these second phases in the electrolyte; and (5) Magnesium doped lithium manganite warrants further work. Electrolytes should contain Mg ions to suppress dopant loss.

Johnson, W.H.

1992-07-01T23:59:59.000Z

434

Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants  

SciTech Connect

One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

2001-01-01T23:59:59.000Z

435

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

436

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

4b. Relative Standard Errors for Total Fuel Oil Consumption per 4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion Btu) Fuel Oil Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 10 14 13 13 Building Floorspace (Square Feet) 1,001 to 5,000 10 16 11 11 5,001 to 10,000 15 22 18 18 10,001 to 25,000 15 24 19 19 25,001 to 50,000 13 25 29 29 50,001 to 100,000 14 27 21 22 100,001 to 200,000 13 36 34 34 200,001 to 500,000 13 37 33 33 Over 500,000 17 51 50 50 Principal Building Activity Education 17 17 16 17 Food Sales and Service 25 36 16 16 Health Care 29 48 47 47 Lodging 27 37 32 32 Mercantile and Service 14 25 26 26 Office 14 19 21 21 Public Assembly 23 46 35 34 Public Order and Safety 28 48 46 46 Religious Worship

437

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-12-31T23:59:59.000Z

438

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

439

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

440

Strategic evaluation of investments in coal-dust fuel for blast furnaces  

SciTech Connect

The paper discusses the evaluation of venture investment projects in pulverized coal injection into blast furnaces.

S.V. Bogdanov; S.M. Kornilaev [State University of Management, Moscow (Russian Federation)

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel oil coal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fuel supply system and method for coal-fired prime mover  

DOE Patents (OSTI)

A coal-fired gas turbine engine is provided with an on-site coal preparation and engine feeding arrangement. With this arrangement, relatively large dry particles of coal from an on-site coal supply are micro-pulverized and the resulting dry, micron-sized, coal particulates are conveyed by steam or air into the combustion chamber of the engine. Thermal energy introduced into the coal particulates during the micro-pulverizing step is substantially recovered since the so-heated coal particulates are fed directly from the micro-pulverizer into the combustion chamber.

Smith, William C. (Morgantown, WV); Paulson, Leland E. (Morgantown, WV)

1995-01-01T23:59:59.000Z

442

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

443

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

444

Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation  

SciTech Connect

Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have been mixed results in the field using variable orifices in coal pipes. Development of other coal flow control devices has been limited. An underlying difficulty that, to date, has hindered the development of an accurate instrument for coal flow measurements is the fact that coal flow is characterized by irregular temporal and spatial variation. However, despite the inherent complexity of the dynamic system, the system is in fact deterministic. Therefore, in principle, the coal flow can be deduced from the dynamics it exhibits. Nonetheless, the interactions are highly nonlinear, rendering standard signal processing approaches, which rely on techniques such as frequency decomposition, to be of little value. Foster-Miller, Inc. has developed a methodology that relates the complex variation in such systems to the information of interest. This technology will be described in detail in Section 2. A second concern regarding the current measurement systems is installation, which can be labor-intensive and cost-prohibitive. A process that does not require the pulverizer to be taken off line would be highly desirable. Most microwave and electrostatic methods require drilling up to 20 holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the probes. At least one electrostatic method requires a special spool piece to be fitted into each existing coal pipe. Overall, these procedures are both difficult and very expensive. An alternative approach is pursued here, namely the development of an instrument that relies on an acoustic signal captured by way of a commercial accelerometer. The installation of this type of sensor is both simpler and less invasive than other techniques. An accelerometer installed in a pipe wall need not penetrate through the wall, which means that the system may be able to remain on line during the installation. Further, due to the fact that the Dynamical Instruments technology, unlike other systems, does not rely on uniformity of the air or coal profile, the installation location need not be on a long, straight run

R. Demler

2006-04-01T23:59:59.000Z